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CHAPTER I

THE POWER AND INVERSE POWER METHOD

In this section, we will consider two methods for com-
puting an eigenvector and in addition the associated eigen-

value of a matrix A.

The Power Method

Let AeRPXD pe simple and have A,, ..., An as the eigen-
values, where lkl[>!A2[z——-—z{An!. Consequently, the corres-
ponding eigenvectors Xyreee s X form a basis of Rn. For any
vector qOERn, we have

d =ri¥ * ryx, + tor X,
Compute Aqo = rix ¥ gl IyhyX, + e r AnXn’ and let
q, = Aqo/)\l = ryx; + r2(>\2/>\l)x2 + sew * rn(kn/Al)xn.
Then compute Aql, let q, = Aql/Xl, ... « Repeat the same

procedure like the following:

qj+l Aql/}\l ri¥y + rz(xz/kl) X, L ol
j+1

+ rn(kn/kl) X




Generally, we do not know A_. when we do the iteration,

T
so we had better use some other convenient scaling factor,

say Gj at each step, instead of Al. Thus our recursive

formula will become

Gugr - T E 6 x,+8, (A1) 7 7%y +
e Sl A gl (1.1)
where we choose Gy = HquHw, so that qu+le = 1.
Since %Xl|>lkzi;————>ikni, this implies
>N, /A |21 hg/A [3====%|A /X |,
and thus the dominant ratio term in (1.1), SAZ/Al[j+l con-

verges to zero as j»>». So that qj+ will converge to le a

s 4t

multiple of x,, with Hlele = 1, and the rate of convergence

l,
is IAZ/XlI when j+e. In addition, since

qj+l will both converge to lel as j»~, thus oj converges
to A, as jow,.

1

Practical computation

From the above discussion, we know the approximate

eigenvector will be scaled with norm of unity. Thus to choose

s = [l] as our initial guess is reasonable.




We will see some simple examples, and let q%, q? be the

two components of qj, ej be the error between the exact

dominant eigenvalue and the approximate eigenvalue.

|11 4

Example 1. —[7 2}

1 3 L q2 i

3 i =4 3 J
2 5.8888889 .7735849 1.0000000 .9261840

4 6.5063613 7137270 1.0000000 . 3087116
6 6.7163620 .6958776 1.0000000 .0987109

8 6.7839409 .6203687 1.0000000 -031.3:320
10 6.8052972 .6886505 1.0000000 0097757
12 6.8120075 .6881128 1.0000000 .0030654
14 6.8141121 .6879444 1.0000000 .0009608
16 6.8147718 .6878916 1.0000000 .0003011
18 6.8149785 6878751 1.0000000 .0000944
20 6.8150433 .6878699 1.0000000 .0000296
22 6.8150636 .6878683 1.0000000 .0000093
24 6.8150700 .6878678 1.0000000 .0000029
26 6.8150720 .6878676 1.0000000 .0000009
28 6.8150726 .6878676 1.0000000 .0000003

The exact eigenvalues of A are Al = iiiiii = 6,8150729

and A, = 2212 = -3.8150729, where |A,/A | = .5597
~ ej/ej—l' One can see from Example 1, Gj will converge to

the dominant eigenvalue with rate of convergence }XZ/KlI,

and the scaled eigenvector associated with this eigenvalue

.6878676
4 3

will converge to [
Sometimes the approximate eigenvalue and eigenvector
are unstable for a number of iterations, and the error is

terrible. However, after a while, those values are conver-

gent with a very slow rate and eventually stable.




Remarks: The convergence is slow if Kl is not strongly
dominant over the other eigenvalues, or this method will not

even converge if A does not have a dominant eigenvalue.

The Inverse Power Method

Suppose that A has eigenvalues Xl’ Az, Seh An which

correspond to the linear independent eigenvectors Xyr eee

X - Let p be a close approximation to Al' then the eigen-
values of (uI-A)“l are (u~kl)~l, (u—Xz)_l, AN (u—kn)—i
corresponding to Xyr Xor o eeey X oo If we apply the power

method to the matrix (uI-A) , we will get
q +B.,%X, and o.->(u-A )_-l so that u-l/c.+A, as j-x
B i O gt ¥ j 1 d g [ :

Where the convergence rate depends on the largest of the

ratios

which is much smaller than that in the power method, because

of the way we have chosen u.

-




(1 4 1 o
Example 2. A —[7 2] g, = [lJ LSt=Ss61z

: 1 2
J U l/oj a5 5 4
1 6.6666667 1.0000000 1.0000000 .1484062
2 6.8275862 .6666667 1.0000000 0125133
3 6.8140351 .6896552 1.0000000 .0010378
4 6.8151591 .6877193 1.0000000 .0000862
5 6.8150657 .6878799 1.0000000 .0000072
6 6.8150735 .6878665 1.0000000 .0000006
7 6.8150729 .6878676 1.0000000 .0000000
= -4

1 -3.0000000 1.0000000 1.0000000 .8150729
2 -4.1666666 1.0000000 -1.0000000 .3515938
3 -3.8153846 -.8333333 1.0000000 .0003117
4 -3.8150782 ~-.8307692 1.0000000 .0000053
5 -3.8150730 -.8307255 1.0000000 .0000001
6 =-3.8150729 -.8307247 1.0000000 .0000000

This method converges much faster than the power method
U-)\l

e One diffi-
e

and the convergence ratio is

”ej+l/ej'
culty of this method is that we much choose a suitable
initial guess u before we can do the iteration. One good

choice of p is the Rayleigh quotient

T
quqo
i
909
if we know the initial guess d, is reasonable. Thus we can

modify the inverse power method, and get Rayleigh gquotient

iteration by computing the Rayleigh gquotient




on each step. It will be discussed in detail later. Now we
simply present some practical examples. The reader can com-
pare these with the previous ones. It turns out that this

iteration is quite good and converges very quickly.

