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CHAPTER I 

THE POWER AND INVERSE POWER METHOD 

In this section, we will consider two methods for com­

puting an eigenvector and in addition the associated eigen­

value of a matrix A. 

The Power Method 

L t A Rnxn b . e E e simple and ha ve A1 , ... , An as the eigen-

values, where jA1 1> 1A2 1~---- ~ 1An l . Consequently, the corres-

ponding 

vector 

eigenvectors x 1 , ... ,xn form a basis of Rn. 

n q
0

ER, we have 

For any 

+ . . . + r ' X n/\n n' and let 

Then compute Aq
1

, let q 2 = Aq1/A 1 , .... Repeat the same 

procedure like the following: 

= Aql/Al = rlxl + 

+ rn(An/Al)j+l xn. 



2 

Generally, we do not know Al when we do the iteration, 

so we had better use some other convenient scaling factor, 

say crj at each step, instead of A1 . Thus our recursive 

formula will become 

/ f3 (j+l) +S (j+l) (' /' ) j+l 
qj+l = Aqj crj = 1 xl 2 A2 Al x2 + ··· 

+ S(j+l)(A /A )j+lx. (1.1) 
n n 1 n 

where we choose crJ. = II AqJ. J'I 
00

, so that II q II - 1 j+l 00 - • 

and thus the dominant ratio term in (1.1), I>-/>. lj+l con-
2 1 

verges to zero as j+oo. So that qj+l will converge to s1x 1 , a 

rnul tiple of x
1

, with II s
1

x
1

11
00 

= 1, and the rate of convergence 

is IA2/A 1 1 when j+ 00 • In addition, since 

a . and q., 
J J 

qj+l will both converge to s1x 1 as j+oo, 

to Al as j+oo. 

Practical computation 

thus cr. converges 
J 

From the above discussion, we know the approximate 

eigenvector will be scaled with norm of unity. Thus to choose 

q 0 = [i] as our initial guess is reasonable. 
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1 2 
We will see some simple examples, and let qJ, qj be the 

two components of q., e. be the error between the exact 
J J 

dominant eigenvalue and the approximate eigenvalue. 

Example 1. A=[~ ~] 
j 

2 a. q. q. e . 
J 

2 5.8888889 .7735849 1.0000000 .9261840 
4 6.5063613 .7137270 1.0000000 .3087116 
6 6.7163620 .6958776 1. 0000000 .0987109 
8 6.7839409 .6903687 1.0000000 .0311320 

10 6.8052972 .6886505 1.0000000 .0097757 
12 6.8120075 . 6881128 1.0000000 .0030654 
14 6.8141121 .6879444 1.0000000 .0009608 
16 6.8147718 .6878916 1. 0000000 .0003011 
18 6.8149785 .6878751 1.0000000 .0000944 
20 6.8150433 .6878699 1.0000000 .0000296 
22 6.8150636 .6878683 1. 0000000 .0000093 
24 6.8150700 .6878678 1. 0000000 .0000029 
26 6.8150720 .6878676 1. 0000000 .0000009 
28 6.8150726 .6878676 1.0000000 .0000003 

h . 1 f 1 1 -- 3+21113 ~- 6. 8150.,29 Te exact eigenva ues o A are A i 

and >-.2 = 
3-;'113 ~ -3.8150729, where J>-.2/>--1 1 = .5597 

~ e./e. 1 . 
J J-

One can see from Example 1, a . will converge to 
J 

the dominant eigenvalue with rate of convergence J>-.2;>--1 1, 
and the scaled eigenvector associated with this eigenvalue 

will converge to [·
687 f676

]. 

Sometimes the approximate eigenvalue and eigenvector 

are unstable for a number of iterations, and the error is 

terrible. However, after a while, those values are conver­

gent with a very slow rate and eventually stable. 
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Remarks: The convergence is slow if Al is not strongly 

dominant over the other eigenvalues, or this method will not 

even converge if A does not have a dominant eigenvalue. 

The Inverse Power Method 

Suppose that A has eigenvalues A1 , A2 , ... , An which 

correspond to the linear independent eigenvectors x 1 , ... , 

xn. Letµ be a close approximation to A1 , then the eigen­

-1 -1 -1 
values of (µI-A) are (µ-A

1
) , (µ-A

2
) , (µ-A ) -1 

n • • • I 

corresponding to x 1 , x 2 , ... , xn. If we apply the power 

method to the matrix (µI-A)- 1 , we will get 

Where the convergence rate depends on the largest of the 

ratios 

µ-A I 
µ-A~ i=2, ... , n, 

1. 

which is much smaller than that in the power method, because 

of the way we have chosenµ. 



A = [17 24] Example 2. 

j 

1 
2 
3 
4 
5 
6 

µ-1/cr . 

6.6666667 
6.8275862 
6.8140351 
6.8151591 
6.8150657 
6.8150735 
6.8150729 

-3.0000000 
-4.1666666 
- 3.8153846 
-3.8150782 
- 3.8150730 
-3.8150729 

1. 0000000 
.6666667 
.6896552 
.6877193 
.6878799 
.6878665 
.6878676 

1. 0000000 
1. 0000000 
- .8333333 
-.8307692 
-.8307255 
-. 8307247 

µ = 6. 

2 q. 

1.0000000 
1. 0000000 
1.0000000 
1. 0000000 
1.0000000 
1.0000000 
1.0000000 

µ = -4 

1.0000000 
-1.0000000 

1 . 0000000 
1.0000000 
1 . 0000000 
1.0000000 

e. 

.1484062 

.0125133 

.0010378 

.0000862 

.0000072 

.0000006 

.0000000 

.8150729 

. 3515938 

. 0003117 

.0000053 

.0000001 

.0000000 

5 

This method converges much faster than the power method 
µ->.l 

and the convergence ratio is --,- -e . 1;e . . One diffi-
µ-/\2 J+ J 

culty of this method is that we much choose a suitable 

initial guessµ before we can do the iteration. One good 

choice ofµ is the Rayleigh quotient 

µ = 
TA qo qo 
T 

qoqo 

if we know the initial guess q is reasonable. Thus we can 
0 

modify the inverse power method, and get Rayleigh quotient 

iteration by computing the Rayleigh quotient 



µ . = 
J 

T 
q.Aq. 

