
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1996 

Integration of Special Sensor Microwave/Imager (SSM/I) and in Integration of Special Sensor Microwave/Imager (SSM/I) and in 

Situ Data for Snow Studies from Space Situ Data for Snow Studies from Space 

Changyi Sun 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Forest Sciences Commons 

Recommended Citation Recommended Citation 
Sun, Changyi, "Integration of Special Sensor Microwave/Imager (SSM/I) and in Situ Data for Snow Studies 
from Space" (1996). All Graduate Theses and Dissertations. 7297. 
https://digitalcommons.usu.edu/etd/7297 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=digitalcommons.usu.edu%2Fetd%2F7297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7297?utm_source=digitalcommons.usu.edu%2Fetd%2F7297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


INTEGRATION OF SPECIAL SENSOR MICROWAVE/IMA GER (SSM/1) 

AND IN SITU DATA FOR SNOW STUDIES FROM SPACE 

by 

Changyi Sun 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

of 

DOCTOR OF PHILOSOPHY 

in 

Watershed Science 

UTAH STA TE UNIVERSITY 
Logan, Utah 

1996 



ABSTRACT 

Integration of Special Sensor Microwave/lmager (SSM/1) 

and In Situ Data for Snow Studies from Space 

by 

Changyi Sun, Doctor of Philosophy 
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Major Professors: Drs. Jeffrey J. McDonnell and Christopher M. U. Neale 
Department: Forest Resources (Watershed Science Unit) 

II 

The Special Sensor Microwave/Imager (SSM/1) radiometer is a useful tool for monitoring 

snow conditions and estimating snow water equivalent and wetness because it is sensitive to the 

changes in the physical and dielectric properties of snow . Development and improvement of SSM/1 

snow-related algorithms is hampered generally by the lack of quantitative snow wetness data and the 

restriction of a fixed uniform footprint. Currently, there is a need for snow classification algorithms 

for terrain where forests overlie snow cover. 

A field experiment was conducted to examine the relationship between snow wetness and 

meteorological variables . Based on the relationship , snow wetness was estimated concurrently with 

SSM/1 local crossing time at selected footprints to develop an SSM/1 snow wetness algorithm . For 

the improvement of existing algorithms , SSM/1 observations were linked with concurrent ground­

based snow data over a study area containing both sparse- and medium-vegetated regions. 

Unsupervised cluster analysis was applied to separate SSM/I brightness temperature (Tb) data into 

groups. Six typical SSM/1 Tb signatures, based on cluster means of desired snow classes, were 

identified . An artificial neural network (ANN) classifier was designed to learn the typical Tb patterns 
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for land-surface snow cover classificat ion. An ANN approximator was trained with the relations 

between inputs of SSM/1 Tb observations and outputs of ground-based snow water equivalent and 

wetness. 

Results indicated that snow wetness estimated from concurrent air temperature could provide 

the ground-based data needed for the development of SSM/1 algorithms. The use of cluster means 

might be sufficient in ANN supervised learning for snow classification, and the ANN has the 

potential to be trained for retrieving different snow parameters simultaneously from SSM/1 data. 

It is concluded that the ANN approach may overcome the drawbacks and limitations of the 

existing SSM/1 algorithms for land-surface snow classification and parameter estimation over varied 

terrain. This study demonstrated a nonlinear retrieval method towards making the inferences of snow 

conditions and parameters from SSM/1 data over varied terrain operational. 

(151 pages) 
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CHAPTER 1 

GENERAL INTRODUCTION 

Snow cover and its eventual ment are major factors controlling the hydrological response of 

watersheds in mid and high latitudes. Monitoring large-scale snow properties throughout the snow 

accumulation and melt seasons is essential for understanding regional hydrologic response and global 

climatic feedbacks. Conventional snow measurements are limited to point or snow course data, and 

do not permit examination of large-seal<! seasonal snowpack conditions, which is possible only by 

the use of remotely sensed data. 

Spacebome passive microwave radiometry is the most useful tool for regional snow property 

estimations because of: (1) its relative independence of atmospheric conditions such as 

nonprecipitating cloud cover , (2) its excellent penetration depth into the snowpack, and (3) its 

sensitive response to the changes in snow physical and dielectric properties . 

Beginning in the mid-1970s , several spacebome radiometers were launched for atmospheric 

and terrestrial measurements , including (1) the Electrically Scanning Microwave Radiometer (ESMR) 

instrument flown aboard U.S . satellite imbus-5 and Nimbus-6 , (2) the Scanning Multichannel 

Microwave Radiometer (SMMR) on Nimbus-7 , and (3) the Special Sensor Microwave/Imager 

(SSM /I) on the Defense Meteorological Satellite Program (DMSP) F8, Fl 0, and Fl 1 satellites . 

Since July 1990, the National Aeronautics and Space Administration (NASA) has maintained 

the WetNet computer network system, providing workstations and data to science team members 

from NASA , the National Oceanic and Atmospheric Administration (NOAA) , and the university 

community . The WetNet system involves the acquisition, management , and display of SSM/1 

satellite imagery and associated data . Using either magneto-optical (MO) disk or Internet 

networking , SSM/1 data can be distributed to the investigator for algorithm development , verification, 
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intercomparison, and modification. Current SSM/l snow products are the Grody, Goodison, and 

DMSP CalNal snow cover and depth aRgorithms [l] , [2], [3], [4]. 

The WetNet workstation at Utah State University (USU) is housed in the Biological and 

Irrigation Engineering Department. The workstation is based on an IBM PS/2 80486 personal 

computer. An integral part of the workstation is the Man computer Interactive Data Access System 

for the OS/2 operating system (McIDAS-OS2) developed at the Space Science and Engineering 

Center at the University of Wisconsin-Madison. 

The primary tasks of the USU WetNet project are twofold: (1) improvement of land-surface­

type classification algorithms and surface moisture retrieval algorithms and (2) improvement of the 

snow classification, snow depth, and water equivalent retrieval algorithms. This study represents 

accomplishments of the second task of the USU WetNet project. Research findings are presented 

in multiple-paper format in this dissertation . 

A. Review of Literature 

1) Satellite Microwave Radiometry and Its Limitation: The function of a microwave 

radiometer is to receive electromagnetic energy radiated by the scene under observation. A 

radiometer consists of an antenna for collecting the radiation incident upon it, a receiver for 

measuring the antenna radiometri c temperature (TA), and the microwave switches for determining 

the source of energy input to the receiver [5], [6]. 

The apparent temperature (TAP) represents the upwelling radiation collected in a certain 

direction by the antenna main-lobe and is estimated by applying an antenna pattern correction on TA· 

As illustrated in Figure 1.1, TAP consists ofthree sources of radiation, the atmospheric upward self­

emission (T up), the terrain self-emission, which is the brightness temperature (Tb) , and the 

atmospheric downward self-emission scattered at the terrain surface (T5c). In the case of a clear 



I I 
Upward/ / // 

I / / 
I / 

Atmospheric _/ / 1 / 

' Self-emission~/;~ 

' I/ I 
\ / 

\. / I 
Downward'\ / / 

\. / / 
'\ / 

TDN Tb 

Z = 00 (Top of Atmosphere) 

Transmissivity Y 

--- Z = O (Surface) 
Ground 

Figure 1.1. Satellite radiometer observing the earth at a nadir angle (from Ulaby et al. [7]) . 
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atmosphere, TAP is equal to Tb since the only contribution to TAP is emission from the terrain. Under 

general atmospheric conditions, TAP is not equal to Tb . The combination of terrain emission and 

scattering (Tb + T sc) is attenuated in magnitude by the atmosphere between the scene and the 

antenna. However , TAP is commonly used to describe the Tb of terrain under observation [5], [7], 

[8]. 

Polarization describes how the electric (E) field vectors of an electromagnetic (EM) wave 

are oriented to the plane of incidence , whiich is defined by the propagation direction of the wave and 

the normal vector to the interface (e.g. , ground surface). In passive microwave radiometry, a wave 

is horizontally polarized if its E field vector is parallel to the ground surface and is vertically 

polarized if the E field vector is perpendicular to the surface . Emission and scattering by different 
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terrain surfaces usually are polarization-dependent. With a view angle different from 0 °, vertical 

polarization always yields higher TAP· The difference between vertical (V) and horizontal (H) 

polarization occurs because horizontal features of the scene tend to absorb the horizontal component 

of the E field. Consequently, many spacebome radiometers have a view angle different from nadir 

in order to measure the effective TAP difference for scene interpretation [5], [9]. 

The spatial resolution of a microwave radiometer is often given in terms of the instantaneous 

field of view (IFOV), which defines the area on the ground covered by the antenna main-lobe. Due 

to the limited size of current antennas and the very low levels of microwave emission from the earth­

atmosphere system, radiation observed by a spacebome radiometer with a large IFOV has been 

required to ensure an acceptable signal- to-noise ratio . Typically, the spatial resolution is restricted 

to the order of 25 to 50 km, depending on different microwave instruments and channels [5]. 

Although it is expected that the low spatial resolution will be improved in the near future [IO], 

current satellite microwave radiometers already have the capability for remotely monitoring 

snowpack conditions with reasonable accuracy at large scales [11], [12]. 

2) Snowpack Properties and Microwave Response: Snowpack or snow cover, which has 

formed from a number of snowfalls , is defined as the mixture of ice crystals , air, impurities, and 

liquid water if melting [13]. From the time snow falls until snowmelt occurs, a snowpack undergoes 

many changes in grain size and shape , called snow metamorphism, which greatly affect the snowpack 

properties [14] , [15]. 

Snow on the ground can be classified as either dry or wet depending on whether it is below 

or at its melting temperature [16], [17]. Dry snow is characterized by rounded or faceted crystals at 

small or large temperature gradient. We:t snow is characterized by clusters of grains at low liquid 

water content, or by poorly bounded slush at high liquid water content. 
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The interaction between microwave radiation and snowpack can be described by both 

emission and extinction process occurring simultaneously [5], [18]. The extinction, involving both 

volume scattering and absorption process , is governed by ice crystals and liquid water in the snow. 

Microwave emission at a snowpack surface consists of radiation emitted from the background 

surface, reduced in magnitude due to extinction by the snow volume, and the radiation emitted and 

scattered by the snow medium along the propagation path . 

In a dry snow layer, the radiation emitted can be scattered on its way to the surface by ice 

crystals . Larger grain sizes permit more scattering as the grain size approaches the microwave 

wavelength [11 ]. Thus the deeper the snow the more the volume scattering , resulting in a lower 

microwave emission at the snow surface. When snow is wet, the liquid water held by the snow grains 

causes a significant increase in volume absorption and decrease in volume scattering, by which the 

snow medium behaves like a blackbody radiator and re-emits the energy absorbed at the surface, 

causing an increase in the microwave emission [19]. 

For a given snow layer, as shown in Figure 1.2, an increase in the microwave frequency (i.e ., 

decrease in the microwave wavelength) results in a decrease in brightness temperature when snow 

is dry or refrozen , but an increase in brightness temperature for wet snow [9], [20], [21]. Thus , the 

microwave emission of snow is a functiorn of snow depth, grain size, wetness, background conditions , 

and microwave wavelength. 

3) Inversion of Radiometer Measurements: Unlike in situ methods , the passive microwave 

approach provides an indirect estimate by using parameter retrieval algorithms , with radiometer 

measurements as input data, to derive information about snow properties. In order to develop the 

algorithm , either empirical or theoretical interpretations of microwave observations along with 

ground truth data are required. In the application of the algorithm, the microwave reading is known, 

and the state of variables is inferred. 
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Previously, the use of passive microwave measurements to derive snow parameters has 

resulted from the following techniques: (1) regression analysis, (2) theoretical calculations, and (3) 

pattern recognition . Among these techn iques , empirical linear regression analysis has been widely 

used to link ground truth information with microwave data; the snow retrieval algorithm is the 

inverted regression equation obtained. 
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The noncoherent and coherent approaches are the two basic methods used in theoretical 

calculations of emission and scattering by a surface [5]. In the noncoherent approach, emission is 

determined only by the surface properties of the snow medium (zero-order), or the surface of each 

layer in the snow medium (first-order). In the coherent approach, emission is governed by the entire 

profile of the snow medium. 

By treating snow as a dielectric layer containing Rayleigh scatterers, radiative transfer theory 

has been used extensively for modeling the emission of snow-covered ground [22], [23], [24]. The 

model parameters used in the theory include the optical thickness of the layer, and the albedo of the 

snow medium. At a given frequency, the necessary input parameters to specify optical thickness and 

albedo for dry snow are the snow density, grain size, and the physical temperature of the snow; for 

wet snow, the snow wetness is also needed [7]. Once a radiative transfer model (RTM) is validated 

by comparing the simulated data with radiometer measurements for a variety of surface types, it can 

be inverted to extract the information about snow parameters from known microwave readings over 

typical spatial footprints . 

Since the situations of snow cover are typically complex, there are too many unknown 

radiative physical parameters that need to be determined by arbitrary assumptions in a RTM. 

Therefore, it is often helpful to handh! this complex problem only with pattern classification 

techniques [25]. One method is cluster analysis, which classifies passive microwave observations 

into physically significant categories. R1!cently, artificial neural networks (ANNs) have been used 

to classify snow cover from passive microwave data [26], [27], [28]. Studies have indicated that an 

ANN has the capability to learn complex patterns with no assumptions about the nature of the 

distribution of the pattern data [29], and performs as well as or better than other classification 

techniques [28]. 
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4) Satellite Observations of Snow Parameters : The basic hydrologic description of a 

snowpack is snow water equivalent, which is the amount of water that would be obtained if a column 

of snow were completely melted. Thus, in order to determine the available water volume in a snow­

covered region, measurements of snow extent, depth, and density are essential. In addition, 

measurements of snow wetness, in terms of percent of free water by volume , can improve estimation 

of the timing ofrunoff during the snowmelt period [21], [30]. Significant results and findings of past 

studies in passive remote sensing of snow properties are briefly summarized below. 

a) Snow extent and classification: After the launch of SMMR on Nimbus- 7 in 1978 and that 

of the SSM/1 on DMSP-F8 in 1987, the capability of spacebome radiometers for snow mapping was 

improved by the use of multichannel radiometer measurements. Using the horizontally polarized 

brightness temperature from both 37 and 18 GHz SMMR channels, Kunzi et al. [12] found a 

discriminant function with an empiricallly determined threshold value by which they were able to 

define the dry snow layer above 5 cm. 

Based on statistical analysis of SSM/1 data , Neale et al. [3 I] and McFarland and Neale [32] 

used the NASA CLIPS expert system to develop a land-surface-type classification scheme by which 

the dry, wet, and refrozen conditions of snow over land could be determined. Fiore Jr. and Grody 

[2] developed a decision-tree algorithm , using three channels (19V, 22V, and 85V) of data from the 

SSM/1, for the global classification of snow cover and precipitation over large regions. Lure et al. 

[27], on the other hand, used an ANN approach to classify snow cover and precipitation from SSM/1 

with some success. 

b) Snow depth and water equivalent : For dry snow , most investigations on the 

determination of snow depth (SD) or snow water equivalent (SWE) have focused on the 37 GHz due 

to relatively more scattering at that frequency as the wave travels through the snowpack. An inverse 

relationship (Figure 1.3) is usually found between 37 GHz brightness temperature and SD or SWE 
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Figure I .3. Apparent temperature versus snow depth measured at vertical polarization of 37 GHz 
by Nimbus-6 ESMR (from Rango et al. [II]). 

[11], [32], [33]. However, Schanda et al. [20], in the study of SWE in a winter alpine snowpack, 

observed a weaker increase of the brightness temperature when SWE :e: 20 cm (Figure 1 .4). 

In order to resolve the ambiguity in retrieval algorithms when SWE :e: 20 cm, the use of 

multichannel observations has been recommended [7]. Rango et al. [34] found a positive linear 

relationship (R2 = 0. 78) between the diffeirence in brightness temperature at two SMMR channels (18 

and 37 GHz) and the average SWE in a mountain basin. Kunzi et al. [12] evaluated seven different 

SD or SWE retrieval algorithms for different SMMR channels and combinations of channels; they 

concluded that the most significant relationship was obtained between the SD/SWE and the 

difference in brightness temperature at 18 and 37 GHz . 
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winter snow (from Schanda et al. [20]). 
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For wet snow, Chang et al. [35] found that the deeper the SD, the higher the brightness 

temperature . McFarland et al. [36] reported that brightness temperature at SMMR 37 GHz channel 

increased rapidly with pronounced decreases in SD during the ripening and melting period. 

Moreover, McFarland et al. [36] observed that the polarization difference for the SMMR 18 and 37 

GHz brightness temperatures varied significantly, but in general decreased with decreasing in SD. 
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Chang and Tsang [28] used a backpropagation learning algorithm to train a multiple layered 

neural network with simulated data generated by a RTM, and used SSM/1 brightness temperatures 

as input to retrieve SWE after the neural network was trained. They found that neural networks were 

better for SWE estimates in the low (]2 cm) and high (> 32 cm) SWE range, while regression 

methods seemed to perform better in the mid (18 to 24 cm) range. 

c) Snow wetness and onset of melt: Generally, brightness temperatures at frequencies above 

l O GHz increase rapidly with increas iing wetness (up to 4% by volume), which is especially 

observable at 37 GHz [6], [37]. Figure 1.5 shows that the brightness temperature to snow wetness 
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Figure 1.5. Angular response of brightness temperature at I 0.69 GHz and 37 GHz to wet and dry 
snow (from Stiles and Ulaby [37]). 
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variation is almost insensitive at I 0.69 GHz. In contrast, the presence of a I% of liquid water results 

in a change of 70 °K in brightness temperature at 37 GHz (Figure 1.5). 

Prior to melting, a snowpack usually undergoes several wetting and freezing cycles, which 

result in large fluctuations in microwave brightness temperature . Therefore, temporal analysis of 

passive microwave observations is the key to the detection of the onset of snowmelt [7]. 

Kunzi et al. [ 12] identified the onset of snowmelt for individual footprints by checking the 

frequency gradient (GT) of the brightm:ss temperature between 18 and 3 7 GHz SMMR channels. 

Areas showing a change of GT from negative values (dry snow condition) to about zero (wet snow 

condition) at least once in three consecutive days of satellite overpass were marked snowmelt areas. 

Armstrong and Hardman [38] interpreted a melting snow surface by monitoring the 37 GHz 

brightness temperature when values increase by more than 5-10 K between successive SSM/1 passes 

over the same location on the ground. 

5) The SSM/1 Instruments: The SSM/1 is a seven-channel, four-frequency, linearly 

polarized, passive microwave radiometric system [8], [39]. It is flown on a DMSP Block 5D-2 

satellite in a circular sun-synchronous near-polar orbit at an altitude of 833 km (Figure 1.6). The 

orbit produces 14.1 full orbit revolutions per day and has two local observation times (ascending and 

descending observations). The scan direction is from the left to the right with the active scene 

measurements lying ±51.2 ° about the aft direction, resulting in a swath width of 1400 km (Figure 

I. 7). The scan angle from nadir is 45.0°, and the incidence angle from nadir is 53.1 °. 

The SSM/1 receives both vertically and horizontally linearly polarized radiations at 19.35, 

37 .0, and 85.5 GHz and vertical only at 22.235 GHz (Table 1-1) [8], [39]. Radiometer data are 

sampled over each A- or B-scan, alternately . On each A- or B-scan, 128 uniformly spaced samples 

of the 85.5 GHz scene data are taken over the 102.4 ° scan sector. Radiometer data at the remaining 

frequencies are sampled only on A-scan, with 64 samples over the scan sector. 



Figure 1.6. Defense Meteorological Satellite Program (DMSP) block 5D-2 satellite with the 
SSM/1 located at the upper left (from Hollinger et al. [39]). 

TABLE I -I 

SUMMARY OF SSM/1 CHANNEL CHARACTERISTICS 

Channel Frequency (GHz) Polarization Footprint size (km) 

19V 19.35 Vertical 69X43 

19H 19.35 Horizontal 69X43 

22V 22.235 Vertical 60X40 

37V 37.0 Vertical 37X29 

37H 37.0 Horizontal 37X29 

85V 85.5 Vertical 15Xl3 

85H 85.5 Horizontal 15Xl3 
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To date, four of the seven SSM/I radiometers have been launched aboard DMSP F8, FlO, 

Fl I, and F12 satellite in 1987, 1990, 1991, and 1995, respectively. However, the SSM/I on F8 has 

problems with 85 GHz and that on F12 failed to operate. 
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B. The Problem and Its Solution 

The purpose of this research is to improve existing SSM/1 snow retrieval algorithms and 

develop new algorithms in order to characterize snow properties for varied terrain. Certain problems 

and their solutions with respect to the accomplishment of the objectives were as follows. 

1) The Lack of Quantitative Snow Wetness: From the papers reviewed, it is clear that ground 

truth information plays an important role in interpreting passive microwave measurements. In order 

to interpret data more accurately, as iindicated by Hall et al. [40], a quantitative history and 

accounting of snow accumulation and metamorphosis must be undertaken, and data must be analyzed 

in the context of climatological conditions. Nevertheless, the lack of extensive and reliable snow 

wetness data to provide ground truth information has always been a problem in the development of 

SSM/1 snow wetness algorithms. 

It is well known that the snowmelt process is influenced by meteorological variables such 

as air temperature , solar radiation , vapor pressure , and wind [ 41]. Among these variables, air 

temperature and solar radiation data are generally available. However , no empirical relations have 

been developed for snow wetness estimation directly from the meteorological parameters . Thus, a 

field experiment with continuous measurements of snow wetness and climatological conditions at 

corresponding SSM/1 footprints would enable the establishment of a relationship between snow 

wetness and meteorological variables. Consequently , the extensive snow wetness data needed for 

the development of an SSM/1 snow wetness algorithm can be estimated . 

2) Objective 1: To develop a snow wetness retrieval algorithm based on field measurements. 

3) Task 1: Conduct a field experiment in an area corresponding to an SSM/1 footprint with 

flat nonforested terrain to obtain extensive simultaneous measurements of snow wetness and 

meteorological variables required for algorithm development. Field data are used to (1) model the 

snow wetness as a function of the correlated meteorological variables and (2) define the relationship 
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between the snow wetness estimated from meteorological variables and the concurrent SSM/1 

brightness temperatures observed at the footprint. 

4) The Restriction of Fixed Uniform Footprint and the Effect of Vegation: According to 

Farrar and Smith [ 42], the use of SSM/1 measurements is impeded by the fact that different 

phenomena are being sampled by different channels, which results in differing spatial resolutions 

(footprints) of the scene as observed (Figure 1.8). Therefore, a uniform footprint is desired for 

multichannel data applications. Because the distance between concentric A-scan footprints is on the 

order of 1/4° (about 27 km) at midlatitudes, most of the time only one concentric SSM/1 footprint 

was placed in each fixed quarter degree latitude/longitude cell (1/4° box). The 1/4° box has been 

used as the uniform footprint in SSM/1 data applications [31], [43], [44] . In this way, the 

corresponding ground-based data needed for the development of algorithms are also taken from each 

I /4 ° box. Nevertheless, the geolocations of SSM/I footprints vary with each overpass . The use of 

a fixed uniform footprint may contribute additional SSM/1 geolocation errors, which impose 

difficulties in the calibration and validat ion of algorithms. 