S
Example 3. A = (l 4J qg = (i}

72
J u ql 7 e
j j 95 j
1 6.8240000 - 6923077 1.0000000 .0089271
2 6.8150805 6878713 1.0000000 .0000076
3 6.8150729 .6878676 1.0000000 .0000000

‘
Table 4. B = [9 l} q = li}

1 2

; 1 2

J Uj qj qj ej
1 8.0076923 1.0000000 =, 27272713 1.1323626
2 9.0948443 1.0000000 +2215583 .0452107
3 9.1400532 1.0000000 1395513 .0000018
4 9.1400549 1.0000000 .1400549 .0000000

Sl
q 5
ik 9.13998897 1.0000000 .1363694 .0000952
2 9.1400549 1.0000000 .1400550 .0000000
The exact eigenvalues of B are A, = }iijéé— = 9.1400549
11-¢/53

and KZ = ———— = 1.8599451.

2




CHAPTER LI

ORTHOGONAL TRANSFORMATIONS

In this section, we will introduce two types of ortho-
gonal transformation. These transformations will be used

in this paper to reduce matrices.

Elementary Reflector (ER)

Definition

Let xeR" with Hxﬂ2 = 1, then U=I-2xx' is the Elemen-
tary Reflector (ER) corresponding to Xx.

Remark 1. If xeR", X # 0 and Hx“2 # 1, we can extend
the above definition by letting x' = x/“x”z, then HX'H2 = 1
and U=I—2x‘x'T is the ER corresponding to x. So we can feel

free with this definition for any nonzero vector.

Remark 2. For any yeRn, y # 0 and yTx = 0 it is easy to
show that Ux=-x and Uy=y. The geometric interpretation is
that the ER U corresponding to x simply reflects x itself
to the opposite direction and leaves any vector orthogonal

to x unchanged.

Theorem 2.1

; : T
Let U be an ER, then U is symmetric (U=U ), orthogonal

(UT=U-1) and involutory (U=U-l).




Proof.

1k
U

I

I

1]

1T1 al s
Since U=U , U =U

Theorem 2.2

Let x,x'eR",
an ER U such that

Proof. Take

since ((x+x'),%)=

Thus (x+x')

is orthogonal to X.

T
Since U=I-2xX

iR Uk
(I-2xx )

F (sl
I =(2xx )

T2 ()

uu

(I—ZXXT)(I-ZXXT)

L i

T 2k ke 2
I-2xx -2xXX +4xX xx fsefs = at =1

m

T
I-—4xx‘+4xxl = I

Ehe Tl

Y

x#x' and Hx"z = | x|l then there exists

2/

/\I\T
and let U=I-2XX , then

Ix-x'1,

U(%(x+x') + %(x-x'))
% lU(X-x')

U(x+x") + 5
(x+x")

T x-x

|x-x'],

xTx+x'Tx—xTx'-x'Tx'

=0 7 |xl, = |x']

2 A VIR
% = x'x

2
I ==x"]

On the other hand, we

know that (x-x') is parallel to X. Hence Ux = %(x+x')

1
2

+ =(x'-x) = x

74




This theorem gives us a way to introduce zeros into a

vector or matrix. That is, if

we can find an ER U such that Ux = X' where

) .
x' = M o = x|,
Plane Rotation (PR)
A X X
Xq | 1 2
Let x =|"1| = 0, and r =, , == Then
[le E3 B3]
2 2
r
. t} {xl} : ‘-uxuz
2k i X2

r ok
In geometry, the matrix [—t r} acts on x, so that one of the

components is annihilated. That is, we rotate the R2 plane

in order to set this vector x on the x-axis.

Definition

A matrix of the form

. i3
S () e e . 0
0 1 0 g5 1020
P. = Al {0 N S B e %

"O 0 ..... O..O..i/
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is called a Plane Rotation (PR) in the (i,j)-plane. It

should be noted that (1) by applying Pij' we can also intro-
duce a zero in a nonzero vector in Rn, and (2) it follows
from the definition of plane rotation, that Pij also satis-
fies the orthogonality. Thus it is easy to get the inverse
matrix.

Both transformations we defined above, have the follow-
ing common and important properties:

1. The condition number of U (or Pi*) with respect to
J

the 2-norm is x(U) = |u,[lu”|, = 1. This implies that U is
perfectly conditioned.

2. Suppose after having computed UTAU, we obtained an
error F = UTEU. Then “EHZ = [|F|l2 and UT (A+E)U = UTAU+F.

In other words, a perturbation in the result can be accounted

by a perturbation of the same size in the original problem.
The QR algorithm will involve only these two orthogonal

transformations, and thus can be expected to be numerically

stable.




Ll

CHAPTER IIT

DEFLATION OF MATRICES AND THE RESIDUAL

Let x be an eigenvector of AeR " with HxH2 =1,
corresponding to eigenvalue A. Let U be an ER such that
Ux = el. Then, since U = U—l, we have Ue, = x. It follows
that the first column of U is x. Thus U = {x,V], where the
columns of ¥ are orthogonal to x. Now UTAU
= [x,V]TAlx,V]
fxTAx xTAV-
= |
lvIax  vTav]
B o\
awvTx viav)
b - S
L 0 A |
where h = XTAV and A = VTAV. This gives a matrix A of order

one less than A which has all eigenvalues of A except A.
In practice, if we use an approximate eigenvector x'

with HX'H2 = 1, we will have [x',V] as the orthogonal matrix.
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x'TAx' h

[x',V]TA[x',V] = (3.1)
g A

where g = vTax

To compute the deflation, we must set g = 0. This

leads to an error of size |gf, in the original matrix.

Definition

Suppose that x' is an approximate eigenvector corres-

ponding to the approximate eigenvalue . Define the

residual vector to be r = Ax'-ux'

Thus the size of r in some sense measures the accuracy

of %' and ii.

Theorem 3.1

T
For fixed x, Hrﬂz is a minimum when p = 5—%§
X X
Proof
2 2
Ivl, = llax-ux|,
= (Ax—uX)T(Ax-uX)
= xTxuz—ZxTAxp+xTATAx.
Let £(uy) = (xTx)uz-(2xTAx)u+xlATAx and set f£'(u) = 0,
solving for u, we get
k xTAx
.
X' 'x
Since f" (u) = 2x x>0, therefore f(u) has the minimum value.