J J 
T q.q. 
J J 
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on each st. e p . It will be discussed in detail later. Now we 

simply pre se nt some practical examples. The reader can com­

pare these wi t h the previous ones. It turns out that this 

iteration i s quite good and converges very quickly. 

Example 3. A 

j 

1 
2 
3 

Table 

j 

1 
2 
3 
4 

1 
2 

µ. 

6.8240000 
6.8150805 
6.8150729 

4. B = 

µ. 
J 

8.0076923 
9.0948443 
9.1400532 
9.1400549 

9.1399597 
9.1400549 

= [~ !J q = ,11 
,_ 1 J 

1 q. 

.6923077 

.6878713 

.6878676 

[i ~] q = [ i] 
1 q. 
J 

1.0000000 
1.0000000 
1.0000000 
1. 0000000 

q = I 1 . 3 J 

1. 0000000 
1. 0000000 

2 q. 

1. 0000000 
1.0000000 
1.0000000 

2 q . 

-.2727273 
.2215583 
.1395513 
.1400549 

.1363694 

.1400550 

The exact eigenvalues of Bare Al= 

and A
2 

= ll-;53" ~ 1.8599451. 

ll+/53 
2 

e . 

.0089271 

.0000076 

.0000000 

e. 

1.1323626 
.0452107 
.0000018 
.0000000 

.0000952 

.0000000 

~ 9.1400549 



CHAPTER II 

ORTHOGONAL TRANSFORMATIONS 

7 

In this section, we will introduce two types of ortho­

gonal transformation. These transformations will be used 

in this paper to reduce matrices. 

Elementary Reflector (ER) 

Definition 

Let xsRn with II xi 
2 

= 1, then U=I-2xxT is the Elemen­

tary Reflector (ER) corresponding to x. 

Remark 1. If xsRn, x ~ 0 and 11 xii 2 'I 1, we can extend 

the above definition by letting x' = x/llx11 2 , then llx'll 2 = 1 

T and U=I-2x'x' is the ER corresponding to x. So we can feel 

free with this definition for any nonzero vector. 

k2 n -I- d T 0·. Remar . For any ysR, yr O an y x = it is easy to 

show that Ux=-x and Uy=y. The geometric interpretation is 

that the ER U corresponding to x simply reflects x itself 

to the opposite direction and leaves any vector orthogonal 

to x unchanged. 

Theorem 2.1 

T 
Let Ube an ER, then U is symmetric (U=U), orthogonal 

(UT=u- 1 ) and involutory (U=U- 1 ). 



Proof. Since 
T 

U=I-2xx 

T T T 
u = (I-2xx ) 

T T T 
= I -(2xx) 

T T 
= I-2 (xx ) 

T 
= I-2xx = u. 

UTU = uu 

T T 
= ( I - 2 xx ) ( I - 2 xx ) 

T 2 T T T 2 T 
= I-2xx - xx +4xx xx II xii 2 = X X - 1 

T. T I = I-4xx +4xx = 

Since 
T T -1 U=U-l. U=U , U =U thus 

II 

Theorem 2.2 

Let x, x' E:Rn, x;ex' and II xi! 2 = II x' 112 , then there exists 

an ER U such that Ux = x'. 

since 

Proof. Take 
,... x-x' ,...,...T 
x = -- and let U=I-2xx, then 

~ x-x' II 2 

Ux = u(½(x+x') + ½(x-x')) 

= }u(x+x'·) + }u(x-x') 
T I 

((x+x'),x)= (x+x') . x-x 
II x-x' II 

2 

II x-x' ~ 2 
0 .. II xii 2 = II x' Ii 2 

xTx = x•T ·x• 

A 

8 

Thus (x+x') is orthogonal to x. On the other hand, we 

(x-x') is 
A 1 

know that parallel to x. Hence Ux = 2 (x+x') 

1 
XI • + -(x•-x) = 2 

II 
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This theorem gives us a way to introduce zeros into a 

vector or matrix. That is, if 

X = [ ¾~] ~ 0 

we can find an ER U such that Ux = x' where 

x' = [tl o = ±llxll2 -

Plane Rotation (PR) 

In geometry, the matrix I-~:] acts on x, so that one 

components is annihilated. That is, we rotate the R2 

in order to set this vector x on the x-axis. 

Definition 

A matrix of the form 

P. = 
J 

i j 
1 0 ..•.. o .. o .. 0 
0 1 o ••• 0 0 0 

i O ' O ••••• r .. t ... 

j O O •••• -:-t •• r .. 0 

0 0 ..... o .. o .. 1 

of the 

plane 
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is called a Plane Rotation (PR) in the (i,j)-plane. It 

should be noted that (1) by applying P .. , we can also intro-
lJ 

duce a zero in a nonzero vector in Rn, and (2) it follows 

from the definition of plane rotation, that Pij also satis­

fies the orthogonality. Thus it is easy to get the inverse 

matrix. 

Both transformations we defined above, have the follow­

ing common and important properties: 

1. The condition number of U (or P . . ) with respect to 
l] 

the 2-norm is x (U) = II ull 2 11 UTll 2 = 1. This implies that U is 

perfectly conditioned. 

2. Suppose after having computed UTAU, we obtained an 

error F = UTEU. Then ijE~2 = ~F~ 2 and UT(A+E)U = UTAU+F. 

In other words, a perturbation in the result can be accounted 

by a perturbation of the same size in the original problem. 

The QR algorithm will involve only these two orthogonal 

transformations, and thus can be expected to be numerically 

stable. 



CHAPTER III 

DEFLATION OF MATRICES AND THE RESIDUAL 

Let x be an eigenvector of Ae:Rnxn with II xii 2 = 1, 

corresponding to eigenvalue\. Let Ube an ER such that 

11 

Ux = e 1 . Then, since U = u- 1 , we have ue 1 = x. It follows 

that the first column of U is x. Thus U = [x,V], where the 

columns of V are orthogonal to x. Now UTAU 

T - [x,V] A[x,V] 

[xTAx 
= 

VTAx 

= [,:TX 

= [ 
0 

xTAV] 
VTAV 

xTAV] 
VTAV 

h 

A ] 
-This gives a matrix A of order 

one less than A which has all eigenvalues of A except\. 

In practice, if we use an approximate eigenvector x' 

with llx' 112 = 1, we will have [x' ,VJ as the orthogonal matrix. 



= 
rx• TgAx1

· 

[x' , VJ TA[x• , VJ l 
where g = vTAx. 