Accordingly, a new sampling scheme that uses a neighborhood merging method to integrate 

the multisource data into one database is needed . The merged database could be built by searching 

the ground truth point or pixel data, either from weather stations or other satellites, which fall within 

a certain search radius around a particular SSM/1 latitude/longitude coordinate. Values of each 

variable would be averaged to represent the SSM/I footprint. In this way, SSM/1 brightness 

temperatures and ground truth information could be organized thematically as a multisource database 

for a region of interest. The database can be then analyzed based on the available data at the same 

SSM/1 latitude/longitude coordinates. Thus, the accuracy in retrieving snow parameters from SSM/1 

algorithms developed from this database could be greatly improved. 
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Freq. 

85 GHz 
37 GHz 
22 GHz 
19 GHz 

Since snow accumulation and melt are different in vegetated and nonvegetated areas, and 

because vegetation overlying snow affects the passive microwave response of snow, brightness 

temperatures together with vegetation index could explain most of the variances observed in snow 

over varied terrain [44]. During the past decade, the normalized difference vegetation index (NOVI) 

derived from NOAA Advanced Very High Resolution Radiometer (AVHRR) data has been widely 

used to characterize the seasonal vegetation condition over particular regions [45]. Consequently, 

a priori knowledge of vegetation cover using NOVI for SSM/1 footprints of interest should increase 

the accuracy in retrieval snow parameters, especially at locations where both evergreen forests and 
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snow cover are present. 

5) Objective 2: To develop a multisource database based on dynamic SSM/1 footprint 

geolocations. 

6) Task 2: Integrate Soil Conservation Service (SCS) SNOTEL, NOAA climatic, and 

NOAA NDVI data with SSM/1 brightness temperatures over a large region to develop the 

multisource database, which is established by using the neighborhood merging method to search the 

ground truth data that fall within a particular SSM/1 footprint. 

7) The Need of Robust Snow Classification Algorithms : Previous SSM/1 algorithms, such 

as the land-surface-type classification scheme [31 ], [32], are based on empirical regression analysis 

of SSM/1 data from major surface types over plains. However, in snow classification, these rules are 

restricted to land surfaces with uniform snow conditions. Where evergreen forests overlay snowpack, 

the developed algorithms may mis-identify those forested snow covers with areas of snow-free 

conditions . As indicated by Hall et al. [40], vegetation, especially coniferous trees, tends to raise the 

microwave brightness temperature , and a dense canopy of trees will mask the microwave emission 

from the snow below the trees . In such complex situations, empirical regression is unsuitable 

because there are too many unknown characterizing parameters that makes the problem extremely 

nonlinear . Consequently, there exists a need for nonlinear retrieval methods to develop a robust snow 

classification algorithm by which different snow conditions over varied terrain can be determined 

simultaneously. 

According to Staelin [24], the most complex problem can be handled with pattern recognition 

techniques . Studies have shown that clustering analysis can be used to identify significant passive 

microwave signatures [25] and that artificial neural networks have potential to learn brightness 

temperature patterns [46], [47]. Thus, an ANN learned from the significant SSM/1 brightness 

temperature patterns identified by the cluster analysis would be able to improve the snow 



19 

classification retrieval accuracy . 

8) Objective 3: To improve the! existing snow classification scheme using cluster analysis 

and neural networks. 

9) Task 3: Use a cluster analysis to identify the physical significance of clusters in the 

database developed in Task 2, and prepare the training and test data sets according to the identified 

clusters to train an artificial neural network, which is able to classify land-surface snow conditions 

over varied terrain. 

I 0) The Need of Unified Snow Parameter Processing Algorithms : As indicated in [ 48] , with 

the availability of the multispectral sensor systems on remote-sensing satellites, there exists an 

opportunity to develop unified processing algorithms in which many geophysical variables could be 

determined simultaneously. According to [49], the artificial neural network can be regarded as a 

graphic notation for a large class of algorithms or a function represented by the composition of many 

basic functions. Studies in [26], [50], using an ANN to invert snow parameters simultaneously from 

Tb measurements , have shown how a unified SSM/1 snow parameters processing algorithm can be 

developed by the neural network approach. 

In previous studies, however, the neural network was trained with simulated data generated 

by the radiative transfer models (RTMs) . Since the situations of snow are typically complex , there 

are many unknown radiative physics that need to be determined by arbitrary assumptions in a RTM. 

Although an ANN can learn from the simiulated data, its behavior under real situations often remains 

unknown. 

According to [29], the neural ncetwork approach is suitable for multichannel data fusion. 

Consequently, an ANN trained with a priori knowledge of NOVI and Tb patterns and corresponding 

ground truth of snow parameters in different snow conditions should be able to estimate snow 

parameters under all terrain and snow co111ditions from SSM/I footprints of interest. 
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11) Objective 4: To develop a unified snow parameter processing algorithm using neural 

networks. 

12) Task 4: Use the capability of the developed SSM/1 ANN snow classifier in Task 3 to 

classify snow conditions from SSM/1 Tb''s in the database, and relate the ground truth snow wetness 

and water equivalent to the corresponding SSM/1 Tb of all classified snow conditions to form a 

training and test data sets. An ANN approximator, which is able to estimate snow wetness and water 

equivalent under all snow conditions, was developed by learning from the mapping of the inputs of 

SSM/1 Tb's to the outputs of snow wetness and water equivalent in training data. 

C. General Methodology 

Figures 1.9 and 1.10 illustrate the flowchart for SSM/1 snow wetness algorithm development 

using regression analysis and that for SSM/1 snow classification using pattern recognition, 

respectively. Key elements of the methodology are described in the subsections. 

1) Field Site and Study Area Determination : Three ground-based seasonally snow-covered 

field sites located in Snowville (41.97 °N/112.95 °W with an elevation of 1300 m), Logan 

(41.73 °N/111.82 °W with an elevation of 1400 m), and Tony Grove (41.88 °N/111.57 °W with an 

elevation of I 920 m), Utah were selected! for the study of snow wetness (Figure 1.11 ). 

The Logan site was the most accessible from Utah State University for extensive snow 

wetness measurement; therefore, this site was used primarily to define the relationship between snow 

wetness and meteorological data. The Snowville field site had both flat, nonforested topography and 

homogeneous snow distribution; this site was used to link snow wetness with corresponding SSM/1 

observations for the development of a S:SM/1 snow wetness retrieval algorithm . The Tony Grove 

field site represented the complex mountainous terrain; this site was used to check the performance 

of the derived SSM/1 snow wetness retrieval algorithm in mountainous terrain. 
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Figure 1.11. Locations of three selected field sites in northern Utah 
(S - Snowville site; L - Logan site; T- Tony Grove site) . 
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A study area bounded by latitude of 40 °N to 45 °N and longitude of I 00 ° W to 115 ° W 

longitude was selected (Figure 1.12). This area includes both plains and mountain regions for 

different representative terrains in the western United States. Six hundred seven stations (191 from 

SCS SNOTEL system and 416 from NOAA climatic network) of the weather data acquisition 

networks are located in the study area to provide the ground truth information . SSM/1 data observed 

in this area were combined with in situ data to develop the multisource database used for the 

subsequent study. 

2) SSMII Data Acquisition : a) The Naval Research Laboratory: DMSP-F8 SSM/1 data 

were obtained from the Naval Research Laboratory (NRL) on optical disks in data exchange format 

(DEF) . SSM/1 Tb's within the study area were downloaded to disk file using software supplied by 

NRL for the VAX VMS operation syst,em. The data were then submitted to a set of computer 

programs that removed header records and prepared the data for the integration with ground truth 

data (Figure 1.10). 
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Figure 1.12. Boundary of the study area in western United States and the ground truth weather 
stations within the area. 

b) The USU WetNet station: DMSP-Fl 1 SSM/I data were derived from WetNet computer 

system [51] at Utah State University, which is maintained by NASA for the acquisition, management, 

and display of SSM/I satellite imagery and associated data. The integral part of the system is the Man 

computer Interactive Data Access System (McIDAS) for the OS/2 operating system. Each 14-day­

period WetNet database, which contains the browse (reduced resolution) and the full resolution data, 
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is placed onto magneto-optical disk and mailed to WetNet users. An overnight broadcast of the 

browse products was retrieved through the Internet networking distribution. 

Under the WetNet environment, SSM/I data can be accessed through McIDAS either by 

selecting from a menu, or by typing commands, or both. With the menu mode of the WetNet system, 

SSM/1 data, separated by different frequency and polarization, are transferred as seven graphic 

frames, which can be viewed on the screen one frame at a time. 

SSM/1 Tb's observed at the corresponding browse and full resolution footprints during the 

field experiment or within the study area were downloaded from the database. 

3) Field Measurements: Data were collected between Mar. 8 and Mar. 19, 1993 at the 

Snowville site, between Feb. 18 and Feb. 25, 1994 at the Logan site, and between Mar. 6 and Mar. 

20, 1994 at the Tony Grove site. An automatic climatological data recording system, mounted on a 

tripod (e.g., Figure 1.13), was set up at each site. Net radiation (W /m2
) and air temperature (°C) were 

measured at 1.5 m above snow surface using a net radiometer (Radiation Energy Balance 

System,model Q-6) and temperature probe (Campbell Scientific, Model HMP35C), respectively. 

Data were recorded at I 0-minute intervals in a datalogger (Campbell Scientific, type 21 X). In 

addition, net radiation (JK/m 2
) at the base of 24, 12, and 6 hours before snow sampling, and 

minimum, maximum, and average air temperatures within 24 hours prior to field measurement were 

also determined. 

Snow parameters were sampled based on irregular time intervals during daytime. At each 

time when the snow was sampled, one randomly selected snow pit (e.g., Figure 1.14) was dug at each 

site. Snow density, and wetness at 10 cm intervals through the snow profile were measured. Snow 

density (g/cm3
) was obtained with the Strong Stitch Snow Density Gage. With the snow density data 

as input, a dielectric probe, made by LEAS Inc. in France, was used for quickly measuring snow 

liquid water content in percent(%) by volume. 



Figure 1.13. The weather station set up at the Logan site (A,E - temperature probe at different 
height ; B - anemometer; C - net radiometer; D - enclosure with 21 X datalogger for 

data recording ; F - enclusure with battery). 
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Figure 1.14. Snow pit measurement of snow parameters ( a - snow density gage; b - folding 
ruler; c - snow thermometer; d - snow crystal card; e - snow wetness probe). 
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4) Ground Truth Information Acquisition : a) The SCS SNOTEL data: The Soil 

Conservation Service (SCS) installs, operates, and maintains an extensive, automated system, called 

SNOTEL (SNOwpack TELemetry), to collect snowpack and related climatic data in the western 

United States. There are currently 642 SNOTEL sites in 11 states. Snow water equivalent, 

precipitation, and air temperature (i.e., maximum, mean, and minimum) are recorded every 15 

minutes and reported on a daily basis via meteor burst telemetry to the SCS master stations [52]. 
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Since the SNOTEL stations are generally located in remote high-mountain meadows, SNOTEL data 

were used as the main source of ground truth information for mountainous areas in the western 

United States . 

SNOTEL daily data of the 191 sltations in the study area (Figure 1.12), formatted into a 1990 

water-year period database, were obtained from the SCS West National Technical Center (WNTC) 

in Portland, Oregon. A set of programs was used to arrange the SNOTEL data into ASCII data files, 

which contained the latitude/longitude c:oordinates of each station, the date, and the corresponding 

snow data. The rearranged SNOTEL data were then merged with SSM/1 data to form the multisource 

database. 

b) The NOAA climatic data: The NOAA National Climatic Data Center (NCDC) operates 

a large cooperative network of weather stations that collect daily climatic data in the continental 

United States. These climatic data, containing daily maximum and minimum temperature, 

precipitation, and snow depth, are available from the NCDC Climatic tapes. Due to the dense 

distribution of weather stations in the central plains , these climatic data were used to represent the 

reliable snow cover information of flat te:rrains. 

The climatic data of the 416 stations for 1990 water year in the study area (Figure 1.12) were 

download from tapes to computer disk , using software developed at Texas A&M University for the 

VAX VMS operating system. Daily climatic data at each station was combined with corresponding 

SSM/1 data to constitute the multisource database. 

c) The NOAA NDVI data : The NDVI is calculated from the difference of AVHRR near­

infrared and visible radiances divided by the sum of the two . It has a valid greenness value range 

from 110 to 160; the higher value is associated with greater density and greenness of the plant canopy 

[53]. 

Monthly maximum scaled NOVI data of 1990 water year for the study area (Figure 1.12) 
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were used for the vegetation evaluation. These data were computed by taking the maximum values 

of biweekly NDVIs for each approximate month, then reprojecting the original Mercator-projected 

data to a 10-minute latitude/longitude grid as the Global View CD-ROM products available from the 

NOAA National Geophysical Data Cen1ter (NGOC) [54]. 

5) Development of Snow Wetness Algorithm: Regression analysis was performed for 

modeling the snow wetness as a function of the correlated meteorological variables (Figure 1.9). A 

correlation coefficient matrix was computed to measure the degree of linear associations among pairs 

of variables . Cook's distance method [55], a measure of the influence of an observation, was 

employed to detect the possible outliers for improving the fit of the regression models. 

Correlation coefficients based on daytime series were plotted to examine the variations 

between snow wetness and related variables . Collinearity of the predictors was also examined for 

the selection of significant predictors iin a multiple regression model. Methods of the variance 

inflation factor (VIF), the condition number (CN), and the variance proportions were used to quantify 

the degree of collinearity [56]. 

After selecting the predictor variables, multiple correlation coefficients were determined to 

examine the relationship of all combinations of variables to snow wetness . R2, a measure of the 

strength of linear relationship , and Mallows' Cp [57], a measure of total squared error, were used for 

the best model selection in defining regression models . 

The study focused on the SSM/I 19.3 5 and 3 7 .0 GHz channels due to the sensitivity of Tb 

to snow wetness [7]. Time series of 37.0 GHz observations and Tb differences in the 19.35 and 37.0 

GHz channels full resolution footprints in the Snowville area were examined. Based on the best 

regression model, snow wetness at the Snowville footprint , concurrent with the SSM/I local passing 

time, was estimated. With the available data of SSM/I and snow wetness , regression analyses were 

applied to develop the SSM/I snow wetness retrieval algorithm. The developed algorithm was tested 
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on the Tony Grove footprint by comparing the snow wetness estimated from the best meteorology­

based model to that estimated from the SSM/1 algorithm to see the agreements in both data . 

6) Development of Multisource Database: The neighborhood searching method was used 

to integrate the SSM/1 Tb's at each footprint with the ground truth of SNOTEL, climatic, and NOVI 

data into one database (Figure 1.10). This became the multisource database with the SSM/1 seven 

Tb's and corresponding ground truth data. 

Neighborhood searching was conducted by first calculating the great circle distance (z) 

between latitude/longitude coordinates of each weather station or A VHRR pixel and those of a 

particular SSM/1 footprint (e.g., latl/lonl and lat2/lon2, respectively) defined by [58]: 

z = 6370.997*acos(sin(1at1) *Sin(1at2) + 
cos(latl)*cos(lat2)*cos(llonl-lon21)) 

where 6370.997 is the approximate radius of the earth's sphere in km, and latitude/longitude 

coordinates are in radians. The latitude/longitude coordinates of the weather station or A VHRR 

pixels that fell within a 15-km search radius around each SSM/I latitude/longitude location 

(approximately the size ofa 3-dB 37.0 GHz footprint) were then searched. Finally, the average value 

or dominating condition of the searched points or pixels was taken to represent the ground truth 

information of the SSM/1 footprint. 

7) Cluster Analysis and Manual Characterization: Cluster analysis was employed to 

classify the SSM/I data into physically significant categories (Figure 1.10). Manual characterization 

was then performed to assign the hypothetical true snow class to each cluster using knowledge of 

microwave responses of snowpack defined in the literature [5], [7], [32]. The SSM/1 snow 

classification rules from research findings and the known ground truth information at each SSM/I 

footprint were also used to characterize the SSM/I response to each cluster. By doing this, the 

possibility of inaccuracies in the ground truth data with respect to a possible true cluster were 
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reduced. The results were effectively the collection of input (SSM/1 Tb's) and output (snow class) 

data pairs suitable for training of the artificial neural network in input/output patterns (Figure 1.10). 

8) Design of Artificial Neural Network (ANN): A single-hidden-layer ANN (e.g., Figure 

1.15), which consists of one input layer, one hidden layer, and one output layer, was employed. Each 

layer contained several nodes, and nodes of adjacent layers were fully connected with different 

weights. The error backpropagation (backprop) learning algorithm [59], which allowed forward 

feeding node outputs through layers and backward propagating mapping errors to adjust connection 

weights between layers, was used for training the neural network . This method requires that both 

input (i.e., SSM/1 Tb's) and corresponding output (i.e. , snow classes or snow parameter values) data 

pairs be applied during the training procedures. 

As illustrated in Figure 1.15, the main mechanism in a backprop ANN training is first to 

allow inputs to flow forward through a hidden layer to the output layer by calculating the node 

outputs in each layer with a nonlinear transfer function (either hyperbolic tangent (tanh) or logistic). 

Training or mapping error between the calculated output and the desired output is measured at the 

output layer. Measured error is then propagated backward from the output layer to the input layer 

to adjust connection weights using a gradient descent optimization method. This method changes 

the weight in a direction that minimizes the error , so that the calculated output is more like the 

desired output. Thus, a backprop ANN is determined by its connection weights, the function applied 

to calculate each node output, and the learning rule used for the weight updates. 

In this study, the connection we:ights were randomly initialized with a range around ±0.1 

before training . The inputs (x j) were scaled between - I and l if tanh function was used or between 

0 and I if logistic function was used. These scaled inputs were passed directly as mapping outputs 

(m j) through connection weights to the hidden layer. However, each node in the hidden and output 

layers determined its output by calculating the net, which was the sum of all of its incoming 
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Figure 1.15 Single-hidden-layer backprop artificial neural network. 

connection weights (w i) multiplied by the mapping outputs (m) from the previous layer : 

net 5 = L m;-1 
w . . ] 

] 
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(1) 

where S denotes the state of the current layer. Then , the net was passed through the tanh transfer 

function to give a mapping output between - I and I : 

m 5 = f(net 5
) = exp ( net 5

) - exp ( -net 5
) 

exp ( net 5
) + exp ( -net 5

) 

or through the logistic function to give an mapping output between O and I : 

m 5 = f(net 5 ) = 1/ (l+exp (-net 5
)) 

(2) 

(3) 

After calculating mapping outputs in the output layer, mapping error between desired output (d 0 ) and 

mapping output (m
0

) for a single node wc~re measured according to the delta learning rule: 

Es = 
0 

(4) 

The factor of 1/2 in Eq. (3) was used for convenience in calculating the derivative used in obtaining 
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the error gradient which was propagated back to adjust the weights connected to each output node: 

(5) 

Since the error minimi:zation required the weight adjustment to be in the negative gradient direction, 

the gradient component for a single weight update was specified as: 

AW . = 
OJ 

(6) 

where 1J is the learning rate constant, ~ypically less than 1.0. Once the gradient component was 

found, each connection weight to the output layer was updated in the following way: 

t w. = OJ (7) 

where t is the time when the weight was updated , and a is the momentum term [60]. Since the 

derivative of hyperbolic tangent function in Eq. (2) can be expressed in terms of itself : 

f 1 (net 5
) = (1 + f(net 5

)) (1 - f(net 5
)) 

and the derivative of logistic function in Eq . (3) can be expressed as: 

f 1 (net 5 ) = f(net 5
) (1 - f(net 5

)) 

Thus , with the tanh function , the weight update equation in Eq. (7) can be modified to: 

or, with the logistic function , modified to : 

(8) 

(9) 

(10) 

( 11) 

Because there is no desired output for hidden layers, Eq. (I 0) or Eq. (11) cannot be used to adjust the 

conn ection weights to those layers. Backprop ANN implements the training process by propagating 

back a weighted sum of error gradients from the previous layer to each node in the hidden layer for 

error computation : 

E 
j 

ES+l 
V j 

(12) 



Then, the error gradient for weight adjustment was determined by: 

This error gradient was then used to adjust the connection weights in that hidden layer by: 

which can be revised to: 

t t-1 ~ S+l S+l S S S-1 t-1 
whj = whj + I7 (4 wj vEj ) ( 1 + mh ) ( 1 - mh ) mj + a t.whj 

] 

if tanh function was used, or revised to: 

t t-1 ~ S+l S+l S S S-1 t-1 
whj = whj + I7 (.L.., wj vEj ) mh ( 1 - mh ) mj + a t.Whj 

j 

if logistic function was used. 
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(13) 

(14) 

(15) 

(16) 

Training epoch, which involved forward feeding node outputs through layers, backward 

propagating mapping errors, adjusting the connection weights, and calculating the root-mean-square 

(RMS) error after all input/output data pairs were processed , repeated until a given RMS threshold 

was reached. The RMS error was calculated as: 

RMS = ~ -
1
- LL ( d -·m ) 2 

n q n q O 0 

(17) 

where n is the number of input/output data pairs in the training data set and q is the number of nodes 

in the output layer . 

9) Development of ANN Classifier: A single-hidden-layer backprop ANN was used to 

develop the ANN classifier . In the input layer, the number of nodes was determined by SSM/J Tb's. 

For the hidden layer, nodes were chosen by trial and error . The nodes in the output layer were 

decided by the number of snow classes. In addition, a bias node , functioning similar to a constant 

in a regression , was connected to hidden and output layers. 

The training and independent test data sets, containing the inputs of SSM/J data and the 
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corresponding outputs of snow classes, were prepared from the input and output data pairs (Figure 

1. 10). After training, the neural network was expected to be able to predict snow properties with 

input of SSM/I observations. The performance and limitations of the neural network were examined 

by comparing the results between ANN's with different settings (i.e. , learning rate, momentum term, 

RMS tolerance). The final step was to determine the ANN classifier that was the most accurate in 

classifying the test data set. 

10) Development of ANN Approximator : SSM/I Tb data of the multisource database were 

reclassified by the developed ANN classifier . Snow ground truth information and the SSM/1 Tb's 

of each reclassified snow condition were used to define snow water equivalent or snow wetness as 

a nonlinear function of SSM/I Tb's . A single-hidden-layer backprop ANN was applied to inverse the 

nonlinear relationship of the dependent variables (i.e., snow parameters) to the independent variables 

(i.e., remotely sensed data) by learning the mapping of inputs (SSM/I Tb's patterns) to outputs (snow 

wetness and water equivalent) . After training , the neural network was expected to be able to estimate 

snow wetness and water equivalent simuiltaneously with input of SSM/1 Tb observations. 

D. Significance of the Study 

To date, no single existing algori ithm has been able to identify land-surface snow conditions 

or estimate snow parameters over varied t,errain. The use of artificial neural networks may overcome 

the drawbacks and limitations of the traditional methods for classifying land-surface snow types and 

estimating snow wetness and water equivalent under the circumstances that vegetation overlays 

snowpack. This study may suggest a nonlinear snow retrieval method, which is more useful to snow 

related applications at large scale, such as detecting the onset of snowmelt, mapping the snow 

conditions, and estimating the snow accumulation. 

