Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2019

Revamping Timing Error Resilience to Tackle Choke Points at NTC

Aatreyi Bal
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Electrical and Computer Engineering Commons

Recommended Citation

Bal, Aatreyi, "Revamping Timing Error Resilience to Tackle Choke Points at NTC" (2019). All Graduate
Theses and Dissertations. 7456.

https://digitalcommons.usu.edu/etd/7456

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for

inclusion in All Graduate Theses and Dissertations by an /[x\

authorized administrator of DigitalCommons@USU. For /\

more information, please contact IQ’ .()Al UtahStateUniversity
digitalcommons@usu.edu. ‘e~ MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F7456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7456?utm_source=digitalcommons.usu.edu%2Fetd%2F7456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

REVAMPING TIMING ERROR RESILIENCE TO TACKLE CHOKE POINTS AT NTC
by

Aatreyi Bal

A dissertation submitted in partial fulfillment
of the requirements for the degree

of
DOCTOR OF PHILOSOPHY
in

Electrical Engineering

Approved:

Sanghamitra Roy, Ph.D. Koushik Chakraborty, Ph.D.
Major Professor Committee Member

Jacob Gunther, Ph.D. Reyhan Baktur, Ph.D.

Committee Member Committee Member

Vicki Allan, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

Copyright (© Aatreyi Bal 2019

All Rights Reserved

ii

iii

ABSTRACT

Revamping Timing Error Resilience to Tackle Choke Points at NTC

by

Aatreyi Bal, Doctor of Philosophy

Utah State University, 2019

Major Professor: Sanghamitra Roy, Ph.D.
Department: Electrical and Computer Engineering

Process variation (PV) is a conspicuous predicament for sub-micron VLSI circuits. Near
Threshold Computing (NTC) systems have been inherently plagued with heightened PV
sensitivity. Choke points are an intriguing manifestation of this PV sensitivity. Choke points
are a severe reliability concern in post-silicon NTC systems. They are capable of dominating
the choice of critical paths in a fabricated chip, as well as, shortening an already short delay
path due to reduced gate delays. This dissertation investigates the different aspects of
choke points and their non-trivial impacts on the system reliability. It is also demonstrated
that blindly adopting conventional timing error mitigation techniques into NTC will fail
to efficiently tackle choke errors. Consequently, two dynamic and adaptive techniques are
suggested which not only mitigate the choke errors, but also ensure to maintain the energy
efficiency of NTC systems. The proposed techniques show significant improvement over
popular super threshold computing (STC) techniques in terms of both performance and

energy efficiency, at the cost of minimal hardware overheads.

(73 pages)

v

PUBLIC ABSTRACT

Revamping Timing Error Resilience to Tackle Choke Points at NTC

Aatreyi Bal

The growing market of portable devices and smart wearables has contributed to innova-
tion and development of systems with longer battery-life. While Near Threshold Computing
(NTC) systems address the need for longer battery-life, they have certain limitations. NTC
systems are prone to be significantly affected by variations in the fabrication process, com-
monly called process variation (PV). This dissertation explores an intriguing effect of PV,
called choke points. Choke points are especially important due to their multifarious influ-
ence on the functional correctness of an NTC system. This work shows why novel research
is required in this direction and proposes two techniques to resolve the problems created by

choke points, while maintaining the reduced power needs.

To Mummy, Baba and Somdeb.

vi

ACKNOWLEDGMENTS

The completion of this Doctoral degree could not have been possible without the help,
encouragement and support from a lot of people. Firstly, I would like to thank my advisor
Dr. Sanghamitra Roy, and my co-advisor Dr. Koushik Chakraborty for accepting me as a
part of USU Bridge Lab. Their constant encouragement, technical guidance and construc-
tive criticism were my assets in my strive towards meaningful research. Beyond advising,
they were the mentors who ensured that I have a fun and healthy PhD life. Secondly, 1
would like to thank the Research and Graduate School of the Utah State University for
majorly funding my PhD research in the form of Presidential Doctoral Research Fellowship
(PDRF). The invaluable opportunities and help provided by Dr. Scott Bates and the tire-
less effort of Athena Dupont need special mention. Most importantly, I want to thank my
respectable committee members; Dr. Jacob Gunther for his wise words of encouragement,
Dr. Reyhan Baktur for her insightful comments, and Dr. Vicki Allan for her motivating
presence. I would like to specially thank Tricia Brandenburg, Kathy Phippen and Diane
Buist, for their ready assistance with all the paperworks and my incessant queries.

I would like to take this opportunity to thank a few more people who have enriched my
life above and beyond the professional field. Anusna, for being the first person to welcome
me in this new city and my first friend here. Without her, the initial days would have
been a confusing struggle. Bidisha di, for lighting up my mundane life with her occassional
presence. And of course, Soodeh, who has been my closest friend and confidante over past
two years. I would like to thank my lab members, who have grown to be my family in this
country. Rajesh, who was the first person from Bridge lab I had contacted, and the person
who has continuously inspired me with his calm, funny and dignified personality. Prabal,
who has always surprised me with his depth of knowledge (and vocabulary) in diverse
aspects of research and life. Chidham, who was my one-stop-solution for technical details
and meaningless chitchats. Asmita, who made my life in lab easier and fun. Pramesh, who

always managed to make me smile with his sheer presence. Sourav, who was the sole target

vii
of my childish jokes and pranks. Tahmoures, who accepted my scolding with a smile and
still managed to not hate me. Finally, Shamik, for partnering and helping with my first
paper in this lab and Hu, for his help and advice. I would also thank all my school friends
and Soham, for always being by my side, no matter what.

My journey so gfar would have been a distant dream without the sacrifice and blessings
of my parents, Mr. Pradip Kumar Bal and Mrs. Babila Bal. I drew my inspiration from
Dr. Subhajit Datta and Dr. Reshmi Das, who always knew what I can be, even when I
doubted. In addition to my parents, it was the blessings and encouragement of my family,
Mr. Priyabrata Mittra, Mrs. Sharmila Mittra, Dr. Kaustuv Mittra and Dr. Kanika Sharma
Mittra, that has kept me going. I must mention a very special person, Dr. Basudeb Biswas,
whose unconditional love and blessings have enriched my life in the very small time that I
have got to know him.

Lastly, I am ever-so thankful to my loving husband, Mr. Somdeb Mittra, for being my

all-round support system in this hurdle race called graduate life.

Aatreyi Bal

viii

CONTENTS

Page
ABST RACT . . . iii
PUBLIC ABSTRACT e e e e iv
ACKNOWLEDGMENTS . .. o e e vi
LIST OF FIGURES e e e X
ACRONY M . .o xii
1 INTRODUCTION . . .o e e e e e 1
1.1 Choke Points: A Unique Challenge 2
1.2 Contributions of This Dissertation 2
1.2.1 Conference Papers 2
1.2.2 Journal Papers 3
2 LITERATURE REVIEW e 4
2.1 Opportunities and Challenges at NTC 4
2.1.1 Exploring the Opportunities in NTC System Design 4
2.1.2 Design Challenges at NTC 6
2.2 State-of-the-art EDAC Techniques 7
2.2.1 Reactive Techniques oo 7
2.2.2 Proactive Techniques 8
2.3 Choke Error Resiliency at NTC 8

3 DYNAMIC CHOKE SENSING FOR TIMING ERROR RESILIENCE IN NTC SYS-
TS . 10
3.1 Background and Contributions of This Work 10
3.2 Motivation 12
3.2.1 Choke Points 12
3.2.2 Methodology 14
3.23 Results 14
3.2.4 Significance Lo 17
3.3 DCS Design oo o 17
3.3.1 DCS Overview 18
3.3.2 Error Tagging 18
3.3.3 DCS Variants 19
3.34 DCSStages oo 20
3.3.5 Error Handling 22
3.4 Methodology e 22
3.4.1 Device Layer 23

3.4.2 Architecture Layer o 23

3.4.3 Circuit Layer L 24
3.5 Experimental Results. 24
3.5.1 Comparative Schemes 25
3.5.2 Prediction Accuracy 25
3.5.3 Recovery Penalty Comparison 27
3.5.4 Performance Gain 28
3.5.5 Energy Efficiency Gain. L. 29
3.5.6 Overheads 30
4 TRIDENT: COMPREHENSIVE CHOKE ERROR MITIGATION IN NTC SYS-
TS . 31
4.1 Background and Contributions of This Work 31
4.2 Motivation e e e 32
4.2.1 Backgroundo 33
4.2.2 Facets of Choke Points Induced Minimum Timing Violations 33
4.2.3 Methodology 34
424 Results 35
4.2.5 Patterns & Factors of Choke Error 36
4.2.6 Challenges with Choke Points 38
4.3 TRIDENT: A comprehensive choke point resilient technique 39
4.3.1 Objective of Trident 39
4.3.2 Design Overview o 40
4.3.3 Effective Choke Error Prediction Principle 41
434 Error ID (EID) 42
4.3.5 Components of Trident 42
4.3.6 Choke Error Detection & Correction Mechanisms 43
4.3.7 Choke Error Avoidance Mechanism 45
4.4 Methodology e 46
441 Device Layer 46
4.4.2 Architecture Layer 47
4.4.3 Circuit Layer 47
4.5 Experimental Results. 48
4.5.1 Comparative Schemes 48
4.5.2 Error Distribution oo 48
4.5.3 Table Size vs. Prediction Accuracy 49
4.5.4 Penalty Cycle Comparison 50
4.5.5 Performance Comparison 51
4.5.6 Energy Efficiency Comparison. 52
4.5.7 Hardware Overheads 53
5 CONCLUSION . .. e e 54
REFERENCES 56

CURRICULUM VITAE e 60

Figure

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

LIST OF FIGURES

P1 is the nominal critical path and P2 is a non-critical path pre-fabrication.
P2 becomes the new critical path post-fabrication owing to the increased gate
delay of the choke point. L

Choke Gate Level(CGL) plot of each ALU operation for four distinct cate-
gories of Choke Delay Level(CDL). Note that the Y-axis scales upto 0.25%
and 0.2% at STC and NTC, respectively.

Choke Delay Level (CDL) variation with Operand Width Marker (OWM) for
each operation at NTC. Choke paths with higher CDL can be created when
OWM is set, signifying higher significant width of either or both operands
of an operation. Reset value of OWM signifies both the operands have low
significant width and is less potent in creating choke paths.

Comparison of errant and error-free occurrence percentages of few instruc-
tions in worter. L e e e e e

Every cycle, the decoded opcode is looked up in the table. If there is a match,
in both current and previous cycle opcode-OWM, the Hit signal is set high.
If there is no match and an error is detected in the execute stage (Ex), the
Error signal is set high and the 8-bit opcode and 1-bit OWM for the errant
cycle and previous cycle from the buffer are latched to the CSLT. The Choke
Controller regularly checks both the Hit and Error signal. If the Hit is high,
it inserts a stall cycle in Ex-stage for corresponding opcode. If Error signal
is high, pipeline flush and instruction replay are initiated by the controller.

An Associative Choke Sensor Lookup Table (ACSLT') with associativity value
n. opc refers to opcodes. The subscripts e and p refer to the errant and
previous cycle, respectively. Lo

Cross-layer simulation and analysis flow.

Prediction accuracy of DCS across all benchmarks for 32, 64, 128 and 256
entries in CSLT. 0.

Prediction accuracy comparison of 4 combinations of ACSLT:16/8 - entries-16

Page

12

13

16

17

19

20

23

associativity-8, 16/16 - entries-16 associativity-16, 32/8 - entries-32 associativity-

8, 32/16 - entries-32 associativity-16 Lo

26

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

xi

Recovery penalty comparison (normalized to Razor values) of Razor and DCS
schemes for different applications (lower is better). 27
Performance comparison of three comparative schemes for different applica-
tions (higher is better). Lo 28
Comparison of energy efficiency of the comparative schemes for different

benchmarks (higher the better). 0. 29

A minimum timing violation caused by Choke Point induced delay reduction
in a buffered short path, 34

path delay variations at STC and NTC for a given set of instructions. The
minimum delay paths are simulated with and without buffers to study the
effect of PV on buffered paths. The error bars denote the minimum path
delay and maximum path delays. The values are normalized with respect to
corresponding PV-free path delays. 35

Distribution of erroneous and error-free occurrences of diffrent instructions. 37

A comparative study of maximum and minimum timing errors with respect
to operand sizes of errant instructions. L. 38

Design blocks and data flow of Trident. The EX (Execution) pipestage is
under scrutiny.o 40

The figures show the signal transitions during the three different types of
errors. The transitions during the transparent phase of the detection clock
are flagged as illegal. The double-edge triggered flip flop increases the counter
in the TDC for each illegal transition in one clock cycle. The low pulse in
the detection clock resets the counter for the next cycle. 44

Interaction among the layers in the cross-layer methodology. 46

Distribution of SE and CE for each benchmark. SE are caused by either min-
imum timing violations [SE(Min)| or maximum timing violations [SE(Max)]. 49

The choke error prediction accuracy comparison for different entry sizes of
the Choke Error Table (CET). 50

Normalized penalty cycle count comparison of the schemes, for each benchmark. 50

Performance impact comparison of Trident with Razor and OCST. (Higher
is better.) 51

Energy efficiency comparison of Trident with Razor and OCST. (Higher is
better.) e 52

OWM

DCS

CcC

CSLT

CDC

TDC

CCR

EID

CET

CDL

CGL

NTC

STC

PV
DCS-ICSLT
DCS-ACSLT
PC

NTV
PTM
STA
RTL
ALU
EDAC

xii

ACRONYMS

Operand Width Marker
Dynamic Choke Sensing

Choke Controller

Choke Sensor Lookup Table
Choke Detection Controller
Transition Detector and Counter
Choke Clearance Register

Error Identifier

Choke Error Table

Choke Delay Level

Choke Gate Level

Near Threshold Computing
Super Threshold Computing
Process Variation
DCS-Independent Choke Sensor Lookup Table
DCS-Associative Choke Sensor Lookup Table
Program Counter

Decode pipestage

Execute pipestage

Writeback pipestage

Near Threshold Voltage
Predictive Technology Model
Statistical Timing Analysis
Register Transfer Level
Arithmetic Logic Unit

Error Detection And Correction

CHAPTER 1
INTRODUCTION

The evolution of Internet of things (IoT), over the past decade, has taken the form of
an industrial revolution, both economically and technologically. The IoT boom has facili-
tated the growth of smart gadgets like smart sensors, smart wearables, smart lights, and so
forth. The exponential growth curve of the IoT ecosystem necessitates the emergence of low
power platforms and devices. Consequently, Near-Threshold Computing (NTC) has gained
popularity as a promising design paradigm for such low-power energy-efficient computing
systems [1,2]. NTC systems have a supply voltage marginally higher than the threshold
voltage of the constituent devices. The supply voltage scaling results in multiple orders
of magnitude improvement in energy efficiency. However, with the advent of Edge Com-
puting!, energy efficiency is no more the only concern; reliability has emerged as a major
requirement for IoT devices [3].

