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ABSTRACT 

Sheaf Theory as a Foundation for Heterogeneous Data Fusion 

by 

Seyed M-H Mansourbeigi, Doctor of Philosophy 

Utah State University, 2018 

 

 

Major Professor: Heng-Da Cheng, Ph.D. 

Department: Computer Science 

 

This dissertation proposes an effective geometric and topological approach in 

computational science for the study, analysis, and fusion of temporal and spatial 

heterogeneous data obtained from multiple sources, where the schema, availability and 

quality vary.  

The approach provides tools for translating heterogeneous data into common 

language to enable data fusion. The utilization of this methodology studies the behavior of 

the system based on the failure in data exchange, detection of noise in the system and 

recognition of the redundant or complimentary sensors. 

This method consists of objects, namely simplices that are attached to make a 

simplicial complex. Data sources are represented by the 0-dimensional simplices and 

interactions among two and more sensors are represented by higher dimensional simplices. 

Analysis of data, encoding and translating heterogeneous data into common language, is 

modeled by stalks. The fusion of data extracted from multiple sensors is modeled by a 

sheaf. 
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Homology groups help the interpretation of the behavior of the system based on its 

potentiality to exchange data. This interpretation helps to detect possible voids in data 

exchange. 

Applications of the constructed methodology are brought into practice via two case 

studies: one from wildfire threat monitoring and the other from the air traffic monitoring. 

A comparison between the sheaf theory methodology and the alternative methods 

is described to present another proof for the validity of the sheaf theory method. It is seen 

that the sheaf theory method has less computational complexity in both space and time.  

 

(117 pages) 
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PUBLIC ABSTRACT 

Sheaf Theory as a Foundation for Heterogeneous Data Fusion 

Seyed M-H Mansourbeigi 

A major impediment to scientific progress in many fields is the inability to make 

sense of the huge amounts of data that have been collected via experiment or computer 

simulation. This dissertation provides tools to visualize, represent, and analyze the 

collection of sensors and data all at once in a single combinatorial geometric object. 

Encoding and translating heterogeneous data into common language are modeled by 

supporting objects. In this methodology, the behavior of the system based on the detection 

of noise in the system, possible failure in data exchange and recognition of the redundant 

or complimentary sensors are studied via some related geometric objects. 

 Applications of the constructed methodology are described by two case studies: one 

from wildfire threat monitoring and the other from air traffic monitoring. Both cases are 

distributed (spatial and temporal) information systems. The systems deal with temporal and 

spatial fusion of heterogeneous data obtained from multiple sources, where the schema, 

availability and quality vary. The behavior of both systems is explained thoroughly in terms 

of the detection of the failure in the systems and the recognition of the redundant and 

complimentary sensors.  

  A comparison between the methodology in this dissertation and the alternative 

methods is described to further verify the validity of the sheaf theory method. It is seen that 

the method has less computational complexity in both space and time.  
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 CHAPTER 1 

INTRODUCTION 

1.1 The Motivation: "swimming in sensors and drowning in data" 

Data integration is the combination of technical processes to combine data from 

multiple sources into meaningful and valuable information. In this dissertation, the 

meaning of "shape" is construed as the way to think about data, with the shape of data 

being what carries the meaning. The objective of this dissertation is to study the shape of 

data. The combination of algebraic topology and sheaf theory is necessary in a quantitative 

study of "shape." The concept of topology is based on the fact that data has shape and the 

shape matters. 

The framework for heterogeneous data integration should accurately represent the 

locally valid datasets in which the data types vary. It should also provide a common 

canonical language for heterogeneous datasets and multiple source interactions. There are 

classes of methods that study the characteristic of diversity in data types. For example, the 

Bayesian method is based on the data obtained from a probability distribution of specific 

parameter values [1]. In statistical methods for topological data analysis, it is assumed that 

a sample of data is drawn randomly from some distribution [2]. However, these methods 

tend to rely on the homogeneity of information sources to obtain strong theoretical results. 

Sheaf theory extends the reach of these methods by explaining that the most robust aspects 

of networks tend to be topological in nature. The theory provides the means for detecting 

topological features and, therefore, identifies relationships between information sources 

that present hazards to Bayesian reasoning [3]. Moreover, in many situations data often 

have a specific shape that escapes the reach of methods to provide required information.  



2 
 

The sheaf theory extends the robustness aspects of heterogeneous data integration 

by reasoning about the topological nature of data and rigorously extracts features of interest 

from heterogeneous data resources.  

Another major issue in the operation and maintenance of sensor collections with 

various types is their high cost. The sheaf theory approach that is utilized in this dissertation 

can detect easily which type and what number of sensors are redundant and which sensors 

can be decommissioned in order to reduce the cost of operation and maintenance.    

               

1.2  The Method 

Geometry and topology are natural tools for analyzing massive amounts of data. 

The connection between topology and large amounts of data offers huge opportunities, as 

well as challenges, to big data communities. A survey on bringing together state-of-the-art 

research results on geometrical and topological methods for big data is shown in [4].  

This dissertation presents a conceptual technique that addresses the problem of 

modeling and reasoning about temporal and spatial fusion of heterogeneous data from 

multiple sources, in which the schema, availability, quantity, and quality vary. The main 

idea is to present more predictive methods to study heterogeneous data using the 

topological data analysis approach.  

Topological data analysis (TDA) is a collection of powerful tools that can quantify 

the shape and structure in data in order to answer questions from the data domain. It is done 

by representing some aspects of data in a simplified topological structure. An investigation 
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towards a representation of some aspects of the shape of data in a simplified form for study 

is shown in [5].  

In this dissertation, the topological data analysis techniques are borrowed from 

algebraic topology and algebraic geometry. The topology approach reflects interactions 

among data sources, and the sheaf theoretic approach reflects integration of heterogeneous 

data types. Sheaf theory is a new tool for topological data analysis to track data. It is a way 

of attaching data to a topological space to manage heterogeneous data with various quality, 

quantity, schema, and availability. A sheaf may be regarded as a system of observations on 

a topological space, in which consistent local observations (sections) can be uniquely 

pasted together to provide a global observation (section). 

 

1.3 Why Topological Approach 

The topology and sheaf theory approach is a solid, powerful theoretical foundation 

to the analysis of datasets that are complex, high-dimensional, heterogeneous, incomplete, 

and noisy. Extracting such information is in general challenging. To explain how extracting 

information from datasets is related to the concept of "shape," the following examples are 

provided. More examples can be found in [6] and [7]. 

Data have the shape of a line as shown in Figure 1.1. In this example a straight line 

fits the given data quite well (linear regression). The figure illustrates how some variables 

are related to other variables (prediction). It gives the qualitative information that 

the weight-variable varies directly with the length-variable, and it helps to predict one of 
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the variables with reasonable accuracy if the value of the other variable is known. The idea 

is that the shape of data as a line allows the user to extract useful information from it.  

 

Figure 1.1. Reference data on the length (in centimeters) and weight (in grams) for Atlantic 

Ocean rockfish of several sizes (regression line) [8]. 

 

Data do not always cooperate and fit along a line. Consider the following example. The 

shape of data in Figure 1.2 is like the capital letter “Y.”  

 

 

Figure 1.2. Scientific datasets are becoming more dynamic, requiring new mathematical 

techniques on par with the invention of calculus [9].  
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The problem is that there are an infinite variety of different possible shapes, a large 

number of which occur in real datasets. There are analytic ways to deal with these shapes 

of data. Data may be cut into pieces and each cluster can be dealt with separately. Figure 

1.3 shows clusters of data. 

 

 

Figure 1.3. In the point set cluster the k-median objective (left) minimizes the sum of 

distances from points to their representative data points. The k-means objective (right) 

minimizes the average of the squared Euclidean distances of all points within a cluster [10].  

 

  At certain times, data must be dealt with as a whole. The idea is to produce 

representations of data and to show all data at once. What happens when data representation 

is neither linear nor cluster? It can have any shape. As an example in magnetic 

configurations for a toroidal plasma confinement system, the plasmas are confined by a 

magnetic field. An equilibrium between the plasma pressure and the magnetic forces creates 

the configuration shown in Figure 1.4. 
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Figure 1.4. Schematics of magnetically confined plasmas in (a) tokamaks; and (b) 

stellarator configurations. In the tokamak, the rotational transform of a helical magnetic 

field is formed by a toroidal field generated by external coils together with a poloidal field 

generated by the plasma current. In the stellarator, the twisting field is produced entirely 

by external non-axisymmetric coils [11]. 

 

Sometimes data are more complex. See Figures 1.5 and 1.6 as examples of complex 

data.     

 

 

 

Figure 1.5. In patient and genotype networks each node represents a single or a group of 

patients with the significant similarity based on their clinical features. The edge connected 

with nodes indicates the nodes have shared patients. The red color represents the 

enrichment for patients with females, and blue color represents the enrichment for males 

[12]. 
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Figure 1.6. The geometric realization of a dataset by a simplicial complex. The blue balls 

are of a fixed scale-parameter (radius r). Two points are connected if they are within r of 

each other. Connections between more than two points create higher dimensional simplices 

[13]. 

 

Methods are required to deal with complex data to visualize and describe a high-

dimensional data shape. The above examples support the idea that data have shape and that 

shape matters. More examples of the applications of topological methods to study complex 

high-dimensional datasets by extracting shapes (patterns) and obtaining insights about 

them are shown in the list of references [14] and [15]. 

 

1.4 In What Cases is the Topological Approach Better? 

1.4.1 Simplicial Complex Model vs. Graph Theory  

The conventional method of handling data and describing a dataset is to build a 

graph in which the vertex set is the collection of points in data space, and each point is 

possibly a collection of data. Two vertices are connected by an edge. In fact, a 
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combinatorial theory of interactions between at most two datasets can be constructed using 

only graph theory (an example is the graph-based data fusion in [16]). 

What is the problem with a graph model? There are cases involving data sources 

that encompass more than two interactions. To deal with these cases, one must apply 

combinatorial topology, a higher-dimensional version of graph theory. One approach will 

be a combinatorial model in which all possible interactions between multiple sources are 

captured using topological notions. In fact simplicial complexes are possible 

generalizations of graph-theoretic modeling, as shown in Figure 1.6. 

There are methods to construct a simplicial complex from a graph. According to 

[17], topological framework enables the multifaceted approach. An application of algebraic 

topology and simplicial complex modeling for characterizing interactions between 

multiple sources obtained from opinion space of a group of individuals can be found in 

[18].  

The cluster analysis method works with a set of subjects as statistical data units 

described by a set of homogeneous (of the same type) variables. The technique concerns 

exploratory multivariate data analysis for finding a clustering structure on a dataset [19].  

The key idea is to represent all possible data at some time as a single, static, combinatorial 

geometric object, called a simplicial complex. It is done by providing methods which 

produce combinatorial representations of the data. There are many sources of high-

dimensional data that are inherently structured, but the structure is difficult to 

conceptualize. In this dissertation, the motivation is to organize, associate, and connect 

multidimensional data to qualitatively understand the global content. 
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1.4.2 Advantages of the Sheaf Theory Approach 

When the type and the number of sensors increase, there is a need to develop 

systems to establish situational awareness of events based on multiple real-time 

information feeds. A sensor is an instrument that generates a quantified signal to a generic 

information process and returns a stream of observations, either direct measurements, 

derived measurements, or the output of an analytic process [20].   

When translation of heterogeneous data into common language is required, data 

fusion techniques are extensively employed in multi-sensor environments with the aim of 

fusing and aggregating data obtained from different sensors. Modeling consistency 

between observations and encoding the interactions among heterogeneous information 

sources to integrate data requires a stronger tool. In this situation, the sheaf theory approach 

is the viable solution. A review of data fusion techniques may be found in [21], [22] and 

[23]. In short, sheaves are used to analyze dissimilar data types. 

 

1.5 Advantages of the Alternative Approach  

When an event is reported by single-type smart sensors, the alternative approach 

potentially gives a shorter solution. In this case, the measurements of the event detected by 

multiple sensors are homogeneous; as a consequence, the event is reported based on the 

measurement that is compared with a threshold. The alternative approach is better when 

there are no heterogeneous data and no complex problems. 
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1.6 Prior Work History 

The sheaf theory was developed in mathematics to study the relationships between 

local and global phenomena, and has been applied in algebraic geometry, differential 

geometry, analysis, and even logic. A broad class of presheaf models was proposed for a 

general calculus by Cattani and Winskel [24]. They studied presheaf models for concurrent 

computation. Application of sheaf theory in computer science has a long historical track. 

The basic technique towards the adoption of a topological view of data structures was 

applied to the derivation of pattern matching algorithm [25]. They applied the sheaf theory 

to characterize the extension of the occurrence relation. As a foundation for the behavior 

of concurrent processes Ehrich, Goguen and Sernadas [26] applied the sheaf model.  

Goguen [27] utilized concepts from the category theory and modeled objects by sheaves. 