In snow hydrology, one of the major applications of remote sensing is for inputs of spatial 
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and temporal data to the global hydrological analysis. Monitoring SSM/1 Tb observations throughout 

snow season may provide the timing of the onset of snowmelt. In addition, with the land-surface 

snow conditions determined from the SSM/1 ANN classifier and the snow wetness and water 

equivalent estimated by the SSM/1 ANN approximator, the database of snow extent, snow 

accumulation, and snowmelt runoff needed for the global analysis could be established. 
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CHAPTER2 

ON THE ESTIMATION OF SNOW WETNESS FROM SSM/1 DAT A 

A. Abstract 

The development of satellite-based snow wetness retrieval algorithm has been impeded by 

the lack of an adequate ground-based snow wetness measurement network. A field experiment was 

conducted to examine the relationship between snow wetness and meteorological variables. Net 

radiation, air temperature at 1.5 m above the snow surface, and snow wetness at depth of 0.1 m below 

the surface were measured at three study sites. Regression analysis showed that concurrent air 

temperature, TAIR (°C), was significantly related to ground-based measurement of snow wetness, 

WETNESS(% by volume), by the linear model (R2 = 0.71) , WETNESS= 1.0285 + 0.5708(TAIR). 

Special Sensor Microwave/Imager (SS1\i1/I) observations, in terms of brightness temperature (Tb), 

were collected for one of the sites. Concurrent with SS1\i1/I local crossing time, snow wetness was 

estimated by the air-temperature-based model. Regression analysis was applied to extrapolate 

empirical relationships between SSM/1 Tb and snow wetness. Results indicated that snow wetness 

varied inversely as the first-, second- , and third-power of SSM/1 Tb difference , between vertical 

polarization at 19.35 GHz (Tl9V) and horizontal at 37.0 GHz (T37H). An SS1\i1/I snow wetness 

retrieval algorithm (R2 = 0.95) was developed: WETNESS= - 4.75 + 339.53(TD) - 1- 6159.53(TDr 2 

+ 40112.00(TDr 3, where TD= Tl 9V - T37H. Due to the depolarization effect of vegetation on the 

SSM/1 Tb, the algorithm is not applicable to areas where forests overlie snow cover . Improvement 

is expected if an empirical relationship between SS1\i1/I Tb and snow wetness can be developed for 

a specific region and applied only to those similar geographic areas . 

B. Introduction 

Snow wetness, the liquid or free water content in snow cover, is an important parameter in 
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estimating the timing of snowmelt [1] and assessing the snowpack avalanche potential [2]. Because 

the snow wetness has a significant effect on the microwave emission at the snowpack surface, 

monitoring large-scale snow wetness is possible through satellite microwave radiometry [3],[4]. 

The Special Sensor Microwave/Imager (SSM/I), flown on the Defense Meteorological 

Satellite Program (DMSP) satellites [5], is a useful tool in estimating snow properties because it is 

sensitive to the changes in snow physical and dielectric properties. Unlike in situ methods, the SSM/I 

provides an indirect estimate by using parameter retrieval algorithms, with measurements of 

brightness temperatures (Tb's) as inputs, to derive information about snow properties. In order to 

develop the algorithm, either empirical or theoretical interpretations of microwave observations along 

with ground truth data are required. In the application of the algorithm, the microwave reading is 

known, and the state of variables is inferred. Thus, conventional snow measurements have always 

played an important role in the development of snow parameter retrieval algorithms. 

Although techniques for the measurement of snow wetness in field or laboratory are well 

addressed [6], [7], conventional observation of snow wetness through ground-based network system 

has not been established. The developme:nt of satellite-based snow wetness retrieval algorithms has 

been impeded by the lack of sufficient ground-based snow wetness data. 

As indicated in [8], the snowmelt process is strongly influenced by meteorological variables 

such as air temperature, solar radiation, vapor pressure, and wind. Among these meteorological 

variables, air temperature and solar radiation data are generally available . However, no empirical 

equations have been developed to estimate snow wetness directly from these available parameters . 

This study links ground-based snow wetness measurements with air temperature and solar 

radiation and develops a relationship by which the snow wetness data needed for a passive 

microwave approach can be estimated. A retrieval algorithm for the SSM/1 was then developed and 

test with in situ filed observations of snow wetness. 
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C. Methods 

1) Field Experiments : Three sites were selected in northern Utah, representing different 

terrain and vegetation complexes. The Snowville site was situated at latitude/longitude coordinates 

of 41.97 °N/1 I 2.95 ° W with an elevatio111 of 1300 m, and has a flat, non forested terrain with sparse 

vegetation. This site was selected because of its usually homogeneous snow distribution. The Tony 

Grove site was at 41.88 °N/111.57 °W with an elevation of 1920 m, and represented a forested 

mountainous terrain. The Logan site, located in the Logan City cemetery at an open grass area , was 

at 41 . 73 °N/111. 82 ° W with an elevation of 1400 m. The selection of the Logan site was for the 

convenience of collecting sufficient snow wetness measurements. 

Data were collected between Mar. 8 and Mar . 19, 1993 at Snowville, between Feb. 18 and 

Feb. 25, 1994 at Logan , and between Mar . 6 and Mar . 20, 1994 at Tony Grove. An automated 

weather station was set up at each site. N(:t radiation (W/m2
) and air temperature (°C) were measured 

at 1.5 meters above the snow surface using a net radiometer (Radiation Energy Balance Systems , 

Model Q-6) and temperature probe (Campbell Scientific, Model HMP35C) , respectively . Data were 

record ed at I 0-minute intervals for the sampling duration and processed to include data of net 

radiation at 24, 12, and 6 hours before snow sampling. Data of minimum , maximum , and average 

air temperatures within the 24-hour period prior to field measurement were also determined . 

Snow parameters were sampled at irregular time intervals during the daytime . Each time the 

snow was sampled , one randomly selected snow pit was dug at each site. Snow density and wetness 

were measured at 10-cm interval s with the snow profile. Snow density (g/cm 3
) was obtained with 

the Strong Stitch Snow Density Gage. Snow wetness(% by volume) was measured using a dielectric 

probe (LEAS Inc .). 

2) SSM/1 Data Acquisition : The SSM/1 is a seven-channel, four-frequency, linearly 

polarized , passive microwave radiometric system . It measures both vertically (V) and horizontally 
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(H) linearly polarized Tb's, at 19.35, 37.0, and 85.5 GHz and only vertical polarization at 22.235 GHz 

[5]. DMSP-Fl I SSM/I data were derived from the WetNet computer system at Utah State 

University. The integral part of the system is the Man computer Interactive Data Access System 

(McIDAS) for the OS/2 operating system [9]. Under the McIDAS environment, SSM/I Tb data are 

in the format of full and browse resolutions . The full and browse resolutions are all gridded in the 

global rectilinear projection with fixed latitude/longitude coordinates. The full resolution is at the size 

of 1 /4 ° box (0.25 ° latitude x 0.25 ° longitude cell) , whereas the browse is at the size of I /2 ° box. 

In this study, SSM/I Tb's observed at the corresponding footprint of full resolution, located 

at 42.0 I 0 N/l 12.87°W, and that of browse resolution, located at 42.00°N/113.03 °W, during the field 

experiment period were downloaded from the WetNet system. 

3) Modeling Snow Wetness as a Function of Meteorological Variables: From the 

perspective of passive microwave remote sensing, wet snow means snow whose surface layer 

contains water in liquid form [1 O]; therefore, only snow wetness data measured in the surface layer 

were taken into account in the study . A correlation coefficient matrix was computed to measure the 

degree of linear associations among pairs of sampled variables (i.e. , snow wetness, concurrent 

temperature, maximum temperature, minimum temperature, average temperature , net radiation, 6-

hour net radiation, 12-hour net radiation, and 24-hour net radiation) . Regression analysis was 

performed for modeling the snow wetness as a function of the correlated meteorological variables . 

Cook's distance method, a measure of the influence of an observation [ 11], was employed to detect 

the possible outliers in data and improve the fit of the regression model. 

After eliminating the outliers, correlation coefficients based on daytime series were plotted 

to examine the variations between snow wetness and related meteorological variables . The 

collinearity among the predictor variables was examined for the selection of significant predictors 

in the multiple regression model. The variance inflation factor (VIF), the condition number (CN), 
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and the variance proportions [ 12] were used to quantify the degree of collinearity . 

Multiple correlation coefficiernts were determined to examine the relationship of all 

combinations of selected variables to snow wetness. Stepwise regression [ 13] was used for the model 

selection. R2, a measure of the strength of linear relationship; Mallows' Cp, a measure of total 

squared error [14]; and MSE, a measure of the mean square error, were used to define the best 

regression model. 

4) SSMII Snow Wetness Algorithm Development : The SSM/1 snow wetness algorithm 

development was restricted to the 19.35 and 37.0 GHz channels due to the sensitivity of Tb at these 

frequencies to snow wetness [10]. Time series of37 .0 GHz observations and Tb differences in the 

19.35 and 37.0 GHz channels for the Snowville footprint were examined to determine microwave 

response to changes in snow condition, including liquid water content. Based on the best regression 

model, snow wetness was estimated at the Snowville footprint, concurrent with the SSM/1 local 

passing time. With the available data of SSM/1 and snow wetness, regression analyses were applied 

to develop the SSM/1 snow wetness retrieval algorithm . The developed algorithm was tested on the 

Tony Grove footprint and compared with the snow wetness estimated by a developed meteorology­

based model to compare the agreements in varied terrain . 

D. Results and Discussion 

1) Relations Between Snow Wetness and Meteorological Variables: The correlation matrix 

(Tables 2-1 and 2-II) showed that the highest positive correlation coefficient (r = 0.65) was found 

between snow wetness and concurrent air temperature. Accordingly, a linear relationship (R2 = 0.42) 

between snow wetness and concurrent air temperature was defined. Based on this relationship, 

possible outliers among observations were evaluated by Cook's distance method (Figure 2.1 ). After 

checking the corresponding field conditions, it was found that the statistically defined outliers had 



TABLE 2-1 

CORRELATION MATIRIX OF SNOW WETNESS AND RADIATION 

6-hour 12-hour 
Snow Net Net Net 
Wetness, Radiation, Radiation, Radiation, 

Variable % W/m2 JK/m 2/6h JK/m 2/12h 

Snow 1.000 0.461 0.586 0.512 
Wetness 

Net 1.000 0.230 0.067 
Radiation 

6-hour Net 1.000 0.895 
Radiation 

12-hour Net 1.000 
Radiation 

24-hour Net 
Radiation 

TABLE 2 -11 

CORRELATION MATRIX OF SNOW WETNESS AND AIR TEMPERATURES 

Snow Concurrent Min. Max. 
Wetness , Temp ., Temp ., Temp. , 

Variable % oc oc oc 

Snow Wetness 1.000 0.650 0.427 0.505 

Concurrent Temperature 1.000 0.225 0.787 

Minimum Temperature 1.000 0.329 

Maximum Temperature 1.000 

Average Temperature 
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24-hour 
Net 
Radiation, 
JK/m 2/24h 

0.266 

0.078 

0.279 

0.412 

1.000 

Avg . 
Temp. , 
oc 

0.593 

0.629 

0.842 

0.716 

1.000 
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Figure 2.1. Plot of snow wetness versus concurrent air temperature and the linear regression 
model (R2 = 0. 71) derived from tlhe data. Filled squares with labels are the possible 

outliers defined by Cook's distance method. 
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resulted from extremely wet snow due to ponding after rainfall (label 1 on Figure 2.1) or rain on 

snow (label 2), from wet or moist (label 3) snow with relatively high air temperature, and from dry 

or refrozen snow (label 4). After discarding these uncertain data of extreme cases, a better linear 

relationship (R2 = 0. 71) was obtained. 
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The correlation time series (Fig:ure 2.2) showed a diurnal variation in the relation between 

snow wetness and different meteorological variables. Snow wetness was highly correlated with the 

minimum air temperature in the morning, and maximum air temperature in the afternoon. High 

correlations were also found in response to the net radiation at noon, the 24-hour net radiation in the 

morning, and the 12-hour net radiation at IO am and 4 pm. However, the concurrent air temperature 

was the most significant variable in relation to snow wetness throughout the day. These findings 

further confirmed that the concurrent air temperature was the most important predictor in modeling 

snow wetness as shown in Tables 2-1 and 2-11. 
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Figure 2.2 . Correlations between snow wetness and (a) concurrent air temperature, (b) maximum air 
temperature, (c) average air temperature, (d) minimum air temperature, (e) 6-hour net radiation, 
(t) 12-hour net radiation , (g) net radiat ion, and (h) 24-hour net radiation at the daytime series . 
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According to [12], a CN level of I 0.0 suggests the presence of mild to moderate collinearity 

and a level of 30 .0 or greater indicates a moderate to severe problem among the predictors. This 

study had a CN level of 16.1 with respect to all measured meteorological variables (Table 2-III). This 

suggested that a potential problem existed among the set of available meteorological data . The larger 

a variable's VIF, the more troublesome the variable. After eliminating variables with a VIF greater 

than 6.0, the CN level dropped to 4.8 for the set of remaining variables (Table 2-IV) . This 

collinearity reduction further confirmed the selection of concurrent air temperature, concurrent net 

radiation, 12-hour net radiation, and 24-hour net radiation as the predictors in the snow wetness 

estimation. 

TABLE 2 -111 

COLLINEARITY DIAGNOSTICS FOR ALL PREDICTORS 

Vari- Inter-
able CN cept TAIR TMIN TMAX TAVG QNET QN6 QNl2 QN24 

Variance grogortions 

1.0 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

2 1.6 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 

3 2.3 0.00 0.01 0.00 0.00 0.00 0.13 0.00 0.04 0.07 

4 2.6 0.01 0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.34 

5 3.7 0.09 0.00 0.00 0.02 0.01 0.28 0.00 0.01 0.14 

6 6.9 0.05 0.86 0.01 0.00 0.00 0.38 0.10 0.02 0.18 

7 8.4 0.16 0.00 0.00 0.03 0.00 0.17 0.63 0.73 0.12 

8 8.9 0.45 0.10 0.20 0.20 0.05 0.00 0.14 0.06 0.11 

9 16.1 0.22 0.00 0.77 0.73 0.92 0.03 0.10 0.11 0.01 

Variance inflation factor (VIF) 

4.18 9.70 6.40 19.09 2.34 6.14 5.80 1.90 

TAIR , concurrent air temperature in °C; TMIN, minimum air temperature in °C; TMAX, maximum 
air temperature in °C; TAVG, average temperature in °C; QNET, net radiation in W/m2

; QN6, net 
radiation in KJ/m 2/6h; QNl 2, net radiation in KJ/m 2/I 2h; QN24, net radiation in KJ/m 2/24h. 
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TABLE 2 -IV 
COLLINEARITY DIAGNOSTICS FOR SELECTED PREDICTORS 

Variable CN Intercept TAIR QNET QN12 QN24 

Variance grogortions 

1.0 0.04 0.02 0.02 0.03 0.03 

2 1.7 0.01 0.01 0.09 0.09 0.32 

3 2.2 0.00 0.02 0.08 0.25 0.48 

4 2.5 0.93 0.04 0.10 0.03 0.01 

5 4 .8 0.02 0.91 0.69 0.60 0.17 
Variance inflation factor (VIF) 

2.72 2.09 2.00 1.27 

TAIR , concurrent air temperature in °C; QNET , net radiation in W/m2
; QN12 net radiation in 

KJ/m 2/I 2h; QN24, net radiation in KJ/m 2/24h. 

Multiple correlation coefficients (Table 2-V) showed that concurrent air temperature was the 

best predictor if only one meteorological variable was available for snow wetness prediction. None 

of the net radiation related variables could explain the variation in snow wetness. However, the 

addition of air temperature to one or more net radiation related variables greatly raised the total 

explained variation. In comparison , no significant improvement could be achieved by using those 

combinations rather than air temperature alone in relation to snow wetness. 

Table 2-VI shows the valid models selected using the criterion of R2 greater than 0.70 and 

Cp less than 5.00. According to [I 5), if the correct model is considered , the value of Cp is expected 

to be close to p+ 1, where p is the number of predictors in model. Thus , model 3 and model 7 in 

Table 2-VI were the two candidates that followed this criteria. Model 3, which includes concurrent 

air temperature (T AIR) and 12-hour net iradiation (QN I 2), had the smallest MSE and was selected 

as the best model. However , because the T AIR is the most available variable from climatic data 

network, the simplest model, model I (Table 2-VI) , appears to be more practical in the estimation 

of snow wetness. 
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TABLE 2-V 

SELECTED METEOROLOGICAL VARI IABLE COMBINATIONS IN RELATION TO SNOW WETNESS 

Number of Variable Multiple Standard 
Variable Combinations Correlation Error 

4 TAIR,QNET ,QNI 2,QN24 0.859311 0.038156 

3 TAIR,QN12,QN24 0.858713 0.038396 
T AIR,QNET,QN 24 0.854841 0.039274 
TAIR,QNET,QN12 0.854780 0.039289 
QNET,QN12,QN24 0.730503 0.068026 

2 TAIR,QN24 0.854757 0.039295 
TAIR,QN12 0.852910 0.039755 
TAIR,QNET 0.843225 0.040464 
QNET,QN12 0.729813 0.068173 
QNET,QN24 0.538661 0.103541 
QN12 ,QN24 0.5 I 8686 0.106622 

TAIR 0.841222 0.040937 
QN12 0.518296 0.106681 
QNET 0.431655 0.113937 
QN24 0.217458 0.138967 

TAIR , concurrent air temperature in °C; QNET, net radiation in W/m2; QNl2 , net radiation in 
KJ/m2/l 2hr; QN24 , net radiation in KJ/m2/24hr. 

TABLE 2 -VI 

REGRESSION MODELS BASED ON R '~ AND Cp SELECTION FOR SNOW WETNESS ESTIMATION 

BY DIFFEREN T COMBINATION OF PREDICTORS 

Parameter Estimates 

m # R2 Cp Intericept TAIR QNET QN12 QN24 

0.7077 3.6494 1.0285 0.5708 

2 2 0.7306 2.2830 0.9444 0.000106 

3 2 0.7275 2.8014 0.9975 0.5223 0.00027 

4 3 0.7374 3. 1688 0.9439 0.5313 0.00018 0.000081 

5 3 0.7308 4.2594 0.9479 0.5684 - 0.00058 0.000107 

6 3 0.7306 4.2767 0.97'14 0.4798 0.00300 0.00032 

7 4 0.7384 5.0000 0.9331 0.5056 0.00176 0.00022 0.000074 

m, model number;# , number of variable in model, TAIR, concurrent air temperature in °C; QNET, 
net radiation in W/m2; QN6, net radiation in KJ/m2/6hr ; QN24, net radiation in KJ/m2/24hr. 
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2) Time Series Interpretation of SSMII Observations: Time series of SSM/1 T3 7V 

observations (Figure 2.3-a) showed that winter dry snow was characterized by 220K<T37V<250K. 

As indicated in [ 16], the decrease in Tb was partly due to the volume scattering and partly due to the 

decreased physical temperature of the snow and underlying soil. As is seen in Figure 2.3-a, the large 

fluctuations in the T37V series may imply the microwave response with respect to the depletion or 

accumulation of the snowpack among snow storms, whereas the lagged curves may indicate the 

change of Tb in relation to the effect of snow metamorphism. 

During the spring, the onset of the snow melting and refreezing processes was identified by 

an observable diurnal variation of T3 7V between 265K and 200K (Figure 2.3-a). The melting and 

refreezing processes resulted in melt-freeze crystals or ice layers [17]. As snow refreezes , these 

polycrystalline particles of solid ice or iice layers caused additional scattering at lower microwave 

frequencies (i.e. , 22 and 19 GHz) and further lowered the Tb's. As a result, a larger Tb difference 

between Tl 9V and T37H was detected in the time series of Figure 2.3-b . While snow was melting, 

the increase in liquid water content at snow surface caused an increase in Tb at 37 GHz , and resulted 

in a smaller Tb difference between Tl 9V and T37H. 

As noted above, these interpretations provide the physical reasons of using SSM/1 T 19V and 

T3 7H channel observations in the development of snow wetness algorithm . Accordingly, the 

increase in Tb differences may indicate a decrease in snow wetness. More specifically, the range of 

the TI 9V-T37H difference from I OK to 15K may suggest wet snow, from 15K to 30K moist snow, 

from 30K to 45K dry snow , and over 45K refrozen snow. 

3) The SSMII Algorithm and Its Application : In the development of the SSM/1 snow 

wetness algorithm, the simplest air-temperature-based model (model I in Table 2-VJ), WETNESS 

= 1.0285 + 0.5708(T AIR), was applied to estimate the snow wetness at the time of the SSM/1 

overpass at Snowville. Based on the estimated WElNESS and concurrent full resolution SSM/1 
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Tl 9V - T37H data, results indicated that snow wetness varied inversely as the first-, second-, and 

third-power of SSM/1 Tb difference, TD (K), between TI9V and T37H. Thus, an SSM/l snow 

wetness retrieval algorithm (R2 = 0.95) is: 

WETNESS= - 4.75 + 339.53(TDr' - 6159.53(TDr 2 +40112.00(TDr 3 

where TD= T19V - T37H. 

If browse SSM/1 data are included in the relationship, 70% of the total variation can be 

explained by the regression model (Figme 2.4). Since the algorithm was developed based on the 

SSM/I full resolution data, the drop in R2 (i.e. , from 0.95 to 0. 70) may reflect certain unexplained 

variation introduced by the browse resolution data. However, significant agreement is obtained in 

estimating snow wetness at browse resolution footprints. 

In comparison with the field snow wetness measurements at Snowville in 1993 (Figure 2.5) , 

the application of the SSM/1 algorithm showed some underestimations in snow wetness . Since the 

wetness was not measured at the concurrent SSM/1 crossing time (i.e., 5 am for the descending 

overpass and 5 pm for the ascending) , the snow wetness measured at 8 am could be higher than that 

at 5 am due to a higher air temperature. In fact , the wetness measured at 6 pm, which was close to 

the SSM/1 ascending crossing time , showed a better agreement with the SSM/1 prediction line. Due 

to the limitations in field snow wetness measurement , these findings indicate the importance of the 

air-temperature-based snow wetness model in relation to the development of the SSM/1 snow wetness 

algorithm. 

Since Feb . I 994, the DMSP-Fl I satellite has only had two (of the four) operational 

recorders. This resulted in a blackout of data over northern Utah at most of the time during field 

works . Only eight SSM/1 descending (6 am local sun time) Tb observations at the Tony Grove 

footprint were obtained for the algorithm testing. 
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Figure 2.4. Snow wetness varies inversely as the first-, second- , and third-power of SSM/I Tl 9V­
T37H difference (R2 = 0.95) . Filled squares are values of snow wetness estimated from air 

temperatures at corresponding full resolution footprint , whereas empty squares are 
values in response to Tl 9V- T3 7H differences at browse resolution. 

Results showed an overestimation in snow wetness predicted by the SSM/I algorithm at the 

Tony Grove footprint (Figure 2.5) , compared to those estimated from concurrent air temperature 

using the air-temperature -based model. Since the Tony Grove footprint is located in forested 

mountains , one possible explanation is that evergreen forests overlying the snowpack depolarized 

the Tb and resulted in a smaller Tl 9V-T3 7H Tb difference, causing the estimation of wetness in 

snowpacks with actually dry or refrozen wnditions . 
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E. Conclusions 

Air temperature appears to be the most important factor controlling snow wetness. This study 

showed that snow wetness estimated from concurrent air temperature measurement can contribute 

the necessary data for the development of the SSM/1 snow wetness retrieval algorithm . Although 
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abnormal weather conditions (e.g., heavy rain on wet snow) may introduce errors in the use of air 

temperature alone as a dependant variabl1e in a predictive equation, the simplest air-temperature-based 

model provides an accessible way for concurrent snow wetness estimation. 