;J (3.1) 

To compute the deflation, we must set g = 0. This 

leads to an error of size II gll 
2 

in the original matrix. 

Definition 

Suppose that x• is an approximate eigenvector corres­

ponding to the approximate eigenvalueµ. Define the 

residual vector to be r = Ax'-µx'. 

12 

Thus the size of r in some sense measures the accuracy 

of x' andµ. 

Theorem 3.1 

For fixed x, II ril 
2 

is a minimum when µ 

Proof 
2 

= II Ax-µxjj 2 
T = (Ax-µx) (Ax-µx) 

T 2 T T T =xxµ -2x Axµ+x A Ax. 

XTAx 
= --T-

X X 

Let f(µ) = T 2 T T T (xx)µ -(2x Ax)µ+x A Ax and set f' (µ) = 0, 

solving forµ, we get 

T 
X Ax 

µ = --T-
x X 

Since f"(µ) = 2x x>O, therefore f(µ) has the minimum value. 
2 

That is, llr112 is a minimum, hence llrll 2 is a minimum when 

xTAx 
µ = -T-

x X // 
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Theorem 3 .2 

Consider g in ( 3 .1) where II x' II 2 = 1. Then II gll 2 = 

II Ax ' - ( x ' T Ax ' ) x ' II 2 • 

Proof 

I I Ax ' - ( x ' T Ax ' ) x ' II 2 = II [ x ' , V] T [ Ax r - ( x ' T Ax ' ) x .,. ] II 2 

II [
x I T [ Ax 1 

- ( x I T Ax' ) x 1 
] ] II 

VT [ Ax ' - ( x I T Ax " ) x ' ] 
2 

II gll 2 

Since 11x1 112 = 1 by the orthogonality of [x 1 
, V] . 

Corollary 

The corollary says that the error introduced by setting 

g to zero in the deflation process is the same size as the 

smallest residual that can be obtained from the approximate 

eigenvector x 1 
• 



CHAPTER IV 

RAYLEIGH QUOTIENT ITERATION 

As mentioned at the end of Chapter I, we can refine 

the inverse power method by changing the approximate 

eigenvalueµ from one iteration to the next, where 

T q.Aq. 
1 1 µ = T 

q i qi 

14 

is the Rayleigh Quotient associated with each iteration. 

Also, we have seen in Theorem 1 in Chapter III that the 

choice ofµ as the Rayleigh Quotient is justified by the 

fact that this value minimizes the residual. Since this is 

a very nice iteration, it will be the basis of QR algorithm. 

We will discuss the convergence of it first. After this, 

we will introduce the QR algorithm and demonstrate the close 

relation between them. 

We will let the approximate eigenvector q . be scaled 
1 

so that it has norm unity, and call it x at each iteration. 

Assume the iteration is converging to an eigenvector which 

corresponds to a simple eigenvalueµ, andµ is not very close 

to the rest of the eigenvalues of A, the Rayleigh Quotient 

Iteration for matrix A is the following: 
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1. Calculateµ 
XTAx 

= --T- from the present approximate 
X X 

eigenvector x. 

2. Find the next approximate eigenvector x' by 

(µI-A)x' = ax, where a is a scaling factor. 

Let [x,V] be the ER which is defined as in Chapter III. 

T T 
Let y = [x,V] x and y' = [x,V] x then y = e 1 . Thus y and y' 

T 
are Rayleigh Quotient iterates of the matrix [x,V] A[x,V] = 

[~ ;], g = VTAx. Then (µI-[x,V]TA[x,V])y' = ay 

Since the first component of y' is not zero, we can 

choose a such that the first component of y' is unity, and 

obtain 

Let r = 

= 

= 

-1 
y = [µI-A] g 

II µ y- ( [ x , V] TA [ x , V] Y) 11 
2 

IIYII 2 

( 4 • 1) 
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This is a measure of the accuracy of y as an eigenvector of 

[x,v]TA[x,V]. Likewise, ifµ' denotes the Rayleigh Quotient 

for y', then we have 

r' = 
IIµ 'y'-( [x,V]TA[x,V] )y•ll 2 

IIY' I! 2 
( 4 • 2) 

Since y' need not have norm unity, we determine an ER, 

say P = [y 11 ,V'] such thatµ' is the Rayleigh Quotient of the 

first column of 

has norm unity. 

where 

P corresponding to [x,V]TA[x,V] and y" 

T T [11' h '] By Chapter III, P [x,V] A[x,V]P = g' A' 

We can determine Pas follows: 

Since y• = [~] from the definition of ER, let 

X = 

and 
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p = I- 1 [1;11 y' I 2] [ 1+11 y 'II 2yTJ 
IIY ' 112( 1-+il y I 112) 

I- 1 [(1+11Y'll2>
2 

(l~!f I 2> yTj = (1+~y'll2)y IIY ' 112 ( 1 + I IY I 112 ) yy 

l+IIY' 112 -T 
1 y 

= I- - --T 
IIY I 112 y _n_ 

l+IIY' II 2 

We will consider the case if g is small, then by (4.1) 

y will 

gives 

--T be small, so that we can neglect yy terms. 

IIY \ [=~ ;~' I 21] 

g' = v•t ~] y" 
= l- -y r 

1 
[µ hJ [ -1 / II Y ' II 2] 

II y I! 2 - g A -y / II y I 112 

=l-(-µy +g) (-yh/llY'l2+AI)1[-=/I IY'll2l 
II Y ' II 2 -y / II Y ' j 2J 

2 
= (µy-llY1 ll2g + yhy-llY1 ll2Ay)/IIY'll2 

2 

= (µy-µII y' I 2Y+II y 'II 2Ay+yhy-ll y I II 2Ay) /IIY I 112 
2 

= ( µy-µ11 YI! 2y+yhy) ill YI 112 

This 



Thus ~g'~1 lluy-µ~y'~ 2y+yhy~ 2/~y'II; 

~ (µ 11-11 y' II 21 ll[µI-A] -
1

112 I gll 2 + 

II h II 2 II [ µI-A] - l II ~ II g II ; ) / II Y ' II ; 

18 

2 
rherefore r'~ (µ- ll-llY'll 2 1 ll[µI-A]- 1

1!2r + llhll 2 HuI-AJ-
1

112 r
2

)/ 

(4.3) 

Since 
_ 2 1/2 

~Y'll
2 

= (l+l!y~
2

) , by Taylor's expansion we have 

That is 

Thus inequality (4.3) becomes 

r ' < ( II h II 
2 

i [ µ I - A] - l 11 ; r 2 + i II Y II ; • I[ µI-A] -
1

11 2 r) / II Y ' II ; 

= (l!hll 2 ~[µI-A]-
1

11~·r
2

)/IIY'll;+(~ ll[µI-A]-
1

11~·r
3

)/IIY'II; 

- ( II h II 2 Ir µI-A] - l 11 ; • r 
2 

) / II Y ' ii ~ 

Hence we have 

( 4. 4) 

where 



That is, the Rayleigh Quotient iteration will converge 

quadratically when it converges. If A is symmetric, then 

h=g. 
2 3 

Thus ( 4. 4) changes in to r' < ell g I 2r = c' r . This 

implies the rate of convergence will be cubic. 