The motivation in this dissertation is inspired by recent applications of sheaf theory in 

computer science and software engineering. These applications can be found in [28] for 

distributed systems and in [29] for understanding the behaviors of the networks. In this 

dissertation, sheaves are representations for the behavior of the sensors. Moreover the data 

structure is represented by the simplicial complex topological model. 

 

1.7 The Research Contribution in this Dissertation 

  The research for this dissertation yields an explanation of the topological data 

analysis modeling technique together with an illustration of data integration from multiple 

sources that differ in terms of their schemas, granularity, and quality. For instance, an 

example of a wildfire detection application that gathers heterogeneous data from a 
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designated area is explained. In it, the area is covered by different types of sensors for 

measuring temperature, intensity, fire size, and smoke. The sensors are online or offline at 

different times and locations dynamically or are permanently disabled in some cases. This 

modeling technique is used to capture essential characteristics of the wildfire application 

and to answer questions such as:  

a) Do the sensors provide sufficient information to track a real fire, even when some of the 

sensors may go offline? 

b) Which types of sensors are redundant or complimentary?  

c) Is there any failure in data exchange in the spatial or temporal dimension?  

  Both approaches are used to answer the questions. Basically, the two approaches 

(algebraic topology and algebraic geometry) include creations of the data structures and 

algorithms for computation of homology and sheaf cohomology. Homology interprets the 

temporal and spatial shape of data interaction and cohomology interprets the data analysis. 

The road map for the two approaches is shown in Figure 1.7. 

 

Figure 1.7. Road map towards the creation of the modeling: From set theory to topology, 

homology and sheaf cohomology. 
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1.8 Outline 

This dissertation is organized as follows based on the main contribution of the research: 

Chapters 1, and 2 introduce the topological approach to identify and study the system 

through the shape of data and data sources. 

Chapter 3 describes the mathematical foundation by presenting the required definitions to 

bring the information of the system into a mathematical language. The validity of the 

method is verified by the main theorem that brings about a necessary and sufficient 

condition for a sensor to be significant.   

Chapter 4 is dedicated to the applications of the methodology that has been constructed in 

the previous chapters to the two case studies: wildfire and air-traffic monitoring. 

Chapter 5 presents the comparison between the sheaf theory methodology and the 

alternative methods. 

Chapter 6 studies the case in the presence of noise in the system that results in the 

sheafification of the system to be disturbed. 

Chapter 7 proposes opportunities for future work. 
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 CHAPTER 2 

SIMPLICIAL COMPLEXES, HOMOLOGY AND DISCRETIZING DATA 

This chapter defines the concept of simplicial complex and continues with a 

comprehensive explanation of the constructions of simplicial complex modeling for data 

analysis.  The topological approach modeling is applied to reflect interactions among data 

sources. Essentially, it includes creation of the data structures and algorithms for 

computation of homology in temporal and spatial shape of data interaction. 

 

2.1 Simplicial Complex 

The following definitions are extracted from [30] and [31]. 

Definition 2.1 A set of n points in Euclidean space (ℝk) is geometrically independent if the 

points do not belong to any (n-2)-dimensional hyperplane. 

Definition 2.2 An n-simplex is the closed polytope convex hull of (n+1) geometrically 

independent ordered set of points. An n-dimensional simplex is denoted by Sn. A 0-simplex 

S0 is a vertex, a 1-simplex S1 is an edge, a 2-simplex S2 is a triangle, and so forth. A d-

simplex Sd is a proper face of a t-simplex St if d < t and each vertex of Sd is a vertex of St. 

Consequently St is called a proper coface of Sd. For simplicity the n-simplex Sn with (n+1) 

vertex points {a0, a1, a2 ,...., an}is denoted by Sn = a0 a1 a2....an . It is shown in Figure 2.1. 
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Figure 2.1. A 3-simplex as the polytope convex hull of three geometrically independent 

points a0, a1, a2 .The simplices are represented by their vertices. 

 

Definition 2.3 A simplicial complex K is a set of simplices satisfying the following 

conditions: 

1- Any face of a simplex in K also belongs to K. 

2- The intersection of any two simplices in K is either empty or is another simplex. 

The dimension of a simplicial complex is the maximum of the dimensions of its simplices. 

See Figure 2.2. 

 

 

Figure 2.2. Simplices of dimensions zero, one and two (top). A simplicial complex of 

dimension two (left) and a collection of simplices (right) which do not comprise a 

simplicial complex [32].  
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Definition 2.4 For the two simplices Sq and Sq+1
, with dim Sq+1

 = dim Sq
 +1, the incidence 

number which is denoted by [Sq+1:Sq] is defined to be 0 (if Sq
 is not a face of Sq+1) and (-

1)n (if by deleting the nth vertex of the simplex Sq+1, the simplex Sq is obtained). In short if 

b = Sq+1 and a = Sq, 

 

 

 

(1) 

 

 

   

For example if S = a0 a1a2 and T = a1a5 and U = a1a2 then: 

[S : T] = [a0 a1a2: a1a5] = 0  and [S : U] = [a0 a1a2: a1a2] = (-1)0 =1. Similarly [a0 a1a2: a0 

a2 ] = (-1)1 = -1.  

As shown in the next two subsections, simplicial complexes inherit extra algebraic 

structures. The structures will be important in the data analysis in the coming chapters. 

2.1.1 Simplicial Complex as a Poset 

A relation, "<=", is a partial order on a set S if it has reflexive property (a <= a for 

all a in S), antisymmetric property (a <= b and b <= a implies a = b), and transitive property 

(a <= b and b <= c implies  a <= c). 

A partially ordered set (a poset) is a set together with a partial order on it. A 

simplicial complex carries a poset structure, in which the elements of the poset are 

simplices and the partial order is obtained by the face/coface relationship. This relationship 

is denoted by <.   If S is a face of C then write S < C. See Figure 2.3. 
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Figure 2.3. A 2-dimensional simplicial complex (left). The poset representation of the 

simplicial complex (right). 

 

A topology (Alexandroff topology [33]) is associated with the poset of faces in the 

simplicial complex K. The open sets in this topology are defined by the upper sets in the 

following way: 

In the simplicial complex K, a subset U  K is open if and only if it satisfies the 

following condition: 

For the two simplices S and C in K, if S ∈ U and S < C then C ∈ U. See Figure 2.4. 

 

Figure 2.4. The upper set U represents an open set in the Alexandroff topology for the 

simplicial  complex. 

 



17 
 

2.1.2 Constructing a Simplicial Complex from a Topological Space 

Pavel Alexandroff [33] introduced the construction of a simplicial complex from 

the open covering of a topological space. All topological spaces in this dissertation are 

considered to be compact (they have finite open covers).  

 

2.1.3 Alexandroff’s Definition 

Suppose Ϭ = {Ui ; i ∈ I } is an open cover of the topological space X. The nerve 

complex N(Ϭ) of this open cover is constructed as follows:  

The vertices (0-simplices) are the elements of the open cover. The intersection of 

the n-number of elements of the open cover represents a (n-1)-dimensional simplex (if 

nonempty), see Figure 2.5. 

 

 

Figure 2.5. A cover Ϭ = {a, b, c, d, e, f} of 6 sets with labels for each cover set (left) and 

its nerve complex (right) [34] . 
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The nerve complex is an appropriate approach for the construction of a simplicial 

complex from a dataset. In fact the topological space and its associated nerve complex have 

the same “shape.” More precisely: 

Theorem 2.1 [30] (Corollary 4G.3) If Ϭ is an open cover of a compact topological space X 

such that every nonempty intersection of finitely many sets in Ϭ is contractible (contains 

no voids), then X is homotopy equivalent to the nerve N(Ϭ). 

Throughout this dissertation, all simplicial complexes are considered to be finite 

(have finite number of simplices). 

 

2.2 Simplicial Homology  

The definitions and the theorems in this subsection are taken from [31] and [30]. 

Furthermore, all simplicial complexes are oriented (i.e., an order is assigned to their vertex 

sets). 

Definition 2.5 For the oriented simplicial complex K and for a non-negative integer n, the 

n-chain real vector space Cn(K) is defined to be the formal sum of the n-simplices in K 

with coefficients in ℝ. For simplicity when the simplicial complex K is fixed, the notation 

Cn is applied. 

Remark 2.1 In a simplicial complex the n-chain vector space Cn is isomorphic to the direct 

sum of the copies of ℝ over the set of all n dimensional simplices. 

Definition 2.6 For each non-negative integer n, the linear boundary operator  
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𝐶𝑛+1

𝑑𝑛+1
→   𝐶𝑛  

 

(2) 

is defined on an element by 

 

 
 𝑑𝑛+1(𝑏) = ∑[𝑏: 𝑎]𝑎

𝑎<𝑏

;     𝑏 ∈  𝐶𝑛+1 
 

(3) 

   

and is extended linearly to the entire space Cn+1. 

Theorem 2.2 For each non-negative integer n, the composition of two consecutive 

operators is trivial (i.e. dn o dn+1 = 0) . Therefore, the following chain complex is 

constructed:  

 
𝐶𝑛+1

𝑑𝑛+1
→   𝐶𝑛  

𝑑𝑛
→  𝐶𝑛−1

𝑑𝑛−1
→  ……… 

𝑑2
→ 𝐶1  

𝑑1
→ 𝐶0

𝑑0
→  0 

 

 

(4) 

 

From the above-referenced theorem the subgroup relation 𝐼𝑚𝑔 𝑑𝑛+1   𝐾𝑒𝑟 𝑑𝑛 is 

concluded and therefore, an equivalent relation is defined as follows. Any real vector space 

is an abelian group. 

Definition 2.7 Two elements c1 and c2 ∈ 𝐾𝑒𝑟 𝑑𝑛 are homologous if and only if c1 - c2 ∈ 

𝐼𝑚𝑔 𝑑𝑛+1.  

It can be seen that the homologous relation is an equivalent relation. The equivalent 

classes make a group (homology group of the simplicial complex).  

Definition 2.8 The formula for computation of the p-dimensional homology group is as 

follows: 
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 𝐻𝑝 = 

𝐾𝑒𝑟 𝑑𝑝 

𝐼𝑚𝑔 𝑑𝑝+1
 

 

(5) 

 

Remark 2.2 The interpretation of the p-dimensional homology group 𝐻𝑝   is as follows:  

1 - 𝐻0 represents the number of connected components. If the simplicial complex has n 

combinatorial connected components, then the 0-homology group 𝐻0 is the direct sum of 

n-copies of ℝ.  

2 - 𝐻1  represents the number of the one dimensional holes. 

3 - 𝐻𝑛 (n >1)  represents number of the voids (n-dimensional holes).     

The application of this interpretation for the coverage and hole-detection in sensor 

networks is shown in [35], [36], and [37]. 

The following two examples demonstrate the computation and interpretation of the 

homology groups, Figure 2.6.      

 

 

Figure 2.6. The simplicial complexes K1 with two components and one hole (left) and K2 

with one component and no holes (right). 
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Computation of homology groups for the simplicial complex K1 with orientation AB, AC 

and BC: 

𝐶0 = The ℝ-vector space generated by the 0-simplices A, B, C, D as the basis elements 

     = {a1 A + a2 B + a3 C + a4 D : ai ∈  ℝ} ≅ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ 

𝐶1 = The ℝ-vector space generated by the 1-simplices AB, AC, BC as basis elements 

     = {b1 AB + b2 AC + b3 BC: bi ∈ ℝ} ≅ ℝ ⨁ ℝ ⨁ ℝ  

𝑑0 ∶  𝐶0  →  0 

𝑑0 (a1 A + a2 B + a3C + a4 D) = a1 𝑑0A + a2 𝑑0B + a3 𝑑0C + a4 𝑑0D = 0  

(since the boundary of a vertex is zero). Consequently 𝐾𝑒𝑟 𝑑0 =  𝐶0 =  ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ. 

𝑑1 ∶  𝐶1  → 𝐶0 

𝑑1 (b1 AB + b2 AC + b3 BC) = b1 𝑑1AB + b2 𝑑1AC + b3 𝑑1BC = b1 (B-A) + b2 (C-A) + b3 

(C-B)  

= (-b1 – b2) A + (b1 – b3 ) B + (b2 + b3 ) C. 

To compute  𝐼𝑚𝑔 𝑑1, consider the following equation: 

(-b1 – b2) A + (b1 – b3 ) B + (b2 + b3 ) C = a1 A + a2 B + a3 C + a4 D. 

Compare the coefficients to obtain:  

-b1 - b2 = a1 ; b1 - b3  = a2 ;  b2 + b3 = a3   and  a4 = 0. 
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Sum up the above-referenced equations to get a1 + a2 + a3 = 0. Thus, the degree of freedom 

is 2. Consequently:  

𝐼𝑚𝑔 𝑑1 = ℝ ⨁ ℝ   and therefore  𝐻0 = 
𝐾𝑒𝑟 𝑑0 

𝐼𝑚𝑔 𝑑1
= 

ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ 

ℝ ⨁ ℝ 
=  ℝ ⨁ ℝ , meaning that 

the simplicial complex K1 has two components. 