NTC fails to bridge the gap between reliability and energy efficiency [1,4]. NTC sys-
tems experience higher process variation (PV) sensitivity, compared to conventional Super-
Threshold Computing (STC) systems [5]. This PV sensitivity is commonly manifested in
the form of gate delay variations. PV induced gate delay variations can be as large as 20x
compared to their nominal values, in NTC systems [6]. The drastic gate delay variations,
in turn, cause significant path delay variations. The distinct reliability concerns posed by
these PV induced delay variations at NTC, cannot be mitigated simply by adopting the
traditional error mitigation techniques designed at STC. [7]. This dissertation aims to ad-
dress a key research question in this context: How can these unique reliability challenges be
tackled at NTC, while still continuing to harvest the energy efficiency benefits offered by the

voltage scaling?

'Technologies enabling data processing/computation at the edge of the network.

1.1 Choke Points: A Unique Challenge

In the quest for unique reliability challenges at NTC, Choke Points have emerged as a
pivotal player [8]. A choke point comprises a single or a small group of PV affected gate(s)
that practically dominates the delay of the entire path in which it occurs. Though choke
points can occur anywhere in a circuit, their impacts are observed only if the corresponding
paths are sensitized 2. However, being an artifact of the fabrication process, choke points
cannot be estimated at design time. This work explores the the concept and various man-
ifestations of choke points and strives to mitigate their impact on the reliability of NTC

systems.

1.2 Contributions of This Dissertation

The research works associated with this dissertation have been partially published in
various conference and journals, including 2017 IEEE/ACM Design, Automation and Test
in Europe (DATE), 2018 IEEE/ACM Design, Automation and Test in Europe (DATE)
(nominated for Best Paper Award), 2019 IEEE/ACM Design, Automation and Test in
Europe (DATE), 2018 ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED), and 2018 IEEE Transactions on Very Large Scale Integration Systems
(TVLSI) (January and November issues). Publications stemming from this dissertation are

listed as follows:

1.2.1 Conference Papers

e Aatreyi Bal, Sanghamitra Roy, and Koushik Chakraborty, Trident: A Comprehensive
Timing Error Resilient Technique against Choke Points at NTC, Proceedings of the
IEEE/ACM Design, Automation and Test in Europe (DATE), March 2018 (Received

Nomination for Best Paper Award).

e Aatreyi Bal, Shamik Saha, Sanghamitra Roy, Koushik Chakraborty, Revamping tim-

ing error resilience to tackle choke points at NTC systems, Proceedings of the IEEE/ACM

2A path is sensitized when the applied input changes the output state of the path.

Design, Automation and Test in Europe (DATE), March 2017.

e Sourav sanyal, Prabal Basu, Aatreyi Bal, Sanghamitra Roy and Koushik Chakraborty,
Predicting Critical Warps in Near-Threshold GPGPU Applications using a Dynamic
Choke Point Analysis, IEEE/ACM Design, Automation and Test in Europe (DATE)
2019 (accepted).

e Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty and Sang-
hamitra Roy, ACE-GPU: Tackling Choke Point Induced Performance Bottlenecks in
a Near-Threshold Computing GPU, ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED), 2018.

1.2.2 Journal Papers

e Aatreyi Bal, Sanghamitra Roy and Koushik Chakraborty, Trident: Comprehensive
Choke Error Mitigation in NTC Systems,JEEE Transactions on Very Large Scale
Integration Systems (TVLSI), November 2018.

e Aatreyi Bal, Shamik Saha, Sanghamitra Roy, Koushik Chakraborty, Dynamic Choke
Sensing for Timing Error Resilience in NTC Systems, IEEE Transactions on VLSI
Systems (TVLSI), January 2018.

CHAPTER 2
LITERATURE REVIEW

This chapter lays out a comprehensive literature survey on existing works that are
closely associated with the work presented in this dissertation. The problem statement of
this dissertation is focussed on addressing a pivotal timing error source in NTC systems,
while maintaining their inherent energy-efficiency. Consequently, the contemporary works
related to this dissertation can be broadly classified into two categories: opportunities and
challenges in NTC system design (Section 2.1) and state-of-the-art timing error detection
and correction (EDAC) techniques (Section 2.2). Works pertaining to each of the category
are discussed in detail next. Finally, Section 2.3 prominently outlines the contributions of

this dissertation in the research on reliable NTC system designs.

2.1 Opportunities and Challenges at NTC

The promises offered by the NTC design paradigm, though manifold, have been dimin-
ished by various intrinsic vulnerabilities. However, researchers have historically focussed on
harnessing the benefits of NTC systems, with minimal attention to their fragility. While
Section 2.1.1 lists the works that highlight the promising design paradigm shift offered
by NTC, Section 2.1.2 focuses on the handful of recent works aimed at identifying and

alleviating the reliability concerns in NTC systems.

2.1.1 Exploring the Opportunities in NTC System Design

e Dreslinski et al. [1]: This work introduces the multi-dimensional opportunities and
barriers of NTC system design. NTC domain offers energy reduction on the order of
10x at the cost of approximately 10x performance degradation. Further, the effects
of process and environmental variations induce about 5x performance variation. Fre-

quent functional failures also limit the potential of NTC system design. The authors

5

present a detailed explanation of factors inhibiting the widespread acceptance of NTC

in the domain of system design.

Kaul et al. [9]: Besides advocating the benefits of near threshold voltage (NTV)
operation, this work proposes several design and optimization techniques for gates,
registers, latches etc., to ensure reliability of the system. The authors strongly cham-

pion the large scale use of NTV in future computing systems.

Markovic et al. [10]: The authors of this paper propose an energy-delay framework
for efficient NTC systems. This work demonstrates that, in comparison to the conven-
tional STC techniques like gate-sizing, voltage modulation is a better trade-off knob
for NTC systems. This paper also shows that the use of time-multiplexing around
the minimum energy point results in both lower area and energy without significant

performance penalty.

EnergySmart [11]: This paper proposes a manycore organization with only a sin-
gle supply voltage (V4q) and multiple frequency domains. The authors show that
multiple voltage domains are inefficient for manycore NTC chips. The authors pair
their approach with fine-grained dynamic voltage and frequency scaling (DVFS) to
enhance its competency. This work further introduces a core-job assignment for the

EnergySmart architecture.

Centip3De [12]: This paper presents a large-scale 3D chip multiprocessor with a
cluster-based near-threshold computing (NTC) architecture. Each cluster consists of
4 cores and accesses a single cache that is 4x larger than the conventional independent
caches. The larger caches are operated at higher voltage and frequency to cater to the
needs of the cores. In order to speed-up the serial portions of a parallelized application,

this work introduces per-core DVFS, in addition to architectural boosting techniques.

Dogan [13]: This paper presents a practical use case of NTC systems. The authors
propose a near-threshold multi-core architecture, capable of executing biomedical ap-

plications, with multiple instruction and data memories. This architecture also in-

6

cludes broadcasting mechanisms for the data and instruction memories to optimize

system energy consumption by tailoring memory sharing to the target application.

2.1.2 Design Challenges at NTC

e VARIUS-NTYV [5]: This work presents a microarchitectural model for the process
variations at NTC. This paper builds on the VARIUS model [14] for STC systems. Be-
sides modelling the gate delays at NTC, this paper demonstrates a detailed modelling
of SRAM suitable for NTC systems. The authors model how variation affects the fre-
quency attained and power consumed by cores and memories in an NTC manycore,

and the timing and stability faults in SRAM cells at NTC.

e VARIUS-TC [15]: This work focuses on a modular architecture-level model of
parametric variation in thin-channel switches, like FinFETs. This paper decouples
the architecture-level model from the device and circuit-level models, through proper

abstraction.

e Variation-aware Synthesis [16]: This paper advocates a process-variation aware
design phase for NTC systems. Consequently, the authors propose a process-variation
aware circuit synthesis. The proposed synthesis technique is iterative in nature. Ini-
tially the circuit is synthesized and statistical static timing analysis (SSTA) is per-
formed to estimate the impact of process variation. Next, the variation information
in provided to the synthesis tool to re-synthesize the circuit considering the timing

constraints.

e Kim et al. [17]: This paper proposes an in-situ error detection and correction
technique (EDAC) for resilient ultra-low voltage systems. The technique is voltage-
scalable and incurs low overhead in terms of area/energy/throughput. The proposed
technique performs a sparse error detection strategy. The error detection and correc-

tion is done within one cycle, without stalling the pipeline.

7

e Golanbari et al. [18]: This work specifically addresses the increased count of hold
time violations in NTC systems. The authors demonstrate that conventional state-
of-the-art hold time fixing techniques are not efficient at near threshold voltages.
This paper proposes a SSTA based iterative technique to fix the hold time violations
at NTC. The proposed technique uses transmission-gate based buffers to tackle the

minimum path delay constraint.

e De [8]: This paper first introduces the term choke point. The author presents the
challenges of designing manycore system-on-chip(SoC) at NTC. The paper presents a

detailed energy analysis of NTC systems, in comparison to their STC counterparts.

2.2 State-of-the-art EDAC Techniques

In contrast to the few timing error resilience models at NTC, STC has a significant body
of work presenting state-of-the-art EDAC techniques. EDAC techniques can be classified as
either reactive — triggered only after a timing error occurs — or proactive — speculates the
occurrence of imminent timing errors. Existing works in each of these classes of techniques

are discussed in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 Reactive Techniques

e Razor [19]: This paper proposes a popular EDAC technique for STC systems. The
technique uses double sampling flip-flops to detect the errors. Pipeline flush and
instruction replay at a reduced frequency are used to correct them. Razor uses buffer
insertion to avoid minimum timing violations. The error detection and correction

penalty cycles is equal to the number of stages in the pipeline.

e Online Clock-Skew Tuning [20]: This paper is based on repeated clock-skew
tuning to avoid timing errors. This technique divides the circuit into blocks and
observes the errors in each of the blocks for a given short interval of time. While

observing, the EDAC method followed is same as Razor. If the error frequency crosses

8

a certain threshold, the clock skew for that block is tuned such as to allow extra clock

period to complete execution without errors.

e HFG [21]: This paper proposes a high-level model for timing error rate (TER). In ad-
dition, this paper proposes a technique, called Hierarchically Focused Guardbanding
(HFG), that relies on in-situ sensors to monitor the effects of process, voltage, tem-
perature and aging (PVTA) in a system. Subsequently, HFG modulates the timing

guardbands to eliminate the resulting errors.

2.2.2 Proactive Techniques

e Lak et al. [22]: This technique uses sensors to monitor device aging in circuit paths.
The monitoring helps in identifying evolving critical paths and predicting imminent

timing errors, which are then avoided by adaptive clock tuning mechanism.

e Xin et al. [23]: This work uses pronounced locality in instruction-level error rates due
to value locality and data dependences to predict timing errors in pipeline processors.
This instruction-level prediction and error-padding technique significantly reduces the

penalty incurred due to repeated error detection and correction.

e Roy et al. [24]: This paper proposes a program counter (PC) based error prediction
technique. Besides considering history of timing violations caused by an instruction,
the proposed technique also considers the operating conditions to improve the predic-

tion accuracy.

2.3 Choke Error Resiliency at NTC

Apart from [8], the works presented in this dissertation are the first to have investi-
gated choke points. The works have explored the impacts of choke points across the STC
and NTC domain. The results corroborate that choke points are a greater hurdle in NTC
systems, compared to STC systems. Furthermore, the randomness in the occurrence and

impacts of choke points are only manifested when the corresponding paths are sensitized.

9

Consequently, tackling choke points requires dynamically adaptable techniques. This disser-
tation demonstrates the inefficacy of state-of-the-art techniques to handle this situation, as
well as, proposes techniques to comprehensively deal with the choke errors. While the first
technique presented in this dissertation, Dynamic Choke Sensing, only focuses on maximum
timing violations, the second technique, Trident, addresses a broader range of errors. Be-
sides errors induced by maximum timing violations, this technique addresses errors induced
by minimum timing violations and the errors caused by the interplay of maximum and
minimum timing violations. This dissertation also introduces the concept of choke buffers,
i.e., buffers acting as choke points. This concept diminishes the efficacy of buffer insertion
technique, commonly used to avoid minimum timing violations in short delay paths. Hence,
the works presented in this dissertation tread largely uncharted territories in the realm of

reliable NTC systems.

CHAPTER 3
DYNAMIC CHOKE SENSING FOR TIMING ERROR RESILIENCE IN NTC
SYSTEMS

3.1 Background and Contributions of This Work

Near-Threshold Computing (NTC) has emerged as one of the promising directions in
the pursuit of improving the energy-efficiency of computer designs [1,25,26] —a growing
concern in the current geopolitical landscape. A device operating at NTC sets its supply
voltage close to its threshold voltage, while still maintaining a positive difference between
them. Consequently, the energy consumption is dramatically reduced, both due to the
quadratic impact of supply voltage reduction, as well as, a linear reduction from the op-
erating frequency. This reduction eliminates the risk of hitting the power wall in case
of multicore processors. The multicore systems operating at NTC aim at recovering the
performance loss, due to reduced frequency, by enhancing parallel application across the
cores [27]. Therefore, NTC plays a pivotal role in mitigating dark silicon [28]. Further, with
the advent of low-power wearables, NTC has evolved as a prominent design paradigm [29].

