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ABSTRACT 

Juxtaposition at 45 km of Temperatures from Rayleigh-Scatter 

Lidar and Reanalysis Models 

by 

David K. Moser, Master of Science 

Utah State University, 2019 

Major Professor: Dr. Vincent B. Wickwar 

Department: Physics 

Atmospheric reanalysis models continue to increase in size and scope as we learn 

more regarding the workings of the complex natural systems involved. They provide for 

comprehensive global data sets widely regarded as some of the most useful tools both for 

analysis of historical climate variables and prediction of future trends. With their wide 

use in such studies, it is understandably important for the models to produce consistently 

accurate results that can be verified by direct observations. Considering the chaotic and 

interactive nature of atmospheric physics, small miscalculations in predictions can 

quickly propagate into larger sets of errors that seem to describe an entirely alternate 

reality. Reanalysis models curtail this problem through assimilation of millions of 

observations at each time step, smoothing out inaccuracies by constantly introducing new 
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constraints and training the models to meet these real data points along the way. 

However, any systemic issues that remain will inevitably cause a model to fail at times 

and places where observations are scarce, or nonexistent. 

The original Rayleigh-scatter lidar system at the Atmospheric Lidar Observatory 

(ALO-USU; 41.74° N, 111.81° W), a part of Utah State University’s Center for 

Atmospheric and Space Sciences (CASS), operated over the 45-90 km altitude range 

from 1993 to 2004. This range not only covers some of the highest altitudes available in 

most reanalyses, but is also some of the most difficult vertical space in which to obtain 

consistent temperature measurements of the sort that would be used as inputs and 

corrections to the models. The nature of the lidar temperature derivations results in 

uncertainties on average of less than a degree at 45 km. This thesis employs the 

measurement confidence at this altitude to highlight flaws in co-local and co-temporal 

temperatures provided by three popular atmospheric reanalysis models: NASA’s 

MERRA-2, the ECMWF’s ERA-20C, and the JMA’s JRA-55. The comparisons reveal 

statistically significant cold biases in all three models that persist for the majority of the 

analysis period.  

(169 pages) 
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PUBLIC ABSTRACT 

Juxtaposition at 45 km of Temperatures from Rayleigh-Scatter  

Lidar and Reanalysis Models 

David K. Moser 

Weather and climate forecasts are almost exclusively produced by computer 

models, which use atmospheric measurements as starting points. It is a well-known and 

joked-about fact that model predictions can be incorrect at times. One of the reasons this 

happens is due to gaps in our knowledge of atmospheric conditions in areas where 

measurements don’t often taken place, such as the mesosphere, which stretches from 

roughly 45-90 km altitude. 

A lidar is a device that can shoot out short bursts of laser light to measure things 

such as atmospheric thickness at a distance. From this information one can then derive 

the temperature in the upper atmosphere. Using temperature measurements taken by lidar 

at Utah State University (41.74° N, 111.81° W) and temperatures from three popular 

atmospheric models, a comparison is made covering the period 1993-2004 at 45 km 

altitude. This comparison demonstrates poor predictive capabilities of the models at the 

target altitude and suggests the need for integrating datasets such as lidar data into future 

models. The modeling community depends on real measurement comparisons to bolster 

the reliability and credibility of their own work, and the comparison done here is intended 

to highlight an area in need of improvement.  
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INTRODUCTION 

Studies of the middle atmosphere (~10-90 km altitude) have revealed significant 

coupling effects between the upper and lower atmosphere (Gerber et al., 2012). At mid-

latitudes, middle atmosphere phenomena include a variety of physical processes such as 

tides (Sakazaki et al., 2018), sudden stratospheric warmings, or SSW’s (Sox, 2016; Yuan 

et al., 2012), planetary waves (Beissner, 1997; Krüger et al., 2005), gravity waves 

(Baumgarten et al., 2018; Khaykin et al., 2015), and the occurrence of a double 

stratopause (Sivakumar et al., 2006). It has been demonstrated that the impacts of 

tropospheric weather on upper- and middle-atmospheric phenomena can last for days to 

months (Polvani & Waugh, 2004; see also Krüger et al., 2005), and that improving model 

physics in the middle atmosphere regime directly improves forecasting skill (Sigmond et 

al., 2013). 

As state-of-the-art models respond to this knowledge by pushing toward the goal 

of whole-atmosphere simulations (Fujiwara et al., 2017; Molod et al., 2015; Siskind et 

al., 2015), it is imperative that model output be thoroughly validated by actual 

observations (Pawson et al., 2000). The middle atmosphere is routinely the most difficult 

regime within which to obtain constant measurements of atmospheric variables. Most of 

the ground-based methods used for tropospheric observation, such as sounding balloons 

and radar, are inoperable or ineffective at middle-atmospheric altitudes. Satellite 

observations alone are the most temporally consistent source of information, with limb-

scanning measurements from the SABER instrument providing long-term temperature 

and chemical structure profiles of the region (Zhang et al., 2017). While SABER has 
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proven to be invaluable for middle-atmospheric science (Ortland, 2017; Rezac et al., 

2015; Walterscheid & Christensen, 2016), satellite observations typically peak in 

precision below 35 km altitude (Hoppel et al., 2013), and it has been shown that 

assimilative model reliance on the satellite dataset produces errors in simulation products 

(Sakazaki et al., 2018). One of the advantages of satellites, and perhaps the main reason 

their data are popular for model assimilation, is their ability to observe large swaths of the 

planet at once, providing a near-global perspective on phenomena that is unparalleled by 

any other measurement technique. The disadvantage is found in the need to precess the 

satellite instrument in orbit to improve the temporal resolution of its data. Ground-based 

techniques encounter the opposite arrangement, with very localized and limited 

measurements in the spatial domain, but the ability to consistently record at very high 

temporal precision. 

Ground-based lidar studies specifically provide an advantage in the middle 

atmosphere by continuously collecting scattered laser light as a measurement of relative 

atmospheric density, from which absolute temperature data can be derived (Hauchecorne 

& Chanin, 1980). This photocounting method is couched in Poisson statistics (Keckhut et 

al., 1993), and therefore, it results in high measurement accuracy at the lower bounds of 

the measured altitudes. Direct comparison of lidar measurements with those from 

SABER in particular have revealed systematic errors in the latter’s dataset (Wing et al., 

2018), highlighting the need for precision measurements from other sources as models 

continue to grow in scale and scope. Since the majority of error in lidar data occurs near 

the mesopause and below 35 km (where aerosols complicate measurements) 
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(Hauchecorne et al., 1991), the otherwise high temporal resolution and precise 

temperature measurements they provide make them ideal candidates for middle-

atmospheric model output verification. 

The Rayleigh-scatter lidar at Utah State University’s Atmospheric Lidar 

Observatory (ALO-USU; 41.74° N, 111.81° W), a part of the Center for Atmospheric and 

Space Sciences (CASS), operated with few interruptions between 1993 and 2004, 

providing an extensive and useful dataset that can be used for model validation. Previous 

to a modern upgrade that extended the capabilities of the ALO-USU Rayleigh lidar (Sox 

et al., 2013), the original system consistently measured from 45-90 km altitude over the 

period of 1993-2004. This is the dataset that will be used throughout this thesis. 

There are several other mid-latitude lidar datasets available, including two in 

southern France at 44° N (Keckhut et al., 2001; Le Pichon et al., 2015), one in Germany 

at 47.8° N (Eckert et al., 2013), the Jet Propulsion Laboratory Table Mountain Facility in 

California at 34.5° N (Kirgis et al., 2012), and a sodium lidar originally located in Fort 

Collins, CO at 40.6° N (Xu et al., 2006) that is now a co-located partner with the 

Rayleigh lidar at ALO-USU (Cai et al., 2014). There are also a multitude of middle-

atmospheric studies at all latitudes that cover at least a portion of the same time frame as 

this thesis, including McDermid et al. (1998), Schöch et al. (2008), and Batista et al. 

(2009).  

Many intercomparative studies have been done between different middle 

atmosphere data sets (Randel et al., 2004; Sivakumar et al., 2006), as well as between the 

data and common reference atmospheres (Hauchecorne et al., 1991; Herron, 2007), and 
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between measurement data and output from popular reanalysis and predictive models 

(Fujiwara et al., 2017; Keckhut et al., 1995). The latter type of comparison will be the 

focus of this thesis. A common approach to comparing measurements with model output 

is to reduce the information into month-by-month averages, or representative 

climatologies (Argall & Sica, 2007; Batista et al., 2009; Randel et al., 2004). The 

composite results can additionally be fitted by a least-squares model to look for trends, 

such as that predicted due to the effects of climate change (Angell, 1988), or the impacts 

of the 11-year solar cycle (Labitzke et al., 2002; Remsberg, 2008; Wynn, 2010). 

Previous comparisons between lidar and assimilative model output have revealed 

temperature differences at near-stratopause altitudes (Batista et al., 2009; Finger et al., 

1993). Some of the older studies have rather large measurement uncertainties (Argall & 

Sica, 2007; Hauchecorne et al., 1991), due both to the averaging of data over time and the 

scarcity of data (McDermid et al., 1998), which make them less useful as feedback for 

possible model improvements. Only recently has there been a push to compare data with 

output from the more modern state-of-the-art models (Fujiwara et al., 2017; Sakazaki et 

al., 2018). These studies indicate that, although many improvements have been made to 

extend model coverage and physics parameterizations over the middle atmosphere 

region, significant differences between the models and real measurements persist above 

40 km and tend to increase with altitude (Le Pichon et al., 2015). Suggestions have been 

made regarding the cause of the differences, which include assimilative model 

overdependence on satellite observations (Hoppel et al., 2013), lack of dynamical 

variability at the top-end of models (Charlton-Perez et al., 2013), and the inability of 
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current model resolution to temporally and spatially account for important physical 

processes such as tides and gravity waves (Kim et al., 2003; Baumgarten et al., 2018). 

Several composite climatology studies have been performed that illustrate the 

robustness of the ALO-USU Rayleigh lidar dataset (Barton et al., 2016; Herron, 2004). 

The lower altitudes are of special interest, with their very high measurement precision 

(Herron, 2004; Herron & Wickwar, 2018) near characteristic stratopause altitudes where 

models tend to have a lack of feedback. 

This thesis provides a thorough comparison of highly-precise Rayleigh lidar 

temperatures with the output from three popular modern assimilative models at a single 

altitude near the stratopause (45 km). The three reanalysis models compared with ALO-

USU Rayleigh lidar measurements are the European Centre for Medium-Range Weather 

Forecasts’ (ECMWF) twentieth century reanalysis (ERA-20C) (Poli et al., 2016), the 

United States National Aeronautics and Space Administration’s (NASA) Modern-Era 

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et 

al., 2017), and the Japan Meteorological Agency’s (JMA) Japanese 55-year Reanalysis 

(JRA-55) (Kobayashi et al., 2015). Data from all four data sets (the three models and the 

lidar) covering the period of 1993-2004 were averaged into monthly temperatures on 

which a variety of statistical comparisons and error analyses were performed. 

The outline of this thesis proceeds as follows: first, a description of the lidar 

instrument and associated equipment used in the collection of data. This is followed by a 

chapter outlining the derivation of absolute temperature data from relative density lidar 

measurements. The next chapter describes the uncertainties involved in the temperature 
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measurements, which are of vital importance to the conclusions of the thesis. A chapter is 

then dedicated to providing a basic background regarding the three reanalysis models 

used for comparison with the lidar data. A description of the procedures employed in 

analyzing and comparing the data is given in the next chapter, with the study results 

themselves presented in their own chapter immediately following. Lastly, some 

conclusions are drawn based on the results of this and other work in the field, and some 

future work is suggested.  
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THE ALO-USU RAYLEIGH-SCATTER LIDAR 

Using the ALO-USU Rayleigh-scatter lidar system, researchers produced an 11-

year dataset from 1993-2004 covering the region from 45 km to 90 km; roughly from the 

stratopause to the mesopause. At different times during this period the lidar made use of 

two Nd:YAG (neodymium:yttrium aluminum garnet) lasers, a Spectra Physics GCR-5 

and GCR-6. The only fundamental difference between the GCR-5 and GCR-6 is that the 

GCR-5 features one amplifier with two flashlamps while the GCR-6 contains two 

amplifiers with a single flashlamp each. This means a lower full power for the GCR-5 

due to less gain medium: 36 Watts versus the GCR-6’s 48 Watts (at 1064 nm). 

Nd:YAG lasers are relatively low maintenance, owing to the fact that they are 

solid-state lasers. This makes them ideal for prolonged use in scientific systems, like 

atmospheric lidar, that are used for recording lengthy temporal data. The flash lamps used 

to pump the laser need to be replaced every 30-40 million flashes. Barring any serious 

mishandling or damage to the laser apparatus, this is the only bit of upkeep required to 

continue operating the lasers for data collection. Under the regime they were used during 

this period, on average operating 10 hours each night at 30 Hz for just over a million 

flashes, replacement only needed to be performed at intervals longer than a month’s 

worth of work. 

While the fundamental wavelength of the GCR-5 and GCR-6 is 1064 nm, the 

backscatter cross- section on atmospheric returns is a factor of 16 higher at 532 nm. The 

crystal materials in Nd:YAG lasers make them prime candidates for second-harmonic 

generation, which can then be separated off using a dichroic beam splitter. Consequently, 
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although splitting off the secondary beam for use in transmission decreased overall laser 

power by 50%, the frequency doubling resulted in a net improvement of light returns by a 

factor of 8. 

As with most Rayleigh lidar systems, the lasers were pulsed in order to obtain 

high energy output. This would result in periodic detectable light returns from Rayleigh-

scatter off of atmospheric molecules, operating similarly to radar. A pulse length of 7 ns 

with a rate of 30 Hz was achieved by means of active Q-switching. The application of a 

Q-switch interferes with resonator feedback using cross-polarization such that lasing 

cannot occur. Meanwhile, the laser continues to be pumped, amplifying the photon 

population inversion through stimulated emission. Once the lasing medium is gain-

saturated, voltage is supplied to the Q-switch causing a correction of the polarization, and 

allowing the stored energy to lase and escape in the form of a brief and energy-dense 

laser pulse. Not only did this technique provide for more laser power, but its cyclic nature 

also served as a timing mechanism for accurate data acquisition.  

A diagram from Herron (2004) (Figure 1) provides a visual representation of the 

lidar’s complete instrumental setup. Light output from the laser was optically redirected 

by mirror into the vertical. Aligned along the same initial horizontal axis was a 44-cm 

diameter Newtonian telescope with a 201 cm focal length. The telescope and laser 

apparatus were both mounted to the same optical table so as to maximize the ability to 

retain the alignment in case of small accidental bumps to the table. A turning mirror was 

used to redirect backscattered light from the atmosphere into the collection area of the 

telescope at a right-angle to the vertical. This mirror had a hole in the center for the laser 
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signal output to pass through, forming a coaxial alignment system. A field stop was 

placed at the focal point of the telescope to limit its field-of-view to roughly 3 times the 

beam divergence of the laser (1.5 mrad). On one hand, this was to account for some 

wandering of the laser beam due to internal thermal effects as well as variations in the 

atmosphere’s index of refraction. On the other hand, it was made small to keep the 

signal-to-noise ratio high by limiting the amount of ambient light from the sky entering 

the detector system. A small collimating lens was placed after the field stop to focus it 

onto the plane of a mechanical chopper.  

 

Figure 1 – ALO-USU Rayleigh-scatter instrument diagram (Herron, 2004). 
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The mechanical chopper was timed to operate in sync with the laser pulse 

frequency and length. Specifically, it operated at 4500 rpm, or 150 Hz. The phase of the 

chopper blade was adjusted to open at about 36 km, blocking most of the strongest light 

returns from below. These high returns could quickly overwhelm the photomultiplier tube 

(PMT) collector, as well as introduce after-pulsing oscillations, making it impossible to 

detect the relatively small number of backscattered photons from the higher altitudes of 

interest. The chopped light was then collimated again and passed through a narrow band-

pass interference filter before entering the PMT itself. The filter was centered at 532nm 

with a full width at half maximum (FWHM) of 1 nm for normally incident light, 

effectively removing most of the remaining light received from the background sky and 

limiting collection to the wavelength of the laser signal. 

The PMT was a 9954B-series model from Electron Tubes Enterprises, featuring a 

46 mm diameter green-sensitive bialkali photocathode and 12 BeCu dynodes designed 

for good linear response and timing. A PMT converts photons incident on the 

photocathode into pulses of electrons by means of the photoelectric effect. These pulses 

are amplified by the dynode chain with each dynode being maintained at a higher 

potential than the previous one for a gain of 10^6. This makes it possible for the 

Rayleigh-lidar system to detect single-photon events, although the PMT tops out at ~15% 

quantum efficiency in reality. However, PMTs can also produce false signals by 

amplifying their own thermal electrons produced within the photocathode and dynode 

chain. This is called dark current, or since we were counting pulses from photons, dark 

counts. 
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In order to avoid a large number of dark counts, the PMT was placed within a 

housing providing electromagnetic shielding and dual cooling systems. The first stage of 

cooling was done by an external water chiller to reach 5° C, and the second stage used an 

internal Peltier cooler, further lowering the temperature to -25° C. By cooling and 

shielding the PMT, thermal electron generation was kept to a minimum. Any other 

thermal electrons generated within the dynode chain were distinguishable because of 

their weaker than normal electron pulses. This effect exists by simple virtue of having 

been produced somewhere other than the initial photocathode, and thus not going through 

the full amplification process as a result. The few remaining thermal electrons that are 

generated at the photocathode itself are accounted for by measuring and subtracting their 

effect out in the data reduction process. While this last step is incredibly important at 

higher altitudes, it makes very little difference at the 45 km altitude that is the subject of 

this thesis, as will be discussed in a later chapter. Total dark current impact on signal 

detection should be minimal after taking all precautions described to this point. 

One final obstacle to using the PMT for atmospheric lidar returns has already 

been mentioned briefly, but requires more discussion here. Due to the presence of clouds 

and aerosols in the lower atmosphere, as well as the fact that the density of the 

atmosphere drops off exponentially with increasing altitude, there are orders of 

magnitude more backscattered laser photons from the lower atmosphere than there are 

from higher altitudes. In fact, the middle atmosphere is ideally suited to lidar study owing 

to the general lack of variety in particles from which backscatter can be received. A 

diagram showing the characteristic temperature profile and named regions of the 
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atmosphere is displayed in Figure 2. Other than the omnipresent molecular constituents 

from which lidar measurements can derive temperature, several other types of 

backscattering particles have also been listed on the figure near the region within which 

they commonly occur. While lower-atmospheric constituents are certainly interesting 

candidates for specific lidar studies, ALO-USU is most concerned with getting an 

accurate picture of temperatures in the mesosphere. Although a good portion of lower-

atmospheric light returns are blocked by the timing of the mechanical chopper, the PMT 

would quickly saturate without further gating and results would become nonlinear and 

useless. Photoelectrons can be prevented from cascading further down the dynode chain 

if the voltage on successive dynodes is changed to be the same of the previous stage. In 

the ALO-USU system, gating was employed to lower the effect of photons captured 

below 35 km. This was done by setting the voltage of the photocathode to equal that of 

the first dynode, reducing the gain by factor of 1000.  