To calculate the 𝑘𝑒𝑟 𝑑1 consider the equality: 

𝑑1 (b1 AB + b2 AC + b3 BC) = (-b1 – b2) A + (b1 – b3) B + (b2 + b3 ) C = 0. 

So, each coefficient must be zero (since A, B, C are the basis for the vector space 𝐶0 ), 

-b1 - b2 = 0 ; b1 – b3 = 0 ; b2 + b3 = 0. 

As a result  b1 = -b2 = b3 . So the degree of freedom is 1 and 𝐾𝑒𝑟 𝑑1 = ℝ . Consequently: 

 𝐻1 = 
𝐾𝑒𝑟 𝑑1 

𝐼𝑚𝑔 𝑑2
=  

ℝ   

0  
=  ℝ, meaning that the simplicial complex K1 has one hole. 

Computation of homology groups for the simplicial complex K2 with orientation PQ, QR 

and RP and PQR: 

𝐶0 = The ℝ-vector space generated by the 0-simplices P, Q, R as the basis elements. 

     = {a1 P + a2 Q + a3R: ai ∈  ℝ}= ℝ ⨁ ℝ ⨁ ℝ  

𝐶1 = The ℝ-vector space generated by the 1-simplices PQ, QR, RP as the basis elements. 

     = {b1 PQ + b2 QR + b3 RP: bi ∈ ℝ} = ℝ ⨁ ℝ ⨁ ℝ  

𝐶2 = The ℝ-vector space generated by the only 2-simplex PQR as the basis element. 

    = {e PQR: e ∈ ℝ}= ℝ 
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𝑑0 ∶  𝐶0  →  0 

𝑑0 (a1 P + a2 Q + a3R) = 0 (since the boundary of a vertex is zero). 

Consequently 𝐾𝑒𝑟 𝑑0 = 𝐶0 =  ℝ ⨁ ℝ ⨁ ℝ . 

𝑑1 ∶  𝐶1  → 𝐶0 

𝑑1 (b1 PQ + b2 QR + b3 RP) = b1 (Q-P) + b2 (R-Q) + b3 (P-R) = (-b1 + b3) P + (b1 – b2) Q + 

(b2 - b3) R  

= a1 P + a2 Q + a3R 

Comparing the coefficients results in the equation a1 + a2 + a3 = 0. Therefore, the degree of 

freedom is 2. Consequently: 

𝐼𝑚𝑔 𝑑1 = ℝ ⨁ ℝ   and therefore  𝐻0 = 
𝐾𝑒𝑟 𝑑0 

𝐼𝑚𝑔 𝑑1
= 

ℝ ⨁ ℝ ⨁ ℝ  

ℝ ⨁ ℝ 
=  ℝ , meaning that the 

simplicial complex K2 has one component. 

To calculate 𝑘𝑒𝑟 𝑑1 consider the equality: 

𝑑1 (b1 PQ + b2 QR + b3 RP) = b1 (Q-P) + b2 (R-Q) + b3 (P-R) = (-b1 + b3) P + (b1 – b2)Q + 

(b2 - b3)R = 0. 

As a result b1 = b2 = b3 . So the degree of freedom is 1 and 𝐾𝑒𝑟 𝑑1 = ℝ .  

𝑑2 ∶  𝐶2  → 𝐶1 

𝑑2 (e PQR) = e  𝑑2 (PQR) = e ( PQ + QR + RP) = e PQ + e QR + e RP 

To compute  𝐼𝑚𝑔 𝑑2, consider the following equation: 
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e PQ + e QR + e RP = b1 PQ + b2 QR + b3 RP . Compare the coefficients to obtain: 

e = b1 = b2 = b3 . So the degree of freedom is 1 and 𝐼𝑚𝑔 𝑑2 =  ℝ. 

 𝐻1 = 
𝐾𝑒𝑟 𝑑1 

𝐼𝑚𝑔 𝑑2
=  

ℝ  

ℝ  
=  0,  indicating that the simplicial complex K2 has no holes. 

 

2.2.1 Computation of Homology Groups Algorithm 

    Consider the following chain complex extracted from a simplicial complex K: 

 
𝐶𝑛+1

𝑑𝑛+1
→   𝐶𝑛  

𝑑𝑛
→  𝐶𝑛−1

𝑑𝑛−1
→  ……… 

𝑑2
→ 𝐶1  

𝑑1
→ 𝐶0

𝑑0
→  0 

 

(6) 

To compute the nth-homology groups for this chain complex, the following considerations 

are crucial: 

1- The image of the operator 𝑑𝑛+1 is inside the kernel of 𝑑𝑛 (𝑑𝑛 𝑜 𝑑𝑛+1 = 0).  

 So, to compute 𝐻𝑛 = 
𝐾𝑒𝑟 𝑑𝑛 

𝐼𝑚𝑔 𝑑𝑛+1
 , one must look at the two sequential operators: 

 
𝐶𝑛+1

𝑑𝑛+1
→   𝐶𝑛  

𝑑𝑛
→  𝐶𝑛−1 

(7) 

To simplify the identification of 𝐼𝑚𝑔 𝑑𝑛+1 inside the 𝐾𝑒𝑟 𝑑𝑛 , rows and columns reduction 

is applied from the co-reduction homology algorithm formula from [38] and [39]. This 

algorithm is applied to the rows and columns of the matrices corresponding to the linear 

operators 𝑑𝑛+1 and 𝑑𝑛 to create as many zero rows and columns as possible.  

2- The basis of the vector space  𝐶𝑛 generates the rows of the matrix associated with the 

linear operator 𝑑𝑛+1. In the meantime, it generates the columns of the linear operator 𝑑𝑛. 
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The rows and columns reduction can reduce the matrices as simply as possible. Let’s call 

the matrices in the new basis 𝐷𝑛+1 and 𝐷𝑛. 

3- Suppose the column reduction is applied by a matrix 𝑄 to the operator 𝑑𝑛. The inverse 

of the matrix 𝑄 ( 𝑄−1) is applied to the operator 𝑑𝑛+1, since  

 𝑑𝑛 𝑜 𝑑𝑛+1 = 𝑑𝑛 𝑜 𝑄 𝑜 𝑄
−1𝑑𝑛+1 = 0 (8) 

 

Set 𝑑𝑛 𝑜 𝑄 =  𝐷𝑛 and  𝑄−1𝑑𝑛+1 = 𝐷𝑛+1 . 

4- Everything is in the place to conclude that: 

   𝐾𝑒𝑟 𝐷𝑛  = the span of the zero columns of the matrix 𝐷𝑛 (9) 

 

 𝐼𝑚𝑔 𝐷𝑛+1 = the span of the nonzero rows of the matrix 𝐷𝑛+1 (10) 

 

5- The n dimensional homology group is:  

  𝐻𝑛 = 
𝐾𝑒𝑟𝐷𝑛 

𝐼𝑚𝑔 𝐷𝑛+1
 = 

the span of the zero columns of the matrix 𝐷𝑛 

the span of the nonzero rows of the matrix 𝐷𝑛+1
  

 

= the span of the quotient 

 

 
 

 

(11) 

2.2.2 The Python Program for Homology Computation  

              The Python Program for this subsection is from repository “GITHUB” [40]. 

Part 1: Auxiliary functions for doing the elementary operations on rows and columns on 

matrices. Everything is done in “numpy.” 
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Part 2: The column reduction is applied by a matrix 𝑄 to the operator 𝑑𝑛. The inverse of 

the matrix 𝑄 (𝑖. 𝑒. 𝑄−1) is applied to the operator 𝑑𝑛+1, the algorithm is doing column 

reduction on one matrix and applying the corresponding row operations to the other.  
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Part 3: The actual algorithm to compute homology is counting pivots. Here are two pivot 

counting functions in numpy fashion. 
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Part 4: The final function is: 

 

 

 

2.3 Simplicial Complex Beyond the Graph Structure for Data Representation 

For cases involving data sources that encompass more than two interactions, a 

combinatorial topology as a higher-dimensional version of graph theory is required. This 

mathematical model is provided by utilizing topological methods which produced simple 

representations of the data. Simplicial complex technique generalized the graph-theoretic 

modeling. The key idea is to represent all possible data at some time as a single, static, 

combinatorial geometric object. The following example illustrates the simplicial complex 

modeling for the multiple co-authorship interactions. Authors can have mutual papers, (see 

Table 2.1). The simplicial complex model consists of 0-simplices which corresponded to 

each individual author. Edges (1-simplices) corresponded to the papers that two authors 

published jointly. Similarly, d-simplices (d > 1) represent (d + 1)-authors who have jointly 

published papers. Refer to Figure 2.7.  
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Table 2.1. The Co-authorship 

 

 

 

 

Figure 2.7. The simplicial complex model for the co-authorship. Vertices represent the 

authors. The edges and triangle represent the multiple co-authorship. 

 

The following is the algorithm for authorship representation by simplicial complex. 

-Add a vertex for each author 

-Order all vertices according to their indices. Let V = { a0 a1 a2 a3 .... an} , the order is  

a0 <a1< a2< a3< ....< an. 

For  k = 1 to p ( number of papers) 

  SUM  0;   

  For j = 1 to n ( number of  authors) 

      If paper k has j-authors then SUM  SUM + 1 
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      End if  

               make a (SUM-1)-simplex on those related authors 

    End for j 

End for k 

 

More sophisticated examples regarding the application of simplicial complexes to 

modeling the phenomena may be found in [41] and [42]. 

 

2.4 Summary 

This chapter is devoted to the topological approach to identify and study the system 

through the shape of data and data sources. The topological modeling consists of objects, 

namely simplices that are attached to make a simplicial complex. This is the visualization 

and representation of the collection of data and their sources simultaneously in a single 

combinatorial geometric and topological object.  

Data sources are represented by the 0-dimensional simplices and interactions 

among two and more sensors are represented by higher dimensional simplices.  

Algebraic objects, namely, homology groups of the simplicial complex help in the 

interpretation of the behavior of the system based on its potential to exchange data. They 

could also detect possible failure in data exchange. 

The computational formulas for homology groups are stated, and the algorithms for 

the computation of the groups are presented in details. 

The advantage of simplicial complex modeling over the graph structures is 

explained in detail and is shown by an example.  
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 CHAPTER 3 

SHEAVES, DATA FUSION, COHOMOLOGY AND  DATA ANALYSIS 

In mathematics, when data are locally attached to open sets of a topological space, 

the sheaf theory is a tool to track the locally defined data. This chapter starts with an 

abstract definition of cellular sheaves and continues with comprehensive details regarding 

the computation of sheaf cohomology and its application in data analysis. The sheaf theory 

model analyzes heterogeneous data types by the integration of data collected from sensor 

clusters. The mathematical construction is the sheaf of vector spaces over a simplicial 

complex. Without being too complicated, the structure of vector spaces are strong enough 

for analyzing and integrating heterogeneous data and their redundancy. The foundations of 

sheaf theory that cover the algebraic geometer's schemes as well as the topological and 

analytic kinds can be found in [43]. 

 

3.1 Cellular Sheaves of Vector Spaces  

  Cellular sheaves are mathematical structures that are built on simplicial complexes. 

In fact, a cellular sheaf is an assignment of data to each simplex in a simplicial complex 

together with the two pillars: first, it addresses the restrictions of data from a smaller 

simplex to the larger one and second, it deals with the information consistency in the 

overlap of two data sources. The categorical point of view for the definition of cellular 

sheaves may be found in [44]. A linear algebraic data presentation for the category of 

sheaves on simplicial complexes is obtained from [45]. The concept of sheaves in a 

categorical manner is obtained in [46]. The cellular sheaves point of view in this 
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dissertation is associated with the field of computer science, and the definitions are 

presented accordingly. 

Definition 3.1 Let K be a simplicial complex. A cellular sheaf 𝐹 of vector spaces over the 

simplicial complex K, consists of the following two assignments. See Figure 3.1:  

1. Assignment of a vector space 𝐹(𝑆) to each simplex 𝑆 in K. The vector space is 

called the stalk of the simplex 𝑆. Each element of the vector space 𝐹(𝑆) is called a 

local section at S. 

2. Assignment of a linear map (𝑆 → 𝐶) :  𝐹(𝑆) → 𝐹(𝐶) for any two simplices 𝑆 and 

𝐶 in K with 𝑆 < 𝐶  (𝑆 a face of 𝐶). This linear map is called the restriction map.  

The assignments are such that the three simplices with the face relation 𝑆 <  𝐶 < 𝐷  

satisfy: 

 𝐹(𝑆 → 𝐶) O 𝐹(𝐶 → 𝐷) = 𝐹(𝑆 → 𝐷) 
 

(12) 

                                          

 

Figure 3.1. An example of a simplicial complex (left), the associated sheaf F (middle and 

right). Inclusions of the faces are shown by upward arrows.  