The tremendous (multiple orders of magnitude) improvement in energy efficiency at
NTC [9], comes with its own set of challenges. Beside 10x or more performance degradation,
NTC suffers from exacerbated process variation (PV) sensitivity [5,7]. PV at NTC can vary
the gate delays by as large as 20x of their nominal values [6]. Due to this massive delay
variation, NTC circuits have a substantially higher reliability threat from choke points—
a small set of PV affected gates that can dominate the selection of critical paths in the
post-silicon circuit—than their Super-Threshold Computing (STC) counterparts [8].

In this paper, an extensive circuit-architectural analysis is used to illustrate how choke
points are formed and their resulting impact on conventional STC circuits and rapidly

evolving NTC circuits, respectively. It is observed that a choke point can be formed with

11

as small as 0.17% of the total gates in an NTC ALU-—a circuit with a large logic depth—

causing a delay degradation of 23.7%. These intriguing characteristics can substantially

degrade the critical path delay at NTC, while also radically altering the composition of

critical paths in a fabricated circuit by massively degrading the delay in short paths. In

addition, choke points cannot be estimated pre-fabrication. A batch of identical chips may

have a large variation in the distribution of choke points, post silicon. Thus, existing physical

design techniques are rendered inefficient in mitigating this problem. To overcome these

limitations, a low overhead and dynamically adaptive timing error mitigation technique is

proposed, called Dynamic Choke Sensing (DCS).

The main contributions of this work are as follows:

e Process variation induced gate-delay deviation at NTC and its role as a crucial source
of timing errors are the major focal points of this work. Choke points are established

as a significant outcome of this delay variance (Section 3.2).

A low overhead dynamic timing error prediction and mitigation technique, called
Dynamic Choke Sensing (DCS), is proposed. This technique performs an early choke
point detection and, thereby, uses the knowledge to avoid recurrent timing errors. As
a result, penalty cycles incurred to recover from timing errors are reduced (Section

4.3).

Two variants of the scheme are proposed, categorised on the basis of the structure of
the lookup table. A comparative study of the proposed schemes with other contem-

porary schemes are presented later in the work.

It is demonstrated that the schemes provide 30%-55% improvement in performance
and 60%-73% improvement in energy efficiency as compared to representative timing
error recovery technique, Razor [19] (Section 4.5). The area, wire-length and power

overheads of DCS schemes are 0.23%-0.48%, 0.77%-0.85% and 0.85%-1.2%, respec-

tively.

12

3.2 Motivation

In this section, it is demonstrated that circuits operating at NTC have a substan-
tially higher chance of manifesting choke points than their STC counterparts. An extensive
circuit-architectural analysis is also presented to illustrate how a small number of PV af-
fected gates at NTC can serve as choke points, potentially transforming a shorter delay
path into a critical path, after chip fabrication. Finally, the unique challenges in robust
NTC circuit design, engendered by choke points, are presented. In Section 3.2.1, choke
points are defined and their potency is discussed. Sections 3.2.2, 3.2.3 and 3.2.4 present the

methodology, results and significance of this study, respectively.

3.2.1 Choke Points

A choke point comprises a single or a small group of PV affected gate(s) that can
transform a shorter delay path into a critical path (Choke Path), when sensitized!. Further,
choke points can also create critical paths with substantially higher delays than the nominal.
Figure 3.1 illustrates the concept of a choke point in a small circuit. P1 is the nominal critical

path. A post-silicon instance of this circuit, however, suffers a high delay variation due to

LA path is sensitized when the applied input changes the output state of the path.

5

== Nominal Delay

== Delay after

Choking Gate Process Variation

A

d—

Delay Deviation

1 1
]] 1
\ 1]
i E— P2 o
1 |
— »— e T e e
/ / :_"_\: |
E \ K_» ! . New Critical
e i r 1 Path Dela
Variation \ChOke i o y
Point { .
. s Nominal
ﬁ—b— >° LN N, N /T crivcarpan
])
P1 ! bl Delay
—> Choke Delay

Fig. 3.1: P1 is the nominal critical path and P2 is a non-critical path pre-fabrication. P2
becomes the new critical path post-fabrication owing to the increased gate delay of the
choke point.

13

(=}
W
o
[o)
G

CDL; m CDLy; B CDLyy &1 CDLy m CDL; m CDLy; B CDLyy & CDLy =

I
S}

o
&

o

Choke Gate Level (CGL %)
° <
Choke Gate Level (CGL %)
=)
f=}

l] Oﬂﬂﬂuﬁﬂﬂﬂﬂﬁ

P P S F O F D P <
IMERCOAIE S R S P R F O R P o Fe®
% Q>\5 W Vv ?’0

(a) STC (b) NTC

Fig. 3.2: Choke Gate Level(CGL) plot of each ALU operation for four distinct categories
of Choke Delay Level(CDL). Note that the Y-axis scales upto 0.25% and 0.2% at STC and
NTC, respectively.

the OR gate in the path P2. The OR gate serves as a choke point, transforming P2—a
short delay path—as the new critical path.

Though choke points can be formed anywhere in a circuit, their effects are observed
only in sensitized paths. Typically, the distribution of sensitized paths in a circuit depends

on the instructions executed on the circuit, as well as, the inputs to those instructions.

Potency of a Choke Point

Two key parameters are defined—Choke Delay Level (CDL) and Choke Gate Level
(CGL)—to quantify the potency of choke points. CDL is the amount of additional delay
introduced by the choke point to create the new critical path, overshooting the nominal
critical path delay. It is expressed as a percentage of the nominal critical path delay. CGL
is the number of gates forming the choke point, expressed as a percentage of the total
gates in the whole circuit. A low CGL signifies a highly potent choke point, where, a small
percentage of gates in the circuit can transform the critical path. Similarly, a high CDL

also indicates high potency of a choke point.

Threat of a Choke Point
Analyzing the effects of choke points in the sensitized paths is of paramount importance
for the reliable operation of a NTC system. To understand the extent of threat presented

by choke points in modern processors, a few key research questions are posed. How can the

14

significance of choke points be compared in STC and NTC circuits? What is the likelihood of
choke points in transforming critical paths in popular processor pipelines while running real
applications? To answer these compelling questions, a rigorous cross-layer methodology is

employed, outlined next.

3.2.2 Methodology

Analyzing sensitized choke points in STC and NTC presents a methodological chal-
lenge. As instructions are executed in a circuit component, they sensitize different paths,
and therefore observe different logic computation delays. Further, the sensitized path in a
circuit depends on two consecutive instructions [30]. For this analysis, the PV in the logic
gates at STC and NTC are modeled on the basis of VARIUS [14] and VARIUS-NTV [5],
respectively. The supply voltages are set at 0.8V and 0.45V for STC and NTC, respectively.
Next, a 64-bit ALU is synthesized using a 15nm FinFET library from NanGate [31]. The
PV-affected logic gate models are used in the in-house Statistical Timing Analysis (STA)
tool to study the cycle accurate delay timings of all the sensitized paths for 11 different
arithmetic and logic operations. The operands are chosen to cover a typical range seen in
real applications. The sensitized path delay distribution for different combinations of op-
erations and operands are extensively studied to analyze potential choke paths. A detailed

description of methodology is presented in Section 4.4.

3.2.3 Results

Figure 3.2a depicts the correlation between CDL and CGL for each operation of the
ALU at STC. The data for four categories of CDL are presented: CDLy, or CDL-Low (0-5%),
CDLyy, or CDL-Medium Low (>5%-10%), CDLyy or CDL-Medium High (>10%-20%) and
CDLy or CDL-High (>20%-30%). Choke points are found to be formed typically in the
range of 0 to 12% CDL, at STC. This trend can be attributed to the fact that individual
gate delay deviation at STC is not large enough to surpass a CDL larger than 12%, even
when all the gates in the choke path are affected by PV.

Figure 3.2b explores the same correlation at NTC. It is observed that choke paths can

15

be formed at higher CDL, with substantially smaller CGL, at NTC. For example, in case
of LOAD operation, a CGL of only 0.2% is sufficient to surpass a CDL of 27.45% while for
AND, only 0.1% CGL can exceed a CDL of 23%. However, the choke point sensitization in
the higher range CDLy, varies across operations. In a few operations (like ASR, LSR and
ROR), choke points fail to create new critical paths with higher CDL. The reason being,
in the higher categories of CDL, typically the path with the maximum logic depth forms
the critical path. Thus, other sensitized paths, with lesser logic depth, fail to emerge as
potential choke paths in CDLy category, for these operations. On a deeper analysis, it is

found that choke point sensitization depends on the following architectural factors:

e Nature of Operations: The computation complexity involved in an operation sig-
nificantly affects the path sensitization at a given cycle. The greater the number of
intermediate calculation steps involved, more is the number of sensitized gates in the
circuit. Consequently, the probability of most of the PV affected gates appearing in
the sensitized paths, and thereby the potency of choke point creation, increases. This
characteristic is clearly depicted by the ADD and BUFFER, operations. Since ADD
sensitizes more paths while calculating sum and carry, chances of sensitizing more PV
affected gates in the process is high. BUFFER on the other hand simply passes the
input to the output after one clock cycle. Therefore, in every category of CDL, ADD
records lower CGL than BUFFER, depicting its higher potency in creating choke

paths.

e Significant Width of Operands: The significant width of the operands of an
operation—the number of set bits in the operand—affects the probability of choke
point formation. If the significant width is smaller than half the total width of operand,
determined by the Instruction Set Architecture (ISA), it is termed ‘low’; otherwise it
is considered ‘high’. Higher the significant width, more gates are likely to be sensitized
across the paths, and greater is the possibility of the PV affected gates occurring in

those paths. Therefore, higher significant operand widths have greater potency to

16

= o= NN W W
S 01 © O © O

Q1

Choke Delay Level (CDL %)

P P S X O WK X

Fig. 3.3: Choke Delay Level (CDL) variation with Operand Width Marker (OWM) for
each operation at NTC. Choke paths with higher CDL can be created when OWM is set,
signifying higher significant width of either or both operands of an operation. Reset value
of OWM signifies both the operands have low significant width and is less potent in creating
choke paths.

create choke paths, even in the higher categories of CDL. The metric Operand Width
Marker (OWM) is used to denote if either of the operands in an operation has high
significant width. If none of the operands has high significant width, OWM has reset
value; else, it has set value. The potency of significant operand width in forming choke

paths is depicted in Figure 3.3.

e Sequence of Instructions: The occurrence of timing errors is dependent on the
sensitizing vector as well as the initializing vector [30]. The sensitizing vector is
the errant instruction that reveals the timing fault. The initializing vector is the
instruction executed in the previous cycle that determines the initial states of the
paths and nodes. Figure 3.4 displays the errant and error-free occurrence percentages
of few instructions in the vortex benchmark. While NOR instruction causes timing
error every time it is executed, ADDIU shows error-free execution for about 50% of

its occurrences.

17

Error & Error-free W
11| — "B EE RN
< sot—— - o .
5
IS R :
D
540 b = == :
]
QS 20 Fo e e e R -
0

Fig. 3.4: Comparison of errant and error-free occurrence percentages of few instructions in
vortex.

3.2.4 Significance

The observations show that the heightened effect of PV on gate delay at NTC can
massively degrade a short delay path into a choke path or substantially degrade the crit-
ical path delay in a fabricated circuit. In addition, choke points—an artifact of PV and
NTC operation—cannot be estimated pre-fabrication. In fact, a batch of identical chips
may have a large variation in choke paths, post silicon. This intriguing characteristic can
render conventional physical design techniques of timing error mitigation, like gate-sizing
and multiple threshold voltage (Vi) assignment, inefficient. Likewise, existing techniques
like hierarchical guardbanding [21] or timing speculation can suffer from substantial energy
efficiency loss in mitigating timing errors from choke paths. Then, a key question is how
can a low overhead hardware be designed inside every chip that can learn and adapt to its
own choke paths? The next section discusses the proposed scheme, Dynamic Choke Sensing

(DCS), to mitigate timing errors from choke points at NTC.

3.3 DCS Design
In this section, a robust technique, Dynamic Choke Sensing (DCS), is presented which
exploits the factors discussed in Section 3.2.3, to mitigate timing errors. Choke points

vary from chip-to-chip within the same design, due to variance in the degree of PV; but

18

they comprise a permanent characteristic of a particular chip instance. Timing violations
caused by choke points emerge as an inherent property of the chip. Though, newer timing
violations may arise or existing violations may magnify due to aging, yet, an existing choke
point will continue to cause timing violations for the entire lifetime of the chip. The proposed
technique adaptively mitigates these dynamic timing errors. In Section 3.3.1 a brief overview
of the technique is presented. In Section 3.3.2, the error tagging mechanism is discussed
and in Section 3.3.3, the two variants of the DCS scheme are presented. Sections 3.3.4
and 3.3.5 highlight the methodology of the techniques and the error handling mechanisms,

respectively.

3.3.1 DCS Overview

Figure 3.5 portrays an overview of the components and flow of the DCS technique. DCS
focuses on sensing errors and avoiding their recurrent occurrences. The two major com-
ponents facilitating this technique are the Choke Controller and the Choke Sensor Lookup
Table (CSLT). The CSLT serves as a record of the unique timing error instances. The Choke
Controller performs the pipeline flush and instruction replay, when an error is detected for
the first time, and inserts the erroneous opcode into the CSLT. When the same errant op-
code is identified in the decode stage of the pipeline, the Choke Controller avoids the error
by inserting a stall cycle. It is assumed that, even in the presence of worst-case timing er-
ror, an instruction finishes execution in maximum two cycles. Thus, these two components
perform in unison to reduce the penalty cycles for repeated timing error recovery, thereby

improving the overall performance of the system.