Microwave emissions from dry, wet, and refrozen snow are distinct. Monitoring SSM/1 Tb 

throughout the snow season may provide the timing of distinct snow conditions. With increasing 

liquid water content in a snowpack, the Tb increases significantly, especially at 37.0 GHz, resulting 

in a decrease in the Tl 9V-T37H Tb difference. These changes allow for the detection of the onset 

snowmelt and the use of the SSM/1 snow wetness retrieval algorithm. 

Nonetheless, the SSM/1 Tb observed at an area where evergreen forests overlie the snowpack 

is quite different from those in the plains where vegetation cover is sparse. The vegetation cover 

tends to depolarize the Tb, resulting a smaller Tl 9V-T37H Tb difference, which causes an 

overestimation in snow wetness from the SSM/1 snow wetness retrieval algorithm. Improvement 

is expected if an empirical relationship between SSM/1 Tb and snow wetness can be developed for 

a specific region and applied only to those similar geographic areas. 
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USING AN ARTIFICIAL NEURAL NETWORK CLASSIFIER 

A. Abstract 
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The Special Sensor Microwave/Jmager (SSM/1) radiometer is a useful tool for monitoring 

snow-covered land surfaces because it iis sensitive to the changes in snow physical and dielectric 

properties. Previously developed SSM/1 snow classification algorithms have limitations and do not 

work properly for terrain where forests overlie snow cover. Unsupervised cluster analysis was 

applied to separate SSM/1 brightness temperatures (Tb's) into groups. Six desired snow classes were 

identified; both sparse- and medium-vegetated region scene classes were assessed . Typical SSM/1 

Tb signatures, based on cluster means of each snow class, were determined by calculating the mean 

Tb's of the corresponding cluster. A single-hidden-layer artificial neural network (ANN) classifier 

was designed to learn the typical Tb patterns . The error backpropagation training algorithm was 

applied to train the ANN. After training, the winner-takes-all method was used to determine the 

snow classification from the outputs of the ANN classifier with inputs of Tb observations. 

Classification error rates were as small as 2.4%. This study demonstrates the potential of cluster 

means in ANN supervised learning , and suggests a nonlinear retrieval method towards making the 

inferences of snow classes from SSM/I data over varied terrain operational. 

B. Introduction 

Snow cover is a dominant factor 1controlling the hydrological response of watersheds in mid 

and high latitudes. Monitoring large-scale snow conditions throughout the snow accumulation and 

melt seasons is essential for understanding regional hydrologic response and global climatic 

feedbacks. Generally, land-surface snow cover can be classified as dry, wet, or refrozen depending 
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on its internal temperature and physical properties. Dry snow is characterized by rounded grains or 

faceted crystals at small or large temperature gradient. Wet snow is characterized by clusters of 

grains at low liquid water content, or by poorly bounded slush at high liquid water content. Refrozen 

snow is characterized by rounded polycrystals when water in veins freezes. 

The Special Sensor Microwave/lmager (SSM/1) radiometer, flown on the Defense 

Meteorological Satellite Program (DMSP) satellites, is a useful tool for monitoring snow-covered 

land surface because it is sensitive to the changes in snow physical and dielectric properties. The 

SSM/1 is a seven-channel, four-frequency, linearly polarized, passive microwave radiometric system; 

it measures both vertically (V) and horizontally (H) linearly polarized brightness temperatures (Tb's), 

at 19.35, 37.0, and 85.5 GHz and only vertical polarization at 22.235 GHz [l]. 

In a dry or refrozen snow layer, the radiation emitted from the underlying ground surface is 

scattered on its way to the snow surface by ice crystals, resulting in a decrease in brightness 

temperature (Tb) observed by the SSM/1. When snow is wet, the liquid water held in the snow grains 

causes a large increase in volume absorption by which more radiation is reemitted, following an 

increase in SSM/1 Tb. Thus , large-scale characterization of seasonal snowpack conditions is possible 

through utilization of passive microwave remote sensing. 

Many SSM/1 snow classification algorithms have been developed, e.g. , Neale et al. [2]; 

McFarland and Neale [3] developed a land-surface-type classification scheme by which the dry, wet, 

and refrozen conditions of snow over land could be determined, and Fiore Jr. and Grady [4] 

developed a decision-tree algorithm for the global classification of snow cover and precipitation over 

large regions. In general , these methods employed statistical linear relationships of polarization 

information, in terms of thresholds of certain Tb's or Tb combinations, between different land surface 

features to form the classification rules. However, in snow classification, these rules are restricted 

to land surfaces with uniform snow conditions. Where evergreen forests overlie snowpack, the 
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developed algorithms may misidentify those forested snow covers with areas of snow-free conditions . 

As indicated in [5], vegetation (especially coniferous trees) will mask the microwave emission from 

the snow below, resulting in a higher mic:rowave brightness temperature and making the classification 

rules uncertain. 

ln such complex terrain situations , statistical regression is often unsuitable because there are 

too many random variables involved in the characterization of microwave response, making the 

problem extremely nonlinear. Consequiently, there exists a need for nonlinear retrieval methods to 

develop a robust snow classification algorithm by which different snow conditions over varied terrain 

can be determined simultaneously. 

According to [6], some of the most complex remote sensing problems can be handled with 

unsupervised cluster analysis, which separates the observed data vectors into groups . Cluster analysis 

has the advantage of making no a priori assumptions about the possible classes , and providing 

objective indications of the information imbedded in multidimensional data sets . The study of [7] 

shows that typical Tb signatures for a variety of snow classes can be distinguished from the mean Tb 

values of each desired cluster (cluster means). 

Recently , the use of an artificial neural network (ANN) with supervised learning to retrieve 

snow properties from passive microwave: data has been addressed (e.g. , [8], [9],[10]) . Studies have 

shown that ANNs have the potential to learn Tb patterns , where previously, the complexity and 

nonlinearity of random variables made them difficult to define using empirical regression approaches. 

ln neural computing , error backpropagation (backprop) training [ I I] is the most widely used 

leaning method in the development of an ANN classifier . This method requires that during training, 

when the input is applied, the corresponding output has to be provided; therefore , the selection of 

training samples is essential to the success in ANN generalization . Generally, it is claimed that more, 

rather than fewer, training samples in each class are best. Following [12], however, an ANN trained 
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from only cluster means has shown a reliable generalization capability in pattern classification. 

Therefore, a possible research framework would be to take typical SSM/1 Tb signatures of 

desired snow classes interpreted from unsupervised cluster analysis, and use them as a prelude to 

supervised leaning in an ANN classifier. In this way, the ANN learns only the central idea of the 

clusters, in terms of geophysical significance of the snow classes , instead of all random information 

from the data. Consequently, the purpose of this study was to explore the above concept towards 

making the inference of snow classes from SSM/1 data over varied terrain operational. Two 

clustering methods (average linkage and centroid method) and a single-hidden-layer ANN were used 

to accomplish this task. 

C. Methods 

1) SSMII and Ground Truth Data: A study area bounded by latitude of 40 °N to 45 °N and 

longitude of 100°W and 115°W, which contained both plains and mountainous region in the western 

United States , was selected to represent a variety of sparse- and medium-vegetated terrain. SSM/1 

Tb's , normalized difference vegetation index (NDVI) data , and ground-based snow measurements 

were obtained for the area for the period Oct. 1, 1989 to May 30, 1990. 

The SSM/1 Tb's from the DMSP-F8 satellite were obtained from the Naval Research 

Laboratory. Due to the increase in noise level of both SSM/1 85.5 GHz channels on DMSP-F8 

satellite during 1988, only five Th's of the lower frequency channels, denoted as Tl 9V, Tl 9H, T22V, 

T37V, and T37H , were used in this study. 

The NDVI, calculated from the visible and near-infrared reflectance values from NOAA 

Advanced Very High Resolution radiometer (AVHRR) , is a useful tool for characterizing the 

vegetation condition over large regions [13]. These data have a valid greenness value range from 110 

to 160, whereas values less than 110 indicate nonvegetated surface features [14]. A monthly 
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maximum scaled NDVI data set, available from the NOAA National Geophysical Data Center [ 15], 

was obtained. These latter data, however, served mainly as a reference in the study . 

Ground truth data of daily snow water equivalent (SWE), and maximum, minimum, and 

average air temperature over mountainous terrain were obtained from the Soil Conservation Service 

(SCS) SNOTEL (SNOwpack TELemetry) system [16]. Daily snow depth (SD), maximum and 

minimum air temperature, and air temperature at the observing time in the plains data were derived 

from the NOAA weather observing network [17]. 

2) Ground-Based Snow Classification: Daily snow condition of each SNOTEL or NOAA 

weather station with respect to DMSP-F8 local crossing time (at either 6 am or 6 pm) was further 

flagged as: (1) snow-free (if SWE or SD was equal to zero) , (2) dry snow (while SWE or SD was 

accumulated from previous time and the concurrent air temperature was below 3.5 °C by which the 

snow wetness was assumed to be less than 3% by volume according to the linear relationship between 

snow wetness and concurrent air temperature defined in [18]), (3) wet snow (as SWE or SD was not 

equal to zero and the concurrent air temperature was large than or equal to 3.5 °C), or (4) refrozen 

snow (if the concurrent air temperature was below freezing point and the snow condition of previous 

time was either wet or refrozen) . 

Accordingly , for SNOTEL stations , the concurrent air temperature at 6 am and 6 pm were 

set to be the daily minimum and average air temperature, respectively. For NOAA weather stations, 

the concurrent air temperature at 6 am or 6 pm was set to be the air temperature at the observing time 

if the time was between 4 am and 7 am or between 4 pm and 7 pm, respectively ; otherwise , the 

concurrent air temperature at 6 am was equal to the minimum air temperature and that at 6 pm was 

extrapolated by assuming the maximum air temperature was at 2 pm and linearly decreased to the 

temperature at observing time, which was after 2 pm or the maximum air temperature of previous day 

decreased to the air temperature at observing time, which was before 2 pm. 
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Since the latitude/longitude coordinates of the SSM/1 footprints change with each overpass, 

a neighborhood merging method was employed to merge the multisource data into one database. The 

database was then built by searching the AVHRR pixels and ground weather stations, which fell 

within a 15-km search radius around a particular SSM/1 latitude/longitude coordinates (i.e., 

approximately the size of a 37.0 GHz footprint). NDVI values and SWE values were then averaged 

for that SSM/1 footprint, respectively. 

According to [18], Tb difference of Tl 9V-T37H at each SSM/1 footprint was determined 

as an additional surface wetness index (SWI), in which the range of the SWI from I OK to 15K may 

suggest wet snow, from 15K to 30K moist snow, from 30K to 45K dry snow, and over 45K refrozen 

snow. Moreover, flooding or precipitation condition at each SSM/1 footprint was checked and data 

were discarded from the database if the value ofT22V - T19V for the footprint was larger than 4K 

or Tl 9V was greater than 268K [2], respt!ctively. Consequently, only data of SSM/1 footprints with 

snow-covered land surface (i.e., only if averaged SWE was larger than zero) were considered as the 

valid elements in the database. 

3) Cluster-Analysis-Based Snow Classification: Two clustering methods (average linkage 

and centroid method [ I 9]) were used to explore the possible clusters with respect to 5 SSM/1 Tb's 

variables (T19V, T19H, T22V, T37V, and T37H). The cubic clustering criterion (CCC) [20], [21] 

was examined in each method to obtain the possible number of clusters in the data . Clusters for each 

suggested number were examined from the lowest number of possible clusters until all the desired 

snow classes were distinguished. Five mean Tb values (typical Tb signature), mean NDVI, and mean 

SWI for each cluster were calculated. A hypothetical true snow condition was then assigned to each 

cluster according to its typical Tb's signature (cluster means) and the values of NDVI and SWI in 

relation to the emission behavior of snow. The clusters in question, if they existed, were discarded. 

By doing so, the possibility of an uncertain cluster with respect to a possible true snow condition was 
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reduced. Only data of the six most representative clusters [i.e., dry snow with sparse (DsSv) or 

medium (DsMv) vegetation, wet snow with sparse (WsSv) or medium (WsMv) vegetation, and 

refrozen snow with sparse (RsSv) or medium (RsMv) vegetation] were selected for ANN training. 

Consequently, a data set of input (5 Th's) and output (6 snow classes) data pairs was created. 

4) Training, Validation, and Test Data: The training data set was created using the Tb 

signatures of the desired snow classes in the form of input and output data pairs. Based on the 

number of data elements in each snow class, the validation data set was formed by including either 

all data in the class if the number of elements was less than IO 1, or the upper and lower quartiles [22] 

of the data in the class if the number of elements was larger than I 00. The validation data set was 

used as a pseudo test set to evaluate the performance of each ANN during training. 

Ideally , an unknown test data set is used to measure the performance of an ANN; therefore 

it should be completely different from the data sets used for ANN training and validation . 

Consequently, Tb observations of SSM/1 orbit footprints in a geographic region between latitude of 

30°N and 50°N over the United States from Jan . 21-26 , 1990 were collected as the test data set. 

5) ANN Topology and Learning Factors: A single-hidden -layer ANN was created. It 

consisted of an input layer of five nodes representing the inputs of SSM/1 Th's , and an output layer 

of six nodes representing the land-surface snow conditions. For the hidden layer, the number of 

nodes was chosen by trial and error. Given the number of nodes in each layer from input to output 

as a sequence , the ANN topology used was represented as 5-N-6, where N is the number of nodes 

in hidden layer. 

The error backpropagation (backprop) algorithm [11] was applied to train each ANN. This 

method allows forward feeding node orntputs through layers and backward propagating mapping 

errors to adjust connection weights between layers. According to [23], having a larger learning rate 

at hidden layer than that at output layer can decrease learning time. Learning rate at the hidden was 
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set up as twice the rate at the output layer. Leaming rates were determined at 0.05 for hidden layer 

and 0.025 for the output layer in the training process. The momentum method [24] (i.e., adding the 

current weight adjustment with a proportion of the previous weight change) was applied to accelerate 

the learning process. The momentum term was set at 0.90 in this study. 

6) ANN Training and Validation: The activation function applied to the net input of nodes 

in the hidden and output layers was a hyperbolic tangent (tanh), which maps the net output into the 

range between - I and I . Thus, the input data were normalized and rescaled into the range from - I 

to I to represent the input attributes in th1;! ANN. Land-surface snow conditions were coded as (0.8, 

- 0.8, - 0.8, - 0.8, -0.8, - 0.8) for DsSv, (-0.8 , 0.8, - 0.8, - 0.8, - 0.8, - 0.8) for DsMv , (-0 .8, -0.8, 0.8, - 0.8, 

- 0.8, - 0.8) for WsSv, (- 0.8, - 0.8, -0.8, 0.8, - 0.8, - 0.8) for WsMv, (- 0.8, -0.8, -0.8, -0.8, 0.8, -0.8) for 

RsSv, and (-0.8 , - 0.8, -0.8, - 0.8, - 0.8, 0.8) for RsMv to represent the six desired outputs in the ANN . 

The root-mean-squared (RMS) error, computed after each training cycle (epoch), was used 

as the stopping criterion. Five runs were conducted for each ANN. In each run, the training process 

started by randomly initializing all connection weights between -0.1 and 0.1, and then repeated the 

error backpropagation training algorithm until the specified RMS tolerance was reached. RMS error 

was set between 0.1 and 0.3 by trial and error. 

After each training run, the valiidation data set was applied to evaluate the classification 

performance of the resulting ANN . The winner-takes-all method [25] (i.e., the network output with 

the highest value designates the class) was applied to determine the classification of snow conditions. 

Classification result , in terms of error rate (%), was calculated after each run. An ANN with the 

minimum error rate was eligible for the S:SM/I ANN snow classifier. A two-way contingency table, 

in terms of a two-way crosstabulation [19], was used to show the generalization performance of the 

qualified ANN on validation data. 

7) ANN Testing: Since the ANN classifier was trained only from the desired snow 
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conditions , it is not applicable to other surface types . Accordingly, existing land-surface-type 

classification rules for water bodies or flooding (if T22V - Tl 9V>4.0), and precipitation (if 

Tl9V >268.0 and T37V - Tl9V <- 3.0) from [2], [3], and ocean (ifT19V-Tl9H >40.0), and snow-free 

(if T37V<Tl 9V) from [26] were used as a pretreatment procedure to eliminate the snow-free 

conditions in data before the application of the ANN classifier. 

In the examination of ANN performance with the test data set, classified SSM/I footprints 

were gridded into 1/4 ° latitude/longitudle boxes as a raster data set and displayed as color images 

(Table 3-J) using the ERDAS Geographic Information System (GIS) software. These ANN classified 

images were then compared to those by McFarland and Neale's snow classification rules [3]. 

D. Results and Discussion 

1) Cluster Analysis: After eliminating the possible conditions of precipitation , flooding, or 

water bodies with respect to SSM/I Tb observations , 6486 elements remained in the database for 

cluster analysis. In determining the number of clusters in SSM/1 Tb data, the average linkage showed 

TABLE 3 - 1 

COLOR SCHEME FOR RASTER IMAGE DISPLAY OF SSM/1 FOOTPRINTS ON TEST DATA 

RGB Colors 
Land-Surface-Class Color Red Green Blue 

Dry snow with sparse vegetation (DsSv) White 255 255 255 

Dry snow with medium vegetation (DsMv) Gray 127 127 127 

Wet snow with sparse vegetation (WsSv) Rose 255 85 85 

Wet snow with medium vegetation (WsMv) Pink 255 160 140 

Refrozen snow with sparse vegetation l(RsSv) Cyan 127 127 127 

Refrozen snow with medium vegetation (RsMv) Aqua 0 255 255 

Water body or Flooding Blue 0 0 255 

Precipitation Yellow 255 255 0 

Snow-free Tan 160 100 40 
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CCC peaks at 6, 9, 19, 29, 35, and 43 clusters and centroid method suggested 6, 12, 21, 30, 39, 43 

or 49 clusters in data (Figure 3.1 ). 

Table 3-II shows the cluster means of six land-surface snow conditions found at different 

suggested cluster partitions by the two cluster methods. Generally, data of medium-vegetated snow 

conditions (i.e., DsMv, WsMv, and RsMv) were distinct at a higher number of cluster partitions and 

a larger data set than those of sparse-vegetated (i.e., DsSv, WsSv, and RsSv). This may imply 

complexity and nonlinearity among microwave responses of medium-vegetated snow cover, by which 

the embedded geographical and conditional information of different snow conditions failed to appear 

in the clusters at the lower CCC number (Figure 3.1 ). On the other hand , the relatively large data 

size in clusters of medium-vegetated snow conditions reveals the significant influence of vegetation 

in characterizing the emission behavior of SSM/I footprints in the western and central United States. 

Clusters of wet snow conditions (i.e., WsSv and WsMv) were the most difficult to be 

separated, as evidenced by the highest number of cluster partitions associated with those wet snow 

classes (Table 3-II). This could be due to the fact that the effect of both overlying vegetation and 

liquid water content depolarized the Tb difference between vertical and horizontal polarization in 

similar microwave signatures . 

The mean monthly NOVI values of the selected clusters were all below 110 (Table 3-H), 

indicating a nonvegetated area according to [14]. This implies that the vegetation cover in most of 

the SSM/I footprints in the study area was not homogeneous since the NDVIs were integrated from 

A VHRR high spatial resolutions (I km) to SSM/I low resolutions. However, relatively higher values 

were all associated with the medium-vegetated snow classes, suggesting the six resulted Tb 

signatures are representative for characterizing microwave responses of different vegetated snow 

conditions. 
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TABLE 3-11 

CLUSTER MEANS OF SIX LAND-SURFACE SNOW CONDITIONS BY Two CLUSTERING METHODS 

N 
Snow D s # of 

Condition Mean Brightness Tem(2erature (K) V w Cluster 
Method (n)l T37V T37H T22V T19V Tl9H I I Partition 

Average DsSv 245.97 234.64 252.95 255.21 241.98 90 21 29 
Linkage (237) 

DsMv 252.03 245.90 258.53 260.57 252.76 105 15 35 
(1608) 

WsSv 259.77 250.71 261.44 261.39 247.39 103 11 43 
(93) 

WsMv 259.23 253.74 263.12 264 .71 257.40 108 11 43 
(1123) 

RsSv 208.68 200.04 237.61 244.39 228.43 52 44 9 
(19) 

RsMv 231.97 225.92 248.25 252.32 243.27 93 26 43 
(213) 

Centroid DsSv 245.27 234.53 252.43 254.75 242.03 91 20 39 
Method (216) 

DsMv 250.85 244.37 257.61 259.73 251.48 102 15 49 
(1112) 

WsSv 259.31 250.40 260.45 259.61 243 .91 107 9 43 
(24) 

WsMv 260.07 254.24 264.12 265.62 257.87 109 11 43 
(741) 

RsSv 208.68 200.04 237.61 244.39 228.43 52 44 12 
( 19) 

RsMv 230.63 223.76 247.70 252.01 241.97 87 28 43 
(167) 

§ (n): number of data elements in cluster. 
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With respect to the sparse-vegeltated snow conditions, the mean SWI of 11 and 9 for wet 

snow, 21 and 20 for dry, and 44 and 44 for refrozen snow from the average linkage and centroid 

method, respectively, agreed with the range for these values found by [18]. In the dry and refrozen 

snow, high SWis were associated with sparse-vegetated snow conditions and low SWis were related 

to the medium-vegetated snow conditions. This may suggest the depolarization effect of vegetation 

on the decrease of SWI in medium-vegetated snow conditions. However, there was no significant 

SWI differences between sparse-vegetatf:d and medium-vegetated wet snow conditions. 

Table 3-ill shows that the maximum SWI value of the wet snow clusters was larger than 13, 

which corresponded to a snow wetness ]less than 3% by volume [18], suggesting some similar Tb 

signatures other than wet snow might be 1~mbedded in this class data . According to [27], the SSM/1 

Tb signatures of heavy vegetation, frozen ground, and wet snow are similar. Therefore, the 

signatures with higher SWI (e.g., SWI > 13) may indicate frozen ground conditions . On the other 

hand , the minimum SWI values less than 9 could indicate the depolarization effect due to vegetation 

cover , causing the confusion in the identiification vegetation cover from wet snow condition . 

Figures 3.2 and 3.3 show the typical SSM/1 Tb signatures of the 6 snow classes in terms of 

cluster means (Table 3-11), using the average linkage and centroid method , respectively. Generally, 

both clustering methods yielded similar Tb patterns for each snow class . Depolarization effects were 

TABLE 3-111 

MINIMUM AND MAXIMUM OF THE SWI FOUND IN WET SNOW CLUSTERS 

Clustering Wet Snow with Sparse Vegetation Wet Snow with Medium Vegetation 
Method Min. Max. Min. Max. 

Average Linkage 3.42 17.34 3.28 25.06 

Centroid Method 2.98 16.24 3.28 28.64 
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distinct between sparse- and medium-vegetated snow covers of dry, wet, and refrozen conditions, 

respectively. Evidently, SSM/1 Tb's of medium-vegetated snow class were higher than that of spase­

vegetated. These results confirm the fact that overlying vegetation tends to increase the Tb [5]. 

A smaller polarization difference at 37 GHz rather than at 19 GHz was seen in sparse­

vegetated wet snow (WsSv) in Figure 3.2. This microwave behavior is due to a rapidly increasing 

Tb at 37 GHz horizontal polarization with an increase in liquid water content in snowpack [28]. For 

refrozen snow, more scattering and conse:quently much lower Tb's were observed at 3 7 GHz than at 

19 GHz, because the melting and refreezing results in larger snow crystals which scatter the shorter 

wavelengths at 37 GHz [28]. 