 

Definition 3.2 For a sheaf F on a simplicial complex K, a global section is an assignment of 

values from each of the stalks that is consistent with the restrictions. More precisely, the 

local sections 𝑓(𝑆𝑝)   ∈  𝐹(𝑆𝑝) and 𝑓(𝑆′𝑝)  ∈  𝐹(𝑆′𝑝) can be glued together to make a 
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global section if and only if for any two 𝑝-simplices  𝑆𝑝 and 𝑆′𝑝 and any 𝑝 + 1-simplex 

𝑆𝑝+1 with 𝑆𝑝, 𝑆′𝑝 < 𝑆𝑝+1, the following equality satisfies: 

 

 𝐹(𝑆𝑝 → 𝑆𝑝+1)(𝑓(𝑆𝑝)) =  𝐹(𝑆
′
𝑝 → 𝑆𝑝+1)(𝑓(𝑆′𝑝)) 

 

(13) 

   

In [47] Hubbard states, “It is fairly easy to understand what a sheaf is, especially 

after looking at a few examples. Understanding what they are good for is rather harder; 

indeed, without cohomology theory, they aren’t good for much.” 

The following example from [48] gives an idea of representation of data in a 

cellular sheaf. 

Example 3.1 Consider a student who attends high school, an undergraduate institution, a 

graduate institution, and then is accepted in a postdoctoral position. Each school that the 

student attends maintains records of his grades. Each institution is represented as a vertex 

in a cell complex, as shown in Figure 3.2.  

 

 

 

Figure 3.2. A network of academic institutions that might share information about a student 

(left), and a sheaf representing associated information about a single student (right) [48]. 
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  Every pair of institutions that shares a piece of information is represented as an edge 

between their respective vertices. A common piece of information that is shared among 

three institutions is represented as a 2-simplex. For instance, high schools typically only 

communicate with undergraduate institutions, therefore, no edges exit between a high 

school’s vertex and any other institutions. Assume the following: 

1. The high school only keeps a record of the high school GPA.  

2. The undergraduate institution keeps records of both the high school and the 

undergraduate GPAs. 

3. The graduate institution keeps records of the undergraduate and graduate GPAs, and any 

graduate stipend. 

4. The postdoctoral institution keeps records of the undergraduate and graduate GPAs, and 

postdoctoral salary. 

5. Stipend and salary information is not shared between institutions. 

6. Grades are shared as appropriate and are consistent.  

The assumptions lead to the sheaf structure shown on the right of Figure 3.2. Each 

piece of information is represented by a natural number (grades and salaries cannot be 

negative, and are rounded to the nearest whole number). In the sheaf structure, the stalk 

over each vertex contains the information held by each institution. Each edge of the 

complex contains the information shared by the two institutions. Each 2-simplex contains 

the common information among three institutions, which, in this example, is only the 

undergraduate GPA. Each restriction map is represented by a projection matrix that selects 
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the appropriate shared information. In particular, the restriction maps from the two 

postgraduate institutions share no any information regarding the student’s pay. 

Hereafter, “sheaf” means cellular sheaf of vector spaces (stalks are real vector spaces). 

 

3.2 Sheaf Cohomology   

Since all the topological spaces and accordingly all simplicial complexes under 

consideration in this dissertation are paracompact (every open cover had an open 

refinement that is locally finite), according to [49] (theorem 3.16), the sheaf cohomology 

on the simplicial complex K is isomorphic to the Čech cohomology. For the detail on Čech 

cohomology see [50]. For more detailed definition of Čech cohomology, see [51] and [52]. 

This dissertation relies on sheaf cohomology based on the Čech cochains. The remainder 

of this section provides theoretical implementation about the concept of sheaf cohomology 

and its interpretation and application in computer science. All definitions related to the 

sheaf cohomology are given according to the above-mentioned isomorphism. 

Definition 3.3 Suppose F is a sheaf on a simplicial complex K. The p-cochain group is 

defined to be the direct sum of stalks over all p-simplices 𝑆𝑝 in K: 

 

 𝐶𝑝(𝐊; 𝐹) = ⊕𝑆𝑝∈𝐾  𝐹(𝑆𝑝) = ⊕𝑆𝑝∈𝐊 𝑆𝑡𝑎𝑙𝑘(𝑆𝑝) (14) 

 

From now on when the simplicial complex K and the associated sheaf F are known, 

the simplified notation 𝐶𝑝 is applied instead of 𝐶𝑝(𝐊; 𝐹). 

Definition 3.4 For each non-negative integer n, the linear coboundary operator 
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𝐶𝑛

𝑑𝑛

→ 𝐶𝑛+1 
(15) 

is defined by  

 
𝑑𝑛(𝑐)(𝑆𝑛+1) = ∑ [𝑆𝑛+1 ∶  𝑆𝑛]  𝐹(𝑆𝑛 → 𝑆𝑛+1)

𝑆𝑛 ∈𝐾

 𝑐(𝑆𝑛) 
(16) 

 

for all 𝑐 ∈ 𝐶𝑛  and 𝑆𝑛+1 ∈ 𝐊.  The matrix form of the coboundary operator can be written 

as: 

 𝑑𝑛 = [ [𝑆𝑛+1 ∶  𝑆𝑛] ( 𝐹(𝑆𝑛 → 𝑆𝑛+1)]𝑆𝑛,𝑆𝑛+1 ∈𝐊 

 

(17) 

Theorem 3.1 [51]  For each non-negative integer n, the composition of two consecutive 

coboundary operators is trivial, i.e. 𝑑𝑛𝑜 𝑑𝑛−1 = 0. Thus, for the (n+1)-dimensional 

complex K, the following Čech cochain complex is constructed: 

 

 
𝐶0

𝑑0

→ 𝐶1
𝑑1

→  𝐶2 → ⋯ →  𝐶𝑛
𝑑𝑛

→ 𝐶𝑛+1 
(18) 

 

From theorem 3.1, the subgroup relationship 𝐼𝑚𝑔 𝑑𝑝−1   𝐾𝑒𝑟 𝑑𝑝 is concluded 

and, therefore, an equivalent relation is defined as follows. 

Definition 3.5 [48] The cohomology of the sheaf F over the simplicial complex K, is 

defined to be the homology of the previous chain complex. It is denoted by (𝐶●(𝐊; 𝐹), 𝑑). 

More precisely the p-cohomology group is defined by: 

 

 
𝐻𝑝(𝐊; 𝐹) =  

𝐾𝑒𝑟 𝑑𝑝

𝐼𝑚𝑔 𝑑𝑝−1
   (19) 
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The algorithms to compute the cohomology groups may be found in [53] and [54]. 

The computation of cellular sheaf cohomology from the Morse theory technique is 

described in [55].  

Theorem 3.2 ([48] theorem 4.3). The space of global sections of the sheaf F over the 

simplicial complex K is isomorphic to the zeroth cohomology 𝐻0(𝐊; 𝐹). 

From the theorem 3.2, and also from chapter 3 of [30], the following modified 

interpretation of the zeroth-cohomology group is given for the purpose of this dissertation.  

From the fact that (𝐼𝑚𝑔 𝑑−1 = 0) and 𝐻0(𝐊; 𝐹) =  
𝐾𝑒𝑟 𝑑0

𝐼𝑚𝑔 𝑑−1
= 𝐾𝑒𝑟 𝑑0 , the 

following interpretation about the zeroth-cohomology group is obtained. 

Suppose {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑡} is the set of vertices (0-simplices) in the simplicial 

complex K. Also suppose {𝐹(𝑆1), 𝐹(𝑆2), 𝐹(𝑆3),… , 𝐹(𝑆𝑡)} is the set of their corresponding 

stalks.  

An element f = (𝑓(𝑆1), 𝑓(𝑆2), 𝑓(𝑆3),… , 𝑓(𝑆𝑡)) ∈ ⊕𝑖=1,…,𝑡  𝐹(𝑆𝑖) is in the 𝐻0(𝐊; 𝐹) 

if and only if for all 𝑖, 𝑗 = 1,… , 𝑡  and 𝑆𝑖 , 𝑆𝑗 < 𝑆𝑖𝑗 (𝑆𝑖𝑗 is the edge between 𝑆𝑖  and 𝑆𝑗), 

 

 𝐹(𝑆𝑖 → 𝑆𝑖𝑗)𝑓(𝑆𝑖) =  𝐹(𝑆𝑖 → 𝑆𝑖𝑗)𝑓(𝑆𝑗) (20) 

 

Meaning that 𝑓(𝑆𝑖) and 𝑓(𝑆𝑗) both can be extended to the 1-simplex 𝑆𝑖𝑗. 

 

3.3 Pseudocodes for Computation of Cellular Sheaf  

This subsection is devoted to the construction of the cellular sheaf over the 

simplicial complex K. It is done in two sequential steps: first the assignment of stalks to 
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each simplex in the simplicial complex, and second, the definition of the restriction maps 

between the stalks. 

 

3.3.1 Step 1 (part 1): Find  the Vector Space of 0-Simplices  

The preprocessor is given as a table T with n rows and m columns, respectively, for 

the representation of sensors and representation of data types as vector spaces. The table 

has the property that for a fixed column j, the row elements Tij of the table (if nonzero) are 

all assigned to the same vector space. 

Make the table Q with one column and n rows, same rows with the same sensors 

representations as of table T, and initialize it to empty.   

For i = 1 …………………n (number of the rows) 

        V = zero vector space (place holder) 

      For j = 1 ………………….m (number of the columns representing data type) 

       V =  V ⨁ Tij  

          End For j 

   Qi =   V ( representation for 0-simplex in row i) (direct sum of Tij’s)  

End For i 

 

 

3.3.2 Step 1 (part 2) Assignment of Stalks 

Finding the Vector Space for Ordered Set of p-Simplices for p > 0. 

 

p-simplex[r] = 0;  p = 1….w simplex and r = 1… a 

w and a are dynamic 

Vector-space[w*a] = 0 

For i = 1 ……………..n (number of the rows in Q) 

     p = 1; 

     r = 1 

     result_intersection = 0 

     p-simplex-dimension = 0 (p > 0)  

    b = 0 

     For t = i+1 …………..n (number of the rows in matrix Q) 
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      For j = 1 ………………m (number of the columns representing data type position) 

       If (( Tij  is non-zero ) && (Ttj is non-zero)) //if 1 

         Then { //then 1 

           If (  b = = 0) //if 2 

            Then { //then 2 

                       b = j 

                        result_intersection = result_intersection ⨁ Tij 

                                      p-simplex-dimension = +1 

                        p = p-simplex-dimension 

                        p-simplex[r] = +1 

                         Vector-space[p-simplex[r]] = result_intersection 

                                   } //then 2 

               Else { //else 2 

                        If ( b = =   j) //if 3 

                            Then { //then 3 

                                              result_intersection = result_intersection ⨁ Tij 

                                                                         p-simplex-dimension = +1 

                                              p = p-simplex-dimension 

                                              p-simplex[r] = +1 

                                              Vector-space[p-simplex[r]] = result_intersection 

                                 }  // then 3  

                             Else { //else 3 

                                        b = j 

                                         r = +1 

                                         result_intersection = 0 

                                         p-simplex-dimension = 0 

                                         result_intersection = result_intersection ⨁ Tij 

                                                                  p-simplex-dimension = +1 

                                          p-simplex[r] = +1 

                                          Vector-space[p-simplex[r]] = result_intersection 

                                      }  // else 3                 

                        } // if 3 

                 } //then 1 and if 1 

                 End for j 

End For t 

End For i 

 

 

3.3.3 Step 2: Restriction Maps 
 

i = 0 

M:  for each i-simplex and (i+1)-simplex 
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 if (i-simplex and (i+1)-simplex is face-connected) 

 the restriction map is 

                  number of rows from (i+1)-simplex 

                  number of columns from i-simplex 

                  find intersection of (i-simplex and (i+1)-simplex) 

                  find exclusion ((i-simplex  \ (i+1)-simplex) 

  A1 = ZERO matrix of exclusion (rows and columns from above) 

   I1 = Identity square matrix of intersection (based of rows) 

Now,  juxtapose A1 and I1 based on priority of intersection. 

i = +1  

If i   <  dimension of complex   

Then {Go to instruction M} 

Else done  and continue 

 

 

3.4 Mathematical Foundation for Sheaf Cohomology and Data Analysis 

  This subsection provides a mathematical foundation for analyzing the behavior of a 

system based on its potential to exchange data, possible failure in data exchange, detection 

of noise in the system, and recognition of the redundant or complimentary sensors. There 

are two sides of this spectrum: 

1.  One can deploy a small number of sophisticated “global” sensors with high signal 

complexity and precise readings.  

2.  In contrast, one can deploy a large number of small, coarse, “local” devices that may 

have large uncertainties in their readings. 

  Dealing with the two sides of the spectrum requires challenging data management. 

The challenge is to specify which type of mathematics is useful in analyzing the above 

scenarios.  

  In this subsection, the distributed (spatial and temporal) information system under 

consideration is fixed, the simplicial complex associated with this system is denoted by K, 
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and the sheaf of vector spaces over K is denoted by F. The notation (𝐊; 𝐹) is used for such 

a system representation and the notation (𝐶●(𝐊; 𝐹), 𝑑) is for its corresponding Čech 

(cochain) complex. 

