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ABSTRACT 

Breeding Season Ecology and Demography of Lesser Scaup (Aythya affinis) at Red Rock 

Lakes National Wildlife Refuge  

 
by 

 
Jeffrey M. Warren, Doctor of Philosophy 

Utah State University, 2018 

 
Major Professor: Dr. David N. Koons 
Department: Wildland Resources 
 
 

Decisions of if and when to breed, and how much to invest in raising offspring, 

have implications for reproductive success and survival of both parent and offspring. Pre-

breeding body condition is an important determinant of breeding propensity and timing of 

breeding in birds. For female lesser scaup (Aythya affinis), body condition gain on the 

breeding grounds prior to breeding was strongly influenced by environmental conditions. 

Pre-breeding periods with early phenology and lower water levels resulted in greater rates 

of female body condition gain, independent of female age (though older females arrived 

on the breeding grounds in better condition than yearlings). Moreover, after accounting 

for lay date, the rate of body condition gain during the pre-breeding period was positively 

correlated with clutch size (�̂�𝛽 = 0.08 ± 0.039), as predicted by the condition-dependent 

optimization model. Breeding propensity was also positively influenced by body 

condition (�̂�𝛽 = 0.032 ± 0.005) and habitat conditions, but not by age. Drought reduced the 

proportion of breeding females to 0.85 (SE = 0.05) from 0.94 (SE = 0.03) during normal 



iv 
 
water years. After accounting for capture date and body condition, females with evidence 

of reproductive success on the study site the prior year were more likely to breed (�̂�𝛽 = 

1.55 ± 0.742), providing evidence of individual heterogeneity in the population that is 

attributable to factors other than immediate body condition. Demographic consequences 

of breeding were evident as a carry-over effect from breeding to non-breeding seasons, 

via a serial survival cost of reproduction. Breeding season water level, a demonstrated 

proxy for reproductive effort, was negatively correlated with female survival the 

subsequent non-breeding season, resulting in non-breeding season survival ranging from 

0.492 (SE=0.042) following the wettest breeding season of the study (2011), to 0.969 

(SE=0.003) following the driest (2007). Habitat conditions favorable to breeding may 

result in proportionally more females experiencing a constrained period of molt and body 

condition recovery prior to fall migration. Conversely, survival during the breeding 

season was positively correlated with breeding season water levels, i.e., a concurrent 

survival cost of reproduction was not found.  

(168 pages) 
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PUBLIC ABSTRACT 

Breeding Season Ecology and Demography of Lesser Scaup (Aythya affinis) at Red Rock 

Lakes National Wildlife Refuge  

Jeffrey M. Warren 
 

It is hypothesized that individuals make reproductive decisions based on current 

assessments of their physiological condition and environmental conditions. For female 

lesser scaup (Aythya affinis), breeding occurs after an energetically costly spring 

migration. Increasing fat reserves (i.e., ‘body condition’) prior to breeding allows a 

female to produce a larger clutch of eggs, but time spent gaining body condition is costly 

in terms of time allowed to raise ducklings before freezing conditions in the fall. In 

Chapter 2 I explored rate of pre-breeding body condition gain in female lesser scaup, and 

how that rate influenced clutch size. Spring phenology, measured by proxy as water 

temperature, and water depth strongly influenced the rate at which females increased 

body condition. Early springs with low water levels led to greater rates of body condition 

gain in female scaup. The higher the rate of body condition gain, the larger the clutch of 

eggs females produced. Body condition is also an important determinant of breeding in 

female ducks; females in poor body condition are more likely to forego breeding. I 

explored how body condition, wetland conditions, and prior experience influence a 

female’s decision to breed in Chapter 3. Body condition was a strong determinant of 

when a female bred, with females in good body condition breeding earlier than females in 

poorer body condition. Habitat conditions were also important, with drought reducing the 

proportion of breeding lesser scaup females. In Chapter 4 I examined survival costs of 



vi 
 
reproduction in female scaup. Nesting exposes females to increased predation risk (a 

concurrent survival cost), and reduced post-breeding body condition may reduce female 

survival the subsequent non-breeding season (a serial, or ‘downstream’, survival cost). 

Female survival during breeding and non-breeding seasons was most correlated with 

breeding season water level on the study site, but in opposite directions. Breeding season 

survival increased with increasing water levels, while non-breeding season survival 

declined. High water levels on the study site increased the availability of presumably 

high-security nesting habitat, and also increased female reproductive effort. The former 

increased breeding season survival, while the latter reduced non-breeding season 

survival. 
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CHAPTER 1 
 

INTRODUCTION 

Migratory species utilizing seasonal environments face unique challenges in 

timing life-cycle events to optimize lifetime reproductive success. Individuals make 

multiple decisions during the breeding season regarding reproduction, each one with life 

history consequences. These include the decision to breed, and conditional on breeding, 

when to breed and the level of effort to invest in the current reproductive event.  The 

decision to breed has potential future survival and fecundity consequences through its 

influence on an individual’s physiological state and exposure to mortality risk (Nur 1984, 

Golet and Irons 1999, Magnhagen 1991, Low et al. 2010, Arnold et al. 2012). The timing 

of breeding has implications for fecundity across broad taxa, and is especially well 

documented in birds. Survival and recruitment of young from early-hatched nests is 

generally higher than later-hatching conspecifics (Hochachka 1990, Verboven and Visser 

1998, Lepage et al. 2000, Blums et al. 2002, Elmberg et al. 2005), and clutch size 

generally decreases as lay date advances (Klomp 1970, Ankney and MacInnes 1978, 

Krapu 1981). Timing of breeding can also influence an individual’s subsequent survival 

and fecundity, both of which are often lower in later nesting individuals (Verboven and 

Visser 1998, Blums et al. 2002, Blums et al. 2005).  

Reproductive effort (sensu Trivers 1972) represents the total investment an 

individual makes in producing offspring, inclusive of offspring care for species that care 

for young. Similar to decisions of if and when to breed, reproductive effort influences an 

individual’s fitness through impacts to future survival and fecundity. For example, female 
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mallards (Anas platyrhnchos) that tended broods to 60 days of age had lower annual 

survival than females that did not hatch a nest (Arnold and Howerter 2012), while 

experimentally-reducing reproductive effort during chick-rearing increased fecundity the 

subsequent year in long-lived seabirds (Catry et al. 2013, Fayet et al. 2016). I consider 

each of these decisions, in turn, for a long-distance migratory species with an 

intermediate lifespan, lesser scaup (Aythya affinis).     

The continental population of scaup (lesser and greater [A. marila] scaup 

combined) reached an all-time low in 2006 of 3.2 million birds, the nadir of an 

approximately three decade continental decline and nearly two million birds below the 

North American Waterfowl Management Plan (NAWMP) goal of 5.0 million birds (U.S. 

Fish and Wildlife Service 2016). Lesser scaup account for 89% of the continental scaup 

population, and are the most ubiquitous and numerous North American diving duck 

(Afton and Anderson 2001, Anteau et al. 2014). Two reviews of long-term data sets 

noted a decrease in the sex and age ratios (number of females relative to males and 

number of immatures relative to adults, respectively) of lesser scaup in the U.S. harvest 

(Allen et al. 1999, Afton and Anderson 2001).  These results indicated recruitment and 

female survival of lesser scaup declined concurrent with the population decline. Although 

the scaup population has rebounded recently, reaching the continental population 

objective in 2012 and 2016, factors that influence recruitment and female survival are 

still of interest to elucidate potential drivers of the historic decline and guide future 

conservation efforts.  

The expansive breeding range of lesser scaup (roughly two-thirds of the 

continental population breeds in the boreal forest of Alaska and Canada; Afton and 
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Anderson 2001) challenges the utility of inference from a single study site at the 

southwestern extent of the species’ breeding range. The study area in southwestern 

Montana were the work within this dissertation was conducted is a large (2,332 ha) high-

elevation (2,014 m above mean sea level) shallow lake/wetland complex that supports a 

relatively high breeding density of lesser scaup (>7.7 breeding pairs km-2). Although on 

the southern extent of scaup breeding range, the study site has one of the harshest and 

most variable breeding season environments in North America, as measured by growing-

season length (Gurney et al. 2011). Moreover, the extensive matrix of seasonally-flooded 

sedge (Carex spp.) interspersed with shallow open-water ponds within the study site is 

structurally similar to important breeding areas for lesser scaup in Alaska (Yukon Flats 

and Tanana-Kuskokwim basin), the Yukon (Old Crow Flats), and the Northwest 

Territories (Mackenzie River Delta) (Baldassarre 2014). Lastly, scaup that breed on the 

study site winter in areas that support approximately 60% of the continental population of 

scaup.  

Pre-breeding body condition is an important determinant of reproductive success 

in birds, largely through its influence on the decision to breed, and subsequently, timing 

of breeding. Females in good body condition are more likely to breed (Devries et al. 

2008, Gorman et al. 2008, Martin et al. 2009), initiate nesting earlier (Bêty et al. 2003), 

and produce larger clutches (Ankney and MacInnes 1978, Krapu 1981). The importance 

of body condition is compounded by the positive relationship between hatch date and 

recruitment commonly observed in birds (e.g., Dawson and Clark 2000). A trade-off 

exists, therefore, between investing time increasing body condition to produce more 

young (i.e., larger clutches) and initiating breeding activities to produce higher-quality 
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young (i.e., earlier hatch date). Known as the cost-of-delay hypothesis, the influence of 

reproductive timing on the trade-off between more young and higher quality young 

appears nearly ubiquitous among bird species (Rohwer 1992). This hypothesis was 

formalized into a mathematical model that defines an ‘optimal switch curve’, i.e., when a 

female should transition from gaining body condition to clutch formation, conditional on 

a female’s 1) body condition upon arrival at the breeding grounds, 2) rate of body 

condition gain, and 3) day of the nesting season (Rowe et al. 1994). In Chapter 2, I test 

predictions of the cost-of-delay hypothesis while simultaneously examining factors that 

influence female rate of body condition gain during the pre-breeding season. 

The decision to breed has obvious consequences for an individual’s reproductive 

success, both immediately and over their lifetime (Blums and Clark 2004), and the 

proportion of individuals that breed (i.e., breeding propensity) has clear population-level 

implications. However, little information exists regarding breeding propensity in 

vertebrates (Reed et al. 2004), and scaup are no exception (but see Devink et al. 2008, 

Martin et al. 2009).  Age and experience are two commonly cited drivers of breeding 

propensity in iteroparous species, with young, less experienced individuals often breeding 

at lower rates than older, more experienced conspecifics (Curio 1983, Clutton-Brock 

1988, Newton 1989, Cam and Monnat 2000). Variation in breeding propensity is often 

most pronounced when environmental conditions are not favorable for reproduction, 

consistent with state-dependent life history theory (McNamara and Houston 1996). This 

is particularly pronounced in long-lived species that are more likely to have a 

conservative reproductive strategy, i.e., one that favors adult survival over the current 

reproductive event (Williams 1966, Charlesworth 1980). For example, poor foraging 
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conditions have been linked to nonbreeding in adult seabirds (Brandt’s cormorant 

(Phalacrocorax penicillatus), Boekelheide and Ainley 1989; common shag (P. 

aristotelis), Aebischer and Wanless 1992; snow petrel (Pagodroma nivea), Chastel et al. 

1995; Arctic terns (Sterna paradisaea), Monaghan et al. 1992; and black-legged 

kittiwakes (Rissa tridactyla), Hamer et al. 1993), and the extent and timing of spring 

snowmelt is a strong determinant of breeding propensity in Arctic-nesting geese (Prop 

and de Vries 1993, Reed et al. 2004). Individual quality is also an important driver of 

breeding propensity, with high-quality individuals surviving and breeding at higher rates 

than low-quality conspecifics (Cam et al. 2002, Kennamer et al. 2016). In Chapter 3, I 

examine factors influencing breeding propensity in lesser scaup females, including 

environmental conditions, age, and body condition. Using stable isotope analysis, I also 

test for individual heterogeneity by assessing if females that molted on the site the prior 

year, a proxy for prior reproductive success, were more likely to breed the following 

year.   

Beyond the decision to breed, the level of investment (i.e., reproductive effort) an 

individual makes in the current reproductive event may be the reproductive decision with 

the greatest influence on future survival and fecundity.  In Chapter 4, I examine within- 

and among-season survival costs of reproduction using a ten-year data set of uniquely-

marked females and multi-state capture-mark-recapture models. Survival costs of 

reproduction may occur concurrently with a given reproductive activity, or in a serial 

manner where an individual survives the reproductive event but is in a reduced 

physiological condition that influences future survival or fecundity, i.e., a carry-over 

effect (COE) from breeding to a subsequent season. Concurrent survival costs of 
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reproduction are well documented, especially in ground-nesting birds. Increased 

mortality risks associated with clutch formation and nest attendance can lead to female-

biased mortality during the breeding season in ground-nesting birds (Grüebler et al. 2008, 

Perlut et al. 2008), and habitat conditions favorable to breeding in ducks are negatively 

related to female breeding season survival, both providing evidence of concurrent 

survival costs of reproduction (Arnold and Clark 1996, Rotella et al. 2003, Devries et al. 

2003, Arnold et al. 2012). Carry-over effects have also repeatedly been found, although 

most commonly as fecundity effects of winter habitat conditions on reproduction 

(Heitmeyer and Fredrickson 1981, Kaminski and Gluesing 1987, Raveling and Heitmeyer 

1989, Saino et al. 2004, Norris et al. 2004, Gunnarsson et al. 2005, Lehikoinen et al. 

2006, Guillemain et al. 2008, Rockwell et al. 2012, Osnas et al. 2016), or fecundity 

effects of prior reproduction (Hanssen et al. 2005, Catry et al. 2013, Fayet et al. 2016).  

Few studies have documented COEs as a survival cost of reproduction from 

breeding to wintering periods (but see Daan et al. 1996, Blomberg et al. 2013), although 

decreased post-breeding physiological condition provides a mechanism for this. 

Waterfowl undertake a complete post-breeding molt, leaving them flightless for a brief 

period (Hohman et al. 1992). For females, this period can be delayed by breeding 

activities (Lessells 1986), resulting in a reduced amount of time available to complete 

molt and regain body condition prior to autumn migration. On my study site, this period 

is coincident with the lowest observed body condition for females (Stetter 2014). 

Individuals in poor condition during molt produce lower-quality feathers that lead to 

higher thermoregulatory costs the subsequent winter (Nilsson and Svensson 1996). 

Moreover, birds with elevated stress during molt, as measured by feather corticosterone 
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levels, have reduced survival (Harms et al. 2014, Latta et al. 2016). Therefore, 

individuals that invest more in the current reproductive event may put themselves at a 

physiological disadvantage prior to two metabolically-expensive annual events, molt and 

migration, and pay a survival cost of reproduction the subsequent season. In chapter 4, I 

explore COEs from breeding to non-breeding seasons as a function of reproductive effort, 

measured by proxy with breeding habitat conditions and directly with several measures of 

reproductive success. I also assess the relative role of intra- versus among-seasonal 

drivers of mortality for females to elucidate the strength of breeding-season COEs by 

concurrently testing harvest metrics as predictors of non-breeding season survival. 

Scaup are intermediate in the spectrum between long- and short-lived species, 

which should also result in an intermediate response to reproductive risk. Based on 

residual reproductive value, long-lived species are generally conservative risk takers that 

hedge their bets against environmental uncertainty, while short-lived species should 

maximize risks that benefit reproductive success relative to survival costs (Williams 

1966, Charlesworth 1980). However, there is a predicted threshold of breeding conditions 

for long-lived birds where a steep increase in reproductive effort and decrease in adult 

survival occur (Erikstad et al. 1998). Increased investment in reproduction when 

recruitment probability is highest should occur in species with low and variable offspring 

survival because of recruitment’s greater influence on fitness than the number of breeding 

attempts (Gaillard et al. 2000). Recruitment is generally low for Aythya females, and 

reproductive effort varies strongly with environmental conditions (Rogers 1964, Afton 

1984, Dawson and Clark 2000, Anderson et al. 2001, Blums and Clark 2004, Warren et 

al. 2014), corroborating the idea that scaup should be willing to take significant survival 
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risks when breeding conditions are favorable. This would predict greater breeding 

propensity and reproductive effort when breeding habitat conditions are good, at the 

potential expense of concurrent or carry-over survival costs, predictions I explored in 

Chapters 3 and 4, respectively. Collectively, Chapters 2–4 provide unique insights into 

life-history strategies of a long-distance migrant with intermediate lifespan, ranging from 

individual quality (i.e., body condition, prior reproductive success) and environmental 

(e.g. wetland conditions) influences on decisions of if and when to breed, to survival 

costs of reproductive effort manifested as a COE to the non-breeding season.   

The concept of ‘individual quality’ as a source of observed heterogeneity among 

individuals is used throughout subsequent chapters. Individual quality is difficult to 

define, but generally is viewed as variation among individuals that is positively correlated 

with fitness (Wilson and Nussey 2010). This should therefore result in 1) high quality 

individuals surviving and reproducing at greater rates than low quality conspecifics, and 

2) the potential for individual quality to mask costs of reproduction. In chapters 2 and 3, I 

use body condition as a measure of individual quality. This assumes that body condition 

as a trait is positively related to fitness, i.e., all else being equal, individuals with higher 

body condition should also have higher fitness. In chapter 4, I posit variation in 

individual quality as a potential mechanism for the documented relationship between 

breeding season habitat conditions and non-breeding season survival. I do not, however, 

attempt to quantify individual quality in this chapter. Further work would be necessary to 

test the hypothesis that the observed negative relationship between breeding season 

habitat conditions and female non-breeding season survival results from a higher 
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proportion of low-quality females breeding when breeding season conditions documented 

to increase reproductive effort in scaup on our study site occur.  
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CHAPTER 2 

BODY CONDITION DYNAMICS AND THE COST-OF-DELAY HYPOTHESIS IN A 

TEMPERATE-BREEDING DUCK1 

 
Abstract 

Pre-breeding body condition is an important determinant of reproductive success 

in birds, largely through its influence on timing of breeding. Declines in clutch size and 

recruitment probability within breeding seasons indicate a trade-off may exist between 

the number of young (clutch size) and quality of young (recruitment probability). We 

explored local drivers of pre-breeding body condition and tested predictions of the cost-

of-delay hypothesis in female lesser scaup (Aythya affinis). Yearling females arrived on 

the study site in lower body condition than older females, but both age classes had similar 

rates of body condition gain on the breeding grounds prior to nesting. Rates of body 

condition gain were positively influenced by water temperature, a proxy for wetland 

phenology. The effect of water level was asymptotic and interacted with water 

temperature, with greater rates of gain in body condition occurring in years with low 

water levels. Our results supported the predicted response of clutch size to the rate of pre-

breeding body condition gain. After accounting for lay date, clutch size was positively 

related to the rate of body condition gain (�̂�𝛽 = 0.08 ± 0.039). We did not find support for 

a predicted interaction between rate of body condition gain and intra-seasonal decline in 

clutch size (�̂�𝛽 = 0.01 ± 0.01). Our results indicate that local conditions during pre-

                                                 
1 Coauthored by J. M. Warren, K. A. Cutting, and D. N. Koons 
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breeding influence body condition dynamics in female lesser scaup, which subsequently 

affects clutch size.    