That is, []r[]2 is a minimum, hence Hr”2 is a minimum when

xTAx

B = g
//

X X
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Theorem 3.2

Consider g in (3.1) where Hx'“2 = 1. Then Hgﬂ2 =

HAx'—(x'TAx')x'HZ.
Proof

HAX'—(X'TAX')X'“2 = H[X‘,V]T[Axf—(x'TAx')x"']l!2

FX'T[Ax'-(x'TAx')x']'”
L VT[AX‘—(X'TAX')X']

-

NS

-

"o |
& g-(x'TAX')VTx'

sl

gl ,

Since Hx'“2 = 1 by the orthogonality of [%',V].

Corollary

lal, = min |zl,.

The corollary says that the error introduced by setting
g to zero in the deflation process is the same size as the
smallest residual that can be obtained from the approximate

eigenvector x'.
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CHAPTER IV

RAYLEIGH QUOTIENT ITERATION

As mentioned at the end of Chapter I, we can refine
the inverse power method by changing the approximate
eigenvalue u from one iteration to the next, where

Il
o 9,79,

3k
q;9;

is the Rayleigh Quotient associated with each iteration.
Also, we have seen in Theorem 1 in Chapter III that the
choice of u as the Rayleigh Quotient is justified by the
fact that this value minimizes the residual. Since this is
a very nice iteration, it will be the basis of QR algorithm.
We will discuss the convergence of it first. After this,
we will introduce the QR algorithm and demonstrate the close
relation between them.

We will let the approximate eigenvector q; be scaled
so that it has norm unity, and call it x at each iteration.
Assume the iteration is converging to an eigenvector which
corresponds to a simple eigenvalue i, and u is not very close
to the rest of the eigenvalues of A, the Rayleigh Quotient

Iteration for matrix A is the following:
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l. Calculate u = from the present approximate
X%
eigenvector x.
2. Find the next approximate eigenvector x' by

(uI-A)x' = ox, where ¢ is a scaling factor.

Let [x,V] be the ER which is defined as in Chapter III.

Let y = [X,V]TX and y' = [x,V]TX then y = &;. Thus y and !
are Rayleigh Quotient iterates of the matrix [x,V]TA[x,V] =
{u ?}, g = VTAx. Then (pI—[x,V]TA[x,V])y' = 0oy
9

[0 -h ] '

-9 HI-A -

[0 ~h 7 [1]

G UI_A4L§} = ge, .

Since the first component of y' is not zero, we can
choose o0 such that the first component of y' is unity, and

obtain i

y = [uI-A] g (4.1)

Juy-C1x,v17ALx, vIV) ||,
K

Let r =

|
Q
[\
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This is a measure of the accuracy of y as an eigenvector of
(x,v1Ta[x,V]. Likewise, if p' denotes the Rayleigh Quotient
for y', then we have

fury =< [x,V]TA[x,V])Y'Hz

iiim (4.2
lv'l, '

Since y' need not have norm unity, we determine an ER,

say P = [y",V'] such that u' is the Rayleigh Quotient of the
first column of P corresponding to [x,V]TA[x,V] and_y"
] 1]
has norm unity. By Chapter III, PT[x,V]TA[x,V]P = [;, 2,]
where
g' = yi T v ? y" and then r' = Hg'HZ.
s &

We can determine P as follows:

Since y!' = {}J from the definition of ER, let

y
[l+IY'ﬁz}

X - —

y

FUNGE PNy

and

=)
I

then the ER P

I
—
|
=)
e
"




4y

d . =
P =1 L lf”Y "27[1+HY'H2YT]
Iy ‘bl vl L
r . 2 : -T
3 (vt )% a+ly'l,)¥
3 (1+]y'l,)7 7
bad mcod o Vel b e R
: =T
ity 2
- I- 1 - 2 o
ly'l, _l._ZX'_
.L Hy'l,
We will consider the case if g is small, then by (4.1)
§ will be small, so that we can neglect §§T terms. This
gives

=l
P 1 {l+!y'”2 Y }
Y 0 |

o] -1 -y
Iy'l, |-¥ uy'uzz}

won| [ =119,
o &|| -#/1v°1,

= (:EX__ +q) (_?h/"yuaz+il) ‘E/”YIHZ
Iyl ~v/ly'l,
i i e 2

(wy-ly'll,g + yhy-lly'l,a9) /1y 'l,

- -

<u§-uny'ﬂ2§+ny'H2AY+Y§§'"Y'”239’/”Y'"z

i

(U;‘U"Y'H2§+§h§)/”Y'”2
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R i ' ' 2
thus [g' IS Tug-uly' |, 7+9071,/1v'13
-1
¢ @lr=fylly) Inz-a17) 0 all, +
S 2 2
Inf, | uz-a1" 4 50gl 5 /0y 15
-1, . L pidy
Therefore r's (u'll—uy'ﬂzl [[nI-Al ﬂzr + [n], [fuz-a1 =, %)/
)
ly'l2 (4.3)

S
Since |y'|, = (l+ﬁy“§) , by Taylor's expansion we have

ly'l, = 141721512 + 0|33 - 1+1/2]9] 5.
That is

1-ly'12 ~ 1721302
Thus inequality (4.3) becomes

-1,2 2
| 5=

=2 -1 h2
2:2 4 W72 Juz-a17t L0 /vl

=
A

(fnl, ltur-a]

, -1 2e 2 o a=Li 33 .
inl, Iuz-a17 2% Zly 15+ (& =217 525 /1yl

-1,2 2 ;2
- nly w2172 2% /)5
Hence we have
2
r' < clnf,r (4.4)
where
0 -1,2 2
c = |mr-al 7 /1y'l5
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That is, the Rayleigh Quotient iteration will converge

quadratically when it converges. If A is symmetric, then

h=g. Thus (4.4) changes into r' < cHgﬂ2r2 = c'ro. This

implies the rate of convergence will be cubic.
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CHAPTER V

QR DECOMPOSITION

Theorem 5.1

Let AeRnxn, then there exists an orthogonal matrix Q

and upper triangular R, with positive diagonal elements,

such that A = QR.