Disagreement was found m certain snow classes defined by the cluster analysis in 

comparison with the ground-based snow classification (Table 3-IV). Since the ground-based snow 

condition was derived by averaging the ground-based point snow measurements within each SSM/1 

footprint in the study area, snow classification using this integration method may not be truly 

representative for the SSM/1 footprint where the point data were less and the snow conditions varied 

spatially. Moreover, the ground-based snow conditions were determined by arbitrary assumptions 

in the estimation of concurrent air temperature. Error could be introduced due to the temporal 

variability of air temperature, causing different ground-based snow conditions related to SSM/1 

footprints of similar Tb signatures. 

Table 3-V shows the mean brightness temperatures (in terms of interaction class means) of 

SSM/1 footprints with the same snow condition found in both ground-based and cluster-analysis­

based snow classification events (Table 3-IV). Results of the t test [19] showed that 49 out of the 

60 interaction class means were not significantly different from those cluster means in Table 3-Il. In 

addition, the means of significant difference were all associated with the medium-vegetated snow 

conditions. Such differences could be due to the depolarization effect of vegetation, which made 
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certain SSM/1 Tb signatures of different snow conditions similar and clustered together. 

As noted above, these interpretations provide the theoretical and statistical basis for using 

the six cluster-analysis-defined SSM/1 Tb signatures as the appropriate inputs in ANN supervised 

training . 

TABLE 3-IV 
COMPARISON BETWEEN GROUND-BASED AND CLUSTER-ANALYSIS-BASED SNOW CLASSIFICATION 

Clustering Snow Data El~:ments in Ground-Based Snow Class ~ Data Elements 
Method Cluster Dry Wet Refrozen in Snow Cluster 

Average DsSv (112) 12 113 237 
Linkage 

DsMv (I 005) 72 531 1608 

WsSv 37 (26) 30 93 

WsMv 592 (150) 381 1123 

RsSv 9 3 (7) 19 

RsMv 156 5 (52) 213 

Centroid DsSv (111) 1 1 94 216 
Method 

DsMv (710) 40 362 1112 

WsSv 9 (8) 7 24 

WsMv 336 (121) 284 741 

RsSv 9 3 (7) 19 

RsMv 123 5 (39) 167 

§ Number in() represents the data elements of the interaction of both classification events . 
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TABLE 3-V 
MEAN BRIGHTNESS TEMPERATURES OF THE INTERACTION OF BOTH GROUND-BASED AND CLUSTER-

ANALYSIS-BASED SNOW CLASSIFICATION EVENTS AND THE PROBABILITY LEVEL FOR TESTING THE 

NULL HYPOTHESIS THAT THE INTERACTION CLASS MEANS ARE EQUAL TO THE CLUSTER MEANS 

WITH RESPECT TO DIFFERENT SNOW CONDITIONS BY Two CLUSTERING METHODS 

Snow Mean Brightness Temi;1erature (K} 
Clustering Condition T37V T37H T22V T19V T19H 

Method (n)t (Prob)ITl)I (Prob)ITI) (Prob)ITI) (Prob )ITI) (Prob )ITI) 

Average DsSv 245.50 234 .61 252.58 254.85 241.95 
Linkage (112) (0.1482) (0.9293) (0.0855) (0.0741) (0.9324) 

DsMv 251.99 245.96 258.28 260.29 252.75 
(1005) (0.7027) (0.5846) (0.0008)* (0.0002)* (0.8990) 

WsSv 260.57 250 .74 261.66 261.67 247 .61 
(26) (0.1084) (0.9540) (0.5345) (0.5015) (0.6625) 

WsMv 260 .25 253.54 263.62 265.12 256 .15 
(150) (0.0000)* (0.4727) (0.0014)* (0.0029)* (0.0000)* 

RsSv 208 .01 198.26 238.35 245.34 229 .69 
(7) (0.7971) (Q.6005) (0.3990) (0.3158) (0 .1908) 

RsMv 232.54 226 .60 248.51 252.48 243.37 
(52) (0.1908) (0.1902) (0.3432) (0.5235) (0.7528) 

Centroid DsSv 244.89 234.60 252.18 254.49 242.12 
Method ( 111) (0.2668) (0.8616) (0. 1893) (0.1555) (0.7610) 

DsMv 250.82 244.57 257 .58 259 .66 251.80 
(710) (0.7790) (0.0989) (0.5837) (0.2580) (0.0192)* 

WsSv 259 .58 249 .04 260.25 260 .28 244.68 
(8) (0.7509) (0.2516) (0.7275) (0.2929) (0.2103) 

WsMv 260 .79 253 .93 264.28 265.68 256.47 
(121) (0.0107)* (0.4191) (0.2294) (0.5894) (0.000 I)* 

RsSv 208.01 198.26 238 .35 245.34 229.69 
(7) (0.7971) (0.6005) (0.5552) (0.3990) (0.3158) 

RsMv 230.83 222.79 248 .59 252.95 241.92 
(39) (0.6126) (0.1005) (0.0308)* (0.0121)* (0.9005) 

t (n), number of data elements in the interaction of both classification events . 
t (Prob )jTI), the probability of a greater absolute value oft statistic under the null hypothesis. 
• Means are significantly different at 0.05 level. 
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2) ANN Training and Validation Performances: Table 3-VI summarizes the training and 

validation performance of the ANNs with different topologies. Although all training processes 

converged at the designated RMS tolerance , there is no evidence to show that a smaller RMS 

tolerance may ensure a better ANN classification performance. The increases in error rates as RMS 

tolerances decreased could be a sign of overtraining, by which the ANN becomes too specific to the 

TABLE 3-VI 

RESULTS OF TRAINING EPOCHS AND ERROR RATE OF THE ANNS 

ANN Leaming Factor Error 
Clustering ANN Learning Momentum RMS Training Rate 
Method Topology Rate Term Tolerance Epoch (%) 

Average 5-5-6 0.05 0.9 0.215 1743 10.9 

Linkage 0.200 2908 3.9 
0.185 7772 4.6 

5-10-6 0.05 0.9 0.300 1159 3.4 
0.200 5243 2.4* 
0.190 4329 6.6 

5-20-6 0.05 0.9 0.230 1708 8.7 
0.215 2597 5.6 
0.200 2603 6.0 

5-30-6 0.05 0.9 0.240 1998 IO.I 
0.230 2552 7.2 
0.220 2098 16.9 

Centroid 5-5-6 0.05 0.9 0.225 1984 5.5 

Method 0.200 1989 4.9 
0.170 3271 5.5 

5-10-6 0.05 0.9 0.250 1440 6.7 
0.200 2268 5.5 
0.190 2247 6.1 

5-20-6 0.05 0.9 0.170 2920 9.8 
0.165 2269 8.0 
0.155 13224 14.7 

5-30-6 0.05 0.9 0.195 2785 7.4 
0.180 2191 6.1 
0.160 4440 6.7 

* The best ANN found after training. 
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training data rather than learning the general patterns for a useful generalization ability [29]. 

The smallest error rate (2.4%) was reached by the ANN of 5-10-6 (Table 3-VI) trained with 

cluster means from the average linkage clustering method. Similar results were found in the 5-5-6 

ANN using training data from the centroid clustering method. Regarding the number of nodes in the 

hidden layer, there was no evidence that more nodes in the hidden layer improved ANN performance. 

The best ANN (i.e., the 5-10-6 with 2.4% error rate) resulted from a number of training runs by trial 

and error. 

The two-way contingency table (Table 3-VII) summarizes the classification accuracy of the 

best ANN applied to the validation data. Error rates (err°/o) were 3.8% (2/52) for DsSv, 2.9% (3/102) 

for DsMv, 3.2% (3/93) for WsSv, 0.0% (0/73) for WsMs, 0.0% (0/19) for RsSv , and 2.7% (2/75) for 

classified as either DsMv or WsSv conditions . Such misclassification could be due to the 

TABLE 3-VII 

Two-WAY CONTINGENCY TABLE OF SNOW CLASSIFICATION BY 

THE ANN CLASSIFIER AND THE AVERAGE LINKAGE METHOD 

Class 
from Cluster from Average Linkage Method 
ANN DsSv DsMv WsSv WsMv RsSv RsMv Total (err%) 

DsSv 50 0 0 0 52 (3.8) 

DsMv 0 99 0 3 0 0 102 (2.9) 

WsSv 0 0 90 3 0 0 93 (3.2) 

WsMv 0 0 0 73 0 0 73 (0.0) 

RsSv 0 0 0 0 19 0 19 (0.0) 

RsMv 0 0 0 73 75 (2. 7) 

Total 51 100 91 79 20 73 414 
(err%) (2.0) (1.0) (1.1) (7.6) (5.0) (0.0) (2.4) 
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depolarization effect caused by the vegetation, which made the SSM/1 Tb patterns similar. Overall, 

the results indicate that the ANN is usefiul in classifying snow conditions. 

3) Application of the ANN Classifier to Case Images : Since the ANN classifier was trained 

to classify six snow conditions, a pretreatment using existing classification rules (from [2] and [26]) 

to remove the nonsnow cover classes (i.e., water body, flooding, and precipitation) was used in same 

case SSM/1 overpasses. However, as indicated in [27], the Tb signatures of heavy vegetation, 

refrozen ground, and wet snow were almost the same. Thus, a posttreatment was needed to check 

possible heavy vegetation and frozen ground conditions embedded in vegetated wet snow conditions 

from the ANN classifier. 

As shown in this study (Table 3-ill), the SWI value (Tl9V-T37H) larger than 13 in the 

cluster of wet snow condition might indicate a frozen ground condition . Therefore , an SWI of 13 or 

12 was used to remove the possible froze111 ground conditions that might be embedded in the sparse­

or medium-vegetated wet snow (WsSv and WsMv) , classified by the ANN. In addition , SWI of 

WsSv or WsMv less than 10 or 9, respectively, was treated as snow-free according to [18]. The 

lower SWI value of 12 and 9 was selected because of the possible depolarization effect of vegetation 

in WsMv class. Consequently, as shown in Figure 3.4, the use of the ANN snow classifier for SSM/I 

image classification was accomplished by using pre- and posttreatment classification of the SSM/1 

data with other ru !es. 

Figures 3.5 and 3.6 (A-1 to A-6) show the images ofSSM/1 footprints with ANN-based snow 

classification in a time series from the 21st day of the year (DOY) to the 26th DOY , 1990 in the 

western and central United States. For the comparison, images of the SSM/1 footprints with rules­

based snow classification [3] (Figures 3.5 and 3.7, B-1 to B6) and ground-based snow data (Figure 

3. 8, C-4 to C-6) were illustrated. In addition, images of vegetation cover, in terms of ND Vis, at 

SSM/I footprints were also represented in Figure 3.9 (D-4 to D-6). 
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Figure 3.4. Flowchart of the application of the ANN snow classifier, accomplished with 
pretreatment by rules A from Neale et al. [2] and rules B from Grody and Basist [26], 

and posttreatment by rules C according to Sun et al. [18]. 
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DsSv/Dry DsMv WsSv/Wet WsMv RsS v /Re frozen RsMv 

Figure 3.5. Images of the SSM/1 footprints with snow conditions defined by the ANN classifier 
(in A series) and by the snow classification rules [3] (in B series) on DOY 21-23, 1990. 
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Figure 3.6 . fmages of SSM /I footpri nts wit h snow conditions defined by the ANN classifier 
on DOY 24-26, 1990 . 
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Figure 3.7. Images of SSM/1 footprints with snow conditions defined by the snow classification 
rules [3] on DOY 24-26, 1990. 
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Figure 3.8. Images of ground-based snow conditions at NOAA weather stations with respect to 
SSM /1 footprints on DOY 24-26, 1990 . 
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Sparse-vegetated (NDVI < l 15) Medium-vegetated (NDYl >=l l 5) 

Figure 3.9. Images of monthly NOVI (Jan . 1990) with respect to SSM/I footprints 
on DOY 24-26 , 1990. 

88 



89 

In general , both ANN-based and rules-based methods showed similar snow geographical 

distribution patterns; i.e., the higher the !latitude the more the snow cover, and the lower the latitude 

the more the wet snow . However, the ANN method revealed snow conditions in more detail. It is 

evident that the ANN-based snow classification outlined the medium-vegetated dry snow (DsMv) 

at mountainous areas and the sparse-vegetated dry snow (DsSv) at the central plains (Figure 3.6), 

whereas the rules-based method indicated only dry snow cover at those areas (Figure 3.7). 

The main difference between the: two classification methods was found in the identification 

of wet snow conditions . Results showed that most of the SSM/1 footprints at northern areas classified 

as medium-vegetated wet snow (WsMv) by the ANN were defined as snow-free by the snow 

classification rules (Figures 3.5 to 3.7). Such disagreement could be due to the depolarization effect 

of the vegetation , making the snow classification rules, which were developed based on data over 

plains with sparse-vegetated snow cover , difficult to interpret medium-vegetated snow conditions. 

Moreover , certain footprints in the southern areas were seen as snow-free condition by the 

ANN (Figure 3.6) but as wet snow by the rules-based method (Figure 3.7). This finding indicated 

that frozen ground could be misinterpreted as wet snow by the rules-based method since there are no 

particular rules for the discrimination of those two land surface conditions as defined in the post­

treatment (i.e ., rules C in Figure 3.4) by the ANN-based method . 

In reference to the images of ground-based data (Figure 3.8), no snow shown in the southern 

areas confirmed that the SSM/1 Tb patte:rns of frozen ground could be misclassified as wet snow 

conditions in both ANN and rules-base d classification methods. Accordingly , the cutoff point of 

SWI at 13 or 12 for the frozen ground conditions in posttreatrnent of the ANN method (Figure 3.4) 

may not be appropriate . 

The ANN-based snow distribution of dry and refrozen snow (Figure 3.6) agreed with the 

ground-based snow extent (Figure 3.8) . However, most sparse-vegetated dry snow (DsSv) by the 
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ANN was classified as wet snow at ground weather stations. Since the images were from the SSM/I 

ascending portion, which was at 6 am local time, the ground-based wet snow could result from an 

error in the ground-based snow classification, due to a relatively high concurrent air temperature over 

a dry snow condition. 

For the NOVI images (Figure 3.9), most of the sparse- and medium-vegetated areas were 

matched with the ANN-based sparse- and medium-vegetated snow conditions (Figure 3.6). 

However, disagreement was seen in the medium-vegetated wet snow (Figure 3.6 A-5) over a sparse­

vegetated area (Figure 3.9 D-5). Possible explanation could be that the frozen ground was 

misclassified by the ANN as a wet snow condition. This finding further confirms that the Tb 

signatures of frozen ground should be examined and taken into account in the ANN training for 

land-surface snow classification. 

E. Conclusions 

To date, no single existing SSM/I classification algorithm has been able to identify land­

surface snow conditions over varied terrain. This study presented a nonlinear retrieval method that 

overcomes the drawbacks and limitations of the existing classification methods for SSM/I land­

surface snow classification. 

Rather than relying on ground-based measurements, knowledge of passive microwave 

physics of typical SSM/I Tb signatures provides a more meaningful way to identify land surface 

types derived from an unsupervised cluster analysis. This study demonstrated the importance of 

cluster analysis in the identification of typical SSM/1 Tb signatures of snow conditions using cluster 

means, by which a reliable ANN mapping performance was achieved. 

The ANN supervised learning appears to be a useful method for the classification of snow 

conditions from satellite data over varied terrain. In ANN training, however, no particular rules can 
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be drawn for the selection of a number of hidden nodes and learning factors (learning rate, 

momentum, and RMS tolerance). Accordingly, the best ANN is more likely to be derived from a 

number of different training runs by trial and error. This study showed that the ANN has the 

potential to learn typical SSM/1 Tb signatures. 

Nevertheless, application of the SSM/1 ANN classifier requires pre- and posttreatment 

procedures to classify certain snow-free surfaces. Ultimately, an ANN trained from Tb patterns of 

all land surface types is expected. Therefore, further research should focus on the identification of 

more land surface types, especially the heavy vegetation and frozen ground, over different terrains 

to improve the ANN classification efficiency by training ANN with all possible SSM/1 Tb signatures 

and surface types. 

F. References 

[1] J. P. Hollinger , "DMSP Special Sensor Microwave/Imager calibration/validation," Naval 

Research Laboratory, Washington, DC, Final Report, vol. I, 1989. 

[2] C. M. U. Neale, M. J . McFarland, and K. Chang, "Land-surface-type classification using 

microwave brightness temperatures from the Special Sensor Microwave/Imager," IEEE 

Trans. Geosci. Remote Sens., vol. 28, no. 5, pp . 829-838, 1990. 

[3] M. J. McFarland and C. M. U. Neale, "Land parameter algorithms validation and 

calibration," in "DMSP Special Sensor Microwave/Imager calibration/validation," J. P. 

Hollinger, Ed. Naval Research Laboratory , Washington, DC, Final Report, vol. II, 1991, 

pp. 1-108 . 

[4] J. V. Fiore, Jr. and N. C. Grody, "Classification of snow cover and precipitation using SSM/1 

measurements: case studies," Int . J. Remote Sens ., vol. 13, no. 17, pp. 3349-3361, 1992. 

[5] D. K. Hall, M. Sturm, C. S. Benson, A. T. C. Chang, J. L. Foster, H. Garbeil, and E. Chacho, 



92 

"Passive microwave remote and in-situ measurements of Arctic and Subarctic snow cover 

in Alaska," Remote Sens. Environ., vol. 38, no. 3, pp. 161-172, 1991. 

[6] D. H. Staelin, "Progress in passive microwave remote sensing: nonlinear retrieval 

techniques," in Remote Sensing of Atmospheres and Oceans, A. Deepak, Ed. San Diego, 

CA: Academic Press, 19980, pp. 259-274. 

[7] S. R. Rotman, A. D. Fisher, and D. H. Staelin, "Analysis of multiple-angle microwave 

observations of snow and ice usiing cluster-analysis techniques," J. Glaciology, vol. 27, no. 

95, pp. 89-97, 1981. 

[8] J. Key, J. A. Maslanik, and A. J. Schweiger, "Classification of merged A VHRR and SMMR 

Arctic data with neural networks," Photogramm. Eng. Remote Sens., vol. 55, no. 9, pp. 1331-

1338, 1989. 

[9] Y. M. F. Lure, N. C. Grody, H. Y. M. Yeh, and J. S. J. Lin, "Neural network approaches to 

classification of snow cover and precipitation from spectral sensor microwave/imager 

(SSM/1)," presented at 8th Int'! Conj. Interactive Info. Proces. Sys. (/JPS) Meteorol. , 

Oceana., and Hydro!., Atlanta, GA, 1992. 

[10] C. Sun, H. D. Cheng, J. J. McDonnell, and C. M. U. Neale , "Identification of mountain snow 

cover using SSM/1 and artificial neural network," in Proc. 1995 International Conference 

on Acoustics , Speech and Signal Processing, 1995, pp. 3451-3454. 

[11] J.M. Zurada, Introduction toArt{.ficial Neural Systems. St. Paul, MN: West Publishing Co., 

1992. 

[12] C. Sun and H. Cheng, "The use of class means in error backpropagation training for species 

identification of iris data," in Proc . Joint Conference on Information Sciences, 1995, pp. 

556-559. 

[13] G. G. Gutman, "Vegetation indictis from AVHRR: an update and future prospects," Remote 



93 

Sens . Environ. , vol. 35, no. 2&3, pp. 121-136, 1991. 

[14] K. B. Kidwell, Global Vegetation Index User's Guide. Washington , DC : NOAA National 

Geophysical Data Center, Satellite Data Services Division, 1994. 

[15] A. M. Hittelman, L. W. Row, J. J. Kineman, R. E. Habrmann, and D. A. Hastings , Global 

View CD-ROMs and User's Manual . Boulder, CO: NOAA National Geophysical Data 

Center, 1994. 

[16] SCS, Snow Survey and Water Supply Products Reference. Portland , OR: USDA SCS West 

National Technical Center, 1988. 

[17] NOAA , Surface Land Daily Cooperative Summary of the Day TD-3200. Asheville, NC: 

NOAA National Environmental Satellite Data and fnformation Service, 1989. 

[18] C. Sun , C. M. U. Neale, and J. J. McDonnell , "Relationship between snow wetness and air 

temperature and its use in the development of an SSM/I snow wetness algorithm," in Proc. 

AGU 15th Annual Hydrology Days , 1995, pp. 271-280. 

[19] SAS Institute Inc., SAS/STAT Users Guide, Release 6.03 Edition . Cary, NC: SAS Institute 

Inc., 1988. 

[20] W. S. Sarle , "Cubic clustering criterion ," SAS Institute Inc. , Cary , NC, Technical Report A­

l 08, 1983. 

[21] G. W. Milligan and M. C. Cooper, "An examination of procedures for determining the 

number of clusters in a data set," Psychometrika , vol. 50, no. 2, pp. 159-179, 1985. 

[22] SAS Institute Inc., SAS Procedures Guide, Release 6. 03 Edition. Cary, NC: SAS Institute 

Inc., 1988. 

[23] NeuralWare Technical Publications Group, Using NWorks : an Extended Tutorial for 

NeuralWorks Professional II/PLUS and NeuralWorks Explorer . Pittsburgh, PA: 

NeuralWare Inc., 1991. 



94 

[24] D. E. Rumelhart , G. E. Hinton , and R. J. Williams, "Learning internal representations by 

error propagation," in Parallel Distributed Processing : Explorations in the Microstructure 

a/Cognition , Vol. I, Foundations, J. A. Feldman, P. J. Hayes, and D. E. Rumelhart, Eds. 

Cambridge , MA : MIT Press, 1986, pp. 318-362. 

[25] L. Prechelt, "PRoBEN 1 - a set of neural network benchmark problems and benchmarking 

rules," Karlsruhe University, Karlsruhe, Germany, Technical Report 21/94, 1994. 

[26] N. C. Grody and A. Basist, "SSM/1 Snow Cover Maps of the U.S.," anonymous FTP: 

ftp.nohrsc.nws.gov in /pub/bbs/ssmi/ssmi.txt , 1995. 

[27] J. Hollinger, R. Lo, G. Poe, R. Savage, and J. Peirce , Special Sensor Microwave /lmager 

User's Guide, Washington , DC: Naval Research Laboratory , 1987 . 

[28] F. T. Ulaby , R. K. Moore, and A. K. Fung , Microwave Remote Sensing: Activ e and Passive, 

Vol. III,from Theory to Appli cations. Norwood , MA: Artech House , 1986. 

[29] T. Masters , Practical Neural Network Recipes in C++ . San Diego , CA: Academic Press, 

1993. 



CHAPTER4 

ON THE RETRIEVAL OF SNOW WATER EQUIVALENT AND WETNESS FORM 

SSM/1 DAT A USING A NEURAL NETWORK APPROXIMA TOR 

A. Abstract 
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The Special Sensor Microwave/lmager (SSM/1) is a useful tool for estimating snow 

properties because it is sensitive to the changes in snow physical and dielectric properties. To date , 

SSM/1 snow water equivalent and snow wetness algorithms have been developed using regression 

techniques for a specific region and applied only to those similar geographic areas . In this study, we 

linked SSM/1 observations [i.e., brightness temperatures (Tb's)] with concurrent ground-based snow 

water equivalent (SWE) and snow wetness (WETNESS) measurements as the input/output relations 

over a variety of geographical areas with different snow conditions . The data were used to develop 

an SSM/I ANN snow parameter approximator by which the SWE and WETNESS over different areas 

were simultaneously estimated from SSM/I observations . A single-hidden-layer ANN was designed 

to learn the input/output relations. The error backpropagation (backprop) training algorithm was 

applied to train the ANN. Agreement was found between the ANN-estimated and ground-based 

snow data. This study indicated that the ANN may overcome the limitations of the existing 

regression models in the estimation of SWE and WETNESS from SSM/1 data over varied terrain. 