 
Introduction 

Early birds get not only the worm, but generally have higher reproductive success 

as well. Survival and recruitment of young hatched from early nests are generally higher 

than from nests of later breeding conspecifics (Hochachka 1990, Verboven and Visser 

1998, Lepage et al. 2000, Blums et al. 2002, Elmberg et al. 2005). Moreover, females that 

nest earlier generally produce larger clutches (Klomp 1970, Ankney and MacInnes 1978, 

Krapu 1981). However, few females actually nest early when fitness advantages could be 

greatest (Lack 1968, Perrins 1970). Strong correlations between body condition, the 

timing of reproduction, and clutch size in birds indicate that many females may be 

incapable of nesting early due to inadequate body condition (Dijkstra et al. 1988, 

Pietiäinen and Kolunen 1993, Devries et al. 2008). Instead, many females face a trade-off 

between delaying breeding to increase their body condition and potential for a larger 

clutch, versus breeding earlier in lower body condition and producing fewer, but 

potentially higher-quality offspring (Drent and Daan 1980). Known as the cost-of-delay 

hypothesis, the influence of reproductive timing on the trade-off between more young 

and higher quality young appears nearly ubiquitous among bird species (Rohwer 1992).  

Rowe et al. (1994) formalized the cost-of-delay hypothesis in a dynamic 

mathematical model, facilitating the testing of predictions. In doing so, they defined how 

a female can maximize individual fitness potential using an “optimal switch curve” 

(Rowe et al. 1994; Fig. 2-1). The optimal switch curve essentially defines the balance 



21 
 
between the competing values of producing an additional egg versus the likelihood that 

the egg will successfully produce a recruit. Assuming similar rates of gain in body 

condition, a female in better initial condition would initiate a nest sooner, producing a 

larger clutch earlier than a female whose initial condition was lower. Similarly, years in 

which relatively early nesting occurs in a population are predicted to have larger mean 

clutches than years in which nesting is delayed. Changes in the rate of body condition 

gain move the optimal switch curve to the right (increased rate of gain) or left (decreased 

rate of gain) (Fig. 2-1). Greater rates of gain in body condition result in larger clutches 

regardless of timing of nesting; lesser rates of gain result in the opposite.  

The rate of gain in body condition, and thus the time at which a female will 

initiate nesting, is likely influenced by the interplay between an individual’s age, 

experience and local environmental factors that determine foraging opportunities. Little 

direct evidence is available to determine if more experienced individuals have greater 

rates of gain in body condition than less experienced individuals. More experienced 

individuals do, however, generally arrive earlier on the breeding grounds, initiate nesting 

earlier, and produce larger clutches (Birkhead et al. 1983, Sydeman et al. 1991, Devries 

et al. 2008). Moreover, females commonly increase somatic lipid reserves after arrival on 

the breeding ground prior to nest initiation (Alisauskas and Ankney 1992), even in 

species with relatively short periods of time between arrival and nest initiation (e.g., 

Arctic nesting geese; Budeau et al. 1991, Fox et al. 2006). Environmental conditions on 

the breeding grounds that influence the ability of females to increase body condition may 

therefore play an important role in an individual’s reproductive success. For example, the 

influence of snow cover on forage availability has repeatedly been implicated as a driver 
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of reproductive success in Arctic nesting geese (Barry 1962, Prop and de Vries 1993). 

Reduced availability of forage resources on the breeding grounds would limit the ability 

of females to improve or maintain body condition during the period between arrival and 

nest initiation for these species. Studies have demonstrated both local influences of 

environmental conditions on reproductive success, and significant increases in body 

condition on the breeding grounds, but few have explored drivers of gain in body 

condition during pre-breeding periods (e.g., Mainguy et al. 2002) and how these may 

simultaneously affect clutch size via cost-of-delay predictions. 

Lesser scaup (Aythya affinis; hereafter scaup) are one of the latest nesting North 

American ducks (Bellrose 1980). The prolonged period on the breeding grounds prior to 

nesting, which can be in excess of a month (Afton 1984, J. M. Warren unpubl. data), 

provides females considerable opportunities to improve body condition prior to nesting. 

Scaup utilize somatic reserves for clutch formation (Afton and Ankney 1991, Esler et al. 

2001), with a significant proportion of those reserves locally acquired (Warren and 

Cutting 2011, Cutting et al. 2012). Early nesting scaup also recruit more young than later 

nesting conspecifics (Dawson and Clark 2000).  A prolonged pre-breeding period, 

reliance on somatic reserves derived from local resources for clutch formation, and a 

seasonal decline in recruitment make lesser scaup a particularly interesting species to 

explore body condition dynamics within the context of the cost-of-delay hypothesis.   

We undertook the current study to: 1) explore within and among year dynamics of 

pre-breeding body condition in female lesser scaup, and 2) test predictions of the cost-of-

delay hypothesis using mean body condition, nest initiation dates, and clutch sizes during 
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six years of study on a breeding population of lesser scaup in the southwestern extent of 

their range.  

 
Hypotheses and predictions 

 
Body condition dynamics 

Primarily carnivorous during the breeding season, scaup forage heavily on 

amphipods (e.g., Gammarus spp. and Hyalella spp.) prior to and during clutch 

development (Rogers and Korschgen 1966; Afton and Hier 1991), which provides 

females with a great deal of protein and lipids. For example, lipid content of G. lacustris, 

the most common amphipod on our study site, peaks in spring and early summer around 

15%, while protein content averages ≈ 40% (Mathias et al. 1982, Arts et al. 1995). The 

peak of lipid content in amphipods coincides with amphipod reproduction (Arts et al. 

1995), which in turn is closely linked to water temperature (Smith 1973). We 

hypothesized that spring phenology would positively influence the abundance and quality 

of amphipods on the study site. Thus, our prediction was that mean scaup body condition 

would increase at a greater rate during springs with relatively early wetland phenology. 

We therefore predicted a non-linear pseudo-threshold relationship between water 

temperature and female body condition, given that amphipod reproduction peaks at 

temperatures similar to maximum water temperatures observed on the study site (Smith 

1973). We similarly hypothesized that female body condition would be positively 

influenced by the availability of preferred foraging areas, i.e., shallow to intermediate 

depth (50–150 cm) open-water habitat (Torrence and Butler 2006). Higher water levels 

on the study site correspond to more of the open-water habitat on the study site within  
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the preferred depth for scaup, so we predicted a positive linear relationship between water 

depth and mean body condition gain. Lastly, female experience is an important 

determinant of spring body condition in female ducks (Peterson and Ellarson 1979, 

Hohman 1986), with more experienced females often arriving on the breeding grounds in 

better condition, initiating nests earlier, and producing larger clutches (Krapu and Doty 

1979, Baillie and Milne 1982, Devries et al. 2008). Older females were therefore 

predicted to be in better body condition and have greater rates of gain in body condition.  

 
Cost-of-delay hypothesis 

Based on the cost-of-delay hypothesis, we made two predictions regarding the 

relationship between the rate of gain in body condition and clutch size. First, after 

controlling for timing of breeding, years with higher rates of gain in body condition were 

predicted to have larger clutches. Higher rates of gain in body condition shift the optimal 

switch curve to the right (Fig. 2-1), resulting in all females having larger clutches than at 

lower rates of gain. Second, the slope of the switch curve should change with varying 

rates of body condition gain (e.g. Rowe et al. 1994; Fig. 2-1). After controlling for timing 

of breeding among years, we predicted that years with steeper rates of gain in body 

condition on the breeding grounds would have steeper declines in clutch size as the 

season progresses, assuming a relatively constant decline in offspring quality among 

years. 

  



25 
 
Methods 

 
Data collection 

This study was conducted on Lower Red Rock Lake (Lower Lake) in southwest 

Montana (Fig. 2-2).  Lower Lake is a large (2,332 ha), high elevation (2014 m above 

mean sea level) wetland encompassed by Red Rock Lakes National Wildlife Refuge 

(Refuge).  Water depths typically do not exceed 1.5 m during the nesting season, with 

large open water areas interspersed with hardstem bulrush (Schoenoplectus acutus) 

islands.  Nearly half of the area is extensive stands of seasonally flooded Northwest 

Territory sedge (Carex utriculata) that contain small (<2 ha), scattered open water areas.  

Average annual precipitation is 49.5 cm with 27% occurring during May and June. Annual 

average temperature is 1.7ºC. The study site has one of the harshest, and most variable, 

breeding season environments utilized by lesser scaup as measured by growing season length 

(Gurney et al. 2011).  

Female lesser scaup were captured via spotlighting for 3–6 nights during each 

new moon phase during the months of May – June, 2006–2011. Captures occurred on 34 

different calendar dates among all years between 9 May – 23 June (overall median nest 

initiation date). Females were banded with a US Geological Survey aluminum leg band 

and aged (AGE) (second year [SY] or after second year [ASY]) based on eye color 

(Trauger 1974).  Each female’s body mass (nearest 5 g), and tarsus (± 0.1 mm), head (± 

0.1 mm), and flattened wing chord (± 1 mm) lengths were recorded.     

Nest searches were conducted within Carex spp. dominated habitats on the study 

site each year. Scaup nests were located using observational cues of females and trained 
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dogs during two searches completed between late May and mid-July. Daily searches were 

conducted between 0600 and 1300 hours; nests found incidentally while conducting other 

field work were included. When nests were located the number of eggs and incubation 

stage, as determined by field-candling (Weller 1956), were recorded. Nest initiation date 

(INIT) was estimated by subtracting the number of eggs and days of incubation from the 

current date and adding 1 day. Clutch size was recorded for each nest where evidence of 

incubation was present, but denoted as ‘unknown’ for nests where intra- or interspecific 

nest parasitism was evident.    

We also quantified spring habitat conditions on the study site each year. A 

capacitance probe water level and temperature data logger (model WT-HR 1500; 

TruTrac, Christchurch, New Zealand) was deployed each year in April at the western 

outflow of Lower Lake. Water levels (± 0.1 mm) and temperatures (± 0.1°C) were 

recorded hourly throughout the breeding season. To explore relationships between female 

body condition and spring phenology and wetland water conditions, we calculated mean 

water temperatures (TEMP) and levels (LVL) for each day captures occurred. This was 

done by averaging hourly temperature and level measurements for each capture day and 

preceding 10 days’ data.    

 
Analysis 

Our analysis consisted of two primary aspects. First, we explored female body 

condition dynamics in response to habitat attributes and female age using mixed-effects 

models. These data were obtained from females captured during the pre-breeding period. 

Few females were captured more than once, so our analysis explored general patterns in 
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body condition observed for the breeding population studied. Second, we tested the cost-

of-delay hypothesis using the relationship between predicted annual rate of body 

condition gain and clutch size within and among years.  

Female body condition was estimated as a size-adjusted body condition index 

(BCI) calculated for each female. A principal component analysis was conducted using 

female head and tarsus measurements, and female body mass was regressed on the first 

principal component. The resulting regression residual for each female was used as the 

BCI (e.g., Devries et al. 2008). Negative BCI values indicate females that have a lower 

than average mass for a given structural size, and positive values indicate the opposite.   

Mixed-effects models were used to explore breeding season dynamics of female 

body condition (package nlme in R 2.15.1; R Development Core Team 2013). We began 

with a mixed-effect model with a response of female body condition (BCI), fixed-effect 

interactions among TEMP, LVL, and AGE, and a random intercept for YEAR. TEMP 

was log-transformed to account for the predicted asymptotic relationship between 

condition gain and water temperature. Non-significant (α > 0.10) fixed-effect parameters 

were removed in a backwards-stepwise process from the model. Models were fit using 

restricted maximum likelihood estimation and ranked based on values of Akiake’s 

Information Criterion (AIC; Burnham and Anderson 2002). Residual diagnostic plots 

from the selected model were used to test for violation of normality and homogeneity 

(Zuur et al. 2009).  

Including YEAR as a random effect provides several benefits. First, we don’t 

assume years are independent and comprise all of the factor levels of interest. Instead, the 

effect of year is treated as a random variable, with individual year effects realizations of 
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that distribution. This allows inference to non-sampled factor levels, i.e., years, and 

acknowledges that different values would be expected if the study were repeated (Kéry 

2010). Second, because year effects are not treated as independent, estimated effects of 

year on the rate of body condition gain are dependent on all factor levels, leading to 

greater precision when estimating individual year effects (Kéry 2010). This can be 

contrasted with year as a fixed effect where each year’s factor level is estimated 

independent of information from the other years in the sample, which could lead to bias 

in our results with variation among years in female arrival and initial capture dates. For 

example, if the timing of first captures within a year occurred shortly after arrival a 

higher proportion of early arriving females in better body condition may have been 

sampled. Conversely, if initial captures occurred relatively later in the spring more late-

arriving females of poorer body condition would be available for sampling. This could 

lead to differences in the rate of body condition change among years due to sampling. 

Including year as a random factor reduces the risk of that bias by assuming an underlying 

population-level process of body condition gain that varied randomly among years. 

Moreover, the timing of captures was such that most females on the site were available 

for sampling during both capture occasions each year. Uniquely marked scaup females 

were detected at a consistent and high level (probability of detection, p, approximately 

0.77) during surveys conducted mid-May 2006–2008 on the study site (JM Warren 

unpubl. data), indicating most females had arrived on the site prior to surveys. 

Additionally, females marked on the study site in 2009 (n = 6) with satellite transmitters 

all returned the following spring on or before 8 May.   
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We tested for differences among years in clutch size and nest initiation using 

single factor ANOVA. To test our predictions regarding the response of clutch size to 

rate of gain in body condition, we used a mixed-effect model with YEAR as a random 

effect and a fixed-effect structure of standardized nest initiation date (INIT) and the 

estimated slope of gain in body condition for each year (BCRate). An interaction was 

included between INIT and BCRate to test our second prediction of steeper seasonal 

declines for clutch size in years with greater rates of gain in female body condition.   

 
Results 

Spring phenology and wetland conditions varied considerably among years during 

our study. Mean water temperature from 1 May–15 June varied from a low of 7.4°C (SD 

= 9.8) in 2008 to a high of 14.4°C (SD = 3.0) in 2007 (Table 2-1). Water levels similarly 

varied from the drought year of 2007 at a level of 2013.6 m above mean sea level (msl) 

(SD = 0.29) to 2014.2 m above msl in 2006 and 2011 (SD = 0.04 and 0.06, respectively)  

(Table 2-1). The difference between these years, 0.6 m, represents an approximate 

halving of mean water depths across the study area between the drought year of 2007 and 

2006 and 2011.  

We captured 266 females during 2006–2011 that were included in the analysis of 

body condition dynamics. This sample of individuals from the site included females that 

were breeding (i.e., egg in the oviduct determined by palpation). Variation in the 

proportion of breeding females captured among years could bias results, especially during 

periods of poor wetland conditions when the proportion of breeding females declines and 

early emigration from breeding areas occurs (Rogers 1964, Afton 1984). We tested for a 
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difference in the proportion of breeding females in the sample among years using a 

generalized linear model, log link, and binomially-distributed errors. After accounting for 

capture date, the proportion of breeders in the sample did not differ among years except 

2009, which had fewer breeders captured (�̂�𝛽2009 = -1.71, P = 0.06). Mean proportion of 

breeders captured by year was 0.19, 0.19, 0.0, 0.24, 0.38, and 0.0 for 2006 – 2011, 

respectively.     

The first principal component explained 74% of the variation in female head and 

tarsus measurements; PCA values ranged from -4.3 to 3.6 (structurally largest to smallest 

females, respectively). Female body mass was correlated to structural size with 

structurally larger females being heavier than smaller females, but considerable variation 

was not explained by the relationship (�̂�𝛽 = -17.4, P < 0.001, adjusted R2 = 0.08). Body 

condition index values ranged from -206.0 to 193.6, with a mean of 0.06 (SD = 69.0). 

Assuming a linear relationship between body condition and calendar date, female body 

condition increased an average of 2.2 index points per day (SE = 0.25) amongst all years 

of study; this equates to a female of average structural size gaining 2.2 g of mass per day 

during the pre-breeding period until peak nest initiation. This is corroborated by a small 

number of individuals (n = 4) that were captured twice within a year – mean mass gain of 

these females was 2.03 g day-1 from mid-May to mid-June. 

The best model of female body condition supported our prediction regarding gain 

in body condition and spring phenology. Mean female body condition increased non-

linearly with water temperature, but the relationship was dependent upon water level (i.e., 

an interaction) such that gains were greatest at lower water levels on the study site, 

contrary to our prediction regarding the response of body condition gain to water depth 
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(Table 2-2). The interaction between water temperature and level indicated females had a 

higher rate of gain in body condition during years with low water. For example, an adult 

(ASY) female was predicted to have a BCI of -103.6 at 8°C water temperature and a low 

water level (2013.5 m msl). Increasing water temperature to 18°C increased the predicted 

BCI to 61.2. However, the same change in water temperature with a high water level 

(2014.2 m msl) resulted in a narrower range of change in BCI from 6.2 to 81.5 in ASY 

females. The rate of female body condition gain did not differ based on age class (i.e., 

interaction terms with AGE had P values > 0.50), however yearling females did have 

lower mean body condition (�̂�𝛽SY = -27.4, P = 0.001; Fig. 2-3). Graphical tests of 

normality and variance homogeneity did not indicate violations of these assumptions.  