Proof
By induction on n. If n =1 [a] = [1l][a]. _Assume the
{a
result holds for n = k-1. Let AeR % and a; = éll be the
k1l
Eirst column of A. If S I 0, we can let Ql = I.
Otherwise, let Ql be the ER such that Qlal = -oey. Let
-0|xr
> ) TR s e
Al = QlA’ then Al = { — |, this implies A = QlAl QlAl'
0 Rl
I
Since AleR(k—l)X(k_l), by the induction hypothesis
ﬁl = élRl’ where 61 is orthogonal and ﬁl is upper triangular.
Let
1/0 =g lr
P Ql [-O Rl

(Here we can choose the sign of ¢ such that -¢ is positive),

then Q 1is orthogonal and R is upper triangular and
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(l 0 -0|r 1 -olr
QR = = A.,. We have A
2 Lp Ql 0 RlJ 0 Rl E

QlAl=QlQ2R' let Q = Qle, then A QOR.

Vid

It should be noted that the proof of this theorem is
constructive.
If A is nonsingular, then the decomposition is unique:
Let A = QlRl = Q2R2, where Ql'QZ are orthogonal and Rl,R2
are upper triangular with positive nonzero diagonal entrices.
Since ATA = PTQTQ R, = RTR = RTR By the uniqueness of the
 El s i 155 i A !

choleski decomposition of ATA, we have Rl = R2 and Ql = Q2.
If A is singular, for example, A =[8 g] then we can have

-
M 0 ([0 1|]|0 O e
L8 L0 l}ij 0} or [} OJ[O lJ as the QR decomposition of A.

If we want to find the eigenvalues of a matrix A, con-
sider solving for the characteristic polynomial of A. There
is no finite process through which one can solve a general
polynomial of degree > 5. In other words, there is no
algorithm employing a finite number of steps that can be
used to solve for all eigenvalues of a general matrix.

For this reason, in general, we have to use some iter-

ative method to find all the eigenvalues of a matrix.
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CHAPTER VI

THE EXPLICIT QR ALGORITHM

We will basically use the QR decomposition to define
and develop the QR algorithm. This yields a sequence {A‘}
of matrices orthogonally similar to Al' We may expect the
limiting matrix to be triangular or gquasi-triangular. From

nxn = . y
now on, assume AleR and A, 1s nonsingular.

=3

Algorithm 6.1

Por k = 1, 2, ..., decompose Ak into QkRk' Then form
Brvy T B

Algorithm 6.2

Choose an "origin shift" X - For k=1, 2, ..., de-

compose A I into QkRk' Then form Ak+l = Rka+ku

k %k
(that 1is Ak+l = QgAka).

We now discuss these two algorithms in detail.

Theorem 6.1

Let Qk w Qle A Qk and Rk = RkRk-l < Rl’ then

QR = (A=x I) (A =X (I) ... (A;-%,I).
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Proof. By induction on k. k = 1 then dlﬁl = QR =

Al—xlI. Assume this result is true for k-1. Since

L &y
(A 175 D) = Qe (By-x 1) Q,

T
(A 17 % D9

P i e
= Q (=%, 110, O

Ry

.—~T - ~
= Qk(Ql ku)Qk_l and

QR = QR R
= 8,00 (a,-x, 1)0 R
= Qe (Ay-x, DJQy 1R 4

= - YO R
(B =% 1) Qp 1 Re1

By the induction hypothesis QkRk = (Al—ku)(Al-xk_lI)
(A=, 1) . /4
In the above theorem, if we take xl=x2= o v = xk=0,

this gives algorithm 6.1. Then we have A? = Qkﬁk and

A (That is, the orthogonal matrix ék in Ak+l

5L, -

k+1 = P19
P k k o x =~ i
comes from the QR decomposition of Al.)- Alel = QkRkel—

k
q(k)g(k), thus ﬁ(k) Alel From Chapter III, we have
1 11 1 T

11

(k+1) k+1)

h

%ll
Ak+l = lg(k+l) A{k+l)
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(k)
2 1

obtained by applying k steps of the power method to e -

(k)
AL

where Hg(k+l)H is the minimal residual of g which is

If A, has a dominant eigenvalue A then g approaches

1

an eigenvector of A

l’

k+1) “ 2->O ;

so that Hg( Hence the sub-

ll
diagonal elements of the first column of Ak+l will approach
zero linearly. Meanwhile, under some conditions, all the

rest of the subdiagonal elements are also decreasing rela-

tively slowly at each iteration:

Lemma Q;i

A, 1s simple if there exists a nonsingular matrix yx such

1
that X"lA 5.0

x = A, where A = diagonal [Al, ceer AL

1

Theorem 6.2

Let A, be simple and satisfy (1) |A1[>]A >]Xn|;

1 2[>
(2) X- has an LU decomposition, then the subdiagonal ele-

ments of the matrix Ak+l tend to zero.
Proof. See [2].
From algorithm 6.2 (Ak-xkl) = QkRk, take this

equation, invert it and transpose it, then solve for Qk' We

will have (Ak—ku)'-l = RilQ;l

-T _ -7 _-T
(A =%, I) ~ = O 'Ry
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1 (k)

(R z B - : ;
= len rnn(Ak ku) e, - Ehat aist q, is

Then 8

the approximate eigenvector of AT obtained by applying one

k

step of the inverse power method to e -

It follows from Chapter III that we can partition Ak as

VT AV hT(k)
S
T (k) (k)
g %nn
Then HgT(K)HZ " “g(k)ﬂz is the minimum residual of e re-
garded as an approximate eigenvector of AE since
ey (k+1) ; e : o k)
Apiq < QAL Qy - g H2 is the minimum residual of q,
regarded as an approximate eigenvector of AE. If Xy is
near an eigenvalue of AE, then qék) will be a more accurate
approximate eigenvector than e . Thus Hg(k+l)H2 is smaller
than “g(k)nz. Theregore g(k+l)+0 and we will get the ap-

(k)

n

(k)

proximate eigenvalue an as k-»o,

corresponding to q
Since we have discussed the very nice properties of

Rayleigh Quotient iteration in Chapter IV, we now choose

X, as the Rayleigh Quotient at each step to get

PR 7N L o kk] (k+1) ;
X = enAken = Hence g -0 quadratically and
g(k+l)*0 cubically if Al is symmetric.