3.3.2 Error Tagging

The DCS scheme implements a unique method to tag error instances. Instead of using
the program counter values, the errant instructions are tagged by their opcodes. Further,
in Section 3.2.3, it was observed that timing errors are a function of the operand width and
the previous cycle instruction. So, a single error instance has a four-part tag: (a) errant

instruction opcode, (b) errant instruction OWM, (c) previous cycle opcode and (d) previous

19

Choke Controller

Restore PC
m Stall

| ——m

[{ \
PC ||Fe|IB|DeIRe|Di|IslRRIEleSUIWBlRet“

- e

Holds the Table Lookup '? S Peat
opcode .and Cycle-wise Y| h591 | h791 |
glv:?f till the opcode-OWM . h'SP ! h'6F. 1 Hit
execution : 4

CSLT

Fig. 3.5: Every cycle, the decoded opcode is looked up in the table. If there is a match,
in both current and previous cycle opcode-OWM, the Hit signal is set high. If there is no
match and an error is detected in the execute stage (Ex), the Error signal is set high and
the 8-bit opcode and 1-bit OWM for the errant cycle and previous cycle from the buffer
are latched to the CSLT. The Choke Controller regularly checks both the Hit and Error
signal. If the Hit is high, it inserts a stall cycle in Ex-stage for corresponding opcode. If
Error signal is high, pipeline flush and instruction replay are initiated by the controller.

cycle OWM. These tags are then stored in the CSLT for future reference of probable timing
errors. The opcode-OWM sequence characterizes the changes in the output states of the
path, over this one cycle period, which trigger the timing error. Earlier works on predictive
schemes, such as [24,32], have relied on simple program counter (PC) tags to record, and
refer to, error instances. However, the unique tag, used for DCS, allows us to monitor the

timing error instances at a finer granularity, and thereby, more precisely.

3.3.3 DCS Variants
Two variants of the DCS scheme, based on the CSLT architecture: DCS-ICSLT and
DCS-ACSLT, are explored in this section.

DCS-ICSLT
DCS-Independent Choke Sensor Lookup Table (ICSLT) refers to the architecture where

each error tag occupies an independent tuple. There is no correlation between the tuples in

Cycle Cycle-1[0]} Cycle-1[1] Cycl;il i Cyd;il =
(opc-owm), | (opc-owm) | (opc-owm), (opc-owm), | (opc-owm),

20

.......

(opc-owm)el (opc-owm)pl (opc-owm)pl (opc-owm),,' (opc-owm), l

Fig. 3.6: An Associative Choke Sensor Lookup Table (ACSLT) with associativity value
n. opc refers to opcodes. The subscripts e and p refer to the errant and previous cycle,
respectively.

an ICSLT. Same opcode-OWM pair can occupy multiple tuples, if the previous cycle opcode-
OWM pairs are mutually exclusive. Such an architecture resembles a fully associative cache.
In Section 3.5.2, the prediction accuracy of different entry-sized ICSLTs is discussed.

One drawback of DCS-ICSLT scheme is the redundancy in storing error tags. A con-
siderable number of tuples in the CSLT are observed to be occupied by redundant errant
opcode-OWM pairs. This redundancy restricts the optimal utilization of the CSLT space.

To address this limitation, a second scheme is proposed, detailed next.

DCS-ACSLT

DCS-Associative Choke Sensor Lookup Table (ACSLT) refers to the table architecture
where each tuple houses all the recorded error instances for a single errant instruction. The
table resembles a set associative cache, where the errant opcode-OWM forms the set and
the previous cycle opcode-OWM pairs form the lines of the set. This architecture eliminates
the redundant storage of recurring errant opcode-OWM pairs, which in turn saves space.
The associativity of an ACSLT determines the number of error instances each tuple can
store. Figure 3.6 shows an n-associative ACSLT. In Section 3.5.2, the prediction accuracy

of ACSLTs is discussed with different associativity values.

3.3.4 DCS Stages

DCS mechanism operates in three interlinked stages, that are discussed next.

21

Choke Sensing

This is practically the learning phase of DCS. For a given chip, the error causing
instruction sequence is expected to sensitize the same choke path on every occurrence.
However, the errant instruction sequence might be different for different chips of the same
design due to the randomness in PV distribution. Hence, by allowing each unique timing
error instance to occur atleast once, the system learns the choke paths of the specific chip
for the given application.

When a timing error is sensed, it is recorded in the CSLT. The table entries are managed
dynamically, in the form of a Random Access Memory (RAM). For the sensing mechanism,
double-sampling flip-flops are used at the output of potential sensitized non-critical paths,
similar to Razor [19]. The potential paths are identified by the method suggested by Lak et
al. [33]. A buffer is implemented to hold the opcode-OWM values from decode (De) stage
till the writeback (WB) stage, in order to preserve the previous cycle data until the current
opcode completes execute (Ex) stage.

When the CSLT becomes full, pseudo-LRU (Least Recently Used) technique is used
to evict existing tags and make space for new entries. Pseudo-LRU harvests the benefit of
LRU while avoiding its complex hardware design. After a power off state, when the system
boots, the table is populated during the warm-up period, thereby eliminating the need for
any memory augmentation. The CSLT does not increase the critical path, since the lookup
is performed in parallel to the normal operation of the pipestages between De and Ex stages.
Further, the logic depths of the paths in CSLT are too low to create prospective critical

paths.

Choke Error Recovery

After a timing violation has been recorded, the Choke Controller initiates a pipeline
flush to erase the current cycle results of all the pipe stages. The flush is followed by an
instruction replay to repopulate the stages and resume the normal flow of execution. This

recovery mechanism incurs a penalty of P cycles, where P is the number of pipe stages.

22

Timing Error Avoidance

This is the adaptive phase, where stall cycles are used to avoid imminent errors pre-
dicted by CSLT. For each cycle, the corresponding opcode-OWM is looked up in the CSLT
during the decode stage, to avoid repeated timing errors. An error causing opcode-OWM
sequence is likely to repeat its behavior in subsequent cycles, under same operating condi-
tions. Even a small change in the operating condition is expected to repeat some of the
previous timing errors, while creating some new instances. These new instances will be
duly recorded in the CSLT for future references. The Bloom Filter [34] mechanism is imple-
mented to lookup the table using the tag described in Section 3.3.2. If a match is found, a
timing error is expected to occur again. Hence, the Choke Controller stalls the progress of
subsequent instruction before the execution stage, for an additional cycle, and guarantees

the propagation of correct results thereafter.

3.3.5 Error Handling

Depending on the type of error encountered during the table lookup, the penalty cy-
cle count varies. A false positive match returned by the CSLT results in an additional
stall cycle penalty. However, a false negative match incurs higher penalty cycles, as the
Choke Controller initiates a pipeline flush and instruction replay when the error is finally

encountered in the execution stage.

3.4 Methodology

In this section, the rigorous cross-layer methodology that is employed to establish the
potency of the proposed technique in a 11-stage pipeline is discussed. Figure 3.7 depicts the
multiple layers that are broadly outlined in the following sections. Section 3.4.1 discusses
the estimation technique for the delay distribution of FinFETs as well as the methodology
to estimate process variation. In Section 3.4.2, the steps taken to gather inputs from real
world benchmarks for the in-house STA tool are described. Section 3.4.3 discusses the

circuit level implementation of the proposed technique.

23

Architecture FabScalar .> FabScalar Co-simulation SPEC CPU2000
Layer RTL Environment benchmarks
Circuit Synopsys Design In house STA Timing Error
: > B Simulati
Layer Compller Tool 1mulation
Device SPICE Netlist HSPICE ¢ PTM
Layer of Basic Gates - (16nm HP-MG)

Fig. 3.7: Cross-layer simulation and analysis flow.

3.4.1 Device Layer

In order to estimate the gate delay distribution of FinFETs at different operating
voltages, HSPICE models of fundamental logic gates based on the Predictive Technology
Model (PTM) are simulated for 16nm high-performance multigate devices [35]. VARIUS [14]
and VARIUS-NTV [5] models are chosen for PV at STC and NTC, respectively. To model
the impacts of PV in FinFETSs, the analysis presented in [36] is taken into account. For the
simulations, oxide thickness is varied by 20%, fin thickness is varied by +10% and channel
length is varied by +12%. Monte Carlo simulation is performed for 10000 instances, to
evaluate the means and standard deviations of propagation delay distributions of the basic
gates at STC and NTC regimes. These propagation delay values are then used in the circuit

layer simulation, as discussed in Section 3.4.3.

3.4.2 Architecture Layer

FabScalar infrastructure [37] is used to perform the architectural simulation. The Core-
1 configuration is chosen for the experiments. It has a 11-stage out-of-order superscalar
pipeline that is capable of fetching, issuing and committing 4 instructions in each cycle.
In the execution stage, a choke sensing mechanism and a tactic to insert stall cycles are
employed. For all the other stages, a pipe stage flush and instruction replay procedure

similar to Razor [19] are applied. Six SPEC CPU2000 benchmarks are used, that typify real

24

world applications. The cycle-by-cycle input values for all these benchmarks are obtained

that are used for the statistical timing analysis discussed in Section 3.4.3.

3.4.3 Circuit Layer

The circuit layer simulation has three stages. In the first stage, the ALU RTL are
synthesized using Synopsys Design Compiler (SDC). For this study, the focus is singularly
on the choking in the execute stage of pipeline. 15nm NanGate Open Cell Library for
FinFETs [31] is used to perform the synthesis. The clock frequency is set at 250MHz and
the design is optimized with respect to power. The components of the DCS schemes are
designed and synthesized, to estimate the energy consumption at NTC, for energy efficiency
analysis later (discussed in Section 3.5.5). In the second stage, the synthesized netlist and
the input values for all the benchmarks are fed into the in-house STA Tool. The process
variation induced gate delay values obtained from HSPICE simulation are also incorporated
into the STA Tool. By the end of this stage, the propagation delay values of the sensitized
paths in each cycle are procured for all the benchmarks. In the third stage, these delay
values are utilized to perform the timing error simulation for diverse schemes. The runtime
and number of penalty cycles encountered by each benchmark for each scheme are calculated
to present a comparison of efficacy among them. Finally, the area and wirelength overheads

are evaluated using Cadence Encounter tool [38].

3.5 Experimental Results

In this section, the experimental results are illustrated in comparison to popular existing
techniques like Razor and HFG. Section 3.5.1 highlights the comparative schemes, while
Section 3.5.2 discusses the prediction accuracies of the two variants of the proposed scheme
for multiple configurations. Sections 3.5.3, 3.5.4 and 3.5.5 present a comparative study of
the recovery penalties, performance metric and energy-efficiency gains of the techniques,
respectively, with the schemes listed in Section 3.5.1. Section 3.5.6 discusses the area and

power overheads of this technique.

25

3.5.1 Comparative Schemes

e Razor: This timing speculation based error detection and recovery scheme [19], de-
tects a timing error by a double-sampling flip-flop at the end of each pipeline stage.
The recovery mechanism flushes the pipeline stages and initiates an instruction replay.
However, unlike the proposed scheme, Razor cannot predict errors. Hence, it sustains

repeated recovery penalty.

e HFG: This scheme proactively prevents timing errors [21]. It adaptively modifies the
guardband, to account for PVTA (Process, Voltage, Temperature, Aging) variations
throughout the device lifetime. Sampled data from the sensors, are used to train the
model for guardband prediction. But, in order to avoid even worst case errors, the
applied guardband increases the overall execution time. Therefore, though there is no

recovery penalty, the performance and power overheads are considerably high.

e DCS-ICSLT: The first proposed scheme senses timing errors caused by choke points.
It then uses this knowledge to avoid similar potential timing errors in future. More-
over, it also reduces the timing penalty caused by repeated pipeline flush and instruc-

tion replay. In this scheme, each tuple consists of only one error tag.

e DCS-ACSLT: The second proposed scheme is same as above, except, the CSLT
structure. In this scheme, each tuple in the table consists of a single errant instruction

opcode-OWM pair and multiple previous-cycle opcode-OWM pairs.

3.5.2 Prediction Accuracy

Figure 3.8 shows the prediction accuracy of DCS for different entry-sizes of the ICSLT.
Each of the benchmarks are simulated for 1 million cycles and, the errors and prediction
counts for ICSLTs with different sizes of entries are recorded. The varied prediction accu-
racies displayed by different benchmarks is owing to the variance in number of unique error

instances among them. The figure clearly shows that prediction accuracy varies minimally

26

=
o © N
OOO

N
OO

Prediction Accuracy (%)
> %

P
&\‘
©

Q

Fig. 3.8: Prediction accuracy of DCS across all benchmarks for 32, 64, 128 and 256 entries
in CSLT.

y

100 |

D @
o O
T T

N
(e}
T

(@]
r

Prediction Accurac
B
(en)

, %(I}'Q

Fig. 3.9: Prediction accuracy comparison of 4 combinations of ACSLT:16/8 - entries-16
associativity-8, 16/16 - entries-16 associativity-16, 32/8 - entries-32 associativity-8, 32/16 -
entries-32 associativity-16

from 128 to 256 entries for most of the benchmarks. So, for a fair trade-off between predic-
tion accuracy and space efficiency, the ICSLT size of 128-entries is considered for further
evaluations.

Similarly, Figure 3.9 shows the prediction accuracy of DCS for different size com-
binations of ACSLT. Observing the total number of errant cases in all the benchmarks
under consideration, the results for only four combinations are chosen to be presented here.

Smaller combinations exhibit worse results for prediction accuracy and larger combinations

27

SLT 0 DCS-ACSLT [

—_
1

V] —

e

0.2 [

Normalized Penalty

o

Fig. 3.10: Recovery penalty comparison (normalized to Razor values) of Razor and DCS
schemes for different applications (lower is better).

tend to increase the hardware overhead extensively. In ACSLT, the variation in prediction
accuracy is dictated not only by the number of unique error instances, but also the associa-
tivity value. It is clear from the results that 32-entries 16-way structure gives the maximum

prediction accuracy. This combination is used for further comparisons with other schemes.