A total of 261 nests were located during the study for which clutch size was 

determined, ranging from 22 nests found in 2011 to 58 found in 2008. The earliest nest 

initiation date observed was 22 May 2006, and the latest was 21 July 2011. Mean clutch 

sizes varied significantly among years (F5, 255 = 11.46, P < 0.01) with 2011 having the 

smallest clutches and 2007 the largest (Table 2-3). Similarly, initiation dates differed 

among years (F5, 255 = 17.15, P < 0.01). Mean nest initiation varied 20 days during the six 

years studied, with the earliest (2007) and latest (2011) years having the largest and 

smallest clutch sizes, respectively (Table 2-3). However, peak nest initiation occurred 

within three days for four of the years studied. Estimates of clutch size and initiation date 

for 2011, the latest nesting year, may have been biased by second nesting attempts as 

water levels on the study site rose throughout the normal period of nesting for lesser 

scaup and some nest flooding was observed.    
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We found mixed support for our predictions based on the cost-of-delay 

hypothesis. After accounting for initiation date, annual mean clutch size was positively 

influenced by the rate of gain in female body condition after arrival (Table 2-4). 

Conversely, after accounting for initiation date, intra-annual declines in clutch size were 

not related to the rate of body condition gain (Table 2-4). 

 
Discussion 

 
Body condition dynamics 

An individual’s body condition during the pre-breeding period strongly influences 

the timing of breeding in birds (see reviews in Drent 2006, Nager 2006), an important 

determinant of reproductive success (Rohwer 1992). Few studies, however, have 

explored local drivers of body condition gain during the pre-breeding period. Our results 

indicate wetland phenology and water conditions are strong drivers of body condition in 

female lesser scaup during the pre-breeding period. We found that the rate of body 

condition gain in lesser scaup was positively influenced by water temperature, a strong 

proxy for wetland phenology. Earlier wetland phenology may provide greater foraging 

opportunities for female scaup through higher abundance of invertebrate prey. 

The influence of wetland phenology on the rate of body condition gain in female 

scaup was nevertheless dependent upon the water level of the study site. Deeper levels 

weakened the relationship between body condition gain and water temperature, resulting 

in lower rates of body condition gain across the range of temperatures experienced during 

the study. This is not altogether surprising given that water temperature increases more 

slowly during high water periods than during low water levels, influencing wetland 
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phenology and invertebrate abundance. Conversely, low water levels could concentrate 

important prey items, providing for better foraging efficiency and greater rates of body 

condition gain. Water level recession has been demonstrated to positively influence 

reproductive success in wading birds, with a proposed mechanism of increased foraging 

efficiency through concentration of prey (Kahl 1964, Frederick and Collopy 1989). The 

lower water levels observed during this study did not reduce the surface area of open 

water available to pre-breeding females, but instead reduced the overall volume of water. 

Decreased depth of the water column could concentrate aquatic invertebrates, important 

prey items for pre-breeding lesser scaup (Rogers and Korschgen 1966, Dirschl 1969, 

Afton and Hier 1991). Low water levels experienced on the site during this study 

occurred during periods of regional (i.e., Intermountain West) drought, and females were 

predicted to have lower body condition upon arrival during these years. The effect of 

drought on lesser scaup during the breeding season is marked by reduced breeding 

propensity and early emigration from breeding areas. (Rogers 1964, Afton 1984). 

Therefore, the observed pattern of greater rates of body condition gain during low water 

periods could occur if the proportion of breeding females captured on the site was higher 

during drought years because non-breeding females emigrated from the site prior to peak 

nest initiation. This would bias estimated rates of body condition gain high relative to 

non-drought years. We did not find support for this; after accounting for capture date 

there was not a significantly higher proportion of breeding females in our sample during 

low water years (i.e., 2007 and 2010). 

In migratory birds, older females tend to arrive on the breeding grounds in better 

body condition (Hohman 1986, Baillie and Milne 1982, Devries et al. 2008). We 
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similarly found that older females were in better body condition on the breeding grounds 

at the beginning of the pre-breeding period. However, we did not find evidence that older 

females had a higher rate of body condition gain during the pre-breeding period than 

yearling females. This relationship indicates that experience may play a greater role in 

body condition dynamics prior to arrival, rather than while present, on  the breeding 

grounds. Based on satellite-transmitter marked females (n = 6), scaup tend to migrate in a 

counter-clockwise pattern from the study site to wintering grounds and back (J. M. 

Warren unpubl. data). Therefore, yearling females may be using spring staging habitats 

for the first time prior to arrival on the breeding ground, while older individuals would 

have had previous experience on spring staging habitats. Conversely, yearling females 

philopatric to their natal area would be utilizing familiar habitat upon return to the 

breeding grounds. This could result in the observed pattern of lower initial body 

condition of yearling females relative to older females, but similar rate of body condition 

gain between the two age classes once on the breeding grounds. Lower initial body 

condition but similar rates of body condition gain on breeding grounds would similarly 

lead to consistent differences in body condition during the breeding season between 

yearling and older females (Krapu and Doty 1979, Krapu 1981).  

 
Cost-of-delay hypothesis 

The cost-of-delay hypothesis views the timing of reproduction in birds as a 

tradeoff between nesting early to produce higher quality young or later to produce a 

larger clutch (Drent and Daan 1980). Our study provides a unique opportunity to test the 

cost-of-delay hypothesis, as formalized by Rowe et al. (1994), with respect to the 
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influence of mean body condition gain on clutch size. After controlling for timing of nest 

initiation, clutch size was positively related to the rate of body condition gain in lesser 

scaup. The observed trend followed the prediction regarding the influence of the rate of 

body condition gain on clutch size; an increase in the rate of body condition gain should 

result in an increase in the optimal clutch size (Reynolds 1972, Drent and Daan 1980, 

Rowe et al. 1994). The relationship between the rate of body condition gain and clutch 

size indicates females are likely responding to local conditions and ‘fine-tuning’ the 

timing of breeding. Much of the work regarding pre-breeding body condition influences 

on breeding in waterfowl have focused on condition of individuals on spring staging 

areas (e.g., Fox et al. 2006) or shortly after arrival to the breeding grounds (e.g., Devries 

et al. 2008). This emphasis is well warranted given the considerable reliance on somatic 

reserves for fueling reproduction and the timing of breeding in most temperate and Arctic 

nesting waterfowl (Alisauskas and Ankney 1992). Lesser scaup, however, spend a 

protracted amount of time on the breeding grounds prior to nesting (Afton 1984, this 

study), and can acquire considerable somatic reserves during this time. Therefore, local 

conditions on breeding grounds prior to nesting for scaup may be important determinants 

of the quality (timing) and quantity (clutch size) of a female’s reproductive efforts. 

Although the intra-seasonal decline in clutch size is quite ubiquitous in birds, 

considerable variation in the rate of decline among species, populations, and years 

occurs. For example, greater scaup (Aythya marila) clutch size decline was similar among 

years in a 10 year study conducted in western Alaska (Flint et al. 2006). Mallard (Anas 

platyrhynchos), gadwall (Anas strepera), and blue-winged teal (Anas discors) clutch size 

declines were similarly consistent among six years of study in the Prairie Pothole Region 
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(PPR) (Lokemoen et al. 1990). Conversely, a subsequent study in the PPR found that 

gadwall and teal, but not mallard, rates of clutch size decline did vary among years 

(Krapu et al. 2004). Significant differences among years in intra-seasonal clutch size 

decline were also observed in Arctic-nesting black brant (Branta bernicla nigricans) 

(Lindberg et al. 1997). However, none of the aforementioned studies examined clutch 

size decline as influenced by rate of body condition gain, making it impossible to directly 

test Rowe et al.’s (1994) predictions regarding this relationship. Our results, similar to 

others that found consistent clutch size declines among years, suggest a stronger 

influence of ultimate (e.g., seasonal decline in quality of young), rather than local, factors 

on intra-seasonal declines of clutch size for some species. Rowe et al.’s (1994) model of 

individual optimization implicitly assumes females can recognize, and respond to, local 

cues such as rate of body condition gain during the pre-breeding period. Among-year 

variation in clutch size decline provides support for this assumption (e.g., Lindberg et al. 

1997). A consistent rate of clutch size decline among years would occur if the timing of 

clutch formation was triggered by a threshold of body condition dependent upon date, but 

independent of local cues such as rate of body condition gain. A relatively inflexible 

strategy such as this is corroborated by observed patterns in scaup. Breeding in scaup is 

initiated during a narrow window of time across a broad range of latitude and elevation 

(DeVink et al. 2008, Gurney et al. 2011), a possible product of strong heritability of nest 

initiation date (Findlay and Cooke 1982). If timing of breeding is the sum of heritable 

nest initiation date and nonheritable influences of body condition and environmental 

factors (sensu Price et al. 1988), then the latter would appear to have the weakest 

influence on timing of breeding, and thus clutch size, in scaup. Without information on 
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heritability of breeding traits, which we lack, it is not possible to test this hypothesis 

directly. Conversely, local environmental factors were closely linked to the rate of body 

condition gain in female scaup during this study.  

The role of body condition on the timing of, and investment in, clutch formation 

has long been a topic of interest among ornithologists and ecologists. The influence of 

body condition on reproductive success underscores the need for a thorough 

understanding of this dynamic relationship. Our results indicate a strong influence of 

local drivers on body condition gain in females during the pre-breeding period. 

Moreover, clutch size was positively related to the rate of body condition gain in females 

as predicted by Rowe et al. (1994). However, we did not find strong support for the 

predicted response of clutch size decline to varying rates of body condition gain. Work 

similar to ours, but at the level of individuals, would provide greater insight into the 

patterns observed during this study.   
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Tables and figures 

Table 2-1. Pre-breeding period (1 May – 15 June) mean water temperature and lake level 
on the Lower Red Rock Lake study area during 2006–2011. Standard deviations are 
presented parenthetically.  

Year Mean Temperature (°C) Mean Level (m msl) 

2006 12.0 (3.2) 2014.2 (0.04) 

2007 14.4 (3.0) 2013.6 (0.29) 

2008 7.4 (9.8) 2014.1 (0.48) 

2009 11.5 (6.8) 2014.0 (0.45) 

2010 8.9 (7.1) 2013.9 (0.58) 

2011 13.5 (8.6) 2014.2 (0.06) 

 
 
Table 2-2. Coefficient estimates, standard errors (SE), and P values for covariates in the 
most parsimonious mixed-model for female lesser scaup body condition on the Lower 
Red Rock Lake study area. Covariates include age class (Age: SY or ASY), mean water 
temperature (TEMP) and level (LVL) on the study site for the 10 days preceding capture. 
A random intercept of year was included in the model, which has an estimated standard 
deviation of 30.87 (residual deviation = 60.91). 

Model Parameter β̂  SE ( β̂ ) P 

Intercept -1407.9 447.3 0.002 
Age(SY) -27.4 7.7 0.001 
log(TEMP) 490.0 170.2 0.004 
LVL 147.7 56.9 0.010 
LVL:log(TEMP) -48.0 22.0 0.030 
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Table 2-3. Mean clutch size and nest initiation dates for lesser scaup on the Lower Red 
Rock Lake study area during 2006–2011. Standard deviations are presented 
parenthetically.  

Year Clutch Size Initiation Date 

2006 7.0 (1.77) 173 (10.5) 

2007 8.5 (1.23) 166 (7.9) 

2008 8.4 (1.44) 175 (6.1) 

2009 7.2 (1.23) 174 (8.6) 

2010 8.2 (1.37) 174 (9.5) 

2011 6.7 (2.00) 186 (8.8) 

 
 
Table 2-4.  Coefficient estimates, standard errors (SE), and P values for mixed-models 
exploring relationships between clutch size and rate of body condition gain for female 
lesser scaup on the Lower Red Rock Lake study area, 2006–2011. Covariates include 
standardized nest initiation date (INIT) and population-level rate of body condition gain 
(BCRate). A random intercept of year was included in the model, which had an estimated 
standard deviation of 0.618 for the additive model and 0.623 for model containing the 
interaction (residual deviation 1.30 for both models). 

Model Parameter β̂  SE ( β̂ ) P 

Intercept 5.29 1.12 <0.001 
INIT -0.76 0.08 <0.001 
BCRate 0.08 0.04 0.093 
Intercept 6.31 1.12 <0.001 
INIT -1.04 0.35 0.002 
BCRate 0.08 0.04 0.097 
INIT*BCRate 0.01 0.01 0.404 
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Figure 2-1. Predicted relationships among body condition, lay date, and clutch size from 
the cost-of-delay hypothesis (modified from Rowe et al. 1994). Bold lines indicate the 
optimal time, i.e., optimal switch curve, for an individual to initiate nesting based on 
initial body condition (y-axis intercept) and the rate of body condition gain (slope of 
dashed lines). Higher rates of body condition gain result in 1) larger clutches, and 2) a 
steeper intra-seasonal decline in clutch size across individuals in a population.  
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Figure 2-2. Lower Red Rock Lake study area within Red Rock Lakes National Wildlife 
Refuge, southwest Montana, USA. 
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Figure 2-3. Relationship between relative body condition of female lesser scaup and 
water temperatures by year based on the most parsimonious model 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐴𝐴𝐴𝐴𝐵𝐵 +
log(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗ 𝐿𝐿𝐿𝐿𝐿𝐿. Relative body condition is predicted for the mean water level for each 
year. 
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CHAPTER 3 

PREVIOUS SUCCESS AND CURRENT BODY CONDITION DETERMINE 

BREEDING PROPENSITY IN LESSER SCAUP: EVIDENCE FOR THE 

INDIVIDUAL HETEROGENEITY HYPOTHESIS2 

 
ABSTRACT 

The decision to breed influences an individual’s current and future reproduction, 

and the proportion of individuals that breed is an important determinant of population 

dynamics. Age, experience, individual quality, and environmental conditions have all 

been demonstrated to influence breeding propensity. To elucidate which of these factors 

exerts the greatest influence on breeding propensity in a temperate waterfowl, we studied 

female Lesser Scaup (Aythya affinis) breeding in southwestern Montana. Females were 

captured during the breeding seasons of 2007–2009, and breeding status was determined 

based on 1) presence of an egg in the oviduct, or 2) blood plasma vitellogenin (VTG) 

levels. Presence on the study site the previous year, a proxy for adult female success, was 

determined with stable isotope signatures of a primary feather collected at capture. 

Overall, 57% of females had evidence of breeding at the time of capture; this increased to 

86% for females captured on or after peak nest initiation. Capture date and size-adjusted 

body condition positively influenced breeding propensity with a declining body condition 

threshold through the breeding season. We did not detect an influence of female age on 

breeding propensity. Drought conditions negatively affected breeding propensity, 

                                                 
2 Coauthored by J. M. Warren, K. A. Cutting, J. Y. Takekawa, S. E. De La Cruz, T. D. Williams, and D. N. 
Koons 
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reducing the proportion of breeding females to 0.85 (SE = 0.05) from 0.94 (SE = 0.03) 

during normal water years. A female present the previous breeding season was 5% more 

likely to breed than a female not present the prior year. The positive correlation between 

age and experience makes it difficult to differentiate the role of age, experience, and 

individual quality in reproductive success in vertebrates. Our results indicate that 

individual quality, as expressed by previous success and current body condition, may be 

among the most important determinants of breeding propensity in female Lesser Scaup, 

providing further support for the individual heterogeneity hypothesis.     

 
INTRODUCTION 

An individual’s reproductive success is the product of several life-cycle events, 

and the decision to breed has clear implications for reproductive success. The decision to 

breed in a given year influences an individual’s lifetime reproductive value assuming a 

trade-off between current reproduction and future survival or reproduction exists 

(Williams 1966, Stearns 1992, Aubry et al. 2009). At a population level, the proportion of 

individuals who breed within a year is an important determinant of population growth 

(Cam et al. 1998). The broad relevance of the propensity or decision to breed has resulted 

in considerable theoretical (e.g., Goodman 1974, Charlesworth 1980, Stearns 1992) and 

empirical (e.g., Boekelheide and Ainley 1989, Aebischer and Wanless 1992, Chastel et 

al. 1995, Reed et al. 2004, Bohec et al. 2007) work exploring optimal decisions from a 

life-history perspective and proximate drivers of variation in this demographic rate.  

The probability of breeding commonly varies with age in iteroparous species. 

Delayed maturation in long- and medium-lived species is common (Clutton-Brock 1988, 
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Newton 1989), with age-at-first-breeding positively related to density (Weimerskirch and 

Jouventin 1987, Krüger 2005), and negatively related to wetland numbers (a proxy for 

drought) (Afton 1984) and prey availability (Boekelheide and Ainley 1989, Brommer et 

al. 1998). After the onset, breeding probability generally increases with age, often 

reaching an asymptotic value that in some species later declines with the onset of 

senescence (Afton 1984, Sedinger et al. 2001, Crespin et al. 2006).  

Various hypotheses have been posited to explain this commonly observed pattern 

in breeding probability, or more generally, breeding success. For example, the greater 

sensitivity of  breeding propensity in young, inexperienced individuals to proximate 

environmental conditions could result from limited resources differentially influencing 

inexperienced individuals that lack the skills to acquire the resources to breed 

(‘constraint’ hypothesis; Curio 1983). Reproductive experience is gained through 

breeding attempts, which increases monotonically with age but can vary among 

individuals of the same age (e.g., a four-year old individual who bred each year of life 

will be twice as reproductively experienced as a comparably aged individual who bred 

only twice). Increased experience would permit individuals to better overcome 

constraints to breeding as they age, resulting in greater breeding probability in older age 

classes. Alternatively, young individuals may forego breeding in an unfavorable year to 

optimize their residual reproductive value (RRV) based on the tradeoff between the cost 

of breeding in the current year relative to the probability of reproductive success 

(‘restraint’ hypothesis; Goodman 1974, Curio 1983). An individual’s RRV decreases 

with age, increasing the value, and likelihood, of reproductive events as an individual 

ages. Variation in the quality of individuals could also result in increased breeding 
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propensity and success with age if individuals that are less likely to breed also have lower 

survival, resulting in an increased proportion of high-quality individuals in a cohort 

through time (‘heterogeneity’ hypothesis; Curio 1983, Barbraud and Weimerskirch 2005, 

Bohec et al. 2007).  