13 

 

       

Figure 2 – Generalized map of atmospheric regions with temperature profile. 
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Finally, the PMT output in the form of a 3 ns FWHM pulse is sent through a 

200x-gain fast pre-amplifier before traveling to an MCS (multichannel scaler) unit. Since 

the lidar system is essentially a time-of-flight photon-counting instrument, an MCS’s 

ability to count at a maximum rate of 150 MHz, intervals of approximately 6.7 ns, makes 

it ideal for processing returns at a high temporal resolution. The pulses arriving at the 

MCS were binned at less than the maximum rate in order to spread the available 16,000 

memory bins across a larger stretch of altitude. A 250 ns bin, translating to an altitude 

range of 37.5 m per bin, was chosen as more than sufficient to study the broader physical 

phenomena of the middle and upper atmosphere. In order to preserve hard drive storage 

space and allow sufficient time to download and record the data, the return signals were 

summed over two minutes, containing counts from 3600 laser pulses, before being 

successively saved to a file on a PC. Figure 3 taken from Herron (2004) shows an 

example of several hourly averages of lidar returns from 12 June 2003. 
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Figure 3 – Hourly average lidar temperatures compared with MSIS-E-90 empirical 

atmosphere (Herron, 2004). 
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MEASUREMENT OF ABSOLUTE TEMPERATURES 

The number of backscattered photons ( )N h  from a Rayleigh-lidar system is given 

by the lidar equation (Measures, 1992) below: 

 
2

0

2

( )
( ) ( ) RN AQT h

N h n h
h

      (1.1) 

0N = Photons in outgoing laser pulse  A  = Telescope collection area 

Q  = Optical efficiency of lidar system ( )n h = Atmospheric number density at h  

h  = Height above lidar at backscatter location  

R

  = Rayleigh backscatter cross-section 

( )T h  = Atmospheric transmittance between lidar and h  

( )T h  is assumed to be constant over the range of the lidar, there being only a 0.4% 

variation (Hauchecorne & Chanin, 1980) in atmospheric transmittance between the 

altitudes of 35 and 90 km at a laser wavelength of 532 nm. Similarly, the Rayleigh 

backscatter cross-section is also dependent on the wavelength of scattered light and the 

constituents of the atmosphere. Due to the well-mixed nature of the mesosphere, the 

predominance of N2, O2, and Ar in the atmosphere, and the narrow laser light in use, a 

standardized definition can be used as constant for this study (Bucholtz, 1995): 

 

4

28 2 1550
( ) 5.45 10

( )

R cm sr
nm

 


 
  

 
  (1.2) 
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Owing to a variety of relentless temporal changes not only in the lidar system but 

in the atmosphere itself (e.g., smoke from fires, particles from inversion layers, clouds 

etc.), absolute atmospheric density measurements are extremely difficult to pin down. An 

attempt has been made to do this with the same lidar data (Barton et al., 2016) by 

normalizing the vertical profile of relative densities to data from reanalysis models at 45 

km altitude. Since the object of this thesis is temperature measurements, however, this 

process is unnecessary here. If we invert the lidar equation to solve for the atmospheric 

density as seen here: 

 
20

2
( ) ( )

( ) R

N AQ
n h N h h

T h 
   (1.3) 

it then follows that we can solve for the relative atmospheric density at some height h  by 

dividing ( )n h  by its counterpart at a known altitude, 0( )n h , at a known altitude, 0h : 

 
2 2

0
0 2 2

0 0

( ) ( )
( ) ( )

( ) ( )

N h h T h
n h n h

N h h T h
   (1.4) 

Equation 1.4 no longer suffers from the complications brought on by the inclusion of 

system calibration measurements (photons-per-laser-pulse, system-wide optical 

efficiency, and comprehensive understanding of telescope collection-area), nor does it 

require knowledge of the backscatter cross-section. 

 To simplify further, over the altitude range being studied with the lidar (45 – 90 

km) the atmosphere is so optically thin that much less than 1% of laser energy is scattered 

away as it travels through, and we can claim that 0( ) ( )T h T h . This holds true anywhere 
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above 35 km, below which there are problems with ozone absorption, enhanced 

extinction of Rayleigh returns, and significant additional scattering from atmospheric 

aerosols otherwise not present at higher altitudes (Hågård & Persson, 1997). 

With two additional assumptions and a few more steps we can arrive at absolute 

temperature measurements from the relative density equation (1.4) above. The first 

assumption is that the atmosphere is an ideal gas, described by the ideal gas law 

 ( ) ( ) ( )P h n h kT h   (1.5) 

where ( )P h  is the pressure, k  is Boltzmann’s constant, and ( )T h  is temperature. The 

second assumption is that the atmosphere is in hydrostatic equilibrium (Chanin, 1984; 

Gardner et al., 1989). Hydrostatic equilibrium is defined by the gravitational force being 

balanced with the pressure gradient force like so: 

 
( )

( ) ( ) ( ) 0
dP h

n h m h g h
dh

    (1.6) 

where ( )m h  is atmospheric mean molecular mass and ( )g h  is the gravitational 

acceleration. This is also sometimes referred to as the steady-state diffusion equation. 

While this latter assumption may not be accurate in areas of strong turbulence, the fact 

that the return signal is summed for two-minute integrations and binned every 37.5 m 

lends credence to the idea that there is enough coverage over both space and time to 

smooth out any error from anomalies. This includes errors due to large amplitude waves, 

as was shown by Jenkins et al. in 1987.  
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The right-hand side of the ideal gas equation (1.5) can be substituted in for ( )P h  

in the hydrostatic equilibrium equation (1.6), and then integrated to find the change in 

temperature between a reference altitude 0h  and some other altitude of interest: 

  
0

0 0( ) ( ) ( ) ( ) ( ') ( ') ( ') '

h

h

k n h T h n h T h n h m h g h dh     (1.7) 

From here we can solve for the temperature at any altitude so desired: 

 
0

0
0

( ) 1
( ) ( ) ( ') ( ') ( ') '

( ) ( )

h

h

n h
T h T h n h m h g h dh

n h kn h
     (1.8) 

Unfortunately, equation 1.8 relies on knowledge of the absolute density at the 

incremental altitudes in the integral. This may cause a divergence with the ratio of 

0( ) / ( )n h n h , and will factor in any errors in density measurements. These issues can be 

easily avoided by integrating downward from a high reference altitude 0 maxh h  to our 

altitude of interest: 

 
( ) ( ) ( ')

( ) ( ) ( ') ( ') '
( ) ( ) ( )

maxh

max max
max

maxh

n h n h n h
T h T h m h g h dh

n h kn h n h
     (1.9) 

As can be seen here, a specific selection of a high-altitude 0h  creates a situation where 

the system and model dependent parameters divide out with ( )maxn h , leaving only 

relative densities behind. The solution is then derived from a ratio of two relative density 

measurements. 
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The temperature equation (1.9) is initialized by first choosing 
maxh  for each night 

to be where the average signal is 16-20 times its own standard deviation. This is typically 

an altitude in the thermosphere, though still within the realm of not disappearing into the 

background noise. This specific definition for maxh  was chosen based on experimental 

trial and error, a process demonstrated using Figure 4 taken from Sox (2016).  

 

            

 

 

Next, an initializing temperature at this maxh  is normally obtained from the 

observations of an instrument other than the USU Rayleigh lidar, or estimated from an 

atmospheric model. During the time period of the collection of data used in this thesis, 

Figure 4 – Ratio of lidar signal-to-standard deviation, with red lines indicatin ratios of 

zero and sixteen (Sox, 2016). 
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two different sources were used depending on how high of an maxh  was obtained for the 

particular set of measurements: a climatology from the Colorado State University sodium 

lidar (She et al., 2000), and NASA’s MSISe00 atmosphere model (Picone et al., 2002). If 

maxh  was above 83 km, only the sodium climatology was used, but if it was a lower 

altitude then an offset between both sources at midnight local time was applied for 

initialization. Due to some gaps in the sodium climatology data, the temperature was 

occasionally interpolated for the correct date and altitude (Herron, 2004). Argall and Sica 

(2007) have demonstrated that the choice of initialization climatology makes for very 

little difference in resultant temperatures after the top few kilometers of the data, and 

almost no difference whatsoever at the 45 km altitude involved in this thesis.  
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MEASUREMENT UNCERTAINTIES 

It is of the utmost importance that measurement errors be accounted for in order 

to support the claims put forward later in this thesis. Specifically of interest is the amount 

of error in our temperature measurements at 45 km altitude. It can be shown that the 

measurement (Poisson) error is less than a fraction of a degree, meaning the total 

uncertainty at this altitude is driven fundamentally by geophysical variability (Herron & 

Wickwar, 2018). Such precision has allowed for studies normalizing the relative density 

measurements to provide for an estimated absolute density climatology of the ALO-USU 

Rayleigh-scatter lidar data (Barton et al., 2016). The following explanation of 

measurement errors is largely adapted from previously works using this lidar (Beissner, 

1997; Herron, 2004), which have been fundamental in laying the groundwork for the 

comparisons carried out in later chapters. 

The Rayleigh lidar atmospheric return data ultimately recorded by the MCS is 

effectively the superposition of the background noise, N, and the actual Rayleigh-scatter 

signal, S. The noise is composed of any PMT dark count and ambient sky light that 

remains after the application of all efforts to minimize these effects. The previous chapter 

details these steps if a review is desired. Noise is estimated by averaging the MCS 

records at altitudes high above the point at which the Rayleigh-scatter signal becomes 

negligible. The backscatter signal alone is simply the remainder of the total returns if the 

background noise is removed. Equation 2.1 below establishes this starting point for 

finding the error, with subscripts indicating variables respective both to altitude intervals 
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in space (I and J, corresponding to signal and background) and data integration intervals 

in time (K): 

 
1 1

1 1
( ) ( )

I J

kk ik jk k

i j

S S N N S N N
I J 

         (2.1) 

The background variance can be calculated from this as follows: 

 
1 1

1J J
k

k jk jk

j jjk

N
dN dN dN

N J 


 


    (2.2) 

If we let 
2 2( )x dx   and square equation 2.2, it simplifies to: 

 2 2

2
1

1
k jk

J

N N

jJ
 



 
  

 
   (2.3) 

Furthermore, if we assume the background noise to be constant with altitude, we have 

solved for the average variance in the background over J  altitudes: 
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1

1
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J
N

N

jJ J






 
 

 
   (2.4) 

Similarly, the combined signal and noise has a total variance given by: 

 
1 1

( ) 1
( ) ( ) ( )

( )

I I
k

k ik ik

i iik

S N
d S N d S N d S N

S N I 

 
    

 
    (2.5) 

If we assume each ( )ikS N  to be independent of one another, we can square this 

equation and sum, arriving at: 
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 2 2

( ) ( )2
1

1
ik ik

I

S N S N

iI
  



 
  

 
   (2.6) 

To find the variance of the signal by itself, we merge the variance of the background 

from equation 2.3 with the combined signal and noise variance of equation 2.6: 

 2 2 2 2 2

( ) ( )2 2
1 1

1 1
k k k ik jk

I J

S S N N S N N

i jI J
     

 

       (2.7) 

The lidar return signal adheres to Poisson statistics, since each photon counted is a 

random, independent event. On paper, this translates into any individual measurement’s 

standard deviation being equal to the square root of that same measurement: 

 2

x xx x      (2.8) 

This fact allows us to substitute the measurements in for their corresponding variances in 

equation 2.7: 

 2

2 2
1 1

1 1
( )

k

I J

S ik jk

i j

S N N
I J


 

      (2.9) 

Rewriting equation 2.9 for the spatial averages over altitudes I and J, it becomes: 

 2 1 1
( ) ( )

kS k kS N N
I J

      (2.10) 

 At high altitudes where the data is initialized for the temperature derivations there 

isn’t enough precision in a single measurement profile to be useful unless we also 

average temporally. In order to differentiate the temporal averaging from the spatial 

averages indicated by bars over the variables, the temporal averaging is represented by 
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angled brackets in all the following equations. The temporal averages are related to the 

spatial averages of the combined signal and the background signal respectively: 
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1
( )

K

k

k

S N S N
K 

     (2.11) 
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The variances corresponding to equations 2.11 and 2.12 are: 

 2 1
S N

S N
IK




    (2.13) 

 2 1
N

N
JK

    (2.14) 

Recalling our starting premise in equation 2.1, the signal is represented by: 

 S S N N     (2.15) 

With variance: 

 2 2 2

S S N N
  


    (2.16) 

Therefore, the standard deviation of the photocounting Rayleigh-scatter signal is: 

 
S

S N N

JI JK



    (2.17) 

 These uncertainties typically shrink by averaging either temporally or spatially. 

Whatever the final error in the signal, it must further propagate through the temperature 
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derivation to provide us with temperature measurement uncertainties. Following from 

equation 1.9 and the derivation in Gardner et al. (1989), we arrive at: 

 max max

max max

T T T
dT dT dn dn

T n n

  
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  (2.18) 

and: 
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  (2.19) 

Where the number density n is described by its relationship to scale height H, and 

decreases exponentially with increasing altitude as expressed here: 

 ( )
maxh h

H
maxn h n e




   (2.20) 

Furthermore, if we let /c mg k  and / /n d dn   , then ( / )dn dn dh dh  and 

/ ( / )dn dh n H  . Substituting these into the final term of equation 2.19 we get: 
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  (2.21) 

Which is equal to zero if the scale height is held constant. The temperature variance 

therefore reduces to: 
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  (2.22) 

and substituting in the number density from equation 2.20 gives us the final equation 

describing the temperature uncertainties:  
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  (2.23) 

Where we assume a neutral-density scale height of 7 km. Although this exact error is 

difficult to determine with precision, it decreases rapidly with altitude whatever initial 

errors might be present. 

 Herron (2004) performed several extensive simulations to verify the data 

reduction procedure and how it reacted to large amounts of errors in the top-level 

variables used for initialization. After 10 km of downward integration, the difference 

between actual and derived temperature decreases by a factor of 4, and after 20 km it 

decreases by a factor of 17. The initialization altitude for the data in this study is chosen 

by determining the altitude where the measured signal is 20 times its standard deviation, 

on average coming to 87 km and translating to an expected uncertainty of 6% in 

temperature. However, even if the initialization were much more than 6% away from the 

actual temperature at 87 km, let’s say off by 20 K, this error would be reduced to less 

than 1 K by 66 km, and would be insignificant by the time it reached the 45 km altitude 

this thesis is concerned with. 
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  As noted by Argall and Sica (2007), the standard deviation of the temperature 

measurement distribution is simply the combination of the Poisson-derived uncertainty 

and the geophysical uncertainty: 

 
2 2 2( ) ( ) ( )Tot Geo Poih h h      (2.24) 

This in conjunction with a small fraction due to measurement error means that all 

standard deviations of the results are assumed to represent the geophysical variability or 

uncertainty alone. For additional background, the ALO-USU Rayleigh lidar composite 

climatology developed by Herron and Wickwar (2018) provides a thorough analysis of 

the geophysical variables involved at our location. From their study, a mean temperature 

deviation of less than 1 K can be expected in the lidar data for most of the year, with 

sharp peaks in the Northern Hemisphere winter when local geophysical variability is at 

its highest.  
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THE REANALYSIS MODELS 

Although there are a number of reanalysis models available, three commonly 

referred to in the literature are the European Re-Analysis of the 20th Century (ERA-20C), 

the Modern-Era Retrospective Analysis for Research and Applications Version 2 

(MERRA-2), and the Japanese 55-year Reanalysis (JRA-55). These were selected for 

comparison for three main reasons. First, their generally widespread use and the notable 

scientific organizations responsible for them provide a larger target audience. Second, 

they allow for obtaining a variety of assimilative model methodologies to enhance the 

results of the lidar measurement comparisons. Third, they are publicly available datasets 

that are obtained in a straightforward manner. 

The data output that was used from each of the models is that of the instantaneous 

atmospheric diagnostic fields variety produced at 3-hour increments beginning at 0000 

UT and ending at 2100 UT daily. 0600 UT was the selection used, corresponding to local 

midnight for ALO-USU. 

According to Poli et al. (2016), the value of atmospheric reanalysis models lies in 

their ability to calculate and/or predict the evolution of the climate and changes in 

weather conditions. The systems operate by creating simulations on the basis of real 

measurement data from the surface, lower, and upper atmosphere, including whatever 

available satellite imagery and data from other types of equipment can be acquired and 

assessed to be of appropriate quality. This typically translates into meteorological 

measurements from roughly only the last six decades, mainly because the state of the 

science, the consistency of regular observation, and the availability of equipment prior to 
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1950 were insufficient to create the requisite sets of comprehensive meteorological 

information. Moreover, the majority of older data, when and if it is available, is in a 

physical written form incompatible with quick-and-easy machine processing, requiring 

extra work to digitize and assess the veracity of the records. Recent advancements in 

reanalysis, however, have allowed scientists to create comprehensive datasets for the 

entire 20th century, even going as far back as 1871. These extensions are based primarily 

on written surface pressure records and are owed to improved machine vision 

technologies that allow for quick digitization, while the majority of other data points are 

derived from a variety of approximations and complex calculations.  

The ERA-20C model is the ECMWF’s first reanalysis of the entire 20th century 

(Poli et al., 2016), and a development couched in the European Reanalysis of Global 

Climate Observations (ERA-CLIM) project. It was extended and improved off of the 

ERA-40 reanalysis. It features a unique coupled triple-model to examine different 

features of the geosphere more specifically, and is used mostly to study weather patterns 

since 1958.  

The MERRA-2 system and its predecessor, MERRA, constitute the reanalysis 

systems with the longest history (Gelaro et al., 2017; Koster et al., 2016). They were 

developed by NASA as a way to combine satellite data with surface-based weather 

observations and transform them into readable and scientifically useful datasets. Their 

early work laid the foundations for the modern meteorological science and reporting that 

is ubiquitous today. The specific MERRA system itself was founded using the basic 

principles of the Goddard Earth Observing System Model (GEOS) system jointly 



31 

 

developed by NASA, NOAA, and the NCEP Environmental Modeling Center, which was 

responsible for the first reanalysis of atmospheric conditions in history, and a powerful 

tool in its own right (Molod et al., 2015). 

The Japanese reanalysis system, JRA-55 (Harada et al., 2016; Kobayashi et al., 

2015), has had only one previous iteration, JRA-25. The current model is based on a 55 

year analysis of surface and upper-level observations from a wide variety of sources, and 

is essentially an improved model of JRA-25, which previously covered only a 25 year 

period. The extension to 55 years puts the newer model starting when regular radiosonde 

observations became more common worldwide. It is significantly more advanced and 

alleviates some of the main problems that could be found in the JRA-25 reanalysis, such 

as a cold bias resulting in the inability to properly represent lower parts of the 

stratosphere.  

 According to Stickler et al. (2014), ERA-20C is one of the most commonly 

referenced reanalysis models. This model is currently in the process of being replaced by 

the more advanced ERA-5 model, which will feature additional coupling mechanisms 

between ocean and atmosphere and a higher-resolution data grid. The new model is being 

produced under a renewal of the ERA-CLIM project called ERA-CLIM2. 

 The ECMWF operates on the principle of continuous monitoring and quality 

improvement of climatological observations. In keeping with this principle, the ERA-20C 

suite is designed to quickly receive real-time data inputs from ECMWF associates to 

tweak the model’s predictive runs. Some of the observations assimilated include surface 

and mean sea-level pressures from the International Surface Pressure Databank 



32 

 

(ISPDv3.2.6) and the International Comprehensive Ocean-Atmosphere Data Set 

(ICOADSv2.5.1), as well as marine winds from the latter only. The assimilation of 

additional data is often the main driver behind the continued improvements to modeling 

processes, and is demonstrable by the incremental changes to ECMWF’s products in 

particular. ERA40, ERA-Interim, and ERA-20C have each allowed for significant 

advancements in the quality and reliability of datasets over their predecessors. Poli et al. 

(2016) argues that one of the contributing factors toward the robustness of ERA-20C over 

other models comes from the development process, during which they would constantly 

run a control model without data assimilation alongside a model with the observations 

added. This would allow for the assessment of the exact impact of assimilated 

observations once added in. This process enabled them to address some key questions 

about deteriorating model parameters as a result of adding realistic weather information. 

 ERA-20C’s model is formulated around the ECMWF’s Integrated Forecast 

System (IFS), which is revised into improved “cycles” on a roughly yearly basis. Its 

methodology is to combine very large volumes of data within each 24-hour period and 

use variational bias correction of surface pressure observations to produce an accurate 

model of weather and air fluctuations. It uses three coupled models to complete the 

analyses, each with its own applicable observational records as input: the ocean wave 

model, the atmospheric model and the land-surface model (Hersbach et al., 2015). Each 

of the three contributes to the significant breadth of the analysis, spanning 91 vertical 

levels up to roughly 80 km altitude with a horizontal grid of 125 kilometers. The 

temporal resolution is 3-hours for most variables, but data can also be compiled based on 
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daily, weekly, or monthly time intervals as well. Rather than vertical model levels based 

on altitude, data is provided on 37 pressure levels, 16 potential temperature levels, and 

the 2 PVU (Potential Vorticity Unit) potential vorticity level, also known as the dynamic 

tropopause. 