3.5.3 Recovery Penalty Comparison

Figure 3.10 presents a comparison between the recovery penalties incurred by Razor,
DCS-ICSLT and DCS-ACSLT schemes, normalized to Razor values. Notably, HFG has
been left out of the comparison, since it does not allow timing errors to occur by providing
focused timing guardbands, and hence, no penalty is incurred. For all the benchmarks, DCS-
ICSLT and DCS-ACSLT show substantially reduced penalties. Early choke sensing allows
to prevent the timing error and the corresponding instruction replay with the insertion
of the stall cycle. Applications like mcf and gzip show about 80% reduction in penalty,
while vortexr shows only about 50% reduction for DCS-ICSLT. DCS-ACSLT, on the other
hand shows about 90% reduction in penalty for gzip and about 65% reduction in vortex.
This phenomenon is attributed to the imbalance in the unique errant instruction count
in the applications. While mcf has a small set of recurring error causing instructions,

vorter has a large set of unique error causing instructions. However, mcf does not exhibit

28

Razor @ DCS-ICSLT ©

R HFG 0 DCS-ACSLT o
g N =
U S e - R o 1 e s
iel -
B — | —
(= [(RN () AN U (R RN O) () A U NN B
i)
Q
S
"C05 O - T 1 B (T
=
s [
Z 0 . . o3 5 o+

‘o“*& %’&Q "OOQ < Q’o‘%e qo"@

Fig. 3.11: Performance comparison of three comparative schemes for different applications
(higher is better).

substantial reduction from DCS-ICSLT to DCS-ACSLT, owing to the smaller set of unique
error instances, which are largely sensed and avoided by DCS-ICSLT. Similar effects are
observed in the evaluation of performance and energy efficiency of the applications in the

following sections.

3.5.4 Performance Gain

Figure 3.11 depicts the performance gains achieved by the proposed techniques as
compared to Razor and HFG. The performances of all the schemes are normalized with
respect to Razor. HFG is seen to have the worst performance, among the three schemes,
for all the applications. The reason being, HFG simply increases the clock period based
on the guardband range. So even for a few instances of potential timing error, the overall
runtime is increased in HFG. Razor, however, performs better as it allows the timing errors
to occur and then initiates the recovery mechanism to avoid faulty data propagation. DCS-
ACSLT shows the best performance among all the schemes, for all the applications. Both
the DCS schemes use the knowledge of previous timing error instances to foretell potential
instances in subsequent cycles. Apart from the opcode itself, DCS schemes also consider
the operand width for choke point sensing, thereby harvesting fine-grained knowledge of

the errant opcode. But the additional performance gain in DCS-ACSLT stems from the

29

Razor @ DCS-ICSLT =
e — : HFG m DCS-ACSLT @ -

0.5

Normalized Energy Efficiency
o —

G @ e

Fig. 3.12: Comparison of energy efficiency of the comparative schemes for different bench-
marks (higher the better).

reduced execution time. The reduction is owing to the improvised lookup table structure
and, thereby, the expedited lookup mechanism.

Among the benchmarks, mcf-with the minimum number of unique tuples—displays
50% performance improvement for DCS-ICSLT and 73% for DCS-ACSLT, compared to
Razor. On an average, DCS-ICSLT shows 30% performance improvement as compared to
Razor and 150% as compared to HFG. Whereas, DCS-ACSLT offers 55% and about 200%

improvement, on an average, as compared to Razor and HFG, respectively.

3.5.5 Enmnergy Efficiency Gain

Figure 3.12 displays the energy efficiency improvement achieved by DCS, for all the
applications, as compared to the other schemes. The energy efficiency values are measured
as the inverse of energy-delay products (EDP). EDP for each benchmark is calculated as
Pave X texec, where P,y is the average power consumption of the system and texec is the
total execution time of each benchmark. All the energy efficiency values are normalized
with respect to that of Razor. Among all the applications, gzip is observed to be most
energy efficient with about 83% improvement in DCS-ICSLT and 87% in DCS-ACSLT over
Razor. The anomaly in the relative performance and energy efficiency values of gzip and

mcf is owing to the fact that total error count of gzip is lesser than mcf, but the number

30

of unique error instances is more. The greater number of tuples reduce the scope of perfor-
mance gain from DCS schemes as compared to mcf. However, the overall execution time
being lesser than mcf, the energy efficiency improvement is slightly higher. Notably, the
energy efficiency gain from DCS-ACSLT is not as significantly higher than DCS-ICSLT as
in case of performance gain. This phenomenon is a consequence of the slight increase in
hardware overhead due to a 32-entries ACSLT with associativity value 16. On an average,
DCS-ICSLT exhibits about 60% improvement in energy efficiency over Razor and 90% im-
provement over HFG across all the benchmarks. On the contrary, DCS-ACSLT presents
about 73% improvement in energy efficiency over Razor and about 103% improvement over

HFG.

3.5.6 Overheads

In terms of gate counts, DCS-ICSLT uses 1553 additional gates, while for DCS-ACSLT,
3241 gates are used. The CSLT is composed of 567 and 2255 gates for DCS-ICSLT and
DCSACSLT, respectively. The remaining gate counts are used by controller, buffer and the
lookup logic for CSLT.

The area and power overheads incurred by DCS schemes are also negligibly small.
While the area and wire-length overheads of DCS-ICSLT are 0.23% and 0.77% of that of
the entire processor pipeline, respectively, the power overhead is 0.85% of the core power.
Though the overheads for DCS-ACSLT are higher than DCS-ICSLT, yet they are trivial
with respect to the overall design. Area, wirelength and power overheads for DCS-ACSLT
are 0.48%, 0.85% and 1.2%, respectively. The power overhead results have been included

in the energy efficiency results in Figure 3.12.

CHAPTER 4
TRIDENT: COMPREHENSIVE CHOKE ERROR MITIGATION IN NTC SYSTEMS

4.1 Background and Contributions of This Work

The emergence of the power constrained Internet of Things (IoT) applications has
prompted the research community to focus on the development of low-power devices. Conse-
quently, Near Threshold Computing (NTC)—where the supply voltage is marginally higher
than the threshold voltage—has emerged as a promising design paradigm. But the over-
whelming performance degradation (~10x) and reliability concerns (due to ~20x gate
delay variation), at NTC, undermine the energy efficiency gains from the reduced supply
voltage [39].

One such significant reliability concern is a Choke Point [8]. In this work, some crit-
ical design challenges posed by choke points at NTC, and the inefficacy of conventional
techniques in tackling them, are demonstrated.

A choke point is a small set of process variation (PV) affected gates (or a single gate)
that practically dominates the delay of the entire path in which it occurs. Notably, choke
points are discernible only in the sensitized paths of a fabricated chip, and are capable of
substantially deviating the path delay in either direction. Recent works have uncovered
the potency of choke points in causing critical path delay violations [40]. However, the
potency of choke points in causing minimum timing violations has remained unexplored.
In this work, the significance of minimum timing violations caused by choke points in NTC
systems is underlined.

Minimum timing violations are avoided in most Super Threshold Computing (STC)
systems by inserting buffers in short delay paths [19]. But, this work shows that enhanced
PV sensitivity at NTC can transform buffers, like other logic gates, into potential choke

points. These choke buffers, i.e., buffers acting as choke points, can cause minimum timing

32

violations, due to significantly reduced gate delay. Since buffers constitute an important

design criteria for many timing speculation based error mitigation techniques [19, 20, 41],

choke buffers pose a consequential challenge to their efficiency at NTC. Therefore, to elim-

inate the risk of choke buffers, Trident — a novel comprehensive timing error mitigation

technique against choke points at NTC, is proposed.

This is the first work that analyzes the potency of choke points in causing minimum tim-

ing violation, and thereby, reveals the drawbacks of adopting popular timing error mitigation

techniques in tackling them,at NTC.

4.2

The precise contributions in this work are:

The potency of choke points in causing minimum timing violations in a processor
pipeline is analyzed in Section 4.2. Moreover, it is shown that the problem, though

insignificant at STC, is extremely prominent at NTC.

The choke error patterns are explored and the governing factors for choke errors are

determined (Section 4.2).

The limitations of buffer insertion technique, to tackle minimum timing violations, at
NTC are highlighted (Section 4.2). Consequently, the inefficacy of adopting popular

STC timing error mitigation techniques at NTC is established.

Trident, a comprehensive timing error resilient technique against choke points, that

eliminates the risk of choke buffers, is proposed (Section 4.3).

Finally, it is demonstrated that the performance and energy efficiency gains, with the

proposed technique, are significant at 1.3x and 1.1x over Razor [19], respectively.

Motivation

In this section, choke point induced minimum timing violations at NTC are investi-

gated. In Section 4.2.1, the unique characteristics of choke points are briefly described.

Next, in Section 4.2.2, the significance of choke point induced minimum timing violations

33

are discussed. Subsequently, the experimental methodology and results for this motiva-
tional analysis are described in Sections 4.2.3 and 4.2.4, respectively. Finally, in Section
4.2.6, the challenges of a choke error resilient system design at NTC are presented, thereby
underlining the limitations of adopting popular timing error mitigation techniques for the

salme.

4.2.1 Background

Choke points are byproducts of the fabrication process. Therefore, their occurrence
and impacts vary chip to chip, even for the same design. Choke errors (i.e., timing viola-
tions/errors caused by choke points), being perceivable only when the corresponding paths
are sensitized, are greatly dependent on the input vectors to the system [40,41]. Common
PV modelling techniques are not sufficient to evaluate these impacts. For example, Monte
Carlo simulation effectively determines the static delay variation of logic gates, but fails to
incorporate the contributions of input vectors in sensitizing these gates. As a result, the
divergence of path delay variation across the system, with respect to diverse applications,
remains obfuscated in these models. Thus, a dynamic PV modelling technique is necessary
for analyzing choke points.

Critical path delay violations by choke points have been recently addressed [40,41]. In
the next section, the focus is on the minimum timing violations caused by choke points, and
their significance in designing a comprehensive and efficient choke error mitigation technique

is highlighted.

4.2.2 Facets of Choke Points Induced Minimum Timing Violations

Figure 4.1 illustrates a choke point induced minimum timing violation. A minimum
timing violation occurs when the minimum path delay constraint ' is breached. PV can
affect the gate delay both positively and negatively [7]. Substantial reduction in gate delay

can diminish the overall delay of the path containing the corresponding gate. In Figure 4.1,

! Minimum path delay constraint is the lower bound of the path delay, to avoid data corruption.

34

] Choke Gate
H Delay s < Minimum
Nominal Delay]

Timing
Violation

Post-fabrication delay

Fig. 4.1: A minimum timing violation caused by Choke Point induced delay reduction in a
buffered short path

ﬁ

S e Minimum
Buffer Path Delay
——\ Constraint
(\ __/ Nominal
Path Del.
/—\ at! elay
L/ Choke Point

Induced Path

Choke Point Delay

Nominal
Critical Path
Delay

Clock

L/

v
.

due to the choke buffer, the corresponding path delay is reduced beyond the minimum path
delay constraint.

Besides latching erroneous value at the output node, minimum timing violations can
also compromise the detection of maximum timing violations. For example, double sampling
based error mitigation techniques [19,20,40,41] rely on buffers to avoid data corruption in
short delay paths. The concept of choke buffers, renders these techniques inefficient at NTC.
To elucidate the relation between choke buffers and minimum timing violations, PV-induced
path delay variations are experimentally analyzed, at both STC and NTC. The details of

the experimental setup are described next.

4.2.3 Methodology

To explore the role of choke points in causing minimum and maximum timing violations
at NTC and STC, an instruction level analysis is performed on a RISC-based processor
pipeline. The study is focussed on the execute (EX) stage, as it is observed to be deeply
affected by aggressive voltage and frequency scaling [19]. Further, a larger variation of
sensitized paths in the EX stage is observed, compared to other pipestages. A set of 15
arithmetic and logic instructions are simulated, with a wide range of operands such as
to replicate real world applications. The EX stage is a part of the Core-1 configuration

of the FabScalar infrastructure [37]. The EX stage is augmented with the buffers, and

35

NTC-Bufferless B NTC-Buffered OSTC-Bufferless @ STC-Buffered B

2.5
>
S 257 —> 2.76 > 2.55—> <27
)
A
g <272
-‘CE 1.5 Il] h
o
ks
N 1y)
S
é 05 _
o
Z

0

G SRS

Fig. 4.2: path delay variations at STC and NTC for a given set of instructions. The
minimum delay paths are simulated with and without buffers to study the effect of PV on
buffered paths. The error bars denote the minimum path delay and maximum path delays.
The values are normalized with respect to corresponding PV-free path delays.

is synthesized using Synopsys Design Compiler (SDC) and the FInFET OpenCell library
from NanGate [42]. The number of buffers is calculated as described in [19]. The basic
logic gates are simulated in HSPICE using the 16nm multigate models from Predictive
Technology Models (PTM) [35]. To model the effects of PV on FinFETSs, the analysis
presented in [43] is used. Finally, a statistical dynamic timing analysis is performed on
the synthesized EX stage, using the in-house tool, to study the choke point induced timing

violations per cycle.

4.2.4 Results

Figure 4.2 illustrates a comprehensive picture of the path delay variations caused by
choke points in buffered and bufferless delay paths at NTC and STC operating conditions.
In the buffered version of the EX stage, the short delay paths are augmented with buffers
to satisfy the minimum path delay constraint. The maximum, minimum and average path
delay variations are normalized with respect to their respective PV-free path delay variants.
For all the instructions in Figure 4.2, the variations at NTC are remarkably greater than
their STC counterparts. The number of gates acting as choke points is limited to 2% of

the total gate count to demonstrate that such limited presence can cause a visible impact.

36

But the crux of this analysis is that, almost all the instructions show greater variations in
the EX stage with buffered delay paths, at NTC. Large minimum path delay variations are
observed in 12 out of 15 instructions in Figure 4.2. Especially, instructions like MFLO and
SLLV display over 60% reduction in minimum path delay in the buffered EX stage at NTC,
as opposed to about 10% reduction in the bufferless counterpart. This observation clearly
indicates that the manifestation of choke buffers essentially defeats the purpose of buffers
in short delay paths, by causing minimum timing violations.

