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ABSTRACT

Sheaf Theory as a Foundation for Heterogeneous Data Fusion
by
Seyed M-H Mansourbeigi, Doctor of Philosophy

Utah State University, 2018

Major Professor: Heng-Da Cheng, Ph.D.
Department: Computer Science

This dissertation proposes an effective geometric and topological approach in
computational science for the study, analysis, and fusion of temporal and spatial
heterogeneous data obtained from multiple sources, where the schema, availability and
quality vary.

The approach provides tools for translating heterogeneous data into common
language to enable data fusion. The utilization of this methodology studies the behavior of
the system based on the failure in data exchange, detection of noise in the system and
recognition of the redundant or complimentary sensors.

This method consists of objects, namely simplices that are attached to make a
simplicial complex. Data sources are represented by the 0-dimensional simplices and
interactions among two and more sensors are represented by higher dimensional simplices.
Analysis of data, encoding and translating heterogeneous data into common language, is
modeled by stalks. The fusion of data extracted from multiple sensors is modeled by a

sheaf.
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Homology groups help the interpretation of the behavior of the system based on its
potentiality to exchange data. This interpretation helps to detect possible voids in data
exchange.
Applications of the constructed methodology are brought into practice via two case
studies: one from wildfire threat monitoring and the other from the air traffic monitoring.
A comparison between the sheaf theory methodology and the alternative methods
is described to present another proof for the validity of the sheaf theory method. It is seen

that the sheaf theory method has less computational complexity in both space and time.

(117 pages)



PUBLIC ABSTRACT

Sheaf Theory as a Foundation for Heterogeneous Data Fusion
Seyed M-H Mansourbeigi

A major impediment to scientific progress in many fields is the inability to make
sense of the huge amounts of data that have been collected via experiment or computer
simulation. This dissertation provides tools to visualize, represent, and analyze the
collection of sensors and data all at once in a single combinatorial geometric object.
Encoding and translating heterogeneous data into common language are modeled by
supporting objects. In this methodology, the behavior of the system based on the detection
of noise in the system, possible failure in data exchange and recognition of the redundant
or complimentary sensors are studied via some related geometric objects.

Applications of the constructed methodology are described by two case studies: one
from wildfire threat monitoring and the other from air traffic monitoring. Both cases are
distributed (spatial and temporal) information systems. The systems deal with temporal and
spatial fusion of heterogeneous data obtained from multiple sources, where the schema,
availability and quality vary. The behavior of both systems is explained thoroughly in terms
of the detection of the failure in the systems and the recognition of the redundant and
complimentary sensors.

A comparison between the methodology in this dissertation and the alternative
methods is described to further verify the validity of the sheaf theory method. It is seen that

the method has less computational complexity in both space and time.
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CHAPTER 1

INTRODUCTION

1.1 The Motivation: "swimming in sensors and drowning in data"

Data integration is the combination of technical processes to combine data from
multiple sources into meaningful and valuable information. In this dissertation, the
meaning of "shape" is construed as the way to think about data, with the shape of data
being what carries the meaning. The objective of this dissertation is to study the shape of
data. The combination of algebraic topology and sheaf theory is necessary in a quantitative
study of "shape." The concept of topology is based on the fact that data has shape and the
shape matters.

The framework for heterogeneous data integration should accurately represent the
locally valid datasets in which the data types vary. It should also provide a common
canonical language for heterogeneous datasets and multiple source interactions. There are
classes of methods that study the characteristic of diversity in data types. For example, the
Bayesian method is based on the data obtained from a probability distribution of specific
parameter values [1]. In statistical methods for topological data analysis, it is assumed that
a sample of data is drawn randomly from some distribution [2]. However, these methods
tend to rely on the homogeneity of information sources to obtain strong theoretical results.
Sheaf theory extends the reach of these methods by explaining that the most robust aspects
of networks tend to be topological in nature. The theory provides the means for detecting
topological features and, therefore, identifies relationships between information sources
that present hazards to Bayesian reasoning [3]. Moreover, in many situations data often

have a specific shape that escapes the reach of methods to provide required information.
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The sheaf theory extends the robustness aspects of heterogeneous data integration

by reasoning about the topological nature of data and rigorously extracts features of interest
from heterogeneous data resources.

Another major issue in the operation and maintenance of sensor collections with

various types is their high cost. The sheaf theory approach that is utilized in this dissertation

can detect easily which type and what number of sensors are redundant and which sensors

can be decommissioned in order to reduce the cost of operation and maintenance.

1.2 The Method

Geometry and topology are natural tools for analyzing massive amounts of data.
The connection between topology and large amounts of data offers huge opportunities, as
well as challenges, to big data communities. A survey on bringing together state-of-the-art
research results on geometrical and topological methods for big data is shown in [4].

This dissertation presents a conceptual technique that addresses the problem of
modeling and reasoning about temporal and spatial fusion of heterogeneous data from
multiple sources, in which the schema, availability, quantity, and quality vary. The main
idea is to present more predictive methods to study heterogeneous data using the
topological data analysis approach.

Topological data analysis (TDA) is a collection of powerful tools that can quantify
the shape and structure in data in order to answer questions from the data domain. It is done

by representing some aspects of data in a simplified topological structure. An investigation
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towards a representation of some aspects of the shape of data in a simplified form for study
is shown in [5].

In this dissertation, the topological data analysis techniques are borrowed from
algebraic topology and algebraic geometry. The topology approach reflects interactions
among data sources, and the sheaf theoretic approach reflects integration of heterogeneous
data types. Sheaf theory is a new tool for topological data analysis to track data. It is a way
of attaching data to a topological space to manage heterogeneous data with various quality,
quantity, schema, and availability. A sheaf may be regarded as a system of observations on
a topological space, in which consistent local observations (sections) can be uniquely

pasted together to provide a global observation (section).

1.3 Why Topological Approach

The topology and sheaf theory approach is a solid, powerful theoretical foundation
to the analysis of datasets that are complex, high-dimensional, heterogeneous, incomplete,
and noisy. Extracting such information is in general challenging. To explain how extracting
information from datasets is related to the concept of "shape," the following examples are
provided. More examples can be found in [6] and [7].

Data have the shape of a line as shown in Figure 1.1. In this example a straight line
fits the given data quite well (linear regression). The figure illustrates how some variables
are related to other variables (prediction). It gives the qualitative information that

the weight-variable varies directly with the length-variable, and it helps to predict one of
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the variables with reasonable accuracy if the value of the other variable is known. The idea

is that the shape of data as a line allows the user to extract useful information from it.

Weight (g)
=
1

| | | I T ]
0 10,000 20,000 30,000 40,000 50,000

Length?

Figure 1.1. Reference data on the length (in centimeters) and weight (in grams) for Atlantic
Ocean rockfish of several sizes (regression line) [§].

Data do not always cooperate and fit along a line. Consider the following example. The

shape of data in Figure 1.2 is like the capital letter “Y.”

Figure 1.2. Scientific datasets are becoming more dynamic, requiring new mathematical
techniques on par with the invention of calculus [9].



The problem is that there are an infinite variety of different possible shapes, a large
number of which occur in real datasets. There are analytic ways to deal with these shapes
of data. Data may be cut into pieces and each cluster can be dealt with separately. Figure

1.3 shows clusters of data.

Figure 1.3. In the point set cluster the k-median objective (left) minimizes the sum of
distances from points to their representative data points. The k-means objective (right)
minimizes the average of the squared Euclidean distances of all points within a cluster [10].

At certain times, data must be dealt with as a whole. The idea is to produce
representations of data and to show all data at once. What happens when data representation
is neither linear nor cluster? It can have any shape. As an example in magnetic
configurations for a toroidal plasma confinement system, the plasmas are confined by a
magnetic field. An equilibrium between the plasma pressure and the magnetic forces creates

the configuration shown in Figure 1.4.



Blanket Flasma Magnetic
field line

Figure 1.4. Schematics of magnetically confined plasmas in (a) tokamaks; and (b)
stellarator configurations. In the tokamak, the rotational transform of a helical magnetic
field is formed by a toroidal field generated by external coils together with a poloidal field
generated by the plasma current. In the stellarator, the twisting field is produced entirely
by external non-axisymmetric coils [11].

Sometimes data are more complex. See Figures 1.5 and 1.6 as examples of complex
data.

Figure 1.5. In patient and genotype networks each node represents a single or a group of
patients with the significant similarity based on their clinical features. The edge connected
with nodes indicates the nodes have shared patients. The red color represents the
enrichment for patients with females, and blue color represents the enrichment for males
[12].



Figure 1.6. The geometric realization of a dataset by a simplicial complex. The blue balls
are of a fixed scale-parameter (radius r). Two points are connected if they are within r of
each other. Connections between more than two points create higher dimensional simplices
[13].

Methods are required to deal with complex data to visualize and describe a high-
dimensional data shape. The above examples support the idea that data have shape and that
shape matters. More examples of the applications of topological methods to study complex
high-dimensional datasets by extracting shapes (patterns) and obtaining insights about

them are shown in the list of references [14] and [15].

1.4 In What Cases is the Topological Approach Better?

1.4.1 Simplicial Complex Model vs. Graph Theory
The conventional method of handling data and describing a dataset is to build a
graph in which the vertex set is the collection of points in data space, and each point is

possibly a collection of data. Two vertices are connected by an edge. In fact, a
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combinatorial theory of interactions between at most two datasets can be constructed using
only graph theory (an example is the graph-based data fusion in [16]).

What is the problem with a graph model? There are cases involving data sources
that encompass more than two interactions. To deal with these cases, one must apply
combinatorial topology, a higher-dimensional version of graph theory. One approach will
be a combinatorial model in which all possible interactions between multiple sources are
captured using topological notions. In fact simplicial complexes are possible
generalizations of graph-theoretic modeling, as shown in Figure 1.6.

There are methods to construct a simplicial complex from a graph. According to
[17], topological framework enables the multifaceted approach. An application of algebraic
topology and simplicial complex modeling for characterizing interactions between
multiple sources obtained from opinion space of a group of individuals can be found in
[18].

The cluster analysis method works with a set of subjects as statistical data units
described by a set of homogeneous (of the same type) variables. The technique concerns
exploratory multivariate data analysis for finding a clustering structure on a dataset [19].
The key idea is to represent all possible data at some time as a single, static, combinatorial
geometric object, called a simplicial complex. It is done by providing methods which
produce combinatorial representations of the data. There are many sources of high-
dimensional data that are inherently structured, but the structure is difficult to
conceptualize. In this dissertation, the motivation is to organize, associate, and connect

multidimensional data to qualitatively understand the global content.



1.4.2 Advantages of the Sheaf Theory Approach

When the type and the number of sensors increase, there is a need to develop
systems to establish situational awareness of events based on multiple real-time
information feeds. A sensor is an instrument that generates a quantified signal to a generic
information process and returns a stream of observations, either direct measurements,
derived measurements, or the output of an analytic process [20].

When translation of heterogeneous data into common language is required, data
fusion techniques are extensively employed in multi-sensor environments with the aim of
fusing and aggregating data obtained from different sensors. Modeling consistency
between observations and encoding the interactions among heterogeneous information
sources to integrate data requires a stronger tool. In this situation, the sheaf theory approach
is the viable solution. A review of data fusion techniques may be found in [21], [22] and

[23]. In short, sheaves are used to analyze dissimilar data types.

1.5 Advantages of the Alternative Approach

When an event is reported by single-type smart sensors, the alternative approach
potentially gives a shorter solution. In this case, the measurements of the event detected by
multiple sensors are homogeneous; as a consequence, the event is reported based on the
measurement that is compared with a threshold. The alternative approach is better when

there are no heterogeneous data and no complex problems.
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1.6 Prior Work History

The sheaf theory was developed in mathematics to study the relationships between
local and global phenomena, and has been applied in algebraic geometry, differential
geometry, analysis, and even logic. A broad class of presheaf models was proposed for a
general calculus by Cattani and Winskel [24]. They studied presheaf models for concurrent
computation. Application of sheaf theory in computer science has a long historical track.
The basic technique towards the adoption of a topological view of data structures was
applied to the derivation of pattern matching algorithm [25]. They applied the sheaf theory
to characterize the extension of the occurrence relation. As a foundation for the behavior
of concurrent processes Ehrich, Goguen and Sernadas [26] applied the sheaf model.
Goguen [27] utilized concepts from the category theory and modeled objects by sheaves.
The motivation in this dissertation is inspired by recent applications of sheaf theory in
computer science and software engineering. These applications can be found in [28] for
distributed systems and in [29] for understanding the behaviors of the networks. In this
dissertation, sheaves are representations for the behavior of the sensors. Moreover the data

structure is represented by the simplicial complex topological model.

1.7 The Research Contribution in this Dissertation
The research for this dissertation yields an explanation of the topological data
analysis modeling technique together with an illustration of data integration from multiple
sources that differ in terms of their schemas, granularity, and quality. For instance, an

example of a wildfire detection application that gathers heterogeneous data from a
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designated area is explained. In it, the area is covered by different types of sensors for
measuring temperature, intensity, fire size, and smoke. The sensors are online or offline at
different times and locations dynamically or are permanently disabled in some cases. This
modeling technique is used to capture essential characteristics of the wildfire application
and to answer questions such as:

a) Do the sensors provide sufficient information to track a real fire, even when some of the

sensors may go offline?
b) Which types of sensors are redundant or complimentary?
c) Is there any failure in data exchange in the spatial or temporal dimension?