 To ensure that the assimilated data are accurate and correctly processed, ERA-

20C has a strong quality control check, comprising several methods. The scope can vary 

from dataset to dataset, but the process includes such things as checking against previous 

models and background error estimates. One of the most commonly used checks is the 

EDA, or “ensemble data technique,” which basically tests the model against the most 

improbable events of climate change and irregularity over a 100 year period 

 MERRA-2 is the second iteration of the Modern-Era Retrospective Analysis for 

Research and Applications product put together by the National Aeronautics and Space 

Administration (NASA). It spans the longest time frame, starting in 1871, and is tasked 

with analyzing temperature observations and other atmospheric data points from the 

widest number of sources. Given that the main purpose of a reanalysis is to utilize 

historic data within the modern context of equipment, algorithms and other tools, the 

sheer amount of data at NASA’s disposal appears to put their assimilative model among 

the most complete. Koster et al. (2016) argues that by simply increasing the number and 

quality of input observations they limit the opportunities for incorrect outputs. This 

logically follows from the fact that inaccuracies are often attributed to incorrect or partial 

observations, and other errors that can stem from the data gathering process. 
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 The original iteration of MERRA used the Community Gridpoint Statistical 

Interpolation (GSI) system developed by the University Corporation for Atmospheric 

Research’s (UCAR’s) DTC (Developmental Testbed Center), and the NASA-built 

Goddard Earth Observing System Model (GEOS) currently in its fifth iteration. 

According to Molod et al. (2015), the GEOS-5 used in MERRA-2 can be, and is, applied 

for several purposes other than reanalysis. However, it’s a powerful and versatile product, 

and the advantages it brings to the MERRA-2 model greatly contribute to overall 

performance. The system is capable of running simulations on a global scale, with 

horizontal resolutions of 10 kilometers down to an impressive 1.5 kilometer, and vertical 

pressure surfaces from the sea level to 0.01 hPa (around 80 km). Weather analyses are 

extremely accurate and available in near-real-time, while data ranging from ocean tides 

and surface winds to cloud cover and upper atmospheric temperature are simultaneously 

gathered from as much of the planet at possible. 

 MERRA-2 was basically developed to bypass some of the inadequacies of the 

first iteration, but also to utilize more of GEOS-5’s capabilities (Gelaro et al., 2017). For 

example, unlike MERRA, MERRA-2 is capable of assessing the horizontal discretization 

within a cubed-sphere grid, analyzing all spaces within the grid evenly. This helps to 

avoid the kinds of aberrations that can appear in the stratospheric output of other models. 

Another significant improvement from the first MERRA reanalysis is the ability to 

account for precipitation and re-evaporation, which allows for a much more reliable and 

realistic simulation to be created. MERRA-2 was also developed with an eye on aerosol 
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observations, including black carbon, organic carbon, sulfate, and dust (Molod et al., 

2015). 

 The JRA-55 reanalysis system was developed by the Japan Meteorological 

Agency (JMA), and is the second iteration of the Japanese atmospheric reanalysis 

program. The first iteration was called JRA-25, which was permanently terminated in 

2014. 

 JRA-55 spans the time frame between 1958 and the present. The lack of quality 

and quantity in earlier observations is the main limiting factor, since 1958 marks the 

beginning of regular radiosonde observations of the atmosphere on a regular basis in 

many places around the globe. In many ways, the JMA program shares similarities to the 

ECMWF’s, as should be expected with a similar stated goal of incremental improvement 

on the original reanalysis model. Much of the data assimilated in JRA-55 is shared 

between the JMA and the ECMWF, and are used in both agency’s models. However, the 

foundational observational data used for JRA-55 is from the ECMWF’s previous model, 

the ERA-40. For datasets after 1979 JRA-55 uses the same datasets as its predecessor, 

JRA-25, again paralleling the situation with ERA-20C continuing ERA-40’s work. For 

other data prior to 1979, JRA-55 extrapolates from a limited data pool of mostly surface-

based atmospheric observations. These records are largely drawn from the data archives 

of the National Centers for Environmental Prediction (NCEP) and the National Center for 

Atmospheric Research (NCAR) in the United States (Kobayashi et al., 2015). 

 One of the key advances of JRA-55 over JRA-25 is the use of state-of-the-art 

mathematical algorithms applied to extrapolated data from meteorological satellites. 
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Additionally, the system does include some supplementary atmospheric data that are not 

included in ERA-20C. These include measurements from the Japanese Geostationary 

Meteorological Satellite (GMS), as well as data products derived from said satellite that 

were also developed by the JMA such as the CSR (Clear Sky Radiances). 

 According to Harada et al. (2016), JRA-55 was the first reanalysis model to use 4-

dimensional variational analysis (4D-VAR) in its assimilation of the atmospheric 

conditions from 1958 onwards. Subsequently, the ECMWF upgraded its methodology to 

include 4D-VAR analysis as well, but NASA has not followed suit despite many 

comparisons of the methods showing 4D-VAR to be superior (Rabier & Liu, 2003). 4D-

VAR runs the model both forward and backward in a small temporal and spatial range 

around each data point to check for runaway parameters and correct the model toward 

observations according to their quality. The variational bias correction applied by the 

JRA-55 is focused on satellite radiances rather than surface pressures as is done with the 

ERA-20C. The model features a 55 km horizontal grid with 60 vertical pressure levels up 

to the 0.1 hPa pressure surface (around 65 km), with data available on 6-hourly intervals.  

 Some of the most prominent differences between ERA-20C and JRA-55 were 

noticed in the quality of tropical cyclone positional analyses, where JRA-55 appears to 

outclass ERA-20C on larger geographical scales, and vice-versa (Wang et al., 2016). 

However, more applicable to the work of this thesis, JRA-55 is less capable of discerning 

atmospheric differences at higher altitudes, which is not as much of an issue for ERA-

20C or MERRA-2. This isn’t to say that JRA-55 is terribly inconsistent at measuring 

upper stratospheric temperatures and detecting real anomalies, however. It simply has a 
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noticeably lower consistency than the other two models being examined, with a number 

of artificially created anomalies having been noticed in the results, likely due to some 

carryover of the same problem from JRA-25, where the issue was significantly worse 

(Harada et al., 2016). 

 While it is not within the scope of this thesis to fully measure or express the 

complete set of features, history, and differences between the three reanalysis models 

chosen here, some have already been noted, some will be summarized hereafter, and 

others can be found in the descriptive literature for each respective model (Gelaro et al., 

2017; Kobayashi et al., 2015; Poli et al., 2016). 

The JRA-55 is a definitively positive evolution of JRA-25, with better quality 

control of data, increased access to more data points, and a lower propensity for the 

artificial results seen in stratospheric temperatures. Many gaps in JRA-25’s data grid 

have been filled in and the new version operates much more efficiently due to newer 

mathematical algorithms, including the important addition of 4D-VAR. Similarly, ERA-

20C has improved on the ERA-40 product, extending the reanalysis timeline to cover the 

entire 20th century. In that fact, it differentiates itself as being more comprehensive than 

JRA-55, but still doesn’t achieve the scope of MERRA-2, which reaches back as far as 

1871. Regardless, all three models assimilate plenty of data over the time frame studied 

in this thesis. 

The ERA-20C operates slightly differently than the others, being divided into 

three distinct branches: 20CM, 20C, and 20CL. 20CM is a forced model integration 

without any synoptic data assimilation, 20C is a surface and marine model using synoptic 
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pressure data and winds from ICOADS and ISPD, and 20CL is a land-surface model that 

is essentially a down-scaling of the 20C (Hersbach et al., 2015). As with JRA-55, ERA-

20C utilizes 4D-VAR, which has significantly improved the quality and accuracy of 

simulations over its predecessors. 

 Lastly, MERRA-2 has much better precipitation analysis abilities, more congruent 

aerosol data, and better resistance to background errors through sheer amount of data 

assimilation than either JRA-55 or ERA-20C. The use of GEOS-5, exclusive to MERRA-

2, is also a significant difference from the Japanese and European tools, and allows the 

model to gather, process, and analyze data from a wide variety of measurement systems 

in a highly advanced and efficient way. However, MERRA-2 still uses the older 3D-VAR 

assimilation methodology, albeit with incremental updates and corrections for 

precipitation forcing and some other variables. This makes it prone to background 

parameter drift, which it compensates for by assimilating more observations than its 

competition. 

 Most relevant to this thesis, however, is performance of all three of these models 

in the upper stratosphere. According to Harada et al. (2016) and Koster et al. (2016), the 

overall differences in temperature measurements in the upper stratosphere between the 

JRA-55 and MERRA-2 models are considered to be relatively small. Overall 

performance of ERA-20C is described in the literature similar to that of JRA-55. Even 

though JRA-55 and ERA-20C both utilize advanced 4D-VAR-based analyses, MERRA-

2’s GEOS-5 system, combined with its access to a much broader pool of atmospheric 

observations and satellite feeds, makes it appear to be the optimal choice for upper 



39 

 

stratospheric temperature analyses. With that said, any of the three models are described 

in their literature as fairly reliable even in the upper stratosphere where observations are 

much less common than at lower altitudes. According to Santer (2003), studies of the 

upper atmosphere, including but not limited to the stratosphere, have historically been 

within the purview of NCEP, which often works closely with NASA. This relationship 

may provide an edge to MERRA-2 over the other models in this regime. 

A common acknowledgement from those that work on these or any similar 

reanalysis models is that there is a lack of adequate objective measurements that could 

confirm, or alternatively, challenge their results. This problem provides a noticeable 

space for many questions about the validity of model output. There are more observations 

being done worldwide at this point in history than ever before, but this still pales in 

comparison to the amount of data output by models at every location and timestamp. It is 

highly improbable that a one-to-one comparison and verification of model output using 

observational data will ever be a possibility. This is bolstered by the fact that models are 

improving in scale and resolution at least as quickly as new observational data is 

available. However, the existence of this problem also implies that the development of 

model-data comparisons and interconnectedness is a must for all future development. 

This is the main motivation for including discussion of the models in this thesis, and it is 

hoped that this work can be a tool to assist in the development of future models. 
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DATA ANALYSIS PROCEDURE 

This work was initially inspired by a basic comparison done in private 

communications within the ALO-USU group in 2006. This original comparison was 

between the ALO-USU data and the Climate Prediction Center (CPC) model produced by 

NCEP and NCAR in 1996. The comparison used a simple sinusoidal fit consisting of five 

parameters: one intercept, two semi-annual terms, and two annual terms. The results 

merely confirmed that the phases of the largest oscillations were common between the 

two sets of data, and closer comparisons were not made at the time. The quick study also 

noted that there were outliers (10 – 25 K in magnitude) from the fit that were often co-

temporal between ALO-USU and CPC, indicating that these were real events, but not 

speculating further. 

Before explaining how this work further built on the original discussion, we must 

first explain the preparation of the data. The methodology for temperature derivations 

from lidar data has previously been explained, and interpolation on this dataset was not 

deemed necessary due to the proximity of the altitude bin (44.9787 km) closest to the 

target altitude (45 km). However, since atmospheric reanalysis models typically offer 

data at specific pressure surfaces rather than altitudes, and because their horizontal grids 

are often somewhat large (e.g. ERA-20C only provided whole degree latitude and 

longitude values), interpolation was required across spatial dimensions to achieve 45 km 

model temperatures directly above the ALO-USU’s location at 41.74° N, 111.81° W. For 

all three reanalysis models this required calculations from data on geopotential height and 
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temperature at four pressure levels (1 hPa, 2 hPa, 5 hPa, and 10 hPa) and four horizontal 

grid locations representing those closest to the lidar. All programming, fitting, analysis, 

and figure generation was performed in MATLAB, and all original code can all be found 

in Appendix D. 

The derived relationship used to convert the geopotential height to altitude was 

 
e g

e g

R z
z

R z



  (3.1) 

where eR  = 6368.6 km is the radius of the Earth at ALO-USU’s latitude. A linear 

interpolation was acceptable to collapse the data’s horizontal dimensions, but due to the 

exponential relationship of atmospheric pressure with altitude it was decided that a cubic 

spline would be more appropriate to interpolate across the four pressure levels with their 

corresponding altitudes. The result was an array of data representing daily temperatures 

at 45 km for the 0600 UT (or midnight local time in the summer, Mountain Daylight 

Time). The ERA-20C and JRA-55 data included every day for the period of January 1993 

to December 2004, and the MERRA-2 data began 26 July 1993 instead with the same end 

date as the others. This small difference has only a very minor potential impact on 

comparisons at the beginning of the data, since the first day for lidar data is near the end 

of August 1993 and the fitting method used covers a broad window to smooth out 

deficiencies in the lidar measurement set specifically. Due to the available data formats, 

each model required a slightly different approach as far as the MATLAB code was 
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concerned, but each generally followed the above process and were standardized into a 

specific format to provide for quick and easy comparisons. 

Initial comparisons were done on older reanalysis models, both to verify and 

expand on the previous work done with CPC, but also because those datasets were 

already available due to work done by Barton et al. (2016). These included the 

ECMWF’s ERA-Interim model, which is an updated version of ERA-40, and NASA’s 

original MERRA model. Nonlinear regression was performed using a 5-parameter 

Levenberg-Marquardt least-squares nonlinear fitting algorithm tuned to capture annual, 

semi-annual, 4-month, and 3-month oscillations (Moser, Wickwar, Navarro, Barton, & 

Herron 2015). While that work was a good proof-of-concept for this thesis, providing 

both a relatively good fit and revealing the outliers as in the private discussions 

aforementioned, there were clearly some deficiencies in the method. Most notably, the 

fitted curve, seen in Figure 5, only defined a period of a year and repeated itself 

regardless of expected natural variations such as those caused by the solar cycle, climate 

change, or the quasi-biennial oscillation (QBO). It was determined that an adaptive fit 

would be required to adequately identify real outliers, as well as to better understand the 

differences between the models and the lidar data.  
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The adaptive method developed utilizes the same nonlinear fit, but a 10th 

parameter was added in attempt to capture any linear trend such as that examined by 

Wynn (2010). The final fit equation is as follows: 
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  (3.2) 

The technique for applying equation 3.2 was the big change. Rather than calculate 

the least-squares for the Levenberg-Marquardt over the entire 11 years of data and apply 

a single fit unable to capture unique year-to-year differences, a moving window was 

used. The window size was chosen to be 3 years for two reasons. First, as the window 

moves from day-to-day, the linear term would be able to adjust the fit to deal with 

interannual variations. Notable is the fact that the fit doesn’t have a parameter targeted 

specifically toward phenomena like the QBO, but the nature of the moving window 

allows the fit to still shift to account for its effects. Second, the 3-year size is large 

enough to clearly overcome a gap in ALO-USU data from May 1997 to April 1998.  

Figure 5 – Preliminary nonlinear model fitted to ALO-USU data. 
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Each day was essentially provided with its own predictive fit calculated from all 

available data in a 3-year window with that particular day at the center. In order to 

maximize the amount of data available for fitting, the initial and final 1.5 years all used 

windows centered 1.5 years away from the data’s temporal edge. The calculated 

parameters for the unique fit were then used to calculate a new predicted temperature 

value for that day alone. The method was applied to each data set starting on the first day 

of available data and ending on the last, but repeated for every day in between regardless 

of extant data on that particular day, which was only an issue with the ALO-USU 

measurements. This adaptive method resulted in 3998 separate fitted models with unique 

parameter values for ALO-USU, 4171 for MERRA-2, and 4383 for both ERA-20C and 

JRA-55. Full dataset fits are displayed in Figures 6 through 9. Rotated, larger versions of 

these graphs (Figures 31 through 34) are also available in Appendix A, since they include 

a large amount of data and detail.  

 

Figure 6 – Adaptive fit to ALO-USU Rayleigh-scatter temperature measurements. 
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Figure 7 – Adaptive fit to ERA-20C model temperature output. 

Figure 8 - Adaptive fit to MERRA-2 model temperature output. 
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Because the lidar temperatures are temporally sparse when compared with the 

model data, one of the purposes of this fitting method was to provide a daily temperature 

value to compare with the models even on days when the lidar was not operating. More 

direct comparisons examining differences between the actual data when it exists is a 

significant part of this thesis as well, but some examination of the fit differences were 

deemed valuable based on the goodness of the fit. The probability density function 

histogram showing the residuals of each fit is given in Figure 10. In these plots, the 

residuals were fitted with the t location-scale distribution, rather than a normal or 

Gaussian distribution. This location-scale parameterization of the typical Student’s t-

distribution is more useful for modeling data involving constantly shifting volatility that 

results in more outliers, and therefore, heavier tails (Meyer, 1987). For all four fits, the t 

location-scale distribution suits the data, with outliers occurring roughly equally on both 

the positive and negative ends. Three parameters are used to calculate these distributions, 

the values of which are provided in Table 1. These parameters are referred to as the 

Figure 9 - Adaptive fit to JRA-55 model temperature output. 
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location parameter µ, which represents the mean absent outliers, and the scale parameter 

σ and shape parameter ν, which are used to calculate the variance and identify outliers for 

the purpose of computing the mean. 

 

 

 

Table 1         

Distribution Parameters for Figure 10 

Dataset 
Parameter values   

μ Σ ν   

ALO-USU -0.68 3.52 3.74   

ERA-20C -0.04 2.09 1.98   

MERRA-2 0.16 2.64 1.93   

JRA-55 0.09 2.05 2.69   
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Figure 10 – Fit residual distributions for ALO-USU (top-left), ERA-20C (top-right), 

MERRA-2 (bottom-left), and JRA-55 (bottom-right). 
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The other purpose of the 10-parameter fit was to identify real temperature 

outliers; that is, outliers that can be attributable to natural geophysical causes rather than 

poor fitting. In order to verify that the adaptive fit was maximizing capture of the actual 

data, the method was repeated with 12-parameter and 14-parameter fits to see if smaller 

oscillations were not getting adequately represented. Figure 11 shows the results of these 

differences plotted against the MERRA-2 dataset, which can be compared against the 10-

parameter MERRA-2 plot in Figure 8. 

 

Figure 11 - Adaptive fit to MERRA-2 using 12 (top) and 14 (bottom) parameters. 
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The higher-order fits reduced the number of significant outliers (defined as having 

a residual from the fit of greater than 10 K) by less than 5% in most cases, and less than 

1% in the case of the lidar data. Figure 12 displays a total monthly accounting of outlier 

occurrence, where it can be seen that although differences exist, they are minor and do 

not change any major conclusions that can be drawn from the fit method results. 

Additionally, the average value of the fitted temperatures changed by less than a 

thousandth of a degree in all cases except that of the lidar, where it changed by less than a 

tenth of a degree. Based on this information the 10-parameter fit was deemed to be 

adequate for the purposes of this study, and the 12-parameter and 14-parameter fits were 

not used in their current form in order to avoid overfitting the data. Figure 12 also shows 

that all outliers occur in the colder half of the year, when geophysical variability is higher 

(Liu et al., 2004) and real outliers should be most expected. There are typically more 

outliers in the spring than in the fall. With such a seasonal distribution it should come as 

no surprise that the ALO-USU data has significantly less total outliers, as weather-related 

reasons more frequently prevent lidar measurements from taking place during the height 

of outlier occurrence. While the existence of the outliers also makes it more difficult to 

perform comparisons between the lidar and model data in those months, those dates can 

still be assessed using the non-fitted data where it exists, and the identification of the 

outliers is valuable for future research. Tables 5 through 8, found in Appendix B, provide 

a full month-to-month accounting of the number of outliers in each dataset.  
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A thorough investigation of differences on individual days, as well as an 

examination of specific outliers, was deemed beyond the scope of this thesis and left 

mostly for future work, although there are a few exceptions that were identified for minor 

postulation. For the most valuable comparisons, information was divided into tables 

representing each month of the 11-year period. Four different varieties of average month 

Figure 12 – Comparison of different parameterization regimes using outliers from the 

fits to ALO-USU (top-left), ERA-20C (top-right), MERRA-2 (bottom-left), and JRA-55 

(bottom-right). 
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were created for each dataset, along with their standard deviations. It is highly 

recommended that the reader bookmark this page to use as a reference for continued 

reading. These data subsets will be referred to by abbreviations (where ### is the dataset-

specific abbreviation: LID for ALO-USU, ERA for ERA-20C, MER for MERRA-2, and 

JRA for JRA-55) to keep this presentation as straightforward as possible: 

1. ###-REAL, an average of all available dataset temperatures. 

2. ###-RLID, an average of dataset temperatures only from days that also have 

available lidar measurements. 

3. ###-FIT, an average of all temperatures predicted by the fit. 

4. ###-FITL, an average of fit-predicted temperatures only from days that also 

have available lidar measurements. (Note: FITL is not used in many of the 

upcoming examples comparing the data. However, the FITL values are all 

provided in tables along with the other data subset results in Appendix C.) 