Further improvement is expected as more representative input/output relations between SSM/I 

observations and ground truth data over varied terrain and different snow conditions are established. 

B. Introduction 

Measurement of snow accumulation and melt during the snow season is important for water 

resources management and planning. Conventional snow measurements are made typically via a 

number of snow courses in the area of interest. Ground snow surveys, however, are point data 
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measurements and provide only a rough index of the spatial snowpack properties. In order to 

characterize seasonal snowpack parameters at the large scale, ground snow survey measurements are 

often supplemented by remotely sensed data [I]. 

Studies have shown that passive microwave radiometry has significant promise in the remote 

sensing of snow parameters, because its observed brightness temperatures (Tb's) are sensitive to the 

changes in snow physical and dielectr ic properties [2], [3], [4]. Recently, the Special Sensor 

Microwave/lmager (SSM/1) radiometers, flown on the Defense Meteorological Satellite Program 

(DMSP) F8 , FI0, and Fl I satellites, have been used to produce global hydrologic data [5]. The 

SSM/1 is a seven-channel, four-frequency , linearly polarized, passive microwave radiometric system, 

which measures both vertically (V) and horizontally (H) linearly polarized Tb's, at 19.35 , 37.0 , and 

85.5 GHz and only vertical polarization at 22.235 GHz [6]. 

Unlike in situ methods, the SSM/I provides an indirect estimate by using parameter retrieval 

algorithms , with Tb's as inputs, to derive information about snow properties. In order to develop the 

algorithm , either empirical or theoretical interpretations of Tb observations along with ground truth 

data are required . In the application of the algorithm , the Tb observations are known , and the state 

of variable s is inferred . Thus, conventi onal snow measurements have always played an important 

role in the development of SSM/l snow parameter retrieval algorithms . 

The basic hydrological measure of a snowpack is the snow water equivalent (SWE) , which 

is the amount of water that would be obtained if the snow column was melted completely . In most 

operational snow surveys , however , only the snow depth (SD) is measured and is converted to SWE 

by assuming a snow density of 0.10 [7]. In the United States, daily SD over plains areas is measured 

by the National Oceanic and Atrnospherk Administration (NOAA) weather observing network [8]. 

Manual measurements of NOAA weather observing network are not practical in deep mountain 

snowpacks. Consequently, the Soil Conse,rvation Service (SCS) has established an automatic SWE 
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measurement network system, called SNOTEL (SNOwpack TELemetry) [9], to complement the 

NOAA snow course data over high-mountain areas in the western United States. 

Measurement of snow wetness (snowpack free water content) is essential for determining 

the onset of melt. Conventional observation of snow wetness through ground-based networks has 

not yet been established in the United Staltes. Therefore, spatial snow wetness data are often obtained 

by estimation using empirical equations (e.g., [IO]). 

To date, SSM/1 algorithms for retrieving snow wetness, SWE, and SD have been developed 

[1 O], [11], [12]. These algorithms have been based mostly on statistical regression analysis to 

quantify the relationship between one or more SSM/1 Tb variables and a single snow parameter in 

flat , nonforested areas. Since SSM/1 Tb increases as the vegetation density over the snowpack 

increases [13], the existing algorithms often overestimate snow wetness and underestimate SD or 

SWE in areas with evergreen forest cov«!r. In addition, the SD and SWE algorithms are typically 

restricted to dry snow conditions . Since SSM/1 Tb increases as the snow wetness increases , an 

underestimated SD or SWE is expected in areas where the snowpack is wet. Accordingly, existing 

SSM/1 snow parameter algorithms are (imitated as general approaches for snow parameter retrieval 

over different complex cover areas and snow conditions. 

Recently , artificial neural networks (ANNs) have been used to retrieve snow parameters from 

passive microwave data [14], [15], [16]. Results show that ANNs have potential to learn Tb patterns 

whose complexity and nonlinearity malke retrieval accuracy by existing regression approaches 

impossible . According to [17], the artificial neural network can be regarded as a graphic notation 

for a large class of algorithms or a function represented by the composition of many basic functions . 

Studies in [14], [15], using an ANN to recall snow parameters simultaneously from Tb observations, 

have shown that a unified SSM/1 snow parameters algorithm can possibly be developed using an 

ANN. 
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Most of the previous ANNs have been trained with input/output relations (i.e ., SSM/1 Tb's 

and snow parameter values) from simulated data generated from a radiative transfer model (RTM) 

(e.g., [14], [15]). In this way, snow parameters at an area of interest are then inferred by the ANNs 

from passive microwave observations. Since snow properties in nature are typically complex, there 

are many unknown radiative physical characteristics that need to be determined by rather arbitrary 

assumptions in the RTM simulation . Although the ANN can learn from the input/output of simulated 

relations , the parameter retrieval behavior of the ANN on real cases often remains unknown , because 

the coarse resolution of the SSM/1 makes microwave responses deviate largely among footprints for 

a same-snow condition. This causes the input/output relations to be extremely random and difficult 

to simulate. 

For random variables data , the technique for finding a mapping between inputs and outputs 

is referred to stochastic approximation [ 18]. Following [19], an ANN with error backpropagation 

training is equivalent to a form of stochastic approximation . With the assumption that SSM/1 

observations and ground-based snow parameters are random variables with respect to each other, 

it is possible that an ANN can be trained with the inputs of SSM/1 observations and the outputs of 

corresponding ground-based snow measurements. 

This study sampled the input/output relations between SSM/1 observations and concurrent 

ground-based snow wetness and SWE measurements over a variety of geographical areas . An ANN 

was trained with the relations to develop an SSM/1 ANN snow parameter approximator , by which 

the snow water equivalent and snow wetness over different areas can be simultaneously estimated 

from SSM/I observations. 

C. Methods 

1) SSM/1 and Ground Truth Data : A study area bounded by latitude of 40 °N to 45 °N and 
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longitude of 100°W and 115 °W, which contained both plains and mountainous region in the western 

United States, was selected to represent a variety of vegetated terrain. SSM/1 Tb's and ground-based 

snow measurements were obtained from Oct. 1, 1989 to May 30, 1990. 

Seven SSM/1 Tb's from the DMSP-F8 satellite were obtained from the Naval Research 

Laboratory. Due to the increase in noise level of both SSM/1 85.5 GHz channels on DMSP-F8 

satellite during 1988, only five Th's of the lower frequency channels, denoted as Tl 9V, TI 9H, T22V, 

T37V, and T37H, were used in this study. 

Ground-based measurements of daily SWE, and maximum, minimum, and average air 

temperature over mountainous terrain were obtained from the SCS SNOTEL system [9]. Daily SD, 

maximum and minimum air temperature, and air temperature at the observing time in the plains were 

derived from the NOAA weather-observing network [8]. 

2) Ground-Bas ed Snow Class(fication and Snow Parameter Estimation: Daily snow 

condition of each SNOTEL or NOAA weather station at DMSP-F8 local crossing time, either 6 am 

or 6 pm, was flagged as: (1) snow-free (if SWE or SD was equal to zero), (2) dry snow (while SWE 

or SD was accumulated from previous time and the concurrent air temperature was below 3.5 °C by 

which the snow wetness was assumed to be less than 3% by volume according to the linear regression 

model of snow wetness as a function of concurrent air temperature in [10]), (3) wet snow (as SWE 

or SD was not equal to zero and the concurrent air temperature was large than or equal to 3.5 °C), or 

( 4) refrozen snow (if the concurrent air temperature was below freezing point and the snow condition 

of previous time was either wet or refrozen). For SNOTEL stations , the concurrent air temperature 

at 6 am and 6 pm were set to be the daily minimum and average air temperature , respectively. For 

NOAA weather stations, the concurren t air temperature at 6 am or 6 pm was set to be the air 

temperature at observing time if the time was between 4 am and 7 am or between 4 pm and 7 pm, 

respectively; otherwise, the concurrent air temperature at 6 am was equal to the minimum air 
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temperature and that at 6 pm was extrapolated by assuming the maximum air temperature was at 2 

pm and linearly decreased to the temperature at observing time, which was after 2 pm or the 

maximum air temperature of the previous day decreased to the air temperature at observing time 

which was before 2 pm. Because of the lack of SWE data, SD data at NOAA stations were converted 

to SWE by assuming a snow density of 0.2 for dry snow, 0.3 for wet, and 0.4 for refrozen. 

Since the latitude/longitude coordinates of the SSM/1 footprints change with each overpass, 

a neighborhood merging method was employed to integrate the SSM/1 and in situ data into one 

database. The database was built by searching the ground weather stations that fell within a 15-km 

search radius around a particular SSM/1 latitude/longitude location (i.e., approximately the size of 

a 37.0 GHz footprint). Values of SWE, and air temperature were then averaged for that SSM/1 

footprint , respectively . Based on the linear relationship between snow wetness and air temperature 

in [1 O], snow wetness (WETNESS) at eaich footprint was also estimated. 

3) ANN-Based Snow Classification and Input/output Data Pair Preparation: Since the 

ground-based snow conditions (i.e., dry, wet, and refrozen snow) were determined in part by arbitrary 

assumptions in the estimation of concurrent air temperature , error could be introduced due to the 

temporal variability of air temperature. This could result in different ground-based snow conditions 

being related to SSM/1 footprints of similair Tb signatures. The SSM/1 ANN snow classifier [20] was 

used to classify SSM/1 Tb's in the database. Only data of those SSM/I footprints classified as snow­

covered [i.e., dry snow with sparse (DsSv) or medium (DsMv) vegetation, wet snow with sparse 

(WsSv) or medium (WsMv) vegetation, or refrozen snow with sparse (RsSv) or medium (RsMv) 

vegetation] with matched ground-based snow conditions and meaningful ground-based snow data 

(i.e., SWE great than zero) were taken into account for the input/output (i.e, input of five Tb's and 

output of SWE and WETNESS) data pairs. By doing so, the error in estimation of SWE or 

WETNESS with respect to a possible true~ snow condition was reduced. Thus, a subset database of 
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input/output data pairs was created. 

4) Interpretation of Relationships Between Input and Output Data : Correlation analysis 

was performed to measure the strength of the linear associations between the input (i.e., SSM/1 Tb) 

and output (i .e., SWE or WETNESS) variables in each snow class. Due to the sensitivity of Tb at 

3 7 .0 and 19 .3 5 GHz to snow properties [2], scatterplots were used to plot data of each pairs of T3 7V 

and SWE for each of the six snow conditions , and Tl 9V-T37H and WETNESS for each of the two 

wet snow conditions as points in two-dimensional space to observe if there is any pattern in the data. 

5) ANN Training, Validation, and Test Data Sets: As indicated in [21], the proportional 

representation of classes in the entire training data can have a profound influence on the ANN 

performance. Moreover, based on a prior study [22], the frequency distributions of data elements in 

each snow class may also be important to the ANN training. Consequently , data elements in the 

subset database were sorted by snow condition and by values of SWE if snow was dry or refrozen 

or by values of WETNESS if snow was wet. According to the number of the smallest data elements 

in the frequency distributions (Table 4-I), 180 data elements of each snow condition with same data 

size (i.e., 30 elements) for each frequency from the subset database were selected to form the training 

data set. Duplication was applied to thos1~ elements selected from the frequency with fewer than 30 

elements. The rationale was to make the data sets as representative for the whole data and as 

balanced in size for each frequency distribution of the three classes as possible. From the remaining 

elements , validation and test data sets were created as per the training set selection . 

6) ANN Training and Testing: A single-hidden-layer ANN was created. It consisted of an 

input layer of five nodes representing the inputs of five Tb's , and an output layer of two nodes 

representing the desired SWE and WETI.J"ESS snow parameters . For the hidden layer, the number 

of nodes was selected at 5, 10, 20, 30, 40, and 50. Given the number of nodes in each layer from 

input to output as a sequence , the ANN topology was represented as 5-N-2, where N is the number 
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TABLE 4-1 

ELEMENTS SELECTED FOR ANN TRAINING AND TESTING 

Frequency 
Distributions of 

Snow SWEor Number of Elements in Data Set 
Condition WETNESS Subset Training (xm)§ Validation Test 

Dry 0-100 mm 824 30 5 5 

100-200 mm 481 30 5 5 

200-300 mm 255 30 5 5 

300-400 mm 128 30 5 5 

400-500 mm 87 30 5 5 

500-800 mm 60 30 5 5 

Wet 0-1 % 52 30 5 5 

1-2 % 23 15x2 4 4 

2-3 % 25 ]5 x2 5 5 

3-4 % 17 )5x2 

4-5 % 14 10x3 2 2 

5- % 17 15x2 

Refrozen 0-100 mm 69 30 5 5 

100-200 mm 64 30 5 5 

200-300 mm 80 30 5 5 

300-400 mm 45 30 5 5 

400-500 mm 23 15x2 4 4 

500-800 mm 19 15x2 2 2 

Total Elements 2283 540 74 74 

§ m: multiplier for data duplication. 
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of hidden nodes. In addition, a bias node, functioning similar to a constant in a regression, was 

connected to the nodes in the hidden and output layers. 

The error backpropagation training algorithm [23) was applied to train the ANN. This 

method allows forward feeding node outputs through layers and backward propagating mapping 

errors to adjust connection weights betwc~en layers. According to [24), having a larger learning rate 

at the hidden layer than that at the output layer can decrease learning time. Leaming rate at the 

hidden layer was set at twice the rate of the output layer. Leaming rates were 0.05 and 0.025, for 

hidden layer and output layer, respectively. The momentum method [25) (i.e., adding the current 

weight adjustment with a proportion of the previous weight change) was applied to accelerate the 

learning process. The momentum term was set at 0.90 in this study. 

The activation function applied to the net input of nodes in the hidden and output layers was 

a logistic [24), which maps the net output into the range between 0 and I . Accordingly, the input 

were scaled between 0 and I with respect to a Tb range from 180 to 280 K to represent the input 

attributes in the ANN. The desired output data of SWE and WETNESS were also scaled between 

0 and I with respect to a SWE range from 0 to 800 mm and a WETNESS range from 0 to 10 % by 

volume , respectively . 

The training process started by randomly initializing all connection weights between -0.1 and 

0.1. After each training epoch (i.e., the time as all the input/output pairs in the training data set were 

processed by the ANN), a root-mean-squared (RMS) error was computed on the validation data to 

examine the training performance of the ANN. The training process was repeated until the minimum 

RMS error was reached . 

After training, the test data set was used to evaluate the approximation performance of the 

resulting ANNs . The closeness of linear relationship between ANN-estimated and ground-based 

values was measured by the correlation coefficient (r). The ANN with the best overall r value 
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became the ANN approximator . 

7) Comparison Between ANN and Regression Models: SSM/1 data for sparse-vegetated dry 

snow condition in the subset database, which were not used in ANN training and testing, were 

selected to evaluate the ANN approximator performance on SWE estimation. The SWEs estimated 

by the ANN from the SSM/1 data were first compared to the ground-based SWEs . Data elements 

with incompatible ANN-estimated and ground-based SWEs were treated as possible noise patterns 

and eliminated in the model comparison. The remaining ANN-estimated SWEs were then compared 

to those estimated by the existing SSM/1 SWE retrieval algorithm [26]: 

SWE = - 20.7 -49.27(T37V - Tl 9V)/18.0 

and by the SSM/1 SD retrieval algorithm [11]: 

SD = 444 .5 - I . 795(T3 7V) 

(1) 

(2) 

where SD was further converted to SWE under the assumption that the average density of dry snow 

is 0.2 . 

In addition , data of SSM/1 Tb's of a footprint with concurrent snow wetness estimations 

during field work at Snowville , Utah [IO] were used to evaluate the ANN approximator on 

WETNESS estimation . Results were compared to those estimated by the existing SSM/1 WETNESS 

algorithm [IO]: 

WETNESS = - 4.75 +339.53(TDr 1 - 6159.53(TDr 2 +40112 .00(TDr 3 (3) 

where TD = Tl 9V - T3 7H. 

D. Results and Discussion 

1) Interpretation of Linear Relationship : Figures 4.1 to 4.3 show similar proportion of 

observations in each of the four quadrants divided by the reference lines at the variable means (i.e., x 

for SWE and y for T37V). This reflects the fact that there was no significant relationship between 
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Figure 4.3. SSM/1 Tb at 37.0 GHz versus snow water equivalent for refrozen snow conditions . 

T37V and SWE for each snow class. On the average, Tb observed at the footprint of snow with 

medium vegetation was higher than that of snow with sparse vegetation. It is evident that the effect 

of vegetation cover may mask the microwave emission from the underlying snow and raise the Tb 

by the emission from the vegetation. 

Table 4-II summarizes the correlation coefficient (r) between different pairs of input and 

output variables in each snow class defined by the ANN-based snow classification. No strong linear 

relationships were found based on data for each SSM/I single-channel variable. This is because the 

r values were all close to zero. The nonlinearity found in the data may imply that different 

geographic areas may have different snowpack conditions, vegetation cover, underlying soil 

conditions, and surface temperatures, making the extrapolation of relationships between Tb 

observations and SWE from one area to another more difficult [27]. In addition, the melting and 
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freezing process in spring may cause increased heterogeneity in grain size, ice layer, and surface 

crust. As a result, the development of at linear regression model for retrieving SWE over different 

geographical regions from any SSM/1 single-channel observations is likely impossible . 

For snow wetness, the relatively lower values of Tb difference (i.e., Tl9V-T37H) in wet 

snow with medium vegetation (Figure 4.4) could be a sign of depolarization effects due to the 

vegetation. In addition, the previously developed regression model [l OJ was not able to explain the 

variations in both sparse- and medium-vt:getated wet snow conditions. According to [l OJ, the snow 

wetness regression model was based on single point estimates of WETNESS in relation to the Tb 

difference of a corresponding sparse-vegetated SSM/1 footprint. Thus , the predicted line by the 

regression model certainly was not in agreement with the ground-based data that were integrated 

from different point data measurements at corresponding SSM/1 footprints over varied terrain. 

TABLE 4-11 
CORRELATION (R) BE::-TWEEN INPUT AND OUTPUT VARIABLES 

Snow Sample Output In12ut Variable 
Class Size Variable T37V T37H T22V Tl9V Tl9H 

Dry 1835 SWE - 0.19 0.05 - 0.07 - 0.03 0.13 

Wet 148 SWE - 0.17 0.22 0.15 0.17 0.28 

Refrozen 300 SWE - 0.04 0.05 - 0.10 - 0.05 - 0.01 

Wet 148 WETNESS 0.17 -0.05 -0.01 - 0.04 - 0.16 
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Figure 4.4. Snow wetness versus SSM/I Tl 9V-T37H difference for wet snow conditions and the 
regress ion line according to [10). 

2) ANN Training and Approximati on Performances: Table 4-III summarizes the training 

performance of the ANN with different topologies . For each ANN topology, there was no evidence 

to show that a smaller or a higher learning rate may ensure a better ANN performance (i.e. , a smaller 

minimum RMS error). The relatively higher minimum RMS error that resulted in each ANN 

topology could be the sign that the ANN was trapped in local minimum during training [21). Overall, 

better training performance was derived from a number of training runs at different learning rates by 

trail and error. 

Table 4-IV shows the result of the approximation performance of the trained ANN on a test 

data set. Generally, for most ANN topologies, the estimation of SWE was in agreement with the 

ground truth at correlation coefficients of around 0.6. The most significant correlation (r = 0.668) 
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TABLE 4-111 

RESULTS OF ' ANN TRAINING AND VALIDATION 

Minimum RMS Error 
ANN Topology Leaming Rate Training Epochs SWE WETNESS 

5-10-2 0.1 12439 0. I 8917 0.09225 

0.2 14014 0.19274 0.09149 

0.3 2684 0.19756 0.091 I 8 

0.4 2044 0.19940 0.08988 

0.5 1499 0.20790 0.08987 

5-20-2 0.1 9278 0.19266 0.09097 

0.2 9846 0.18661 0.08880 

0.3 8199 0.18956 0.08646 

0.4 6317 0. I 9414 0.08632 

0.5 3422 0.19271 0.08661 

5-30-2 0.1 10356 0.18901 0.09212 

0.2 9573 0.19465 0.08898 

0.3 7783 0.18858 0.08546 

0.4 6801 0.18699 0.08433 

0.5 3639 0.19285 0.08640 

5-40-2 0.1 11438 0.18956 0.08939 

0.2 11571 0.18941 0.09025 

0.3 18961 0.19701 0.08893 

0.4 17544 0.19360 0.08512 

0.5 3102 0.20859 0.09125 

5-50-2 0.1 11 1 I I 0.19412 0.09149 

0.2 13348 0. 19039 0.08968 

0.3 14384 0.18923 0.08466 

0.4 11166 0.21394 0.09078 

0.5 33149 0.19626 0.08266 
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TABLE 4-IV 

RESULTS OF AN~~ APPROXIMATION ON TEST DATA SET 

Correlation Coefficient (r} 
ANN Topology Leaming Rate SWE WETNESS 

5-10-2 0.1 0.664 0.128 

0.2 0.631 0.112 

0.3 0.644 0.060 

0.4 0.668 0.073 

0.5 0.629 0.042 

5-20-2 0.1 0.653 0.168 

0.2 0.647 0.263 

0.3 0.655 0.212 

0.4 0.610 0.188 

0.5 0.598 0.139 

5-30-2 0.1 0.658 0.125 

0.2 0.648 0.198 

0.3 0.645 0.261 

0.4 0.629 0.382 

0.5 0.595 0.164 

5-40-2 0.1 0.652 0.185 

0.2 0.639 0.150 

0.3 0.556 0.222 

0.4 0.564 0.205 

0.5 0.526 0.074 

5-50-2 0.1 0.636 0.157 

0.2 0.628 0.162 

0.3 0.626 0.257 

0.4 0.468 0.107 

0.5 0.614 0.052 
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between the ground-based and the ANN-estimated SWEs (i.e., by the 5-10-2 ANN at learning rate 

of0.4) in test data set is shown in Figure 4.5. Results show an underestimated SWE in the range over 

400 mm. The underestimates could be due to the limitations of the effective passive microwave 

penetration depth of snow [28] or the effect of overlying vegetation [13] by which the microwave 

emission of snow above 400 mm may similar to that of snow under 400 mm or less, causing a 

confusion in the ANN approximation. 

No significant correlation was found between ANN-estimated and ground-based snow 

wetness data (Table 4-IV). One possible reason could be that the total sample size of wet snow was 

small (i.e., 148 data elements compared to 300 in refrozen and 1835 in dry snow as shown in Table 
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4-1) and contaminated by noise patterns at certain levels due to the estimation from uncertain air 

temperature, resulting in a nonrepresentative snow wetness data in the test set by which the noise 

patterns were new to the trained ANN . This explanation was confirmed by evaluating the ANN 

approximation from SSM/l data at a footprint in Snowville, Utah and comparing the ANN-estimated 

WENTESS values to the concurrent estimations of snow wetness during field work in [ 1 O]. As seen 

in Table 4-V, better agreements (r > 0.6) were found between ANN-estimated and ground-based 

WETNESS values using the Snowville footprint data. This result may also imply that the ANN has 

the potential to learn the prototypical input/output patterns from samples that are contaminated by 

noisy data at certain allowable levels. 