In fact, after 2 iterations (2<k), the shifts Xo41”
Xogn? =°* in algorithm 6.2 are very close to an eigenvalue
An' By theorem 6.1 we get QkRk = (Al=xlI)l(Al—x21)2 $ei
(Al-XQI) (Al—XnI)k-l. Thus only the previous & iterations
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are obtained by using the shifted algorithm on A and the

ll
rest of the steps are achieved by applying the unshifted

algorithm on A —AnI. It follows from Theorem 6.2 that the

1
shifted algorithm will not only reduce the off-diagonal
elements in the last row to zero, but may simultaneously

reduce the other subdiagonal elements, somewhat more

slowly.
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CHAPTER VII

HESSENBERG FORM

Definition

A matrix A is said to be an upper Hessenberg matrix

R : L i ¢
(AeUHM) if aij 0 for is>j+l. If also ai,174 #0 for
i=1l, ..., n-1, then we say A is unreduced (AcUUHM)

Theorem 7.1

Any matrix AeR™ can be transformed by ER's

O ’Gn—B’ e 61, so that A, = 0n—2ﬁn—3 e ﬁlA 0162 Sy
is an upper Hessenberg matrix (AIEUHM).
We will not prove the Theorem. Instead, we will later
see Example 7.1 for the practical detail.
If any subdiagonal element of Al vanishes, then Al is

said to be reduced and we can partition Al as follows:

H)Byg I?Ilm
Al = HZ‘ ) : {Fel)
0 Tey J
m

where HiEUUHM.
Since A1 is similar to A, we can solve for all eigen-

values of A, in order to get those of A. We control the

1
computing program so that the QR algorithm acts independently

on each Hi'
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Remarks. (1) If any Hi im (7ol asras Ixldibloeks, ‘then
this element is one eigenvalue of A. (2) For any HieRZXZ,
we can solve for the eigenvalues by the gquadratic formula.

From now on, we shall assume the original matrix is of

dimension greater than 2, and has been put into UUHM

before the QR algorithm is applied.

Example 7.1

(é a =
| X a a
Let A = |
x. . a'a’ ' a
Ix a a a
= Al - r
x] oq
We can choose Ul as the ER such that Ul x| =10 |, then form
L.x.l uol
=
S g
o - ]
s S R
Premultiplying A by U, will change only the an, 3rd, 4th

1

rows of A. This gives

a a a a
5. -0, X X X
i 0 x = =
QRERREE AT
: . A AL : nd rd
Post multiplying UlA by Ul(—Ul) will change the 27, 3 7,
4th columns of U,A and we get

1




29

[Fa % = &

T ;) -0, X X X
UlA Ul 7 i TR T
O -y x X

Now, we can choose U, as an ER (or PR) such that Uz{;} =[—82]‘

T

Let U, = Loz u.le Again, if we premultiply and postmultiply
= 2

UlAUl by 62, only the 3rd and 4th rows and columns are

changed from U AUl, and we obtailn Al = UZUIAULLZ

i
r_x X i}
it £ X!EUHM
0 —02 X X
.0 X X
Example 7.2 iR R
SR
Suppose Al B B ow ow cUUHM
0 8 x =

Apply QR algorithm to Al. First, we need to form Al = QR,

: T :
= J !
that is Q Al R. We prefer to choose PR's P43, P32, P2l

. S S
which wll eliminate a43, a32, a21 separately. Let Q° =

s B : &
P43P32P21, thus Q Al = R. Then postmultiply R by Q =
O N ) . L
P2lP32P43. This gives A2 = Q AlQ
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i T T _T
= FysRaoFa BiFa ks
e o
R 0 R S 3
= B 199 a3
O TR S so
LR
x x x X]
R Sre e AR R E
= P..P
TR G 3243
a0 0
e =, x
- ¥ B X X PTﬂ
43
(F sz s
_OOOXJ
Al s 27
e
QO e s
B

From this example, we observe that the QR algorithm pre-
serves the Hessenberg form at each iteration. In addition,
the number of multiplications and additions required to go

from Ak to A is proportional to n3 for a full matrix

k+1

AleRnxn, to n2 for AleUUHM. Lt Al is symmetric, the unre-

duced upper Hessenberg form of Al will be tridiagonal and

the number of operations required is proportional to n.




CHAPTER VIII

THE IMPLICIT QR ALGORITHM

The next two algorithms are variants of algorithm 6.2.
They are achieved without having to subtract the shifts

from the diagonal and later restore them.

Theorem 8.1

nxn

Let A A,QeR with Q orthogonal and A,ecUUHM having

: i 1
positive subdiagonal elements. If Al = QTA Q, then both

Al and Q are uniquely determined by A and the first column

of O

Proof. Let A = [ql, Sl qn]. We will prove this

theorem by induction on k. Since
QAl = AQ (8.1)

Then for k =1 qlall+q2a21 = A q;
T Iq a = qTA g
qlqlall+q 221 it 1
T T e
3211 9% %1 T 9t 9
here = a-l(A -g.a,.) and - = 1
b 9, b i i) 959, ;

We can solve the above equations to get
a = TA and then
11 T 19 .

s ' =
fyda = & g T dyfy g (8.2)

31
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In (8.2) 9 determines q2 up to a constant. The proper-

ties ngz = 1 and a > 0 then suffice to determine q, and

21
asq uniquely.
Assume we continue the above steps and have already com-
puted qq- q2, seer Gy and the first k-1 columns of Al'

We want to compute the Iy and kth column of Al.