As an example to check understanding, the subset MER-REAL includes all 4171 

temperatures output from the MERRA-2 model used as the basis for any other 

calculations, fits, or subsets of the MERRA-2 data. The subset MER-FIT also contains 

4171 temperatures, but these are the predicted temperature values resulting from the 

adaptive application of equation 3.2 to the data as was described previously. Both MER-

RLID and MER-FITL contain only 650 temperatures, and are the respective subsets of 

MER-REAL and MER-FIT that transpire on days concurrent with real ALO-USU 

Rayleigh lidar measurements. Note that for the lidar dataset, LID-REAL and LID-RLID 
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are equal (the lidar-days-only subset is the same as the total dataset), but LID-FIT and 

LID-FITL are not, since the fit predicts daily temperature values regardless of the 

existence of a co-temporal data point. This means LID-FIT provides daily temperatures 

over the entirety of the measurement period, filling in the gaps when measurements were 

not taken. This was a major driver behind applying a fit in the first place. 

A single average over the entirety of each dataset was also performed, the results 

of which are in Table 2. The complete averages suggest that the models are all colder 

overall than the real temperatures measured by the lidar, though the standard deviations 

are too large to definitively say based on this comparison alone. Regardless, the smallest 

difference across any two means is found between ERA-FIT and LID-FIT at 1.55 K, 

which is still larger than all but the maximum ALO-USU uncertainties identified by 

Herron and Wickwar (2018) at 45 km altitude in their composite year analysis. Notably, 

the largest total average differences occur in the comparisons between the non-fitted data 

subsets, suggesting that the fit method may be smoothing over some genuine differences. 
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Table 2         

Whole Dataset Statistics 

Dataset Subset 
Number of 

temperatures 
Mean (K) 

Standard 

deviation 

ALO-USU 

REAL 650 264.61 8.61 

RLID 650 264.61 8.61 

FIT 3998 262.51 8.09 

FITL 650 263.92 7.13 

ERA-20C 

REAL 4383 260.97 7.67 

RLID 650 262.07 6.77 

FIT 4383 260.95 6.36 

FITL 650 262.33 5.45 

MERRA-2 

REAL 4171 257.84 9.18 

RLID 650 258.71 7.94 

FIT 4171 257.91 7.33 

FITL 650 258.86 7.11 

JRA-55 

REAL 4383 255.18 6.30 

RLID 650 256.64 5.50 

FIT 4383 255.19 5.27 

FITL 650 256.30 4.74 

 

Contrasts between the monthly LID data and the model dataset averages were not 

always straightforward due to the disparity in number of dates containing data. Any given 

month of LID-RLID, LID-FIT, or LID-FITL could directly be compared with its 

corresponding model counterpart using a simple difference, demonstrating the value of 

the fit in making some comparisons. For example, the March 1997 MER-FIT is 254.47 ± 

3.36 K, roughly 10 K colder than it’s LID-FIT at 264.89 ± 2.96 K. We can say fairly 

confidently that, according to the fit, and for our location and altitude, MERRA-2 

provides significantly colder temperatures than the actual measurements during March 
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1997. However, in any comparison with LID-REAL, we would always have a lower 

number of values involved in each average than a corresponding model dataset, 

compromising the fidelity of a simple difference. Therefore, for all monthly comparisons, 

including those with a common number of data points, a standard error for the difference 

between the means was calculated. This calculation was also employed by Le Pichon et 

al. (2015) to perform similar comparisons. From this statistic a t-test was then performed, 

providing for a confidence level for each difference.  

For a thorough example of the calculations, let us again examine March 1997, but 

this time we will compare MER-REAL and LID-REAL. MERRA-2 provides 

temperatures for all 31 days of March 1997, averaging out to 255.33 ± 2.93 K, while the 

lidar only operated on 9 of those days and provides an average of 260.07 ± 4.41. As 

discussed in a previous chapter, these standard deviations are the total measurement 

uncertainty, containing both the Poisson-derived temperature uncertainty and the 

geophysical variability (Argall & Sica, 2007; Herron & Wickwar, 2018; Leblanc et al., 

1998). The simple difference between the means comes to -4.74 K, much less than the 

difference in the fitted models, and possibly existing within overlapping error bounds. 

Due to the difference in the number of measurements we can’t be confident that the 

difference isn’t attributable to the lack of measurements or the uncertainties. So, using the 

available information we calculate the standard error of the mean difference, displayed 

below, where N is the number of measurements and σ is the standard deviation: 
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This is the value representing the error bars on the difference of the means, which comes 

to ± 1.25 K in our example. While we could eyeball it at this point and say we are pretty 

sure that the whole difference cannot be attributable to the lack of measurements, we can 

go further and perform a t-test, and then use a table to look up the associated p-value. 

Once we have obtained the standard error, the t-stat is easily computed using the 

following equation: 
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where the numerator is the absolute value of the simple difference between the means we 

initially calculated. The t-statistic for our example is 3.80, which we can use to look up a 

p-value from a statistical reference table. For this case, we get a p-value of less than 0.01, 

which gives us greater than 99% confidence that the difference in the means is real and 

cannot be explained by the variance in or lack of measurements, whatever the source. 

Note that this process is referred to as the “two-sided pooled t-procedure,” and assumes 

that the population standard deviations for each dataset are the same, even if the sample 

standard deviations may differ as they do here. Because the ultimate goal of climate 

modeling is to show no difference from reality, this appeared to be a safe assumption to 

make considering the possible existence of differences is precisely the point of the 

investigation. 
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Although a simple difference could have been used for comparisons in the cases 

of the RLID and FITL sets, the method described above comparing MER-REAL and 

LID-REAL was applied universally in order to obtain a homogenous approach to the 

results and avoid possible confusion. All conclusions take the associated p-values into 

account.  
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RESULTS 

There are a multitude of possible ways to present the data and calculated results 

covered by this thesis. Month-by-month tables for the entire 11-year period and the four 

data sources can be found in Appendix C, containing all four average subsets (Tables 12 

through 15), their standard deviations (Tables 16 through 19), and number of data points 

(Tables 9 through 11). The standard error of the mean difference and the t-statistic can be 

calculated from these tables using equations 3.3 and 3.4 respectively, and the t-statistic is 

used to calculate p-values as has all been explained in the previous chapter. 

One set of results for discussion are the average values of the parameters from 

equation 3.2. Since the fit is unique to each day, these parameters can sometimes vary 

wildly and there is difficulty in identifying any single value with which one can easily 

describe the shape and trend of the data as is commonly done in other studies. For 

example, there are no terms aimed at capturing the QBO, though the moving window 

allows its effects to be accounted for. Because of these inherent differences between 

study approaches, the only parameters consistent enough to provide a sensible 

comparison are the averages of the yearly amplitude parameters (B) and the averages of 

the linear trend parameters (K), outlined in Table 3. In order to provide a second way of 

looking at the yearly trend, a simple least-squares linear fit was also performed on each 

full dataset, the slope of which is referred to in the table as K alternative. While this was 

a less than ideal way of providing yearly parameters that are able to be compared with 

similar parameters in other studies, it was the best option within the scope of the thesis. 
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Table 3             

Selected Average Fit Parameters 
    

    

Dataset 

Parameter B Parameter K K alternative 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

ALO-USU 10.61 1.53 1.62 1.92 0.77 0.93 

ERA-20C 8.65 0.40 -0.10 0.48 -0.03 0.49 

MERRA-2 9.64 1.55 0.20 1.11 0.42 1.21 

JRA-55 7.36 0.44 0.03 0.25 -0.04 0.24 

Note. Units for all parameters displayed here are kelvins / year. 

 

 Moving on to the temperature results and their comparisons, it is much more 

valuable to provide a visual context to data such as this rather than discuss the raw 

numbers, of which there are many. One approach is to form a composite year. By 

following the procedure outlined by Herron & Wickwar (2018), we can produce the 

graphs shown in Figures 13 and 14, with σ defined as the standard deviation of the mean 

(Bevington, 1969) and dotted lines on the plots representing 3σ error bars rather than 2σ 

or 1σ for visibility’s sake. Both of these plots support a few broad conclusions: 

1. The ALO-USU lidar generally reports warmer temperatures than the models, 

with some seasonal exceptions. 

2. Among the models, ERA-20C is the warmest, and JRA-55 is the coldest. 

3. Only ERA-20C appears to have much non-winter overlap with the lidar. 

4. We can be almost entirely certain that the models are underestimating 

summertime temperatures. 
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Figure 13 – Composite years (FULL datasets). 

Figure 14 – Composite years (FIT datasets). 
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 These same broad conclusions tend to play out repeatedly in further analyses of 

the data. However, more temporal granularity is helpful in identifying specific 

differences and weak points in the models that need to be addressed. This was the main 

motivation for applying a fit to the data in the first place. A daily difference between the 

models and the lidar is not possible because the lidar wasn’t taking measurements every 

day. For many cases, the fit provides a decent approximation for what the lidar should 

have measured, so we can instead compare the model data to the lidar data’s fit. 

Subtracting the REAL dataset for each model from LID-FIT yields Figures 15 through 

17, which provide a birds-eye view of daily estimated differences between lidar 

measurements and each reanalysis model. 

 

Figure 15 – Difference between fitted lidar temperatures and ERA-20C output. 
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Figure 16 – Difference between fitted lidar temperatures and MERRA-2 output. 

Figure 17 – Difference between fitted lidar temperatures and JRA-55 output. 
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This finer look at the differences appears to correspond well with the composite 

years for each respective dataset. As the composite years in Figures 13 and 14 illustrate, 

LID-FIT typically dips below LID-REAL in the fall, which makes ERA-REAL appear 

comparatively warmer than the lidar on Figure 15 during that season on most years. This 

anomaly isn’t duplicated in the comparison with the other REAL datasets, however. By 

breaking down the differences on a day to day basis we have also revealed a significant 

amount of interannual variability that is lost in the formulation of a composite year. 

Especially noticeable are the years 2001 and 2004, where the lidar seems to be 

respectively colder and warmer than appears typical. Aside from the additional detail and 

an occasional spike or dip here and there, the broad conclusions arrived at from the 

composite years generally hold true. However, one should be careful to note that the fit is 

least accurate in the winter months, tending to smooth over real geophysical variability. 

The winter season also corresponds with the largest temporal gaps in lidar data where 

LID-FIT is less guided by real measurements. Therefore, many differences present in 

Figures 15 through 17 during these times could very likely be due to inaccurate fitting 

rather than an actual difference that the lidar may have otherwise captured had it been 

operable on those days. It may be more appropriate to compare FIT datasets directly, 

rather than subtract a REAL from a FIT. This has been done for Figures 18 through 20 on 

the following pages. 
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Figure 18 – Difference between fitted lidar temperatures and fitted ERA-20C output. 

Figure 19 – Difference between fitted lidar temperatures and fitted MERRA-2 output. 
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The data smoothing caused by the fit method is now significantly more 

noticeable, which turns out to be useful in making the general trends easier to resolve at a 

glance. There are several temperature oscillations in the fit differences that seem 

abnormal, and worth more study, such as the cold lidar temperatures from April-May 

1995. The years 1999-2002, close to the solar cycle maximum, also appear to have 

generally smaller differences, possibly indicating larger solar-cycle-related changes than 

the models are accounting for. This is, of course, still a bird’s-eye view, and it serves as a 

starting point for further research more than leading quickly to any new conclusions. 

The most valuable and far-reaching results of this study come from the monthly 

means of the datasets, for which confidence intervals on the differences have been 

Figure 20 – Difference between fitted lidar temperatures and fitted JRA-55 output. 
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calculated as discussed in the previous chapter. These are comparisons of the actual lidar 

measurements with the output from the models, and no fitting is involved whatsoever. In 

Figures 21 through 23 a colored grid is displayed. These are arranged like the previous 

few sets of figures, except there is only one value per month: the REAL model dataset 

monthly average subtracted from the corresponding LID-REAL monthly average. In 

addition to the color representing the difference, a hatching pattern has been applied to 

each monthly box to illustrate the confidence level, i.e. how sure we are that the 

difference cannot be ascribed to any associated uncertainty. The solid color has been left 

as-is without any hatching pattern applied whenever the p-value for that difference is less 

than 0.01, indicating more than 99% confidence in the reality of that difference.  

 

Figure 21 – Monthly mean differences between lidar temperatures and ERA-20C output. 
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  Figure 22 – Monthly mean differences between lidar temperatures and MERRA-2 output. 

Figure 23 – Monthly mean differences between lidar temperatures and JRA-55 output. 
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 The combination of an increase in geophysical variability and decrease in number 

of lidar measurements during the winter appears to remain the greatest source of 

uncertainty, whether a fit is used or not. This fact is indicated by the increase in hatching 

patterns outside of summer months, and it correlates quite well with the distribution of fit 

outliers as given in Figure 12. Regardless, there are some impressive and statistically 

significant deviations from the lidar measurements in all three models, even at these 

times when lidar measurements are at their most sparse. Table 4 displays the values for 

all winter months (December, January, & February) with 95% confidence or more in all 

three model differences, excepting where one of the three model differences only exceeds 

90% confidence, in which case those are marked by an asterisk. It is notable that in this 

example only the February 1994 differences show any model producing temperatures 

higher than that of the ALO-USU measurements.  

 

Table 4       

Winter Temperature Difference Highlights 

Month 

Model difference from lidar (K) 

ERA-20C 
MERRA-

2 
JRA-55 

February 1994 -6.14* 6.12 -2.78 

December 1994 6.63* 12.30 13.65 

January 1995 12.47 8.34 8.28 

February 1995 6.79 16.01 11.56 

December 1999 14.03 19.85 16.17 

January 2000 25.61 20.64* 26.98 

January 2003 9.61 6.96* 9.34 

February 2003 2.17 10.98* 11.55 
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While working toward these results, one concern was over possible inaccuracies 

due to the disparate number of measurements between LID-REAL and any model 

dataset. Although the entire purpose of performing the two-sided pooled t-procedure was 

to give a statistically robust answer to this question, the RLID datasets also exist to 

corroborate the accuracy of the comparisons. Since the RLID datasets only contain data 

co-temporal with lidar measurements there is no discrepancy in measurement number. 

Performing all the same calculations, and charting the data in the same way as Figures 21 

through 23, we can produce Figures 24 through 26.  

 

 

 

 

Figure 24 – Monthly mean differences between lidar temperatures and exclusively  

co-temporal ERA-20C output alone. 
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Figure 25 – Monthly mean differences between lidar temperatures and exclusively 

co-temporal MERRA-2 output alone. 

Figure 26 – Monthly mean differences between lidar temperatures and exclusively 

co-temporal JRA-55 output alone. 
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Some predictable small dissimilarities exist between the FLID difference and the 

FULL difference, simply due to content. The most important change between the two is 

the fact that the FLID comparison shows lower confidence in the differences in general. 

This is an expected consequence of having fewer total measurements involved. As N 

increases, the standard deviation decreases. Therefore, the statistical validity of the FULL 

difference makes it the more accurate comparison. Regardless, the FLID differences 

confirm much of what has already been said and add further weight to the conclusions. 

Lastly, perhaps of interest to some readers is a straightforward presentation of the 

monthly averages themselves rather than the differences. These have been provided in 

Figures 27 through 30 below for all four FULL datasets. The most noteworthy thing 

about these is how they demonstrate a veritable lack of interannual variability in the 

models when compared with the genuine lidar measurements. Once again, those curious 

about the RLID, FIT, or FLIT data can find the complete data tables in Appendix C. 



72 

 

 

    

Figure 27 – Lidar measurement monthly averages. 

Figure 28 – ERA-20C output monthly averages. 
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Figure 29 – MERRA-2 output monthly averages. 

Figure 30 – JRA-55 output monthly averages. 
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DISCUSSION & CONCLUSION 

A common practice in long-term upper-atmospheric studies is to apply spectral or 

signal analysis techniques such as Fourier transforms or Lomb-Scargle periodograms to 

examine the phases and amplitudes of a variety of wave phenomena. As explained at the 

beginning of the previous chapter, the adaptive application of the Levenberg-Marquardt 

fit using equation 3.2, while an interesting new way to approach the examination of the 

data, doesn’t allow for the simple cross-comparison of the parameters that is so often 

done in similar studies. Additional work of this nature and for the express purpose of 

comparing with other studies was not performed at this time. 

However, the values may still be comparable for the average parameters B and K 

from equation 3.2 that were listed in Table 3. These results, representing the yearly 

amplitude and linear trends respectively, mark a departure from other studies examining 

similar parameters at near-stratopause altitudes. The average yearly amplitude of 10.61 ± 

1.53 is larger than the yearly amplitudes of any other study at this altitude and latitude, 

with most putting the amplitude in the range of 6-7 K (Leblanc et al., 1998). Indeed, the 

ALO-USU composite year climatology ranges from 250-275 K, a broader range by a few 

degrees than both the maximum and minimum temperatures identified by Argall and Sica 

in 2007. While the parameters for the models are lower, they are still a bit higher than 

previous studies. This consistency seems to indicate either that a larger yearly amplitude 

at our location is normal, or that averaging the parameters is not the best approach for 

comparison. It isn’t out of the question to suggest that local geographic features such as 

the Rocky Mountains cause longitude-dependent wave activities not found to such a 
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degree elsewhere at this latitude, which could certainly be responsible for pushing 

temperatures near the stratopause both higher and warmer as the waves oscillate. Such 

physical activity has also been shown to create a double stratopause, which may lead to 

abnormal temperature fluctuations around the 45 km altitude examined here (Sivakumar 

et al., 2006). 

As for the linear trend parameter, Batista et al. (2009) found a small negative 

trend between 40 and 50 km of roughly -1.5 K per decade, although their low-latitude 

location (23° S) may be responsible for the difference. Unfortunately, other studies 

looking for a linear trend at 45km have been inconclusive (Hauchecorne et al., 1991). 

The fit parameter average for the ALO-USU data works out to 1.62 ± 1.98 K per year, 

indicating the likelihood of a small but fickle increase in temperatures at 45 km over the 

period of study. On the other hand, this calculation may be artificially inflated by the 

combination of the nature of the moving fit and the relative lack of lidar data during 

colder periods. This reasoning is additionally supported by the facts that the same 

parameter yields very neutral trends for the other datasets, as does the alternative trend 

approach of applying a simple linear fit to the data. Overall, these parameter averages 

should probably only be used with some understanding of the source and a decent helping 

of restraint. Future work could include analyzing the distribution of the parameter values 

to see if there are any further insights to be found there. 

Another prime candidate for future study would be the outliers from the fit. 

Specifically, determining their causes and examining their impacts in the vertical altitude 

dimension across a few neighboring days could easily yield several years of work. A very 
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basic proof-of-concept of a possible procedure for doing this was put together for 

presentation at the 2015 NCAR Advanced Study Program summer colloquium (Moser, 

Wickwar, Navarro, & Herron, 2015). To summarize that short study, a cluster of outliers 

common to all four datasets occurred in December 1998. Closer examination revealed a 

50 K amplitude wave taking place over several days around the stratopause. In looking 

for a source of the wave, surface-level weather maps and observational data indicated the 

concurrent passage of a strong cold front and winter storm system that saw surface 

temperatures drop 15 K in less than 24 hours. Additionally, Sox et al. (2016) identified 

strong SSW activity during the same period in the ALO-USU lidar profiles. While the 

examination of outliers didn’t move beyond this type of associative work, it should be 

easy to see the potential for studying and identifying atmospheric phenomena, and 

especially coupling mechanisms between atmospheric layers that are likely to be tied to 

the presence of outliers. 

Finally, the widely-applicable crux of this thesis is that of the temperature 

differences between reanalysis model output and the lidar temperature measurements. 

The January & February months for both 1995 and 2003 in Table 4 happen to coincide 

with SSW events observed to have impacts at our location by Sox et al. (2016). It isn’t a 

stretch to assume that this could be the reason for those particular differences, and that 

other geophysical phenomena (e.g. gravity waves, Baumgarten et al., 2018; planetary 

waves, Beissner, 1997; tides, Sakazaki et al., 2018; and double stratopause, Sivakumar et 

al., 2006) could similarly drive differences at some other times. 
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As has been suggested by Sakazaki et al. (2018), the relatively short timescales on 

which some atmospheric tides and gravity wave activity can take place lead to a variety 

of effects at 45 km that modern models don’t have the temporal resolution to accurately 

simulate. It is very likely that the location of ALO-USU near the Rocky Mountains 

makes for a much more dynamic atmosphere than at other longitudes, but this would 

need to be confirmed by studies similar to this one in scope and style at different 

longitudes but the same latitude across the globe. One candidate for this is the Rayleigh-

Mie-Raman lidar at Observatory of Haute Provence (44° N) in France. They have 

actually done a similar study previously, but across a different and much shorter time 

frame (2012-2013), and the only model comparison they performed in common with this 

thesis was using ERA-20C (Le Pichon et al., 2015). Their 95% distribution exceeds 30 K 

in the 40-60 km range, rendering any conclusive comparison between lidar measurement 

and model output questionable at best, but the overall trend seen here where the models 

tend to be systematically colder than the lidar still appears to be somewhat present. They 

do take the opportunity to single out SSWs as being underrepresented in the models, but 

they also point to the fact that large-scale planetary waves generally have more variability 

during winter months as another source of model deviation from measurements. 

