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ABSTRACT 

THE ROLE OF RECOVERABLE AND NON-RECOVERABLE DEFECTS IN DC ELECTRICAL 

AGING OF HIGHLY DISORDERED INSULATING MATERIALS  

 
by 

 
 

Allen Andersen, Doctor of Philosophy 

Utah State University, 2018 

Major Professor: Dr. JR Dennison 
Department: Physics 

 

Estimating the likelihood of electrostatic discharge (ESD) in highly discorded insulating materials 

(HDIM) during application lifetimes is critical in applications including spacecraft and high voltage dc 

power transmission. The focus of this work is a defect driven model of dielectric breakdown based on a 

dual-defect assumption. Traditional mean-field theory of breakdown effectively considers the average 

defect energy and density as the only defect mechanism. The dual-defect model considers high-energy 

(deep) chemical defects and low-energy (shallow) physical defects. Low-energy defects may have 

significant thermal recovery rate. Such recoverable defects provide a conceptual physical model for dc 

partial discharge (DCPD) transient non-shorting events. Dielectric breakdown tests on four common 

polymers, LDPE, PI, BOPP, and PEEK have been studied in the context of the proposed and existing 

models of breakdown, together with evaluation using standard empirical Weibull distributions. The 

resulting fits for voltage step-up to breakdown tests provide reasonable estimations of defect parameters. 

Static voltage endurance time data show excellent agreement with the dual-defect model. Quantile-quantile 

analysis demonstrates a strong correlation between DCPD and critical dielectric breakdown. During a 

typical breakdown test many DCPD are observed prior to the destructive breakdown. The relationship 

between DCPD and breakdown suggest the possibility for highly accelerated dielectric strength testing of 

candidate HDIM. 

(264 pages) 



iv 

PUBLIC ABSTRACT 

THE ROLE OF RECOVERABLE AND NON-RECOVERABLE DEFECTS IN DC ELECTRICAL 

AGING OF HIGHLY DISORDERED INSULATING MATERIALS 

Allen Andersen, Doctor of Philosophy 

Utah State University, 2018 

Electrical insulation under high voltage can eventually fail, causing critical damage to electronics. 

Such electrostatic discharge (ESD) is the primary source of anomalies or failures on spacecraft due to 

charged particles from the Sun or planetary radiation belts accumulating in spacecraft insulators. High-

voltage direct current power distribution is another example of a growing industry that needs to estimate 

the operational lifetime of electrical insulation. My research compares laboratory tests of ESD events in 

common insulating materials to a physics-based model of breakdown. This model of breakdown is based 

on the approximation that there are two primary types of defects in structurally amorphous insulators. One 

of the two defect modes can switch on and off depending on the material temperature. This dual-defect 

model can be used to explain both ESD and less-destructive transient partial discharges. I show that the 

results of ESD tests agree reasonably well with the dual defect model. I also show that transient partial 

discharges, which are usually ignored during ESD tests, are closely related to the probability of catastrophic 

ESD occurring. Since many partial discharges are typically seen during one ESD test, this relationship 

suggests that the measurements of partial discharges could accelerate the testing needed to characterize the 

likelihood of ESD in insulating materials. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Purpose and Scope of Dissertation 

The topic of this dissertation is dielectric breakdown or electrostatic discharge (ESD) and the pre-

breakdown electrical aging of highly disordered insulating materials (HDIM). Insulating materials exposed 

to high electric fields will, over time, degrade and fail, potentially causing catastrophic damage to devices. 

Although direct current (dc) electrical aging has been studied for decades, it is still poorly understood 

(Crine, 2005b;  Teyssedre and Laurent, 2013). Indeed, the preface of one of the principal textbooks in this 

field of study begins with the statement “The study of electrical breakdown is not a trivial pursuit” (Dissado 

and Fothergill, 1992). The extensive structural disorder of HDIM together with underlying quantum 

mechanical effects, results in fundamentally stochastic behavior. Like other fields of physics dealing with 

complicated systems, many particles, or inherent uncertainty, there can be no exact solutions. If exact 

analytical solutions do exist, they are likely too complicated to be practical. Empirical models are most 

commonly used to describe breakdown in HDIM, but they lack the conceptual economy of physical models 

and are less useful for extrapolation. Physics-based models of breakdown are necessarily approximations, 

but they are more suitable for making predictions based on intrinsic material properties and extrinsic 

material conditions. One of the difficulties in making approximations is striking a balance between 

capturing the relevant physics while not introducing exceedingly arduous complexity to the theory. 