19 



Theorem 5.1 

CHAPTER V 

QR DECOMPOSITION 

Let AsRnxn, then there exists an orthogonal matrix Q 

and upper triangular R, with positive diagonal elements, 

such that A= QR. 

Proof 

first column of A. If a 21 = ... 
Otherwise, let Ql be the ER such 

Al = QlA' then Al [~J this = 

= akl = Q I we can 

that Q1a 1 = -ae 1 . 

implies A= T 
QlAl 

the 

the 

let Q1 

Let 

= QlAl. 

Since A
1

sR(k-l)x(k-l), by the induction hypothesis 

20 

= I. 

A1 = 61R
1

, where 6
1 

is orthogonal and R1 is upper triangular. 

Let 

R= [~] 

(Here we can choose the sign of a such that -a is positive), 

then Q is orthogonal and R is upper triangular and 



II 

It should be noted that the proof of this theorem is 

constructive. 

If A is nonsingular, then the decomposition is unique: 

Let A= Q
1

R1 = Q
2

R
2

, where Q
1

,Q
2 

are orthogonal and R
1

,R 2 

21 

are upper triangular with positive nonzero diagonal entrices . 

By the uniqueness of the 

T choleski decomposition of A A, we have R1 = R2 and Q1 = Q2 . 

If A is singular, for example, A=~~] then we can have 

A = [~ ~ m ~] or ~ ~ m ~] as the QR decomposition of A. 

If we want to find the eigenvalues of a matrix A, con­

sider solving for the characteristic polynomial of A. There 

is no finite process through which one can solve a general 

polynomial of degree 3 5. In other words, there is no 

algorithm employing a finite number of steps that can be 

used to solve for all eigenvalues of a general matrix. 

For this reason, in general, we have to use some iter­

ative method to find all the eigenvalues of a matrix. 
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CHAPTER VI 

THE EXPLICIT QR ALGORITHM 

We will basically use the QR decomposition to define 

and develop the Q'R algorithm. This yields a sequence {Ak} 

of matrices orthogonally similar to A1 . We may expect the 

limiting matrix to be triangular or quasi-triangular. From 

now on, assume A1sRnxn and A
1 

is nonsingular. 

Algorithm 6.1 

Fork= 1, 2, ... , decompose Ak into Qk¾· Then form 

Algorithm 6.2 

Choose an "origin shift" xk. Fork= 1, 2, ... , de­

compose Ak-xkI into QkRk. Then form Ak+l = ¾Qk+xkI 

(that is ¾+l = Q~AkQk). 

We now discuss these two algorithms in detail -. 

Theorem 6.1 

Let Qk = Q1Q2 ... Qk and¾= ¾¾-l ... R1 , then 

Qk~ = (A1-~I) (A1-¾_1 I) ... (A1-x 1I). 



Proof. By induction on k. k = 1 then Q1R1 = Q1R1 = 

A1-x
1

I. Assume this result is true for k-1. Since 

(Ak+l-xkI) = T 
Qk(Al-xkI)Qk, 

T 
¾ 

= <¾+1-xkI) Qk 

-T - T = Qk(Al-xkI)QkQk 

-T - and = Qk(Ql-xkI)Qk-1 

QkRk = QkRkRk-1 

- -T - -= QkQk(Al-xkI)Qk-1~-l 

= (Al-xkI)Qk-lRk-1 

By the induction hypothesis QkRk = (A1 -xkI) (A1-xk_ 1 I) 

(Al -x 1 I) . // 

In the above theorem, if we take x 1=x
2

= ... = xk=O, 

this gives algorithm 6.1. k - -Then we have A1 = Qk¾ and 

-T -
Ak+l = QkAlQk. (That is, the orthogonal matrix Qk in ¾+l 

comes from the QR decomposition of 

= 
-(k)-(k) thus -(k) 
ql rll ' ql 

k 
Alel 
(kf· 
rll 

From Chapter III, we have 

t 
(k+l) 

all 
= (k+l) 
~ 

h(k+l)] 

A (k+l) 
1 
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where II g (k+l) 11
2 

is the minimal residual of qik) which is 

obtained by applying k steps of the power method to e 1 . 

If A
1 

has a dominant eigenvalue A
1

, then qik) approaches 

24 

an eigenvector of A
1

, so that llg(k+l)il
2

-+0. Hence the sub­

diagonal elements of the first column of Ak+l will approach 

zero linearly. Meanwhile, under some conditions, all the 

rest of the subdiagonal elements are also decreasing rela­

tively slowly at each iteration: 

Lemma 6.1 

A1 is simple if there exists a nonsingular matrix x such 

-1 
that x A1x = A, where A= diagonal [A1 , ... , An]. 

Theorem 6.2 

Let A1 be simple and satisfy (1) I Al I> I A2 j > ... > I An I ; 
(2) x-l has an LU decomposition, then the subdiagonal ele­

ments of the matrix Ak+l tend to zero. 

Proof. See [ 2] . 