Schöch et al. (2008) also compared lidar data with an ECMWF product that they 

don’t identify clearly in their paper, although their lidar is also at a much higher latitude 

(63.9° N) than ALO-USU. The 45 km altitude shows no significant differences between 

the model and the lidar at their location, suggesting that (assuming their ECMWF product 

is a modern one) the models could be functioning more accurately closer to the poles than 
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at mid-latitudes. The most common lidar comparisons are done between lidar 

measurements and common empirical reference models such as the Committee on Space 

Research International Reference Atmosphere (CIRA) and the Mass-Spectrometer-

Incoherent-Scatter model (MSIS) (Batista et al., 2009; Hauchecorne et al., 1991). Even 

these studies find their measurements to be mostly in agreement with models. If anything, 

it is more common for the 45 km temperatures to measure colder than the reference 

atmospheres (Argall & Sica, 2007). 

In contrast to all of these previous studies, we have very high confidence in large 

systematic differences over a long period of time, mostly on the side of the lidar reading 

hotter than the models. Surprisingly, the most confident and consistent result of this 

thesis is that popular modern models are nearly always too cold at 45 km in the summer 

months at our location. This is also when geophysical variability is at its lowest and 

simulations should be performing without many issues. Although middle-atmospheric 

geophysical phenomena are certainly taking place to some degree at all times of the year, 

these highly significant differences in summer manifest so reliably that they cannot 

possibly be attributed to the models’ inability to resolve such phenomena in the temporal 

domain. Instead, this result points to either a serious deficiency in the modeling of 

prevailing physics and chemistry components, or the dearth of assimilated measurements 

used to validate the model output in the middle atmosphere. Pawson et al. (2000) studied 

the stratospheric processes involved in 13 different middle atmosphere climate models, 

and appears to confirm the latter hypothesis by stating:  
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“Although all 13 models evaluated represent most major features of the 

mean atmospheric state, there are deficiencies in the magnitude and 

location of the features, which cannot easily be traced to the formulation 

(resolution or the parameterizations included) of the models.”  

As if to further endorse the results of this thesis, the study goes on to show a cold bias in 

most models at almost all locations and vertical levels. Despite the fact that the Pawson 

study took place nearly 20 years ago, this still appears to be a significant problem. 

As the major reanalysis models move toward whole-atmosphere simulation 

(Fujiwara et al., 2017; Molod et al., 2015), they are very likely incorporating the same 

elements used in the middle atmosphere models examined by Pawson et al. (2000), and 

suffering the same results at altitudes where the options for data assimilation are 

relatively sparse. Although most of the observational data assimilated by the models in 

the middle atmosphere is provided by temporally-reliable satellite measurement, Hoppel 

et al. (2013) has indicated that the peak of satellite measurement accuracy occurs at 

altitudes below 35 km. These measurements have been shown to improve considerably 

when satellite networks are upgraded with newer technology (Keckhut et al., 2001), but 

even very recent studies have confirmed that modern satellite measurements are not 

nearly enough to provide the required level of model validation (Sakazaki et al., 2018; 

Wing et al., 2018). This problem can only grow in size as model resolution continues to 

improve. In order to achieve the verifiable accuracy the groups behind the models are 

surely striving for, they will need to greatly expand the amount and variety of 

measurement data used as inputs to their products. 
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The ALO-USU Rayleigh-scatter lidar has provided high-precision temperature 

measurements for many years. The instrument has been upgraded to achieve higher 

altitude measurements since the data used in this study was recorded, and a sodium lidar 

has joined ALO-USU as well. The initial stages of an expansion to collect data lower into 

the stratosphere have also taken place. It is hoped that future work can include an 

extension of this thesis; examining outliers in detail and fine-tuning the fit method and its 

applications. Although modern reanalysis models are constantly improving, systematic 

issues with middle-atmospheric simulation continue to exist. This will be an increasingly 

important problem to solve as the models continue to expand in scope and incorporate 

higher altitudes. It is clear that current reanalyses aren’t assimilating enough 

measurements at these altitudes to provide for an adequate validation of model output. In 

comparing the ALO-USU Rayleigh-scatter lidar data with the reanalysis models it has 

been demonstrated that large and significant differences exist between the models and 

measurements at our location. While this includes several anomalous dates that are 

probably attributable to geophysical variability, there is also a persistent cold bias in the 

models during summer time when such an attribution is much less plausible. Truly, 

modelers would do well to begin assimilating datasets like that provided by ALO-USU 

that cover the gaps in their data to directly address problem-areas. This applies 

particularly at the lower altitudes of the lidar data integration where the measurement 

errors become irrelevant. 
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APPENDIX A. ENLARGED ADAPTIVE FIT IMAGES 

Figure 31 – 

Adaptive fit to 

ALO-USU 

Rayleigh-scatter 

temperature 

measurements 

(enlarged). 
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Figure 32 – 

Adaptive fit to 

ERA-20C model 

temperature 

output (enlarged). 
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Figure 33 – 

Adaptive fit to 

MERRA-2 model 

temperature 

output (enlarged). 
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Figure 34 – 

Adaptive fit to 

JRA-55 model 

temperature 

output (enlarged). 
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APPENDIX B. OUTLIER TABLES 

Table 5 

Lidar Dataset 

Monthly Outliers 

per Number of Fit 

Parameters 
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Table 6 

ERA-20C Dataset 

Monthly Outliers 

per Number of Fit 

Parameters 
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Table 7 

MERRA-2 Dataset 

Monthly Outliers 

per Number of Fit 

Parameters 
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Table 5 

JRA-55 Dataset 

Monthly Outliers 

per Number of Fit 

Parameters 
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APPENDIX C. COMPLETE RESULT TABLES 

Table 9 

Number of 

Temperatures per 

Month per 

Dataset (REAL 

Subset) 
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Table 10 

Number of 

Temperatures per 

Month (All 

Datasets, RLID & 

FITL Subsets) 
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Table 11 

Number of 

Temperatures 

per Month per 

Dataset (FIT 

Subset) 
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Table 12 

Mean Monthly 

Temperatures (K) 

per Dataset 

(REAL Subset) 
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Table 13 

Mean Monthly 

Temperatures (K) 

per Dataset (RLID 

Subset) 
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Table 14 

Mean Monthly 

Temperatures (K) 

per Dataset (FIT 

Subset) 
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Table 15 

Mean Monthly 

Temperatures (K) 

per Dataset (FITL 

Subset) 
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Table 16 

Standard 

Deviations of 

Monthly Average 

Temperatures (K) 

per Dataset 

(REAL Subset) 

 



112 

 

 

Table 17 

Standard 

Deviations of 

Monthly Average 

Temperatures (K) 

per Dataset (RLID 

Subset) 

 



113 

 

 

Table 18 

Standard 

Deviations of 

Monthly Average 

Temperatures (K) 

per Dataset (FIT 

Subset) 
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Table 19 

Standard 

Deviations of 

Monthly Average 

Temperatures (K) 

per Dataset (FITL 

Subset) 
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APPENDIX D. ORIGINAL MATLAB CODE 

adaptivefit.m: 

function [tvals,dailymodel,eqn,nudatas] = 

adaptivefit(datas,Ncoefficients) 
% Performs a day-by-day adaptive fit to a dataset 
% Put datas array as time vs response 

  
maxdays = max(datas(1,:)) - min(datas(1,:)) + 1; 
tvals = min(datas(1,:)):max(datas(1,:)); 

  
% Set flag if data missing within timespan of data 
if maxdays > length(datas(1,:)) 
    sparse = 1; 
else 
    sparse = 0; 
end 

  
% Make sure timespan is long enough for 3-year algorithm 
if maxdays < 1095 
    beep; 
    fprintf(2,'Check urself b4 u wreck urself'); 
    return 
else 
    dailymodel = cell(1,maxdays); 
end 

  
if sparse == 1 
    nudatas(1,:) = (datas(1,:) - 727930) / 365; % Only lidar data is 

sparse 
    tvals = (tvals - 727930) / 365; 
else 
    nudatas(1,:) = datas(1,:) / 365; 
    tvals = tvals / 365; 
end 

  
nudatas(2,:) = datas(2,:); 

  
if sparse == 1 

     
    j = 1; 

     
    while datas(1,j) <= datas(1,1)+1095 
        tempdata = nudatas(:,j); 
        j = j + 1; 
    end 

     
    todaysmod = modelcalc(tempdata,Ncoefficients); 
    todayscoeff = todaysmod.Coefficients.Estimate; 
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    eqn = todaysmod.Formula.ModelFun; 

     
    for i = 1:548 
        dailymodel{i} = todayscoeff; 
    end 

     
    for i = 549:maxdays-547 
        clear tempdata; 
        j = find(datas(1,:)<datas(1,1)+i,1,'last'); 
        k = find(datas(1,:)<=datas(1,j)+547+i,1,'last'); 
        tempdata = nudatas(:,j:k); 
        todaysmod = modelcalc(tempdata,Ncoefficients); 
        todayscoeff = todaysmod.Coefficients.Estimate; 
        dailymodel{i} = todayscoeff; 
    end 

     
else 

     
    tempdata = nudatas(:,1:1095); 
    todaysmod = modelcalc(tempdata,Ncoefficients); 
    todayscoeff = todaysmod.Coefficients.Estimate; 
    eqn = todaysmod.Formula.ModelFun; 

     
    for i = 1:548 
        dailymodel{i} = todayscoeff; 
    end 

     
    for i = 549:maxdays-547 
        tempdata = nudatas(:,i-547:i+547); 
        todaysmod = modelcalc(tempdata,Ncoefficients); 
        todayscoeff = todaysmod.Coefficients.Estimate; 
        dailymodel{i} = todayscoeff; 
    end 

     
end 

  
for i = maxdays-546:maxdays 
    dailymodel{i} = todayscoeff; 
end 

  
end 

 

modelcalc.m: 

function modelout = modelcalc(datas,Ncoefficients) 
% calculates the daily fit model for adaptive fit 

  
warning('off','stats:nlinfit:IllConditionedJacobian'); 

  



117 

 
par0 = ones(Ncoefficients,1); 
% Set par1 if initial guesses desired, otherwise comment line out 
% The below worked for CEDAR 
%par1 = [260;10;181;1.25;140;1;65;1;14]; par0 = par1(1:Ncoefficients); 
par1 = [260;10;181;1.25;140;1;65;1;14;1;10;1;5;1]; par0 = 

par1(1:Ncoefficients); 

  
switch Ncoefficients 
    case 3 
        %predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)/12); 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)); 
    case 5 
        %predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)/12) + 

p(4)*sin(2*pi*t + p(5)/6); 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)); 
    case 7 
        %predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)/12) + 

p(4)*sin(2*pi*t + p(5)/6) + p(6)*sin(2*pi*t + p(7)/3); 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)) + p(6)*sin(6*pi*t + p(7)); 
    case 9 
        %predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)/12) + 

p(4)*sin(2*pi*t + p(5)/6) + p(6)*sin(2*pi*t + p(7)/3) + p(8)*sin(2*pi*t 

+ p(9)/1.5); 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)) + p(6)*sin(6*pi*t + p(7)) + p(8)*sin(8*pi*t + 

p(9)); 
    case 10 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)) + p(6)*sin(6*pi*t + p(7)) + p(8)*sin(8*pi*t + 

p(9)) + p(10)*t; 
    case 12 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)) + p(6)*sin(6*pi*t + p(7)) + p(8)*sin(8*pi*t + 

p(9)) + p(10)*sin(12*pi*t + p(11)) + p(12)*t; 
    case 14 
        predicted = @(p,t) p(1) + p(2)*sin(2*pi*t + p(3)) + 

p(4)*sin(4*pi*t + p(5)) + p(6)*sin(6*pi*t + p(7)) + p(8)*sin(8*pi*t + 

p(9)) + p(10)*sin(12*pi*t + p(11)) + p(12)*sin(24*pi*t + p(13))+ 

p(14)*t; 
    otherwise 
        beep; 
        fprintf(2,'Check urself b4 u wreck urself'); 
        return 
end 

  
predictor = datas(1,:); 
response = datas(2,:); 
modelout = fitnlm(predictor,response,predicted,par0); 

  
end 
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plotafit.m: 

function [resids,fighandle,fitted] = 

plotafit(tvals,dailymodel,eqn,nudatas) 
% Plots a dataset with its adaptive fit 
% Get required inputs from adaptivefit.m 

  
yvals = zeros(1,length(tvals)); 
%clear yvals 
resids = zeros(1,length(nudatas(1,:))); 
temp = 0; 

  
%for i = 1:200 
for i = 1:length(tvals) 
    yvals(1,i) = eqn(dailymodel{i},tvals(i)); 
    j = find(nudatas(1,:)==tvals(i)); 
    if ~isempty(j) 
        temp = temp + 1; 
        resids(temp) = yvals(1,i) - nudatas(2,j); 
    end 
end 

  
figure; 
fighandle = 

plot(nudatas(1,:),nudatas(2,:),'k.',tvals,yvals,'r','LineWidth',1.7,'Ma

rkerSize',12); 
%fighandle = 

plot(nudatas(1,1:200),nudatas(2,1:200),'k.',tvals(1:200),yvals,'r','Lin

eWidth',1.7,'MarkerSize',12); 
xlim([0 12]); 
pos = get(gcf, 'Position'); 
set(gcf, 'Position', [pos(1) pos(2) 14.5*100 5*100]); 
xlabel('Year','FontSize',15); 
ylabel('Temperature (K)', 'FontSize',15); 
title('Adaptive Model','FontSize',15); 
set(gca, 'FontSize',15,'LineWidth',1.5); 
%legend('Avg. Nightly Temperature','Regression 

Fit','Location','SouthWest'); 
set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003',[]}); 
%set(gca,'YTickLabel',{[],'230','240','250','260','270','280',[]}); 

  
end 

 

quickmarkoutliers.m: 

function graphout = quickmarkoutliers(commonout,varargin) 
% this function can be used to mark outliers of temp data 
% Pass model data as model{i} 
if length(commonout(:,1)) ~= length(varargin)+1 
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    fprintf(2,'Include each model as arguments.'); 
    return 
end 

  
graphout = commonout; 

  
for i = 2:length(graphout(:,1)) 

     
    otherout = table2array(varargin{i-1}.Variables)'; 
    temp = 0; 

     
    for j = 1:length(graphout(1,:)) 
        k = find(otherout(1,:)==graphout(1,j)); 
        graphout(i,j) = otherout(2,k); 
    end 

     
end 

  

  
end 

 

coefout.m: 

function coefout(models) 
% Exports coefficients from model fits to a table for easy access 

  
data = zeros(models{1}.NumCoefficients,2*length(models)); 
offset = 0; 

  
if exist('coefficients.xls') == 2 
    delete('coefficients.xls'); 
end 

  
for i = 1:length(models) 
    data(:,i+offset) = models{i}.Coefficients.Estimate; 
    data(:,i+offset+1) = models{i}.Coefficients.SE; 
    offset = offset + 1; 
end 

  
offset = 0; 
offset2 = length(data(:,1)) + 1; 

  
for i = 1:length(models) 
    data(offset2,i+offset) = models{i}.Rsquared.Adjusted; 
    data(offset2+1,i+offset) = models{i}.NumObservations; 
    offset = offset + 1; 
end 
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dataT = array2table(data); 
writetable(dataT,'coefficients.xls'); 

  
end 

 

quickdiff.m: 

function [avgdiff,stddev] = quickdiff(nudatassparse,nudatasfull) 
% Gives the average difference from a sparse array (lidar) to a full 

array 

     
    temparray = zeros(1,length(nudatassparse(1,:))); 
    offset = 0; 

     
    for i = 1:length(nudatassparse(1,:)) 
        j = find(nudatasfull(1,:)==nudatassparse(1,i)); 
        if isempty(j) 
            %temparray(1,end) = []; 
            %offset = offset + 1; 
        else 
            temparray(1,i-offset) = nudatassparse(2,i) - 

nudatasfull(2,j); 
        end 
    end 

     
    temparray(temparray==0) = []; 
    avgdiff = mean(temparray); 
    stddev = std(temparray); 

     
end 

 

compareoutliers.m: 

function commonout = compareoutliers(varargin) 
% Used to find common outliers between datasets 
% Function arguments should be 2xN matrices containing outliers and 

their 
% timestamps. These are produced from outliers.m as an output. 

  
commonout = flipud(varargin{1}); 

  
for i = 2:length(varargin) 

     
    otherout = flipud(varargin{i}); 
    temp = 0; temparray = []; 

     



121 

 
    for j = 1:length(commonout(1,:)) 
        k = find(otherout(1,:)==commonout(1,j)); 
        if isempty(k) 
            temp = temp + 1; 
            temparray(temp) = j; 
        else 
            commonout(i+1,j) = otherout(2,k); 
        end 
    end 

     
    if ~isempty(temparray) 
        commonout(:,temparray) = []; 
    end 

     
    if isempty(commonout) 
        beep; 
        fprintf(2,'There are no common outliers between the 

datasets.\n'); 
        return 
    end 

     
end 

  
end 

 

compositeyear.m: 

function modelcompositeyear = compositeyear(modelnudatas) 
% takes in a 2 x days sized matrix with dates as decimal values in the 
% first row and temps in the second row, spits out a single-year 

composite 
% year average and std dev of 31 days x 7 years. 

  
datenums = modelnudatas(1,:)*365 + 727930; % convert decimal dates to 

whole number datenums 
modelcompositeyear = zeros(3,365); 

  
% get dates +/- 15 days 

  
for i = 1:365 

     
    modelcompositeyear(1,i) = (i - 1); 
    datevalues = zeros(12,31); 

     
    for j = 1:12 

         
        for h = -15:15 

             
            trydate = (((j - 1)*365) + (i - 1)) + h + 727930; 
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            % Find the date within a tolerance to avoid errors 
            hello = find(abs(datenums - trydate) < 0.1); 

             
            if hello > 0 
                datevalues(j,h+16) = modelnudatas(2,hello); 
            else 
                datevalues(j,h+16) = NaN; 
            end 

             
        end 

         
    end 

     
    goodnums = ~isnan(datevalues); 
    goodvals = datevalues(goodnums); 
    modelcompositeyear(2,i) = mean(goodvals(:)); 
    modelcompositeyear(3,i) = 

3*(std(goodvals(:))/sqrt(length(goodvals))); % 99% confidence error 

bars 

     
end 

  
end 

 

monthdivide.m: 

function modelmonthly = monthdivide(modelnudatas) 
% takes in nudatas and spits out a cell array 11 x 12 x 2 where each 

cell is a 
% numerical array of the dates and temps for that month of that year 

  
modelmonthly = cell(12,12,2); 
datenums = modelnudatas(1,:)*365 + 727930; % convert decimal dates to 

whole number datenums 
runningdate = 727930; 

  
for i = 1:12 

     
    for j = 1:12 

         
        switch j 
            case 1 
                totdays = 31; 
            case 2 
                if leapyear(1992 + i) 
                    totdays = 29; 
                else 
                    totdays = 28; 
                end 
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            case 3 
                totdays = 31; 
            case 4 
                totdays = 30; 
            case 5 
                totdays = 31; 
            case 6 
                totdays = 30; 
            case 7 
                totdays = 31; 
            case 8 
                totdays = 31; 
            case 9 
                totdays = 30; 
            case 10 
                totdays = 31; 
            case 11 
                totdays = 30; 
            case 12 
                totdays = 31; 
        end 

         
        locales = find(datenums >= runningdate & datenums < 

runningdate+totdays); 
        modelmonthly{i,j,1} = modelnudatas(1,locales); 
        modelmonthly{i,j,2} = modelnudatas(2,locales); 
        runningdate = runningdate + totdays; 
        clear locales totdays 

         
    end 

     
end 

  
end 

 

monthlyport.m: 

function exportables = monthlyport(modelmonthly) 
% takes in a model's monthly cell array and exports mean, std dev, and 
% total data count to an excel spreadsheet for quick copying 

  
exportables = zeros(12,12,3); 

  
for i = 1:12 
    for j = 1:12 
        exportables(i,j,1) = mean(modelmonthly{i,j,2}); 
        exportables(i,j,2) = std(modelmonthly{i,j,2}); 
        exportables(i,j,3) = length(modelmonthly{i,j,2}); 
    end 
end 