Definition 3.6 The family 

 

 (𝑓(𝑆p))𝑆𝑝∈𝐊 ∈ 𝐶
𝑝(𝐊; 𝐹)  = ⊕𝑆𝑝∈𝐊  𝐹(𝑆𝑝) =⊕𝑆𝑝∈𝐊 𝑆𝑡𝑎𝑙𝑘(𝑆𝑝) (21) 

  

is called a p-integrating family if (𝑓(𝑆𝑝))𝑆𝑝∈𝐊 ∈ 𝐾𝑒𝑟 𝑑𝑝. 

Remark 3.1 The 0-integrating families are global sections.  

Proof. This is a result from theorem 3.2 and the fact that 𝐻0(𝐊; 𝐹) =  
𝐾𝑒𝑟 𝑑0

𝐼𝑚𝑔 𝑑−1
=  𝐾𝑒𝑟 𝑑0.  

Definition 3.7 The sum of two vector spaces V and W is defined to be the span of the union 

of their basis. It is denoted by V+W or span V ∪ W. 

Definition 3.8 Suppose 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} is the family of sensors in a system. A 1-

refinement of this family is the subset S − {Si} where 𝐹(𝑆𝑖)  span ⋃ 𝐹(𝑆𝑗)j ≠i . The subset 

S − {Si} is called the 1-refined family. Inductively the 1-refinement of the (n-1)-refined 

family is called the n-refinement of the family.  

Definition 3.9 The family 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} is non-refinable if there is no 𝑆𝑖 for which 

𝐹(𝑆𝑖) is contained in span ⋃ 𝐹(𝑆𝑗)𝑗 ≠𝑖 . 

Definition 3.10 The maximal non-refined subset of the family 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} of 

sensors is defined as the set of significant sensors in the system. 
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Main Theorem 3.3 A family of sensors represented by the vertex set {𝑆1, 𝑆2, … , 𝑆𝑡} in the 

simplicial complex representation K for the information system is a family of significant 

sensors if the local sections 𝑓(𝑆𝑖)  ∈ 𝐹(𝑆𝑖) form a minimal span of the 0-integrating 

families. More precisely the significant sensors 𝑆1, 𝑆2, … , 𝑆𝑡 satisfy the following equation: 

 

 𝐹(𝑆1) + 𝐹(𝑆2) + …+  𝐹(𝑆𝑡) =  𝐾𝑒𝑟 𝑑
0 

 

(22) 

Proof.   Suppose the information system has the set V = {𝑆1, 𝑆2, … , 𝑆𝑚} as its vertex set 

and the set 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑘} as the set of its edges. Then 

 

  𝐶0(𝐊; 𝐹)  = ⊕𝑖=1,…,𝑚  𝐹(𝑆𝑖)  ;  𝐶
1(𝐊; 𝐹)  = ⊕𝑗=1,…,𝑘  𝐹(𝑒𝑗) 

 

(23) 

Since 𝐶0
𝑑0

→ 𝐶1, then 𝑑0 is a k × m block matrix. For 𝑓 = (𝑓(𝑆1), 𝑓(𝑆2),… , 𝑓(𝑆𝑚))  ∈

 𝐶0(𝐊; 𝐹) ,  the j-th row of the matrix 𝑑0(𝑓) is ∑ 𝐹(𝑆𝑖  →  𝑒𝑗)𝑓(𝑆𝑖
𝑚
𝑖=1 ). 

The equality 𝑑0(𝑓) = 0 is equivalent to the following system of equations for 𝑓: 

 

 

∑𝐹(𝑆𝑖  →  𝑒𝑗)𝑓(𝑆𝑖

𝑚

𝑖=1

)  = 0         ;        𝑗 = 1,… , 𝑘 

 

(24) 

 

  The solution space of the above system of equations is, on one hand, the vector space 

𝐾𝑒𝑟 𝑑0 and, on the other hand, has as a basis,  the union of the basis for those 𝐹(𝑆𝑖) for 
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which 𝐹(𝑆𝑖) is not contained in the span of  ⋃ 𝐹(𝑆𝑗)𝑗 ≠𝑖 . With re-index modification after 

refinement: 

 𝐹(𝑆1) + 𝐹(𝑆2) + …+  𝐹(𝑆𝑡) =  𝐾𝑒𝑟 𝑑
0 and the proof is complete  Q.E.D. 

 

3.5 Summary 

An analysis of data, encoding and translating heterogeneous data into common 

language are modeled by stalks. The fusion of data extracted from multiple sensors is 

modeled by a sheaf. The methodology studies the behavior of the system based on the 

detection of noise, possible failure in data exchange and recognition of the redundant or 

complimentary sensors. 

To verify the validity of the above-referenced method and to bring the information 

of the system into a mathematical language, the required definitions are presented. The 

main classification theorem is presented to bring up a necessary and sufficient condition 

for a sensor to be significant.  
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 CHAPTER 4 

APPLICATIONS 

  This chapter is devoted to the application of the modeling from the previous 

chapters. First, the methodology is applied to study the wildfire threat monitoring [56]. In 

this example heterogeneous data are gathered from a variety of in-the-field stations, each 

with a potentially different set of sensors for temperature, wind, humidity, smoke, and 

hotspots in the infrared spectrum. Satellite images or aerial photography are also used. 

Second, the example of air traffic monitoring with multiple sensors of various types is 

applied [57]. Heterogeneous data are gathered from variety of sensor clusters: GPS 

satellites, radar stations, airport surface detectors, and smart IR (infrared) sensors. 

  In both examples, a duplication of the sensors of the same type is possible. The 

individual sensors may come online or gone offline at irregular intervals of time and space 

and may become permanently disabled. Therefore, the structure, availability, granularity, 

and quality of the data may vary by data source and type.  

 

4.1 Part 1: Example of Wildfire Threat Monitoring 

  It has been reported that for the last decade, each year, more than 100,000 wildfires 

and forest fire threats have occurred in all countries. Which type of mathematics can be 

applied to analyze the collaboration of the sensors to monitor the possibility of such a natural 

disaster? The mathematical framework to collect local information and apply it into global 

environmental data utilizes the simplicial complex and sheaf models. The construction of a 

simplicial complex and sheaf data structure is applied to answer the question, “Do multiple 
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cells (sensors) work together? If so, how?” Multiple sensors of various types monitor 

regions for wildfires. To make the detection more precise, duplication of the sensors of the 

same type is considered. Sensors of the same type communicate and report a common 

information. The heterogeneous data are received by the sensors of various types in the 

region of detection at time t = t0. The types of the sensors, their duplication numbers, and 

the heterogeneous data received by the sensors are shown in Tables 4.1 and 4.2. 

 

Table 4.1. Sensors and Duplication Numbers (t = t0) for Wildfire Monitoring 

 

Sensor type Number of Sensors 

time t=t0 

Satellite Camera, C n 

CO2 Detector, O m 

IR Detector, R p 

Flame Detector, D q 

 

 

  Table 4.2. The Heterogeneous Data (t = t0) for Wildfire Monitoring 

 
Sensors 
vs. Data 

Fire 
Size 
F, ℝ 2 

Intensity 
I, ℝ 

Temperature 
T, ℝ   

Smoke 
size S, ℝ2 

Satellite 
Camera, 
C 

 

√ 

   

√ 

CO2 
Detector, 
O 

  

√ 

 

√ 

 

√ 

IR 
Detector, 
R 

   

√ 

 

Flame 
Detector, 
D 

 

√ 

  

√ 
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4.1.1 The Construction of the Simplicial Complex  

  The integration of the received heterogeneous data are modeled by the simplicial 

complex structure as shown in Figure 4.1. 

 

Figure 4.1. Simplicial complex model with oriented simplices for the wildfire threat 

monitoring at time t=t0. 

  

 

To obtain the desired measurements (homology groups) from the extracted data, 

orientation of the simplices in the simplicial complex model is required. The colored 

arrows represent the oriented simplices. The filled triangle ODR represents the shared data 

between the three sensors O, D and R. The hollow triangle OCD shows that there are no 

shared data among the three sensors O, C and D.  

 

4.1.2 Homology calculation at time  t = t0 

The chain vector spaces are:  

𝐶0 = The ℝ-vector space generated by the 0-simplices C, O, R, D as basis elements 

     = {a1 C + a2 O + a3R + a4 D : ai ∈  ℝ}= ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ 



47 
 

𝐶1 = The ℝ-vector space generated by the 1-simplices CD, OC, RO, DO, DR as basis 

elements 

     = {b1 CD + b2 OC + b3 RO + b4 DO+ b5 DR: bi ∈ ℝ} = ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ  

𝐶2 = The ℝ-vector space generated by the only 2-simplex ODR as the basis element. 

    = {e ODR: e ∈ ℝ}= ℝ 

The linear boundary operators 𝑑0, 𝑑1, 𝑑2 are given by: 

𝑑0 ∶  𝐶0  →  0 

𝑑0 (a1 C + a2 O + a3R + a4 D) = a1 𝑑0C + a2 𝑑0O + a3 𝑑0R + a4 𝑑0D = 0  

(Since the boundary of a vertex is zero). Consequently  𝐾𝑒𝑟 𝑑0 = 𝐶0 =  ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ. 

Now: 

𝑑1 ∶  𝐶1  → 𝐶0 

𝑑1 (b1 CD + b2 OC + b3 RO + b4 DO+ b5 DR) = b1 𝑑1CD + b2 𝑑1OC + b3 𝑑1RO + b4 𝑑1DO 

+ b5 𝑑1DR   

= b1 (D-C) + b2 (C-O) + b3 (O-R) + b4 (O-D)+ b5 (R-D)  

= (b1 - b5 - b4 ) D + (-b1 + b2 ) C + (-b2 + b3 + b4 ) O + (-b3 + b5 )R 

To compute the 𝐼𝑚𝑔 𝑑1, consider the following equation: 

(b1 - b5 - b4 ) D + (-b1 + b2 ) C + (-b2 + b3 + b4 ) O + (-b3 + b5 )R = a1 C + a2 O + a3R + a4 D. 

Compare the coefficients to obtain: 
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b1 - b5 - b4 = a4 

-b1 + b2 = a1 

-b2 + b3 + b4 = a2 

-b3 + b5 = a3 

Sum up the above equations to get a1 + a2 + a3 + a4 = 0. The degree of freedom in this 

equation is 3 and consequently:   

𝐼𝑚𝑔 𝑑1 = ℝ ⨁ ℝ ⨁ ℝ  and   𝐻0 = 
𝐾𝑒𝑟 𝑑0 

𝐼𝑚𝑔 𝑑1
= 

ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ 

ℝ ⨁ ℝ ⨁ ℝ 
=  ℝ   and the dimension of 

 𝐻0 = 1. 

To calculate the 𝑘𝑒𝑟 𝑑1 consider the equality: 

(b1 - b5 - b4 ) D + (-b1 + b2 ) C + (-b2 + b3 + b4 ) O + (-b3 + b5 )R = 0. 

Since D, C, O, R are basis elements for the vector space 𝐶0 , each coefficient must be zero: 

b1 - b5 - b4 = 0 

-b1 + b2 = 0 

-b2 + b3 + b4 = 0 

-b3 + b5 = 0 

As a result: b1 = b2 , b3 = b5 , b1 - b5 - b4 = 0 , -b2 + b3 + b4 = 0.  

The degree of freedom for this equation is 2 and 𝐾𝑒𝑟 𝑑1 = ℝ ⨁ ℝ.  

𝑑2 ∶  𝐶2  → 𝐶1 
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𝑑2 (e ODR) = e  𝑑2 (ODR) = e (DR – OR + OD) = e DR – e OR + e OD 

To compute the 𝐼𝑚𝑔 𝑑2, consider the following equation: 

e DR – e OR + e OD = b1 CD + b2 OC + b3 RO + b4 DO+ b5 DR. 

Compare the coefficients to obtain: 

e = b5 ,  -e = - b3 , e = - b4 , b1 = b2 = 0  

The degree of freedom is 1 and 𝐼𝑚𝑔 𝑑2 =  ℝ . Consequently  𝐻1 = 
𝐾𝑒𝑟 𝑑1 

𝐼𝑚𝑔 𝑑2
= 

ℝ ⨁ ℝ  

ℝ  
=  ℝ. 

To compute 𝐻2 = 
𝐾𝑒𝑟 𝑑2 

𝐼𝑚𝑔 𝑑3
 , consider the fact that there is no 𝑑3 and 𝐼𝑚𝑔 𝑑3 = 0.  

Since 𝑑2 (e ODR) = e DR – e OR + e OD = 0, then e = 0, and 𝐾𝑒𝑟 𝑑2 = 0. As a consequence 

 𝐻2 = 
𝐾𝑒𝑟 𝑑2 

𝐼𝑚𝑔 𝑑3
= 0. 

The remaining higher dimensional homology groups  𝐻𝑑 (d > 2) are all zero. 