Both approaches are used to answer the questions. Basically, the two approaches
(algebraic topology and algebraic geometry) include creations of the data structures and
algorithms for computation of homology and sheaf cohomology. Homology interprets the
temporal and spatial shape of data interaction and cohomology interprets the data analysis.

The road map for the two approaches is shown in Figure 1.7.

Simplicial CPLX

Linear Algebra

Figure 1.7. Road map towards the creation of the modeling: From set theory to topology,
homology and sheaf cohomology.
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1.8 Outline
This dissertation is organized as follows based on the main contribution of the research:

Chapters 1, and 2 introduce the topological approach to identify and study the system

through the shape of data and data sources.

Chapter 3 describes the mathematical foundation by presenting the required definitions to
bring the information of the system into a mathematical language. The validity of the
method is verified by the main theorem that brings about a necessary and sufficient

condition for a sensor to be significant.

Chapter 4 is dedicated to the applications of the methodology that has been constructed in

the previous chapters to the two case studies: wildfire and air-traffic monitoring.

Chapter 5 presents the comparison between the sheaf theory methodology and the

alternative methods.

Chapter 6 studies the case in the presence of noise in the system that results in the

sheafification of the system to be disturbed.

Chapter 7 proposes opportunities for future work.
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CHAPTER 2

SIMPLICIAL COMPLEXES, HOMOLOGY AND DISCRETIZING DATA

This chapter defines the concept of simplicial complex and continues with a
comprehensive explanation of the constructions of simplicial complex modeling for data
analysis. The topological approach modeling is applied to reflect interactions among data
sources. Essentially, it includes creation of the data structures and algorithms for

computation of homology in temporal and spatial shape of data interaction.

2.1 Simplicial Complex

The following definitions are extracted from [30] and [31].

Definition 2.1 A set of n points in Euclidean space (R¥) is geometrically independent if the

points do not belong to any (n-2)-dimensional hyperplane.

Definition 2.2 An n-simplex is the closed polytope convex hull of (n+1) geometrically
independent ordered set of points. An n-dimensional simplex is denoted by S". A 0-simplex
S% is a vertex, a 1-simplex S' is an edge, a 2-simplex S? is a triangle, and so forth. A d-
simplex S%is a proper face of a t-simplex S'if d < t and each vertex of S?is a vertex of S'.
Consequently S'is called a proper coface of S¢. For simplicity the n-simplex S" with (n+1)

vertex points {ao, a1, az ,...., an}is denoted by S" = ao a1 ay....an . It is shown in Figure 2.1.
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Figure 2.1. A 3-simplex as the polytope convex hull of three geometrically independent
points ao, a1, a> .The simplices are represented by their vertices.

Definition 2.3 A simplicial complex K is a set of simplices satisfying the following
conditions:

1- Any face of a simplex in K also belongs to K.

2- The intersection of any two simplices in K is either empty or is another simplex.
The dimension of a simplicial complex is the maximum of the dimensions of its simplices.

See Figure 2.2.

0 o 9

0-simplex I-simplex

2-simplex

Figure 2.2. Simplices of dimensions zero, one and two (top). A simplicial complex of
dimension two (left) and a collection of simplices (right) which do not comprise a
simplicial complex [32].
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Definition 2.4 For the two simplices S and S9!, with dim S9! = dim S9+1, the incidence
number which is denoted by [S9':S9] is defined to be 0 (if SYis not a face of S!) and (-
1)" (if by deleting the n'" vertex of the simplex ST, the simplex S%is obtained). In short if
b=S%"and a =S89,

0 if ¢ is not a face of b

[rsim] = (-1)" if you delete the n™ vertex of b to geta (1

For example if S = apaiaz and T = ajas and U = aja; then:

[S: T]=[aoaiaz: a1as] =0 and [S : U] = [ao a1a2: a1a2] = (-1)° =1. Similarly [ao a1a2: ao

az]=(Cl=-1.

As shown in the next two subsections, simplicial complexes inherit extra algebraic

structures. The structures will be important in the data analysis in the coming chapters.

2.1.1 Simplicial Complex as a Poset
A relation, "<=", is a partial order on a set S if it has reflexive property (a <= a for
all ain S), antisymmetric property (a <=b and b <= a implies a = b), and transitive property
(a<=band b <=c implies a <=c).
A partially ordered set (a poset) is a set together with a partial order on it. A
simplicial complex carries a poset structure, in which the elements of the poset are
simplices and the partial order is obtained by the face/coface relationship. This relationship

is denoted by <. If S is a face of C then write S < C. See Figure 2.3.
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Figure 2.3. A 2-dimensional simplicial complex (left). The poset representation of the
simplicial complex (right).

A topology (Alexandroff topology [33]) is associated with the poset of faces in the
simplicial complex K. The open sets in this topology are defined by the upper sets in the
following way:

In the simplicial complex K, a subset U < K is open if and only if it satisfies the
following condition:

For the two simplices S and Cin K, if S € U and S <C then C € U. See Figure 2.4.

an open set (upper set) U = {a, y. T}

Figure 2.4. The upper set U represents an open set in the Alexandroff topology for the
simplicial complex.
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2.1.2 Constructing a Simplicial Complex from a Topological Space
Pavel Alexandroff [33] introduced the construction of a simplicial complex from
the open covering of a topological space. All topological spaces in this dissertation are

considered to be compact (they have finite open covers).

2.1.3 Alexandroff’s Definition
Suppose © = {Uj; 1 € I } is an open cover of the topological space X. The nerve

complex N(O) of this open cover is constructed as follows:

The vertices (0-simplices) are the elements of the open cover. The intersection of
the n-number of elements of the open cover represents a (n-1)-dimensional simplex (if

nonempty), see Figure 2.5.

¢
o g

.". ® . .E' *e b

O s

R N

N ..;C . od . . c d
o’ £ f

s e d

Figure 2.5. A cover © = {a, b, ¢, d, e, f} of 6 sets with labels for each cover set (left) and
its nerve complex (right) [34] .
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The nerve complex is an appropriate approach for the construction of a simplicial
complex from a dataset. In fact the topological space and its associated nerve complex have
the same “shape.” More precisely:
Theorem 2.1 [30] (Corollary 4G.3) If © is an open cover of a compact topological space X
such that every nonempty intersection of finitely many sets in © is contractible (contains
no voids), then X is homotopy equivalent to the nerve N(6).
Throughout this dissertation, all simplicial complexes are considered to be finite

(have finite number of simplices).

2.2 Simplicial Homology
The definitions and the theorems in this subsection are taken from [31] and [30].
Furthermore, all simplicial complexes are oriented (i.e., an order is assigned to their vertex

sets).

Definition 2.5 For the oriented simplicial complex K and for a non-negative integer n, the
n-chain real vector space Cy(K) is defined to be the formal sum of the n-simplices in K
with coefficients in R. For simplicity when the simplicial complex K is fixed, the notation

Ch 1s applied.

Remark 2.1 In a simplicial complex the n-chain vector space Cyis isomorphic to the direct

sum of the copies of R over the set of all n dimensional simplices.

Definition 2.6 For each non-negative integer n, the linear boundary operator
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dn+1 )

Cn+1 - Cn

is defined on an element by

dp41(b) ZZ[b:a]a; b € Chiq
a<b 3)

and is extended linearly to the entire space Cu+1.
Theorem 2.2 For each non-negative integer n, the composition of two consecutive
operators is trivial (i.e. dn 0 dnt1 = 0). Therefore, the following chain complex is

constructed:

o 6, % 6 B 6 S e 0 o

From the above-referenced theorem the subgroup relation Img d,,,; < Kerd,, is
concluded and therefore, an equivalent relation is defined as follows. Any real vector space
is an abelian group.
Definition 2.7 Two elements c¢i and ¢z € Ker d,, are homologous if and only if ¢1 - ¢c2 €
Imgd,,.

It can be seen that the homologous relation is an equivalent relation. The equivalent
classes make a group (homology group of the simplicial complex).
Definition 2.8 The formula for computation of the p-dimensional homology group is as

follows:
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Ho— Kerd,
P Imgdyy, (%)

Remark 2.2 The interpretation of the p-dimensional homology group H,, is as follows:

1 - H, represents the number of connected components. If the simplicial complex has n
combinatorial connected components, then the 0-homology group H,, is the direct sum of

n-copies of R.
2 - H, represents the number of the one dimensional holes.
3 - H, (n>1) represents number of the voids (n-dimensional holes).

The application of this interpretation for the coverage and hole-detection in sensor

networks is shown in [35], [36], and [37].

The following two examples demonstrate the computation and interpretation of the

homology groups, Figure 2.6.

Figure 2.6. The simplicial complexes K with two components and one hole (left) and K>
with one component and no holes (right).
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Computation of homology groups for the simplicial complex K; with orientation AB, AC

and BC:

Co = The R-vector space generated by the 0-simplices A, B, C, D as the basis elements

={aiA+taB+tasC+asD:a€e RI=Z=RORORDOR

C; = The R-vector space generated by the 1-simplices AB, AC, BC as basis elements

= {(bjAB+byAC+b;BC:bie R} = R®R® R

do: Cop = 0

do(a1A+aB+aiC+asD)=a;dyA+ardyB+a3;dy,C+asdyD=0

(since the boundary of a vertex is zero). Consequently Kerdy = (o = RO RO RD R.

di: C; = C

dy (b1 AB + by AC +b3 BC) = by d;AB + by d;AC +bs d;BC = by (B-A) + bz (C-A) +bs

(C-B)

=(-bi—b2) A+ (b1—b3) B+ (b2+b3) C.

To compute Img d4, consider the following equation:

(-bi—b2)A+(bi—b3)B+(b2+b3)C=ajA+aB+a3;C+asD.

Compare the coefficients to obtain:

-bi-by=a;;bi-bs =ax; bp+bs=a3; and as=0.
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Sum up the above-referenced equations to get a; + a> +az = 0. Thus, the degree of freedom

is 2. Consequently:

Kerdy _ RO®RO®ROR
Imgd, R®R

Imgd; = R® R and therefore Hy, = = R® R, meaning that
the simplicial complex K; has two components.

To calculate the ker d; consider the equality:

d; (b1 AB+b2 AC +b3 BC)=(-bi—b2) A + (bi—b3) B+ (b2+b3) C=0.

So, each coefficient must be zero (since A, B, C are the basis for the vector space Cj ),
-b1-b2=0;bi—b3=0;by+b3=0.

As aresult by =-b>=bs. So the degree of freedom is 1 and Ker d; = R . Consequently:

Kerdy _ R = R, meaning that the simplicial complex K has one hole.

1= Imgdz_ 0

Computation of homology groups for the simplicial complex K, with orientation PQ, QR

and RP and PQR:

Co = The R-vector space generated by the 0-simplices P, Q, R as the basis elements.

={aP+aQ+azR:ai€ R}I=RORDR

C; = The R-vector space generated by the 1-simplices PQ, QR, RP as the basis elements.

= (b;PQ +b QR +bsRP: b e R} =ROAR O R

C, = The R-vector space generated by the only 2-simplex PQR as the basis element.

={ePQR:e€ R}=R
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do: Co = 0

dy (a1 P + a2 Q +a3R) =0 (since the boundary of a vertex is zero).

Consequently Kerdy = C;, = RO RO R.

d; (b1 PQ + b2 QR +b3RP) = b; (Q-P) + b2 (R-Q) + b3 (P-R) = (-b1 + b3) P+ (b1 —b2) Q +
(b2-b3) R

=aiP+a;Q+aR

Comparing the coefficients results in the equation a; + a» +a3 = 0. Therefore, the degree of
freedom is 2. Consequently:

Kerdy, _ RO®ROR
Imgd,  R®R

Imgd; = R®R and therefore H, = = R, meaning that the

simplicial complex K> has one component.

To calculate ker d; consider the equality:

d; (b1 PQ + b2 QR +b3 RP) = b1 (Q-P) + b2 (R-Q) + b3 (P-R) = (-b1 + b3) P + (b1 — b2)Q +

(b2-b3)R=0.

As aresult bi = b= Dbs. So the degree of freedom is 1 and Ker d; = R.

d,: C, = C;

d, (ePQR)=¢ d, (PQR)=e(PQ+QR+RP)=¢ePQ+e QR +eRP

To compute Img d,, consider the following equation:
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e PQ+e QR +e RP=Db1PQ + b2 QR +b3zRP . Compare the coefficients to obtain:

e =b1=bx=Dbs. So the degree of freedom is 1 and Img d, = R.

Kerds _ R _ indicating that the simplicial complex K> has no holes.

1= Imgdz_ R

2.2.1 Computation of Homology Groups Algorithm

Consider the following chain complex extracted from a simplicial complex K:

dnt1 dn dn—1 dz dy do 6
Chy1— Cp > Cpoqg — e - C - C—> 0 (6)

To compute the n-homology groups for this chain complex, the following considerations

are crucial:

1- The image of the operator d,, 4 is inside the kernel of d,, (d,, 0 d,41 = 0).

Kerdy
Img dnyq

So, to compute H,, = , one must look at the two sequential operators:

dn+1 dn 7
Cn+1 - Cn - Cn—l ( )

To simplify the identification of Img d,,, ;1 inside the Ker d,, , rows and columns reduction
is applied from the co-reduction homology algorithm formula from [38] and [39]. This
algorithm is applied to the rows and columns of the matrices corresponding to the linear

operators d,,1 and d,, to create as many zero rows and columns as possible.