124 

 
  
totalout = [exportables(:,:,1);exportables(:,:,2);exportables(:,:,3)]; 

  
csvwrite('exported.csv',totalout(:,:,1),0,0); 

  
end 

 

throwshade.m: 

function throwshade(differ,p) 
% this function plots a monthly difference plot and then puts hatchings 

on 
% it to indicate confidence levels 

  
% Solid color = >99% 
% Speckles = >95% 
% Lines = >=90% 
% Hatch = <90% 
differ = differ*-1; 
figure 
h1 = imagesc(differ); 
axis equal 
xlim([0.5 12.5]) 
cmap = jet; 
colormap(cmap); 

  
% Gets the RGB map 
Av = differ(:); 
[~,bin] = histc(Av,linspace(-10,15,min(numel(Av),size(cmap,1)))); % The 

-10 and 15 in this refer to the caxis values set outside the function 
bin(bin==0) = 1; 
mapp = permute(cmap,[1 3 2]); 
rgb = reshape(mapp(bin,:,:),12,12,3); 
clear map Av bin mapp 

  
% Sets NaNs to white 
set(h1,'AlphaData',~isnan(differ)); 

  
for i = 1:12 
    for j = 1:12 
        if ~isnan(differ(i,j)) 

             
            rgbpix = rgb(i,j,:); 
            h2 = patch('XData',[j-0.5 j+0.5 j+0.5 j-0.5],'YData',[i-0.5 

i-0.5 i+0.5 i+0.5],'FaceColor',rgbpix,'EdgeColor','none'); 

             
            % hatchfill2 is a function by Kesh Ikuma and Neil Tandon 
            % found on the MATLAB File Exchange at: 
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            % 

https://www.mathworks.com/matlabcentral/fileexchange/53593-hatchfill2 
            if p(i,j) > 0.1 
                

hatchfill2(h2,'cross','HatchAngle',25,'HatchDensity',100,'HatchColor','

k','HatchLineWidth',1); 
            elseif p(i,j) > 0.05 
                

hatchfill2(h2,'cross','HatchAngle',45,'HatchDensity',50,'HatchColor','k

','HatchLineWidth',1); 
            elseif p(i,j) > 0.01 
                

hatchfill2(h2,'single','HatchAngle',65,'HatchDensity',70,'HatchColor','

k','HatchLineWidth',1); 
            end 

             
        end 
    end 
end 

  
end 

 

Additional assorted code scraps, including those for generating figures: 

% netcdf is fickle in matlab for some reason 

% DO NOT RUN THIS FILE, run each line of code seperately as its own 

command 

% or it will freeze and crash the computer 

  

% for reading in era20c data 

  

eralat = ncread('ERA20c.nc','latitude'); 

eralev = ncread('ERA20c.nc','level'); 

eralon = ncread('ERA20c.nc','longitude'); 

eratime = ncread('ERA20c.nc','time'); 

  

temps = ncread('ERA20c.nc','t',[249 49 1 1],[2 2 Inf Inf]); 

% erageo = ncread('ERA20c.nc','z'); 

  

lats = eralat(49:50); clear eralat; % targets correct lats 42-41 

long = eralon(249:250); clear eralon; % targets correct longs 248-249 

temps = ncread('ERA20c.nc','t',[249 49 1 1],[2 2 Inf Inf]); 

geos = ncread('ERA20c.nc','z',[249 49 1 1],[2 2 Inf Inf]); 

  

% Size of geos and temps is (2,2,4,4383), corresponding with longitude, 

% latitude, vertical level, and time so lats/longs: 

%    [ 42/248 41/248 ] 

%    [ 42/249 41/249 ] 

% with each third index increment corresponding to lower level 

  

% target location of USU-ALO is 
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lat = 41.74; lon = 248.19; 

  

% unit correction for ERA ONLY 

geos = geos ./ 10; 

  

% Convert geos into geometric height 

geoH = (6368600 .* geos) ./ (6368600 - geos); clear geos; 

  

% Collapse lats and longs into target location 

% requires some weird grid interpolations due to my low understanding 

of 

% how to set this up properly 

% target location value corresponds with row(lon) 20, column(lat) 27 on 

% interpolated grid (where x=1.19 and y=3.26) 

  

[X,Y] = ndgrid(1:2,3:4); 

[Xfine,Yfine] = ndgrid(1:0.01:2,3:0.01:4); 

localtemps = zeros(4,4383); 

localgeoH = zeros(4,4383); 

  

for i = 1:4 

    for j = 1:4383 

        if i == 1 && j == 1 

            F = griddedInterpolant(X,Y,temps(:,:,1,1),'linear'); 

        else 

            F.Values = temps(:,:,i,j); 

        end 

        finegrid = F(Xfine,Yfine); 

        localtemps(i,j) = finegrid(20,27); 

    end 

end 

  

for i = 1:4 

    for j = 1:4383 

        if i == 1 && j == 1 

            F = griddedInterpolant(X,Y,geoH(:,:,1,1),'linear'); 

        else 

            F.Values = geoH(:,:,i,j); 

        end 

        finegrid = F(Xfine,Yfine); 

        localgeoH(i,j) = finegrid(20,27); 

    end 

end 

  

clear F finegrid temps geoH Xfine Yfine X Y i j lat lon lats long 

  

% At this point I can interpolate with 

% pressure, geoH, and temps, to get the temps at 45km. 

% First interpolate the pressure at 45km 

  

level = double(level); 

  

for i = 1:4383 

    p45(i) = spline(localgeoH(:,i),level,45000); 
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end 

  

% This interpolates temperatures at the 45km pressures 

% Make sure 4 temps  are in 4x4383 matrix called localtemps 

  

for i = 1:4383 

    t45(i) = spline(level,localtemps(:,i),p45(i)); 

end 

  

% If we have each day, time variable is irrelevant for ERA data 

clear localtemps localgeoH level i p45 time 

  

% format it in the dumb way I decided to before to make other functions 

% still work 

ERA45kmT(2,:) = t45; 

ERA45kmT(1,:) = (0:(length(t45) - 1))'; 

clear t45 

 

%% Merrraaaa 

% MERRA2 data is already in .mat chunks from python read-in, with 

anywhere  

% with a dimension of 5 length referring to 3-hr time increment (we 

want the  

% middle one to correspond with midnight 

% Additionally, pressure is in 12 chunks, so our spline has more to 

work 

% with if desired 

% Luckily, there is no geographic interpolation with this one 

  

% Just get midnight values 

geop = squeeze(merraH(:,3,:)); 

temp = squeeze(merraT(:,3,:)); 

clear merraH merraT merratimes 

  

% temp and geop need to be flipped to work with previously established 

% geopotential/pressure fitting method 

  

geop = geop'; 

temp = temp'; 

  

% Convert geop into geometric height 

geoH = (6368600 .* geop) ./ (6368600 - geop); clear geop; 

  

% Now do it (only 4171 dates) 

  

for i = 1:4171 

    p45(i) = spline(geoH(:,i),merraP,45000); 

end 

  

% This interpolates temperatures at the 45km pressures 

% Make sure 4 temps  are in 4x4383 matrix called localtemps 

  

for i = 1:4171 
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    t45(i) = spline(merraP,temp(:,i),p45(i)); 

end 

  

% If we have each day, time variable is irrelevant for ERA data 

clear temp geoH merraP i p45 

  

% format it in the dumb way I decided to before to make other functions 

% still work 

MER45kmT(2,:) = t45; 

MER45kmT(1,:) = (0:(length(t45) - 1))'; 

clear t45 

  

%% JRA grib files converted in python 

% Got the correct file in Excel, need to read in 

  

uiimport 

  

% define pressure array 

presh = [1,2,5,10]; 

  

% There are 3 hr increments, and each level is in its own variable 

% we just want midnight for now 

j = 1; 

for i = 1:4:17529 

    temps(1,j) = t_lvl_1(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    temps(2,j) = t_lvl_2(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    temps(3,j) = t_lvl_5(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    temps(4,j) = t_lvl_10(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    geop(1,j) = z_lvl_1(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    geop(2,j) = z_lvl_2(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 
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    geop(3,j) = z_lvl_5(i); 

    j = j + 1; 

end 

j = 1; 

for i = 1:4:17529 

    geop(4,j) = z_lvl_10(i); 

    j = j + 1; 

end 

  

clear z_lvl_1 z_lvl_2 z_lvl_5 z_lvl_10 t_lvl_1 t_lvl_2 t_lvl_5 t_lvl_10 

i j 

  

% Convert geop into geometric height 

geoH = (6368600 .* geop) ./ (6368600 - geop); clear geop; 

  

% Now do it (only 4171 dates) 

  

for i = 1:4383 

    p45(i) = spline(geoH(:,i),presh,45000); 

end 

  

% This interpolates temperatures at the 45km pressures 

% Make sure 4 temps  are in 4x4383 matrix called localtemps 

  

for i = 1:4383 

    t45(i) = spline(presh,temps(:,i),p45(i)); 

end 

  

% If we have each day, time variable is irrelevant for ERA data 

clear temps geoH presh i p45 

  

% format it in the dumb way I decided to before to make other functions 

% still work 

JRA45kmT(2,:) = t45; 

JRA45kmT(1,:) = (0:(length(t45) - 1))'; 

clear t45 

 

% MERRA and MERRA 2 

mean(MERnudatas(2,:)) 

mean(MERRA2nudatas(2,:)) 

MERyvals = zeros(1,length(MERtvals)); 

for i = 1:length(MERtvals) 

MERyvals(1,i) = eqn(MERdailymodel{i},MERtvals(i)); 

end 

MERRA2yvals = zeros(1,length(MERRA2tvals)); 

for i = 1:length(MERRA2tvals) 

MERRA2yvals(1,i) = eqn(MERRA2dailymodel{i},MERRA2tvals(i)); 

end 

mean(MERyvals) 

mean(MERRA2yvals) 

  

% JRA 

mean(JRAnudatas(2,:)) 
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JRAyvals = zeros(1,length(JRAtvals)); 

for i = 1:length(JRAtvals) 

JRAyvals(1,i) = eqn(JRAdailymodel{i},JRAtvals(i)); 

end 

mean(JRAyvals) 

  

% lidar 

mean(LIDnudatas(2,:)) 

LIDyvals = zeros(1,length(LIDtvals)); 

for i = 1:length(LIDtvals) 

LIDyvals(1,i) = eqn(LIDdailymodel{i},LIDtvals(i)); 

end 

mean(LIDyvals) 

  

% this gets data just for lidar dates 

rightdate = ismember(MERnudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

MERnumatches = MERnudatas.*rightdate; 

MERnumatches(:,all(MERnumatches==0)) = []; 

clear rightdate 

rightdate = ismember(CPCnudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

CPCnumatches = CPCnudatas.*rightdate; 

CPCnumatches(:,all(CPCnumatches==0)) = []; 

clear rightdate 

rightdate = ismember(JRAnudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

JRAnumatches = JRAnudatas.*rightdate; 

JRAnumatches(:,all(JRAnumatches==0)) = []; 

clear rightdate 

rightdate = ismember(ERAnudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

ERAnumatches = ERAnudatas.*rightdate; 

ERAnumatches(:,all(ERAnumatches==0)) = []; 

clear rightdate 

rightdate = ismember(newERAnudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

newERAnumatches = newERAnudatas.*rightdate; 

newERAnumatches(:,all(newERAnumatches==0)) = []; 

clear rightdate 

  

% frustratingly, the above code doesn't seem to work for MERRA2? 

% with some inspection, it appears the time data resolution is greater 

for 

% all other models, something went wrong with the import of the MERRA2 

% dates, probably due to data precision (single vs double) 

% copying over matching date data from ERA20C model 

MERRA2nudatas = double(MERRA2nudatas); 

MERRA2nudatas(1,:) = newERAnudatas(1,1:4171); 

  

% this also implies a need to rerun previous code that seperated out 

% outliers and such 

MERRA245kmT = double(MERRA245kmT); 

clear MERRA2hardout 
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[MERRA2tvals,MERRA2dailymodel,eqn,MERRA2nudatas] = 

adaptivefit(MERRA245kmT,10); 

MERRA2resids = 

plotafit(MERRA2tvals,MERRA2dailymodel,eqn,MERRA2nudatas); 

a = find(abs(MERRA2resids)>10); 

MERRA2hardout(1,:) = MERRA2nudatas(1,a); 

MERRA2hardout(2,:) = MERRA2nudatas(2,a); 

MERRA2hardout(3,:) = MERRA2resids(a); 

  

% redoing previous Merra 2 avg 

mean(MERRA2nudatas(2,:)) 

MERRA2yvals = zeros(1,length(MERRA2tvals)); 

for i = 1:length(MERRA2tvals) 

MERRA2yvals(1,i) = eqn(MERRA2dailymodel{i},MERRA2tvals(i)); 

end 

mean(MERRA2yvals) 

  

% now can run it 

rightdate = ismember(MERRA2nudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

MERRA2numatches = MERRA2nudatas.*rightdate; 

MERRA2numatches(:,all(MERRA2numatches==0)) = []; 

clear rightdate 

  

% Lets also get datasets for all the adaptive fits on just lidar dates 

% make a residual variable for each dataset also that matches lidar 

dates, 

% because it could be useful 

logics = ismember(MERtvals,LIDnudatas(1,:)); 

MERlidtvals = MERtvals(logics); 

MERlidyvals = MERyvals(logics); 

MERlidsids = MERresids(logics); 

clear logics 

logics = ismember(CPCtvals,LIDnudatas(1,:)); 

CPClidtvals = CPCtvals(logics); 

CPClidyvals = CPCyvals(logics); 

CPClidsids = CPCresids(logics); 

clear logics 

logics = ismember(ERAtvals,LIDnudatas(1,:)); 

ERAlidtvals = ERAtvals(logics); 

ERAlidyvals = ERAyvals(logics); 

ERAlidsids = ERAresids(logics); 

clear logics 

logics = ismember(MERRA2tvals,LIDnudatas(1,:)); 

MERRA2lidtvals = MERRA2tvals(logics); 

MERRA2lidyvals = MERRA2yvals(logics); 

MERRA2lidsids = MERRA2resids(logics); 

clear logics 

logics = ismember(newERAtvals,LIDnudatas(1,:)); 

newERAlidtvals = newERAtvals(logics); 

newERAlidyvals = newERAyvals(logics); 

newERAlidsids = newERAresids(logics); 

clear logics 

logics = ismember(JRAtvals,LIDnudatas(1,:)); 
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JRAlidtvals = JRAtvals(logics); 

JRAlidyvals = JRAyvals(logics); 

JRAlidsids = JRAresids(logics); 

clear logics 

logics = ismember(LIDtvals,LIDnudatas(1,:)); 

LIDlidtvals = LIDtvals(logics); 

LIDlidyvals = LIDyvals(logics); 

% LIDresids is already this 

clear logics 

  

% now can retrieve averages for just lidar dates 

% lidar fit 

mean(LIDlidyvals) 

  

% CPC 

mean(CPClidyvals) 

  

% JRA 

mean(JRAlidyvals) 

  

% ERA 

mean(ERAlidyvals) 

mean(newERAlidyvals) 

  

% MERRA 

mean(MERlidyvals) 

mean(MERRA2lidyvals) 

  

% all averages get closer to lidar values, but only ERA20C has dramatic 

% change of about 1K bringing it around 1.5K lower than actual lidar 

data 

  

%% Try making a chart to show residuals as a heat map 

  

for i = 1:12 

    stackeddata(i,:) = JRAresids((JRAtvals < i) & (JRAtvals >= i-1)); 

end 

imagesc(stackeddata) 

  

% just realized this is only residuals of model fit to its own model 

data 

% I want to get residuals for each set of data to the lidar data and 

make a 

% heat map of THAT, let's organize my variables so this doesn't happen 

% again 

  

%% VARIABLE REFERENCE 

  

% 45kmT - variable containing days as integers and corresponding 

% temperature data at 45 km from source 

  

% nudatas - just like 45kmT but the days have been converted to decimal 

% fractions representing day of the year in the 12 year dataset 
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% numatches - nudatas but just lidar dates 

  

% tvals - just the date decimals from nudatas 

  

% lidtvals - tvals but just lidar dates 

  

% tempvals - just the temperatures from nudatas 

  

% lidtempvals - tempvals but just lidar dates 

  

% dailymodel - cell structure containing values for each of the model 

fit 

% parameters on a daily basis (from adaptive fit) 

  

% eqn - function that applies the fit model from parameters in 

dailymodel 

  

% yvals - fitted temperature values from applying dailymodel parameters 

  

% lidyvals - yvals but just lidar dates 

  

% resids - residuals from yvals to tempvals 

  

% lidsids - resids but just lidar dates 

  

% hardout - contains date decimal, actual temperature, and resids value 

for 

% dates with 10 K +/- residuals 

  

% directresids - residuals from model data to lidar data (just lidar 

dates) 

  

% modsids - residuals from model data to lidar fit; keep in mind these 

% match with the lidar model fit dates 

  

% lidmodsids - modsids but just lidar dates 

  

% modelsids - residuals from model fits to lidar fit; keep in mind 

these 

% match with the lidar model fit dates 

  

% lidmodelsids - modelsids but just lidar dates 

  

%% Creating some of these that I didn't have already 

  

ERAtempvals = ERAnudatas(2,:); ERAlidtempvals = ERAnumatches(2,:); 

CPCtempvals = CPCnudatas(2,:); CPClidtempvals = CPCnumatches(2,:); 

JRAtempvals = JRAnudatas(2,:); JRAlidtempvals = JRAnumatches(2,:); 

LIDtempvals = LIDnudatas(2,:); 

MERtempvals = MERnudatas(2,:); MERlidtempvals = MERnumatches(2,:); 

MERRA2tempvals = MERRA2nudatas(2,:); MERRA2lidtempvals = 

MERRA2numatches(2,:); 

newERAtempvals = newERAnudatas(2,:); newERAlidtempvals = 

newERAnumatches(2,:); 
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ERAdirectresids = LIDtempvals - ERAlidtempvals; 

ERAlidmodsids = LIDlidyvals - ERAlidtempvals; 

ERAlidmodelsids = LIDlidyvals - ERAlidyvals; 

JRAdirectresids = LIDtempvals - JRAlidtempvals; 

JRAlidmodsids = LIDlidyvals - JRAlidtempvals; 

JRAlidmodelsids = LIDlidyvals - JRAlidyvals; 

MERdirectresids = LIDtempvals - MERlidtempvals; 

MERlidmodsids = LIDlidyvals - MERlidtempvals; 

MERlidmodelsids = LIDlidyvals - MERlidyvals; 

newERAdirectresids = LIDtempvals - newERAlidtempvals; 

newERAlidmodsids = LIDlidyvals - newERAlidtempvals; 

newERAlidmodelsids = LIDlidyvals - newERAlidyvals; 

  

  

% modsids, modelsids a little more complex because of different sized 

sets of 

% data; also CPC and MERRA2 didn't want to convert directly (less days 

than 

% lidar set). Problem children dealt with heavily below. 