Results from calculation of the homology for the simplicial complex at time t = t0 are as 

follows: 

 𝐻0 =   ℝ (  dim 𝐻0 =  1), meaning that the simplicial complex is one connected. 

 𝐻1 =   ℝ ( dim 𝐻1 =  1), meaning that there is a one dimensional hole in this simplicial 

complex.  

 𝐻𝑛 =   0 for n > 1 , meaning that in this simplicial complex there are no voids in 

dimension higher than 2D.  
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4.1.3 The Sheaf Construction 

  Each simplex carries some information. The information space is represented by a 

vector space assigned to each simplex. This assignment is the stalk over each simplex and 

carries all information about the data. It can be transferred to its neighboring nodes to 

analyze the system.  

  The stalk assignments are as follows:  

Stalk C = F(C) = {Size of fire ℝ2, Size of Smoke ℝ2} ≃ ℝ2 ⨁ ℝ2  

Stalk O = F(O) = {Intensity ℝ, Temperature ℝ, Size of smoke ℝ2} ≃ ℝ ⨁ ℝ ⨁ ℝ2 

Stalk R = F(R) = {Temperature ℝ} ≃ ℝ 

Stalk D = F(D) = {Size of Fire ℝ2, Temperature ℝ} ≃ ℝ 2 ⨁ ℝ 

Stalk CO = F(OC) = {Size of smoke ℝ 2} ≃ ℝ2 

Stalk CD = F(CD) = {Size of fire ℝ 2} ≃ ℝ2 

Stalk OD = F(DO) = {Temperature ℝ} ≃ ℝ 

Stalk OR = F(RO) = {Temperature ℝ} ≃ ℝ 

Stalk DR = F(DR) = {Temperature ℝ} ≃ ℝ 

Stalk ODR = F(ODR) = {Temperature ℝ} ≃ ℝ 

  The restriction maps are shown in Figure 4.2. The construction of these maps are 

encoded in the pseudocode for restriction maps that is discussed in Section 3.3.  
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Figure 4.2. Sheaf, stalks and restriction maps associated with the simplicial complex for 

the wildfire threat monitoring example at time t= t0. 

 

4.1.4 Sheaf Cohomology Calculation at Time  t = t0   

The cochain vector spaces are:  

𝐶0 = F(C) ⨁ F(O) ⨁ F(R) ⨁ F(D) = (ℝ2 ⨁ ℝ2) ⨁ (ℝ ⨁ ℝ ⨁ ℝ2) ⨁ ℝ ⨁ (ℝ 2 ⨁ ℝ) 

𝐶1 = F(OC) ⨁ F(CD) ⨁ F(DO) ⨁ F(RO) ⨁ F(DR) = ℝ2 ⨁ ℝ2 ⨁ ℝ ⨁ ℝ ⨁ ℝ 

𝐶2 = F(ODR) = ℝ 

An element in 𝐶0 is of the form (𝑓(𝐶), 𝑓(𝑂), 𝑓(𝑅), 𝑓(𝐷)) ∈ 𝐶0, where 𝑓(𝐶) ∈

𝐹(𝐶);  𝑓(𝑂) ∈ 𝐹(𝑂); 𝑓(𝑅) ∈ 𝐹(𝑅); 𝑓(𝐷) ∈ 𝐹(𝐷) are the local sections. In a similar way 

an element of  𝐶1 is of the form (𝑓(𝑂𝐶), 𝑓(𝐶𝐷), 𝑓(𝐷𝑂), 𝑓(𝑅𝑂), 𝑓(𝐷𝑅)) ∈  𝐶1 with the 

local sections 
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𝑓(𝑂𝐶) ∈ 𝐹(𝑂𝐶);  𝑓(𝐶𝐷) ∈ 𝐹(𝐶𝐷); 𝑓(𝐷𝑂) ∈ 𝐹(𝐷𝑂); 𝑓(𝑅𝑂) ∈ 𝐹(𝑅𝑂); 𝑓(𝐷𝑅) ∈ 𝐹(𝐷𝑅). 

These notations are applied in the computation of the coboundary maps. 

The coboundary map 𝑑0 ∶  𝐶0 → 𝐶1 is the ℝ-linear operator given by a 5 × 4 dimensional 

block matrix   𝑑0 = (𝑎𝑖𝑗)  ;  𝑖 = 1,… ,5 ;  𝑗 = 1,… ,4. The detailed calculations are: 

Components of 𝑓 = (𝑓(𝐶), 𝑓(𝑂), 𝑓(𝑅), 𝑓(𝐷)) ∈ 𝐶0 are given by: 

𝑓(𝐶) = (𝑓(𝐶)𝑓𝑖𝑟𝑒 , 𝑓(𝐶)𝑠𝑚𝑜𝑘𝑒) ∈  ℝ
2 ⨁ ℝ2 

𝑓(𝑂) = (𝑓(𝑂)𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 , 𝑓(𝑂)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑓(𝑂)𝑠𝑚𝑜𝑘𝑒) ∈  ℝ ⨁ ℝ ⨁ ℝ2 

𝑓(𝑅) = (𝑓(𝑅)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 

𝑓(𝐷) = (𝑓(𝐷)𝑓𝑖𝑟𝑒 , 𝑓(𝐷)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) ∈  ℝ
2 ⨁ ℝ 

With these notations the rows of the 4-dimensional block vector 𝑑0𝑓 = (𝑎𝑖𝑗)𝑓  are given 

by: 

𝑎1𝑗𝑓 = 𝐹(𝐶 →  𝑂𝐶)𝑓(𝐶) +  𝐹(𝑂 →  𝑂𝐶)𝑓(𝑂) +  𝐹(𝑅 →  𝑂𝐶)𝑓(𝑅)

+  𝐹(𝐷 →  𝑂𝐶)𝑓(𝐷)  

𝑎2𝑗𝑓 = 𝐹(𝐶 →  𝐶𝐷)𝑓(𝐶) +  𝐹(𝑂 →  𝐶𝐷)𝑓(𝑂) +  𝐹(𝑅 →  𝐶𝐷)𝑓(𝑅)

+  𝐹(𝐷 →  𝐶𝐷)𝑓(𝐷)  

𝑎3𝑗𝑓 = 𝐹(𝐶 →  𝐷𝑂)𝑓(𝐶) +  𝐹(𝑂 →  𝐷𝑂)𝑓(𝑂) +  𝐹(𝑅 →  𝐷𝑂)𝑓(𝑅)

+  𝐹(𝐷 →  𝐷𝑂)𝑓(𝐷)  

𝑎4𝑗𝑓 = 𝐹(𝐶 →  𝑅𝑂)𝑓(𝐶) +  𝐹(𝑂 →  𝑅𝑂)𝑓(𝑂) +  𝐹(𝑅 →  𝑅𝑂)𝑓(𝑅)

+  𝐹(𝐷 →  𝑅𝑂)𝑓(𝐷)  

𝑎5𝑗𝑓 = 𝐹(𝐶 →  𝐷𝑅)𝑓(𝐶) +  𝐹(𝑂 →  𝐷𝑅)𝑓(𝑂) +  𝐹(𝑅 →  𝐷𝑅)𝑓(𝑅)

+  𝐹(𝐷 →  𝐷𝑅)𝑓(𝐷)  
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Calculating each row to obtain: 

𝑎11 = +  [
0 0 1 0
0 0 0 1

] ; [ OC : C]  = +1 

𝑎12 = − [
0 0 1 0
0 0 0 1

] ; [ OC : O] = -1 

𝑎13 = 021,  𝑎14 = 023    ; [OC : R] = [OC : D] = [OC : O] = 0   

𝑎21 =  -  [
1 0 0 0
0 1 0 0

] ; [ CD : C]  = -1 

𝑎22 = 024 ; [ CD : O]  = 0 

𝑎23 = 021 ; [CD : R] = 0 

𝑎24 = +  [
1 0 0 0
0 1 0 0

]   ; [ CD : D]  = + 1 

𝑎31 = 014 ; [DO : C] = 0 

𝑎32 = + [0 0 1]  , [DO : O] = +1 

𝑎33 = 011 ;  [DO : R] = 0 

𝑎34 = - [0 0 1] ; [DO : D] = -1 

𝑎41 = 014  ; [RO : C] = 0 

𝑎42 = + [0 1 0 0]  ; [RO : O] = +1  

𝑎43 =  - 111  ; [RO : R] = -1 
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𝑎44 = 013 ; [RO: D] = 0 

𝑎51 =  014  ; [DR : C] = 0 

𝑎52 = 014  ; [DR : O] = 0 

𝑎53 =  + 111  ; [DR : R] = +1 

𝑎54 = - [0 0 1] ; [DR : D] = -1 

Here 0ij is the zero metrix with i-rows and j-columns. 

The rows of the vector 𝑑0𝑓 = (𝑎𝑖𝑗)𝑓 are: 

𝑑0(𝑓)(𝑂𝐶) = 𝑎1𝑗𝑓 = +  [
0 0 1 0
0 0 0 1

] 𝑓(𝐶) − [
0 0 1 0
0 0 0 1

] 𝑓(𝑂) + 021 + 023 

𝑑0(𝑓)(𝐶𝐷) = 𝑎2𝑗𝑓 = − [
1 0 0 0
0 1 0 0

] 𝑓(𝐶) + 024 + 021  +[
1 0 0 0
0 1 0 0

] 𝑓(𝐷)  

𝑑0(𝑓)(𝐷𝑂) = 𝑎3𝑗𝑓 = 014 + [0 0 1]𝑓(𝑂) + 011  − [0 0 1]𝑓(𝐷)  

𝑑0(𝑓)(𝑅𝑂) = 𝑎4𝑗𝑓 = 014 + [0 1 0 0] 𝑓(𝑂) − 111𝑓(𝑅) + 013  

𝑑0(𝑓)(𝐷𝑅) = 𝑎5𝑗𝑓 = 014 + 014 + 111𝑓(𝑅) − [0 0 1]𝑓(𝐷)  

To compute the (𝐾𝑒𝑟 𝑑0), notice that 𝑑0𝑓 = (𝑎𝑖𝑗)𝑓 = 0 if and only if: 

𝑓(𝐶)𝑠𝑚𝑜𝑘𝑒 =  𝑓(𝑂)𝑠𝑚𝑜𝑘𝑒 = M 

𝑓(𝐶)𝑓𝑖𝑟𝑒 =  𝑓(𝐷)𝑓𝑖𝑟𝑒 = N 

𝑓(𝑂)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝑓(𝐷)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝑓(𝑅)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = P 

As a conclusion the element 𝑓 = (𝑓(𝐶), 𝑓(𝑂), 𝑓(𝑅), 𝑓(𝐷)) ∈ 𝐶0 belongs to 𝐾𝑒𝑟 𝑑0 if and  
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only if: 

𝑓(𝐶) = (𝑁, 0, 0,𝑀) 

𝑓(𝑂) = (0, 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, 𝑃,𝑀) 

𝑓(𝑅) = (0, 0, 𝑃, 0) 

𝑓(𝐷) = (𝑁, 0, 𝑃, 0) 

The zero components represent data that are not reported by the sensor. Consequently: 

 

 
𝐹(𝐶) + 𝐹(𝑂) =  𝐾𝑒𝑟 𝑑0 𝑜𝑟 𝐹(𝐷) + 𝐹(𝑂) =  𝐾𝑒𝑟 𝑑0 

 

 

(25) 

As a result from calculations based on theorem 3.4.7, the significant sensors are either 

{𝐶, 𝑂} or {𝐷, 𝑂} and 𝐾𝑒𝑟 𝑑0 ≅ (ℝ2 ⨁ ℝ2) ⨁ (ℝ ⨁ ℝ) or 𝐾𝑒𝑟 𝑑0≅ (ℝ2 ⨁ ℝ) ⨁ (ℝ ⨁ ℝ2). 

The zero cohomology is calculated from  𝐻0 = 
𝑘𝑒𝑟 𝑑0 

𝐼𝑚𝑔𝑑−1
 ≅ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ . 

Since there is no (𝑑−1) , then 𝐼𝑚𝑔 𝑑−1 = 0, and the dimension of 𝐻0 is 6. 

To calculate the first cohomology 𝐻1 = 
𝑘𝑒𝑟 𝑑1 

𝐼𝑚𝑔𝑑0
 , it is required to calculate 𝑘𝑒𝑟 𝑑1 and 

𝐼𝑚𝑔 𝑑0 separately. Since the matrix 𝑑0 has the number of 6 independent columns 

(calculated by MATLAB), the rank of the matrix is 6. For the calculation of  𝑘𝑒𝑟 𝑑1, 

consider the following:  

𝑑1 ∶  𝐶1 → 𝐶2       ;   𝑑1 = (𝑏1𝑗)  ;   𝑗 = 1,… ,5 

𝑏11 = 012  ,  𝑏12 = 012  ,  𝑏13 = −111 , 𝑏14 = 111  ,  𝑏15 = 111 

[ODR : OC] = [ODR : CD] = 0 , [ODR : DO] = -1 , [ODR : RO] = [ODR : DR] = 1 
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to get 𝑑1 = (012 , 012 , −111, 111, 111).  