2- The basis of the vector space C, generates the rows of the matrix associated with the

linear operator d,,,. In the meantime, it generates the columns of the linear operator d,,.
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The rows and columns reduction can reduce the matrices as simply as possible. Let’s call

the matrices in the new basis D,,,; and D,,.

3- Suppose the column reduction is applied by a matrix Q to the operator d,,. The inverse

of the matrix Q ( Q1) is applied to the operator d,, ,, since

dpodnyy = dyoQoQ 'dpyy =0

Setd,0Q = D,and Q 'd,.; = Dpyq .
4- Everything is in the place to conclude that:
Ker D,, = the span of the zero columns of the matrix D,,
Img D, ., = the span of the nonzero rows of the matrix D,

5- The n dimensional homology group is:

Ker D, _ the span of the zero columns of the matrix Dy,

n =

Img Dp+1  the span of the nonzero rows of the matrix Dy 41

= the span of the quotient

2.2.2 The Python Program for Homology Computation

The Python Program for this subsection is from repository “GITHUB” [40].

®)

)

(10)

(In

Part 1: Auxiliary functions for doing the elementary operations on rows and columns on

matrices. Everything is done in “numpy.”
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1 import numpy

2

3 def rowSwap(A, i, j):

4 temp = numpy.copy(A[i, :])

> Ali, :1 = A[], :]

6 A[j, :]1 = temp

4

8 def colswap(A, i, j):

9 temp = numpy.copy(A[:, i])
10 BlYs E1=ALgs T1
14 A[:, j] = temp
12
13 def scaleCol(A, i, c):
14 A[:, 1] *= c*numpy.ones(A.shape[@])
15
16 def scaleRow(A, i, c):
17 A[i, :] *= c*numpy.ones(A.shape[1])
18
19 def colCombine(A, addTo, scaleCol, scaleAmt):
20 A[:, addTo] += scaleAmt * A[:, scaleCol]
21
22 def rowCombine(A, addTo, scaleRow, scaleAmt):
23 A[addTo, :] += scaleAmt * A[scaleRow, :]

Part 2: The column reduction is applied by a matrix Q to the operator d,,. The inverse of
the matrix Q (i.e.Q~1) is applied to the operator d, ., the algorithm is doing column

reduction on one matrix and applying the corresponding row operations to the other.
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1 def simultaneousReduce(A, B):
2 if A.shape[1] != B.shape[@]:
3 raise Exception("Matrices have the wrong shape.")
4
5 numRows, numCols = A.shape # col reduce A
(&)
7 i,j = 0,08
8 while True:
9 if i >= numRows or j >= numCols:
10 break
11
12 if A[l][]] == :
13 nonzeroCol = j
14 while nonzeroCol < numCols and A[i,nonzeroCol] ==
15 nonzeroCol += 1
16
17 if nonzeroCol == numCols:
18 i+=1
19 continue
20
21 colSwap(A, j, nonzeroCol)
22 rowSwap(B, j, nonzeroCol)
2
24 pivot = A[i,j]
25 scaleCol(A, j, 1.8 / pivot)
26 scaleRow(B, j, 1.8 / pivot)
27
28 for otherCol in range(®, numCols):
29 if otherCol == j:
30 continue
31 if A[i, otherCol] != @:
32 scaleAmt = -A[i, otherCol]
33 colCombine(A, otherCol, j, scalefmt)
34 rowCombine(B, j, otherCol, -scalelmt)
35
36 T = = il
37
38 return A,B

Part 3: The actual algorithm to compute homology is counting pivots. Here are two pivot
counting functions in numpy fashion.

1| def numPivotCols(A):

2 z = numpy.zeros(A.shape[@])
3 return [numpy.all(A[:, j] == z) for j in range(A.shape[1])].count(False)
4

5 def numPivotRows(A):

b6 z = numpy.zeros(A.shape[1])
¥ return [numpy.all(A[i, :] =

= z) for i in range(A.shape[0])].count(False)
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Part 4: The final function is:

def bettiNumber(d k, d_kplusl):
A, B = numpy.copy(d k), numpy.copy(d kplusl)
simultaneousReduce(A, B)

kernelDim = dimKChains - numPivotCols(A)

1
2
3
4
3 dimKChains = A.shape[1]
b
7 imageDim = numPivotRows(B)
8
9

return kernelDim - imageDim

2.3 Simplicial Complex Beyond the Graph Structure for Data Representation

For cases involving data sources that encompass more than two interactions, a
combinatorial topology as a higher-dimensional version of graph theory is required. This
mathematical model is provided by utilizing topological methods which produced simple
representations of the data. Simplicial complex technique generalized the graph-theoretic
modeling. The key idea is to represent all possible data at some time as a single, static,
combinatorial geometric object. The following example illustrates the simplicial complex
modeling for the multiple co-authorship interactions. Authors can have mutual papers, (see
Table 2.1). The simplicial complex model consists of 0-simplices which corresponded to
each individual author. Edges (1-simplices) corresponded to the papers that two authors
published jointly. Similarly, d-simplices (d > 1) represent (d + 1)-authors who have jointly

published papers. Refer to Figure 2.7.
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Table 2.1. The Co-authorship

Authors vs.

Papers

Author A ® ®

Author B O ® @
Author C o O

Author D ®

Author E O

Paper #3

Figure 2.7. The simplicial complex model for the co-authorship. Vertices represent the
authors. The edges and triangle represent the multiple co-authorship.

The following is the algorithm for authorship representation by simplicial complex.

-Add a vertex for each author
-Order all vertices according to their indices. Let V= { apajazasz.... an} , the order is
Q <y<ax<az<....<ap
For k=1 to p ( number of papers)
SUM < 0;
Forj =1 ton ( number of authors)
If paper k has j-authors then SUM < SUM + 1
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End if
make a (SUM-1)-simplex on those related authors

End for j
End for k

More sophisticated examples regarding the application of simplicial complexes to

modeling the phenomena may be found in [41] and [42].

2.4 Summary

This chapter is devoted to the topological approach to identify and study the system
through the shape of data and data sources. The topological modeling consists of objects,
namely simplices that are attached to make a simplicial complex. This is the visualization
and representation of the collection of data and their sources simultaneously in a single
combinatorial geometric and topological object.

Data sources are represented by the O-dimensional simplices and interactions
among two and more sensors are represented by higher dimensional simplices.

Algebraic objects, namely, homology groups of the simplicial complex help in the
interpretation of the behavior of the system based on its potential to exchange data. They
could also detect possible failure in data exchange.

The computational formulas for homology groups are stated, and the algorithms for
the computation of the groups are presented in details.

The advantage of simplicial complex modeling over the graph structures is

explained in detail and is shown by an example.
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CHAPTER 3

SHEAVES, DATA FUSION, COHOMOLOGY AND DATA ANALYSIS

In mathematics, when data are locally attached to open sets of a topological space,
the sheaf theory is a tool to track the locally defined data. This chapter starts with an
abstract definition of cellular sheaves and continues with comprehensive details regarding
the computation of sheaf cohomology and its application in data analysis. The sheaf theory
model analyzes heterogeneous data types by the integration of data collected from sensor
clusters. The mathematical construction is the sheaf of vector spaces over a simplicial
complex. Without being too complicated, the structure of vector spaces are strong enough
for analyzing and integrating heterogeneous data and their redundancy. The foundations of
sheaf theory that cover the algebraic geometer's schemes as well as the topological and

analytic kinds can be found in [43].

3.1 Cellular Sheaves of Vector Spaces

Cellular sheaves are mathematical structures that are built on simplicial complexes.
In fact, a cellular sheaf is an assignment of data to each simplex in a simplicial complex
together with the two pillars: first, it addresses the restrictions of data from a smaller
simplex to the larger one and second, it deals with the information consistency in the
overlap of two data sources. The categorical point of view for the definition of cellular
sheaves may be found in [44]. A linear algebraic data presentation for the category of
sheaves on simplicial complexes is obtained from [45]. The concept of sheaves in a

categorical manner is obtained in [46]. The cellular sheaves point of view in this
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dissertation is associated with the field of computer science, and the definitions are
presented accordingly.

Definition 3.1 Let K be a simplicial complex. A cellular sheaf F of vector spaces over the
simplicial complex K, consists of the following two assignments. See Figure 3.1:
1. Assignment of a vector space F(S) to each simplex S in K. The vector space is
called the stalk of the simplex S. Each element of the vector space F(S) is called a
local section at S.
2. Assignment of a linear map (S - C) : F(S) — F(C) for any two simplices S and

CinKwithS < C (S aface of C). This linear map is called the restriction map.

The assignments are such that the three simplices with the face relation S < € <D

satisfy:
F(S=>C)OF(C—>D)=F(S—-D) (12)
b / T / F(T)
z X X y z # F(x) F(y) F(z)
n ¥ ¢ a b c F(a) F(b) F(c)

Figure 3.1. An example of a simplicial complex (left), the associated sheaf F (middle and
right). Inclusions of the faces are shown by upward arrows.

Definition 3.2 For a sheaf F on a simplicial complex K, a global section is an assignment of
values from each of the stalks that is consistent with the restrictions. More precisely, the

local sections f(S,) € F(S,) and f(S',) € F(S'y) can be glued together to make a



33

global section if and only if for any two p-simplices S, and S’,, and any p + 1-simplex

Sp+1 with S, 8", < 44, the following equality satisfies:

F(Sp = Spsn) F(Sp)) = F(S'p = Spsn) (F(S')) (13)

In [47] Hubbard states, “It is fairly easy to understand what a sheaf is, especially
after looking at a few examples. Understanding what they are good for is rather harder;
indeed, without cohomology theory, they aren’t good for much.”

The following example from [48] gives an idea of representation of data in a
cellular sheaf.

Example 3.1 Consider a student who attends high school, an undergraduate institution, a
graduate institution, and then is accepted in a postdoctoral position. Each school that the
student attends maintains records of his grades. Each institution is represented as a vertex

in a cell complex, as shown in Figure 3.2.

Grad

High school

(UG GPA!
GR GPA
Undergrad y : (
s (100 N7\ gtipend |
(UG GPA) /
Postdoc N |f| 00}

(.V % id l-,() 10])
id - (10) > (UG GPA)

—= [ - }J? - 2
(HS ﬁpx) & N (0D . \GR GPA |
* HS GPAN f.d ; :
| UG GPA| k (100 |
' N 010]
(UG GPA)\ ,
(UG GPA|

(100 3
) N GR GPA

| salary |

Figure 3.2. A network of academic institutions that might share information about a student
(left), and a sheaf representing associated information about a single student (right) [48].
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Every pair of institutions that shares a piece of information is represented as an edge
between their respective vertices. A common piece of information that is shared among
three institutions is represented as a 2-simplex. For instance, high schools typically only
communicate with undergraduate institutions, therefore, no edges exit between a high
school’s vertex and any other institutions. Assume the following:
1. The high school only keeps a record of the high school GPA.
2. The undergraduate institution keeps records of both the high school and the
undergraduate GPAs.
3. The graduate institution keeps records of the undergraduate and graduate GPAs, and any
graduate stipend.
4. The postdoctoral institution keeps records of the undergraduate and graduate GPAs, and
postdoctoral salary.
5. Stipend and salary information is not shared between institutions.
6. Grades are shared as appropriate and are consistent.

The assumptions lead to the sheaf structure shown on the right of Figure 3.2. Each
piece of information is represented by a natural number (grades and salaries cannot be
negative, and are rounded to the nearest whole number). In the sheaf structure, the stalk
over each vertex contains the information held by each institution. Each edge of the
complex contains the information shared by the two institutions. Each 2-simplex contains
the common information among three institutions, which, in this example, is only the

undergraduate GPA. Each restriction map is represented by a projection matrix that selects
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the appropriate shared information. In particular, the restriction maps from the two
postgraduate institutions share no any information regarding the student’s pay.

Hereafter, “sheaf” means cellular sheaf of vector spaces (stalks are real vector spaces).

3.2 Sheaf Cohomology

Since all the topological spaces and accordingly all simplicial complexes under
consideration in this dissertation are paracompact (every open cover had an open
refinement that is locally finite), according to [49] (theorem 3.16), the sheaf cohomology
on the simplicial complex K is isomorphic to the Cech cohomology. For the detail on Cech
cohomology see [50]. For more detailed definition of Cech cohomology, see [51] and [52].
This dissertation relies on sheaf cohomology based on the Cech cochains. The remainder
of this section provides theoretical implementation about the concept of sheaf cohomology
and its interpretation and application in computer science. All definitions related to the
sheaf cohomology are given according to the above-mentioned isomorphism.
Definition 3.3 Suppose F is a sheaf on a simplicial complex K. The p-cochain group is

defined to be the direct sum of stalks over all p-simplices S, in K:
CP(K; F) = @syex F(Sp) = Ds,ex Stalk(Sy) (14)
From now on when the simplicial complex K and the associated sheaf F"are known,

the simplified notation C? is applied instead of C? (K; F).