Variation in breeding propensity is most pronounced when environmental 

conditions are not favorable, i.e. a necessary resource (e.g., prey) for breeding is limited. 

For example, yearling female diving ducks (Aythya spp.) will often breed when wetland 

conditions are good but will forego breeding during drought (Canvasback [Aythya 

valisineria], Anderson et al. 2001; Lesser Scaup [A. affinis], Afton 1984; Ring-Necked 

Duck [A. collaris], Hohman 1986; Redhead [A. americana], Sorenson 1991). 

Environmental conditions averse to breeding have been demonstrated to reduce the 

probability of breeding in adult seabirds. Examples of non-breeding in response to poor 

foraging conditions include Brandt’s Cormorant (Phalacrocorax penicillatus, 

Boekelheide and Ainley 1989), Common Shag (Phalacrocorax aristoelis, Aebischer and 

Wanless 1992), Snow Petrel (Pagodroma nivea, Chastel et al. 1993), Arctic Terns 

(Sterna paradisaea, Monaghan et al. 1992), and Kittiwakes (Rissa tridactyla, Hamer et 

al. 1993). Similar to many seabirds, Arctic nesting geese, e.g., Barnacle Geese (Branta 

leucopsis) and Greater Snow Geese (Chen caerulescens atlantica), breed in highly 

variable and unpredictable environments that can result in high rates of non-breeding 

when spring conditions are poor. The extent and timing of spring snowmelt has 

repeatedly been correlated with breeding propensity in Arctic nesting geese, with 

unusually late snow cover often leading to high levels of non-breeding (Prop and de Vries 

1993, Reed et al. 2004).  
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A threshold body condition level needed for breeding may connect breeding 

propensity and environmental conditions that influence forage resource availability. 

Numerous studies have provided evidence that a minimum mass must be reached prior to 

commencement of breeding. For example, female Wandering Albatross (Diomedea 

exulans) only become first-time breeders after attaining a mass of ca. 8.0 kg 

(Weimerskirch 1992). Male and female Mute Swans (Cygnus olor) need to reach mass 

thresholds of 10.6 and 8.8 kg, respectively, prior to undertaking breeding (Reynolds 

1972). Lower nutrient reserves in non-breeding versus breeding female ducks also 

supports the hypothesis of a body condition threshold necessary for breeding. Such 

differences have been noted in Greater Scaup (Aythya marila, Gorman et al. 2008), 

Lesser Scaup (Esler et al. 2001), Ring-Necked Duck (Hohman 1986), and Gadwall (Anas 

strepera, Ankney and Alisauskas 1991). While the threshold appears to be static for some 

species (e.g., Weimerskirch 1992, Gorman et al. 2008), a seasonally-declining threshold 

is evinced in other species by 1) declining levels of somatic reserves in females entering 

rapid follicle growth (RFG) as the season progresses, but 2) a constant proportion of 

somatic reserves within clutches throughout the nesting season (Esler et al. 2001). This 

relationship is further corroborated by the widespread intra-seasonal decline in clutch size 

in birds (Klomp 1970). Whether environmental conditions prevent an individual from 

reaching their body condition threshold or individuals recognize poor conditions and do 

not invest effort in increasing body condition (i.e. the restraint hypothesis), has not been 

determined.  

Here, we present data on the breeding status of female Lesser Scaup, a small-

bodied diving duck common in North America. Our first objective was to examine 
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variation in breeding propensity of females relative to body condition, age class, and 

drought. We predicted: 1) a declining threshold of body condition necessary for initiation 

of breeding as the season progressed (Esler et al. 2001, Warren et al. 2013), 2) older 

females would breed at a greater rate than younger females (Afton 1984), and 3) drought 

conditions would reduce the rate of breeding in female ducks with a more negative 

influence of drought predicted for young females (Afton 1984, Anderson et al. 2001). 

The second objective of this work was to explore individual heterogeneity as a driver of 

breeding propensity using a subset of the data analyzed for the first objective. Using 

reproductive success during the prior year as a proxy for individual quality (Cam et al. 

1998, Sedinger et al. 2008), we predicted that a greater likelihood of breeding would 

occur in females that had evidence of reproductive success on the study site the previous 

year.  

 
METHODS 

 
Study Area 

This study was conducted on Lower Red Rock Lake (Lower Lake) in southwest 

Montana, USA (Figure 3-1).  Lower Lake is a large (2,332 ha), high elevation (2014 m 

above mean sea level) wetland encompassed by Red Rock Lakes National Wildlife 

Refuge.  Water depths typically do not exceed 1.5 m during the nesting season, with large 

open water areas interspersed with hardstem bulrush (Schoenoplectus acutus) islands.  

Nearly half of the area is extensive stands of seasonally flooded Northwest Territory 

sedge (Carex utriculata) that contain small (<2 ha), scattered open water areas.  Average 

annual precipitation is 49.5 cm with 27% occurring during May and June. Annual average 
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temperature is 1.7ºC. The study site has one of the harshest and most variable breeding 

season environments used by Lesser Scaup as measured by growing season length (Gurney et 

al. 2011), but it supports a relatively high density of breeding Lesser Scaup (i.e., >7.7 

breeding pairs km-2; J. Warren, personal observation). 

 
Field Methods   

Female Lesser Scaup (n = 213) were captured via spotlighting for 3–6 nights 

during each new moon phase in the months of May and June, 2007–2009. Females were 

banded with a U.S. Geological Survey aluminum leg band and aged (AGE) (1–2 years 

old [YNG] or ≥3 years old [OLD]) based on eye color (Trauger 1974).  Each female’s 

body mass (nearest 5 g), and tarsus (± 0.1 mm) and head (± 0.1 mm) lengths were 

recorded.  

The oviduct of each female was palpated to determine if an egg was present. If an 

egg was not present, a blood sample (~3 ml) was collected by venipuncture of the basilic 

vein. Blood samples were immediately placed in heparin-treated Vacutainer tubes and 

kept cool until centrifuged (within 12 hours of collection). Plasma samples were pipetted 

from the centrifuged samples and stored frozen. Plasma samples were assayed for 

vitellogenic zinc (Zn; zinc kit, Wako Chemicals USA, Inc., Richmond, VA) at Simon 

Fraser University following the methods in Mitchell and Carlisle (1991). Vitellogenin 

(VTG) was estimated as the difference between the concentration of Zn (μg Zn mL-1) in 

whole plasma and that found in plasma depleted of very high density lipoprotein 

(Mitchell and Carlisle 1991, Gorman et al. 2009). We classified females exceeding the 

threshold value of 1.4 μg Zn mL-1 as breeders (Gorman et al. 2009). Blood samples were 
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taken from four females with an oviductal egg to validate breeding classification based 

on plasma Zn concentration.  

Postbreeding waterfowl commonly migrate from breeding grounds to alternate 

sites for completion of wing molt prior to fall migration (Hohman et al. 1992), and Lesser 

Scaup are no exception (Austin and Frederickson 1986). Several lines of evidence 

indicate that successful females (i.e. those that successfully hatched a clutch of eggs) are 

the primary adult scaup molting on the study site. For example, of 9 females captured in 

August 2009 as part of an ancillary study, 8 (89%) had a brood patch. During banding 

operations mid-August through early September 2010–2012, 1933 scaup were banded. 

Most (92%) were ducklings; of the remaining 8% (138 individuals), only 21 were males. 

Therefore, stable isotope primary feather signatures that match those of feathers produced 

on the study site represents a proxy for adult female success the prior breeding season. In 

2008 and 2009, the distal 2 cm of the 1st primary feather was collected from each female 

for stable isotope analysis to determine if the female had molted on the study site the 

previous year. Feather signatures of females that were captured in 2008 or 2009 and 

known to have molted on the study site the previous year (2 adult females 2008, one adult 

and 5 yearlings 2009) were used to classify previous breeding season reproductive status 

(successful or unsuccessful) of the remaining females. Feather samples were rinsed with 

a 2:1 chloroform-methanol rinse to remove surface oils. Samples were then weighed (~1 

mg) into tin capsules for carbon (δ13C) and nitrogen (δ15N) stable isotope analysis.  

Isotope analyses for δ13C and δ15N were conducted at the University of California-Davis 

Stable Isotope Facility with a PDZ Europa ANCA-GSL elemental analyzer interfaced to 

a PDZ Europa 20-20 continuous flow isotope ratio mass spectrometer. Based on 
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international measurement standards (Vienna Pee Dee Belemnite for carbon and 

atmospheric N2 for nitrogen) the estimated analytical error for δ13C and δ15N was ±0.2 ‰ 

and ±0.3 ‰. A minimum convex polygon (MCP) was created in bivariate space based on 

feather δ13C and δ15N values from females known to have molted on the site buffered by 

the estimated analytical error for each isotope. Females with feather signatures within the 

MCP were classified as having been present on the study site during the previous 

breeding season (PBSP). We believe this is a reasonable estimate of 1) natal origin for 

yearling females, or 2) female success during the previous breeding season for adults (≥2 

years old).       

 
Data Analysis 

Female body condition was estimated as a size-adjusted body condition index 

(BCI) calculated for each female. A principal component analysis was conducted using 

female head and tarsus measurements, then female body mass was regressed on the first 

principal component (Devries et al. 2008, Warren et al. 2013). The resulting regression 

residual for each female was used as the BCI. Negative BCI values indicated females had 

lower than average mass for a given structural size, and positive values indicated they 

had a higher than average mass.   

Based on a review of relevant literature and resultant hypotheses and predictions, 

we created a suite of competing a priori models for each objective. Our first objective 

was to examine the relative role of drivers of variation in breeding propensity, and our 

second objective was to explore the influence of individual heterogeneity on breeding 

propensity. We evaluated the strength of support for each model within a suite by ranking 
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models with Akaike's Information Criterion adjusted for small sample sizes (AICc) and 

by calculating the normalized relative model likelihoods (wi) for each model (Burnham 

and Anderson 2002).  Variation in breeding propensity was modeled with generalized 

linear models, binomially distributed errors, and a logit link in R 2.15.1 (R Development 

Core Team 2013). Relative annual capture date (CDate = capture date - median annual 

scaup nest initiation date) was included in each model to account for variation in 

breeding propensity due to when a female was captured within a breeding season. Model 

goodness-of-fit was tested for the most general model (i.e. most highly parameterized) 

within a model suite, assuming a χ² distribution for the estimated deviance with n-k 

degrees of freedom, where n is the sample size and k is the number of estimated 

parameters (Neter et al. 1996).  

For the first objective, we examined a suite of models for variation in female 

scaup breeding propensity in relation to relative capture date (CDate), body condition 

index (BCI), age class (AGE), and drought (DROUGHT) for females captured 2007–

2009. An interaction between AGE and BCI was explored in several models to determine 

if a different body condition threshold existed for older versus younger females. An 

interaction between CDate and AGE was tested to account for potential differences in the 

timing and likelihood of breeding between younger and older females. Similarly, an 

interaction between CDate and DROUGHT was examined to account for potential 

differences in the timing and likelihood of breeding during drought (2007) versus years 

with normal water conditions (2008 and 2009). Lastly, an AGE and DROUGHT 

interaction was included to test for potential variation in breeding propensity between age 

classes of females in response to poor wetland conditions (Dufour and Clark 2002).  
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The suite of models for the second objective to explore the role of individual 

quality in breeding propensity differed from the first by including the variable PBSP and 

excluding DROUGHT.  We were only able to determine PBSP for females in 2008 and 

2009, so exploring the effect of drought in this suite of models was not possible.  

 
RESULTS 

Conditions on the site varied considerably among the three study years. For 

example, mean water temperature from May 1st – June 15th was >4°C cooler in 2008 

(7.4°C, SD = 9.8) than in 2007 or 2009 (14.4°C, SD = 3.0; and 11.5°C, SD = 6.8). 

Similarly, 2008 had greater mean water levels during May 1st – June 15th than either 2007 

(0.5 m lower) and 2009 (0.1 m lower). The differences of conditions resulted in the 

median scaup nest initiation date in 2007 being 9 and 8 days earlier than 2008 and 2009, 

respectively (Warren et al. 2013).  

We determined the breeding status of 213 females captured during the breeding 

seasons of 2007–2009 including 4 recaptured females (n = 217).  Overall, 57% of females 

had evidence of breeding, with 80 having an oviductal egg present and 44 having 

elevated blood plasma VTG levels (i.e., >1.4 μg Zn mL-1). Mean blood plasma VTG level 

for 4 females with oviductal eggs was 4.35 μg Zn mL-1 (SD = 1.69), significantly greater 

than the threshold value we used to classify females as breeders (t3 = 3.499, P = 0.02) . 

There was a relationship between age class and capture date, with older females (OLD) 

captured 6.0 days (SE = 2.7) earlier than 1–2 year-old females (F1,215 = 4.8, P = 0.03). 

Thus, we included the interaction of age with capture date in the model.    
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The first principal component explained 74% of the variation in female head and 

tarsus measurements; PCA values ranged from -4.3 to 3.6 for the structurally largest to 

smallest females. Female body mass was correlated with structural size, with structurally 

larger females being heavier than smaller females, but considerable variation was not 

explained by the relationship (�̂�𝛽 = -18.9, P < 0.001, adjusted R2 = 0.09). BCI values 

ranged from -214.7 to 148.1 with SD = 69.9.   

Stable isotope signatures from females who produced feathers on the study site 

had δ13C and δ15N values of -17.9 (SD = 0.34, range = -18.5 – -17.3) and 6.7 (SD = 0.40, 

range = 6.4 – 7.6), respectively. We examined 145 females with feather isotopic 

signatures, and 32 (22%) were determined to be present on the study site the year prior to 

capture. Of these females, 20 (63%) were identified as breeders in the current year.  

The most general breeding status probability model in each model suite fit the 

data well (χ2 = 117.9, df = 211, P = 1.00; χ2 = 68.6, df = 139, P = 1.00, respectively; 

Tables 3-1 and 3-3).  Top models from both suites indicated strong support for a positive 

relationship between body condition and breeding propensity, as well as a greater 

probability of a female being in breeding status when captured later in the season (Tables 

3-1 through 3-4). An effect of age on the breeding propensity was only weakly supported 

in each model suite. Models that included AGE were 0.61 and 1.59 AICc units lower than 

the most supported model (Tables 3-1 and 3-3). Moreover, the effect of age on breeding 

propensity overlapped zero in each model (�̂�𝛽𝐴𝐴𝐴𝐴𝐴𝐴 = -0.609, SE = 0.505 and �̂�𝛽𝐴𝐴𝐴𝐴𝐴𝐴 = -0.471, 

SE = 0.633, objective one and two, respectively). 
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Objective 1: Variation in Breeding Propensity 

The most general breeding status probability model for the first objective model 

suite fit the data well (χ2 = 117.9, df = 211, P = 1.00; χ2 = 68.6; Table 3-1). Top models 

from this model suite indicated strong support for a positive relationship between body 

condition and breeding propensity, as well as a greater probability of a female being in 

breeding status when captured later in the season (Tables 3-1 and 3-2). Drought 

conditions were related to lower probability of breeding (Tables 3-1 and 3-2). For 

example, the probability that a female in average body condition was in breeding status at 

the peak of nest initiation (i.e. median nest initiation date) during a drought year was 0.85 

(SE = 0.05) compared with 0.94 (SE = 0.03) for a normal water year (Figure 3-2). An 

effect of age on breeding propensity was only weakly supported. Models that included 

AGE were ≥0.61 units lower than the most supported model (Table 3-1). Moreover, the 

effect of age on breeding propensity overlapped zero (�̂�𝛽𝐴𝐴𝐴𝐴𝐴𝐴 = -0.609, SE = 0.505). 

 
Objective 2: Individual Heterogeneity 

The second objective’s most general breeding status probability model fit the data 

well (χ2 = 68.6, df = 139, P = 1.00; Table 3-3).  Models in this model suite provided 

further support for strong effects of body condition and capture date on breeding 

propensity in female scaup (Tables 3-3 and 3-4). Previous success, a proxy for individual 

quality, positively influenced the probability of breeding (Tables 3-3 and 3-4). The 

probability of breeding at the peak of nest initiation for an average body condition female 

successful the previous year was 0.98 (SE = 0.01), whereas females without evidence of 

success on the site the previous year had a probability of 0.93 (SE = 0.04) (Figure 3-3). 
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Similar to model results from the first objective, the hypothesized effect of age on 

breeding propensity was weakly supported. The best model that included AGE was ≥1.59 

AICc units lower than the most supported model (Table 3-3) and the estimated effect 

overlapped zero (�̂�𝛽𝐴𝐴𝐴𝐴𝐴𝐴 = -0.471, SE = 0.633). 

 
DISCUSSION 

Differentiating the role of age, experience, and individual quality in reproductive 

success in vertebrates is difficult, because these factors are often confounded. Our study 

used feather isotopic signatures to determine if a female was present on the study site the 

previous year during wing molt, a strong proxy of success for adult females and natal 

origin for yearlings, allowing us to explore relationships among female breeding status, 

individual quality, experience, and age. Lack of experience has long been evoked to 

explain poor reproductive success, including relatively low breeding probability, in 

young birds (Curio 1983, Forslund and Pärt 1995). Age should convey greater ability to 

obtain limited resources, thereby permitting older individuals to invest more time in 

activities beyond those necessary for somatic maintenance that will ultimately lead to 

successful reproduction. This would predict a strong positive relationship between age 

and breeding propensity. Experience and age are confounded, arguably synonymous for 

some behaviors (e.g., foraging behavior). Reproductive experience will increase with age, 

but can vary among individuals of the same age due to differing numbers of reproductive 

attempts, resulting in varying levels of correlation between age and reproductive 

experience. Lesser Scaup are a medium-lived species that can breed as yearlings and have 
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relatively high breeding propensity (Afton 1984, Devink et al. 2008, this study) that will 

lead to high correlation between age and experience (including reproductive experience). 