For 𝑓 = (𝑓(𝑂𝐶), 𝑓(𝐶𝐷), 𝑓(𝐷𝑂), 𝑓(𝑅𝑂), 𝑓(𝐷𝑅)) ∈  𝐶1:   

 

𝑑1(𝑓) =  (𝑏1𝑗)𝑓 =  −𝑓(𝐷𝑂) + 𝑓(𝑅𝑂) + 𝑓(𝐷𝑅) 

 

 

(26) 

From the above equation 𝑑1(𝑓) = 0 if and only if 𝑓(𝑅𝑂) + 𝑓(𝐷𝑅) =  𝑓(𝐷𝑂) and  

𝑓(𝑂𝐶) = (0, 0, 0, 𝑓(𝑂𝐶)𝑠𝑚𝑜𝑘𝑒) = (0, 0, 0, W) ; W ∈ ℝ2  

𝑓(𝐶𝐷) = (𝑓(𝐶𝐷)𝑓𝑖𝑟𝑒, 0, 0, 0) = (E, 0, 0, 0) ; E ∈ ℝ2 

𝑓(𝑅𝑂) = (0, 0, 𝑓(𝑅𝑂)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 0) = (0, 0, U, 0)  

𝑓(𝐷𝑅) = (0, 0, 𝑓(𝐷𝑅)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , 0) = (0, 0, V, 0) 

𝑓(𝐷𝑂) = (0, 0, 𝑓(𝐷𝑂)𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 0) = (0, 0, U+V, 0) 

Where W, E ∈ ℝ2 and U, V ∈ ℝ. Therefore  

 𝑘𝑒𝑟 𝑑1 =  𝐹(𝑂𝐶) ⨁𝑓(𝐶𝐷) ⨁𝑓(𝑅𝑂) ⨁𝑓(𝐷𝑅).  

Since the matrix 𝑑0 has the number of 6 independent columns (calculated by MATLAB),  

the rank of the matrix is 6. As a result 𝐻1 = 
𝑘𝑒𝑟 𝑑1 

𝐼𝑚𝑔𝑑0
= 

ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ 

ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ
= 0.  

𝑑2 ∶  𝐶2 → 0 and  𝑘𝑒𝑟 𝑑2 = 𝐶2 = ℝ.  
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On the other hand the rank of the matrix 𝑑1 = (012 , 012 , −111, 111, 111) is 1, 𝐼𝑚𝑔 𝑑1 =

ℝ and  𝐻2 = 
𝑘𝑒𝑟 𝑑2 

𝐼𝑚𝑔𝑑1
= 

ℝ 

ℝ
= 0. The higher cohomology groups (𝐻𝑑 for d  > 1) will also be 

zero. 

Results from calculation of sheaf cohomology (data analysis) at time t=t0: 

𝐻0 = ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ (dim 𝐻0 = 6), meaning that at time t0 the significant 

sensors are {𝐶, 𝑂} or {𝐷, 𝑂}. The global information (section globalization) is extracted from 

the sensors {𝐶, 𝑂} or {𝐷, 𝑂}.  

H1 = 0. The first cohomology group 𝐻1 = 
𝑘𝑒𝑟𝑑1 

𝐼𝑚𝑔𝑑0
  characterizes the families of sections 

on the edges that come from the families of sections on the vertices. More precisely it figures 

out the number of 1-integrating families that do not belong to 𝐼𝑚𝑔 𝑑0.  For the case in which 

the first cohomology group becomes zero, it means that all sections of the form  𝑓 =

(𝑓(𝑂𝐶), 𝑓(𝐶𝐷), 𝑓(𝐷𝑂), 𝑓(𝑅𝑂), 𝑓(𝐷𝑅)) ∈  𝐶1 which are also 1-integrating families come 

from families of sections on the sensors.  

H2 = 0 since there are no n-simplices for n >1. 

 

4.1.5 Time Changes from t=t0 to t= t1 

  At time t = t1 the Table 4.1 has been changed to the Table 4.3. The i-number of CO2 

sensor detectors go out of mission. 
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Table 4.3. Sensors and Duplication Numbers, Wildfire Monitoring (t = t1) 

 
 

Sensor type Number of sensors 
time t=t1 

Satellite Camera, C n 

CO2 Detector, O m – i   

IR Detector, R p 

Flame Detector, D q 

 

As a result temperature is no longer detected by the sensor O. Table 4.4 shows the change 

in Table 4.2. 

 

Table 4.4. The Heterogeneous Data for Wildfire Monitoring (t = t1) 
 

Sensors vs. 
data 

Fire 
Size 
F, ℝ2 

Intensity 
I, ℝ 

Temperature 
T, ℝ  

Smoke 
size S, 
ℝ2 

Satellite 
Camera, C 

√   √ 

CO2 
Detector, O 

 √ out of 
mission 

√ 

IR Detector, 
R 

  √  

Flame 
Detector, D 

√  √  

 

The new simplicial complex is shown in Figure 4.3. 

 

 

Figure 4.3. Simplicial complex model with oriented simplices for the wildfire threat 

monitoring at time t=t1. 
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Similar to the calculations for the homology groups at time  t = t0, the calculations 

at time t = t1 are as follows: 

𝐻0 =   ℝ  (𝑑𝑖𝑚 𝐻0 =   1), meaning that one connected simplicial complex exists.  

𝐻1 =   0  (𝑑𝑖𝑚 𝐻1 =   0), meaning that there is no 1-dimensional hole in the simplicial 

complex.   

𝐻𝑛 =   0 for n > 1,  meaning that in this simplicial complex there are no voids in dimension 

higher than 2D.  

 

4.1.6 The Sheaf Construction 

 The following new stalks are shown in Figure 4.4: 

Stalk C = F(C) = {Size of fire ℝ2, Size of Smoke ℝ2} ≃ ℝ2 ⨁ ℝ2  

Stalk O = F(O) = {Intensity ℝ, Size of smoke ℝ2} ≃ ℝ ⨁ ℝ2 

Stalk R = F(R) = {Temperature ℝ} ≃ ℝ 

Stalk D = F(D) = {Size of Fire ℝ2, Temperature ℝ} ≃ ℝ 2 ⨁ ℝ 

Stalk CO = F(OC) = {Size of smoke ℝ 2} ≃ ℝ2 

Stalk CD = F(CD) = {Size of fire ℝ 2} ≃ ℝ2 

Stalk DR = F(DR) = {Temperature ℝ} ≃ ℝ 
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Figure 4.4. Sheaf, stalks and restriction maps associated with the simplicial complex for 

the wildfire threat monitoring for time t=t1. 

    

Similar to the sheaf cohomology calculations for time  t = t0, the cohomology calculations 

for time  t=t1   are as follows: 

𝐻0 = ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ ⨁ ℝ (dim 𝐻0 = 6), meaning that at time t1 the significant 

stalks are on O and D. The global information (section globalization) is extracted from O 

and D. In this situation the sensor C is no more significant although the detectors that no 

longer work, are from the CO2 detector O. 

H1 = 0. The same interpretation applies here as in case t=t0. 

H2 = 0, since there are no 2-simplices. 

 

4.1.7 Discussion 

  From the calculations it is seen that the significant sensors are changed when there 

is a change in the number of sensors or if some sensors become inactive or out of mission. 

The changes in the homology groups from time t=t0 to time t=t1 are: 
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𝐻0(t0) =  ℝ →  𝐻0(t1) =  ℝ  (which is expected) 

𝐻1(t0) =  ℝ →  𝐻1(t1) =  0  (the hole disappears) 

The changes in the sheaf cohomology groups from time t=t0 to time t=t1 are: 

Dimension  𝐻0(t0) = 6 →  Dimension  𝐻0(t1) =  6 

The dimension of the first cohomology group remains the same but the calculations show 

that the change in the stalks results in the change of the significant sensors from {O, C} to 

{O, D}. 

 

4.2 Part 2: Example of Air Traffic Monitoring 

Air traffic monitoring is one of the crucial complex systems to detect and estimate 

the location, velocity and flight direction of a large number of various airplanes 

approaching an airport. At an airport, multiple sensors of various types monitor the region. 

To make the detection more precise, consider duplication of the sensors of the same type. 

Consider cluster of GPS satellites, cluster of radar stations, cluster of airport surface 

detectors and cluster of smart IR (infrared) sensors for air traffic monitoring. Figures 4.5 

and 4.6 show an air route and an air traffic and monitoring system. Numerous 

heterogeneous data acquisition must be integrated. 
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Figure 4.5. Air route and traffic control centers in the United States and its territories [58]. 

 

 

 

Figure 4.6. An example of air traffic monitoring system including air traffic control tower, 

air route traffic control center, and terminal radar approach control [58].  
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   Sensors of the same type communicate and report common data, as shown in Table 4.5.  

 

 

Table 4.5. Sensors and Duplication Numbers for Air Traffic Monitoring (t = t0) 

 
 

Sensor type Number of sensors 

time t=t0 

Radars (R) n 

GPS (G) m 

Airport Surface 

Detectors(K) 

p 

IR Sensors (I) q 

 
 

    

1. Aircraft Status (E), Space of measurement = ℝ 

2. Aircraft Coordinates (C), Space of measurement = ℝ3 

3. Direction (D), Space of measurement = ℝ3 

4. Speed (S), Space of measurements = ℝ 

The heterogeneous data received at time t=t0 are given in the table 4.6. The measured 

subjects in the table are: 

 

Table 4.6. The Heterogeneous Data for Air Traffic Monitoring (t = t0) 

 

Sensors vs. data (E) (C) (D) (S) 

Radars (R)  √ √ √ 

GPS (G)  √  
 

 
 

Airport Surface Detectors (K) √  √  

IR Sensors (I)  
√ 

  
 

√ 

 

 

 

4.2.1 The Construction of the Simplicial Complex 

The oriented simplicial complex structure model is shown in Figure 4.7. 
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Figure 4.7. Simplicial complex model with oriented simplices for the air traffic monitoring 

at time t= t0. 

 

4.2.2 The Sheaf Construction 

Each simplex in the simplicial complex has a characteristic that is represented by 

assigning additional information to the simplex. To model this assignment, a stalk 

associated with the information is assigned to each simplex. It carries all of the information 

about the data and its neighboring nodes and enables the analysis of the system. The 

assigned spaces and the stalks are shown in Figure 4.8, as follows:   

Stalk R = F(R) = {Aircraft Coordinates ℝ3, Direction ℝ3, Speed ℝ} ≃ ℝ3 ⨁ ℝ3 ⨁ ℝ 

Stalk G = F(G) = {Aircraft Coordinates ℝ3} ≃ ℝ3 

Stalk K = F(K) = {Aircraft Status ℝ, Direction ℝ3} ≃ ℝ ⨁  ℝ3  

Stalk I = F(I) = {Aircraft Status ℝ, Speed ℝ} ≃ ℝ ⨁ ℝ 

Stalk RG = F(RG) = {Aircraft Coordinates ℝ3} ≃ ℝ3 

Stalk RK = F(RK) = {Direction ℝ3} ≃ ℝ3 

Stalk RI = F(RI) = {Speed ℝ} ≃ ℝ 

Stalk IK = F(IK) = {Aircraft Status ℝ} ≃ ℝ 
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Figure 4.8. Sheaf, stalks and restriction maps associated with the simplicial complex for 

the air traffic monitoring example at time t= t0. 

 

4.2.3 Homology and Sheaf Cohomology 

Based on the algorithms for calculation of the homology groups in subsection 2.2.2, 

the following results at time t=t0 are obtained. 

𝐻0 = ℝ (dimension of 𝐻0 = 1), meaning one connected simplicial complex exists.  

𝐻1= ℝ (dimension 𝐻1 =1), meaning a 1-dimensional hole in this simplicial complex exists.  

𝐻n = 0 for n > 2, meaning there are no voids in dimension bigger than 2D in this simplicial 

complex.  

From the algorithm for calculation of the sheaf cohomology groups (data analysis) 

in subsection 3.3 it is seen that 

Dimension 𝐻0 = 8, meaning that at time t0 significant stalks are on R and I. The global     

information (section globalization) is extracted from the sensors R and I.  
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𝐻1 = 0, meaning that all 1-integrating families come from sections on the sensors. 

𝐻𝑛 = 0 (n > 1), since there are no n-simplices for n > 1. 

 

4.2.4 Time Changes from t=t0 to t= t1 

Suppose at time t=t1 the i-number of airport surface detectors are out of mission. 

Table 4.5 has been changed to Table 4.7. 

 

Table 4.7. Sensors and their Duplication Numbers for Air Traffic Monitoring (t = t1) 

 

Sensor type Number of sensors 

time t=t0 

Radars (R) n 

GPS (G) m 

Airport Surface 

Detectors(K) 

P - i 

IR Sensors (I) q 

 

 

 

As a result the aircraft status (E) is no longer detected by the airport surface 

detectors (K). Table 4.8 shows the change that occurs in Table 4.6. 