Definition 3.4 For each non-negative integer n, the linear coboundary operator



36

Cn d_)n Cn+1 (15)
is defined by
n — . (16)
d (C)(Sn+1) - [Sn+1 : Sn] F(Sn - Sn+1) C(Sn)

Sn €K

forall c € C™ and S,,,; € K. The matrix form of the coboundary operator can be written

as:

d™ = [[Sp41: Sal (F(Sp - Sn+1)]5n,sn+1 €K (17)

Theorem 3.1 [51] For each non-negative integer n, the composition of two consecutive
coboundary operators is trivial, i.e. d"o d" ! = 0. Thus, for the (n+1)-dimensional
complex K, the following Cech cochain complex is constructed:
R S S (s)
From theorem 3.1, the subgroup relationship Img d,,_, = Kerd, is concluded
and, therefore, an equivalent relation is defined as follows.
Definition 3.5 [48] The cohomology of the sheaf F' over the simplicial complex K, is

defined to be the homology of the previous chain complex. It is denoted by (C®(K; F), d).

More precisely the p-cohomology group is defined by:

HP(K; F) = @ (19)

Img dp—1
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The algorithms to compute the cohomology groups may be found in [53] and [54].
The computation of cellular sheaf cohomology from the Morse theory technique is
described in [55].
Theorem 3.2 ([48] theorem 4.3). The space of global sections of the sheaf F over the
simplicial complex K is isomorphic to the zero™ cohomology H°(K; F).
From the theorem 3.2, and also from chapter 3 of [30], the following modified

interpretation of the zero™-cohomology group is given for the purpose of this dissertation.

-1 _ 0 __ Kerd®
From the fact that (Imgd~"=0) and H°(K;F) = -

mgd-1

Ker d°, the
following interpretation about the zero-cohomology group is obtained.

Suppose {Si, S,,S3,...,S¢} 1s the set of vertices (0-simplices) in the simplicial
complex K. Also suppose {F(S;), F(S2), F(S3), ..., F(S¢)} 1s the set of their corresponding

stalks.

Anelement f= (f(S1), f(S2), f(S3), ., f(Se)) € Bi=1,..¢ F(S;)isinthe H'(K; F)

ifand only if forall i,j = 1,...,t and §;,S; < S;; (§;; is the edge between S; and §;),
F(S; = Sij)f(S) = F(S; - Si;)f(S) (20)

Meaning that f(S;) and f(S;) both can be extended to the 1-simplex S;;.

3.3 Pseudocodes for Computation of Cellular Sheaf

This subsection is devoted to the construction of the cellular sheaf over the

simplicial complex K. It is done in two sequential steps: first the assignment of stalks to
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each simplex in the simplicial complex, and second, the definition of the restriction maps

between the stalks.

3.3.1 Step 1 (part 1): Find the Vector Space of 0-Simplices
The preprocessor is given as a table T with n rows and m columns, respectively, for
the representation of sensors and representation of data types as vector spaces. The table
has the property that for a fixed column j, the row elements Tj; of the table (if nonzero) are
all assigned to the same vector space.
Make the table Q with one column and n rows, same rows with the same sensors

representations as of table T, and initialize it to empty.

Fori=1..................... n (number of the rows)
V = zero vector space (place holder)
Forj=1 ... m (number of the columns representing data type)
V=VOT;
End Forj

Qi= V (representation for 0-simplex in row 1) (direct sum of Tj;’s)
End For i

3.3.2 Step 1 (part 2) Assignment of Stalks
Finding the Vector Space for Ordered Set of p-Simplices for p > 0.
p-simplex[r] =0; p=1....wsimplexandr=1... a

w and a are dynamic
Vector-space[w*a] = 0

Fori=1................. n (number of the rows in Q)
p=1
r=1

result intersection = 0
p-simplex-dimension = 0 (p > 0)

b=0
Fort=i+1 .............. n (number of the rows in matrix Q)
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Forj=1.................. m (number of the columns representing data type position)
If (( Ty is non-zero ) && (Ty is non-zero)) //if 1
Then { //then 1
If( b==0)//if2
Then { //then 2
b=}
result_intersection = result_intersection @ Tj;
p-simplex-dimension = +1
p = p-simplex-dimension
p-simplex[r] = +1
Vector-space[p-simplex[r]] = result intersection
} //then 2
Else { //else 2
If(b== j)//if3
Then { //then 3
result_intersection = result_intersection @ Tj;
p-simplex-dimension = +1
p = p-simplex-dimension
p-simplex[r] = +1
Vector-space[p-simplex[r]] = result_intersection
} // then 3
Else { //else 3
b=]
r=+l1
result_intersection = 0
p-simplex-dimension = 0
result_intersection = result_intersection @ Tj;
p-simplex-dimension = +1
p-simplex[r] = +1
Vector-space[p-simplex[r]] = result_intersection
} /else3
[/BVIR]
} //then 1 and if 1
End for j
End For t
End For i

3.3.3 Step 2: Restriction Maps

i=0
M: for each i-simplex and (i+1)-simplex
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if (i-simplex and (i+1)-simplex is face-connected)
the restriction map is
number of rows from (i+1)-simplex
number of columns from i-simplex
find intersection of (i-simplex and (i+1)-simplex)
find exclusion ((i-simplex \ (i+1)-simplex)
A1 =ZERO matrix of exclusion (rows and columns from above)
I1 = Identity square matrix of intersection (based of rows)
Now, juxtapose Al and I1 based on priority of intersection.
i=+1
Ifi < dimension of complex
Then {Go to instruction M}
Else done and continue

3.4 Mathematical Foundation for Sheaf Cohomology and Data Analysis

This subsection provides a mathematical foundation for analyzing the behavior of a
system based on its potential to exchange data, possible failure in data exchange, detection
of noise in the system, and recognition of the redundant or complimentary sensors. There
are two sides of this spectrum:
I. One can deploy a small number of sophisticated “global” sensors with high signal
complexity and precise readings.
2. In contrast, one can deploy a large number of small, coarse, “local” devices that may
have large uncertainties in their readings.

Dealing with the two sides of the spectrum requires challenging data management.
The challenge is to specify which type of mathematics is useful in analyzing the above
scenarios.

In this subsection, the distributed (spatial and temporal) information system under

consideration is fixed, the simplicial complex associated with this system is denoted by K,
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and the sheaf of vector spaces over K is denoted by F. The notation (K; F) is used for such
a system representation and the notation (C®(K;F),d) is for its corresponding Cech

(cochain) complex.

Definition 3.6 The family

(F(Sp))s,ex € CP(K;F) = D5, ex F(Sp) =Ds,ex Stalk(S,) 21)

is called a p-integrating family if (f (Sp))s,ex € Ker dP.

Remark 3.1 The 0-integrating families are global sections.

Ker d°
Imgd—1

Proof. This is a result from theorem 3.2 and the fact that H*(K; F) = = Ker d°.

Definition 3.7 The sum of two vector spaces V and W is defined to be the span of the union
of their basis. It is denoted by V+W or span VU W.

Definition 3.8 Suppose S = {5;,S,, ..., S} 1s the family of sensors in a system. A 1-
refinement of this family is the subset S — {S;} where F (S;) < span Uj ; F(S5;). The subset
S —{S;} is called the 1-refined family. Inductively the 1-refinement of the (n-1)-refined
family is called the n-refinement of the family.

Definition 3.9 The family S = {51, 5>, ..., S} is non-refinable if there is no S; for which
F(S;) is contained in span U; ; F(S;).

Definition 3.10 The maximal non-refined subset of the family S = {S;,S,, ..., S} of

sensors is defined as the set of significant sensors in the system.
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Main Theorem 3.3 A family of sensors represented by the vertex set {S;,S,, ..., S;} in the
simplicial complex representation K for the information system is a family of significant
sensors if the local sections f(S;) € F(S;) form a minimal span of the 0-integrating

families. More precisely the significant sensors Sy, S, ..., S satisty the following equation:

F(S) + F(S)) + ..+ F(S,) = Ker d° (22)

Proof. Suppose the information system has the set V = {S;, S, ..., S;, } as its vertex set

and the set E = {eq, e,, ..., €x} as the set of its edges. Then
COKF) =@iz1,m F(S) 3 CHKF) =@joy, ik Flep) (23)

dO
Since €% — C?, then d° is a k X m block matrix. For f = (f(51), f(S2), ..., f(Sn)) €
C°(K; F), the j-th row of the matrix d°(f) is X124 F(Si - ej)f(Sl-).

The equality d°(f) = 0 is equivalent to the following system of equations for f:

m

ZF(Si - ej)f(si) =0 ;0 j=1,..,k
=1 (24)

The solution space of the above system of equations is, on one hand, the vector space

Ker d° and, on the other hand, has as a basis, the union of the basis for those F(S;) for
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which F(S;) is not contained in the span of U; ; F(S;). With re-index modification after

refinement:

F(S) + F(Sy) + ...+ F(Sy) = Ker d° and the proofis complete Q.E.D.

3.5 Summary

An analysis of data, encoding and translating heterogeneous data into common
language are modeled by stalks. The fusion of data extracted from multiple sensors is
modeled by a sheaf. The methodology studies the behavior of the system based on the
detection of noise, possible failure in data exchange and recognition of the redundant or
complimentary sensors.

To verify the validity of the above-referenced method and to bring the information
of the system into a mathematical language, the required definitions are presented. The
main classification theorem is presented to bring up a necessary and sufficient condition

for a sensor to be significant.
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CHAPTER 4

APPLICATIONS

This chapter is devoted to the application of the modeling from the previous
chapters. First, the methodology is applied to study the wildfire threat monitoring [56]. In
this example heterogeneous data are gathered from a variety of in-the-field stations, each
with a potentially different set of sensors for temperature, wind, humidity, smoke, and
hotspots in the infrared spectrum. Satellite images or aerial photography are also used.
Second, the example of air traffic monitoring with multiple sensors of various types is
applied [57]. Heterogeneous data are gathered from variety of sensor clusters: GPS
satellites, radar stations, airport surface detectors, and smart IR (infrared) sensors.

In both examples, a duplication of the sensors of the same type is possible. The
individual sensors may come online or gone offline at irregular intervals of time and space
and may become permanently disabled. Therefore, the structure, availability, granularity,

and quality of the data may vary by data source and type.

4.1 Part 1: Example of Wildfire Threat Monitoring

It has been reported that for the last decade, each year, more than 100,000 wildfires
and forest fire threats have occurred in all countries. Which type of mathematics can be
applied to analyze the collaboration of the sensors to monitor the possibility of such a natural
disaster? The mathematical framework to collect local information and apply it into global
environmental data utilizes the simplicial complex and sheaf models. The construction of a

simplicial complex and sheaf data structure is applied to answer the question, “Do multiple
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cells (sensors) work together? If so, how?” Multiple sensors of various types monitor
regions for wildfires. To make the detection more precise, duplication of the sensors of the
same type is considered. Sensors of the same type communicate and report a common
information. The heterogeneous data are received by the sensors of various types in the
region of detection at time t = to. The types of the sensors, their duplication numbers, and

the heterogeneous data received by the sensors are shown in Tables 4.1 and 4.2.

Table 4.1. Sensors and Duplication Numbers (t = to) for Wildfire Monitoring

Sensor type Number of Sensors
time t=to
Satellite Camera, C n
CO2 Detector, O m
IR Detector, R P
Flame Detector, D q

Table 4.2. The Heterogeneous Data (t = to) for Wildfire Monitoring

Sensors Fire Intensity | Temperature | Smoke
vs. Data | Size LR T,R size S, R?
F, R?

Satellite
Camera, v v
C

CcO2
Detector,
0 v v v

IR
Detector, v
R

Flame
Detector,
D v v
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4.1.1 The Construction of the Simplicial Complex
The integration of the received heterogeneous data are modeled by the simplicial

complex structure as shown in Figure 4.1.

Figure 4.1. Simplicial complex model with oriented simplices for the wildfire threat
monitoring at time t=to.

To obtain the desired measurements (homology groups) from the extracted data,
orientation of the simplices in the simplicial complex model is required. The colored
arrows represent the oriented simplices. The filled triangle ODR represents the shared data
between the three sensors O, D and R. The hollow triangle OCD shows that there are no

shared data among the three sensors O, C and D.

4.1.2 Homology calculation at time t=to

The chain vector spaces are:

Co = The R-vector space generated by the 0-simplices C, O, R, D as basis elements

={aC+a0+a3R+asD:aj€ RI=FRORDORDR
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C; = The R-vector space generated by the 1-simplices CD, OC, RO, DO, DR as basis

elements

={biCD+b20C+b3RO+bsDO+bsDR:biER} = RORDORORDOR

C, = The R-vector space generated by the only 2-simplex ODR as the basis element.

={eODR:e€ R}=R

The linear boundary operators d,, d4, d, are given by:

do: Cop = 0

do(a1C+a20+a3R+asD)=a1dyC+adyO+asdygR+asdyD=0

(Since the boundary of a vertex is zero). Consequently Kerdy = Cp = RO RO RD R.

Now:

di: C; = C

d, (b1 CD + b2 OC +b3 RO +bs DO+ bs DR) =b; d;CD + b>d;OC +b3 d;RO +bs d;DO

+ bS dlDR

= b1 (D-C) + bz (C-O) + b3 (O-R) + bs (O-D)+ bs (R-D)

= (b1-bs-bs)D + (-b; +b2) C + (-ba+ b3+ by ) O + (-b3 +bs )R

To compute the Img d,, consider the following equation:

(b1-bs-bs)D+ (-b1+b2) C+ (-ba+b3+bs) O+ (-bs3+bs)R=a; C+ayO +azR +as D.