From algorithm 6.2 C¾-xkI) = Qk¾' take this 

equation, invert it and transpose it, then solve for Qk. We 

will have -1 -1 -1 
(¾ -xkI) = ¾ Qk 
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Then q(k) = Qke = r (A.T-x. I)-le . That is, q(k) is 
n n nn --k .K n n 

the approximate eigenvector of A~ obtained by applying one 

step of the inverse power method toe . n 

It follows from Chapter III that we can partition~ as 

VT AV 
k 

g 
T(k) (k) 

a nn 

Then II gT (k) 11
2 

= II g (k) 11
2 

is the minimum residual of en re­

garded as an approximate eigenvector of A~ since 

Ak+l = Q~AkQk. II g (k+l) 11
2 

is the minimum residual of q
1
~k) 

regarded as an approximate eigenvector of A~. If xk is 

near an eigenvalue of A~, then q~k) will be a more accurate 

approximate eigenvector than en. Thus llg(k+l)ll
2 

is smaller 

than llg(k)ll
2

• Theregore g(k+l)+O and we will get the ap­

proximate eigenvalue a(k) corresponding to q(k) as k+ 00 • 
nn n 

Since we have discussed the very nice properties of 

Rayleigh Quotient iteration in Chapter IV, we now choose 

xk as the Rayleigh Quotient at each step to get 

x = eTATe = a(k). Hence g(k+l)+o quadratically and 
k n kn nn 

g(k+l)+O cubically if A
1 

is symmetric. 

In fact, after t iterations ( i <k), the shifts Xi+l' 

Xi+ 2 ' ... in algorithm 6.2 are very close to an eigenvalue 

An. By theorem 6.1 we get QkRk = (A1=x 1 I) 1 (A1-x 2I) 2 ... 

( A I) ( Al - ;\n I) k- t . 1-x.Q, Thus only the previous .Q, iterations 



are obtained by using the shifted algorithm on A1 , and the 

rest of the steps are achieved by applying the unshifted 

algorithm on A
1

-AnI. It follows from Theorem 6.2 that the 

shifted algorithm will not only reduce the off-diagonal 

elements in the last row to zero , but may simultaneously 

reduce the other subdiagonal elements, somewhat more 

slowly. 
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Definition 

CHAPTER VII 

HESSENBERG FORM 

A matrix A is said to be an upper Hessenberg matrix 

(AEUHM) if aij = O for i>j+l. If also ai+l'i ~O for 

i=l, ... , n-1, then we say A is unreduced (AEUUHM) 

Theorem 7.1 

nxn Any matrix AER can be transformed by ER's 

un-2'un-3' ... , 01, so that Al= un-2un-3 ... UlA 0102 ... 

Un_ 2 is an upper Hessenberg matrix (A1EUHM). 

We will not prove the Theorem. Instead, we will later 

see Example 7.1 for the practical detail. 

If any subdiagonal element of A1 vanishes, then A1 is 

said to be reduced and we can partition A1 as follows: 

H1Hl2 ... H •lm 
I 

27 

Al = H2 .... ( 7. 1) 

where H.€UUHM. 
l 

0 
.. .. ' "'H 

m 

Since A1 is similar to A, we can solve for all eigen-

values of A
1 

in order to get those of A. We control the 

computing program so that the QR algorithm acts independently 

on each H .. 
l 



Remarks. (1) If any H. in (7.1) is a lxl block, then 
l 

this element is one eigenvalue of A. (2 ) F H R
2x2 

or any is , 

we can solve for the eigenvalues by the quadratic formula. 

From now on, we shall assume the original matrix is of 

dimension greater than 2, and has been put into UUHM 

before the QR algorithm is applied. 

Example 7.1 

Let A= 
x a a a 

x a a a 

x a a a 

28 

We can choose u1 as the ER such that u1 [:] = l~i· then form 

A 

= [; I gJ 
Premultiplying A by u

1 
will change only the 2

nd
, 3

rd
, 4

th 

rows of A. This gives 

a a a a 

-a X X X 
A 1 
UlA = 0 X X X 

0 X X X 

~ "T " nd rd Post multiplying u
1

A by u1 (=U
1

) will change the 2 , 3 , 

th A 

4 columns of u
1

A and we get 
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a X X X 

-a X X X 
A A 1 u

1
A ul = 

0 y X X 

0 y X X 

Now, we can choose u2 as an ER 

[
I2 0 ] 
0 U • Again, if we premultiply and postmultiply 

2 

A A A 

3rd 
and 4

th 
u 1Au 1 by u2, only the rows and columns are 

A A A A A A 

changed from u
1

Au 1 , and we obtain Al :::;: u 2u
1

Au
1

u 2 

-
X X X X 

-a X X X = 1 e:UHM 
0 -a 2 X X 

0 0 X X 

Example 7.2 
X X X X 

X X X X 

Suppose A1 = e:UUHM 
0 X X X 

0 0 X X 

Apply QR algorithm to A
1

. First, we need to form A1 = Q~ 

h 
. . T 

tat is Q Al= R. We prefer to choose PR's 

which wll eliminate a
43

, a
32

, a
21 

separately. 

p43' p32' p21 

Let QT= 

T thus Q A
1 

= R. Then postmultiply R by Q = 

This gives A2 



= 

= 

= 

= 

X X X X 

0 

0 

X X X 

0 X X 

0 0 0 X 

X X X X 

X X X 

0 0 X 

X 

X 

0 0 0 X 

-X X X X 

X X X X 

0 X X X 

0 0 0 X 

X X X X 

X X X X 

0 X X X 

0 0 X X 

30 

E:UHM 

From this example, we observe that the QR algorithm pre­

serves the Hessenberg form at each iteration . In addition, 

the number of multiplications and additions required to go 

from Ak to 

nxn 
Al E:R , to 

3 
Ak+l is proportional ton for a full matrix 

2 
n for A

1
E:UUHM. If A

1 
is symmetric, the unre-

duced upper Hessenberg form of A
1 

will be tridiagonal and 

the number of operations required is proportional ton. 



CHAPTER VIII 

THE IMPLICIT QR ALGORITHM 

The next two algorithms are variants of algorithm 6.2. 

They are achieved without having to subtract the shifts 

from the diagonal and later restore them. 

Theorem 8 .1 

Let A
1

, A,QERnxn with Q orthogonal and A
1

EUUHM havi n g 

pos i tive subdiagonal elements. If A1 = QTA Q, then both 

A1 and Qare uniquely determined by A and the first column 

of Q. 

Proof. Let A= [q 1 , ... , qn]. We will prove this 

theorem by induction on k. Since 

QAl = AQ ( 8 . 1) 

Then for k = 1 qlall+q2a21 = A ql 

T 
T Iq a = qlA ql qlqlall+q 2 21 

T T = qTA q2qlall+q2q2a21 2 ql 

where q
2 

-1 and T = 1. = a2l(A ql -qlall) q2q2 

We can solve the above equations to get 

(8.2) 

31 
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In (8.2) q
1 

determines q
2 

up to a constant. The proper­

ties q~q
2 

= 1 and a
21 

> 0 then suffice to determine q 2 and 

a 21 uniquely. 