However, instructions like LUI and SRA show a greater minimum path delay variation
in bufferless EX stage at NTC. This anomaly can be attributed to the limited buffer re-
quirement of the short delay paths sensitized by these instructions. As a result, though the
absence of buffers cause minimum timing violations for these instructions, the buffers do
not transform into choke buffers even with delay reduction. Contrary to the observations
at NTC, buffered and bufferless EX stages at STC do not show a significant difference in
path delay variations. This phenomenon asserts that choke buffers have restricted impact
at STC. The observations, while corroborating the effectiveness of buffer insertion technique
at STC, underlines the inefficacy of the same at NTC. The dramatic variations in the path
delays, at NTC, lay the foundation for diverse timing error patterns. In the next section,
the timing error patterns of the instructions are explored and the factors governing the

choke errors at NTC are deduced.

4.2.5 Patterns & Factors of Choke Error

Figure 4.3 shows the normalized occurrence patterns for 8 different instructions. As
the figure portrays, while many of the instances of each instruction cause either maximum
or minimum timing violation, a considerable share of occurrences do not cause any timing
error. Therefore, an instruction, that caused a timing error once, cannot be blindly pre-
dicted to cause error in every single occurrence. The maximum and minimum timing errors
caused by the instructions are the direct impact of the path delay variations discussed in
Section 4.2.4. Instructions like MFLO and LUI show that about 70% of their occurrences

cause maximum timing errors; whereas, for instructions like OR and ADDU, about 55%

37

Nax. Timing Errors == Min. Timing Errors == No Timing Error == ‘

—_

o

o
)

x
o
T

D
]
T

=
(@)

N
(@)

Distribution of Occurences (%)

(@)

N 0 o) » N Nt
AP R SRS

K\

o

Fig. 4.3: Distribution of erroneous and error-free occurrences of diffrent instructions.

occurrences cause minimum timing errors. On the other hand, instructions like ANDI and
SUBU show almost equal share of maximum and minimum timing errors. Remarkably,
SUBU also shows more than 50% error-free occurrences. These observations bring us to
the inference, that the choke errors, caused by minimum or maximum timing violations,
cannot be characterised by only a single instruction opcode. A deeper analysis reveals that
the choke errors are dictated by a sequence of two consecutive instruction opcodes. The se-
quence comprise the initializing instruction and the sensitizing instruction. The initializing
instruction determines the output state of the path in the cycle immediately preceding the
errant cycle. The sensitizing instruction tends to change the output state, thereby trigger-
ing the choke error. Further analysis of the choke error patterns reveal that the sizes of the
instruction operands play a pivotal role, as discussed next.

Figure 4.4 illustrates the distribution of the timing errors with respect to the operand
sizes of the instructions. To determine the size of the operands, simply the position of the
leftmost set bit is identified. For example, in a 32-bit operand, if the leftmost set bit lies in
the two higher bytes, the size is considered “Large” (denoted by 1); otherwise, the size is
determined to be “Small” (denoted by 0). As the figure depicts, both operand size variants
are responsible for maximum and minimum timing violations. However, the figure clearly

shows that for both maximum and minimum timing errors, “Large” operands have a greater

38

‘ Max.-Large === Max.-Smal] mm= Min.-Large mmm Min.-Small me==

100

80

60

40+

20+

Error Distribution (%)

0
O N 0 O & & N
RO NS SN R

Fig. 4.4: A comparative study of maximum and minimum timing errors with respect to
operand sizes of errant instructions.

influence. The larger the operand, the more number of paths are sensitized in the circuit,
thereby increasing the probability of activating more choke points. Across all benchmarks,
“Large” operands constitute about 70% of the minimum timing errors. Notably, 91.09%
minimum timing errors caused by instruction ANDI are contributed by “Large” operands.
On the contrary, instructions like LUI and XOR display about equal share of either operand
sizes in causing minimum timing errors and maximum timing errors, respectively. This
characteristic can be attributed to the operand patterns of these two instructions. Even
the “Small” operands have many set bits (i.e,“1”), which in turn sensitize a large number
of circuit paths. Hence, the number of maximum timing errors caused by the “Small”
operands for these two instructions are high.

In the light of these divergent observations, the design challenges for a comprehensive

choke error resilient system at NTC are deduced and discussed next.

4.2.6 Challenges with Choke Points

The observations in Section 4.2.4 reveal three main challenges. Firstly, the overall path
delay variations in choke point affected systems are higher at NTC than STC. Conclusively,
it can be said that the effects of choke points at NTC are more severe, than they are at STC.

Secondly, effects of choke points are not restricted to causing maximum timing violations.

39

The considerable variations in minimum path delays at NT'C constitute a fair share of choke
errors. Finally, addition of buffers in short delay paths does not ensure minimum timing
violation aversion, at NTC. This failure of buffer insertion technique reduces the scope of
several error mitigation methodologies [19,20] at NTC.

A key research question here is how to design a comprehensive timing error mitigation
technique that is capable of addressing all the above challenges posed by choke points at
NTC? To address this question, Trident, a novel comprehensive error mitigation technique
for tackling the varied impacts of choke points at NTC, is proposed. The proposed scheme

is detailed in the next section.

4.3 TRIDENT: A comprehensive choke point resilient technique

This section elaborates the design and functionality of the proposed technique, Trident.
Sections 4.3.1 and 4.3.2 present the objective and overview of Trident, respectively. Section
4.3.3 highlights a key insight behind the Trident model. In Section 4.3.4, the error tags are
analyzed; and finally, in Sections 4.3.5, 4.3.6 and 4.3.7 the components and mechanisms of

Trident are discussed, respectively.

4.3.1 Objective of Trident

Trident aims at tackling all timing errors caused by choke points. Unlike the Razor
based detection technique proposed in [40,41], Trident considers that all logic gates, includ-
ing the gates forming the buffers, are potential choke points. Consequently, this technique
eliminates the use of buffer insertion technique to avoid minimum timing violations. In-
stead, it uses a detection mechanism for illegal transitions (discussed in Section 4.3.5) to
account for all timing violations caused by choke points. On the basis of the number of
illegal transitions in one clock cycle, timing errors caused by choke points can be broadly

categorised into two classes:

e Single Error (SE): These are isolated timing violations (minimum or maximum),

which are neither preceded nor followed by any other timing error event, within a

40

Instruction Replay Error Lock \
: :
Transition
1
1 Count Stall Match
New Instruction +“*—---—-—---
jea) [=]
= BAPEP e E—>3->E
Instruction Details
Instruction PC CCR Compare g
Instruction Details
|

Fig. 4.5: Design blocks and data flow of Trident. The EX (Execution) pipestage is under
scrutiny.

given clock cycle. They are characterised by a single illegal transition of the data

signal, in one clock cycle.

e Consecutive Error (CE): These errors are caused by back-to-back timing violations
in a single clock cycle. These errors are characterised by two illegal transitions of the
data signal, in one clock cycle. A CE comprising a minimum timing violation followed
by a maximum timing violation is not possible, because the corresponding illegal
transitions would span over more than one clock cycle (discussed in detail in Section
4.3.6). Therefore, a CE is one in which a maximum timing violation is immediately

followed by a minimum timing violation.

In the next section, a brief overview of the Trident design components and flow is presented.

4.3.2 Design Overview

Figure 4.5 illustrates the block diagram of Trident, featuring the flow of operations. To
learn the individual choke point signature of a chip, Trident allows the first occurrence of
an error. The choke error detection mechanism is orchestrated by the Transition Detector

and Counter (TDC) and the Choke Detection Controller (CDC). First, an error is detected

41

by the TDC and classified by the CDC. The error instance is then recorded in the Choke
Error Table (CET), using an Error ID (EID), for future references. Next, in order to launch
the choke error correction mechanism, the CDC initiates a pipeline flush and indicates the
program counter (PC) to perform an instruction replay. The errant instruction address is
provided by the Choke Clearance Register (CCR), which holds the details of the instruction
in the pipeline between decode (DE) and writeback (WB) stages. The choke error avoidance
mechanism is a specialty of Trident. This mechanism enables the system to avoid recurrent
detection and correction of repeated errors. Earlier researches have shown that errant
instructions tend to repeat their behavior [23,24] (discussed in Section 4.3.3). Trident
exploits this intriguing circuit-architectural property. For the avoidance mechanism, the
newest instruction in the CCR is compared to the entries in the CET, for potential matches.
If a match is found, the CET informs the CDC of the pipestage and class of the error. The
CDC, in turn, decides on the number of stall cycles to be inserted into the pipestage, based
on the class of the error. The stall cycle halts the progress of the subsequent instructions in
the pipeline, while allowing the specified pipestage an additional cycle to complete error-free
execution. The choke error avoidance mechanism being a key feature of Trident, in the next

section, the architectural insight behind effective choke error prediction is discussed.

4.3.3 Effective Choke Error Prediction Principle

Earlier researches have shown that dynamic instances of a static instruction tends to
sensitize the same path [24,44]. Instruction sequence locality, as well as, operand value
locality, for a given instruction, are some of the vital factors contributing to the stated
correlation. Researchers have cited many well known instruction execution characteristics
which demonstrate this correlation [45]. For example, a small set of load instructions
has been observed to sensitize the same path during each execution instance and cause
repeated cache failures [46,47]. With this insight, the Trident model is armed with timing
error prediction mechanism to avoid repeated errors. The key tool for this prediction and

avoidance mechanism is the EID. The features of EID are described in detail, next.

42

4.3.4 Error ID (EID)

The EID is a combination of the factors governing an error. The EID comprises the
initializing and sensitizing vector [23], the operand sizes of the vectors [40, 41], the class
of error (described in Section 4.3.1) and the errant pipestage. The class, on the other
hand, is determined on the basis of the number of illegal transitions caused by the timing
violations, as discussed in Section 4.3.5. The size of the CET is denoted by the maximum
number of EIDs it can hold. In the following sections, the interactions among the hardware
components of the Trident are elaborately described to elucidate the role of EIDs in choke

error detection and avoidance mechanisms.

4.3.5 Components of Trident
There are four hardware components that regulate the three mechanisms of Trident.
The functionality of these components in each of the different mechanisms are elaborated

next.

Choke Error Table (CET)

The CET is used to record the error instances, encountered during the choke error
detection mechanism, in the form of EIDs. The table is structured in the form of a Random
Access Memory (RAM). During the choke error avoidance mechanism, the details (discussed
in Section 4.3.4) corresponding to the latest instruction in the CCR are compared against
the EIDs. The Bloom filter [34] is used for parallelized lookup in the CET. Consequently,
timing overhead due to EID lookup is eliminated. In case there is a match, the CET
intimates the class and pipestage of the error to the CDC, for appropriate measures. If the
CET fills up and a new entry is to be made, Pseudo-LRU (Least Recently Used) policy is

followed for replacement.

Transition Detector and Counter (TDC)
TDCs work only during the choke error detection mechanism. Every pipestage, between

decode (DE) and writeback (WB), is provided with a TDC. Each TDC comprises a double-

43

edged flip-flop [48], to detect both rising and falling transitions. The TDC is controlled by
the detection clock, similar to the one described in [49]. The detection clock deactivates
the TDC only for a small interval around the rising edge of the system clock. During the
active phase, the TDC detects and counts the illegal transitions of the output data. When
deactivated, the TDC feeds the count to the CDC, for classification. Any transition during

this small interval is not flagged as illegal.

Choke Clearance Register (CCR)

This is a form of instruction buffer that stores the opcode, operand sizes and PC value
of each instruction between DE and WB stage. During the detection mechanism, it provides
the instruction details for the EID. In the choke error avoidance mechanism (discussed in
Section 4.3.7), it provides the details for comparison to the EID. Further, in the choke
error correction mechanism (discussed in Section 4.3.6), it provides the PC with the errant

instruction address for instruction replay.

Choke Detection Controller (CDC)

This component spearheads the entire design flow of Trident. For the choke error
detection mechanism (discussed in Section 4.3.6), the CDC classifies the errors on the basis
of the TDC count. It then logs the error instances in the CET. The CDC is also responsible
for the choke error correction mechanism (discussed in Section 4.3.6), where it performs a
pipeline flush and indicates the PC to perform an instruction replay. For the choke error
avoidance mechanism, the CDC inserts the necessary number of stall cycles (as discussed

in Section 4.3.7) based on the error class information provided by the CET.

4.3.6 Choke Error Detection & Correction Mechanisms

Figure 4.6 portrays the choke error detection mechanism for the three different types
of choke errors. Figures 4.6a and 4.6b show the two varieties of SE, caused by minimum
and maximum timing violations, respectively. For both the cases, there is only a single

illegal transition during the transparent phase of one detection clock cycle. The TDC

p

Clock

Detection
Clock

Data
Signal
Error

= N\ =
u Transparent Phase w

‘ Minimum Path \
| Delay Constraint

Illegal Transition /.

~

<I>7

(a) Min. Error

/

Clock

Detection
Clock

Data

, N —
_/ Transparent Phase \f

Signal

Error

Illegal Transition / \

o,

(b) Max. Error

-

Clock

Detection
Clock

Data
Signal

Error

@gory

‘ Minimum Path
| Delay Constraint

\
/ AN /
U Transparent Phase \I

Illegal Transitions/\ \™\

—

(¢) Max.-Min. Error

44

Fig. 4.6: The figures show the signal transitions during the three different types of errors.
The transitions during the transparent phase of the detection clock are flagged as illegal. The
double-edge triggered flip flop increases the counter in the TDC for each illegal transition in
one clock cycle. The low pulse in the detection clock resets the counter for the next cycle.

45

counts these illegal transitions and with the rising edge of the detection clock, the count
value is latched and fed to the CDC. This count indicates the class of the detected error.
Contrarily, in Figure 4.6¢, which illustrates the CE, there are two illegal transitions during
the transparent phase of one detection clock cycle. The first transition is the ramification
of a maximum timing violation; while the second one marks a subsequent minimum timing
violation. However, a minimum timing violation followed by a maximum timing violation
does not constitute a CE. In such a case, the illegal transitions do not occur within a
single cycle of the detection clock. Therefore, the minimum timing violation is detected
and classified as an SE before the next violation occurs.