Compare the coefficients to obtain:
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bi-bs-bs=ay

-bi+by=a;

-batbst+ba=az

-bs3+bs=as

Sum up the above equations to get a; + a» + a3 +as = 0. The degree of freedom in this

equation is 3 and consequently:

Kerdy _ RORO®R®R
Imgd,  ROROR

Imgd; =R®R®R and H, = = R and the dimension of
Hy = 1.

To calculate the ker d, consider the equality:

(b1-bs-bs)D+ (-b1+b2) C+ (-b2+bs+bs) O+ (-b3+bs)R=0.

Since D, C, O, R are basis elements for the vector space C; , each coefficient must be zero:
bi-bs-bs=0

-b1+b2=0

-ba+b3+bs=0

-b3+bs=0

As aresult: bi=b2,b3=bs,bi-bs-bs=0,-ba+bz+ bs=0.

The degree of freedom for this equation is 2 and Ker d; = R @ R.

d,: C, » C;
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d, (eODR)=¢ d, (ODR)=¢ (DR —OR +OD)=¢ DR — ¢ OR + ¢ OD

To compute the Img d,, consider the following equation:

e DR—eOR +¢e OD=b;CD + b2OC +b3; RO +bs DO+ bs DR.

Compare the coefficients to obtain:

e=bs, -e=-bz,e=-ba,b;=b2=0

Kerd; _ R®R

= = R.
Img d, R

The degree of freedom is 1 and Img d, = R . Consequently H; =

Kerd
To compute H, = 2

, consider the fact that there is no d3 and Img d; = 0.
Img ds

Since d, (eODR)=eDR—-e OR+eOD =0, thene=0, and Ker d, = 0. As a consequence

Kerd, __

2~ Img ds -

The remaining higher dimensional homology groups H; (d > 2) are all zero.

Results from calculation of the homology for the simplicial complex at time t = to are as

follows:
Hy, = R ( dim Hy = 1), meaning that the simplicial complex is one connected.

H, = R (dim H; = 1), meaning that there is a one dimensional hole in this simplicial

complex.

H, = Oforn> 1, meaning that in this simplicial complex there are no voids in

dimension higher than 2D.
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4.1.3 The Sheaf Construction
Each simplex carries some information. The information space is represented by a
vector space assigned to each simplex. This assignment is the stalk over each simplex and
carries all information about the data. It can be transferred to its neighboring nodes to
analyze the system.

The stalk assignments are as follows:

Stalk C = F(C) = {Size of fire R?, Size of Smoke R?} = R? @ R

Stalk O = F(O) = {Intensity R, Temperature R, Size of smoke R*} = R ® R & R?
Stalk R = F(R) = {Temperature R} = R

Stalk D = F(D) = {Size of Fire R?, Temperature R} = R? ® R

Stalk CO = F(OC) = {Size of smoke R?} = R?

Stalk CD = F(CD) = {Size of fire R?} = R?

Stalk OD = F(DO) = {Temperature R} = R

Stalk OR = F(RO) = {Temperature R} = R

Stalk DR = F(DR) = {Temperature R} = R

Stalk ODR = F(ODR) = {Temperature R} = R

The restriction maps are shown in Figure 4.2. The construction of these maps are

encoded in the pseudocode for restriction maps that is discussed in Section 3.3.
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Figure 4.2. Sheaf, stalks and restriction maps associated with the simplicial complex for
the wildfire threat monitoring example at time t= to.

4.1.4 Sheaf Cohomology Calculation at Time t=to

The cochain vector spaces are:

C'=FO)®FO)DFR)DFD)=(RPOR)O (ROROR) DR (R2D R)

C! =F(OC) @ F(CD) @ F(DO) ® F(RO) ® FDR)=R’O R2ORB R G R

C?=F(ODR)=R

An element in C° is of the form (f(C),f(O),f(R),f(D)) € C° where f(C)€
F(C); f(0) e F(0); f(R) € F(R); f(D) € F(D) are the local sections. In a similar way
an element of C?! is of the form (f(0C), f(CD), f(DO), f(RO), f(DR)) € C! with the

local sections
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£(0C) € F(OC); f(CD) € F(CD); f(DO) € F(DO); f(RO) € F(RO); f(DR) € F(DR).

These notations are applied in the computation of the coboundary maps.
The coboundary map d® : €° — C?! is the R-linear operator given by a 5 X 4 dimensional
block matrix d° = (aij) ;1=1,..,5; j =1,..,4. The detailed calculations are:
Components of f = (f(C), f(0), f(R), f(D)) € C° are given by:
fO) = Opire » f(O)smoke) € R? O R?
f(0) = (f (Dintensity » f (Otemperature: f (O smoke) € RO R S R?
fR) = (f R temperature)
fD) = (f(Drire » f(D)temperature) € R2 S R
With these notations the rows of the 4-dimensional block vector d°f = (ai j) f are given
by:
a,;jf =F(C - 00)f(C)+ F(O » 00)f(0)+ F(R - 0C)f(R)
+ F(D - 0C)f(D)
aif =F(C - CD)f(C)+ F(O - CD)f(0)+ F(R - CD)f(R)
+ F(D - CD)f(D)
azjf = F(C - DO)f(C)+ F(O —» DO)f(0)+ F(R —» DO)f(R)
+ F(D - DO)f(D)
asif = F(C - RO)f(C)+ F(O - RO)f(0)+ F(R - RO)f(R)
+ F(D - RO)f(D)
asjf =F(C - DR)f(C)+ F(O - DR)f(0)+ F(R - DR)f(R)

+ F(D - DR)f(D)



Calculating each row to obtain:

0 01 0

a11=+[0 0 0 1];[OC:C]=+1

az==ly o 0 1

a;

Qs

Aoy

S

00 L %toc:o1=-1

051, Q1q = Oy ;[OC:R]=[OC:D]=[OC:0]=0

010 O]Q[CD:C]:'I

0,,;[CD:0] =0

021;[CD:R]=0

014 ;[DO:C]=0
+[001] ,[DO:0]=+1
011; [DO:R]=0
-[001];[DO:D]=-1
014 ;[RO:C]=0
+[0100] ;[RO:0]=+1

-1n ;[RO:R]=-1
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azs =013;[RO:D]=0

as; = 014 ;[DR:C]=0

as, =014 ;[DR:0]=0

asz = + 111 ;[DR:R]=+1

asy =-[001];[DR:D]=-1

Here 0j; is the zero metrix with i-rows and j-columns.

The rows of the vector d°f = (ai j) f are:

N0 =ayf =+ [0 o o YF@-[2 o & O +0,+0,
0
1

1 0 0 O

! 3 8]f(c)+024+021 +[0 1 0 O]f(D)

d°(F)(CD) = arf == |
d°(f)(DO) = az;f = 01 +[0011£(0) + 04, — [00 1]/ (D)
d°(f)(RO) = a,;f =014 +[0100] £(0) — 111 (R) + 043

d°(f)(DR) = as;f =014 + 014 + 13, f(R) — [001]f(D)

To compute the (Ker d°), notice that d°f = (a;;)f =0 if and only if:
f(©)smoke = f(O0)smoke =M

O fire = f(D)fire =N

f(O)temperature = f(D)temperature = f(R)temperature =P

As a conclusion the element f = (f(C), £(0), f(R), f(D)) € C° belongs to Ker d° if and
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only if:

f(€) = (N,0,0,M)

f(0) = (0,arbitrary, P,M)

fR) =(0,0,P,0)

f(D) = (N,0,P,0)

The zero components represent data that are not reported by the sensor. Consequently:

F(C)+ F(0) = Kerd® or F(D) + F(O) = Kerd®
(25)

As a result from calculations based on theorem 3.4.7, the significant sensors are either
{C,0}or{D,0}and Ker d° = (R ® R?*) ® (R® R) or Ker d°= (R ® R) ® (R ® R?).

ker d®
Imgd—1

The zero cohomology is calculated from H® = =RORPROPRPRDR.

Since there is no (d~1) , then Img d~* = 0, and the dimension of H° is 6.

ker d?
Imgd® ’

To calculate the first cohomology H! = it is required to calculate ker d! and

Img d° separately. Since the matrix d° has the number of 6 independent columns
(calculated by MATLAB), the rank of the matrix is 6. For the calculation of kerd?!,
consider the following:

dt: Ct>c* ; dt=(by;); j=1..5

b1y =012, b13=012 , by3 = —1y3,b14 =143 , b5 = 143

[ODR : OC] = [ODR : CD] =0, [ODR : DO] =-1, [ODR : RO] = [ODR : DR] = 1
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togetd' = (01, 012, =141, 114, 149).
For f = (f(0C), f(CD), f(DO), f(RO), f(DR)) € C":

d'(f) = (by;)f = —f(DO) + f(RO) + f(DR)
(26)

From the above equation d*(f) = 0 if and only if f(RO) + f(DR) = f(DO) and

f(0C) =(0,0,0, f(OC)smoke) =(0,0,0, W) ; W € R?

f(€D) = (f(CD)fire,0,0,0) = (E, 0,0, 0) ; E € R

f(RO) = (0,0, f(RO)temperature, 0) = (0, 0, U, 0)

f(DR) = (0,0, f (DR) temperature: 0) = (0,0, V. 0)

f(D0) = (0,0, f(DO)temperature, 0) = (0, 0, U+V, 0)

Where W, E € Rz and U, V € R. Therefore

kerd' = F(OC) ®&f(CD) & f(RO) & f(DR).

Since the matrix d° has the number of 6 independent columns (calculated by MATLAB),

kerd!  ROROROROROR
Imgd® ROROGROGROARAR

the rank of the matrix is 6. As a result H! =

d?: C* > 0and kerd? = C*=R.
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On the other hand the rank of the matrix d* = (015, 015, —145, 134, 119)is1,Imgd' =

kerd” _ R _ 0 The higher cohomology groups (H% for d > 1) will also be

R and H? = = —=
Img dl R

Zero.

Results from calculation of sheaf cohomology (data analysis) at time t=to:
HO=RORORARG R R (dim H® = 6), meaning that at time to the significant

sensors are {C, 0} or {D, O0}. The global information (section globalization) is extracted from

the sensors {C, 0} or {D, 0}.

characterizes the families of sections

H'= 0. The first cohomology group H! = kerd?
: gy group T

on the edges that come from the families of sections on the vertices. More precisely it figures
out the number of 1-integrating families that do not belong to I'mg d°. For the case in which
the first cohomology group becomes zero, it means that all sections of the form f =
(f(0C), f(CD), f(DO), f(RO), f(DR)) € C* which are also 1-integrating families come
from families of sections on the sensors.

H? = 0 since there are no n-simplices for n >1.

4.1.5 Time Changes from t=to to t=t1
At time t = t; the Table 4.1 has been changed to the Table 4.3. The i-number of CO2

sensor detectors go out of mission.
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Table 4.3. Sensors and Duplication Numbers, Wildfire Monitoring (t = t)

Sensor type Number of sensors
time t=t;

Satellite Camera, C n

CO2 Detector, O m-—i

IR Detector, R p

Flame Detector, D q

As aresult temperature is no longer detected by the sensor O. Table 4.4 shows the change
in Table 4.2.

Table 4.4. The Heterogeneous Data for Wildfire Monitoring (t = t1)

Sensors vs. Fire Intensity | Temperature | Smoke

data Size LR T, R size S,
F, R? R?

Satellite Y Y

Camera, C

Cco2 Y out of Y

Detector, O mission

IR Detector, v

R

Flame v v

Detector, D

The new simplicial complex is shown in Figure 4.3.

&
o .
i e~
| —@°
= E
\
|
1
|
|
@ = -@
D T R

Figure 4.3. Simplicial complex model with oriented simplices for the wildfire threat
monitoring at time t=t;.



59

Similar to the calculations for the homology groups at time t = to, the calculations
at time t = t; are as follows:

Hy = R (dim Hy = 1), meaning that one connected simplicial complex exists.

H, = 0 (dim H, = 0), meaning that there is no 1-dimensional hole in the simplicial
complex.

H, = 0 forn> 1, meaning that in this simplicial complex there are no voids in dimension

higher than 2D.

4.1.6 The Sheaf Construction

The following new stalks are shown in Figure 4.4:
Stalk C = F(C) = {Size of fire R?, Size of Smoke R?} = R? @ R?
Stalk O = F(O) = {Intensity R, Size of smoke R*} = R @ R?
Stalk R = F(R) = {Temperature R} = R
Stalk D = F(D) = {Size of Fire R?, Temperature R} = R?@® R
Stalk CO = F(OC) = {Size of smoke R?} = R?
Stalk CD = F(CD) = {Size of fire R?} = R?

Stalk DR = F(DR) = {Temperature R} = R
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Figure 4.4. Sheaf, stalks and restriction maps associated with the simplicial complex for
the wildfire threat monitoring for time t=t;.

Similar to the sheaf cohomology calculations for time t = to, the cohomology calculations
for time t=t; are as follows:

HO=RORORORDRD R (dim H® = 6), meaning that at time t, the significant
stalks are on O and D. The global information (section globalization) is extracted from O
and D. In this situation the sensor C is no more significant although the detectors that no
longer work, are from the CO2 detector O.

H'= 0. The same interpretation applies here as in case t=to.

H?=0, since there are no 2-simplices.

4.1.7 Discussion
From the calculations it is seen that the significant sensors are changed when there

is a change in the number of sensors or if some sensors become inactive or out of mission.