Formula (8.1) and A,cUUHM imply

il

Multiply equation (8.3) by qi to obtain iy = qg A Iy

k
il =1 ) _ k
(1 = 1, «<s+7 k) @nd dpyq = ak+l,k(A dy §=laikqi) with
T _ ‘ e . _
qk+lqk+l - Al must have positive subdiagonal elements,

so that A1 and a can be uniquely determined. //

k+1,k

and g are determined up to a constant

81 +1,k I +1

factor of absolute value unity simply by the requirement

In fact,

that A1k be nonzero. It is this essential uniqueness of
7

Al and Q that we shall actually use.

Theorem 8.1 tells us that we can determine a different
Qk at each step in algorithm 6.2 (call it @k) but leave the
first column of Qk unchanged. By the uniqueness of the above
theorem, we still can get the same Qk and Ak+l'

In practice, the question is how to find @k? Suppose

we use one step of algorithm 6.2 with shift Xy to get

A -X I = QkRk. Let Q = [ql, COVERRRY qn].
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= = - = = ’-l
Thentapday = Sl srdl SRy Hsgdim Sl e [0y

which is a multiple of aj - Let Pk be a PR (or ER) such that

P a. = |a where

k%1 1,21

T L | : T
Thus P, e; = al/dalu2. So that the first column of P

is a multiple of al, and hence Pg has the same first column
as 0.
N

By Theorem 7.1, we can always find orthogonal transfor-

. A A A A A A TA
- 181 7 1 T
mations U, _-,U _17 -« Ul such that Un—ZLn—3 e JlPkAkPkU1
~ A T
Un_3Un_2€JHM.
I T/\ N 0N . .
Oy = J hi . =
Let Q PkLl ce Un—BUn-Z’ this 1s what we need Ob
serving the way we choose ﬁl, S 5 6n—2 in example 7.1, if

we postmultiply PE by Gl et an-Z' the first column of PE

never can be disturbed, so that Qk and @k have the same

first column.

Algorithm 8.1

Choose an "origin shift" Xy . Poxr k=1, 2, ..., calcu-
~ 5 T/\ A e /\T A
late Qk = PkUl wtails Un—2' Then form Ak+l QkAka'

Let us see some details of the practical computation by

using this algorithm:

E
a
A, = |0
0
f)

Suppose

o O o W
(T I U B

AU R R A o]
lwmmmm‘
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i £
then PlAlPl has the form

(8.4)

©c o x o o
o o p o
o p p o

[T I R VA B
r oo om

where Pl is the PR in (1,2)-plane. Hence PlAlPl is dif-

ferent from A, only on the first two rows and columns.
Note that in (8.4) we have brought one nonzero element X
in the (3,1) entry of Al' Let 61 be the PR in the (2,3)-

plane which makes x equal to zero. Then UlPlAlPi becomes

fa a a . g9 &l
a a a a a
0--a as a--a (8:5)
000 | -ar A
|0 @ B a aj

Postmultiply (8.5) by U the above matrix will change

ll
only in the 2nd and 3rd columns and become

(8.6)

(ST R VR O B )

[O o O D QJ‘
©O X & p op
VRN VI VR T
oo oy

Again, we have gained a nonzero entry x in the (4.2) posi-
tion of matrix (816). Thus we choose 62 as the PR in the

(3,4)-plane to annihilate x in matrix (8.6). Then form

- . !
2U1P1A1P1U1U Repeat the same step until we obtain
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another upper Hessenberg matrix. This means that we have
finished one iteration.

One should note that it is convenient to take Pk’ ﬁl’
v ol 6n—2 as the PR's at each iteration because of the
special form of Ak.

In algorithm 8.1, we do not compute Ak+l by using Xy
explicitly. That is, we do not subtract Xy and then re-
store it. This method is not cheaper than shifting ex-
plicitly, since we have to compute ﬁk at each iteration.
One of the drawbacks of the algorithm 6.2 and 8.1 is that
it may require complex origin shifts if A, 1s not symmetric.
We will develop an implicit double shift technique from
algorithm 8.1, which circumvents the problem of complex
shifts by effecting two conjugate shifts simultaneously in
real arithmetic. When Al is symmetric, the problem of com-
plex shifts does not arise. 1In this case, the above two
algorithms can be used. Since Al is a tridiagonal matrix,

(we already assumed A.ecUUHM) this only requires a small

1

number of operations.
The next algorithm is derived from the previous one,
by applying two steps of algorithm 6.2 on A2k—l(k =2

with shifts x at each iteration. By theorem 6.1 we

k1’ *%2
get (Azk_l-xkzi)(AZk_l—xklI) = leQkZszRkl = QkRk and

Ty R

= QPox-1% {B 7

Bok+1
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From the previous discussion, we need to determine
an orthogonal matrix ék which has the same first column as
/\T/\ A
Qk' Form QnA2k—le'
(8.7). As before, we know that the first column of QK is the

this gives the same Qk and A2k+l as in

same as that of (A2k_l—xk21)(A2k_l—xklI)el

ot M 3117 %1212 :
g Raa"%pn - fl8oy A5 %
A5 ¢ Y e
= 0 a32 O d32 l
0 Al 0
la, .=x . ) (4, =% .)+a..a T
& i S L B R T e
ayylay =% ) +ay  (ay,-%,)
ok s
—O L
—;2 -(x, .+x, ~)a..+x. .xX, .+a,.a ]
P10 TR 8%
agy(a)1=(x  ¥% 5) +ay,) (8.8)
%
. |

It is convenient to take these two shifts as the eigen-

values of the matrix
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: : 4 i %
at each iteration, we have xkl xk2 an—l,n-l an,n and
xkl-xk2 = an-l,n—l.an,n_an—l,n.an,n—l' Substitute these
into (8.8). We obtain

2
fHop By 8] nelit Pon 11 fael helian nelnn nel
s Bl
a, = Ry leagtagasa g ey foy)
By ey
O >
i

There are three nonzero elements in a; and those involve
only real arithmetic no matter whether the shifts are com-
plex numbers or not.