Overall , in consideration of the optimal correlation between ANN-estimated and ground­

based values in both SWE and WETNESS parameters (Table 4-IV and 4-V), the 5-20-2 ANN trained 

at a learning rate of 0.3 was eligible for inclusion as the ANN approximator. 

3) Algorithm Comparison: Figure 4.6 illustrates the comparison between the SWE 

estimations by the ANN approximator and those by the existing regression models in the sparse­

vegetated dry snow condition. Regardless of variation of ground-based SWEs , the SD retrieval 

algorithm (Eq. 2) formed a linear regression line with respect to the T37V . Although the SWE 

algorithm (Eq. I) was a better predictor than the SD algorithm , both models showed an 

underestimation of SWEs in the high range, with respect to the ground-based SWEs. Since the SWE 

model was developed based on data from the western prairie region [26], it may not be suited for use 

in other regions, such as this study area, where a variety of terrain and vegetation is present. On the 

other hand, since the higher SWE values iin the study area were mostly related to mountainous areas , 

a poor prediction by the SD algorithm is expected because it was developed based on data from the 

central plains in the United States [11 ]. Consequently, the ANN approximator seems to be better than 

the two regression models in SWE estimation over varied terrain from SSM/1 data. 
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TABLE 4-V 

COMPARISON BETWEEN ANN WETNESS APPROXIMATION FROM DATA IN AN SSM/1 FOOTPRINT AND 

FROM TEST DATA SET WITH RESPECT TO CORRELATION BETWEEN ANN-ESTIMATED AND 

GFmUND-BASED VALUES 

Correlation Coefficient (r) 
ANN Topology Learning Rate Footprint Data in [ 1 OJ Test Data (Table 4-IV) 

5-10-2 0.1 0.644 0.128 

0.2 0.668 0.112 

0.3 0.421 0.060 

0.4 0.518 0.073 

0.5 0.803 0.042 

5-20-2 0.1 0.650 0.168 

0.2 0.486 0.263 

0.3 0.816 0.212 

0.4 0.565 0.188 

0.5 0.553 0.139 

5-30-2 0.1 0.504 0.125 

0.2 0.820 0.198 

0.3 0.493 0.261 

0.4 0.502 0.382 

0.5 0.504 0.164 

5-40-2 0.1 0.834 0.185 

0.2 0.491 0.150 

0.3 0.493 0.222 

0.4 0.256 0.205 

0.5 0.499 0.074 

5-50-2 0.1 0.738 0.157 

0.2 0.449 0.162 

0.3 0.730 0.257 

0.4 0.723 0.107 

0.5 0.286 0.052 
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Figure 4.6. Comparison between SWEs estimated by the ANN approximator, the SWE retrieval 
algorithm (Eq. 1), and the SD retrieval algorithm (Eq. 2) from SSM/1 Tb's with respect to 

ground-based SWEs in sparse-vegetated dry snow condition . 
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Figure 4. 7 shows that the WE1NESS estimated by the ANN approximator followed not only 

the trend of ground-based data but also the prediction line by the WE1NESS retrieval algorithm (Eq . 

3). Since the ANN was trained by the SSM/1 observations from the DMSP-F8 satellite in 1990 and 

the regression model was derived based on the SSM/1 data from the DMSP-F I I satellite in I 993 [IO], 

the agreement (r = 0.816 in Table 4-V) between the ANN-estimated and the model-estimated 

WE1NESS values may suggest that the ANN approach has the potential to find a mapping between 

SSM/1 Tb observations and ground-based snow properties. 
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Figure 4.7. Comparison between WE1NESS estimated by the ANN approximator and the 
regression model (Eq. 3) from SSM/1 Tb's observed at the Snowville footprint [IO] 

with respect to ground-based data. 
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E. Conclusions 

With the assumption that the SSM/1 Tb's and ground-based snow parameters are random 

variables, this study has successfully demonstrated a backprop ANN approach to find a mapping 

between inputs ofSSM/1 data and outputs of SWE and WETNESS data. Results show that an ANN 

may overcome the limitations of the existing regression models in the estimation of SWE and 

WETNESS from SSM/1 data over varied terrain. 

Some of the uncertainties found! in the ANN performances could be explained by the same 

emission behavior of snow cover resulting from different surface conditions and depths. Therefore, 

the ANN approach might be limited to certain snow depth range . 

Although the ANN has the potential to retrieve different snow parameters simultaneously 

from SSM/1 data, the best estimation of each snow parameter was derived from different ANN 

topologies. Therefore, the development of an individual ANN approximator for each snow parameter 

estimation seems to be more practical. 

This study indicated that the ANN has the ability to learn input/output relations from noisy 

samples. However , in order to ensure the ANNs have learned from the prototypes, a sufficient 

number of samples of representative input/output patterns should be available during training. 

Further improvement is expected as more representative input/output relations between SSM/1 

observations and ground truth data over varied terrain and different snow conditions are established. 
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The overall objective of this study was to improve and further develop SSM/1 snow-related 

algorithms. Improvements were accomplished by: (1) proposing the neighborhood merging method 

to integrate SSM/1 Tb observations and ground-based data with respect to SSM/I ground footprints 

instead of fixed quarter-degree latitude/longitude cells, (2) conducting field work to establish the 

relationship between snow wetness and concurrent air temperature to estimate the extensive ground­

based snow wetness data needed in the development of SSM/1 algorithms, and (3) using cluster 

analysis to define the typical SSM/1 Tb signatures , in terms of cluster means, of six snow classes 

including both sparse- and medium-vegetated region scenes for each of the dry, wet, and refrozen 

snow conditions. 

Developments were made via: (1) monitoring SSM/1 Tb difference (i.e., Tl 9V- T3 7H) at the 

sparse-vegetated Snowville , Utah site throughout two snow seasons to develop an empirical SSM/1 

snow wetness retrieval algorithm based on modeling snow wetness as a function of Tb difference, 

(2) training an artificial neural network (ANN) with the six defined snow cluster means to develop 

an SSM/l ANN snow classifier for monitoring land surface snow conditions over varied terrain, and 

(3) training an ANN with the inputs of SSM/1 Tb observations and corresponding outputs of ground­

based snow water equivalent (SWE) and snow wetness data to develop an SSM/I ANN snow 

approximator capable for retrieving both SWE and snow wetness simultaneously from SSM/1 data 

over varied terrain. 

Research findings showed that: (1) the empirical SSM/1 snow wetness model may 

overestimate the wetness at footprints where evergreen forests overlie the snowpack, (2) the ANN 

with best performance only resulted from a number of training runs by trial and error , (3) the ANN 
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has the potential to find a mapping between SSM/I Tb observations and corresponding snow 

conditions or parameter estimations, (4) the developed ANN snow classifier might misclassify frozen 

ground and dense-vegetated surface as wet snow condition due the similar Tb signatures, and (5) 

although the ANN approximator can retrieve both SWE and snow wetness from SSM/1 data, the best 

estimation of each parameter was derived from different ANN topologies. 

It is concluded that: (1) empirical regression models can be developed for a specific region 

and applied only to those similar geographic areas, (2) the use of ANN approach seems to overcome 

the drawbacks and limitations of the existing methods for snow classification and estimation from 

SSM/1 data over varied terrain, and (3) the development of an individual ANN approximator for each 

snow parameter estimation could be more practical than a unified ANN for all parameters. 

This study successfully demonstrated a nonlinear snow retrieval approach can make 

inferences about snow properties from SSM/1 data over varied terrain operational. Further 

improvement of the ANN approach is expected as: (1) more SSM/1 Tb signatures of different land 

surface types are defined and learned by the ANN and (2) more representative input/output relations 

between SSM/1 observations and ground truth data over varied terrain and different snow conditions 

are established for the ANN training . 
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APPENDICES 
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APPENDIX A. C Code for Training an ANN Classifier 
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/****************************************************************************** 
* PROGRAM: nnclstrn.c by Changyi Sun email: csun@indigo.ecob.usu.edu * 
* --------------------------------------------------------------------------- * 
* COMPILE: cc -0 -o nnclstrn nnclstrn.c -lm * 
* --------------------------------------------------------------------------- * 
* PURPOSE: 
* INPUT 
* OUTPUT : 
* 

To build a multi-hidden-layer backprop ANN classifier. 
<nnclstrn.dat>, input/output data pairs of training data set. 
<nnclswts.dat>, updated connection weights of the ANN. 
<nnclstrn.out>, training results of the ANN. 

* 
* 
* 
* 

* ------------------------------ ·--------------------------------------------- * 
* DATE : 04-18-1994 revised and debugged: 06-02-1995 * 
* --------------------------------------------------------------------------- * 
* NO COPYRIGHT BUT THE AUTHOR WILL APPRECIATE IF YOU DISTRIBUTE THIS PGOGRAM * 
* IN ITS ORIGINAL CODE. COMMENTS FOR REVISION AND IMPROVEMENT ARE WELCOME. * 
******************************** '**********************************************/ 
# include <math.h> 
# include <stdio.h> 
# include <stdlib.h> 
# include <string.h> 
# include <time.h> 

/* define the following parameters to your taste ---------------------------
# define p 5 /* number of neurons in input layer */ 
# define q 6 I* number of neurons in output layer */ 
# define hl 10 /* number of neurons in 1st hidden layer */ 
# define h2 0 /* number of neurons in 2nd hidden layer */ 
# define h3 0 /* number of neurons in 3rd hidden layer */ 
# define lyr 1 I* number of hidden layer */ 
# define fnc 2 /* <l>: logistic <2>: TanH function */ 
# define lrn 0.05 /* learning rate */ 
# define rnrnt 0.9 /* momentum constant */ 
# define tol 0.100 /* tolerant global RMS error */ 

*/ 

/* define the following parameters to fit the requires---------------------*/ 
# define max 13 /* 3 + the lar9est number of p, q, hl, h2, h3 */ 
# define iop 6 /* total# of input/output pairs in training data*/ 

main () 
{ FILE *fptrn, *fpwts, *fpout; 

int 
float 
float 
float 

i, j, k, 1, r, s, t, idx, count, nurn[7], ctrl, flg, fcnt, iocnt, durn; 
norm, net, Esurn, MSE, RMS, Best, tmp; 
mtrx[iop+l] [p+q+2], wt[lyr+2] [max] [max], adj [lyr+2] [max] [max]; 
out[lyr+2] [max], err[lyr+2] [max], dlt[lyr+2] [max], df[lyr+2] [max]; 

char ans; 
time_t timer; time(&timer); srand(timer); 
nurn[l] = p; nurn[2] = hl; nurn[3] = h2; num[4] = h3; nurn[S] = q; idx = fnc; 

/* Initialize weight matrix in the range of (-0.1, 0.1] -------------------- */ 
for(i=l; i<lyr+2; i++) 
{ for(j=l; j<max+l; j++) 

{ for(k=l; k<max+l; k++) 
{ wt[i] [j] [kl = -0.1 + 0.2*rand()/(RAND_MAX+l.0); 

adj [ i l [ j l [ kl = o. 0; 

} 
/* Read in training data set-----------------------------------------------*/ 

fptrn = fopen("nnclstrn.dat", "r"); if(fptrn==NULL) exit(0); 
for(i=l; i<iop+l; i++) 
{ for(j=l; j<p+q+2; j++) 

{ if ( j ==p+ 1) 

} 

{ mtrx [i] [j] = 1. 0; if (idx==2) mtrx [i] [j] 
} 
else fscanf(fptrn, "%f",&mtrx[i] (j]); 

if(feof(fptrn)) break; 

/* add bias to input*/ 
-1.0; 

} fclose(fptrn); iocnt = i - l; /* the exact input/output pairs read in*/ 
if(iocnt!=iop) 
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printf (" Warning! ! ! Data reading is not complete. Check data size. \n •) ; 
printf(" Contine the training process anyway (y / n)?"); scanf("%s",&ans); 
if(ans!="y" && ans!='Y') exit(0); 

/* Normalize input data to the closed interval [0,ll ----------------------- */ 
for(i=l; i<iocnt+l; i++) 
{ norm= 0.0; 

for(j=l; j <p+l; j++) norm= norm+ mtrx[il [jl*mtrx[il [j]; 
for(j=l; j <p+l; j++) mtrx[il [jl = sqrt(mtrx[il [jl*mtrx[il [jl / norm); 

/* Scale input data in [0,ll to closed interval [-1,ll --------------------- */ 
if(idx==2) 
{ for(i=l; i <iocnt+l; i++) 

} 

{ for(j=l; j <p+l; j++) mtrx[il [jl = 2.0*mtrx[il [jl - 1.0; 
} 

/ * Scale output data in [0,ll to interval [0.2,0.8l or (-0 . 8,0.81 ---------- */ 
if(idx==l) 
{ for(i=l; i <iocnt+l; i++) 

} 

{ for(j=p+2; j <p+q+2; j++) mtrx[il [jl = 0.6*mtrx[il [jl + 0.2; 
} 

if(idx==2) 
{ for(i=l; i <iocnt+l; i++) 

{ for(j=p+2; j<p+q+2; j++ ) mtrx[il [jl = l.6*mtrx[il [jl - 0.8; 
} 

/* Feedforward and error calculation at output layer-----------------------*/ 
count= 1; fcnt = 0; net= Esum Best= 0 . 0; 
while(!) 
{ for(i=l; i <iocnt+l; i++) 

{ for(j =l; j <2; j++) / * calculate mapping output at 1st hidden*/ 
{ for(k=l; k <num[j+ll+ ll ; k++) 

} 

{ for(l=l; l <num[jl +2; l++) net= net+ mtrx[il [ll*wt[jl [ll [kl; 
if(idx==l) /* net squashed by logistic function*/ 
{ out[jl [kl = 1.0 / (1.0+exp( - net)); 

df[jl[kl = out[jl[kl*(l.0 - out[jl[kl); 
} 
if(idx==2) / * net squashed by TanH function*/ 
{ out[jl [kl = (exp(net)-exp(-net)) / (exp(net)+exp(-net)); 

df[jl[kl = (l+out[jl[kl)*(l.0 - out[jl[kl); 
} net= 0.0 ; 

} out[jl [kl = 1 . 0; / * add bias to hidden* / 
if(idx ==2 ) out[jl [kl = -1.0; 

for(j=2; j <lyr+l; j++) / * calculate mapping output at other hidden*/ 
{ for(k=l; k <num[j+ll+l; k++) 

{ for(l=l; l <num[jl+2; l++) net = net+ out[j-ll [ll*wt[jl [ll [kl; 
if(idx==l) / * net squashed by logistic function* / 
{ out[jl [kl = 1.0 / (1.0+exp(-net)); 

df[jl[kl = out[jl[kl*(l.0-out[jl[kl); 
} 
if(idx==2) / * net squashed by TanH function*/ 
{ out[jl [kl = (exp(net)-exp(-net))/(exp(net)+exp(-net)) ; 

df[jl[kl = (l+out[jl[kl)*(l.0-out[jl[kl); 
} net = 0.0; 

} out[jl [kl = 1.0; /* add bias to hidden */ 
if(idx==2) out[jl [kl = -1.0; 

} dum = 3 - j + 1 ; 
for(j=lyr+l; j <lyr+2; j++) /* calculate mapping output at output */ 
{ for(k=l; k<num[j+dum+l]+l; k++) 

{ for(l=l; l<num[j]+2; l++) net = net + out[j-1] [ll *wt[jl [ll [kl; 
if(idx==l) /* net squashed by logistic function*/ 
{ out[j] [kl = 1.0 / (1 . 0+exp(-net)); 

df[jl[k] = out[jl[kl*(l.0-out[jl[kl); 
} 
if(idx==2) /* net squashed by TanH function*/ 
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out[jl [kl = (exp(net)-exp(-net))/(exp(net)+exp(-net)); 
df[jl[kl = (l+out[jl[kl)*{l.0-out[jl[kl); 

} 
err[jl [kl = mtrx[il [p+k+ll - out[jl [kl; 
dlt[jl[kl = err[jl[kl*df[jl[kl; 
Esurn = Esurn + pow(err[jl [kl,2.0)*0.5; 
if(i==iocnt && k==q) 

/* mapping error*/ 
/* error rates*/ 
/* total error*/ 

I* ----------- Output the best weights-------------------------------------*/ 
{ MSE = Esurn/iocnt/q; RMS= sqrt(MSE); 

if(Best==0.0 I I RMS<Best) {Best= RMS; ctrl = l; flg = 0; 
else { ctrl = 0; flg = l; fcnt = fcnt + l; } 
printf(" Epoch=%8d CurrentRMS=%9.6f",count,RMS); 
printf(" BestRMS=%9.6f TargetRMS=%6.3f",Best,tol); 
printf(" flg=%ld\n",flg); 
if(RMS<tol I I ctrl==l) 
{ fpwts = fopen("nnclswts.dat","w"); 

for(r=l; r<5+1; r++) fprintf(fpwts, "%5d" ,nurn[rl); 
fprintf ( fpwts, "%5d%5d\n", lyr, idx); 
for(r=l; r<lyr+2; r++) 
{ for(s=l; s<nurn[rl+2; s++) 

{ if((r-lyr)==l) 
{ for(t=l; t<nurn[r+durn+ll+l; t++) 

{ fprintf(fpwts, "%5d%5d%5d",r,s,t); 
fprintf(fpwts," %10.6f\n" ,wt[rl [sl [tl); 

else 
{ for(t=l; t<nurn[r+ll+l; t++) 

} 

{ fprintf ( fpwts, "%5d%5d%5d", r, s, t) ; 
fprintf(fpwts," %10.6f\n" ,wt[rl [sl [tl); 

fclose ( fpwts) ; 
fpout = fopen("nnclstrn.out", "w"); 
fprintf(fpout, "Tplgy=%d-%d-%d Epoch=%8d ",p,hl,q,count); 
fprintf ( fpout, "RMS=%6. 3 f tol=%6. 3 f •,Best, tol) ; 
fprintf(fpout, "lrn=%6 . 3f rnrnt=%6.3f\n",lrn,rnrnt); 
fclose(fpout); 

} 
if(RMS <tol) 
{ printf(" \ n 
} 
net= 0.0; 

BKP training is done : )\n"); exit(0); 

/ *-----Error bkp and wts adjustment------------------------- - --- -- -------*/ 
for(j=l; j <lyr+2; j++) for(k=l; k<max+l; k++) err[jl [kl = 0.0; 
for(j=lyr+l; j >lyr; j--) / * err bkp from output to hidden*/ 
{ for(k=l; k<nurn[jl+2; k++) 

} 

{ for(l=l; l<nurn[j+durn+ll+l; l++) 
{ tmp = wt[jl [kl [ll; 

err[jl [kl = err[jl [kl + dlt[jl [ll*wt[jl [kl [ll; 
wt[jl [kl [ll = wt[jl [kl [ll+0.5*lrn*dlt[jl [ll*out[j-ll [kl 

+rnrnt*adj [jl [kl [ll ; 
adj [jl [kl [ll = wt[jl [kl [ll - tmp; 
dlt[j-ll [kl = df[j-ll [kl*err[jl [kl; 

for(j=3-durn; j >l; j--) / * err bkp between hiddens */ 
{ for(k=l; k<nurn[jl+2; k++) 

{ for(l=l; l<nurn[j+ll+l; l++) 
{ tmp = wt[jl [kl [ll; 

err [ j l [kl = err [ j l [kl + dl t [ j l [ l l *wt [ j l [kl [ l l ; 
wt[jl [kl [ll = wt[jl [kl [ll+lrn*dlt[jl [ll*out[j-ll [kl 

+rnrnt*adj [j l [kl [ll; 
adj [jl [kl [ll = wt[jl [kl [ll - tmp; 



dlt[j-l][k) = df[j-l)[k)*err[j)[kl; 

} 
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for(j=l; j>0; j--) /* err bkp from hidden to input*/ 
{ for(k=l; k<num[jl+2; k++) 

{ for(l=l; l<num[j+l)+l; l++) 
{ tmp = wt [ j l [kl [ 1 l ; 

wt[jl [kl [ll = wt[jl [kl [l)+lrn*dlt[j] [ll*mtrx[il [k]+mmt*adj[j) [kl [l]; 
adj [jl [kl [ll = wt[jl [kl [ll - tmp; 

Esum = 0.0; count count+ l; 
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APPENDIX B. C Code of the SSM/1 ANN Snow Classifier 
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/****************************************************************************** 
* PROGRAM: sminncls.c by Changyi Sun email: csun@indigo.ecob.usu.edu * 
* --------------------------------------------------------------------------- * 
* COMPILE: cc -0 -o sminncls sminncls.c -lm * 
* ------------------------------ ·--------------------------------------------- * 
* PURPOSE: 
* INPUT 
* 
* OUTPUT 
* NOTE 

To use the ANN classifier for snow classificaion on SSM/I data. 
<filename.din>, lat/lon and ssmi 7 Tb's data. 
<sminnwts.dat>, connection weights used in the ANN classifier. 
<filename.llc>, lat/lon coordinates and the classes by ANN. 
the pre-process of snow-free condition is based on Neale's rules. 