The changes in the homology groups from time t=to to time t=t; are:
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Hy(ty) = R - Hy(t;) = R (which is expected)

H,(ty) = R— H;(t;) = 0 (the hole disappears)
The changes in the sheaf cohomology groups from time t=to to time t=t; are:
Dimension H%(t,) = 6 - Dimension H°(t;) = 6

The dimension of the first cohomology group remains the same but the calculations show
that the change in the stalks results in the change of the significant sensors from {O, C} to

{0, D}

4.2 Part 2: Example of Air Traffic Monitoring

Air traffic monitoring is one of the crucial complex systems to detect and estimate
the location, velocity and flight direction of a large number of various airplanes
approaching an airport. At an airport, multiple sensors of various types monitor the region.
To make the detection more precise, consider duplication of the sensors of the same type.
Consider cluster of GPS satellites, cluster of radar stations, cluster of airport surface
detectors and cluster of smart IR (infrared) sensors for air traffic monitoring. Figures 4.5
and 4.6 show an air route and an air traffic and monitoring system. Numerous

heterogeneous data acquisition must be integrated.
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Figure 4.6. An example of air traffic monitoring system including air traffic control tower,
air route traffic control center, and terminal radar approach control [58].
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Sensors of the same type communicate and report common data, as shown in Table 4.5.

Table 4.5. Sensors and Duplication Numbers for Air Traffic Monitoring (t = to)

Sensor type Number of sensors
time t=to
Radars (R) n
GPS (G) m
Airport Surface p
Detectors(K)
IR Sensors (I) q

1. Aircraft Status (E), Space of measurement = R

2. Aircraft Coordinates (C), Space of measurement = R?
3. Direction (D), Space of measurement = R3

4. Speed (S), Space of measurements = R

The heterogeneous data received at time t=to are given in the table 4.6. The measured

subjects in the table are:

Table 4.6. The Heterogeneous Data for Air Traffic Monitoring (t = to)

Sensors vs. data (E) ©) (D) S)
Radars (R) v ' v
GPS (G) v
Airport Surface Detectors (K) v v
IR Sensors (I) v Y

4.2.1 The Construction of the Simplicial Complex

The oriented simplicial complex structure model is shown in Figure 4.7.
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Figure 4.7. Simplicial complex model with oriented simplices for the air traffic monitoring
at time t= to.

4.2.2 The Sheaf Construction

Each simplex in the simplicial complex has a characteristic that is represented by
assigning additional information to the simplex. To model this assignment, a stalk
associated with the information is assigned to each simplex. It carries all of the information
about the data and its neighboring nodes and enables the analysis of the system. The
assigned spaces and the stalks are shown in Figure 4.8, as follows:
Stalk R = F(R) = {Aircraft Coordinates R?, Direction R?, Speed R} ~ R* @ R* ® R
Stalk G = F(G) = {Aircraft Coordinates R’} = R?
Stalk K = F(K) = {Aircraft Status R, Direction R’} ~ R @ R?
Stalk I = F(I) = {Aircraft Status R, Speed R} = R® R
Stalk RG = F(RG) = {Aircraft Coordinates R*} ~ R3
Stalk RK = F(RK) = {Direction R*} =~ R3
Stalk RI=F(RI) = {Speed R} =~ R

Stalk IK = F(IK) = {Aircraft Status R} = R
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Figure 4.8. Sheaf, stalks and restriction maps associated with the simplicial complex for
the air traffic monitoring example at time t= to.

4.2.3 Homology and Sheaf Cohomology

Based on the algorithms for calculation of the homology groups in subsection 2.2.2,
the following results at time t=to are obtained.
Hy = R (dimension of Hy = 1), meaning one connected simplicial complex exists.
H;= R (dimension H; =1), meaning a 1-dimensional hole in this simplicial complex exists.
H,, =0 for n> 2, meaning there are no voids in dimension bigger than 2D in this simplicial
complex.

From the algorithm for calculation of the sheaf cohomology groups (data analysis)
in subsection 3.3 it is seen that
Dimension H° = 8, meaning that at time to significant stalks are on R and 1. The global

information (section globalization) is extracted from the sensors R and I.
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H' =0, meaning that all 1-integrating families come from sections on the sensors.

H™=0 (n> 1), since there are no n-simplices for n > 1.

4.2.4 Time Changes from t=to to t=t1
Suppose at time t=t; the i-number of airport surface detectors are out of mission.

Table 4.5 has been changed to Table 4.7.

Table 4.7. Sensors and their Duplication Numbers for Air Traffic Monitoring (t = t;)

Sensor type Number of sensors
time t=to
Radars (R) n
GPS (G) m
Airport Surface P-i
Detectors(K)
IR Sensors (I) q

As a result the aircraft status (E) is no longer detected by the airport surface

detectors (K). Table 4.8 shows the change that occurs in Table 4.6.

Table 4.8. The Heterogeneous Data for Air Traffic Monitoring (t = t1)

Sensors vs. data (E) ©) (D) (S)
Radars (R) v Y v
GPS (G
(€) v
Airport Surface Detectors (K) | Outof v
mission
IR Sensors (1) 4 v
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The new simplicial complex is shown in Figure 4.9.
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Figure 4.9. Simplicial complex model with oriented simplices for the air traffic monitoring
at time t=t;.

The new stalks are:

Stalk R = F(R) = {Aircraft Coordinates R>, Direction R?, Speed R} = R*® R* @ R
Stalk G = F(G) = {Aircraft Coordinates R’} = R?

Stalk K = F(K) = {Aircraft Status R, - Direction R*} ~ R ® R’

Stalk I = F(I) = {Aircraft Status R, Speed R} = R @ R

Stalk RG = F(RG) = {Aircraft Coordinates R’} =~ R3

Stalk RK = F(RK) = {Direction R*} =~ R3

Stalk RI = F(RI) = {Speed R} =~ R

The sheaf, stalks and restriction maps for the simplicial complex at time t= t; are shown in

Figure 4.10.
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Figure 4.10. Sheaf, stalks and restriction maps associated with the simplicial complex for
the air traffic monitoring example at time t= t;.

Based on the algorithms for calculation of the homology groups in subsection 2.2.2,
for the simplicial complex at time t=t; the following results are obtained.
Hy =R (dimension of Hy = 1), meaning that one connected simplicial complex exists.
H;= 0 (dimension H; =0), meaning that no 1-dimensional hole in this simplicial complex
exists.
H,,= 0 for n > 2, meaning that no voids in dimension greater than 2D exist in this simplicial
complex.

From the algorithms for calculation of the sheaf cohomology groups (data analysis)
in subsection 3.3:
Dimension of H® = 9, meaning that at time t=t significant stalks are on K,G and I. The
global information (section globalization) is extracted from the sensors K,G and L.

H' =0, meaning that all 1-integrating families come from sections on the sensors.
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H™=0 (n> 1), since there are no n-simplices for n > 1.

4.2.5 Feedback from the Example
By the change in the number of sensors, when some sensors become inactive or

broken, the changes in the simplicial complex homology and the sheaf cohomology, from
time t=to to time t=t;, occur. As a result the significant sensors are changed:

Hy(ty) = R - Hy(t;) = R (as expected)

H,(t,) = R —> H,(t;) = 0 (the hole disappears)
Dimension H°(t,) = 8 - Dimension H%(t;) = 9
The change in the stalks results in the change of the significant sensors from {R. I} to {K,

G, I}, and also the change in the dimension of the zero cohomology group.

4.3 Summary

Applications of the methodology in the previous chapters are described by the two
case studies: one from the wildfire threat monitoring and the other from the air traffic
monitoring.

Both cases are distributed information systems that deal with temporal and spatial
fusion of heterogeneous data obtained from multiple sources, where the schema,
availability, and quality vary.

Behavior of both systems is explained thoroughly in terms of the detection of the
failure in the system. The redundant and complimentary sensors are recognized.

The mathematical foundations in Chapter 3 prove the validity of these processes.
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CHAPTER 5

ALTERNATIVE SOLUTION

This chapter is devoted to the comparison between the sheaf theoretic method and
the alternative method that does not apply the sheaf theory. Without utilizing the sheaf
theory method, multiple tables are required to extract data from sensors. In the following,
the two methods are compared in terms of time and space complexity. It is found that when
the data are more heterogeneous the sheaf theory method makes the solution less complex

with respect to time and space.

5.1 Solving the Fire Monitoring with Alternative Tools
To address the wildfire monitoring, the construction of a grid of measured points
for p types of sensors is required. This is of order O(n). In this case p= 4. Consider the
following thresholds for the measurement of each sensor:
Satellite Camera = Sat_Threshold
CO2 Detector = CO2_Threshold
IR Detector = IR_Threshold
Flame Detector = Flame Threshold
For the sake of simplicity in addressing the general issue, consider the region of
interest to be rectangular. At time t = to consider the tables 5.1, 5.2, 5.3 and 5.4, each with

H rows and G columns for reporting the sensor measurements.
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Table 5.1. Signals from Satellite Cameras, dim=H X G, complexity = O(n?)

SI11 | S12 | S13 | ... S1G
S21 | S22 | S23 | ... S2G
SH1 | SH2 | SH3 | ... SHG

Each cell in Table 5.1 acquires a measurement from satellite cameras. These measurements

will be compared with Sat Threshold.

Table 5.2. Signals from CO2 Detectors, dim=H X G, complexity = O(n?)

Cll | Cl2 | CI3 | ... CIG
C21 | C22 | C23 | ... C2G
CHI | CH2 | CH3 | ... CHG

Each cell in Table 5.2 acquires a measurement from CO2 detectors. These measurements

will be compared with CO2_Threshold.
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Table 5.3. Signals from IR Detectors, dim=H X G, complexity = O(n?)

R11 | R12 | R13 R1G
R21 | R22 | R23 R2G
RHG

RHI | RH2 | RH3

Each cell of Table 5.3 acquires a measurement from IR detectors. These measurements will

be compared with IR_Threshold.

Table 5.4. Signals from Flame Detectors, dim=H X G, complexity = O(n?)

F11 | FI2 | F13 FI1G
F21 | F22 | F23 F2G
FHG

FH1 | FH2 | FH3

Each cell of Table 5.4 acquires a measurement from flame detectors. These measurements

will be compared with Flame Threshold.

5.1.1 The Pseudocode to Confirm the Fire in Each Cell

Fori=1top < pnumber of sensor types
Forj=1toH € number of rows
Fork =1to G € number of columns
Compare (i,j,k) >= sensor thresholds
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If (yes) then fire
Else no fire
End

End
End

Results from the pseudocode for this alternative solution show that in terms of space
complexity the order is O(n3) and in terms of time complexity the order is O(n®). By
comparing with sheaf and topology methods:

Space complexity of sheaf topology (O(n?)) < Space complexity of alternative method
(O(n?)). Time complexity of sheaf topology (O(n?®)) < Time complexity of alternative
method (O(n3)).

The only time the alternative method gives a better time and space complexity is
when there is only one homogeneous sensor type. When p = 1:

Space complexity of sheaf topology (O(n?)) = Space complexity of alternative method
(O(n?)). Time complexity of sheaf topology (O(n?°)) > Time complexity of alternative
method (O(n?)). Based on the sensors measurements the results of existence of fire is in

Table 5.5:

Table 5.5. Existence of Fire Based on Sensors Measurements Time t =ty

11 12 13 1G
21 22 23 2G

Hl H2 | H3 HG




74

Based on the reports from the fire department the results of existence of fire is in Table 5.6:

Table 5.6. Existence of Fire Based on Reporting from Fire Department Time t =to

11 12 13 1G
21 22 23 2G
HI H2 | H3 HG

It is obvious that some of the sensors are reporting wrong signals due to the

defection or broken. A comparison of the two tables, cell by cell, yields information about

the defective sensors and also shows which sensors cover the region and report correct

information. The lower bound for this procedure is of order O(n?).

With the application of the sheaf theory approach in heterogeneous sensors, the

time complexity is of order O(n?®). This is better than the time complexity of alternative

method which is of order O(n?). The space complexity from sheaf theory method is O(n?),

which is also better than space complexity of alternative method which is of order O(n?).
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5.2 Summary

The comparison between the sheaf theory and the alternative methodologies is
described to present further proof of the validity of the sheaf theory method.
It is shown that when the nature of the data is more heterogeneous, the sheaf theory

method has less computational complexity in both space and time.
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CHAPTER 6

NOISE AND INCONSISTENCY

6.1 Consistency Radius

In sheaf theory when some assignments as local sections are inconsistent, the
“Consistency Radius” emerged. The question is: “Are there any error detections and
corrections to correct the discrepancy in the sheaf theory?” The answer is YES. There is a
way to do some error detection and correction in a sheaf. This is how it works.

The consistency radius is the maximum distance between the value in a stalk and
the values propagated along the restriction maps [59]. If an assignment consistency radius
is not zero, it is definitely not a global section. Yet, if the sheaf model is trusted as being
accurate, only the global sections should (in principle) be observed. Thus, what should be
done is to find the global section that is nearest (in the appropriate assignment metric) to
the assignment. That will typically replace all the values in the assignment with "better"
ones. This approach often has been found to work quite well. Indeed, it seems to eliminate
some standard algorithms for signal separation, which is an ongoing problem.