 

 

Table 4.8. The Heterogeneous Data for Air Traffic Monitoring (t = t1) 
 

 

Sensors vs. data (E) (C) (D) (S) 

Radars (R)  √ √ √ 

GPS (G)   
√ 

 
 

 
 

Airport Surface Detectors (K) Out of 
mission 

 √  

IR Sensors (I) √   
 

√ 
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The new simplicial complex is shown in Figure 4.9. 

 

 
 

Figure 4.9. Simplicial complex model with oriented simplices for the air traffic monitoring 

at time t= t1. 

 

 

The new stalks are: 

Stalk R = F(R) = {Aircraft Coordinates ℝ3, Direction ℝ3, Speed ℝ} ≃ ℝ3 ⨁ ℝ3 ⨁ ℝ 

Stalk G = F(G) = {Aircraft Coordinates ℝ3} ≃ ℝ3 

Stalk K = F(K) = {Aircraft Status ℝ, - Direction ℝ3} ≃ ℝ ⨁ ℝ3  

Stalk I = F(I) = {Aircraft Status ℝ, Speed ℝ} ≃ ℝ ⨁ ℝ 

Stalk RG = F(RG) = {Aircraft Coordinates ℝ3} ≃ ℝ3 

Stalk RK = F(RK) = {Direction ℝ3} ≃ ℝ3 

Stalk RI = F(RI) = {Speed ℝ} ≃ ℝ 

The sheaf, stalks and restriction maps for the simplicial complex at time t= t1 are shown in 

Figure 4.10.  
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Figure 4.10. Sheaf, stalks and restriction maps associated with the simplicial complex for 

the air traffic monitoring example at time t= t1. 

 

Based on the algorithms for calculation of the homology groups in subsection 2.2.2, 

for the simplicial complex at time t=t1 the following results are obtained. 

𝐻0 = ℝ (dimension of 𝐻0 = 1), meaning that one connected simplicial complex exists.  

𝐻1= 0 (dimension 𝐻1 =0), meaning that no 1-dimensional hole in this simplicial complex 

exists.  

𝐻n= 0 for n > 2, meaning that no voids in dimension greater than 2D exist in this simplicial 

complex.  

From the algorithms for calculation of the sheaf cohomology groups (data analysis) 

in subsection 3.3:  

Dimension of 𝐻0 = 9, meaning that at time t=t1 significant stalks are on K,G and I. The 

global information (section globalization) is extracted from the sensors K,G and I.  

𝐻1 = 0, meaning that all 1-integrating families come from sections on the sensors. 
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𝐻𝑛 = 0 (n > 1), since there are no n-simplices for n > 1.   

 

4.2.5  Feedback from the Example 

By the change in the number of sensors, when some sensors become inactive or 

broken, the changes in the simplicial complex homology and the sheaf cohomology, from 

time t=t0 to time t=t1, occur. As a result the significant sensors are changed: 

𝐻0(𝑡0) =  ℝ → 𝐻0(𝑡1) =  ℝ (as expected) 

𝐻1(𝑡0) =  ℝ →  𝐻1(𝑡1) =  0 (the hole disappears) 

Dimension 𝐻0(𝑡0) = 8 →  Dimension 𝐻0(𝑡1) =  9 

The change in the stalks results in the change of the significant sensors from {R. I} to {K, 

G, I}, and also the change in the dimension of the zero cohomology group. 

 

4.3 Summary 

Applications of the methodology in the previous chapters are described by the two 

case studies: one from the wildfire threat monitoring and the other from the air traffic 

monitoring. 

Both cases are distributed information systems that deal with temporal and spatial 

fusion of heterogeneous data obtained from multiple sources, where the schema, 

availability, and quality vary.  

Behavior of both systems is explained thoroughly in terms of the detection of the 

failure in the system. The redundant and complimentary sensors are recognized. 

The mathematical foundations in Chapter 3 prove the validity of these processes. 
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 CHAPTER 5 

ALTERNATIVE SOLUTION 

  This chapter is devoted to the comparison between the sheaf theoretic method and 

the alternative method that does not apply the sheaf theory. Without utilizing the sheaf 

theory method, multiple tables are required to extract data from sensors. In the following, 

the two methods are compared in terms of time and space complexity. It is found that when 

the data are more heterogeneous the sheaf theory method makes the solution less complex 

with respect to time and space.  

 

5.1 Solving the Fire Monitoring with Alternative Tools 

To address the wildfire monitoring, the construction of a grid of measured points 

for p types of sensors is required. This is of order O(n). In this case p= 4. Consider the 

following thresholds for the measurement of each sensor: 

Satellite Camera = Sat_Threshold 

CO2 Detector = CO2_Threshold 

IR Detector = IR_Threshold 

Flame Detector = Flame_Threshold 

For the sake of simplicity in addressing the general issue, consider the region of 

interest to be rectangular. At time t = t0  consider the tables 5.1, 5.2, 5.3 and 5.4, each with 

H rows and G columns for reporting the sensor measurements.   
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Table 5.1. Signals from Satellite Cameras, dim=H × G, complexity = O(n2) 

 
S11 S12 S13 … … … …      S1G 

S21 S22 S23 … … … …      S2G 

…             

….             

             

             

             

             

             

             

…             

SH1 SH2 SH3 … … … …      SHG 

 

Each cell in Table 5.1 acquires a measurement from satellite cameras. These measurements 

will be compared with Sat_Threshold. 

 

Table 5.2. Signals from CO2 Detectors, dim= H × G, complexity = O(n2) 

 
C11 C12 C13 … … … …      C1G 

C21 C22 C23 … … … …      C2G 

…             

….             

             

             

             

             

             

             

…             

CH1 CH2 CH3 … … … …      CHG 

 

Each cell in Table 5.2 acquires a measurement from CO2 detectors. These measurements 

will be compared with CO2_Threshold. 
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Table 5.3. Signals from IR Detectors, dim= H × G, complexity = O(n2) 

 
R11 R12 R13 … … … …      R1G 

R21 R22 R23 … … … …      R2G 

…             

….             

             

             

             

             

             

             

…             

RH1 RH2 RH3 … … … …      RHG 

 

Each cell of Table 5.3 acquires a measurement from IR detectors. These measurements will 

be compared with IR_Threshold. 

  Table 5.4. Signals from Flame Detectors, dim= H × G, complexity = O(n2) 

 
F11 F12 F13 … … … …      F1G 

F21 F22 F23 … … … …      F2G 

…             

….             

             

             

             

             

             

             

…             

FH1 FH2 FH3 … … … …      FHG 

 

Each cell of Table 5.4 acquires a measurement from flame detectors. These measurements 

will be compared with Flame_Threshold. 

 

5.1.1 The Pseudocode to Confirm the Fire in Each Cell 

For i = 1 to p      p number of sensor types 

    For j = 1 to H    number of rows  

       For k = 1 to G   number of columns 

          Compare (i,j,k)  >=  sensor thresholds 
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                      If (yes) then fire 

                      Else no fire 

         End 

    End 

End 

 

Results from the pseudocode for this alternative solution show that in terms of space 

complexity the order is O(𝑛3) and in terms of time complexity the order is O(𝑛3). By 

comparing with sheaf and topology methods: 

Space complexity of sheaf topology (O(𝑛2)) <  Space complexity of alternative method 

(O(𝑛3)). Time complexity of sheaf topology (O(𝑛2.5)) <  Time complexity of alternative 

method (O(𝑛3)). 

The only time the alternative method gives a better time and space complexity is 

when there is only one homogeneous sensor type.  When p = 1: 

Space complexity of sheaf topology (O(𝑛2)) = Space complexity of alternative method 

(O(𝑛2)). Time complexity of sheaf topology (O(𝑛2.5))  >  Time complexity of alternative 

method (O(𝑛2)). Based on the sensors measurements the results of existence of fire is in 

Table 5.5: 

 

Table 5.5. Existence of Fire Based on Sensors Measurements Time t =t0 

 
11 12 13 … … … …      1G 

21 22 23 … … … …      2G 

…             

….             

             

             

             

             

             

             

…             

H1 H2 H3 … … … …      HG 
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Based on the reports from the fire department the results of existence of fire is in Table 5.6: 

 

Table 5.6. Existence of Fire Based on Reporting from Fire Department Time t =t0 

 
11 12 13 … … … …      1G 

21 22 23 … … … …      2G 

…             

….             

             

             

             

             

             

             

…             

H1 H2 H3 … … … …      HG 

 

    

It is obvious that some of the sensors are reporting wrong signals due to the 

defection or broken.  A comparison of the two tables, cell by cell, yields information about 

the defective sensors and also shows which sensors cover the region and report correct 

information. The lower bound for this procedure is of order O(𝑛3). 

With the application of the sheaf theory approach in heterogeneous sensors, the 

time complexity is of order O(𝑛2.5). This is better than the time complexity of alternative 

method which is of order O(𝑛3). The space complexity from sheaf theory method is O(𝑛2), 

which is also better than space complexity of alternative method which is of order O(𝑛3).  
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5.2 Summary 

  The comparison between the sheaf theory and the alternative methodologies is 

described to present further proof of the validity of the sheaf theory method. 

  It is shown that when the nature of the data is more heterogeneous, the sheaf theory 

method has less computational complexity in both space and time.  
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 CHAPTER 6 

NOISE AND INCONSISTENCY 

6.1 Consistency Radius 

  In sheaf theory when some assignments as local sections are inconsistent, the 

“Consistency Radius” emerged. The question is: “Are there any error detections and 

corrections to correct the discrepancy in the sheaf theory?” The answer is YES. There is a 

way to do some error detection and correction in a sheaf. This is how it works. 

The consistency radius is the maximum distance between the value in a stalk and 

the values propagated along the restriction maps [59]. If an assignment consistency radius 

is not zero, it is definitely not a global section.  Yet, if the sheaf model is trusted as being 

accurate, only the global sections should (in principle) be observed.  Thus, what should be 

done is to find the global section that is nearest (in the appropriate assignment metric) to 

the assignment.  That will typically replace all the values in the assignment with "better" 

ones.  This approach often has been found to work quite well. Indeed, it seems to eliminate 

some standard algorithms for signal separation, which is an ongoing problem. 

The downside is that the optimization problem to minimize the distance between 

the global section and the given assignment needs to be solved. Although it may not be 

easy to solve, in relatively simple cases, a straightforward “constrained least squares” 

might do the job. But this needs to be resorted to genetic algorithms that are commonly 

used to generate high-quality solutions to optimize and search problems.  This is still an 

area that is open to research, since the problem is usually encoded as sheaves in several 

distinct ways. Different optimization problems are obtained, which may or may not vary 
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in how easy they are to solve. The occurrences of the discrepancy in sheaf model can be 

seen in Figures 6.1 through 6.4. 

For error detection and error correction there are off the shelf approaches such as 

coding by Hamming, Huffman, Reed-Solomon, and Berlekamp-Massy [48], which give 

EBR (Error Bit Rate) 1/10^9. Reaching to the lower EBR is another open research area. 

 

 
 

Figure 6.1. Sheaf of vector spaces on the partial order set associated with the example of 

wildfire threat monitoring system. The diagram commutes. 
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Figure 6.2. Relating to the example of wildfire threat monitoring a global section is an 

assignment that is consistent with restrictions. 

 

 

 

 

Figure 6.3. Relating to the example of wildfire threat monitoring due to noise some 

assignments are not consistent. They are partially consistent. 
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Figure 6.4. Consistency radius is the maximum distance between the value in a stalk and 

the values propagated along the restrictions. 

 

 

6.2 How to Achieve the Desirable Consistency Radius 

The method to achieve the desirable consistency radius is to deploy the supervised 

data input to the sensor integration, measuring the consistency radius and finding out the 

data quality estimation. The desirable consistency radius is obtained by calibrating the 

hardware, feeding these results as new input to the system and repeating the cycle until the 

desirable consistency radius threshold is obtained.  
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6.3 Summary 

This chapter is devoted to the case study in which the noise causes the sheafification 

of the system to be disturbed. Methods to detect error and make the corrections are stated. 

The noise is described from the consistency of the stalk assignments. The feedback process 

to achieve the desirable consistency radius is also discussed. 
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 CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 The Feedback Process, Figure 7.1. 

 

 

Figure 7.1. The feedback process. 

 

7.2 Summary and Future Work 

  The focus of this dissertation research is to model temporal and spatial 

heterogeneous data fusion. The software utilized for computation of the matrix rank and the 

image and kernel is “MATLAB”. Some open problems are recommended for future work. 

Among them are:  

 Addressing large or varied datasets (stalks) 

 Statistical behavior of heterogeneous data fusion  

 Dynamical persistence of sheaves  

 Using machine learning technique to automate suggestions for the addition, 

removal, or changing of sensors 

 Concept of cosheaf and sheaf, cosheaf duality [60] and [61] 

 Simplicial complex → Sheaf is done, what about sheaf → Simplicial complex?  
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