This dissertation proposes a dual-defect driven physical model of breakdown and dc partial 

discharge (DCPD) in the context of relevant background physics and other models, both empirical and 

physical, found in the technical literature. This dual-defect model is compared to laboratory data of several 

typical HDIM to evaluate its merits and limitations as a useful approximate theory of breakdown. Enhanced 

theoretical understanding of dc aging based on expanded experimental studies is of critical importance not 

only to understand the physics of HDIM, but also for applications in spacecraft charging, high voltage dc 

(HVDC) power, thin film dielectrics, and semiconductor devices and sensors. 
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1.1.1. Spacecraft Charging 

Spacecraft charging has been the primary research area of the Utah State University (USU) 

Materials Physics Group (MPG) research over the last two and a half decades. Streams of charged particles 

emanate from the sun and interact with planetary magnetospheres creating a variety of plasma and radiation 

environments in the solar system. As spacecraft in the space plasma environment accumulate charge over 

time; the lack of electrical ground together with low charge mobility in some materials can cause strong 

localized electric fields to build up and can eventually lead to catastrophic dielectric breakdown. These 

ESD events are the primary cause for spacecraft failures and anomalies from interactions with the space 

environment (Leach and Alexander, 1995;  Reed, et al., 2014;  Ferguson, et al., 2015). Although they are 

not covered in detail in this dissertation, material properties such as conductivity, radiation induced 

conductivity (RIC), and electron yield can influence how charge builds up in a material and therefore 

influence the likelihood of breakdown (Dennison, et al., 2016b). Other space-environment effects include 

single event upsets (SEU), total ionizing radiation dose damage, micrometeoroid or orbital debris impact, 

atomic oxygen erosion, cathodoluminescence, atmospheric drag, etc. (Koons, et al., 1999;  Dennison, 

2015). 

Issues associated with ESD include solar panel power losses and failures, electrical noise, light 

pollution, and electrical shorts. These issues may trigger spacecraft safe-mode states, loss of data, 

parametric mission losses, or complete mission failure (Garrett and Whittlesey, 2012). Figure 1.1 is an 

example of sustained arc damage to a spacecraft solar panel resulting from ESD (Ferguson and Hillard, 

2011). It is critical to mitigate the risk of ESD for mission success especially as mission lifetimes increase, 

components become more compact and sensitive, and spacecraft venture into more extreme space 

environments. Insights into spacecraft failures follow from comparisons of the field-dependent endurance 

times with times scales relevant to the space environment and orbital conditions (Dennison, 2015). 

1.1.2. Terrestrial Applications 

Although the primary impetus for this research is spacecraft charging, it is also readily applicable 

to earth-bound applications such as the degradation and failure of HDIM insulation for transmission line 

cables under long-term application of high dc electric fields. There is a push in the United States for HVDC 
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FIG. 1.1.  Sustained arcing damage on a spacecraft solar panel resulting from ESD (Ferguson and Hillard, 
2011). 

power transmission similar to those used in Europe and Asia, due to its increased efficiency and decreased 

environmental impact (Rongsheng, 2013;  Trnka, et al., 2013). The United States ac power grid could 

dramatically increase efficiency by implementing higher voltage dc lines. To gauge the magnitude of the 

benefit of switching to higher voltage dc lines across the grid, decreasing transmission loss by ~5% would 

be equivalent to adding the output of ~30 additional large coal burning power plants to the power grid 

(Grant, et al., 2006). HVDC suffers less from joule heating, radiation losses, and coronal discharge than 

HVAC thereby minimizing transmission losses. Over distances of about 100 miles, HVDC lines are more 

efficient than HVAC transmission, even including ac/dc converter station losses. The present growth of 