The downside is that the optimization problem to minimize the distance between
the global section and the given assignment needs to be solved. Although it may not be
easy to solve, in relatively simple cases, a straightforward “constrained least squares”
might do the job. But this needs to be resorted to genetic algorithms that are commonly
used to generate high-quality solutions to optimize and search problems. This is still an
area that is open to research, since the problem is usually encoded as sheaves in several

distinct ways. Different optimization problems are obtained, which may or may not vary
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in how easy they are to solve. The occurrences of the discrepancy in sheaf model can be

seen in Figures 6.1 through 6.4.

For error detection and error correction there are off the shelf approaches such as

coding by Hamming, Huffman, Reed-Solomon, and Berlekamp-Massy [48], which give

EBR (Error Bit Rate) 1/10"9. Reaching to the lower EBR is another open research area.
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Figure 6.1. Sheaf of vector spaces on the partial order set associated with the example of
wildfire threat monitoring system. The diagram commutes.
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Figure 6.3. Relating to the example of wildfire threat monitoring due to noise some
assignments are not consistent. They are partially consistent.
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Figure 6.4. Consistency radius is the maximum distance between the value in a stalk and
the values propagated along the restrictions.

6.2 How to Achieve the Desirable Consistency Radius
The method to achieve the desirable consistency radius is to deploy the supervised
data input to the sensor integration, measuring the consistency radius and finding out the
data quality estimation. The desirable consistency radius is obtained by calibrating the
hardware, feeding these results as new input to the system and repeating the cycle until the

desirable consistency radius threshold is obtained.
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6.3 Summary
This chapter is devoted to the case study in which the noise causes the sheafification
of the system to be disturbed. Methods to detect error and make the corrections are stated.
The noise is described from the consistency of the stalk assignments. The feedback process

to achieve the desirable consistency radius is also discussed.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 The Feedback Process, Figure 7.1.

= Identify sensors by vertices = Calculate cosheaf homology groups = Differentiate significant sensors

= Identify relations between data sources = Calculate sheaf cohmology from insignificant ones.

= Construct simplicial complex = Analyze data = Add or remove appropriate sensors
= Assign stalks

= Identify restriction maps
= Construct cellular sheaf
= Check for global sections

Figure 7.1. The feedback process.

7.2 Summary and Future Work

The focus of this dissertation research is to model temporal and spatial

heterogeneous data fusion. The software utilized for computation of the matrix rank and the

image and kernel is “MATLAB”. Some open problems are recommended for future work.

Among them are:

Addressing large or varied datasets (stalks)

Statistical behavior of heterogeneous data fusion

Dynamical persistence of sheaves

Using machine learning technique to automate suggestions for the addition,
removal, or changing of sensors

Concept of cosheaf and sheaf, cosheaf duality [60] and [61]

Simplicial complex — Sheaf is done, what about sheat — Simplicial complex?
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Absiract: The goal of the present article is to demonstrate a mathematical modsling for distrituted spplications. The present
paper applies tools from topology and sheaf theory as an appropriate mathematical modeling to reflect interactions among
elements of distributed spplications resources. Sensors are characterized from their fopological representations in dismibuted
network system This modeling is applied for the study of the air traffic monitoring system and discuss the model i detail.

Keywords: Celhiar Sheaf Stlks, Cosheaf Homology, Sheaf Cobomalogy

1. Introduction

The bizzest engineering problems are fon math problems.
50 if you have hard enginesring problem and yom canmot
crack, it almost always has a peat mathemstics problem
buried under there.

Diistributed applications are applcations or software that
nm: oo multiple computers within 3 network af the same
time and can be stored on servers. Dats management is a key
aspect of any distributed system. One of the main challenges
m foday’s computer science research is the exiraction of
mfrmston from beterozeneous datasets. There have been
mumerons  research that have shown the impact of
mathematics in petwork modelinz. The challenge is o
mnderstand how data is orgsmized by nrming dam into
mfrmstion; information mto knowledge; and eventually
knowledre info wisdom Geomety and topology are the
nataral modem spproaches o handle complex heteropansous
data. The compurations presented in this paper yields towards
a bridge between modem geometry, topology and dismibared
systems and aims fo mgodece mediods based on peomemry
and topology to detect and manape particolar souctres of
the complex system. In recent years thers has been ressarches
on the application of sheaf theory to provide a semantic
foundation for distributed applications [1] [2]. A sheaf can be

thought of a5 a system of observations oo a topological space,

with the key property that consistent local obserations can
be nniquely pasted together to provide a global obseration.

Application of sheaf theory in computer science has a long
historical track. An early use of sheaf theory was a paper by
Monteiro and Pereira [3]. They applied shesf theory to smdy
connections between event systems. As 3 fmdation for the
behavior of comowrent processes Ehrich Goppen and
Sernadas [4] and Gogupen [5] and Caftani, G- L. and G
Winskel [§] spplied sheaf theory. Cirstea [7] provided the
semanfics for a8 conoument object-orented programmming
lanrnaze wsing sheaf theory. The mofivation in this paper is
imspired by the very recent applications of sheaf theory in
computer science and software engineering. These
applications can be foumd in [1] [2] [8] [9].

Stnal
Conomology

o

==
=

Figure 1. Road Map swards the Creatien of the Modeling.
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Absrrrcs— The goal of the present articlk is to demonstrate a
mathematical modeling for distributed applications. The present
paper applies tools from topodogy and sheaf theory as am
appropriate matbematical modeling to reflect interactions among
elements of distribwted applications resources. Simplicial
complexes are topological models for the network sirseiore.
Behavior of the objects in distributed perwork system are
represented by sheaves. This modelling is applied for the study of
the wild fire threat.

Keywords—  Distribured  Applicafons;  Sheaf,  Smpliclal
Complec, Stofks Cosheaf Homology, Sheaf Cokomology

I NTRODUCTION

Distnbuted applications are end-user systems consisting of
software components runming on multiple host machines that
share resources and coordinaie their achions o complete a task
{or tasks) through message passmg. They exist in nearly every
mdustry and corner of the society, from social media to weather
forecasting to grocery shopping.  They differ from standalone
applications in that they must handle partial failures, cope with
unpredictable message transfer times, coordinate tasks without
a global clock, and address a wide mnge of temporal challenges
[1] In addition, distributed applications often integrate data
from multiple sources that differ in terms of their schemas,
granularity, and quality. An example of such a system is a
wil dfine detection application that gathers data from a vaniety of
in-the-field stations, each with a potentially different set of
sensoms for temperature, wind, humidity, smoke, and hotspots in
the infrared spectrum. The individual stations may come onling
or go offling at irregular intervals and stations may become
permanently disabled. Such a system might also make use of
satellite images or acrial photography. Therefore, the structure,
availability, gmnularity, and quality of the data would vary by
data source and type.

All these and other issucs tend to make distnbuted
application complex. Furthermore, as their featuns become
more sophisticated, the underlying complexities ncrease well
bevond what curent modeling languages mnd iools canmanage.
Themfore, software and data engineers need richer modeling
tools that can help them express the characeristics of distributed
applications, reason about those characteristics, and develop
solutions that can optimize performance, resource ufilation,
and data quality. These tools should also support system-wide

analytics for uncovering emerging or changing chamcteristics,
particularly in the presenee of heterogencous data coming from
multiple sources with variable availability and quality. Section
Il provides some additional background on  distributed
applications and their characteristics, as well as a summary of
tools commonly wsed for their modeling. Section 11 also
disqusses the problem inkegrmting heterogeneous temporal data
in more detail.

This paper proposes a conceptual modeling techmgue that
addmesses the problem of modeling and ressomng about
distributed appheations that work with heterogeneous dat from
multiple spurces, where the schema, availability, and quahty
vary. This proposed technique wuses Sheaf Theory; a
mathematical tool for tracking data attached to open sets n a
topological space; and prescribes a method for expressing a
distributed application in terms of simplicial complexes as the
topological data space equipped with stalks as space of
information and the restriction maps to construct the associated
cellular sheaf. Section LI provides a summary of Sheaf Theory,
prior to giving the explnaton of the proposed modeling
technique in Section 1V, This section illustraies how this
modeling technigue can used to capture essential characteristics
of the wildfire application and answer questions, like a) are the
stations providing sufficient information to track a real fire even
when some of the stations may go offling, b) which types of data
are redundant or complimentary, and ) are there “holes™ in the
spatial ar termparal dimensions .

A modeling technique that can help engineers answer such
questions could become a powerful tool for creating more
advanced and adaptive distnbuted apphications. Specifically, it
should help engineers deal with complex issuss ansing from
heterogensous spatial and tempoml data. Section V discusses
these and other potential benefits in more detail, as well as
current limitations and inefficiencies.  Future rescarch efforts
aim to minimize the limitations and mefficiency,  These are
outlined in Section VL along with some a summary of this
paper’s contributions,

Il. BACKGROTND

[hatnbuted  applicabions  are software systems  with
components runming on two or mon: independent host machines
and that communicate with each other via message passing over
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We present a mathematical model for physical systems. A large class of functions is
built through the functional quantization method and applied to the geometric study of
the model. Quantized equations of motion along the Hamiltonian vector field are built
up. It is scen that the procedure in higher dimension carries more physical information.
The metric tensor appears to induce an electromagnetic field into the system and the
dynamical nature of the electromagnetic field in curved space arises naturally. In the
end, an explicit formula for the curvature tensor in the quantized space is given.

Keywords: Quantized space; quantized equations of motion; functional quantization;
curved space; Q-meromorphic functions; electromagnetic field; metric tensor.

Mathematics Subject Classification 2010: 81T75, 53155, 81R60

1. Introduction

Developments in quantum mechanics resulted in the discovery of non-commutative
framework of mathematieal models for physical systems [6]. The non-commutative
version of the standard study of smooth manifolds lies in the representation of
spaces by non-commutative funetion algebras [1, 3, 4]. A mathematical approach in
transition to non-commutative formmulation is through quantization of commutative
algebras; assuming an appropriate set of non-commutative variables spanning a
representation space [2, 9], The gquantized algebras provide appropriate models for
physical systems; the physical concepts on these algebras can be well treated and
the caleulations can be simplified. The choice of the algebra varies from theory
to theory. Different types of quantization provide different models for quantum
theories [6, 13].
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COFIBRATIONS IN THE CATEGORY
OF NONCOMMUTATIVE CW COMPLEXES

V. MILANI, 5. M. H. MANSOURBEIGI anD A-A. REZAEI

ApsTRAaCT. Cofibration in the category of noncommutative CW complexes is de-
fined. The C*-algebraic counterparts of topological mapping Cylinder and mapping
cone are presented as examples of noncommutative CW complex cofibres. As a
generalization, the concepts of noncommutative mapping cylindrical and conical
telescope are introduced to provide more examples of noncommutative CW com-
plex cofibres. Their properties and K-theoretic behavior are also studied mn detail.
It iz seen that they carry the properties similar vo the topological properties of their
CW complex counterparts.

1. INTRODUCTION

The category of C*-algebras and *-homorphisms can be interpreted as the noncom-
mutative counterpart of the category of topological spaces and continuous maps
[1, 2, 8]. Its origin goes back to the Gelfand duality. The results of the paper [7]
known as the Gelfand-Naimark theorem provide a duality between the topology
of locally compact spaces and the algebraic structure of commutative C*-algebras.
The duality creates a dictionary between the two categories. Topological construe-
tions such as cofibrations, mapping cylinder and mapping cone are translated into
their C*-algebraic counterparts [12, 13]. In the absence of commutativity, the
dictionary may still contain noncommutative CW complexes (NCCW complexes)
as the C*-algebraic version of the topological CW complexes defined in [6]. The
noncommutativity comes from the fact that noncommutative CW complexes are
algebras of matrix-valued continuous functions. In [11], we studied some of the
geometric properties of noncommutative CW complexes. In this paper, we are
motivated by noncommutative constructions through NCCW complex examples
and study their topological properties. In this regard the paper is organized as
follows.

Section 2 is a review of basic tools: extensions, pullbacks, NCCW complexes
and their primary properties. Section 3 is devoted to the study of cofibrations
and cofibres in the category of NCCW complexes. In this section we explain the
C*-algebraic counterparts of the topological mapping cyvlinder and mapping cone.

Received July &, 2014.

2010 Mathematics Subject Classification. Primary 468Looc, 57Txx, 57005, 7012,

Key words and phrases. C*-algebra; Cofibration; Cofibre; CW complex; K-group; mapping
conef{cylinder); mapping conical{cylindrical) telescope; noncommutative CW complexes.
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ABSTRACT

In this paper we present the construction of a group Hopf algebra on
the class of rational tangles. A locally finite partial order on this class is
introduced and a topology is generated. An interval coalgebra structure
associated with the locally finite partial order is specified. [rrational
and real tangles are introduced and their relation with rational tangles
are studied. The existence of the maximal real tangle is described in
detail.

2010 MSC: 16T05; 11Y65; 18B35; 5TM27; 57T05.

KEYWORDS: group Hopf algebra; locally finite partial order; tangle; pseudo-
module; bi-psendo-module; pseudo-tensor product; incidence al-
gebra; interval coalgebra; continued fraction; tangle convergent.

1. INTRODUCTION

Rational tangles are not only beautiful mathematical objects but also have
many applications in other fields such as biology and DNA synthesis [3]. The
theory of tangles was invented in 1986 by Conway in his work [2]. He intro-
duced the notion of rational tangles and with each rational tangle he associated
a rational number hy the continued fraction method. The associated rational

Received 30 March 2014 — Accepted 22 November 2016
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ABSTRACT

The concept of discrete multivalued dynamical systems for noncommu-
tative CW complexes is developed. Stable and unstable manifolds are
introduced and their role In geometric and topological configurations of
noncommutative CW complexes is studied. Chur technique is illustrated
by an example on the noncommutative CW complex decomposition of
the algebra of continuous functions on two dimensional torus.