* 
* 
* 
* 
* 

* --------------------------------------------------------------------------- * 
* date : 08-08-1995 * 
* --------------------------------------------------------------------------- * 
* NO COPYRIGHT BUT THE AUTHOR WILL APPRECIATE IF YOU DISTRIBUTE THIS PGOGRAM * 
* IN ITS ORIGINAL CODE. COMMENTS FOR REVISION AND IMPROVEMENT ARE WELCOME. * 
******************************** ·k*********************************************/ 
# include <math.h> 
# include <stdio.h> 
# include <stdlib.h> 
# include <string.h> 
int num[6]; 
c har line[79], filename[20], outfile[20]; 
void nncls(int p, int q, int lyr , int max, int idx); 
main() 
{ FILE *fpin; 

int i, p, hl, h2, h3, q, lyr , max, ele, idx; 
ele = 0; 
if( (fpin=fopen("sminnwts.dat", "r")) == NULL) 
{ printf("\nFile < sminnwts.dat > is not ready for read.\n\n"); exit(0); 
} fscanf(fpin, "%d%d%d%d%d%d%ci",&p,&hl,&h2,&h3,&q,&lyr,&idx); fclose(fpin); 
num[l] = p; num[2] = hl; num[3] = h2; num[4] = h3; num[S] = q; 
max= p; for(i=2; i <6; i++) if(max <num[i]) max= num[i]; max= max+ 3; 
printf("\nEnter the *.din filename to be processed.\n\n"); 
scanf ( "%s", filename) ; 
if((fpin=fopen(filename,"r")) == NULL) 
{ printf("\nFile < %s > is not ready for read.\n\n",filename); exit(0); 
} fclose ( fpin) ; 
for(i=0;i <=20;i++) if(strncmp ( filename+i, " . ",1)==0) break; 
strncpy(outfile,filename,i); strncpy(outfile+i , ".llc\0",5); 
nncls(p,q,lyr,max,idx); 

v o id nncls(int p, int q, int lyr , int max, int idx) 
{ FILE *fpwts, *fpdin , *fpout; 

int i, j, k, 1, r, s, t, bkpcls , dum; 
float lat, lon, t85v , t85h, t37v, t37h, t22v , tl9v, t19h, gvi, pd; 
float Norm, net, tmp, *vctr, •' **wt, **out; 
v ctr = (float *)malloc((p+q+2)*sizeof(float)) ; 
wt= (float ***)malloc({lyr+2)*sizeof(float)); 

for(i=0;i <max+l;i++) wt[i]=(float **)malloc((max+l)*sizeof(float)); 
for(i=0;i <max+l;i++) 

for(j=0;j <max+l;j++) wt[i] [j]=(float *)malloc((max+l)*sizeof(float)) ; 
out= (float **)malloc((lyr+2)*sizeof(float)); 

for(i=0;i <max+l;i++) out[i]=(float *)malloc((max+l)*sizeof(float)); 
/ * Initialize weight matrix--- -- ---------- - - - -- - ---------------------------* / 

f o r(i=l; i <lyr+2; i++) 
{ for(j=l; j <max+l; j++) 

} 

{ for(k=l; k<max+l; k++) wt[i] [j] [kl 0.0; 
} 

/ * Read in weights data----------------------------------------------------*/ 
fpwts = fopen("sminnwts.dat", "r"); fgets(line,79,fpwts); 
while(!feof(fpwts)) 
{ fscanf(fpwts, "%d%d%d%f",&i,&j,&k,&tmp); 

wt [il [j l [kl = tmp; 
fclose(fpwts); 

/ * Read in data & classify the data----------------------------------------*/ 
fpdin = fopen(filename, "r"); fpout = fopen(outfile, "w"); 
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while{!feof{fpdin)) 
{ fscanf{fpdin, "%f%f%f%f%f%f",&lat,&lon,&tl9v,&tl9h,&t22v,&t37v); 

fscanf{fpdin, "%f%f%f",&t37h,&t85v,&t85h); if{feof{fpdin)) break; 
vctr[l]=t37v; vctr[2]=t37h; vctr[3l=t22v; vctr[4l=tl9v; vctr[5l=tl9h; 
pd= {t37v+tl9v)/2.0 - {t37h+tl9h)/2.0; 
if{ {t22v-tl9v)>4.011 {tl9v-tl9h)>40.0) 
{ bkpcls = 7; /* water body or flooding condition*/ 

fprintf { fpout, "%6. 2 f%8. 2 f%4d\n", lat , lon, bkpcls) ; 
} 
else if{tl9v>268.0&&{t37v-tl9v)<-6.4) 
{ bkpcls = 8; /* precipitation condition*/ 

fprintf { fpout, "%6. 2f%8. 2 f%4d\n •,lat, lon, bkpcls) ; 
} 
else if{t19v<t37vl lt22v>265.0) 
{ bkpcls = 9; /* snow-free condition or rain*/ 

fprintf { fpout, "%6. 2 f%8. 2 f%4d\n", lat, lon, bkpcls) ; 

else 
{ vctr[p+l] = 1.0; if{idx==2) vctr[p+ll = -1.0; /* add bias to input*/ 

/ * Normalize input data to the closed interval [0,ll ----------------------- */ 
Norm= 0.0; 
for{i=l; i<p+l; i++) Norm= Norm+ vctr[il*vctr[il; 
for{i=l; i<p+l; i++) vctr[il = vctr[il/sqrt{Norm); 

/ * Scale input data in [0,ll to closed interval (-1,1] --------------------- */ 
if{idx==2) for{i=l; i <p+l; i++) vctr[il = 2.0*vctr[il - 1.0; 

/ * Recall the outputs------------------------------------------------------*/ 

} 

for{i=l; i<2; i++) / * calculate mapping output at hidden*/ 
{ for{j=l; j <num[i+ll+l; j++) 

} 

{ for{k=l; k<num[il+2; k++) net = net + vctr[k] *wt[i] [kl [jl; 
if { idx==l) out [ i l [ j l =l. 0 / { 1. 0+exp {-net)) ; 
if{idx==2) out[il [jl={exp{net)-exp{-net))/{exp{net)+exp{-net)); 
net= 0.0; 

} out[il [jl = 1.0; /* add bias to hidden*/ 
if{idx==2) out[il (j] = -1.0; 

for{i=2; i<lyr+l; i++) /* calculate mapping output at other hidden*/ 
{ for{j=l; j <num[i+ll+l; j++) 

{ for{k=l; k<num[i]+2; k++) net= net+ vctr[k]*wt[il [kl [jl; 
if {idx==l) out [il [j l =l . 0/ (1. 0+exp {-net)); 
if{idx==2) out[il [jl={exp{net)-exp{-net)) / {exp{net)+exp{-net)); 
net= 0.0; 

} out[il [jl = 1.0; /* add bias to hidden*/ 
if{idx==2) out[i] [jl = -1.0; 

} dum = 3 - i + l; 
for{i=lyr+l; i < lyr+2; i++) /* calculate mapping output at output*/ 
{ for{j=l; j<num[i+dum+ll+l ; j++) 

{ for{k=l; k<num[il+2; k++) net= net+ out[i-ll [kl*wt[il [kl [j]; 
if{idx==l) out[il [ jl=l.0 / (1.0+exp{-net)); 

} 

if{idx==2) out[il [ j]={exp{net)-exp{-net)) / {exp{net)+exp{-net)); 
net= 0.0; 

} tmp = 0.0; if{idx==2) tmp = -1.0; 
for{i=lyr+l; i<lyr+2; i++) 
{ for{j=l; j<q+l; j++) 

{ if {out [ i] [ j l > tmp) 

} 

{ bkpcls = j; tmp = out[il [j]; 
} 

} if{tmp<0.0) bkpcls = 9; if{idx==l&&tmp<0.5) bkpcls = 9; 
if(bkpcls==3&&({tl9v-t37h)<l0.0I I (tl9v-t37h)>l3.0)) bkpcls = 9; 
if{bkpcls==4&&{{tl9v-t37h)<9.0I {tl9v-t37h)>l2.0)) bkpcls = 9; 
fprintf { fpout, • %6. 2 f%8. 2 f%4d\n", lat, lon, bkpcls) ; 

fclose{fpdin); fclose{fpout); printf{"\n%s file is created.\n",outfile); 
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APPENDIX C. Connection Weights Used in the ANN Classifier 



5 10 0 0 6 1 
1 1 1 0.533392 
1 1 2 -1.691874 
1 1 3 -0 . 123502 
1 1 4 4 . 715361 
1 1 5 -5.498882 
1 1 6 -2.275994 
1 1 7 -0.381456 
1 1 8 -22.467062 
1 1 9 1.145030 
1 1 10 28.343935 
1 2 1 -5.882782 
1 2 2 4.098454 
1 2 3 2.818522 
1 2 4 1. 785758 
1 2 5 -0.369015 
1 2 6 -13. 381873 
1 2 7 1. 227129 
1 2 8 5 . 056935 
1 2 9 0 . 635918 
1 2 10 27 . 552616 
1 3 1 4.228578 
1 3 2 -4 . 507759 
1 3 3 4.047563 
1 3 4 -0.656226 
1 3 5 0.482231 
1 3 6 10.579752 
1 3 7 -1.699688 
1 3 8 -4. 887167 
1 3 9 -0. 430137 
1 3 10 -13.051486 
1 4 1 4.068871 
1 4 2 -1.943128 
1 4 3 -1.905251 
1 4 4 0.367727 
1 4 5 2. 281353 
1 4 6 48.854050 
1 4 7 1. 048660 
1 4 8 -2. 981371 
1 4 9 0.111341 
1 4 10 - 19.931734 
1 5 1 - 1 . 632250 
1 5 2 5 . 249955 
1 5 3 14.633612 
1 5 4 1. 481441 
1 5 5 1 . 472808 
1 5 6 -15.582770 
1 5 7 0.079386 
1 5 8 25.985779 
1 5 9 -0. 4 71199 
1 5 10 -26.378248 
1 6 1 0.062529 
1 6 2 -0 . 309254 
1 6 3 -0.854062 
1 6 4 1.153583 
1 6 5 0.420109 
1 6 6 0.078662 
1 6 7 -0.051283 
1 6 8 -0 . 507071 
1 6 9 1. 931241 
1 6 10 -0 . 925133 
2 1 1 0.370048 
2 1 2 -0.026684 
2 1 3 0.073312 
2 1 4 -0.584975 
2 1 5 1. 047015 
2 1 6 - 0.816871 



2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 4 
2 4 
2 4 
2 4 
2 4 
2 4 
2 5 
2 5 
2 5 
2 5 
2 5 
2 5 
2 6 
2 6 
2 6 
2 6 
2 6 
2 6 
2 7 
2 7 
2 7 
2 7 
2 7 
2 7 
2 8 
2 8 
2 8 
2 8 
2 8 
2 8 
2 9 
2 9 
2 9 
2 9 
2 9 
2 9 
2 10 
2 10 
2 10 
2 10 
2 10 
2 10 
2 11 
2 11 
2 11 
2 11 
2 11 
2 11 

1 -0.516609 
2 0.090769 
3 -0.254353 
4 0.571239 
5 -0.433611 
6 0.641372 
1 -2.402897 
2 3.170993 
3 -0.380947 
4 3.176313 
5 0. 841334 
6 2.111204 
1 0.088350 
2 1.505019 
3 1. 315729 
4 3.163557 
5 -0.704886 
6 4.150781 
1 -0.353697 
2 -0.016950 
3 -0.191638 
4 -0.063515 
5 0.712272 
6 -0.358231 
1 0.659895 
2 -6.468255 
3 1.466521 
4 -13. 023128 
5 1.550192 
6 -1.758168 
1 -0.058418 
2 0.005207 
3 -0.019963 
4 0.078694 
5 -0.080512 
6 0.083504 
1 -3.584871 
2 0.526618 
3 -1. 328818 
4 1. 238860 
5 0.017738 
6 1. 659197 
1 2.957447 
2 0.227078 
3 -1.372164 
4 2.131042 
5 0.519247 
6 2.992964 
1 -2. 464011 
2 -3.541936 
3 1.972966 
4 1.176235 
5 1.098366 
6 -11. 218157 
1 0.435696 
2 1.175610 
3 0.738388 
4 3.983303 
5 -0.031991 
6 2.143615 

133 

NOTE: This is the printout of the "sminnwts.dat" data file used in the ANN classifier (sminncls.c). 
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APPENDIX D. C Code for Training an ANN Approximator 
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/*******************************~r********************************************** 
* PROGRAM: nnapxtrn.c by Changyi Sun email: csun@indigo.ecob.usu.edu * 
* ---------------------------------------------------------------------------- * 
* COMPILE: cc -0 -o nnapxtrn nnapxtrn.c -lm * 
* -------------------------------·-------------------------------------------- * 
* PURPOSE: 
* INPUT 
* OUTPUT : 
* 

To build a multi-hidden-layer BKP ANN approximator. 
<nnapxtrn.dat>, input/output data pairs of training data set. 
<nnapxwts.dat> , updated connection weights of the ANN. 
<nna pxtrn.out >, training results of the ANN. 

* 
* 
* 
* 

* --------------------------------------------------------------------------- * 
* DATE : 09-05-1995 revised and debugged : 12-14-1995 * 
* --------------------------------------------------------------------------- * 
* NO COPYRIGHT BUT THE AUTHOR WILL APPRECIATE IF YOU DISTRIBUTE THIS PGOGRAM * 
* IN ITS ORIGINAL CODE. COMMENTS FOR REVISION AND IMPROVEMENT ARE WELCOME. * 
********************************* "*********************************************/ 
# include <math.h> 
# include <s tdio . h > 
# include <stdlib .h > 
# include <str ing .h> 
# include <ti me.h > 

/* define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 

the 
p 
q 

hl 
h2 
h3 

lyr 
fnc 
lrn 

# define mmt 
# define tol 

ANN topology and learning factors to your taste 
5 /* number of neurons in input layer*/ 
2 /* number of neurons in output layer*/ 
30 /* number of neurons in 1st hidden layer*/ 
0 /* number of neurons in 2nd hidden layer*/ 
0 /* number of neurons in 3rd hidden layer*/ 
1 /* number of hidden layer*/ 
1 /* <1>: logistic <2>: TanH function*/ 
0.4 /* learning rate*/ 
0.9 /* momentum constant*/ 
0.15 /* tolerant global RMS error*/ 

-------------- */ 

/* define the following parameters to fit the requires---------------------*/ 
# define max 33 /* 3 + the largest number of p, q, hl, h2, h3 */ 
# define iop 540 /* total# of input/output pairs in training data*/ 

/* define the ranges of [a,b) for each input parameters-------- ----------- -*/ 
# define tba 180.0 /* min. for all Tb's */ 
# define tbb 280.0 /* max. for all Tb's */ 

main() 
{ FILE 

int 
float 
float 
float 

*fptrn, *fpvld, *fpwts, *fpout; 
i, j, k, 1, r, s, t, idx, count, num[7), ctrl, flg, iocnt, dum, els; 
norm, net, Esum, MSE, RMS, Best, tmp, rng[q+l) [3); 
mtrx[iop+l) [p+q+2), wt[lyr+2) [max) [max), adj [lyr+2) [max) [max) ; 
out[lyr+2) [max), err[lyr+2) [max), dlt[lyr+2) [max), df[lyr+2) [max); 

char ans; 
time_t timer; time(&timer); srand(timer); 
num[l) = p; num[2) = hl; num[3) = h2; num[4) = h3; num[5) = q; idx = fnc; 
for(i=l; i <q+l; i++) for(j=l; j<3; j++) rng[i) [j) = 0.0; 
rng[l) [1) = 0.0; rng[l) [2) = 800.0; /* min and max of swe */ 
rng[2) [1) = 0.0; rng[2) [2) = 10.0; /* min and max of wetness*/ 

/* Initialize weight matrix in the range of [-0.1, 0.1) -------------------- */ 
for(i=l; i<lyr+2; i++) 
{ for(j=l; j<max+l; j++) 

} 

{ for(k=l; k<max+l; k++) 
{ wt[i) [j) [kl = -0.01 + 0.02*rand()/(RAND_MAX+l.0); 

adj (iJ [j) [kl = 0.0; 

/ * Read in training data set---------------------------------- ---- ---------*/ 
fptrn = fopen("nnapxtrn.dat", "r"); if(fptrn==NULL) exit(0); 
for(i=l; i <iop+l; i++) 
{ for(j=l; j<p+q+2; j++) 

{ if(j==p+l) /* add bias to input*/ 



{ mtrx[il [jl = 1.0; if{idx==2) mtrx[il [jl 
} 
else fscanf{fptrn,"%f",&mtrx[il [jl); 
if{j>p+l) 
{ if{rng[j-p-ll [ll>mtrx[il [jl) rng[j-p-ll [ll 

if{rng[j-p-11 [2l<mtrx[il [jl) rng[j-p-11 [21 
} 

} fscanf{fptrn, "%d",&cls); 
if{feof{fptrn)) break; 

-1.0; 

mtrx [ i l [ j l ; 
mtrx [ i l [ j l ; 
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} fclose{fptrn); iocnt = i - l; /* the exact input/output pairs read in*/ 
if { iocnt ! =iop) 
{ printf{" Warning!!! Data reading is not complete . Check data size.\n"); 

printf{" Contine the training process anyway {y/n)?"); scanf{"%s",&ans); 
if{ans!='y' && ans!='Y') exit{O); 

} 
/* Scale input data to the closed interval of [O,ll ------------------------ */ 

for{i=l; i<iocnt+l; i++) 
{ for{j=l; j<p+l; j++) mtrx[:il[jl = {mtrx[il[jl-tba)/{tbb-tba); 
} 

/* Scale input data in [0,ll to closed interval of [-1,ll ------------------ */ 
if{idx==2) 
{ for{i=l; i<iocnt+l; i++) 

} 

{ for{j=l; j<p+l; j++) mtrx[il [jl = 2.0*mtrx[il [jl - 1.0; 
} 

/* Scale output data to the closed interval of [0,ll ----------------------- */ 
for{i=l; i<iocnt+l; i++) 
{ for{j=p+2; j<p+q+2; j++) 

mtrx[il [jl={mtrx[il [jl--rng[j-p-ll [ll) / {rng[j-p-ll [21-rng[j-p-ll [ll); 
} 

/* Scale output data in [0,ll to interval of [-1.0,1.0l -------------------- */ 
if {idx==2) 
{ for{i=l; i<iocnt+l; i++) 

{ for{j=p+2; j<p+q+2; j++} mtrx[il [jl 2.0*mtrx[il [jl - 1.0; 
} 

/* Feedforward and error calculation at output layer-----------------------*/ 
count= l; net= Esum = Best 0.0; 
while{l) 
{ for{i=l; i<iocnt+l; i++) 

{ for{j=l; j<2; j++) /* calculate mapping output at 1st hidden*/ 
{ for{k=l; k<num[j+ll+l.; k++) 

} 

{ for{l=l; l<num[jl+2; l++) net= net+ mtrx[il[ll*wt[jl[ll[kl; 
if{idx==l) /* net squashed by logistic function*/ 
{ out[jl[kl = l.Cl/(1.0+exp{-net)); 

df[jl[kl = out[jl[kl*{l.0-out[jl[kl); 
} 
if{idx==2) /* net squashed by TanH function*/ 
{ out[jl [kl = {exp{net)-exp{-net))/{exp{net)+exp{-net)); 

df[jl[kl = {l+out[jl[kl)*{l.0-out[jl[kl); 
} net= 0.0; 

} out[jl [kl = 1.0; /* add bias to hidden*/ 
if{idx==2) out[jl[kl = -1.0; 

for{j=2; j<lyr+l; j++) /* calculate mapping output at other hidden*/ 
{ for{k=l; k<num[j+ll+l; k++) 

{ for{l=l; l<num[jl+2; l++) net= net+ out[j-ll[ll*wt[jl[ll[kl; 
if{idx==l) /* net squashed by logistic function*/ 
{ out[jl [kl = 1.0/ {l.O+e xp{-net)); 

df[jl[kl = out[j][k)*(l.0-out[j)[k)); 
} 
if{idx==2) /* net squashed by TanH function*/ 
{ out[jl [kl = {exp{net)-exp{-net))/{exp{net)+exp{-net)); 

df[jl [kl = {l+out[jl [kl)*{l.0-out[j) [k)); 
} net= 0.0; 

} out[jl [kl = 1.0; /* add bias to hidden*/ 
if{idx==2) out[jl [kl = -1.0; 
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} dum = 3 - j + l; 
for(j = lyr+l; j < lyr+2; j++} / * calculate mapping output at output*/ 
{ for(k=l; k<num[j+dum+ll+l; k++} 

{ for(l =l; l <num[jl+2; l++} net= net+ out[j-ll[ll*wt[jl[ll[kl; 

I *-----------

if(idx==l} / * net squashed by logistic function*/ 
{ out[jl[kl = 1.0 / (1.0+exp(-net}}; 

df[jl[kl = out[jl[kl*(l.0-out[jl[kl}; 
} 
if(idx==2} / * net squashed by TanH function*/ 
{ out[jl [kl = (exp(net}-exp(-net}}/(exp(net}+exp(-net}}; 

df[jl[kl = (l+out[jl[kl}*(l.0-out[jl[kl}; 
} 
err[jl [kl = mtrx[il [p+k+ll - out[jl [kl; 
dlt[jl [kl = err[j][kl*df[j][kl; 

/* mapping error*/ 
/* error rates*/ 
/ * total error*/ Esum = Esum + pow(err[jl [kl,2.0); 

if(i==iocnt && k==q} 
Output the best weights-------------------------------------*/ 
{ MSE = Esum/iocnt/q; RMS= sqrt(MSE}; 

if(Best==0.0 I I RMS<Best} {Best= RMS; ctrl = l; flg = 0; 
else { ctrl = 0; flg = l; } 
printf(" Epoch=%8d CurrentRMS=%9.6f" , count,RMS}; 
printf( " BestRMS=%9.6f TargetRMS=%6 . 3f " ,Best,tol}; 
printf(" flg=%ld\n",flg}; 
if(RMS<tol I I ctrl==l} 
{ fpwts = fopen("nnapxwts.dat", "w"}; 

} 

for(r=l; r < S+l; r++} fprintf(fpwts, "%5d" , num[rl}; 
fprintf(fpwts, "%5d%5d\n",lyr,idx}; 
for(r=l; r < lyr+2 ; r++} 
{ for(s=l; s <num[rl+2; s++} 

{ if((r-lyr}==l} 
{ for(t=l; t<num[r+dum+ll+l; t++} 

{ fprintf(fpwts, "%5d%5d%5d",r,s,t}; 
fprintf(fpwts, • %10 . 6f\n" ,wt[rl [sl [tl}; 

else 
{ for(t=l; t <num[r+ll+l; t++} 

{ fprintf(fpwts, "%5d%5d%5d" , r,s,t}; 
fprintf(fpwts," %10.6f\n" ,wt[rl [sl [tl}; 

} 
fclose(fpwts}; 

fpout = fop.en ( "nnapxtrn. out" , "w"}; 
fprintf(fpout , "Tplgy =%d- %d- %d Epoch=%8d •,p,hl,q, c ount}; 
fprintf(fpout, "RMS=%6. 3f tol=%6.3f ",Best,tol}; 
fprintf(fpout , "lrn=%9 . 5f mmt=%6.3f \ n",lrn,mmt); 
fclose(fpou t ); 

if (RMS<tol) 
{ printf(" \ n 
} 
net= 0.0; 

BKP training is done : ) \ n"); exit(0} ; 

/*- ----Error bkp and wts adjustment---- -- --------------------------------*/ 
for(j=l; j < lyr+2; j++} for(k=l; k<max+l; k++} err[jl [kl = 0.0; 
for(j=lyr+l; j>lyr; j--l / * err bkp from output to hidden*/ 
{ for(k=l; k<num[jl+2; k++} 

{ for(l=l; l<num[j+dum+ll+l; l++} 
{ tmp = wt [ j l [ kl [ 1 l ; 

err[jl [kl = err[jl [kl + dlt[jl [ll*wt[jl [kl [ll; 
wt [j l [kl [ll = wt [j l [kl [ll +O. S*lrn*dlt [j l [ll *out [j-ll [kl +mmt*adj [j l [kl [ll; 

adj [ j l [kl [ 1 l = wt [ j l [kl [l l - tmp; 
dlt[j-ll[kl = df[j-ll[kl*err[jl[kl; 
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for(j=3-dum; j>l; j--) /* err bkp between hiddens */ 
{ for(k=l; k<num[jl+2; k++) 

} 

{ for(l=l; l<num[j+ll+l; l++) 
{ tmp = wt [ j l [ kl [ 1 l ; 

err[jl[kl = err[jl[kl + dlt[jl[ll*wt[jl[kl[ll; 
wt [j l [kl [ll = wt [j l [kl [ll +lrn*dlt [j l [ll *out [j-ll [kl +mmt*adj [j l [kl [ll; 

adj [jl [kl [ll = wt[jl [kl [ll - tmp; 
dlt[j-ll [kl df[j-ll [kl*err[jl [kl; 

for(j=l; j >0; j--) /* err bkp from hidden to input*/ 
{ for(k=l; k <num[jl+2; k++) 

{ for(l=l; l<num[j+ll+l; l++) 
{ tmp = wt[jl [kl [ll; 

wt [j l [kl [ll = wt [j l [kl [ll +lrn*dlt [j l [ll *mtrx[il [kl +mmt*adj [j l [kl [ll; 
adj [jl [kl [ll = wt[jl [kl [ll - tmp; 

Esum = 0.0; count count+ 1; 
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