The remainder of the steps are the same as that in

algorithm 8.1, except that now we must use ER's: Let Uk

be the ER such that U a; = Haluzel. Then Ukel = al/Hal}[2

Thus Ug will have the same first column as Q- Form

UkAZk—lUE and we can find orthogonal transformations

O opeUuiqgr wany Oy wuch that 8 B oy ey Boa,. o kAl
an_3an_2€UHM. If we choose Qk = Uk 1 " ﬁn-z’ then

ék will have the same first column as that of Qk' Now we

summarize the above procedure as the following:
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Algorithm 8.2

Implicitly doubly shifted QR algorithm. Choose two

“"origin shifts" x For k=1, 2, ..., determine

k1’ “k2°
A —/\T A
Qk' then form A2k+l = QkAZk—le'

Let us see how to carry out one iteration of this algo-

rithm in practice:

(a i e ala
a a a a a
Al = g "a'a a. a then
Qi el assias ot
0 Q9 B a -ai
fa a a a a)
a a a a a
UlAlUT =il el e Al g (8+9)
X x..4a . a a
(0 0 0 a a]

Choose 61 as an ER such that it annihilates the (3.1) and

(4.1) positions in (8.9). 61 has the form:

=,
© £ £ £ O
O g £ £ O©
© £ g £ ©
H o o 9O o
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Form ﬁlUlAlUg will change the an, 3rd and 4th rows of the

matrix in (8.9) and give

B W e R

a-a aallsa

p@as-a . a - a (8.10)

0 x a a 4a

S0 S S | a|
Postmultiplying matrix in (8.10) by 61 will change the 2nd,
3rd and 4th columns of it and leave the first column un-
changed, thus ﬁlUlAlUfﬁl is

M ;&8 A &l

a a a a a

QIR R TR S | (8.11)

0 x a a a

Bl G SRR - SR

Compare (8.9) and (8.11l) in both matrices, we have obtained
three nonzero elements in the original Hessenberg matrix,
but in different positions. Now we can choose 62 as an ER

which annihilates the (4,2) and (5,2) entries in (8.11l) which

has the form

e O O

(e Ao T o ] i
£ £ g O O

[Tk = o < T oo
IGCGOO]

o
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_ T R
Then compute ﬁzﬁlUlAlUlﬁlﬁz, this gives

== R = S = R ) W
©c o o o ow
P N ¢ ¢ U o1
(U T VU (R VR
S L | 1 A

For the last step, we can choose a PR instead of an ER

since we only need to make (5,3) entry equal to zero.

A A % T,\ A "
We choose P45 and form P45U2UlblAlUlUlU2P45 UHM, thus

we have finished one iteration of this algorithm on Al.
In using this algorithm, we paid for calculating aj

on each step. In addition, the multiplication of reducing
U, A UT A
k"2k-1"k 2k+1
as the shifts, and we shift twice separately by using algo-
2

to eUHM is - n2. If we can use real numbers

rithm 6.2, the cost from AZk—l to A2k+laUHM is also ~ n

Of course, nothing is saved by this technique if Al is

symmetric.
Parlett [2] has shown that if the shifts are not the

eigenvalues and if A has nonzero subdiagonal elements,

2k~

then so does A2k+l' This tells us that the recursion will

not end prematurely. In fact, when we do the practical com-
putation, we will get a "sufficiently small" subdiagonal

element, say a. If j = n-1 or n-2, then we have ob-

i G B 8

tained one or two eigenvalues. Thus our program will do

the deflation and apply the algorithm to the matrix in
(n=-1) x(n=-1) (n=-2) x(n=-2)

dutomatically. If § « n-3

R r R
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the program should continue the algorithm on the lowest sub-

matrix.
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CHAPTER IX

SINGULAR AND INVARIANT MATRICES

Singular Matrices

If A,eUUHM and is singular, then the QR decomposition

o

of Al is not unigquely determined. However, we still can

apply the QR algorithm to it as we will see in the following:

Since Al = QR, then
a, = I qqxr. 1 =1, , n=-1, and
k =1 keka
i-1
!riil = Hal—Z qkfkiﬂz/ﬂqlﬂz
i-1
= ”ai Z=lqkrki”2

Since A,ecUUHM and the first n-1 columns of Al are linearly

1
independent, therefore rii#o i=l, ..., n=-1. This gives us
that rhn=0 &2 Al is singular).
To get A2 = RQ we have an,n-l = rn,n qn,n—l = 0 and
an,n = rn,nqn,n = 0. This tells us that after one transfor-

mation, a zero eigenvalue is revealed if Al is singular.
Thus the singular matrix case is a very fortunate case.
If we do the shifted algorithms on A, then Al = A-xlI

is singular if the shift x. is an eigenvalue of A. In fact,

1
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for both explicitly and implicitly shifted algorithms, we
also can obtain an eigenvalue X, after one iteration. This

means we made a very good guess.

Invariant Matrices

In this section, we will describe all matrices which
are invariant under the QR algorithm. First, we just state
without proof some definitions and theorems from linear
algebra which are important prerequisites for the upcoming
material. The interested reader can refer to [4] for the

details.

Definition 9.1

A matrix A 1s nonderogatory if the minimal polynomial

equals the characteristic polynomial. Otherwise, A is

said to be derogatory.

Theorem 9.1

Every matrix A (over the complex numbers) is similar

to a matrix J in Jordan canonical form.

Theorem 9.2

A matrix A is nonderogatory if the distinct Jordan

blocks of its Jordan canonical form correspond. to

distinct eigenvalues.
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Theorem 9.3

An nxn matrix A is nonderogatory if for every complex

number A, the matrix A-AI has rank at least n-1.