If the primary driver of age-correlated increases in breeding propensity and 

success is individual heterogeneity, i.e. high quality individuals are more likely to breed 

and survive, previous success would be a better predictor of breeding propensity and 

success than age or experience. Birkhead et al. (1983) found that a female’s genotype was 

an important determinant of lay date in Mute Swans, which ultimately influenced the 

number of cygnets fledged. Their findings provide a mechanism for selection of 

phenotypic traits as hypothesized in the individual heterogeneity hypothesis (Curio 1983, 

Cam et al. 1998). The effect of age on reproductive success was ambiguous in Mute 

Swans, but there was strong evidence of a breeding pair effect on lay date and clutch size 

(Birkhead et al. 1983). We similarly found an ambiguous influence of age on breeding 

propensity in female Lesser Scaup, contrary to our prediction that older females would 

breed at a higher rate. Our results did, however, support our prediction that females 

present on the site the previous year were more likely to breed the following year. This 

could be the result of increased reproductive experience or evidence of individual 

heterogeneity. We believe it is more likely the latter than the former; if the relationship 

was primarily due to experience a stronger influence of age would be expected given the 

observed high level of breeding propensity on the study area and therefore high 

correlation between reproductive experience and age. Individual heterogeneity in 

reproductive success is common in wildlife populations, with considerable evidence that 

superior individuals have greater survival probabilities and lifetime reproductive output 

(see review in Conner and White 1999). It has been repeatedly observed that a few 
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individuals may contribute the majority of offspring to a waterfowl population (Owen 

and Black 1989, Williams 1999, Blums and Clark 2004). In Tufted Duck (Aythya 

fuligula) and Common Pochard (A. ferina), species closely related to Lesser Scaup, only 

26% and 29% of females, respectively, recruited at least one offspring (Blums and Clark 

2004). These studies, and our results, provide indirect evidence for variation in 

phenotypic quality resulting in some individuals achieving disproportionately high 

reproductive performance relative to ‘lower quality’ individuals.   

Greater than half (57%) of female Lesser Scaup captured had evidence of 

breeding, with the proportion increasing to 86% for females caught on or after the peak of 

nest initiation in a given year. This is comparable to female scaup in the western boreal 

forest of Canada, where 90% of females collected after June 3rd had initiated rapid 

follicle growth (RFG) (Devink et al. 2008). Conversely, Martin et al. (2009) found 

relatively low breeding propensity in radio-marked Lesser Scaup females in central 

Alaska. In that study, breeding propensity was estimated as 0.12, although the proportion 

of females determined to have initiated RFG based on levels of blood plasma yolk 

precursors was nearly four times that (46%) (Martin et al. 2009). The disparity of 

breeding propensity estimates may be driven by methodological differences. Radio-

transmitters increase energy expenditure and decrease nesting in birds (see review in 

Barron et al. 2010). Conversely, we cannot rule out a positive bias that could result from 

an increasing rate of temporary emigration by non-breeding females. Both of these 

scenarios highlight the difficulties of estimating breeding propensity in highly mobile 

species.  
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Life history theory predicts that an individual’s residual reproductive value 

declines with age, which should result in a concomitant increase in reproductive effort 

(Williams 1966, Gadgil and Bossert 1970, but see Charlesworth and León 1976). With 

respect to breeding propensity, the predicted pattern of increasing likelihood of breeding 

by sexually mature individuals as they age is well documented (Afton 1984, Brommer et 

al. 1998, Sedinger et al. 2001, Krüger 2005, Aubry et al. 2009). However, we did not find 

evidence for an increase in breeding propensity with age class. Including age class in 

models actually led to higher AICc values. This was in contrast to Afton’s (1984) study 

that detected monotonically increasing breeding propensity with age in Lesser Scaup 

from yearling (breeding propensity 0.71) to ≥ three-years old (breeding propensity = 1) 

females. Unlike Afton (1984), we did not have known age females in our sample which 

limited us to two age classes. In addition, classification error associated with relying on 

eye color to determine a female’s age cannot be ruled out as influencing our ability to 

detect an effect of age on breeding status.  

Female body condition exhibited a strong, positive influence on breeding 

propensity. This is consistent with a broad body of work that has demonstrated the 

importance of body condition on the decision to breed (e.g., Reynolds 1972, 

Weimerskirch 1992, Chastel et al. 1995). The strong correlation between body condition 

and breeding propensity provides support for a threshold body condition that must be 

attained for breeding to commence (Ankney and Alisauskas 1991, Weimerskirch 1992). 

Waterfowl invest proportionately greater amounts of energy into a clutch than birds that 

produce altricial young (King 1973), often relying on somatic reserves for clutch 
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formation (see review in Alisauskas and Ankney 1992). This strategy likely predisposes 

waterfowl to a body condition threshold for breeding.  

Our results supported our prediction for a declining threshold of body condition 

necessary for breeding. Females in better body condition bred earlier, with a declining 

threshold of body condition as the season progressed. The timing of breeding has 

significant consequences for reproductive success, with early-nesting females generally 

laying larger clutches (Klomp 1970, Ankney and MacInnes 1978, Warren et al. 2013) of 

higher quality young (Verboven and Visser 1998, Lepage et al. 2000, Blums et al. 2002). 

Esler et al. (2001) similarly found evidence for a declining threshold of body condition in 

Lesser Scaup females. A declining level of body condition at which females initiate 

breeding is predicted by the condition-dependent individual optimization model (Rowe et 

al. 1994). The model predicts the optimal time for a female to initiate a nest, and the 

resultant clutch size, based on body condition (including the rate of condition gain or 

loss) and the intra-seasonal decline in the quality of young (Rowe et al. 1994). The 

declining level of body condition predicted, therefore, is not a threshold per se, but an 

optimal decision of when to breed based on the factors outlined above. The model also 

predicted the nearly ubiquitous nature of intra-seasonal clutch size decline in birds, which 

has also been documented on our site (Warren et al. 2013). We did not know where in the 

sequence of clutch formation a female was when captured which may have been the 

cause of a declining threshold. The proportion of females late in the laying sequence, in 

lower body condition, would likely increase with capture date.    

We found mixed support for our predictions of the response of breeding 

propensity to drought conditions experienced during the study. Drought demonstrated a 
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strong negative effect on breeding propensity, but we did not find support for younger 

females being more negatively influenced by drought than older females (i.e., models that 

allowed breeding propensity to differ for each age class in response to drought were 

poorly supported). The predicted difference in breeding propensity between normal water 

conditions and drought (a difference of 0.09) was less in this study than reported for 

Lesser Scaup in the Prairie Pothole Region (PPR) of Canada (a difference of 0.54 in 

Rogers 1964, and 0.17 in Afton 1984). Our study site is part of a shallow lake–emergent 

wetland complex with significant snowmelt runoff inputs from perennial streams. Even 

under extreme drought, the area of open water habitat during pre-breeding was 

comparable to the other years with the primary difference being lower water levels (0.4-

0.5 m lower) (Warren et al. 2013). This resulted in over half of the open water area being 

<0.50 m in depth during the drought year. This can be contrasted with the PPR, where 

closed-basin wetlands predominate and drought conditions can result in >90% of basins 

being dry (Warren et al. 2008) and available water area being reduced by nearly two-

thirds (Rogers 1964). While the negative effect of drought is consistent across studies in 

Lesser Scaup, and more broadly in waterfowl, the mechanism leading to reduced 

breeding propensity has yet to be determined. Whether females are constrained from 

environmental conditions experienced during drought or demonstrate restraint in 

response to low likelihood of reproductive success is unknown. 

Three general explanations exist for the commonly observed pattern of increasing 

reproductive success with age and experience in birds – individuals are constrained by a 

lack of resources necessary to breed, individuals demonstrate restraint in the face of a 

lack of resources necessary to breed, and individuals vary in quality with high quality 
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individuals having higher rates of survival and reproduction than low quality individuals. 

The constraint and restraint hypotheses view poor reproduction of young birds as 

primarily a function of age class. Our results provided ambiguous support for age class as 

an important determinant of breeding propensity. By contrast, the individual 

heterogeneity hypothesis considers the disparity in reproductive success as primarily 

driven by differences in the quality of individuals. We found evidence of variation in 

individual quality during this study, with previously successful females more likely to 

breed in the subsequent year, providing support for the individual heterogeneity 

hypothesis.  
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TABLES AND FIGURES 

TABLE 3-1.  Model rankings for analyses of breeding propensity in 213 female Lesser 
Scaup captured during the breeding season, 2007–2009.  Covariates include a size-
adjusted body condition index (BCI), age class (AGE: 1–2 years old or ≥3 years old), and 
drought. Relative capture date (CDate = capture date - median annual nest initiation 
date) was included in each model to account for variation attributable to when a female 
was captured during the breeding season. Only models within 4 AICc units of the top 
model are presented. 
 
Model Ka AICc ΔAICc wi

b 

CDate + BCI + DROUGHT 4 127.78 0.00 0.260 
CDate + BCI + AGE + DROUGHT 5 128.39 0.61 0.192 
CDate * DROUGHT + BCI 5 129.08 1.30 0.136 
CDate + BCI 3 129.23 1.45 0.126 
CDate + BCI + AGE   4 129.32 1.54 0.120 
CDate * AGE + BCI + DROUGHT 6 130.29 2.51 0.074 
CDate * AGE + BCI 5 131.12 3.34 0.049 

 aNumber of estimated parameters 

bNormalized relative model likelihoods. 

 
TABLE 3-2.  Coefficient estimates, standard errors (SE), and P values for the most 
supported model of breeding probability for female Lesser Scaup captured during the 
breeding seasons of 2007–2009. 
 

Model Parameter β̂  SE ( β̂ ) P 

Intercept 2.082 0.391 <0.001 

CDatea 0.082 0.014 <0.001 

BCIb 0.032 0.005 <0.001 

Drought -0.984 0.537 0.07 

aRelative annual capture date (capture date - median annual nest initiation date) 

bBody condition index 
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TABLE 3-3.  Model rankings for analyses of breeding propensity of 145 female Lesser 
Scaup captured during the breeding season, 2008–2009.  Covariates include a size-
adjusted body condition index (BCI), age class (AGE: 1–2 years old or ≥3 years old), and 
prior breeding season presence (PBSP). Relative capture date (capture date - median 
annual nest initiation date) was included in each model to account for variation 
attributable to when a female was captured during the breeding season. Only models 
within 4 AICc units of the top model are presented.  
 

Model Ka AICc ΔAICc wi
b 

CDate + BCI + PBSP 4 77.57 0.00 0.479 
CDate + AGE + BCI + PBSP 5 79.15 1.59 0.217 
CDate + BCI   3 80.31 2.74 0.122 
CDate * AGE + BCI + PBSP 6 81.24 3.67 0.076 
CDate + AGE + BCI 4 81.46 3.90 0.068 

 aNumber of estimated parameters 

bNormalized relative model likelihoods. 

 
TABLE 3-4.  Coefficient estimates, standard errors (SE), and P values for the most 
supported breeding propensity model for female Lesser Scaup captured during the 
breeding seasons of 2008–2009. 
 

Model Parameter β̂  SE ( β̂ ) P 

Intercept 1.695 0.475 <0.001 

CDatea 0.085 0.020 <0.001 

BCIb 0.040 0.008 <0.001 

PBSPc 1.553 0.742 0.04 

aRelative capture date (capture date - median annual nest initiation date) 

bBody condition index 

cPrior breeding season presence 
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FIGURE 3-1.  Lower Red Rock Lake study area within Red Rock Lakes National 
Wildlife Refuge, southwest Montana, USA. 
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FIGURE 3-2.  Female Lesser Scaup breeding propensity, 2007–2009, based on body 
condition index, relative capture date (capture date - median annual nest initiation date), 
and drought. Gray scale represents female breeding probability from low (light) to high 
(dark); female breeding probability isoclines are also provided.   
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FIGURE 3-3.  Female Lesser Scaup breeding propensity, 2008–2009, based on body 
condition index, relative capture date (capture date - median annual nest initiation date), 
and presence on the study site during molting in the previous breeding season. Gray scale 
represents female breeding probability from low (light) to high (dark); female breeding 
probability isoclines are also provided.    
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CHAPTER 4 
 

A TALE OF TWO SEASONS: WITHIN-SEASON AND CARRY-OVER EFFECTS OF 

REPRODUCTIVE EFFORT ON SURVIVAL IN A LONG-DISTANCE MIGRANT 

 
ABSTRACT 
 

Reproduction may be costly if an individual invests limited resources toward 

current reproduction at the expense of self-maintenance, or if reproduction increases 

mortality risks. Both costs can occur concurrently with reproduction, but physiological 

costs on demography can occur serially where an individual survives reproduction in a 

reduced condition that influences future survival or fecundity, i.e., a carry-over effect 

(COE) from breeding to a subsequent season. We examined concurrent and serial 

survival costs of reproduction in female lesser scaup (Aythya affinis) using multistrata 

capture-mark-recapture models. Breeding habitat conditions, a proxy for reproductive 

effort, strongly influenced survival during breeding and non-breeding seasons, but in 

opposing directions. Breeding season survival was positively related to breeding season 

water levels, whereas non-breeding season survival was negatively related. The latter 

result suggested a COE of reproductive effort from breeding to non-breeding seasons 

when breeding habitat conditions were favorable. Increased proportion of young and/or 

low quality females breeding when conditions are favorable could produce the observed 

relationship if those individuals are less capable of completing molt and recovering 

condition after breeding than higher quality individuals. Complex seasonal interactions 

documented during this study underscore the importance of understanding when in an 

annual cycle costs of reproduction occur.   
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INTRODUCTION 

“It was the best of times, it was the worst of times…it was the spring of hope, it 

was the winter of despair” (Dickens 1859). Charles Dickens’s portrayal of pre-

revolutionary times in Paris and London in A Tale of Two Cities also aptly describes the 

disparity between breeding and non-breeding seasons for populations in seasonal 

environments (Fretwell 1972). The breeding season represents a period of population 

growth as adults undertake reproduction with the ‘hope’ of recruiting young as carriers of 

their genetic legacy. Those individuals, adults and newly born, that survive to the 

subsequent non-breeding season will be reduced in number by mortality during winter, a 

period of population decline (i.e., no birth, only death occurs). The winter season has 

been referred to as ‘a waiting interval’ between breeding seasons for migratory birds; a 

period when individuals migrate to exploit seasonally-abundant resources and avoid the 

dangers of remaining at high-latitude breeding areas that are frozen (Lack 1968, Weller 

and Batt 1988). 

More than ‘waiting in despair’ occurs during winter, however. The importance of 

habitat and an individual’s energetic condition during winter for successful reproduction 

in the subsequent breeding season has been repeatedly demonstrated in migratory birds, 

mammals, and fish (birds: Ebbinge and Spaans 1995, Marra et al. 1998, Béty et al. 2003, 

Saino et al. 2004, Gunnarsson et al. 2005, Guillemain et al. 2008. mammals: Testa and 

Adams 1998, Pachkowski et al. 2013, Monteith et al. 2014. fish: Henderson and Wong 

1998, Blanchard et al. 2003, Bunnell et al. 2007). Relatively large-bodied birds capable 

of acquiring endogenous reserves during one season and exporting them to a subsequent 

season to fuel metabolically-costly activities such as reproduction (i.e., a capital 
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reproduction strategy, sensu Drent and Daan 1980) provided early evidence that 

conditions during one season could influence fitness in a subsequent season. Commonly 

referred to as carry-over effects (COEs) or seasonal interactions, these among-season 

relationships underscore the difficulty of understanding within- and among-season 

drivers of an individual’s demographic performance. Conditions during the preceding 

winter have been positively correlated with the proportion of juveniles in the population 

the following winter (Kaminski and Gluesing 1987, Raveling and Heitmeyer 1989, 

Lehikoinen et al. 2006, Osnas et al. 2016), fledging success (Saino et al. 2004, Rockwell 

et al. 2012), and other parameters of reproductive success (Norris et al. 2004, Gunnarsson 

et al. 2005, Guillemain et al. 2008) in migratory birds. Individuals in better body 

condition than conspecifics at the onset of spring migration initiate nests earlier and lay 

larger clutches (Béty et al. 2003), are more likely to reproduce successfully (Prop et al. 

2003), and produce more offspring (Ebbinge and Spaans 1995). These studies, and more 

(see reviews in Harrison et al. 2011, Sedinger and Alisauskas 2014), demonstrate the 

potential for habitat use and energetic condition during winter to influence reproductive 

success in the ensuing breeding season.  

Investigations of COEs from breeding to non-breeding seasonal components of 

survival are less common (Daan et al. 1996), but costs of reproduction could result in 

such a seasonal interaction. Life history theory considers reproduction costly, because an 

individual may be obliged to invest limited resources toward the current reproductive 

effort or self-maintenance; investing in the former over the latter could reduce survival 

and future fecundity (Williams 1966, Stearns 1992). But costs of reproduction can occur 

concurrently with a given reproductive activity, or in a serial manner where an individual 
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survives the reproductive event but is in a reduced condition that results in 1) higher 

mortality during the following non-breeding season, or 2) reduced reproductive success 

the subsequent breeding season.  

Concurrent costs of reproduction, e.g., reduced survival during reproduction, are 

well documented in ground-nesting birds. Female-biased mortality during the breeding 

season in ground-nesting birds provides evidence for concurrent costs associated with 

producing a clutch and nest attendance, costs not incurred by males (Grüebler et al. 2008, 

Perlut et al. 2008). Similar patterns are found when habitat conditions favor high 

breeding propensity (Arnold and Clark 1996, Rotella et al. 2003, Arnold et al. 2012). 

This is likely the result of females being exposed to greater mortality risk from terrestrial 

mammalian predation during laying and incubation, and as the result of repetitive re-

nesting attempts upon previous nest failure (Sargeant et al. 1984; Low et al. 2010, Arnold 

et al. 2012). These examples demonstrate the array of survival costs to reproduction, 

within the season of reproduction (Magnhagen 1991).  