Nevertheless, the correction mechanism is same for both classes of errors. Once an
error is detected and classified, the CDC flushes the entire pipeline to remove the corrupt
data. Next, the PC retrieves the errant instruction address from the CCR and launches
an instruction replay. The detection and correction mechanism incurs as many penalty
cycles as the number of pipestages. During replay, the choke error avoidance mechanism
(discussed next) prevents rerun of the detection and correction mechanism, thereby saving

the recurrent penalty cycles.

4.3.7 Choke Error Avoidance Mechanism

The choke error avoidance mechanism relies on timely insertion of stall cycles into the
processor pipeline. The count of stall cycles to be inserted is dictated by the error class.
Avoiding SE requires a single stall cycle. As shown in Figure 4.6a, the early transition due
to the minimum timing violation, corrupts the previous instruction results. At this instant,
the CCR provides the previous cycle instruction details to the CET to record the error.
For the avoidance mechanism, a stall cycle is inserted after this instruction. The stall cycle
ensures that the results from the previous instruction is latched successfully before it gets
changed by the minimum timing violation. At this point the error is avoided as the results
from both the instructions are correctly latched at the end of the pipestage. On the other
hand, an SE caused by maximum timing violation is avoided by allowing an extra cycle

of execution time, for the current instruction, in the form of a stall cycle. Contrary to an

46

ﬁ abscalar SPEC CPU 2000 VARIUS/ Nominal
/ RTL Benchmarks VARIUS-NTV gate delays
|| Fabscalar HSPICE netllst of
‘ Co-simulation Environment basic gates
ARCHITECTURE LAYER / DEVICE LAYER

Input Vectors Delay
. e“.lst ‘l’i’ - 7 _
/ Trident RTL athes d}: ge In-house Statistical
2 sy® of BY ?es Timing ?nalﬂe{
Synopsys Design
\ Compiler Cyclewise Timing
| v Errors

Power Evaluation
CIRCUIT LAYER //

Fig. 4.7: Interaction among the layers in the cross-layer methodology.

SE, a CE causes a chain of data corruptions, shown in Figure 4.6c. Consequently, two stall
cycles are required to mitigate a CE. The first cycle mitigates the maximum timing violation
by allowing additional clock period; while the second cycle avoids the data corruption due
to minimum timing violation, by holding on to the data for one extra cycle. Therefore,
the illegal transition count recorded during detection mechanism also signifies the required
number of stall cycles for the avoidance mechanism. This avoidance mechanism is followed
for each predicted error, as well as, the false positive matches. However, the false negative
matches are handled by the detection and correction mechanisms.

In the next section, the multi-layer methodology for implementation and assessment of

Trident is described.

4.4 Methodology
Figure 4.7 portrays the cross-layer design methodology used in this work. In this

section, each layer is described in detail.

4.4.1 Device Layer

In this layer, the focus is on determining the effects of voltage scaling and PV on

47

the basic logic gate delays. The VARIUS [14] and VARIUS-NTV [5] models are used to
estimate the effects of PV on the delays of basic logic gates at STC and NTC, respectively.
To incorporate the effects of PV on FinFETSs, the model presented in [36] is utilized. The
delay values obtained from HSPICE simulations (discussed in Section 4.2.3) are used for

timing analysis of the circuit, described in Section 4.4.3.

4.4.2 Architecture Layer

In this layer of design, six SPEC CPU2000 benchmarks [50] are simulated for 1 mil-
lion cycles, using the FabScalar infrastructure [37], to generate the input vectors for the
synthesized EX stage described in Section 4.2.3. Further, the EX stage RTL is augmented
with the Trident design components described in Section 4.3.5. The augmented RTL and
the input vectors are essential for the circuit synthesis and dynamic timing analysis in the

circuit layer of design methodology (Section 4.4.3).

4.4.3 Circuit Layer

In this layer of design flow, the circuit synthesis and the timing analysis are performed.
First, the augmented EX stage is synthesized using Synopsys Design Compiler [51] and
the NanGate library as described in Section 4.2.3. Next, a statistical timing analysis is
conducted with the in-house tool. The tool accepts the synthesized netlist, the input vectors
and the logic gate delay values as inputs and generates a cyclewise sensitized path delay
report. The effects of PV are incorporated in the logic gate delay values to emulate the
effects of choke points. The deterministic gate delay values of the PV-free logic gates are
provided by a pre-specified delay library. However, for the PV affected gates, a Gaussian
delay distribution is provided for each type of gate and the tool selects random sample
delay values from the given distribution each time. Combined with a random selection of
PV affected gates for each run, this feature of the tool closely imitates the random choke
delay signature of different chips. Finally, the path delay report from the tool is used to
analyze the timing violations. Cadence SoC Encounter [38] is used to place and route the

design, and thereby the overall area, wiring and power overheads are calculated.

48

4.5 Experimental Results

In this section, the efficacy of Trident is evaluated. The proposed technique is com-
pared to two timing error detection and mitigation techniques, described in Section 4.5.1.
Section 4.5.2 displays the distribution of choke error classes across the benchmarks as de-
tected by Trident. Section 4.5.3 presents comparison of prediction accuracy for different
configurations of the CET. In Sections 4.5.4, 4.5.5 and 4.5.6, the incurred penalties, per-
formance improvements and energy efficiency gains of Trident are assessed, respectively, in
comparison to the schemes discussed in Section 4.5.1. Finally, in Section 4.5.7, the overheads

associated with Trident are presented.

4.5.1 Comparative Schemes

e Razor: This technique detects maximum timing errors in combinational paths with
the use of a shadow latch [19]. Razor employs buffer insertion to avoid minimum
timing violations in short delay paths, and has no error prediction mechanism. This

scheme is the baseline.

e Online Clock Skew Tuning (OCST): This technique combines timing speculation
with clock skew tuning [20]. Clock skews are adjusted dynamically, according to the
timing error occurrences at runtime. This technique also relies on buffers to avoid

minimum timing errors.

e Trident: This technique adapts to the choke point signature of a specific chip and
dynamically tackles both minimum and maximum timing violations. Most impor-
tantly, it is equipped with choke error avoidance mechanism, which greatly impacts

its performance and energy efficiency.

4.5.2 Error Distribution
Figure 4.8 shows the distribution of SEs and CEs across different benchmarks. Buffers

are inserted in the short delay paths (as described in [19]) to analyze the effects of choke

49

Q |SE(Min) SE(Max) == CE == |

=100

S

2 80

A 60

2

&5 40

ol

N

= 20

o]

&

z 0 : : o 5 o+
\015‘2 %@Q ooq}Q &€ Q’b&%e 40&\6

Fig. 4.8: Distribution of SE and CE for each benchmark. SE are caused by either minimum
timing violations [SE(Min)] or maximum timing violations [SE(Max)].

buffers. In order to account for all the errors, the choke error avoidance mechanism is
disabled during this experiment. As the figure shows, about 80% of all the errors are
SEs. For a deeper analysis, the SEs are distinguished into minimum and maximum timing
violations. It is observed that about 37.5% of the SEs are constituted of minimum timing
violations. Further, considering the CEs, minimum timing violations clearly make up a
significant fraction of the choke errors detected by Trident. In the following section, the
impact of various CET sizes on the prediction accuracy of these diverse choke errors is

studied.

4.5.3 Table Size vs. Prediction Accuracy

The size of the CET, i.e., the number of EID entries in a CET, is the key factor in
determining the choke error prediction accuracy of Trident. The prediction accuracy, in
turn, determines the penalty cycle count, performance and energy efficiency of Trident, as
discussed in the next few sections. Figure 4.9 shows the choke error prediction accuracy
for different benchmarks with respect to different CET sizes. It is observed that, for all the
benchmarks, there is noticeable rise in prediction accuracy from an average of 81.75% at

32-entries size to 92.88% at 128-entries size. However, the increment in accuracy from 128-

50

| 32= 64= 1285 256 = 512 =]

—_
o
(@]

xR
(e}

(o))
e}

S
o

N
(@)

Prediction Accuracy (%)
(@]

& o

Fig. 4.9: The choke error prediction accuracy comparison for different entry sizes of the
Choke Error Table (CET).

Razor = OCST = Trident I\

—_

0.8

0.6

0.4

0.2

Normalized Penalty

(@)

R <&c‘* & {@*

o g & @

Fig. 4.10: Normalized penalty cycle count comparison of the schemes, for each benchmark.

entries to 512-entries is barely 2.3%, across all benchmarks. Therefore, 128-entries CET is
chosen for further experimental evaluations of Trident. Next, the penalties incurred across

the three comparative schemes are discussed.

4.5.4 Penalty Cycle Comparison
Figure 4.10 shows the normalized penalty cycles incurred by each benchmark for the

three comparative schemes. In all the cases, Trident performs the best with least number

o1

| Razor = OCST = Trident =|

N
ol

N

=
w1

—_

o
o

Normalized Performance

o

¢® @ o

Fig. 4.11: Performance impact comparison of Trident with Razor and OCST. (Higher is
better.)

of penalty cycles. The reduction in penalty cycles is achieved due to the error avoidance
mechanism of Trident (discussed in Section 4.3). The error avoidance mechanism limits
the penalty cycles incurred due to repeated error corrections. OCST performs better than
Razor owing to the fact that the clock skew is tuned after every 100,000 cycles, considering
the timing errors encountered in that tuning interval [20]. On an average, OCST incurs
20% less penalty than Razor, while Trident incurs 60% and 43.75% less penalty compared
to Razor and OCST, respectively. Notably, the penalty cycle count for Trident considers
both minimum and maximum timing errors, while those for Razor and OCST consider only
maximum timing errors. In the subsequent sections, the impacts of these penalty cycle

counts on the performance and energy efficiency of each scheme are studied.

4.5.5 Performance Comparison

Figure 4.11 illustrates the performance impact of each of the comparative schemes.
The performance is evaluated on the basis of the penalty cycles incurred in detecting and
recovering from errors and the resultant impact on execution time of each application. All
the performance values are normalized with respect to Razor values. OCST offers about

57.7% improvement in performance over Razor. However, Trident offers about 1.37x and

92

| Razor = OCST = Trident =|

N
ol

N

=
w1

—_

o
o

o

N &

Normalized Energy Efficiency

+~
2

&

Fig. 4.12: Energy efficiency comparison of Trident with Razor and OCST. (Higher is better.)

0.49x improvement over Razor and OCST, respectively. This substantial performance gain
in Trident can be attributed to its ability to detect both minimum and maximum timing
violations and to avoid repeated error occurrences. The latter considerably reduces the
recovery penalty cycles (discussed in Section 4.5.4) and consequently, the execution time of
the application. An intriguing phenomenon is observed regarding gzip and mcf. Both of
these benchmarks display high performance gains, but for different reasons. mcf harbors
the benefit of error avoidance, owing to the small number of unique error instances across
all three categories. Contrarily, gzip has more unique error instances. But, the total number
of errors is lesser in gzip, compared to mcf, and it has the smallest share of CEs. Therefore,
gzip benefits from the reduced number of stall cycles due to CEs and the overall reduction

in penalty cycles.

4.5.6 Energy Efficiency Comparison

Figure 4.12 shows the energy-efficiency gain achieved by Trident over Razor and OCST.
The energy efficiency is evaluated as the reciprocal of energy-delay product (EDP). All the
values are normalized with respect to Razor values. OCST offers an average gain of 38.35%
in energy efficiency over Razor. Trident displays an additional 51.85% improvement, on

an average, over OCST. This massive energy efficiency gain is contributed by the reduced

93

recovery penalty (discussed in Section 4.5.4), as well as, the reduced overheads (as discussed
in Section 4.5.7). Compared to all the benchmarks, gzip shows the maximum gain of 0.54 x

over OCST and 1.34x over Razor.

4.5.7 Hardware Overheads

The overheads are calculated after the placement and routing of the EX stage, aug-
mented with the Trident components. The area, power and wirelength overheads of Trident,
with respect to the unaltered EX stage, are 9.48%, 12.76% and 11.21%, respectively. Com-
pared to the entire pipeline, the area, power and wirelength overheads are 0.97%, 1.58%
and 1.12%, respectively.

The minimal overhead values also advocate for the scalability of the design. On one
hand, a nominal increase in the size of the CET can considerably improve the prediction
accuracy, and therefore the power-performance, in presence of greater number of unique
timing errors. On the other hand, a larger circuit with more paths in every pipestage would
translate into additional area overhead due to more double-edged latches, only, for the newer
paths. An increase in the number of pipestages would, however, require additional TDCs.
Notably, in all the above cases, the overheads due to CCR or the CDC, the components
common across the design, remain constant. As a result, the relative overheads for larger

circuits will be lesser than those mentioned above.

CHAPTER 5
CONCLUSION

This dissertation addresses a pivotal reliability challenge in NTC systems — choke
points. Choke points are a post-fabrication outcome that are random in their occurrence,
as well as, impacts. They are the small set of PV affected gates which can drastically
alter the delay of the paths in which they occur. This alteration can be either positive or
negative, i.e., the path delay can dramatically increase or decrease. Consequently, choke
points are potential sources of both maximum and minimum timing violations.

This work demonstrates that conventional timing error detection and correction tech-
niques are inefficient to tackle the unique challenges posed by choke points. The errors
induced by choke points cannot be anticipated at design time. The choke errors are man-
ifested when the paths containing the choke points are sensitized. Therefore, though a
choke point once formed remains in the circuit forever, they are manifested occasionally.
This dissertation addresses these peculiar characteristics of choke points. The works pre-
sented here deeply investigate the choke errors to determine the error patterns and their
correlation to instruction-operand value locality. The error patterns guide the design of the
two dynamically adaptable proactive EDAC techniques proposed in this dissertation.

Being the first technique to address choke errors, Dynamic Choke Sensing (DCS) adap-
tively tackles maximum timing violations at runtime. In addition to detection and correc-
tion, this technique predicts imminent errors. The error sensing significantly reduces the
penalty and, therefore, maintains the intrinsic energy efficiency of NTC systems. Two
variants of DCS, illustrate a trade-off between area and power-performance metrics. The
second technique, Trident, tackles all the categories of choke errors, including maximum,
minimum and maximum-minimum timing violations. Trident demonstrates that buffer in-
sertion technique, commonly used to avoid minimum timing violations in very short delay

paths, is an added predicament in the presence of choke points. Consequently, choke buffers,

95

i.e., buffers acting as choke points, are introduced. Unlike DCS, which depends on double-
sampling flip-flops for error detection, Trident monitors signal transitions to detect choke
errors. In addition to choke error resilience, DCS-ICSLT, DCS-ACSLT and Trident offer
performance improvements of 30%, 55% and 1.37x, respectively, over Razor. In terms of
energy efficiency, DCS-ICSLT, DCS-ACSLT and Trident are 60%, 73% and 54% better than

Razor, respectively. The overhead cost for all the three techniques are negligibly low.