Assume we continue the above steps and have already com­

puted q 1 , q 2 , .•. , qk' and the first k-1 col1.1It1ns of A1 . 

th 
We want to compute the qk+l and k column of A1 . 

Formula (8.1) and A1 sUUHM imply 

( 8. 3) 

Multiply equation (8.3) by 

(i = 1, ... , k) and qk+l = 

T 
qk+l qk+l = 1. A1 must have positive subdiagonal elements, 

so that qk+l and ak+l,k can be uniquely determined. // 

In fact, ak+l,k and qk+l are determined up to a constant 

factor of absolute value unity simply by the requirement 

that ak+l,k be nonzero. It is this essential uniqueness of 

A1 and Q that we shall actually use. 

Theorem 8.1 tells us that we can determine a different 

Qk at each step in algorithm 6.2 (call it Qk) but leave the 

first column of Qk unchanged. By the uniqueness of the above 

theorem, we still can get the same Qk and Ak+l· 

In practice, the question is how to find Qk? Suppose 

we use one step of algorithm 6.2 with shift xk to get 

Ak-~I = Qk¾· Let Qk = [ql, q2, ... , qn]. 
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which is a multiple of a 1 . 

Pkal = ~a 1 ~
2

e 1 where 

Let Pk be a PR (or ER) such that 

So that the first column of P~ 

is a multiple of a , 
1 

and hence P~ has the same first column 

as Qk. 

By Theorem 7.1, we can always find orthogonal transfor­

mations U 2 ,0 1 , n- n-

U 30 2 , this is what we need. Ob­n- n-

serving the way we choose 01, • • • I 

A u n-2 in example 7.1, if 

PT 
A A 

PT we postmultiply by ul ... u n-2' the first column of 
k k 

never can be disturbed, so that Qk 
A 

and Qk have the same 

first column. 

Algorithm 8.1 

Choose an "origin shift" xk. For k=l, 2, • • • I calcu-

Let us see some details of the practical computation by 

using this algorithm: 

a a a a a 

a a a a a 

Suppose Al = 0 a a a a 

0 0 a a a 

0 0 0 a a -



a a a a a 

then T has the form PlAlPl a a a a a 

X a a a a ( 8. 4) 

0 0 a a a 

0 0 0 a a 

where P1 is the PR in (1,2)-plane. Hence P 1A1P~ is dif­

ferent from A, only on the first two rows and columns . 
.,_ 

Note that in (8.4) we have brought one nonzero element x 
A 

in the (3,1) entry of Al. Let u1 be the PR in the (2,3)-

A T 
u 1P 1A1P1 becomes plane which makes x equal to zero. Then 

a a a a a 

a a a a a 

0 a a a a ( 8. 5) 

0 0 a a a 

0 0 0 a a 

Postmultiply ( 8. 5) by u1 , the above matrix will change 

only in nd the 2 and rd 3 columns and become 

a a a a a 

a a a a a 

0 a a a a ( 8. 6) 

0 X a a a 

0 0 0 a a 

Again, we have gained a nonzero entry x in the (4.2) posi-

tion of matrix ( 816) • Thus we choose 
A 

u2 as the PR in the 

(3,4)-plane to annihilate X in matrix (8.6). Then form 

A A TA A 

Repeat the U2UlP1AlP1UlU2. same step until we obtain 
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another upper Hessenberg matrix. This means that we have 

finished one iteration. 

One should note that it is convenient to take Pk, fi1 , 
A 

... , U 2 as the PR's at each iteration because of the n-

special form of¾· 

In algorithm 8.1, we do not compute Ak+l by using xk 

explicitly. That is, we do not subtract xk and then re­

store it. This method is not cheaper than shifting ex-
A 

plicitly, since we have to compute Qk at each iteration. 
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One of the drawbacks of the algorithm 6.2 and 8.1 is that 

it may require complex origin shifts if A
1 

is not symmetric . 
. , 

We will develop an implicit double shift technique from 

algorithm 8.1, which circumvents the problem of complex 

shifts by effecting two conjugate shifts simultaneously in 

real arithmetic. When A1 is symmetric, the problem of com­

plex shifts does not ar~se. In this case, the above two 

algorithms can be used. Since A1 is a tridiagonal matrix, 

(we already assumed A1EUUHM) this only requires a small 

number of operations. 

The next algorithm is derived from the previous one, 

by applying two steps of algorithm 6.2 on A2k_ 1 (k = 1,2, ... ) 

with shifts xkl'~ 2 at each iteration. By theorem 6.1 we 

get (A2k-l-xk2I) (A2k-l-xklI) = Qk1Qk2Rk2Rkl = Qk~ and 

( 8. 7) 
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From the previous discussion, we need to determine 

an orthogonal matrix Qk which has the same first column as 

"T" A 

Qk. Form QJ\.A2k-l°'k' this gives the same Qk and A2k+l as in 

(8.7). As before, we know that the first column of QK is the 

same as that of (A2k_ 1-xk 2 I) (A2k_ 1-xk 1 I)e 1 

= 

a11-¾2a12 . all-xklal2 

a21 a22-xk2 . a21 

0 a32 0 

0 

( all-xkl) (all -xk2) +al2a21 

a21 (all-xkl)+a2l(a22-xk2) 

a2la32 

0 

a22-xkl 

a32 

0 

2 
all-(xkl+xk2)all+xklxk2+al2a21 

a2l(all-(xkl+xk2)+a22) 

a2la32 

0 

el 

( 8. 8) 

It is convenient to take these two shifts as the eigen­

values of the matrix 

[

:n-1,n-l 

n,n-1 
:n-1] 

n,n 



at each iteration, we have xk 1+xk 2 = an-l,n-l+an,n and 

x •x = a •a -a •a Substi'tute these kl k2 n-1,n-l n,n n-1,n n,n-1· 

into (8.8). We obtain 

a = 
1 

2 a (a -a a -a a +a a -a a ) 21 11 n-1,n-l 11 nn 11 n-1,n-l nn n-1,n n,n-1 

a2l+al2 

a2l(all+a22-an-l,n-l-ann) 

a2la32 

0 

There are three nonzero elements in a 1 and those involve 

only real arithmetic no matter whether the shifts are com­

plex numbers or not. 