Serial survival costs of reproduction are less well studied than either concurrent 

survival costs or serial fecundity costs (Daan et al. 1996, Sedinger and Alisauskas 2014, 

Latta et al. 2016). Overall survival costs, i.e., reduced annual survival for breeding 

individuals (Clutton-Brock et al. 1983, Pugesek and Diem 1990, Barbraud and 

Weimerskirch 2005, Tavecchia et al. 2005, Hadley et al. 2007), and experimentally-

induced fecundity costs in breeding season t+1 (Hanssen et al. 2005, Catry et al. 2013, 

Fayet et al. 2016) have been repeatedly demonstrated. The former provide evidence for a 

survival cost to reproduction, but do not differentiate if costs occur concurrent with, or 

serial to, the reproductive event. Unlike concurrent survival costs that terminate an 
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individual’s life and likely the chance of recruiting already produced offspring, serial 

survival costs may have little influence on the probability of recruitment, and thus induce 

a lesser net cost to lifetime fitness. This scenario would be the case for iteroparous 

species whose offspring care ends with the breeding season – serial survival costs to 

reproduction are independent of recruitment from the prior reproductive event. Moreover, 

if an individual is unable to predict upcoming non-breeding season conditions, current 

reproductive effort should maximize recruitment as a function of breeding season 

conditions conditional on residual reproductive value (Williams 1966), while ‘accepting’ 

greater risk associated with potential serial survival costs. In such cases, serial survival 

costs of reproduction represent the extreme end of a spectrum of potential COEs from the 

breeding season, with reduced fecundity the subsequent breeding season at the opposite 

end of the COE spectrum. 

We undertook the current study to test for concurrent and serial costs of 

reproduction in a long-distance migratory bird. We hypothesized that breeding habitat 

conditions conducive to high breeding effort result in high concurrent survival costs 

among female lesser scaup (Sargeant and Raveling 1992, Rotella et al. 2003).  

Conversely, we hypothesized that concurrent survival costs would be low when nest 

predation risks were also low (i.e., when nest survival is high; Lokemoen et al. 1990, 

Cam et al. 1998, Kennamer et al. 2016). 

We also tested for serial survival costs (COEs) of breeding effort on female non-

breeding season survival. Reproductive investment during the preceding breeding season 

may compress the time available for molt and migration, both metabolically-costly 

annual activities (Hohman et al. 1992, McWilliams et al. 2004).  Waterfowl undergo an 
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annual molt during the latter part of the breeding season that leads to a short period of 

flightlessness, a relatively costly undertaking due to energetic costs associated with 

replacing feathers, decreased thermoregulatory capacity, and limited mobility (King 

1981, Guillemette et al. 2007). Reproductively successful lesser scaup females must molt 

later than non-breeding or unsuccessful females (Austin and Fredrickson 1986), 

providing less time for successful females to regain body condition for migration. Lighter 

birds during fall and early winter do indeed experience lower survival (Haramis et al. 

1986, Conroy et al. 1989, Pfister et al. 1998), and are more susceptible to hunter harvest 

(Dufour et al. 1993, Pace and Afton 1999) than heavier conspecifics, thus providing a 

mechanism for serial survival costs to reproduction for females that successfully breed.  

 
METHODS 

 
Study Description  

We conducted this study on lesser scaup, a long-distant migratory waterfowl with 

a relatively large clutch (�̅�𝐵 = 7.7, SD = 0.8, Warren et al. 2013) and intermediate life 

expectancy. Conditional on surviving the first year, <10% of females would participate in 

≥5 breeding seasons (Arnold et al. 2016, this study). This study was conducted in the 

southwestern extent of lesser scaup breeding range on Lower Red Rock Lake (Lower 

Lake) in the Centennial Valley of southwest Montana, USA (Figure 4-1) (described in 

Warren et al. 2014).  Lower Lake is a large (2,332 ha), high elevation (2,014 m above 

mean sea level [msl]) wetland within a larger shallow lake/wetland complex. Water 

depths typically do not exceed 1.5 m during the nesting season, with large open water 

areas interspersed with hardstem bulrush (Schoenoplectus acutus) islands.  Nearly half of 
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the area consists of extensive stands of seasonally flooded Northwest Territory sedge 

(Carex utriculata) that contain small (<2 ha), scattered open water areas.  The study site 

supports a relatively high density of breeding scaup (i.e., >7.7 breeding pairs / km-2; J. 

Warren, unpubl. data) even though it is one of the harshest and most variable breeding 

season environments used by scaup as measured by growing season length (Gurney et al. 

2011). The study area is in the eastern extent of the Pacific Flyway administrative zone of 

the U.S. Fish and Wildlife Service (USFWS), and ~80% of hunter recoveries of marked 

scaup from the site occur within this flyway (J. Warren, unpubl. data).  

 
Field Methods  

A capacitance probe water level data logger (model WT-HR 1500; TruTrac, 

Christchurch, New Zealand) was deployed at the western outflow of Lower Lake shortly 

after ice melt each spring. Water levels (± 0.1 mm) and temperatures (± 0.1 °C) were 

recorded hourly throughout the breeding season as proxies for wetland condition and 

phenology on the study site, respectively.  

Female lesser scaup were captured each summer via spotlighting (adult [≥1 yr 

old] only) (Lindmeier and Jessen 1961) and during late summer using drive-trapping 

(adult and juvenile [hatch-year individuals]) (Cowan and Hatter 1952).  Spotlighting 

occurred during new moon phases in May – August 2005, May and June 2006–2012, and 

June 2013–2015. Drive-trapping was conducted in September 2008 and 2009, and 

August and September in 2010–2014. Females were banded with a U.S. Geological 

Survey (USGS) aluminum leg band and fitted with a nasal marker (juveniles with a head 

length ≥70 mm and adults). Nasal markers comprised a combination of uniquely 
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identifiable nylon pieces attached through the nares using 1.6 mm 316L stainless steel 

welding wire and stainless steel washers (Lokemoen and Sharp 1985). During 2005–2008 

it was observed that movement of the steel washers wore the crimped ends of the steel 

wire on the nasal markers, leading to marker loss beginning after ca. 20 months of a 

female being marked (J. Warren, unpubl. data). Starting in 2009 a small (ca. 3 mm 

diameter) piece of epoxy (WaterWeld, J-B Weld Co., Sulphur Springs, TX) was put on 

the distal crimped ends of the steel wire to minimize marker loss. The oviduct of each 

female captured during May and June spotlighting was palpated to determine laying 

status (i.e., absence or presence of an egg).  

Pre- and post-breeding season (May and late August/early September, 

respectively) resight surveys were conducted each year for marked female lesser scaup 

beginning in September 2005. The study area was divided into 16 survey blocks of 

approximately equivalent open water area. Each block comprised 1–4 750m x 750m plots 

that were visited twice during a resight survey.  Each visit to a survey block was 

conducted for 4 hours, beginning at sunrise for morning visits and 4 hours prior to sunset 

for evening visits.  If a block was visited in the morning during the first visit, it was 

visited in the evening on the second visit, and vice versa.  Visit order was randomly 

established during the initial resight survey, and that order was maintained for subsequent 

surveys.  

 
Data Analysis  

Temporal variation in seasonal survival of female scaup was investigated using 

multi-state capture-mark-recapture (CMR) models implemented in program MARK 
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(White and Burnham 1999) using the RMark package (Laake 2013) in R version 3.2.2 (R 

Development Core Team 2017) to construct models.  Multi-state models permitted the 

use of resight, recapture, and hunter recovery data (Gauthier and Lebreton 2008), while 

simultaneously accounting for marker loss (e.g., Meixell et al. 2013).  Pre-breeding (May 

/ June) and post-breeding (August / September) CMR survey periods occurred annually. 

Resight surveys were combined with spotlighting and drive-trapping sessions for pre- and 

post-breeding surveys, respectively. Seasonal survival was modeled over two open 

intervals each year with breeding season defined as June through August and the non-

breeding season September through May. Hunter recoveries of marked birds during the 

non-breeding season were obtained from the USGS Bird Banding Laboratory.  

Three states were included to allow for modeling of marker loss and incorporation 

of harvest data. Two live states were defined based on auxiliary marker status – live, leg 

band and nasal marker present (AN), and live, leg band only (AB). Females released in 

the AN state could be reencountered in either live state while on the study area. A single 

dead state (D) was included to model mortality transitions from either live state, which 

were directly informed by observations of females that were harvested within North 

America and reported to the USGS Bird Banding Laboratory (and indirectly informed by 

live re-encounters). Harvest occurred during non-breeding seasons (i.e., between a post-

breeding survey and pre-breeding survey); females harvested and reported between time t 

and t + 1 were coded as observations in state D at time t + 1 (Gauthier and Lebreton 

2008). Survival probability, S, was fixed to 1, 1, and 0 for AN, AB, and D states, 

respectively. These constraints result in transition probabilities ψAN·D (i.e., alive and 

nasal-marked to dead) and ψAB·D that represent female mortality probabilities from each 
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respective state (hereafter, we refer to the complement of mortality transition 

probabilities as survival). We assumed no effect of nasal-marking on adult female 

survival, so constrained ψAN·D and ψAB·D to be equal (Brook 2002). Juvenile females were 

included in the analysis because they augment the sample size for adult survival upon 

recruitment at age one. We allowed mortality transitions for juvenile females to differ 

between live states due to inherent bias in head-size selection criteria for nasal-marking. 

Moreover, we tested for an effect of nasal-marking on juvenile (i.e., immature) mortality, 

and constrained juvenile mortality to be independent of breeding season metrics in 

models testing for carry-over effects of breeding effort and success on adult female 

mortality. Due to relatively low numbers of nasal-marked juvenile females in 2011 (n = 

12), the subsequent first-winter mortality probability in 2011 was constrained to be the 

same as 2009 in time-varying models; juvenile females nasal-marked in 2011 and 2009 

had the most similar head lengths (�̅�𝐵 = 78.6 mm [SD = 4.76], and 78.8 [3.26], 

respectively), a reasonable proxy for juvenile female age at marking (�̂�𝛽Age = 0.91, SE = 

0.020, R2 = 0.93, n = 170), and subsequently first-winter survival in juvenile Aythya 

(Anderson et al. 2001, Stetter 2014). Juvenile nasal-marked females from 2005 and 2008 

(n = 2 and 3, respectively) were also constrained, due to low sample sizes, to have the 

same transition probabilities as 2009 and 2011.  

Transition probabilities from D to either live state, ψD·AN and ψD·AB, were fixed to 

zero (i.e., D was modeled as an ‘absorbing state’). Females were only allowed to 

transition from AN to AB, and not vice versa, so ψAB·AN was fixed to zero.  Females 

recaptured alive during the study that had 1) lost their nasal marker and were fitted with a 

new marker (n = 14), 2) retained their nasal marker but were fitted with a new steel pin 
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due to wear of the original (n = 16), or 3) been released with only a leg band (state AB) 

and nasal marked during a subsequent recapture, were right-censored at that occasion and 

a new encounter history was started (Meixell et al. 2013). Four females released with a 

nasal marker were later recovered during the non-breeding (n = 2) and breeding (n = 2) 

seasons without a marker, resulting in a total of 18 individuals available to estimate 

ψAN·AB during two periods (2005–2008 [no epoxy] and 2009–2015 [epoxy]). Estimating 

marker loss (ψAN·AB) was done externally to the multi-state CMR model because 1) 

encounters of marker loss were too few to achieve convergence on a marker-loss 

transition probability in the multi-state CMR model amidst low detection probabilities, 

and 2) combining resights and physical recaptures of AN females during survey 

occasions (i.e., May–June and August–September) precluded use of physical recaptures 

of marked females in estimation of marker loss within the multi-state CMR model.  

To more fully utilize these data in estimating the transition probability from AN 

to AB, we modeled marker loss as a function of months since marking and marking 

period (see above) using a generalized linear model (GLM) with binomially-distributed 

errors and a logit-link in R version 3.2.2. We then used predicted marker loss for each 

marking period to fix the probability of a female losing her marker (i.e., ψAN·AB in the 

multi-state CMR model) as a function of months since marking to the end of the interval 

of interest. Of 10 females marked 2005–2008 and recaptured or recovered ≥36 months 

since marking, none retained their marker. To account for this, we fixed transition 

probability ψAN·AB such that marker loss was 1 for ≥ 36 months post-marking for females 

marked during the first marking period when epoxy was not used (2005–2008).  
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The probability of female i being observed in state k at time t was conditional on 

state-dependent detection probabilities 𝑝𝑝𝑖𝑖,𝑡𝑡𝑘𝑘 . Nasal-marked females could be resighted or 

recaptured, with detection probability defined as 𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴. Conversely, a female that had lost 

her marker was only available for recapture with detection probability 𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴. Detection 

probability for AB females, 𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴, was fixed to 0 for time periods when captures were not 

attempted (2006–2007 post-breeding periods and 2013–2014 pre-breeding periods), or no 

recaptures occurred (2006 and 2012 pre-breeding periods and post-breeding periods 

excluding 2011). Yearling Aythya females commonly have lower fidelity to breeding 

areas than older females (Johnson and Grier 1988, Serie et al. 1992, Arnold et al. 2002, 

Blums et al. 2002), which in our study would result in lower detection probability for 

females marked the previous year as juveniles.  We assessed this possibility by including 

models that allowed detection probability of yearling females to differ from adult females 

when determining an event probability structure for use in modeling (see below).  

Given our model formulation, the probability of a newly dead female being 

harvested, recovered and reported (𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷 ) was modeled according to the Seber formulation 

(Seber 1971). As recoveries were only possible during the non-breeding season, 𝑝𝑝𝑖𝑖,𝑡𝑡𝐷𝐷  was 

estimated for pre-breeding encounter periods (which occur at the trailing end of the non-

breeding season that encompasses the hunting season) but fixed to 0 for post-breeding 

periods (i.e., August-September).  

Detection of nasal-marked females (𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴) accounted for the majority of post-

release encounters of individuals used to inform model fitting (see Results below), 

allowing greater flexibility in exploring variation in 𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴. We considered 12 model 
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formulations based on combinations of pre- and post-breeding survey detection 

probability as 1) constant, 2) time varying, 3) a function of mean water level during May 

and August, and 4) hen reproductive success (post-breeding survey 𝑝𝑝𝑖𝑖,𝑡𝑡𝐴𝐴𝐴𝐴 only).    

 
Modeling Strategy  

We employed a step-down approach similar to Lebreton et al. (2009) to create a 

model set focused on biological hypotheses of temporal variation in adult female seasonal 

mortality. We started by determining suitable event probability structures for pAB  and pD, 

which were our most data-limited event probabilities (see Results below). Three 

formulations for each probability were considered – time-varying, periods defined by 

naïve direct recapture or recovery rates, and time-invariant. Naïve direct recapture and 

recovery rates were calculated as the proportion of individuals banded the prior fall and 

recaptured during the subsequent breeding season (0–0.3%, 2005–2008 and 2013; 2.3–

3.3%, 2010–2011, and 2014; and 5.9–8.2%, 2009, 2012, and 2015), and the proportion of 

individuals recovered during the interval after banding (0–10.0%, 2005–2008, 2010, 

2012, and 2013; and 15.6–23.0%, 2009, 2011, and 2014), respectively. The nine possible 

combinations were fitted with a model that allowed full time-varying estimates of 1) 

mortality transition probabilities by age class (juvenile and adult) with an additive nasal-

marker effect for juvenile females, and 2) detection probability of nasal-marked females 

(pAN) with, and without, an additive yearling effect. Relatively few resights of AN 

females during the first pre-breeding survey conducted May 2006 (n = 21) led to 

estimation issues, so May 2006  pAN was constrained to be the same as May 2007. 

Models were ranked using Akaike’s Information Criterion adjusted for sample size 
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(AICc; Burnham and Anderson 2002).  In our second step we focused on comparing 

model structures for variation in first-winter (juvenile) female mortality. Formulations 

considered were 1) time-varying, 2) time-invariant, 3) mortality as a function of nesting 

season water level (a proxy for wetland conditions during early life), 4) daily bag limit, 

and 5) estimated Pacific Flyway harvest. These five formulations were fitted, with and 

without an additive effect of nasal-marking, using the most supported model structure for 

pAB  and pD determined during step one, and the same adult mortality and pAN structures 

used in step one.   

Two critical assumptions are made in fitting capture-recapture models; 

independence among 1) marked individuals, and 2) each release and subsequent 

reencounter (if any) of individuals (Choquet et al. 2009). Program U-CARE V2.3.2 

(Choquet et al. 2005, Choquet et al. 2009) provides the ability to test these assumptions 

for multi-state capture-recapture models. We assessed transience (test 3G) and trap 

dependence (test M) for two groups, juvenile and adult females, and three states (AB, 

AN, and D). Our global model allowed full time-varying pAN, except, due to estimation 

issues, pre-breeding surveys during 2006 and 2011 were constrained to be the same as 

they had similar mean May water levels. Detection of band-only females, pAB, was 

allowed to vary among capture sessions in years 2009–2014, but fixed to 0 in 2005–2006 

(see above) and constrained to be the same for sessions 2007–2008 due to low numbers 

of recaptures. Recoveries by hunters, pD, were allowed to vary annually 2008–2014 but 

constrained 2005–2007 due to low numbers of recoveries. Transition probabilities were 

allowed to vary by year and age class in the global model, with an additive effect of being 

nasal-marked for juveniles.   
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Explanatory Variables  

Three sets of variables were considered as predictors of variation in seasonal 

survival of adult female scaup, the focal parameters of this study. First, breeding effort, 

measured by proxy with water level on the study area and directly with breeding 

propensity, was considered as a predictor of breeding season survival and survival during 

the subsequent non-breeding period. Water level (WL) data collected hourly on the study 

area was used to calculate annual mean water level from the first to third quartile of nest 

initiation dates. Increased water levels on the study site could influence female breeding 

season survival by providing more secure nesting habitat; high water during summer 

results in hundreds of hectares of shallowly-flooded sedge habitat available for nesting 

hens. Predation of females nesting in large, contiguous areas of flooded sedge may be 

lower than in adjacent terrestrial nesting sites, as nest success has been documented 

higher in over-water nests than ground nests (Arnold et al. 1993, Koons and Rotella 

2003a). Breeding propensity (BP), a direct measure of breeding effort that we 

hypothesized to affect seasonal rates of survival in a similar fashion, was estimated for 

the population each year based on the observed relationship in 2007-2009 between 

breeding propensity, female body condition, and habitat conditions on our study site 

(Warren et al. 2014, Appendix).  