Theorem 9.4 (Cayley-Hamilton)

Let P be the characteristic polynomial of A, then

P(A) =0
- - E_ i
!Jl O ?I"-""Q%r
Let J = } g SR L (%)
‘\ M \\ ]
}O Jr Qri_ --er
- — nxn = -nxn

where Ji (i=1l, ..., r) are the Jordan blocks of J and

Al # Aj
Lemma 1
If JQ' = Q'J, then Q' is block diagonal; that is,
Q11 0 ‘1!
Q22
Q' = S =
0 QrE
Lemma 2

AL JiQii = QiiJi then Qii 1s upper triangular, and

Q.. has the form

11

T B wai

2 R 1 1.

AU :

N

\\\'

L O |

\ b

S

\a

0 it
b -
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Theorem 9.5

Q' and g% have the same block diagonal form if JQ' =
@ AT

The main theorem of this section is the following:

Theorem 9.6

Let AleUUHM, and AlsRnxn, then Al is invariant under

the unshifted QR algorithm if Aq is a scalar multiple of an

orthogonal matrix.

Proof (+). As AlEUUHM, then Al is nonderogatory. Sup-
pose A, is invariant under the unshifted QR algorithm, that
is Al = QR and A2 = RQ = Al. Thus

QAl = AlQ (9.1)

Let P be the characteristic polynomial of Al, and let J

be the Jordan canonical form of Al (there exists a non-

singular matrix S such that S_lAlS = J). By the Cayley-
Hamilton theorem, P(Al) = P(J) = 0, where P(J) = aan +
see + a.dta I = 0. Then
1 o
o R +a,J+a I (9.2)
n n-1 e 1 o)
Since Al = 8JS —, we can change (9.1l) into
JQ' = Q'J (9.3)

where Q' = s'le.
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It follows from theorem 9.5 and formula (9.2) that

A e R +ajJ+ta'I. We can change Q'

n-1
= n-2 1

| 1
A an—lJ
back to Q to get

n-1
it

- ] t + ]
Q an_lA et B s LA aOI

Lok

This tells us that Q is a polynomial in Al of degree less
than or equal to n-1l. But Q = AR_l implies that QeUUHM,

hence we have

— : iy, ¥
Q = alAl+aoI (9.4)
Since Al = QR = (alAl+aOI)-R, this gives ri185; <
' ol -1 ol ' 1 i
alall+ao and rlla21 alaZl' Solve for al and ao, we have

e |
aé = 0 and a! Therefore formula (9.4) becomes

Ve e
1

Q = rllAl’ that is Al = rllQ.

(<) If a-lAl is orthogonal, then let Q = a—lAl.
Thus Al = 0Q and then R = oI, this implies Al is invariant.
/Y

For the shifted QR algorithm, we have the similar
result (see [5]):

"Al is invariant under the doubly shifted QR algo-

rithms if Ai—oA +pI is a multiple of an orthogonal matrix.

3
Where ¢ and p are parameters depending only on the choice
of origin shifts.”

If a matrix is invariant under the QR algorithm, some

special treatments must be used (see [3]).
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CHAPTER X

AN APPLICATION OF THE QR ALGORITHM

Stiff Differential Equations

For any single differential equation
y' = Ay+b (10.1.1)

we say this is a stiff differential equation [6], if
Re(A) <0 and large in absolute value. We can solve (10.1.1)
explicitly, and obtain the exact solution y = cekt+¢(t),
where ¢(t) is a particular solution to the nonhomogeneous
case. It can be shown that the exact solution will have a
constant term and another term which decays rapidly if the
differential equation is stiff. Therefore, if we solve a
stiff differential equation, we may expect the numerical
solutions approach the constant solution after a very short
time period. So that we can use special methods which
allow us to take a bigger stepsize in the computer program,
in order to minimize the numerical work and save the comput-
ing time.

For the nonlinear single differential equation

yl = f(y) (10.1.2)
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Suppose f is twice continuously differentiable, by a Taylor
series expansion about Yor We obtain y' = f(yo)+f'(yl)

(Y-yo)+f"(E)(y-yo)2/2: If v is close to Yo+ then

y' = Ay+b (10.1.3)

where A = f'(yo) and b = f(yo)—f’(yo)yo.

By the well-posedness property, the numerical solutions
of (10.1.3) are - close' to:those in (10.1.2). Hence we .can
consider the linearized case instead of the original non-

linear case, and have the same discussion as before.

Determining Stiffness of a System of

Differential Equations

In general, we want to extend the previous discussion
to a system of differential equations. Suppose we have a
system of n linear differential equations, it is convenient

to write the system in the matrix form:

Y' = AY+B {10.2.1)

If we use numerical methods for solving this system, we
would like to know whether or not this is a stiff system,

so that we will know whether we must use some special

methods which have been developed for stiff systems. 1In

the following, we will see that this can be done by examining

the eigenvalues of matrix A:
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Assume A is simple (otherwise, we can perturb it

slightly to make it simple), then there exists a nonsingular
matrix T and a diagonal matrix D such that A = TDT—l,

where D = diagonal[A,,A An]. Now, we can change the

ll 2! mie e p
variables in (10.2.1) by multiplying both sides on the

equation by T—l to get T—lY' = T—lAY+T_lB. Eguation (10.2.1)

A

would become ¥' = DY+B where ¥' = T-lY' and B = T—lB.

This can also be written as:

= A.9.+B Lomd, sy B (S

k3>

Hence the new refined form (10.2.2) has been reduced to n
separate single linear differential equations, and each Ai
is an eigenvalue of A. If there exists one or more eigen-
values of A having negative real parts and some of them are
relatively large in absolute values, then (10.2.2) is a
stiff system.

For the system of nonlinear differential equations

y: = £,

i 1(X’yl’Y2’ e ) g =t e e (02531

suppose fi is twice continuously differentiable. We can

linearize (10.2.3) at xo,yo) and get

Bfi
— y.+b

layj g Ry -

'..J.
li

i 1,2 0 e 1

n
V. = I
j:
Bfi n i
WheEe by S S i) e gL
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Changing the linearized system into the matrix form, we oOb-

tain Y' = JY+B and J is the Jacobian matrix of fis.
That is
afl afl
3?; .......... ayn
J = s
Sf Sf
n n
3}’1 dyn
nxn

We can use difference equations to get the derivatives in

J by using

of .
i

j

yj—é, -eer ¥ )1/28

Now we can apply the QR algorithm on J, and examine the

eigenvalues of J.
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