The remainder of the steps are the same as that in 

algorithm 8.1, except that now we must use ER's: Let Uk 

Thus U~ will have the same first column as Qk. Form 

UkA2k_ 1u~ and we can find orthogonal transformations 

.•. U 3u 2 EUHM. n- n-

Qk will have the same first column as that of Qk. Now we 

summarize the above procedure as the following: 

37 



38 

Algorithm 8.2 

Implicitly doubly shifted QR algorithm. Choose two 

"ori· gi· n shi· fts" x x For k - 1 2 determi· ne kl' k2 . - ' ' ... ' 
A AT " 
Qk, then form A2k+l = QkA2k-lQk. 

Let us see how to carry out one iteration of this algo-

rithm in practice: 

a a a a a 

a a a a a 

Al = 0 a a a a then 

0 0 a a a 

0 0 0 a a 

a a a a a 

a a a a a 
T ( 8. 9) UlAlUl = X a a a a 

X X a a a 

0 0 0 a a 

A 

Choose ul as an ER such that it annihilates the ( 3. 1) and 

( 4. 1) positions in (8.9). " 
ul has the form: 

1 0 0 0 0 

0 u u u 0 

0 u u u 0 

0 u u u 0 

0 0 0 0 1 



Form u1u1A1ui will change the 2
nd

, 3rd and 4 th rows of the 

matrix in (8.9) and give 

a a a a a 

a a a a a 

0 a a a a ( 8. 10) 

0 X a a a 

0 0 0 a a 
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Postmultiplying matrix in (8.10) by " ul will change the 2
nd

1 

rd th 
3 and 4 columns of it and leave the first column un-

changed, thus " T" 
UlUlAlulul is 

a a a a a 

a a a a a 

0 a a a a (8.11) 

0 X a a a 

0 X X a a 

Compare ( 8. 9) and (8.11) in both matrices, we have obtained 

three nonzero elements in the original Hessenberg matrix, 

" but in different positions. Now we can choose u 2 as an ER 

which annihilates the (4,2) and (5,2) entries in (8.11) which 

has the form 

1 0 0 0 0 

0 1 0 0 0 

0 0 u u u 

0 0 u u u 

0 0 u u u -
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Then compute u201u1A1u~0102 , this gives 

a a a a a 

a a a a a 

0 a a a a 

0 0 a a a 

0 0 X a a 

For the last step, we can choose a PR instead of an ER 

since we only need to make (5,3) entry equal to zero. 

" A T A "' We choose P45 and form P45 u2u1u1A1u1u1u2P 45 UHM, thus 

we have finished one iteration of this algorithm on A1 . 

In using this algorithm, we paid for calculating a 1 

on each step. In addition, the multiplication of reducing 

UkA2k_ 1u~ to A2k+lsUH.M is - n
2

. If we can use real numbers 

as the shifts, and we shift twice separately by using algo-

2 
rithm 6.2, the cost from A2k-l to A2k+lsUHM is also - n. 

Of course, nothing is saved by this technique if A1 is 

symmetric. 

Parlett (2] has shown that if the shifts are not the 

eigenvalues and if A2k-l has nonzero subdiagonal elements, 

then so does A2k+l" This tells us that the recursion will 

not end prematurely. In fact, when we do the practical com­

putation, we will get a "sufficiently small" subdiagonal 

element, say aj+l,j" If j = n-1 or n-2, then we have ob­

tained one or two eigenvalues. Thus our program will do 

the deflation and apply the algorithm to the matrix in 

R(n-l)x(n-l) or R(n- 2 )x(n- 2 ) automatically. If j ~ n-3 
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the program should continue the algorithm on the lowest sub­

matrix. 
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CHAPTER IX 

SINGULAR AND INVARIANT MATRICES 

Singular Matrices 

If A1 sUUHM and is singular, then the QR decomposition 

of A1 is not uniquely determined. However, we still can 

apply the QR algor i thm to it as we will see in the following: 

Since A1 = QR, then 

i 
ak = E qkrk. i = 1, ... , n-1, and 

k=l l 

Ir.· I 11 

i-1 
= IJa.-I: qkrk·II /IJq . 11 

l k=l l 2 l 2 

i-1 
= II a. -I qkrk . II 

l k=l l 2 

Since A1 sUUHM and the first n-1 columns of A1 are linearly 

independent, therefore r .. to i=l, ... , n-1. This gives us 
11 

that r =O ( ·: Al is singular). nn 

To get A2 = RQ we have a = r qn,n-1 = 0 and n,n-1 n,n 

a = r q = 0. n,n n,n n,n This tells us that after one trans for-

mation, a zero eigenvalue is revealed if A1 is singular. 

Thus the singular matrix case is a very fortunate case. 

If we do the shifted algorithms on A, then A1 = A-x 1I 

is singular if the shift x 1 is an eigenvalue of A. In fact, 
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for both explicitly and implicitly shifted algorithms, we 

also can obtain an eigenvalue x 1 after one iteration. This 

means we made a very good guess. 

Invariant Matrices 

In this section, we will describe all matrices which 

are invariant under the QR algorithm. First, we just state 

without proof some definitions and theorems from linear 

algebra which are important prerequisites for the upcoming 

material. The interested reader can refer to [4] for the 

details. 

Definition 9.1 

A matrix A is nonderogatory if the minimal polynomial 

equals the characteristic polynomial. otherwise, A is 

said to be derogatory. 

Theorem 9.1 

Every matrix A (over the complex numbers) is similar 

to a matrix Jin Jordan canonical form. 

Theorem 9.2 

A matrix A is nonderogatory if the distinct Jordan 

blocks of its Jordan canonical form correspond . to 

distinct eigenvalues. 



Theorem 9.3 

An nxn matrix A is nonderogatory if for every complex 

number A, the matrix A-AI has rank at least n-1. 

Theorem 9.4 (Cayley-Hamilton) 

Let P be the characteristic polynomial of A, then 

P(A) = 0 

Jl 0 Q:r - - - Q. - ir 
J2 

I I 
Let J = Q' = I Q22 I ( *) 

' I ' ' ''\, I 

' 0 'J Qri- Q' r - - .rr 
nxn - nxn 

where J. (i=l, .•. , r) are the Jordan blocks of J and 
l 

A. =I A, 
l J 

Lemma 1 

If JQ' = Q'J, then Q' is block diagonal; that is, 

0 11 0 

Q' 
0 22 = ' ' .. 