Second, we considered relationships between reproductive success and concurrent 

breeding season survival because mammalian predators (e.g., mink [Mustela vison]) may 

prey upon nests as well as attendant females (Koons and Rotella 2003a, Arnold et al. 

2012). We quantified reproductive success in two ways – nest daily survival rate (DSR) 

and hen reproductive success (HRS, the product of annual estimates of breeding 
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propensity and nesting success, assuming no renesting; Appendix). We estimated nest 

DSR for each year between 2006 and 2014, but given a lack of data, we used the 

temporal average of DSR as the covariate value in 2005 (Appendix). We also assessed 

the ability of HRS to predict non-breeding season survival, testing for a serial carry-over 

effect of reproductive success. Higher HRS leads to a greater proportion of females in the 

population that raise offspring, molt, and regain body condition on the study site prior to 

fall migration. The sequential nature of these events leads to successful females having 

less time for molt and regaining body condition than unsuccessful females, which can 

negatively influence survival the subsequent winter (Nilsson and Svensson 1996, Harms 

et al. 2014).   

Last, the influence of change in harvest regulations (i.e., daily bag limit changed 

in response to continental scaup populations) and estimated harvest were considered as 

variables that could influence non-breeding season survival as scaup are a game species, 

and harvest occurs on our study site as well as off the study site upon migration.  We 

explored the relationship between non-breeding season survival of females and variation 

in Pacific Flyway 1) daily bag limit (DBL) and 2) estimated lesser scaup harvest 

(HARV). Daily bag limit varied between 2 (2008), 3 (2005–2007, 2009–2011, 2013 and 

2014) and 7 (2012) scaup day-1 during this study. Annual estimates of lesser scaup 

harvest in the Pacific Flyway were obtained from http://www.flyways.us/regulations-and-

harvest/harvest-trends. Variables were z-standardized to have mean = 0 and standard 

deviation = 1, excluding DBL, which was scaled to start at zero.  

All models were fitted using simulated annealing due to evidence of models 

converging on local minima (Lebreton and Pradel 2002). Models that did not converge 

http://www.flyways.us/regulations-and-harvest/harvest-trends
http://www.flyways.us/regulations-and-harvest/harvest-trends
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after six attempts at fitting were discarded from the analysis, resulting in a final model set 

of 375 from a possible set of 420. We assessed the relative amount of biological variation 

explained by each model using the ratio of deviance reduction (R) of a model between a 

null and global model. First, we calculated Zheng’s (2000) deviance reduction measure 

for each model i, 𝐷𝐷𝑖𝑖 = 1 − � 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

�,  where devi is model i’s deviance, and the 

denominator is the deviance of a null model.  Our null model for this calculation had 

constant 1) detection probabilities for each state, pAB, pAN, and pD, 2) survival (i.e., 

transition) probabilities for each season, 3) first-winter juvenile female survival, and 4) an 

additive effect of nasal-marking for juvenile females. Each model’s D was then divided 

by the deviance of a global model, providing a relative reduction in deviance, R.  

 
RESULTS 

We released 1,180 nasal-marked and banded and 1,025 band-only females 

between May 2005 and September 2014, and received 177 hunter-shot recoveries, 72 

(40.7%) of which occurred on the study site. Most (~80%) of recoveries were juvenile 

females marked prior to the season of harvest; only 15 adult females were recovered by 

hunters on the study site.  We obtained 1,349 resightings and 384 recaptures from 2005–

2014, with 62 of the recaptures being band-only females that had been banded in a prior 

year and were nasal-marked upon recapture.  Of 16 females that were known to have lost 

a nasal-marker, 13 were recaptured individuals and 3 were recovered individuals. Marker 

retention for females marked 2005–2008, prior to application of epoxy, declined 

significantly with months since marking (β on logit scale = -0.22, SE = 0.06). Marker 
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retention improved with addition of epoxy to the distal ends of markers during 2009–

2014 (β = -0.11, SE = 0.03) (Figure 4-2).  

Overall goodness-of-fit tests were not significant for adult females, but were 

significant for juveniles (Table 4-1). Estimated variance inflation factors were, with a 

single exception, < 2, indicating modest heterogeneity in the dataset (Burnham and 

Anderson 2002). The exception was Test M for juvenile females (𝜒𝜒162 = 47.0, P < 0.001, 

�̂�𝑐 = 2.9; Table 4-1), a test of trap-dependence. The significant Test M result for juvenile 

females indicated there was a difference in the probabilities of reencountering juvenile 

females in different states after initial release, conditional on being present during both 

periods. We believe the significant Test M result was a function of right-censoring 

individuals who changed from AB to AN states upon recapture, making these transitions 

for yearlings ‘invisible’ to GOF efforts. Right-censoring upon recapture resulted in all 

juvenile females reencountered as a yearling either 1) in their original release state (i.e., 

no transitions among alive states), or 2) in the dead state, and thus led to a significant 

Test M for our data set. Lastly, the focus of this study was adult female seasonal survival; 

we included juveniles and modeled variation in first winter survival so we could 

incorporate juvenile females in analysis upon recruitment at age one. For adult females, 

the primary focus of this study, there was no evidence for overdispersion (�̂�𝑐 = 1.05), 

with only a slightly higher global �̂�𝑐 = 1.27. We therefore did not inflate model variances. 

Our study encompassed considerable environmental and biological variation; 

breeding season water levels varied by 0.7m (2011 level - 2013 level) in a system 

generally <1m deep (Table 4-2). Median nest initiation ranged from 14 June – 5 July, and 

nest daily survival rate ranged from 0.966 – 0.986, resulting in mean annual nesting 
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success (i.e., DSR34) from 30.8% – 61.9% (Table 2). Pacific Flyway scaup daily bag limit 

varied from 2 (2008) to 7 (2012), with all remaining years 3 (Table 4-2). 

 
Event Probabilities  

The top model structure for detection probabilities, which was used in subsequent 

modeling of female seasonal survival (Lebreton et al. 2009), included 1) full temporal 

variation in adult pAN, 2) three direct recapture periods for pAB, and 3) constant recovery 

and reporting rate conditional on death pD (Table 4-3). We found weak support for lower 

detection probability of yearling scaup females and direct recovery periods (Table 4-3), 

so employed the simpler top model without these effects throughout remaining modeling 

efforts to examine variation in seasonal survival of scaup females.  

 
First-winter Survival  

The main thrust of this work was exploring adult female seasonal survival, but 

considerable numbers of juvenile females were nasal-marked and ‘graduated’ into 

adulthood after their first winter. We therefore modeled female first-winter survival 

similar to event probabilities. Our best model of female first-winter survival indicated 

constant survival during the 7 non-breeding seasons during which enough juvenile 

females were marked and released (AB and AN states) during preceding banding periods 

to estimate survival. Only 6 juveniles were released in state AN between 2005–2008; 

juvenile AN releases between 2009 and 2014 ranged from 18 (2011) and 195 (2012). All 

top models also included a nasal-marker effect on first-winter survival, indicating nasal-

marked juveniles had lower survival than band-only juvenile females. All subsequent 
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modeling of adult survival included constant first-winter survival with a respective 

additive marker effect on transition probability structures.  

 
Adult Seasonal Survival  

The most supported model for seasonal survival of adult females indicated that 

both breeding and non-breeding season survival were most influenced by breeding season 

water level (Table 4-5, Figure 4-3). There was considerable support for the top model; 

model weight for the top model was 0.767 and the residual reduction in deviance, R, was 

0.723 (Table 4-5). Moreover, the second best model was > 4 AICc away from the top 

model and had a model weight of only 0.088, 11.5% of the top model. More direct 

measures of reproductive effort and success, i.e., breeding propensity (BP), hen 

reproductive success (HRS), and nest daily survival rate (DSR) were thus not supported 

as predictors for either breeding or non-breeding season survival (Table 4-5). Nor did we 

find support for an influence of harvest metrics (DBL, HARV) on non-breeding season 

survival; all models within 7 AICc units of the top model included breeding season water 

level as the best predictor of non-breeding season survival (Table 4-5). Based on the top 

model, resighting rates for adult nasal-marked females ranged from 0.107 (95%CI = 

0.058–0.192) in August 2013, to 0.794 (95%CI = 0.498–0.937) in May 2007, both 

drought years. Recovery rate, i.e., the probability of being found and reported conditional 

on death, for females was 0.136 (95%CI = 0.115–0.159).  

 The top model indicated a positive relationship between adult breeding season 

female survival and breeding season water levels, resulting in breeding season female 

survival ranging from 0.686 (SE=0.059) in 2007, the driest breeding season of the study, 
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to 0.911 (SE=0.038) in 2011, the wettest breeding season during the study (Figure 4-3). 

Conversely, a possible carryover effect was indicated by the negative relationship 

between reproductive effort (as measured by proxy with water level on the study site) and 

adult female non-breeding season survival (Figure 4-3). Adult non-breeding season 

female survival ranged from 0.492 (SE=0.042) in 2011, to 0.969 (SE=0.003) in 2007 

(Figure 4-3). Adult annual survival ranged from 0.448 (SE=0.012) in 2011 to 0.712 

(SE=0.008) in 2010 (Figure 4-3). First-winter survival of band-only females was 0.521 

(SE=0.052), and we did find evidence of a marker effect on juveniles – estimated first-

winter survival of nasal-marked females was only 0.256 (SE=0.025).  

Given the effect of nasal markers on juvenile survival, we explored marker effects 

on adult females in a post hoc analysis. Building off our top model, we included an 

additive effect of being nasal marked for adult female survival during the non-breeding 

season (too few AB adult females were captured during post-breeding banding to provide 

stable estimation of a possible effect during the breeding season). Estimated non-breeding 

season survival of adult AN females for the ten-year period was 0.687 (95%CI = 0.654–

0.719), and adult AB female survival was 0.657 (95% CI = 0.535–0.761); thus indicating 

no effect of nasal markers on adult female survival during the non-breeding season. 

Juvenile AN and AB survival estimates from this post hoc analysis were consistent with 

those from the top model presented above.   

 
DISCUSSION 

We found that complex seasonal interactions resulted in serial survival costs to 

reproduction in lesser scaup as a function of habitat conditions during breeding. Although 
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we had predicted that habitat conditions favorable to breeding would induce concurrent 

survival costs of reproduction because of a documented increase in reproductive 

investment (Warren et al. 2013) and associated exposure to predation, female breeding 

season survival was positively correlated with breeding season habitat conditions. This is 

contrary to the many studies that have found a negative relationship between breeding 

habitat conditions and female survival during the breeding season (e.g., Sargeant and 

Raveling 1992, Arnold and Clark 1996, Rotella et al. 2003, Arnold et al. 2012). Increased 

water levels on our study site result in greater contiguous area of flooded emergent 

vegetation (predominantly Carex spp.) available to nesting females. When emergent 

vegetation is flooded during the breeding season females commonly swim off the nest 

when approached, flushing tens of meters from the nest and approaching disturbance. 

When emergent vegetation is not flooded, females remain on the nest longer when 

approached, often flushing directly from the nest, potentially making them more 

susceptible to predation (JMW, pers. obs.).  Corroborating this, over-water nests have 

higher survival than ground nests (Arnold et al. 1993, Koons and Rotella 2003a), and 

female mortality risk during the breeding season tends to be greatest during incubation of 

terrestrial nests and lowest during brood rearing when females occupy aquatic habitats 

(Koons and Rotella 2003b, Arnold and Howerter 2012). In addition, we found that more 

direct measures of breeding effort and/or success, i.e., breeding propensity, nest survival, 

and hen reproductive success, were poor predictors of breeding season survival.  

Breeding season survival of female lesser scaup on our study area was instead 

lowest during years with poor habitat conditions for reproductive investment. Reduced 

annual survival during years with poor breeding conditions has been documented in 
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female common eider (Somateria mollissima, Coulson 1984) and canvasback (Hochbaum 

1944), although the season of mortality was not determined in either study. Breeding 

season drought conditions result in fewer females breeding (Rogers 1964, Afton 1984), 

although breeding propensity is still relatively high on our study site during drought 

(0.85, SE=0.05; Warren et al. 2014). Therefore, reduced breeding season survival during 

years with poor habitat conditions could result from either an exogenous habitat effect, or 

from females that do breed paying a higher concurrent survival cost than when habitat 

conditions are good. Increased susceptibility to predation during drought-year nesting 

could increase mortality risk for breeding females (see above), or mortality could 

increase for all females as a function of deteriorating environmental conditions. Either, or 

both, mechanisms could influence drought-year female survival on our study site, and 

further work would be necessary to determine their relative role in breeding season 

mortality of scaup and similar species. 

Despite the lack of evidence for hypothesized concurrent survival costs of 

reproduction, scaup females experienced a serial survival cost to reproduction through a 

COE from breeding to non-breeding seasons. Non-breeding season survival was 

relatively high following breeding seasons with poor to average habitat conditions, but 

declined sharply as habitat conditions improved and breeding propensity approached 

unity (Figure 4-3, Warren et al. 2014). Breeding season COEs have largely been 

identified as a fecundity cost to reproduction the subsequent breeding season through 

manipulative studies of reproductive effort (Lessells 1986, Catry et al. 2013, Fayet et al. 

2016), with few documenting serial survival costs to reproduction (but see Daan et al. 

1996, Nilsson and Svensson 1996). A population-level decline in non-breeding season 
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survival following a breeding season with high reproductive effort could result from all 

breeding females experiencing an equal cost of reproduction. Conversely, the decline 

could be driven by young and/or low quality females experiencing a disproportionately 

higher survival cost of reproduction. Younger and/or lower-quality females commonly 

breed at higher rates when environmental conditions are favorable (Boekelheide and 

Ainley 1989, Barbraud and Weimerskirch 2005, Tavecchia et al. 2005), and reduced 

post-breeding survival for first-time breeders is well documented (Viallefont et al. 1995, 

Cam and Monnat 2000, Barbraud and Weimerskirch 2005, Sanz-Aguilar et al. 2008). 

Moreover, individual quality has been documented across a broad spectrum of species, 

and on the study site, providing evidence that ‘high-quality’ individuals survive and 

reproduce at higher rates than ‘low-quality’ conspecifics (Cam et al. 1998, Arnold and 

Howerter 2012, Warren et al. 2014, Kennamer et al. 2016). This further corroborates the 

hypothesis that the COE documented during this study could result from increased young 

and/or poor quality individuals breeding when habitat conditions are favorable. 

Mechanism(s) leading to a serial survival cost of reproduction may also be related 

to individual condition at the termination of breeding, which coincides with molt and the 

need to regain body condition prior to migration. Increased reproductive effort can lead to 

reduced body condition and delayed molt prior to migration (Lessells 1986), a 

physiologically challenging time for waterfowl that undergo a flightless period between 

reproduction and migration (Hohman et al. 1992, McWilliams et al. 2004). Lesser scaup 

are one of the latest-nesting waterfowl species in North America (Baldassarre 2014), and 

our study site represents one of the harshest scaup breeding areas in North America due 

to a short growing season (Gurney et al. 2011), reducing the amount of time for 
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completing these activities. Female breeding season body condition and health on the 

study site, the latter measured as the ratio of heterophiles to lymphocytes, are lowest 

during this period (Stetter 2014). Molt constrained by time and/or energy can be costly in 

terms of subsequent survival. For example, experimentally delayed breeding in blue tits 

(Parus caeruleus) resulted in birds expending about 15% more energy in 

thermoregulation than did control birds during the subsequent winter due to poorer 

quality feathers produced during a time and/or energy constrained molt (Nilsson and 

Svensson 1996). Elevated stress during molt has also been linked to reduced survival in 

birds (Harms et al. 2014, Latta et al. 2016), further corroborating that the timing of, and 

body condition during, molt provides a mechanism for a COE from breeding to non-

breeding seasons in scaup females. Post-breeding females in poor body condition may 

also incur higher harvest rates (Dufour et al. 1993, Pace and Afton 1999), although we 

did not find support for our hypothesized relationships between female non-breeding 

season survival and harvest metrics.  

The opposing responses of seasonal survival rates to breeding season water levels 

resulted in annual survival peaking near mean habitat conditions experienced during the 

breeding season, and declining as conditions deteriorated or improved. Annual survival 

was lowest in years when breeding habitat conditions were most favorable to 

reproduction, indicating an overall cost of reproduction to scaup females. Rotella et al. 

(2003) similarly found a negative correlation between wetland conditions and female 

lesser scaup annual survival in the Prairie Pothole Region, a pattern also documented in 

dabbling ducks (Arnold and Clark 1996). Annual survival varied considerably during our 

study (range 0.448–0.712, SD=0.098, CV=15.4%), with a similar range of values, but 
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with an overall mean survival (0.636, SE=0.031) slightly higher than prior studies 

(Rotella et al. 2003, Arnold et al. 2016).     

Survival costs of reproduction are well documented, but often do not differentiate 

the seasons when the costs are incurred (Clutton-Brock et al. 1983, Pugesek and Diem 

1990, Barbraud and Weimerskirch 2005, Tavecchia et al. 2005, Hadley et al. 2007), 

which precludes determining if the cost incurred was a COE or concurrent with the 

reproductive event. Understanding when in the annual cycle a survival cost of 

reproduction occurs provides important information for understanding life history 

evolution and informing conservation decisions. Conservation efforts for long-distance 

migratory species, such as lesser scaup, necessarily consider the annual life cycle at a 

continental scale (Austin et al. 2010). Vital rates (e.g., seasonal female survival) that 

demonstrate the greatest influence on population growth rate are identified, and 

management actions (e.g., harvest management, habitat acquisition) are targeted to 

increase them. The finite population growth rate of lesser scaup is most sensitive to 

proportional changes in female breeding season survival, followed by non-breeding 

season survival (Koons et al. 2006). Our results indicate breeding season survival could 

be increased via water management on the study site, although this may be unique to our 

study system. However, increased female breeding season survival may come at a high 

cost to non-breeding season survival, and subsequently annual survival, outweighing 

potential gains in population growth rate. Improving non-breeding season habitat 

availability and quality for females does not have this hidden potential cost to survival, 

but may have other effects that are not well understood. This underscores the importance 
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of understanding seasonal interactions for migratory species, i.e., where reproductive 

costs are experienced by species living in seasonal environments.  