[1]

2]

o6

REFERENCES

Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient Inte-
grated Circuits, 2010.

N. Pinckney, K. Sewell, R. Dreslinski, D. Fick, T. M. udge, D. Sylvester, and D. Blaauw,
“Assessing the performance limits of parallelized near-threshold computing,” in DAC,
2012, pp. 1143-1148.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637646, 2016.

H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy,
and S. Borkar, “A 1.45ghz 52-to-162gflops/w variable-precision floating-point fused
multiply-add unit with certainty tracking in 32nm CMOS,” in ISSCC, 2012, pp. 182—
184.

U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “Varius-ntv: A microarchi-
tectural model to capture the increased sensitivity of manycores to process variations
at near-threshold voltages,” in DSN, 2012, pp. 1-11.

M. Seok, G. Chen, S. Hanson, M. Wieckowski, D. Blaaw, and D. Sylvester, “Cas-fest
2010: Mitigating variability in near-threshold computing,” in J. Emerg Selec. Topics
Cir. Sys, vol. 1, no. 1, 2011, pp. 42—49.

U. R. Karpuzcu, N. S. Kim, and J. Torrellas, “Coping with parametric variation at
near-threshold voltages,” IEEE Micro, vol. 33, no. 4, pp. 6-14, 2013.

V. De, “Fine-grain power management in manycore processor and system-on-chip (soc)
designs,” in Proc. of ICCAD, 2015, pp. 159-164.

H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, “Near-
threshold voltage (ntv) design—opportunities and challenges,” in Proc. of DAC, June
2012, pp. 1149-1154.

D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey, “Ultralow-power
design in near-threshold region,” Proceedings of the IEEE, vol. 98, no. 2, pp. 237252,
2010.

U. R. Karpuzcu, A. A. Sinkar, N. S. Kim, and J. Torrellas, “Energysmart: Toward
energy-efficient manycores for near-threshold computing,” in HPCA, 2013, pp. 542—
553.

D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy,
Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. K. Chen, T. N. Mudge, D. Blaauw, and
D. Sylvester, “Centip3de: A cluster-based NTC architecture with 64 ARM cortex-m3
cores in 3d stacked 130 nm CMOS,” J. of Solid-State Clirc., vol. 48, no. 1, pp. 104-117,
2013.

[13]

[18]

[19]

[26]

o7

A. Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, and D. Atienza, “Multi-core ar-
chitecture design for ultra-low-power wearable health monitoring systems,” in Proc. of
DATE, 2012, pp. 988-993.

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Var-
ius:a model of process variation and resulting timing errors for microarchitects,” IEFE
Tran. on Semicond. Manufac., vol. 21, pp. 3 —13, 2008.

S. K. Khatamifard, M. Resch, N. S. Kim, and U. R. Karpuzcu, “Varius-tc: A modular
architecture-level model of parametric variation for thin-channel switches,” in ICCD,
2016, pp. 654-661.

M. S. Golanbari, S. Kiamehr, M. Ebrahimi, and M. B. Tahoori, “Variation-aware near
threshold circuit synthesis,” in Proc. of DATE, 2016, pp. 1237-1242.

S. Kim and M. Seok, “Variation-tolerant, ultra-low-voltage microprocessor with a low-
overhead, within-a-cycle in-situ timing-error detection and correction technique,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1478-1490, 2015.

M. S. Golanbari, S. Kiamehr, and M. B. Tahoori, “Hold-time violation analysis and
fixing in near-threshold region,” in Power Timing, Model. Opt. Sim., 2016, pp. 50-55.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler, D. Blaauw,
T. M. Austin, K. Flautner, and T. N. Mudge, “Razor: A low-power pipeline based on
circuit-level timing speculation,” in Proc. of MICRO, 2003, pp. 7-18.

R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing speculation,” in
Proc. of ICCAD, 2011, pp. 442-447.

A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically focused guardbanding: an
adaptive approach to mitigate PVT variations and aging,” in Proc. of DATE, 2013,
pp- 1695-1700.

Z. Lak and N. Nicolici, “In-system and on-the-fly clock tuning mechanism to combat
lifetime performance degradation,” in 2011 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2011, San Jose, California, USA, November 7-10,
2011, 2011, pp. 434-441.

J. Xin and R. Joseph, “Identifying and predicting timing-critical instructions to boost
timing speculation,” in Proc. of MICRO, 2011, pp. 128-139.

S. Roy and K. Chakraborty, “Predicting timing violations through instruction level
path sensitization analysis,” in Proc. of DAC, 2012, pp. 1074-1081.

N. R. Pinckney, K. Sewell, R. G. Dreslinski, D. Fick, T. N. Mudge, D. Sylvester, and
D. Blaauw, “Assessing the performance limits of parallelized near-threshold comput-
ing,” in Proc. of DAC, 2012, pp. 1147-1152.

Ultralow-Power Design in Near-Threshold Region, 2010.

[27]

28]

[29]

o8

E. Krimer, R. Pawlowski, M. Erez, and P. Chiang, “Synctium: a near-threshold stream
processor for energy-constrained parallel applications,” Comp. Arch. Letters, vol. 9,
no. 1, pp. 21-24, 2010.

M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA challenges in the dark
silicon era: Temperature, reliability, and variability perspectives,” in Proc. of DAC,
2014, pp. 185:1-185:6.

A. Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, and D. Atienza, “Multi-core ar-
chitecture design for ultra-low-power wearable health monitoring systems,” in Proc. of
DATE, 2012, pp. 988-993.

J. Xin and R. Joseph, “Identifying and predicting timing-critical instructions to boost
timing speculation,” in Proc. of MICRO, 2011, pp. 128-139.

NanGate, http://www.nangate.com/?page_id=2328.

K. Chakraborty, B. Cozzens, S. Roy, and D. M. Ancajas, “Efficiently tolerating timing
violations in pipelined microprocessors,” in Proc. of DAC, 2013, pp. 1-8.

Z. Lak and N. Nicolici, “In-system and on-the-fly clock tuning mechanism to combat
lifetime performance degradation,” in Proc. of ICCAD, 2011, pp. 434-441.

7

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Comp.

Arch. News, vol. 13, pp. 422-426, 1970.

S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm finfet
design with predictive technology models,” in Proc. of DAC, 2012, pp. 283-288.

H. R. Khan, D. Mamaluy, and D. Vasileska, “Simulation of the impact of process
variation on the optimized 10-nm finfet,” T. Electron Dewvices, vol. 55, no. 8, pp. 2134—
2141, 2008.

N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H. Dwiel,
S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “FabScalar: composing synthesizable
rtl designs of arbitrary cores within a canonical superscalar template,” in Proc. of
ISCA, 2011, pp. 11-22.

S. Cadence, “Encounter user guide.”

R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. N. Mudge, “Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated cir-
cuits,” Proc. of the IEFE, vol. 98, no. 2, pp. 253266, 2010.

A. Bal, S. Saha, S. Roy, and K. Chakraborty, “Revamping timing error resilience to
tackle choke points at ntc systems,” in Proc. of DATE, 2017, pp. 1020-1025.

——, “Dynamic choke sensing for timing error resilience in ntc systems,” IEEE Trans.
VLSI Syst., vol. 26, no. 1, pp. 1-10, 2018.

M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and J. Michelsen,
“Open cell library in 15nm freepdk technology,” in Proc. of ISPD, 2015, pp. 171-178.

http://www.nangate.com/?page_id=2328

[43]

[44]

[45]

[46]

99

B. C. Paul, S. Fujita, M. Okajima, T. H. Lee, H. Wong, Y. Nishi et al., “Impact of a
process variation on nanowire and nanotube device performance,” T. Electron Devices,

vol. 54, no. 9, pp. 2369-2376, 2007.

H. Chen, S. Roy, and K. Chakraborty, “Darp: Dynamically adaptable resilient pipeline
design in microprocessors,” in Proc. of DATE, 2014, pp. 1-6.

A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in Proc. of ISCA, 1997, pp.
194-205.

T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream buffers,” in Proc. of
MICRO, 2000, pp. 42-53.

M. Annavaram, J. Patel, and E. Davidson, “Data prefetching by dependence graph
precomputation,” in Proc. of ISCA, 2001, pp. 52 —61.

C.-C. Yu and K.-T. Chen, “A novel design of low-power double edge-triggered flip-
flop,” in Proceedings of the 5th International Conference on Biomedical Engineering
and Informatics, 2012, pp. 1363-1366.

S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull, and
D. Blaauw, “Razorll: In situ error detection and correction for PVT and SER tol-
erance,” J. of Solid-State Clirc., vol. 44, no. 1, pp. 32-48, Jan. 2009.

J. L. Henning, “Spec c¢pu2000: Measuring cpu performance in the new millennium,”
Computer, vol. 33, no. 7, pp. 28-35, 2000.

D. Compiler, R. User, and M. Guide, “Synopsys,” Inc., see hitp://www. synopsys. com,
2001.

60

CURRICULUM VITAE

Aatreyi Bal

Published Journal Articles

e Trident: Comprehensive Choke Error Mitigation in NTC Systems, Aatreyi Bal, Sang-
hamitra Roy and Koushik Chakraborty, IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 26, issue 11, pp. 2195-2204, Nov 2018.

e Dynamic Choke Sensing for Timing Error Resilience in NTC Systems, Aatreyi Bal,
Shamik Saha, Sanghamitra Roy and Koushik Chakraborty, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, issue 1, pp. 1-10, Jan 2018.

e Split Latency Allocator: Process Variation-Aware Register Access Latency Boost
in a Near-Threshold Graphics Processing Unit, Asmita Pal, Aatreyi Bal, Koushik
Chakraborty and Sanghamitra Roy, Journal of Low Power Electronics, vol. 13, pp.
419-427, 2017.

e TITAN: Uncovering the Paradigm Shift in Security Vulnerability at Near-Threshold
Computing, Prabal Basu, Pramesh Pandey, Aatreyi Bal, Chidhambaranathan Ra-
jamanikkam, Koushik Chakraborty and Sanghamitra Roy, IEFE Transactions on

Emerging Topics in Computing, vol. 1, pp. 1-1, 2018.

e FIFA: Exploring a Focally Induced Fault Attack Strategy in Near-Threshold Comput-
ing, Prabal Basu, Chidhambaranathan Rajamanikkam, Aatreyi Bal, Pramesh Pandey,
Trevor Carter, Koushik Chakraborty and Sanghamitra Roy, IEEE Embedded Systems
Letters, vol. 10, issue 4, pp. 115-118, Dec 2018.

e SSAGA: SMs Synthesized for Asymmetric GPGPU Applications, Shamik Saha, Pra-

bal Basu, Chidhambaranathan Rajamanikkam, Aatreyi Bal, Koushik Chakraborty

61

and Sanghamitra Roy, ACM Transactions on Design Automation of Electronic Sys-

tems (TODAES), vol. 22, pp. 49, 2017.

Published Conference Papers

e Trident: A comprehensive timing error resilient technique against choke points at
NTC, Aatreyi Bal, Sanghamitra Roy and Koushik Chakraborty, in Proc. IEEE De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2018.

e Revamping timing error resilience to tackle choke points at NTC systems, Aatreyi Bal,
Shamik Saha, Sanghamitra Roy and Koushik Chakraborty, in Proc. IEEE Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.

o ACE-GPU: Tackling Choke Point Induced Performance Bottlenecks in a Near-Threshold
Computing GPU, Tahmoures Shabanian, Aatreyi Bal, Prabal Basu, Koushik Chakraborty

and Sanghamitra Roy, in Proceedings of the International Symposium on Low Power

Electronics and Design (ISLPED), 2018.

	Revamping Timing Error Resilience to Tackle Choke Points at NTC
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Choke Points: A Unique Challenge
	Contributions of This Dissertation
	Conference Papers
	Journal Papers

	LITERATURE REVIEW
	Opportunities and Challenges at NTC
	Exploring the Opportunities in NTC System Design
	Design Challenges at NTC

	State-of-the-art EDAC Techniques
	Reactive Techniques
	Proactive Techniques

	Choke Error Resiliency at NTC

	DYNAMIC CHOKE SENSING FOR TIMING ERROR RESILIENCE IN NTC SYSTEMS
	Background and Contributions of This Work
	Motivation
	Choke Points
	Methodology
	Results
	Significance

	DCS Design
	DCS Overview
	Error Tagging
	DCS Variants
	DCS Stages
	Error Handling

	Methodology
	Device Layer
	Architecture Layer
	Circuit Layer

	Experimental Results
	Comparative Schemes
	Prediction Accuracy
	Recovery Penalty Comparison
	Performance Gain
	Energy Efficiency Gain
	Overheads

	TRIDENT: COMPREHENSIVE CHOKE ERROR MITIGATION IN NTC SYSTEMS
	Background and Contributions of This Work
	Motivation
	Background
	Facets of Choke Points Induced Minimum Timing Violations
	Methodology
	Results
	Patterns & Factors of Choke Error
	Challenges with Choke Points

	TRIDENT: A comprehensive choke point resilient technique
	Objective of Trident
	Design Overview
	Effective Choke Error Prediction Principle
	Error ID (EID)
	Components of Trident
	Choke Error Detection & Correction Mechanisms
	Choke Error Avoidance Mechanism

	Methodology
	Device Layer
	Architecture Layer
	Circuit Layer

	Experimental Results
	Comparative Schemes
	Error Distribution
	Table Size vs. Prediction Accuracy
	Penalty Cycle Comparison
	Performance Comparison
	Energy Efficiency Comparison
	Hardware Overheads

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