0 'Qrr 

Lemma 2 

If J.Q .. = Q . . J. then Q .. is upper triangular, and 
l ll ll l ll 

Q. . has the form 
l.l. 

a. b. - - -m . 
.l. .l. l 

' ' I 

0 

' '- I 
' " I 

' '~. 
' l 
' a. 

l 
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Theorem 9.5 

Q' and Jn have the same block diagonal form if JQ' = 

Q'J. 

The main theorem of this section is the following: 

Theorem 9.6 

nxn 
Let A

1
sUUHM, and A

1
sR , then A

1 
is invariant under 
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the unshifted QR algorithm if A1 is a scalar multiple of an 

orthogonal matrix. 

Proof (~ ). As A
1

s UUHM, uhen A
1 

is nonderogatory. Sup­

pose A1 is invariant under the unshifted QR algorithm, that 

is Al= QR and A2 = RQ = Al. Thus 

Let P be the characteristic polynomial of A1 , and let J 

be the Jordan canonical form of A1 (there exists a non­

-1 singular matrix S such that S A1S = J). By the Cayley-

Hamilton theorem, P(A 1 ) = P(J) = 0, where P(J) = anJn + 

+ a 1J+a
0

I = 0. Then 

(9.2) 

Since A1 = SJS- 1 , we can change (9.1) into 

JQ' = Q'J (9.3) 

where Q' = s- 1Qs. 



It follows from theorem 9.5 and formula (9.2) that 

A' = a' Jn-l+a' Jn-2+ 'J+ 'I 
n-1 n-2 ··· +al ao · We can change Q' 

back to Q to get 

This tells us that Q is a polynomial in A1 of degree less 

than or equal to n-1. But Q = AR-l implies that QEUUHM, 

hence we have 

Q = a'A +a'I 
1 1 0 

( 9 • 4) 

-1 
Since A1 =QR= (a 1A1+a~I) •R, th i s gives r 11 a 11 = 

aia 11 +a~ and r~ia 21 = aia 21 . Solve for ai and a~, we have 

ai = rii· Therefore formula (9.4) becomes 

( +-) 
-1 -1 If a A1 is orthogonal, then let Q = a A1 . 
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Thus A1 = aQ and then R = aI, this implies A1 is invariant. 

II 

For the shifted QR algorithm, we have the similar 

result (see [5]): 

11A1 is invariant under the doubly shifted QR algo­

rithms if Ai-crA 1+pI is a multiple of an orthogonal matrix. 

Where a and pare parameters depending only on the choice 

of origin shifts." 

If a matrix is invariant under the QR algorithm, some 

special treatments must be used (see [3]). 
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CHAPTER X 

AN APPLICATION OF THE QR ALGORITHM 

Stiff Differential Equations 

For any single differential equation 

y' = 11.y+b (10.1.1) 

we say this is a stiff differential equation [6], if 

Re(A) <0 and large in absolute value. We can solve (10.1.1) 

At. 
explicitly, and obtain the exact solution y = ce +¢(t), 

where cp(t) is a particular solution to the nonhomogeneous 

case. It can be shown that the exact solution will have a 

constant term and another term which decays rapidly if the 

differential equation is stiff. Therefore, if we solve a 

stiff differential equation, we may expect the numerical 

solutions approach the constant solution after a very short 

time period. So that we can use specia+ methods which 

allow us to take a bigger stepsize in the computer program, 

in order to minimize the numerical work and save the comput­

ing time. 

For the nonlinear single differential equation 

y' = f(y) (10.1.2) 
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Suppose f is twice continuously differentiable, by a Taylor 

series expansion about y
0

, we obtain y' = f(y
0

)+f' (y 1 ) 

2 
(y-y )+f"(~) (y-y) /2. If y is close to y

0
, then 

0 0 -

y' = ~y+b (10.1.3) 

By the well-posedness property, the numerical solutions 

of (10.1.3) are close to those in (10.1.2). Hence we can 

consider the linearized case instead of the original non­

linear case, and have the same discussion as before. 

Determining Stiffness of a System of 

Differential Equations 

In general, we want to extend the previous discussion 

to a system of differential equations. Suppose we have a 

system of n linear differential equations, it is convenient 

to write the system in the matrix form: 

Y' = AY+B (10.2.1) 

If we use numerical methods for solving this system, we 

would like to know whether or not this is a stiff system, 

so that we will know whether we must use some special 

methods which have been developed for stiff systems. In 

the following, we will see that this can be done by examining 

the eigenvalues of matrix A: 
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Assume A is simple (otherwise, we can perturb it 

slightly to make it simple), then there exists a nonsingular 

matrix T and a diagonal matrix D such that A= TDT- 1 , 

where D = diagonal[A 1 ,A 2 , ... , An]. Now, we can change the 

variables in (10.2.1) by multiplying both sides on the 

-1 -1 -1 -1 
equation by T to get T Y' = T AY+T B. Equation (10.2.1) 

would become Y' = DY+B where Y' = T-ly, and B = T- 1B. 

This can also be written as: 

y~ = A.y.+B. 
l l l l 

i = 1, ... , n (10.2.2) 

Hence the new refined form (10.2.2) has been reduced ton 

separate single linear differential equations, and each A. 
l 

is an eigenvalue of A. If there exists one or more eigen-

values of A having negative real parts and some of them are 

relatively large in absolute values, then (10.2.2) is a 

stiff system. 

For the system of nonlinear differential equations 

i = 1, ... , n (10.2.3) 

suppose£ . is twice continuously differentiable. We can 
l 

linearize (10.2.3) at x
0

,y
0

) and get 

where b. 
l. 

y~ 
l 

n of. 
= " __ l +b 

L... '"I y. . 
. loy . J l. 
J= J 

i = 1,2, • • • I n 
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Changing the linearized system into the matrix form, we ob­

tain Y' = JY+B and J is the Jacobian matrix of f!s. 
]. 

That is 

J = 

elf elf 
n n ••.••••••• -a -

elY1 Yn 
nxn 

We can use difference equations to get the derivatives in 

J by using 

elf . 
~- [f]..(x,yl, ... , y.+o, ... , y )-f . (x,yl, 
oy . J n l. 

J 

y.-o, ... , y )J/20 
J n 

Now we can apply the QR algorithm on J, and examine the 

eigenvalues of J. 
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