Female scaup breeding on our study site employ diverse migratory and wintering 

strategies, wintering as close as riverine systems <350 km distant and as far as estuarine 

systems of the Pacific Ocean and Gulf of Mexico 1,000–2,800 km distant (JMW, 

unpublished data). Females from the study site use wintering areas common to three of 

the four North American Flyways (i.e., Pacific, Central, and Mississippi),  resulting in 

‘overlap’ during winter with ≈ 60% of the continental population of lesser scaup 

(Baldassare 2014). While the broad winter distribution of females from the study site 

precludes estimating mean conditions experienced during that period, it indicates non-

breeding season survival rates estimated during this study may be representative of a 

much broader portion of the continental population. This is significant in that our 

estimates of non-breeding season survival are the first published that included the entire 

non-breeding season. Moreover, our study design allowed understanding non-breeding 

season survival in the context of breeding season conditions, giving us the ability to 

examine seasonal interactions (COEs) and costs of reproduction manifested as a serial 

survival cost. Further work will be necessary to clarify potential mechanisms for the high 

serial survival cost to reproduction documented during our study, and other drivers of 

seasonal survival in migratory species. 
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TABLES AND FIGURES 
 
TABLE 4-1. Goodness-of-fit test results for female lesser scaup banded and resighted or 
recovered from 2005 to 2014 at Red Rock Lakes National Wildlife Refuge, Montana. 
Potential extra-binomial heterogeneity in the data due to transience (Test 3G) and trap-
dependence (Test M) was assessed for adults and juveniles.  

 
�̂�𝑐 = variance inflation factor. 
 

  Adults Juveniles 

 
χ2 df P χ2 df P 

Test 3G 35.6 41 0.71 3.3 18 1.00 

Test M 21.0 13 0.07 47.0 16 <0.001 

Overall test 56.7 54 0.38 50.4 34 0.04 

�̂�𝑐 
 

1.05 
  

1.48 
  Global �̂�𝑐     1.27     
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TABLE 4-2. Table of covariate values used to test concurrent and serial survival costs of 
reproduction for female lesser scaup 2005–2014, southwestern Montana. All continuous 
covariates were z-standardized for analysis; daily bag limit was scaled to start at zero 
(i.e., 2 was subtracted from all values). 
 

Year 

Breeding 
Season 
Lake 
Stage 
(msl)a 

Median 
Nest 

Initiation 

Breeding 
Propensity 

Nest 
Daily 

Survival 
Rate 

Hen 
Reproductive 

Successc 
Daily 
Bag 

Limit 

Pacific 
Flyway 
Harvest 

2005 2014.06 22 Juneb 0.943 0.975b 0.409* 3 28070 
2006 2014.16 22 June  0.941 0.986 0.588 3 34170 
2007 2013.55 15 June 0.910 0.974 0.367 3 51410 
2008 2013.91 24 June 0.942 0.977 0.421 2 27110 
2009 2013.90 21 June 0.945 0.975 0.403 3 30210 
2010 2013.76 24 June 0.852 0.971 0.311 3 23180 
2011 2014.37 5 July 0.878 0.969 0.296 3 22050 
2012 2013.91 14 June 0.914 0.966 0.281 7 62590 
2013 2013.67 24 June 0.845 0.980 0.429 3 40530 
2014 2014.11 19 June 0.883 0.985 0.522 3 37610 

aMean lake stage, meters above sea level (msl), from 1st to 3rd quantiles of nest initiation 
for each year. 
 
bOverall mean values during the study; nest searching and monitoring did not occur in 
2005. 
 

cProduct of breeding propensity and nesting success (probability of hatching at least one 
egg), assuming renesting does not occur. 
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TABLE 4-3. Top models for detection probabilities among nasal-marked and banded 
(AN) and band-only female lesser scaup (AB), as well as recovery and reporting rates 
conditional on death (r). Event probabilities were fitted with a transition probability (Ψ) 
structure that allowed full temporal variation in seasonal adult female survival (breeding 
and non-breeding seasons, 2005–2014) and juvenile first-winter survival, and an additive 
effect of being nasal-marked for juveniles. Only models within 7 AICc units of the top 
model are presented. 
 
Event Probability Structure ka ΔAICc Weightb Deviance 
AN(t) + AB(period) + r(.) 51 0.00 0.375 5886 
AN(t+yearling) + AB(period) + r(period) 53 1.22 0.204 5883 
AN(t+yearling) + AB(period) + r(.) 52 1.98 0.140 5886 
AN(t) + AB(year) + r(period) 57 2.37 0.115 5876 
AN(t) + AB(year) + r(.) 56 3.23 0.075 5879 
AN(t+yearling) + AB(year) + r(period) 58 4.35 0.043 5876 
AN(t+yearling) + AB(year) + r(.) 57 5.25 0.027 5879 
AN(t) + AB(period) + r(year) 58 6.63 0.014 5878 

aNumber of estimated parameters. 

bNormalized relative model likelihoods. 

 
TABLE 4-4. Model results for first-winter survival of juvenile lesser scaup females 
banded (state AB), or nasal-marked and banded (state AN) between 2005–2014 at Red 
Rock Lakes National Wildlife Refuge, Montana, USA. Event probabilities for each state 
were 1) temporally-varying for AN females, 2) direct recapture periods for AB females, 
and 3) constant recovery conditional on death (state D). Adult female seasonal survival 
(i.e., breeding and non-breeding seasons) was fully time varying. Only models within 7 
AICc units of the top model are presented. 
 

First-winter Survival ka ΔAICc Weightb Deviance 
constant  45 0.00 0.367 5890 

water level 46 0.87 0.238 5889 
Pacific Flyway harvest  46 0.95 0.228 5889 

daily bag limit 46 1.64 0.161 5889 
aNumber of estimated parameters. 

bNormalized relative model likelihoods. 
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TABLE 4-5. Comparisons of alternative multi-state models for explaining temporal 
variation in seasonal survival of female lesser scaup marked in southwestern Montana, 
2005–2014. Only models within 7 AICc units of the most supported model are presented. 
All models include parameters for hatch-year female survival with an additive effect of 
being nasal-marked, and allow encounter probabilities to 1) vary temporally across all 
survey periods for nasal-marked females, 2) vary among periods for physical recaptures, 
and 3) have constant recovery and reporting probability conditional on death (described 
in methods). Null and global model deviances, used in calculating R, were 6142 and 
5871, respectively.  
 

Survival           

Breeding Season Non-breeding 
Season ka ΔAICc Weightb Deviance Rc 

water level water level 30 0.00 0.767 5946 0.723 
constant water level 29 4.34 0.088 5953 0.699 

breeding propensity water level 30 5.71 0.044 5952 0.702 
nest daily survival 

rate water level 30 6.10 0.036 5952 0.701 

hen reproductive 
success water level 30 6.37 0.032 5953 0.700 

aNumber of estimated parameters. 

bNormalized relative model likelihoods. 

cRelative reduction in model deviance when compared to the global model (see methods). 
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FIGURE 4-1. Lower Red Rock Lake study area within Red Rock Lakes National 
Wildlife Refuge, Montana, USA. 
 



127 
 

 

FIGURE 4-2. Nasal-marker retention as a function of months since marking a) 2005–
2008, prior to addition of epoxy on distal ends of markers, and b) 2009–2015, when 
epoxy was used to aid marker retention. 
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FIGURE 4-3. Seasonal and annual survival (±1 SE) of female lesser scaup (Aythya 
affinis) in relation to breeding season water levels at the Lower Red Rock Lake study 
area. Breeding season was defined as mid-May–early September and non-breeding 
season was defined as early September–mid-May. 
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CHAPTER 5 

CONCLUSION 

An individual’s life may be a linear sequence of events from birth to death, but 

species in seasonal environments are shaped by the circular nature of seasonality. The 

influence of annual life-cycle events on individuals may strongly interact among seasons, 

creating the opportunity for carry-over effects and seasonal interactions. For example, 

conditions experienced by an individual during winter can have reproductive 

consequences the subsequent breeding season (Marra et al. 1998, Saino et al. 2004, 

Gunnarsson et al. 2005, Guillemain et al. 2008). Similarly, reproductive decisions may 

influence an individual’s survival and fecundity the subsequent non-breeding and 

breeding seasons, respectively (Daan et al. 1996, Hanssen et al. 2005, Blomberg et al. 

2012, Fayet et al. 2016). The decision to breed is likely the most significant fitness-

related decision an individual makes within a year, but is only the first of several 

decisions with life history consequences if reproduction is undertaken. Timing of 

reproduction, and parental effort invested, are also important reproductive decisions that 

influence current and future fecundity and survival (Hochachka 1990, Verboven and 

Visser 1998, Lepage et al. 2000, Golet et al. 2004). In Chapters 2 and 3, I examined 

intrinsic (e.g., body condition, age) and extrinsic (e.g., water conditions) drivers of a 

female’s decision of if, and when, to breed in lesser scaup (Aythya affinis), a long-distant 

migrant with intermediate life span. In Chapter 4, I assessed survival consequences of 

female reproductive effort within and among seasons, the ultimate cost of reproduction in 

iteroparous species.    
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The decision of if, and when, to breed is strongly influenced by a female’s pre-

breeding body condition. Lesser scaup spend a protracted pre-breeding period on 

breeding areas, providing opportunity to increase body condition prior to clutch 

formation. Quality of young declines with advancing lay date, however, resulting in a 

trade-off between how much time a female should spend increasing body condition to 

produce a larger clutch and initiating a nest in lower body condition and producing fewer, 

but higher quality, young (Béty et al. 2003, Descamps et al. 2011). In Chapter 2, I found 

that a female’s ability to increase pre-breeding body condition on the breeding area was 

strongly influenced by environmental conditions, i.e., spring phenology and water depth. 

Springs with early phenology and low water levels had the highest rates of pre-breeding 

body condition gain. Female age influenced arrival body condition, with yearlings 

arriving in poorer condition than older conspecifics, but rate of pre-breeding body 

condition gain was similar between age classes. Corroborating the cost-of-delay 

hypothesis as formalized in the condition-dependent individual optimization model of 

Rowe et al. (1994), the rate of body condition gain during the pre-breeding period was 

positively related to clutch size. However, I did not find support for the predicted 

relationship between the intra-annual decline in clutch size and rate of body condition 

gain, another prediction of the cost-of-delay hypothesis and Rowe et al.’s model. 

The decision to breed is similarly influenced by a female’s age, body condition, 

and environmental conditions.  In Chapter 3, I found that female lesser scaup breeding 

propensity is strongly positively related to body condition, providing support for a 

threshold body condition that must be achieved prior to undertaking breeding. This 

threshold declined during the breeding season, i.e., females in better condition bred 



131 
 
earlier in the season and breeding female condition was negatively correlated with date. 

This is also consistent with the condition-dependent individual optimization model 

(Rowe et al. 1994), which predicts that a female’s optimal decision regarding when to 

breed is a function of her body condition and the intra-seasonal decline in quality of 

young, the latter of which has been documented on the study site (Stetter 2014). Breeding 

propensity also declined during drought years, a common phenomenon in Aythya females 

(Afton 1984, Anderson et al. 2001), although it is not known if females are constrained or 

demonstrate restraint when conditions are not favorable for breeding (Curio 1983). I 

found weak support for an age effect on breeding propensity, and evidence of individual 

heterogeneity among females. Females with evidence of prior reproductive success on the 

study site bred at higher rates than females lacking this evidence. Individual 

heterogeneity is relatively common in birds (Cam et al. 2002, Kennamer et al. 2016), 

leading to positive correlation between survival and fecundity in ‘high-quality’ 

individuals.  

Survival costs of reproduction can occur concurrent with, or serial to, a 

reproductive event. An individual that survives the reproductive event but is in a reduced 

physiological state, or has less time to complete metabolically-costly annual events such 

as post-breeding molt, may have reduced survival during the subsequent non-breeding 

season. In Chapter 4, I used a ten-year data set of uniquely-marked females to investigate 

drivers of within- and among-season survival as a function of reproductive effort. Female 

breeding and non-breeding seasonal survival was most correlated with breeding season 

water levels on the study site, but in opposing directions. Female breeding season 

survival was positively related to water levels, likely the result of increased area of 
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highly-secure nesting habitat (i.e., shallowly-flooded sedge [Carex spp.]). Conversely, 

breeding habitat conditions documented to increase reproductive effort in scaup on the 

study site (Warren et al. 2014) led to reduced non-breeding season survival, i.e., a carry-

over effect (COE) of reproduction. Reproduction reduces physiological state of females 

(Stetter 2014), and constrains a female’s time to molt (Austin and Fredrickson 1986, 

Lessells 1986), which can have survival consequences the subsequent non-breeding 

season (Nilsson and Svensson 1996, Harms et al. 2014).  If this hypothesized mechanism 

for the documented COE is correct, breeding early would convey fitness benefits to a 

female beyond increased quality of young and thereby increase the importance of pre-

breeding body condition. Optimization of the trade-off between the current reproductive 

event and lifetime reproductive success for an individual would necessarily have to 

include survival costs of delay for both parent and offspring. Most explanations of 

breeding cost of delay focus on the latter, likely due to the greater demonstration of 

declining survival of young with increasing hatch date.  

I provide the first estimates of seasonal survival for lesser scaup that I am aware 

of, but perhaps more importantly, I was able to provide estimates of non-breeding season 

survival in the context of breeding season conditions, demonstrating a breeding season 

COE of reproduction on female survival. Future work could build upon results presented 

herein and explore age-specific seasonal survival as a function of reproductive effort and 

environmental conditions, testing the hypothesis that the increase in young and/or low 

quality females breeding in years with habitat conditions favorable to reproduction 

resulted in the strong survival cost of reproduction documented as a breeding season 

COE. This study is also uniquely situated to explore optimal reproductive decisions based 
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on increasing nest survival (Pokely 2014) and decreasing duckling survival (Stetter 2014) 

with advancing lay date, and adult female seasonal survival. Lastly, examining the 

response of population growth to temporal covariation in vital rates to inform 

conservation actions should be pursued. This study has concurrently estimated vital rates 

since 2006 (female seasonal survival, breeding propensity, and nest survival), with 

studies of duckling and juvenile survival starting in 2010. 

This study is also the first I am aware of that estimated and accounted for marker 

loss for a marking technique common in ducks (Lokemoen and Sharp 1985, Arnold and 

Clark 1996, Rotella et al. 2003). Given the high rate of marker loss we documented early 

in the study, it is likely that prior studies using similar marking techniques 

underestimated survival. I also found a significant marker effect on juvenile, but not 

adult, survival. As this and similar studies progress it will be important to address ethical 

considerations associated with marker effects, and consideration of marker loss effects on 

estimation of demographic parameters. Lastly, long-term demographic studies like the 

Red Rock Lakes lesser scaup study provide a unique opportunity to advance our 

understanding of harvest and habitat impacts on species as they make life history 

decisions when confronted with changing environmental conditions, and the 

consequences of those decisions, i.e., trade-offs, that have population-level ramifications.  
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Breeding Propensity 

We estimated annual female breeding propensity of lesser scaup following 

Warren et al. (2014). First, we estimated a size-adjusted body condition for females 

captured during pre-breeding and nesting periods. Body condition of females captured 

during the nesting season (i.e., 9 June – 5 July) was then regressed with date of capture 

using a linear mixed-effects model with a random intercept of year. An annual estimate 

of mean body condition was then predicted using each year’s median nest initiation date 

and random intercept. Because no nest searching was conducted in 2005 the overall 

median nest initiation date for 2006–2013 was used (22 June). We then predicted annual 

breeding propensity using the best breeding propensity (BP) model (a generalized linear 

model with binomially-distributed errors and a logit link) from Warren et al. (2014) 

𝐵𝐵𝑇𝑇 = 2.082 + 0.082 ∗ 𝐵𝐵𝐷𝐷𝐶𝐶𝐶𝐶𝐵𝐵 + 0.032 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵 − 0.984 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴ℎ𝐶𝐶, 

where CDate is relative capture date (median nest initiation date = 0), BCI is female body 

condition index, and Drought is a categorical variable based on breeding season water 

levels on the study site (2007, 2010, and 2012–2014 were drought years and the 

remaining years non-drought).  

 
Nest Monitoring 

Nest searches were conducted within Carex spp. dominated habitats on the study 

site each year beginning in 2006. Observational cues of females and trained dogs were 

used to locate scaup nests during two searches completed between late May and mid-

July. Searches were conducted between 0600 and 1300 hours daily; nests found 

incidentally while conducting other field work were included. When nests were located 
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the number of eggs and incubation stage, as determined by field-candling (Weller 1956), 

were recorded. Nest initiation date was estimated by subtracting the number of eggs and 

days of incubation from the current date and adding 1 day. Nests were revisited every 6–

10 days until fate was determined (i.e., successful [at least 1 egg hatched], destroyed, or 

abandoned). 

 
Reproductive Success 

Annual estimates of nest daily survival rate (DSR) were calculated for 2006–2014 

using the package RMark in R version 3.0.3 to implement nest survival models in 

program MARK. Nests abandoned, damaged or destroyed due to investigator activity 

were not included in analysis. Nest monitoring did not occur during the first year of the 

study, so mean nest DSR was used for 2005’s DSR covariate value in female seasonal 

survival analyses. All variables were z-standardized to have a mean of zero and standard 

deviation of one. An index of annual hen reproductive success (HRS) was calculated as 

BP*DSR34.  
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