  

for i = 1:length(LIDnudatas(1,:)) 

    place = find(CPCnumatches(1,:) == LIDnudatas(1,i)); 

    if place > 0 

        CPCdirectresids(1,place) = LIDtempvals(i) - 

CPClidtempvals(place); 

    end 

end 

for i = 1:length(LIDnudatas(1,:)) 

    place = find(MERRA2numatches(1,:) == LIDnudatas(1,i)); 

    if place > 0 

        MERRA2directresids(1,place) = LIDtempvals(i) - 

MERRA2lidtempvals(place); 

    end 

end 

  

for i = 1:length(LIDlidtvals) 

    place = find(CPClidtvals(:) == LIDlidtvals(i)); 

    if place > 0 

        CPClidmodsids(1,place) = LIDlidyvals(i) - 

CPClidtempvals(place); 

    end 

end 

for i = 1:length(LIDlidtvals) 

    place = find(MERRA2lidtvals(:) == LIDlidtvals(i)); 

    if place > 0 

        MERRA2lidmodsids(1,place) = LIDlidyvals(i) - 

MERRA2lidtempvals(place); 

    end 

end 

  

  

for i = 1:length(LIDlidtvals) 

    place = find(CPClidtvals(:) == LIDlidtvals(i)); 
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    if place > 0 

        CPClidmodelsids(1,place) = LIDlidyvals(i) - CPClidyvals(place); 

    end 

end 

for i = 1:length(LIDlidtvals) 

    place = find(MERRA2lidtvals(:) == LIDlidtvals(i)); 

    if place > 0 

        MERRA2lidmodelsids(1,place) = LIDlidyvals(i) - 

MERRA2lidyvals(place); 

    end 

end 

  

%ERAmodsids = LIDyvals - ERAtempvals; 

for i = 1:length(ERAtvals) 

    place = find(LIDtvals(:) == ERAtvals(i)); 

    if place > 0 

        ERAmodsids(1,place) = LIDyvals(place) - ERAtempvals(i); 

    end 

end 

for i = 1:length(CPCtvals) 

    place = find(LIDtvals(:) == CPCtvals(i)); 

    if place > 0 

        CPCmodsids(1,place) = LIDyvals(place) - CPCtempvals(i); 

    end 

end 

for i = 1:length(JRAtvals) 

    place = find(LIDtvals(:) == JRAtvals(i)); 

    if place > 0 

        JRAmodsids(1,place) = LIDyvals(place) - JRAtempvals(i); 

    end 

end 

for i = 1:length(MERtvals) 

    place = find(LIDtvals(:) == MERtvals(i)); 

    if place > 0 

        MERmodsids(1,place) = LIDyvals(place) - MERtempvals(i); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(LIDtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modsids(1,place) = LIDyvals(place) - MERRA2tempvals(i); 

    end 

end 

for i = 1:length(newERAtvals) 

    place = find(LIDtvals(:) == newERAtvals(i)); 

    if place > 0 

        newERAmodsids(1,place) = LIDyvals(place) - newERAtempvals(i); 

    end 

end 

  

  

%ERAmodelsids = LIDyvals - ERAyvals; 

for i = 1:length(ERAtvals) 

    place = find(LIDtvals(:) == ERAtvals(i)); 
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    if place > 0 

        ERAmodsids(1,place) = LIDyvals(place) - ERAyvals(i); 

    end 

end 

for i = 1:length(CPCtvals) 

    place = find(LIDtvals(:) == CPCtvals(i)); 

    if place > 0 

        CPCmodsids(1,place) = LIDyvals(place) - CPCyvals(i); 

    end 

end 

for i = 1:length(JRAtvals) 

    place = find(LIDtvals(:) == JRAtvals(i)); 

    if place > 0 

        JRAmodsids(1,place) = LIDyvals(place) - JRAyvals(i); 

    end 

end 

for i = 1:length(MERtvals) 

    place = find(LIDtvals(:) == MERtvals(i)); 

    if place > 0 

        MERmodsids(1,place) = LIDyvals(place) - MERyvals(i); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(LIDtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modsids(1,place) = LIDyvals(place) - MERRA2yvals(i); 

    end 

end 

for i = 1:length(newERAtvals) 

    place = find(LIDtvals(:) == newERAtvals(i)); 

    if place > 0 

        newERAmodsids(1,place) = LIDyvals(place) - newERAyvals(i); 

    end 

end 

 

%% Just figured out MERRA 2 dates are offset, need to redo all analysis 

for that model 

% MERRA 2 starts Aug 1st rather than Jan 1st, this is 212 day offset 

  

MERRA245kmT(1,:) = MERRA245kmT(1,:) + 212; 

  

% Rerun all MERRA 2 related analyses 

  

clear MERRA2hardout 

[MERRA2tvals,MERRA2dailymodel,eqn,MERRA2nudatas] = 

adaptivefit(MERRA245kmT,10); 

MERRA2resids = 

plotafit(MERRA2tvals,MERRA2dailymodel,eqn,MERRA2nudatas); 

a = find(abs(MERRA2resids)>10); 

MERRA2hardout(1,:) = MERRA2nudatas(1,a); 

MERRA2hardout(2,:) = MERRA2nudatas(2,a); 

MERRA2hardout(3,:) = MERRA2resids(a); 

mean(MERRA2nudatas(2,:)) 
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MERRA2yvals = zeros(1,length(MERRA2tvals)); 

for i = 1:length(MERRA2tvals) 

MERRA2yvals(1,i) = eqn(MERRA2dailymodel{i},MERRA2tvals(i)); 

end 

mean(MERRA2yvals) 

rightdate = ismember(MERRA2nudatas(1,:),LIDnudatas(1,:)); 

rightdate(2,:) = rightdate; 

MERRA2numatches = MERRA2nudatas.*rightdate; 

MERRA2numatches(:,all(MERRA2numatches==0)) = []; 

clear rightdate 

logics = ismember(MERRA2tvals,LIDnudatas(1,:)); 

MERRA2lidtvals = MERRA2tvals(logics); 

MERRA2lidyvals = MERRA2yvals(logics); 

MERRA2lidsids = MERRA2resids(logics); 

clear logics 

mean(MERRA2lidyvals) 

MERRA2tempvals = MERRA2nudatas(2,:); MERRA2lidtempvals = 

MERRA2numatches(2,:); 

for i = 1:length(LIDlidtvals) 

    place = find(MERRA2lidtvals(:) == LIDlidtvals(i)); 

    if place > 0 

        MERRA2lidmodsids(1,place) = LIDlidyvals(i) - 

MERRA2lidtempvals(place); 

    end 

end 

for i = 1:length(LIDlidtvals) 

    place = find(MERRA2lidtvals(:) == LIDlidtvals(i)); 

    if place > 0 

        MERRA2lidmodelsids(1,place) = LIDlidyvals(i) - 

MERRA2lidyvals(place); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(LIDtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modsids(1,place) = LIDyvals(place) - MERRA2tempvals(i); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(LIDtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modsids(1,place) = LIDyvals(place) - MERRA2yvals(i); 

    end 

end 

MERRA2composite = compositeyear(MERRA2nudatas); 

 

% Holy moley I've never found the average temps of actual temps on 

lidar 

% dates, that might be important 

  

mean(newERAlidtempvals) 

mean(MERRA2lidtempvals) 

mean(JRAlidtempvals) 
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% Should also have nudatas equivalents but made of fitted models 

ERAmodel = ([ERAtvals;ERAyvals]); 

CPCmodel = ([CPCtvals;CPCyvals]); 

MERmodel = ([MERtvals;MERyvals]); 

LIDmodel = ([LIDtvals;LIDyvals]); 

JRAmodel = ([JRAtvals;JRAyvals]); 

MERRA2model = ([MERRA2tvals;MERRA2yvals]); 

newERAmodel = ([newERAtvals;newERAyvals]); 

  

%% '96 '00 are leap years, and if I want to do monthly analysis I need 

to take that into account 

  

ERAmonthly = monthdivide(ERAnudatas); 

CPCmonthly = monthdivide(CPCnudatas); 

MERmonthly = monthdivide(MERnudatas); 

LIDmonthly = monthdivide(LIDnudatas); 

JRAmonthly = monthdivide(JRAnudatas); 

MERRA2monthly = monthdivide(MERRA2nudatas); 

newERAmonthly = monthdivide(newERAnudatas); 

ERAmodelmonthly = monthdivide(ERAmodel); 

CPCmodelmonthly = monthdivide(CPCmodel); 

MERmodelmonthly = monthdivide(MERmodel); 

LIDmodelmonthly = monthdivide(LIDmodel); 

JRAmodelmonthly = monthdivide(JRAmodel); 

MERRA2modelmonthly = monthdivide(MERRA2model); 

newERAmodelmonthly = monthdivide(newERAmodel); 

  

% with current monthdivide code there appear to be a few errors in the 

% algorithm that need to be inspected 

% every data set has 31 days in year 2 Apr, 27 days in year 11 Feb 

% seems to be some kind of rounding error possibly 

% I put in some temporary code to test and examine 

  

% Some examination shows deviances at -1.11^-15, so yeah, its 

computational 

% in nature. 

% To fix this, I've simply put a bandaid line of code to repair the 

% runningdate variable as it progresses. 

% Just rerun the lines of code above and they should work now. 

  

% Compare monthly datas! 

% Writing some code that will export results so that I don't have to 

% manually find the mean, std dev, and # of data points 1056 times 

each! 

% This code is in "monthlyport.m' 

  

% run for each monthly set as desired individually 

LIDstatsmonthly = monthlyport(LIDmonthly); 

  

%% IT IS TIME TO FIX EVERYTHING I'VE BEEN DOING WRONG UP TO THIS POINT 

% I've been using nightly averages for the lidar data even though the 

% models are just the data from 600 UT. 
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%% Extracting and extrapolating 600 UT lidar data 

  

lidarUT530T(1,:) = lidar45(:,1)'; 

lidarUT630T(1,:) = lidar45(:,1)'; 

lidarUT530T(2,:) = lidar45(:,8)'; 

lidarUT630T(2,:) = lidar45(:,9)'; 

  

flag1 = 0; 

flag2 = 0; 

for i = 1:771 

    lidarINST45kmT(1,i) = lidarUT530T(1,i); 

     

    switch lidarUT530T(2,i) 

        case 0 

            flag1 = 1; 

        case NaN 

            flag1 = 1; 

        otherwise 

            value1 = lidarUT530T(2,i); 

    end 

     

    switch lidarUT630T(2,i) 

        case 0 

            flag2 = 1; 

        case NaN 

            flag2 = 1; 

        otherwise 

            value2 = lidarUT630T(2,i); 

    end 

     

    if flag1 == 1 

        if flag2 == 1 

            lidarINST45kmT(2,i) = NaN; 

        else 

            lidarINST45kmT(2,i) = value2; 

        end 

    else 

        if flag2 == 1 

            lidarINST45kmT(2,i) = value1; 

        else 

            lidarINST45kmT(2,i) = mean([value1 value2]); 

        end 

    end 

     

    flag1 = 0; flag2 = 0; 

     

end 

  

NaNCols = any(isnan(lidarINST45kmT)); 

lidarINST45kmT = lidarINST45kmT(:,~NaNCols); 

clear flag1 flag2 value1 value2 NaNCols 
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%% Now redo basic lidar stuff with the instantaneous midnight temps, 

including all model comparisons, since those now need to be done 

against the instantaneous fit instead of the all-night fit and so on 

  

[lidarINSTtvals,lidarINSTdailymodel,eqn,lidarINSTnudatas] = 

adaptivefit(lidarINST45kmT,10); 

lidarINSTresids = 

plotafit(lidarINSTtvals,lidarINSTdailymodel,eqn,lidarINSTnudatas); 

a = find(abs(lidarINSTresids)>10); 

lidarINSThardout(1,:) = lidarINSTnudatas(1,a); 

lidarINSThardout(2,:) = lidarINSTnudatas(2,a); 

lidarINSThardout(3,:) = lidarINSTresids(a); 

lidarINSTyvals = zeros(1,length(lidarINSTtvals)); 

for i = 1:length(lidarINSTtvals) 

lidarINSTyvals(1,i) = eqn(lidarINSTdailymodel{i},lidarINSTtvals(i)); 

end 

lidarINSTtempvals = lidarINSTnudatas(2,:); 

lidarINSTcomposite = compositeyear(lidarINSTnudatas); % compare with 

Josh 

lidarINSTmodel = ([lidarINSTtvals;lidarINSTyvals]); 

lidarINSTmonthly = monthdivide(lidarINSTnudatas); 

lidarINSTmodelmonthly = monthdivide(lidarINSTmodel); 

  

logics = ismember(lidarINSTtvals,lidarINSTnudatas(1,:)); 

lidarINSTlidtvals = lidarINSTtvals(logics); 

lidarINSTlidyvals = lidarINSTyvals(logics); 

clear logics 

     

% How well do my previous conclusions hold up, if at all? 

  

mean(lidarINSTtempvals) 

mean(lidarINSTyvals) 

mean(lidarINSTlidyvals) 

     

% Even warmer! This is good news! 

% Export month-by-month for further analysis 

     

lidarINSTstatsmonthly = monthlyport(lidarINSTmonthly); 

  

% And fit model too 

  

lidarINSTstatsmodelmonthly = monthlyport(lidarINSTmodelmonthly); 

lidarINSTmodelcomposite = compositeyear(lidarINSTmodel); 

     

% Now the variables that were comparative results with lidar and lidar 

fit 

% These are: numatches, lidtvals, lidtempvals, lidyvals, lidsids, 

% directresids, modsids, lidmodsids, modelsids, and lidmodelsids 

% I'm only going to bother with the new 3 

  

% JRA 

  

clear JRAnumatches JRAlidtvals JRAlidtempvals JRAlidyvals JRAlidsids 

JRAdirectresids JRAmodsids JRAlidmodsids JRAmodelsids JRAlidmodelsids 
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rightdate = ismember(JRAnudatas(1,:),lidarINSTnudatas(1,:)); 

rightdate(2,:) = rightdate; 

JRAnumatches = JRAnudatas.*rightdate; 

JRAnumatches(:,all(JRAnumatches==0)) = []; 

clear rightdate 

logics = ismember(JRAtvals,lidarINSTnudatas(1,:)); 

JRAlidtvals = JRAtvals(logics); 

JRAlidyvals = JRAyvals(logics); 

JRAlidsids = JRAresids(logics); 

clear logics 

JRAlidtempvals = JRAnumatches(2,:); 

for i = 1:length(lidarINSTnudatas(1,:)) 

    place = find(JRAnumatches(1,:) == lidarINSTnudatas(1,i)); 

    if place > 0 

        JRAdirectresids(1,place) = lidarINSTtempvals(i) - 

JRAlidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(JRAlidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        JRAlidmodsids(1,place) = lidarINSTlidyvals(i) - 

JRAlidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(JRAlidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        JRAlidmodelsids(1,place) = lidarINSTlidyvals(i) - 

JRAlidyvals(place); 

    end 

end 

for i = 1:length(JRAtvals) 

    place = find(lidarINSTtvals(:) == JRAtvals(i)); 

    if place > 0 

        JRAmodsids(1,place) = lidarINSTyvals(place) - JRAtempvals(i); 

    end 

end 

for i = 1:length(JRAtvals) 

    place = find(lidarINSTtvals(:) == JRAtvals(i)); 

    if place > 0 

        JRAmodelsids(1,place) = lidarINSTyvals(place) - JRAyvals(i); 

    end 

end 

  

% ERA-20C 

  

clear newERAnumatches newERAlidtvals newERAlidtempvals newERAlidyvals 

newERAlidsids newERAdirectresids newERAmodsids newERAlidmodsids 

newERAmodelsids newERAlidmodelsids 

  

rightdate = ismember(newERAnudatas(1,:),lidarINSTnudatas(1,:)); 

rightdate(2,:) = rightdate; 
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newERAnumatches = newERAnudatas.*rightdate; 

newERAnumatches(:,all(newERAnumatches==0)) = []; 

clear rightdate 

logics = ismember(newERAtvals,lidarINSTnudatas(1,:)); 

newERAlidtvals = newERAtvals(logics); 

newERAlidyvals = newERAyvals(logics); 

newERAlidsids = newERAresids(logics); 

clear logics 

newERAlidtempvals = newERAnumatches(2,:); 

for i = 1:length(lidarINSTnudatas(1,:)) 

    place = find(newERAnumatches(1,:) == lidarINSTnudatas(1,i)); 

    if place > 0 

        newERAdirectresids(1,place) = lidarINSTtempvals(i) - 

newERAlidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(newERAlidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        newERAlidmodsids(1,place) = lidarINSTlidyvals(i) - 

newERAlidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(newERAlidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        newERAlidmodelsids(1,place) = lidarINSTlidyvals(i) - 

newERAlidyvals(place); 

    end 

end 

for i = 1:length(newERAtvals) 

    place = find(lidarINSTtvals(:) == newERAtvals(i)); 

    if place > 0 

        newERAmodsids(1,place) = lidarINSTyvals(place) - 

newERAtempvals(i); 

    end 

end 

for i = 1:length(newERAtvals) 

    place = find(lidarINSTtvals(:) == newERAtvals(i)); 

    if place > 0 

        newERAmodelsids(1,place) = lidarINSTyvals(place) - 

newERAyvals(i); 

    end 

end 

  

% MERRA 2 

  

clear MERRA2numatches MERRA2lidtvals MERRA2lidtempvals MERRA2lidyvals 

MERRA2lidsids MERRA2directresids MERRA2modsids MERRA2lidmodsids 

MERRA2modelsids MERRA2lidmodelsids 

  

rightdate = ismember(MERRA2nudatas(1,:),lidarINSTnudatas(1,:)); 

rightdate(2,:) = rightdate; 

MERRA2numatches = MERRA2nudatas.*rightdate; 
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MERRA2numatches(:,all(MERRA2numatches==0)) = []; 

clear rightdate 

logics = ismember(MERRA2tvals,lidarINSTnudatas(1,:)); 

MERRA2lidtvals = MERRA2tvals(logics); 

MERRA2lidyvals = MERRA2yvals(logics); 

MERRA2lidsids = MERRA2resids(logics); 

clear logics 

MERRA2lidtempvals = MERRA2numatches(2,:); 

for i = 1:length(lidarINSTnudatas(1,:)) 

    place = find(MERRA2numatches(1,:) == lidarINSTnudatas(1,i)); 

    if place > 0 

        MERRA2directresids(1,place) = lidarINSTtempvals(i) - 

MERRA2lidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(MERRA2lidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        MERRA2lidmodsids(1,place) = lidarINSTlidyvals(i) - 

MERRA2lidtempvals(place); 

    end 

end 

for i = 1:length(lidarINSTlidtvals) 

    place = find(MERRA2lidtvals(:) == lidarINSTlidtvals(i)); 

    if place > 0 

        MERRA2lidmodelsids(1,place) = lidarINSTlidyvals(i) - 

MERRA2lidyvals(place); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(lidarINSTtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modsids(1,place) = lidarINSTyvals(place) - 

MERRA2tempvals(i); 

    end 

end 

for i = 1:length(MERRA2tvals) 

    place = find(lidarINSTtvals(:) == MERRA2tvals(i)); 

    if place > 0 

        MERRA2modelsids(1,place) = lidarINSTyvals(place) - 

MERRA2yvals(i); 

    end 

end 

  

newERAmodelcomposite = compositeyear(newERAmodel); 

MERRA2modelcomposite = compositeyear(MERRA2model); 

JRAmodelcomposite = compositeyear(JRAmodel); 

  

% Get new set-length averages (tempvals and yvals haven't changed) 

  

mean(JRAlidyvals) 

mean(JRAlidtempvals) 

  

mean(newERAlidyvals) 
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mean(newERAlidtempvals) 

  

mean(MERRA2lidyvals) 

mean(MERRA2lidtempvals) 

  

%% Let's give the fit a try with EVEN MORE PARAMETERS 

  

% 12 parameter 

[try12tvals,try12dailymodel,eqn,try12nudatas] = 

adaptivefit(lidarINST45kmT,12); 

try12resids = plotafit(try12tvals,try12dailymodel,eqn,try12nudatas); 

a = find(abs(try12resids)>10); 

try12hardout(1,:) = try12nudatas(1,a); 

try12hardout(2,:) = try12nudatas(2,a); 

try12hardout(3,:) = try12resids(a); 

try12yvals = zeros(1,length(try12tvals)); 

for i = 1:length(try12tvals) 

try12yvals(1,i) = eqn(try12dailymodel{i},try12tvals(i)); 

end 

try12tempvals = try12nudatas(2,:); 

try12composite = compositeyear(try12nudatas); 

try12model = ([try12tvals;try12yvals]); 

try12monthly = monthdivide(try12nudatas); 

try12modelmonthly = monthdivide(try12model); 

logics = ismember(try12tvals,lidarINSTnudatas(1,:)); 

try12lidtvals = try12tvals(logics); 

try12lidyvals = try12yvals(logics); 

clear logics 

mean(try12tempvals) 

mean(try12yvals) 

mean(try12lidyvals) 

try12modelcomposite = compositeyear(try12model); 

try12hardoutmonthly = monthdivide(try12hardout(1:2,:)); 

monthlyport(try12hardoutmonthly); 

  

% 14 parameter 

  

[try14tvals,try14dailymodel,eqn,try14nudatas] = 

adaptivefit(lidarINST45kmT,14); 

try14resids = plotafit(try14tvals,try14dailymodel,eqn,try14nudatas); 

a = find(abs(try14resids)>10); 

try14hardout(1,:) = try14nudatas(1,a); 

try14hardout(2,:) = try14nudatas(2,a); 

try14hardout(3,:) = try14resids(a); 

try14yvals = zeros(1,length(try14tvals)); 

for i = 1:length(try14tvals) 

try14yvals(1,i) = eqn(try14dailymodel{i},try14tvals(i)); 

end 

try14tempvals = try14nudatas(2,:); 

try14composite = compositeyear(try14nudatas); 

try14model = ([try14tvals;try14yvals]); 

try14monthly = monthdivide(try14nudatas); 

try14modelmonthly = monthdivide(try14model); 

logics = ismember(try14tvals,lidarINSTnudatas(1,:)); 
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try14lidtvals = try14tvals(logics); 

try14lidyvals = try14yvals(logics); 

clear logics 

mean(try14tempvals) 

mean(try14yvals) 

mean(try14lidyvals) 

try14modelcomposite = compositeyear(try14model); 

try14hardoutmonthly = monthdivide(try14hardout(1:2,:)); 

monthlyport(try14hardoutmonthly); 

  

% The results of adding more parameters seem to indicate that the 

problems 

% in the winter with the fit are likely due to the data itself, 

probably 

% attributable to geophysical variability. There is no noticeable 

% improvement in the model gained by adding more parameters than 10. 