2010 MSC: 46185, 550710, 54H20, 34D35.

KevywoRrDS: closed hemi-continuous, C*_algebra, CW complexes, discrete dy-
namical system, modified Morse function, noncommutative CW
complex, open hemi-continuous, stable manifold, unstable man-

tfold.

1. INTRODUCTION

The theory of CW complexes was invented by Whitehead in 1949 [14]. The
concept of CW complex structures on topological manifolds has been a great
development in the category of topological spaces [8]. It is a well known fact
that the topology of a manifold can be reconstructed from the commutative
C*-algebra of continuous functions on it [7, 10]. In other words commutative
C*-algebras play as the dual concept for topological manifolds. Away from

Received January 2013 — Aceepted Augnst 2013
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Morse theory for C*-algebras: a geometric
interpretation of some noncommutative
manifolds
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ABSTRACT

The approach we present 1s a modification of the Morse theory for uni-
tal C*_algebras. We provide tools for the geometric interpretation of
noncommutative CW complexes. Some examples are given to illustrate
these geometric information. The main object of this work is a classi-
fication of unital C*-algebras by noncommutative CW complexes and
the modified Morse functions on them.

2010 MSC: 06B30, 46L35, 46L85, 55P15, 55U10.

KEywoRrDs: C*algebra, eritical points, CW complexes, homotopy equiva-
lence, homotopy type, Morse function, Noncommutative CW
complex, poset, pseudo-homotopy type, *-representation, sim-
plicial complex.

1. INTRODUCTION

Morse theory is an approach in the study of smooth manifolds by the tools
from caleculus. The classical Morse theory provides a connection between the
topological structure of a manifold M and the homotopy type of critical points
of a function f: M — R (the Morse functions).

On a smooth manifold M, a point a € M is a critical point for a smooth
bunction f : M — R, if the induced map f, : To(M) — R is zero. The real
number f({a) is then called a critical value. The function f is a Morse function
if i) all the critical values are distinct and ii) its critical points are non degen-
erate, i.e. the Hessian matrix of second derivatives at the critical points has a

*Corresponding author.
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Abstract

In this paper we generalize the notion of a dynamical system to that
of & gquantum dynamical system and iry to find some conditions lor the
stability of an n-D Quantum (MIMO) system P(X). It contains two parts.
The frst part is to introduce the n=D Quantum MIMO svstems where Lhe
coefficients vary in the algebra of Q-meromorphic functions. Then we in-
troduce some conditions for the stability of the solutions of these systoms,
The second part is to show that this Quantum syvstem has the n-I3 system
as its quantum limit and the results for the SISO, SIAMO, MISO MIMO are

obtained again as special cases,

keywords: Dynamical system; Q-Meromorphic functions; Functional guan-

tization; Quantized space; Derivations
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SEYED M-H MANSOURBEIGI

Professional Profile

Electrical and system engineer, with 10+ years of experience at Utah State
University and State University of New York, AT&T Company and Brookhaven
National Laboratory (BNL) in Analog/Digital signal processing communication
systems in electrical engineering systems and computer communications projects.
Statistical analyst with advanced multi-task skills in designing and managing
multiple electrical system projects for commercial, industrial, market, and scientific
use.

Creative, goal-driven problem solver who thrives on identifying and solving
problems.

Adjunct professor at Suffolk County Community College with demonstrated verbal
and written communication skills to express complex technical terms in clear
language to facilitate students’ learning.

Established reputation for maintaining high standards of personal and professional
conduct. Demonstrated experience and strong work ethic in budgeting, schedules,
and giving technical direction in managing dynamical systems in mechanical and
electrical designs.

Area of Interest

Statistical analog/digital communication software and hardware engineering,
theoretical computer sciences, embedded systems.

Power electronic systems, control (linear/nonlinear) systems engineering, quantum
mechanics, signal processing and communications, electromagnetics and
RF/wireless systems, chaos fractals dynamical system, dynamical of physical
system.

Energy resources & technology, signal processing, stochastic processing. Kalman
and Wiener Filtering, neural network and machine learning, deep learning
Tensorflow, phase lock loop, Markov process, and hidden Markov model.
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Analog/digital communication electrical engineer

Project management

Innovative problem solver

Regulatory compliance

AIX UNIX; Microsoft office suit; SUN Solaris, LINUX, UBUNTU.
SAS; C/C++; Windows; DB2, JAVA, C#, Python, Tensorflow.
MATHLAB; ORACLE; LTSPICE, PostgresSQL, UML, FPGA, VLSI.
System engineering, software engineering, embedded systems.

Professional Experience

Utah State University College of Engineering Computer Science Department
08/2015 - Present

(Teaching assistant, research assistant, statistical consultant)

Teaching Assistant: CS3100, CS5700, CS5200:
Participate in lectures in lieu of business trips of main lectures, grade students’
projects and exams, maintain office hours for trouble shooting, and guide students.

Research Assistant PostgreSQL and database programming for new born projects
for State of Utah Health Division.

Statistical consulting for two Ph.D. candidates, ANOVA, T-Test, Chi-Square Test.

SCCC - Suffolk County Community College 21/Sep/2009 - Present
(Adjunct Professor)

e Teach Industrial Control including: Electronics and Electrical Systems, Motor
Control, PLC (Programming Logic Controller), Electric Drive Systems and
Drivetrain Components in Electric Vehicles; Motor Drives and Vehicle Power
Electronics; Safety Procedures for Working with High Voltages and Power Levels
Typical of Electric Vehicles; Hydraulic; Pneumatic; Business Management.

e Involved in analog and digital communications engineering systems. Received
Teacher Performance Award.

® Acquired appreciation letter from the dean of the faculty for facilitating education

by applying new strategies and technologies to the course materials.

CTG (Computer Task Group), IBM 23/Jan/2006 - 01/Sep/2009
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System Engineering

e Major contributor for high availability multi-processing for AIX UNIX and
analog/digital communications.

e Planned the development of potential engineering projects and products by
managing and setting up context manager software and hardware reposting the
customer correspondences.

e Chairman of Signal Processing in IEEE (Institute Electrical Electronics Engineer).

e Involved with the complexity of the systems by thinking logically, and analyzing
top down and bottom up approach, resulted in 15% time and 10% budget savings.

State University of New York (SUNY) 12/Jul/1999 - 20/Jan/2006
Electrical Engineering

e In migration IBM Z Operating Systems to AIX UNIX Operating Systems SUNY
saved 14% in budget by thoroughly reviewing every detail in a project.

e Researched new methodologies and developed new procedures in green energy
resources and technology (solar, wind, tidal, hydro, geothermal, coal) to apply
principles of electrical theories to the projects.

e Involved in the development of potential engineering projects by employing
dynamical systems, fractals and chaos to circuits and mechanical systems.

¢ Implemented battery technologies and battery charging techniques, to take care of
computer systems uptime 24/7.

AT&T (Electrical Engineering) 05/Sep/1994 - 12/Jul/1999

e Managed and installed electrical equipment, components in system 5 TCP/IP
network protocol for commercial, industrial, and scientific use.

e Job time constraint in critical business systems 24/7 by fixing a problem in a time-
frame by quickly developing a solution, resulting in 12% time and 8% budget
savings.

e Planned troubleshooting process, safety measures and testing for analog and digital
communication in Code, Frequency and Time Division Multiple Access to ensure
compliance.

e Participated in company training courses kept track of new developments in
technology and worked with wireless energy transfer systems.

SUNY at Stony Brook/ Brookhaven National Lab 01/Jun/1987 - 01/Sep/1994

System Engineering
e Managed hardware, software, database and computer communication networks as
system engineer in the breast cancer research in department of Preventive
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Medicine and Brookhaven National Lab.

Developed innovative and effective ways to improve computer systems saving
6% in time and 4% in budget for the Brookhaven National Laboratory.

Taught discrete mathematics and probability theory for department of applied
math and statistics.

Participated in the development of ad hoc engineering projects in the department
of preventive medicine with C/C++ Programming, SAS and SPSS languages.

HONORS

Member of the honor society "ETA KAPPA NU"
Member of the honor "TAU BETTA PI".
Member of "EPSILON PI EPSILON".

MEMBERSHIPS and EDITORIAL BOARD

Member of the editorial board of Universal Journal of Electrical and Electronic
Engineering (HRPUB).

Member of the Institute of Electrical and Electronics Engineering (IEEE).
Reviewer of the American Mathematical Society (AMS).

Member of the Association for Computer Machinery (ACM).

EDUCATION

Ph.D. College of Engineering Computer Science, Utah State University, 2018
(GPA 4.00/4.00).

Master of Science Degree (M.Sc.), NYU Tendon School of Engineering, New York
Electrical Engineering, 1998 (GPA 4.00/4.00).

Master of Science (M.Sc.), NYU Tendon School of Engineering, New York
Computer Science, 1993 (GPA 4.00/4.00).

Master of Science (M.Sc.), State university of New York

Applied Mathematics and Statistics, 1991 (GPA 3.64/4.00).

Bachelor of Science (B.Sc.), State university of New York

Computer Science/Engineering, 1987 (GPA 3.64/4.00).

Bachelor of Science (B.Sc.), Tehran Polytechnic, Tehran, Iran

Civil/Electrical Engineering,1979 (GPA 3.86/4.00).
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CERTIFICATIONS

PLC (Programming Logic Control 2009)

Motor Control (2008)

AIX Unix System Support and Administration (2001)
Sun Solaris System Administration (2001)

CONTINUING EDUCATION

Taking Online Courses in MIT, Yale, Stanford, Khan Academy and IIT India.

JOURNAL PUBLICATIONS

"Incidence of Stage III+ Retinopathy of Prematurity (ROP) in Tertiary Care
Hospital": R.J. Smith, L.Hyman, B. Golub, R. Sosulski, S. Mansourbeigi, A. O.
Varma, JAMA (July 8, 1991).

"Quantum MIMO Systems and Conditions for Stability", Seyed M. H.
Mansourbeigi and V. Milani. Proc. ICM, 2, 713-719 (2008).

"Morse Theory for C*-Algebras: A Geometric interpretation of some
Noncommutative Manifolds": Vida Milani, Seyed M. H. Mansourbeigi and Ali
Asghar Rezaei , Applied General Topology, vol 12, No. 2, (2011).

"Discrete Dynamics on noncommunative CW complexs", Vida Milani, Seyed M.
H. Mansourbeigi, Applied General Topology, vol 14, No. 2 (2013).

"Cofibrations in the Category of Noncommutative CW Complexes", Vida Milani,
Seyed M.H. Mansourbeigi and Ali-Asghar Rezaei, Acta Mathematica Universitatis
Comenianae, vol. 85 No.1 (2016).

"Geometry of Physical Systems", Vida Milani, Seyed M.H. Mansourbeigi and
Stephen W. Clyde, International Journal of Geometric Methods in Modern Physics,
vol.14, no.3, (2017).

"Algebraic and Topological Structures on Rational Tangles", Vida Milani, Seyed
M.H. Mansourbeigi and Hossein Finizadeh , Applied General Topology, vol.18,
no.1, (2017).

"Sheaf Theory Approach to Distributed Applications: Analyzing Heterogeneous
Data in Air Traffic Monitoring", Seyed M-H Mansourbeigi, International Journal
of Data Science & Analysis, 3(5), (2017).
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e "Sheaf Theory as a Mathematical Foundation for Distributed Applications
Involving Heterogeneous DataSets", Seyed M-H Mansourbeigi, IEEE AINA 32
international Conference on Advanced Information Networking and Applications
Workshops, pp: 28-33, DOI 10.1109/WAINA.2018.00059, (2018).

e “Quantum Computing vs. Conventional Computing”, Poster, Seyed M.
Mansourbeigi, Stephen W. Clyde, Department of Computer Science, USU, 2016.

CONFERENCES AND PRESENTATION TALKS AND POSTER DAY

e Mansourbeigi Seyed M.H. and Milani Vida; “Dirac structures on (Quantum)
manifolds: The topological conditions for their integrability and the moduli space
of integrable Dirac structures,” International Conference “DIFFERENTIAL
EQUATIONS and TOPOLOGY: Dedicated to the Centennial Anniversary of Lev
Semenovich Pontryagin (1908-1988),” State University of Moscow, Moscow,
Russia, June 17-22, 2008.

e Mansourbeigi Seyed M.H. and Milani Vida; “Morse Theory: A tool for geometric
classification of the noncommutative CW Complexes,” AMS Meeting 1059:
University of New Mexico, Albuquerque, New Mexico, April 17-18- 2010 USA.

e Mansourbeigi Seyed M.H. ; “Sheaf Theory as a Mathematical Foundation for
Distributed Applications Involving Heterogeneous Datasets,” The 32nd IEEE
International Conference on Advanced Information Networking and Applications
(IEEE AINA-2018) May 16-18, 2018 Pedagogical University of Cracow, Poland.

e Mansourbeigi Seyed M.H. : Poster day April 2016, Quantum Computing vs.
Conventional Computing: Near-Term Solution in Smart Distributed Systems, Utah
State University, College of Engineering Computer Science Department.
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