  

%% Examine number of 10 K outliers per month by using the hardout 

variable along with the monthdivide and monthlyport functions 

  

lidarINSThardoutmonthly = monthdivide(lidarINSThardout(1:2,:)); 

[~] = monthlyport(lidarINSThardoutmonthly); 

newERAhardoutmonthly = monthdivide(newERAhardout(1:2,:)); 

[~] = monthlyport(newERAhardoutmonthly); 

MERRA2hardoutmonthly = monthdivide(MERRA2hardout(1:2,:)); 

[~] = monthlyport(MERRA2hardoutmonthly); 

JRAhardoutmonthly = monthdivide(JRAhardout(1:2,:)); 

[~] = monthlyport(JRAhardoutmonthly); 

  

% Did the above with all possible try12 and try14 iterations as well to 

see 

% how they changed, VERY LITTLE CHANGE 

  

% In this process I discovered with some cross-checking that my 

monthdivide 

% and monthlyport functions STILL aren't working as intended. I have 

now 

% fixed them again and cross-checking shows more sensible data now. 

This 

% also got rid of the problems with rounding errors, so the bandaid 

code 

% has been removed. I also updated the compositeyear code to use a 

similar 

% method for scanning through the data. 

  

% I should look at the differences in averages on just lidar days in 

the 

% models and fits too 

  

lidarINSTlidmodmonth = 

monthdivide([lidarINSTlidtvals;lidarINSTlidyvals]); 

lidarINSTstatslidmodmonth = monthlyport(lidarINSTlidmodmonth); 

newERAlidmonthly = monthdivide(newERAnumatches); 

newERAstatslidmonthly = monthlyport(newERAlidmonthly); 
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newERAlidmodmonth = monthdivide([newERAlidtvals;newERAlidyvals]); 

newERAstatslidmodmonth = monthlyport(newERAlidmodmonth); 

MERRA2lidmonthly = monthdivide(MERRA2numatches); 

MERRA2statslidmonthly = monthlyport(MERRA2lidmonthly); 

MERRA2lidmodmonth = monthdivide([MERRA2lidtvals;MERRA2lidyvals]); 

MERRA2statslidmodmonth = monthlyport(MERRA2lidmodmonth); 

JRAlidmonthly = monthdivide(JRAnumatches); 

JRAstatslidmonthly = monthlyport(JRAlidmonthly); 

JRAlidmodmonth = monthdivide([JRAlidtvals;JRAlidyvals]); 

JRAstatslidmodmonth = monthlyport(JRAlidmodmonth); 

  

  

% Find average amplitudes phases of the model components (annual, 

semiannual etc) 

extract_cell = @(C, k) cellfun(@(c)c(k), C) ; % to extract components 

from cell arrays 

% Output mean paramater values all to window 

for i = 1:10 

    i 

    mean(extract_cell(lidarINSTdailymodel,i)) 

    mean(extract_cell(newERAdailymodel,i)) 

    mean(extract_cell(MERRA2dailymodel,i)) 

    mean(extract_cell(JRAdailymodel,i)) 

end 

% Do the same for std deviations 

for i = 1:10 

    i 

    std(extract_cell(lidarINSTdailymodel,i)) 

    std(extract_cell(newERAdailymodel,i)) 

    std(extract_cell(MERRA2dailymodel,i)) 

    std(extract_cell(JRAdailymodel,i)) 

end 

clear i 

 

% Do some simple linear fits to examine total trend and see how they 

match 

% with the linear parameter in the fit method 

polyfit(lidarINSTlidtvals,lidarINSTtempvals,1) % output is trend/yr and 

intercept 

polyfit(newERAtvals,newERAtempvals,1) 

polyfit(MERRA2tvals,MERRA2tempvals,1) 

polyfit(JRAtvals,JRAtempvals,1) 

  

% Get some specific data for figure 

jun2001JRAdates = JRAmonthly{8,6,1}; 

jun2001JRAtemps = JRAmonthly{8,6,2}; 

jun2001JRAmoddates = JRAmodelmonthly{8,6,1}; 

jun2001JRAmodtemps = JRAmodelmonthly{8,6,2}; 

jun2001JRAliddates = JRAlidmonthly{8,6,1}; 

jun2001JRAlidtemps = JRAlidmonthly{8,6,2}; 

 

% Plot figures 

% OLDTHING 
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that = 0:1/365:12; 

predicted = modelb{1}.Formula.ModelFun; 

yhat = predicted(modelb{1}.Coefficients.Estimate,that); 

figure 

plot(t{1},y{1},'g.',that,yhat,'k','LineWidth',1.5,'MarkerSize',14); 

xlim([0 12]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 14.5*100 5*100]); 

xlabel('Year','FontSize',15); 

ylabel('Temperature (K)', 'FontSize',15); 

title('Figure 2 - ALO-USU Data and Regression Line','FontSize',15); 

set(gca, 'FontSize',15,'LineWidth',1.5); 

legend('Avg. Nightly Temperature','Regression 

Fit','Location','SouthWest'); 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003',[]}); 

set(gca,'YTickLabel',{[],'230','240','250','260','270','280',[]}); 

  

% NEWTHINGS 

[~,a] = 

plotafit(lidarINSTtvals,lidarINSTdailymodel,eqn,lidarINSTnudatas); 

set(gca,'YTickLabel',{[],'230','240','250','260','270','280',[]}); 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('Rayleigh-scatter Lidar (ALO-USU) Temperatures at 45 km'); 

hold on; 

h = 

plot(lidarINSThardout(1,:),lidarINSThardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive 

Fit','Location','SouthWest'); 

  

[~,a] = plotafit(newERAtvals,newERAdailymodel,eqn,newERAnudatas); 

set(gca,'YTickLabel',{[],'220','230','240','250','260','270','280',[]})

; 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('ERA-20C (ECMWF) Temperatures at 45 km'); 

hold on; 

h = plot(newERAhardout(1,:),newERAhardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive 

Fit','Location','SouthWest'); 

  

[~,a] = plotafit(MERRA2tvals,MERRA2dailymodel,eqn,MERRA2nudatas); 

set(gca,'YTickLabel',{[],'220','230','240','250','260','270','280',[]})

; 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('MERRA-2 (NASA) Temperatures at 45 km'); 

hold on; 

h = plot(MERRA2hardout(1,:),MERRA2hardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive 

Fit','Location','SouthWest'); 
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[~,a] = plotafit(JRAtvals,JRAdailymodel,eqn,JRAnudatas); 

set(gca,'YTickLabel',{[],'220','240','260','280',[]}); 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('JRA-55 (JMA) Temperatures at 45 km'); 

hold on; 

h = plot(ERAhardout(1,:),ERAhardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive 

Fit','Location','SouthWest'); 

  

% WILMAAAAA 

figure 

lidarINSTpd = plotPDFtLC(lidarINSTresids,'ALO-USU'); 

xlim([-30 30]) 

ylim([0 .18]) 

  

figure 

newERApd = plotPDFtLC(newERAresids,'ERA-20C'); 

xlim([-30 30]) 

ylim([0 .18]) 

  

figure 

MERRA2pd = plotPDFtLC(MERRA2resids,'MERRA-2'); 

xlim([-30 30]) 

ylim([0 .18]) 

  

figure 

JRApd = plotPDFtLC(JRAresids,'JRA-55'); 

xlim([-30 30]) 

ylim([0 .18]) 

  

% PORKBARREL 

[try12tvals,try12dailymodel,eqn12,try12nudatas] = 

adaptivefit(MERRA245kmT,12); %generate data 

[try14tvals,try14dailymodel,eqn14,try14nudatas] = 

adaptivefit(MERRA245kmT,14); %generate data 

  

[~,a] = plotafit(try12tvals,try12dailymodel,eqn12,try12nudatas); 

set(gca,'YTickLabel',{[],'220','230','240','250','260','270','280',[]})

; 

set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('MERRA-2 (NASA) Temperatures at 45 km'); 

hold on; 

h = plot(MERRA2hardout(1,:),MERRA2hardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive Fit (12-

Parameter)','Location','SouthWest'); 

  

[~,a] = plotafit(try14tvals,try14dailymodel,eqn14,try14nudatas); 

set(gca,'YTickLabel',{[],'220','230','240','250','260','270','280',[]})

; 
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set(gca,'XTickLabel',{'1993','1995','1997','1999','2001','2003','2005'}

); 

title('MERRA-2 (NASA) Temperatures at 45 km'); 

hold on; 

h = plot(MERRA2hardout(1,:),MERRA2hardout(2,:),'b*','MarkerSize',8); 

q(1) = a(1); q(2) = h; q(3) = a(2); 

legend(q,'Model Temperature','> 10 K Outlier','Adaptive Fit (14-

Parameter)','Location','SouthWest'); 

  

% POTATOHEAD see which type is better 

%type 1 

figure 

bar(twelve,2,'LineWidth',1) 

title('Total Outliers by Month (12-Parameter)') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('ALO-USU','ERA-20C','MERRA-2','JRA','Location','north') 

  

figure 

bar(fourt,2,'LineWidth',1) 

title('Total Outliers by Month (14-Parameter)') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('ALO-USU','ERA-20C','MERRA-2','JRA','Location','north') 

  

%type 2 

figure 

bar(outliercomplidar,1.6,'LineWidth',1) 

title('ALO-USU Total Outliers by Month') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('10-Parameter','12-Parameter','14-Parameter','Location','north') 

ylabel('# of Outliers') 

  

figure 

bar(outliercompera,1.6,'LineWidth',1) 

title('ERA-20C Total Outliers by Month') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('10-Parameter','12-Parameter','14-Parameter','Location','north') 

ylabel('# of Outliers') 
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figure 

bar(outliercompmerra,1.6,'LineWidth',1) 

title('MERRA-2 Total Outliers by Month') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('10-Parameter','12-Parameter','14-Parameter','Location','north') 

ylabel('# of Outliers') 

  

figure 

bar(outliercompjra,1.6,'LineWidth',1) 

title('JRA-55 Total Outliers by Month') 

xlim([0 13]); 

pos = get(gcf, 'Position'); 

set(gcf, 'Position', [pos(1) pos(2) 10*100 4*100]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}) 

legend('10-Parameter','12-Parameter','14-Parameter','Location','north') 

ylabel('# of Outliers') 

  

% PUFFERFISH 

figure 

h1 = plot(newERAcomposite(1,:),lidarINSTcomposite(2,:),'Color',[.224 

.898 .235],'LineWidth',2); hold on; 

plot(newERAcomposite(1,:),lidarINSTcomposite(2,:)-

lidarINSTcomposite(3,:),'--','Color',[.224 .898 .235]); 

plot(newERAcomposite(1,:),lidarINSTcomposite(2,:)+lidarINSTcomposite(3,

:),'--','Color',[.224 .898 .235]); 

h2 = plot(newERAcomposite(1,:),newERAcomposite(2,:),'k','LineWidth',2); 

plot(newERAcomposite(1,:),newERAcomposite(2,:)-newERAcomposite(3,:),'--

','Color','k'); 

plot(newERAcomposite(1,:),newERAcomposite(2,:)+newERAcomposite(3,:),'--

','Color','k'); 

h3 = plot(newERAcomposite(1,:),MERRA2composite(2,:),'b','LineWidth',2); 

plot(newERAcomposite(1,:),MERRA2composite(2,:)-MERRA2composite(3,:),'--

','Color','b'); 

plot(newERAcomposite(1,:),MERRA2composite(2,:)+MERRA2composite(3,:),'--

','Color','b'); 

h4 = plot(newERAcomposite(1,:),JRAcomposite(2,:),'r','LineWidth',2); 

plot(newERAcomposite(1,:),JRAcomposite(2,:)-JRAcomposite(3,:),'--

','Color','r'); 

plot(newERAcomposite(1,:),JRAcomposite(2,:)+JRAcomposite(3,:),'--

','Color','r'); 

title('Composite years (REAL datasets), 3\sigma error bars') 

ylabel('Temperature (K)') 

xlabel('Month of Year') 

xlim([-0.5 364.5]); 

set(gca,'XTick',[-0.5,31,59,90,120,151,181,212,243,273,304,334]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

legend([h1,h2,h3,h4],'ALO-USU','ERA-20C','MERRA-2','JRA') 
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figure 

h1 = 

plot(newERAcomposite(1,:),lidarINSTmodelcomposite(2,:),'Color',[.224 

.898 .235],'LineWidth',2); hold on; 

plot(newERAcomposite(1,:),lidarINSTmodelcomposite(2,:)-

lidarINSTmodelcomposite(3,:),'--','Color',[.224 .898 .235]); 

plot(newERAcomposite(1,:),lidarINSTmodelcomposite(2,:)+lidarINSTmodelco

mposite(3,:),'--','Color',[.224 .898 .235]); 

h2 = 

plot(newERAcomposite(1,:),newERAmodelcomposite(2,:),'k','LineWidth',2); 

plot(newERAcomposite(1,:),newERAmodelcomposite(2,:)-

newERAmodelcomposite(3,:),'--','Color','k'); 

plot(newERAcomposite(1,:),newERAmodelcomposite(2,:)+newERAmodelcomposit

e(3,:),'--','Color','k'); 

h3 = 

plot(newERAcomposite(1,:),MERRA2modelcomposite(2,:),'b','LineWidth',2); 

plot(newERAcomposite(1,:),MERRA2modelcomposite(2,:)-

MERRA2modelcomposite(3,:),'--','Color','b'); 

plot(newERAcomposite(1,:),MERRA2modelcomposite(2,:)+MERRA2modelcomposit

e(3,:),'--','Color','b'); 

h4 = 

plot(newERAcomposite(1,:),JRAmodelcomposite(2,:),'r','LineWidth',2); 

plot(newERAcomposite(1,:),JRAmodelcomposite(2,:)-

JRAmodelcomposite(3,:),'--','Color','r'); 

plot(newERAcomposite(1,:),JRAmodelcomposite(2,:)+JRAmodelcomposite(3,:)

,'--','Color','r'); 

title('Composite years (FIT datasets), 3\sigma error bars') 

ylabel('Temperature (K)') 

xlabel('Month of Year') 

xlim([-0.5 364.5]); 

set(gca,'XTick',[-0.5,31,59,90,120,151,181,212,243,273,304,334]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

legend([h1,h2,h3,h4],'ALO-USU','ERA-20C','MERRA-2','JRA') 

  

  

  

% GLAZED 

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 

    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = newERAmodsids(i); 

end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet); 
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h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - ERA-REAL Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 

  

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 

    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = MERRA2modsids(i); 

end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet);  

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - MER-REAL Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 

  

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 

    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = JRAmodsids(i); 
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end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet);  

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - JRA-REAL Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 

  

  

% POWDERED 

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 

    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = newERAmodelsids(i); 

end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet);  

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - ERA-FIT Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 

  

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 
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    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = MERRA2modelsids(i); 

end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet);  

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - MER-FIT Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 

  

figure 

trakday = round(lidarINSTtvals * 365 + 1); 

yr = 0; 

for i = 1:length(lidarINSTtvals) 

    j = trakday(i) - 365 * yr; 

    if j == 366 

        j = 1; 

        yr = yr + 1; 

    end 

    stackeddata(yr+1,j) = JRAmodelsids(i); 

end 

stackeddata(1,1:242) = NaN; stackeddata(12,226:365) = NaN; 

h1 = imagesc(stackeddata); 

colormap(jet);  

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

set(h1,'AlphaData',~isnan(stackeddata)); 

title('LID-FIT - JRA-FIT Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,32,60,91,121,152,182,213,244,274,305,335]); 

set(gca,'XTickLabel',{'         Jan','         Feb','         Mar','         

Apr','         May','         Jun','         Jul','         Aug','         

Sep','         Oct','         Nov','         Dec'}); 

ylabel(h2,'Deviation (K)'); 

clear trakday stackeddata 
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% OMAZING 

throwshade(newERAdiff,newERAp); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-REAL - ERA-REAL Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 

  

throwshade(MERRA2diff,MERRA2p); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-REAL - MER-REAL Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 

  

throwshade(JRAdiff,JRAp); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-REAL - JRA-REAL Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 

  

% ACKMAZING 

throwshade(newERAliddiff,newERAplid); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-RLID - ERA-RLID Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 
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throwshade(MERRA2liddiff,MERRA2plid); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-RLID - MER-RLID Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 

  

throwshade(JRAliddiff,JRAplid); 

h2 = colorbar; 

caxis([-10 15]); 

h2.TickLabels = {'<-10','-5','0','5','10','>15'}; 

title('LID-RLID - JRA-RLID Monthly Temperature Difference') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Deviation (K)'); 

  

% BURRITO 

figure 

h1 = imagesc(lidarINSTstatsmonthly(:,:,1)); 

colormap(jet); 

axis equal 

xlim([0.5 12.5]) 

set(h1,'AlphaData',~isnan(lidarINSTstatsmonthly(:,:,1))); 

h2 = colorbar; 

caxis([245 285]); 

title('LID-REAL Monthly Means') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Average Temperature (K)'); 

  

figure 

h1 = imagesc(newERAstatsmonthly(:,:,1)); 

colormap(jet); 

axis equal 

xlim([0.5 12.5]) 

set(h1,'AlphaData',~isnan(newERAstatsmonthly(:,:,1))); 

h2 = colorbar; 

caxis([245 285]); 

title('ERA-REAL Monthly Means') 

ylabel('Year') 
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xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Average Temperature (K)'); 

  

figure 

h1 = imagesc(MERRA2statsmonthly(:,:,1)); 

colormap(jet); 

axis equal 

xlim([0.5 12.5]) 

set(h1,'AlphaData',~isnan(MERRA2statsmonthly(:,:,1))); 

h2 = colorbar; 

caxis([245 285]); 

title('MER-REAL Monthly Means') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Average Temperature (K)'); 

  

figure 

h1 = imagesc(JRAstatsmonthly(:,:,1)); 

colormap(jet); 

axis equal 

xlim([0.5 12.5]) 

set(h1,'AlphaData',~isnan(JRAstatsmonthly(:,:,1))); 

h2 = colorbar; 

caxis([245 285]); 

title('JRA-REAL Monthly Means') 

ylabel('Year') 

xlabel('Month') 

set(gca,'YTickLabel',{'1994','1996','1998','2000','2002','2004'}); 

set(gca,'XTick',[1,2,3,4,5,6,7,8,9,10,11,12]); 

set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','

Sep','Oct','Nov','Dec'}); 

ylabel(h2,'Average Temperature (K)'); 

  

% ROSETTA 

figure 

h1 = plot(jun2001JRAdates,jun2001JRAtemps,'r.','MarkerSize',20); 

hold on 

plot(jun2001JRAmoddates,jun2001JRAmodtemps,'k-','LineWidth',2); 

plot(jun2001JRAliddates,jun2001JRAlidtemps,'.','Color',[.224 .898 

.235],'MarkerSize',20); 

xlim([7.4192 7.4986]) 

set(gca,'XTick',[7.4192,7.4324,7.4456,7.4588,7.472,7.4852]); 

set(gca,'XTickLabel',{'1','6','11','16','21','26'}) 

xlabel('Day of June 2001') 

ylabel('Temperature (K)') 

title('Guide to Monthly Means (JRA-55 Example)') 
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