HVDC technologies has resulted in increased interest in the improved characterization and diagnostic of 

HVDC insulation components (Cavallini, et al., 2016;  Corr, et al., 2016). Indeed, despite decades of 

research, characterization methods and theoretical descriptions of the aging of insulators for HVDC 

applications lack the sophistication and utility of ac partial discharge diagnostic tools (Crine, 2005b;  Vu, et 

al., 2013;  Czaszejko, 2014;  Trnka, et al., 2014;  Corr, et al., 2016). This dissertation discusses the relationship 

between DCPD and dielectric breakdown from both a theoretical and practical perspective. 
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Small-scale semiconductor electronics are also an important application of electrical aging 

physics. Since the electric field—rather than voltage itself—is what causes material breakdown, the risk of 

ESD occurs at very low voltages as nanoscale dimensions in devices and composite materials are further 

reduced. Since breakdown field strengths of dielectric materials are typically in the range of 107-108 V/m., 

breakdown can occur in such cases at only a few volts potential for 10-100 nm dimensions. See Table 1.1. 

This is of concern for all nanoscale electronics. Similar ESD effects have been observed for nanometer 

thick optical dielectric coatings subjected to electron beam fluxes (Dennison, et al., 2013;  Wilson, et al., 

2013a). 

Table 1.1. Breakdown voltages assuming a nominal breakdown filed of ~108 V/m. 
Application Thickness (m) Breakdown Voltage (V) 
Transmission cables ~10-2 ~106 
Spacecraft ~10-5 ~103 
Circuits ~10-4 ~104 
MOFSET ~10-8 ~1 

 

1.2. Outline of Dissertation 

This dissertation gives a brief review of the relevant background physics in Chapter 2. This review 

begins with a short tie-in to standard graduate-level solid state physics, then reviews charge transport in 

highly disordered insulating materials, followed by a derivation of the standard physics-based ageing 

dielectric model, the Crine model (Crine, et al., 1989;  Crine, 1999). 

Chapter 3 outlines the new theory developed in this dissertation. This theory is essentially an 

extension of the Crine model discussed in Chapter 2. The limiting behavior of these models together with 

the consequences of considering variable defect densities—primarily due to recoverable defect modes—is 

discussed. 

Chapter 4 transitions into a description of the laboratory test equipment and test methods used to 

evaluate the predictions made by theories in Chapters 2 and 3. This chapter focuses on the details of each 

individual test type. 
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Chapter 5 presents the data processing and statistical analyses of the laboratory test data. These 

methods allow for the comparison of groups of tests and extracting physical meaning (e.g., estimations of 

defect energies and densities) from ensembles of tests. 

Chapter 6 is a discussion of the results of the studies discussed in Chapters 4 and. This chapter 

also considers the results in contexts of both empirical and physics based models. 

Finally, Chapter 7 examines the conclusions, relevant applications of results, and future.  

The Appendices contain detailed procedures regarding the experimental methods, data analysis, 

and materials properties.  
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CHAPTER 2 

2. THEORETICAL BACKGROUND 

2.1. Physics of Highly Disordered Materials 

The topic of highly disordered materials is not part of the standard physics curriculum, even at the 

graduate level. Indeed, the standard advanced graduate text in solid state physics only briefly addresses 

amorphous materials to bemoan the pitiful state of the field of the physics of amorphous solids compared to 

the advanced science of periodic materials and casts doubt on the many conceptual parallels drawn between 

the two (Ashcroft and Mermin, 2005). Even though this topic is not covered in standard coursework, 

excellent material on the topic in general does exist, particularly Zallen’s and Mott’s texts and Rose’s 

article on photoconduction (Rose, 1951;  Zallen, 1983;  Mott and Davis, 2012). 

The discussion of the theoretical background of this dissertation begins with a brief commentary 

on the physics of the ideal infinite lattice before transitioning into the topic of dielectric breakdown in 

highly disordered materials. There are two primary reasons for this: first, that the reader with a general 

physics background may start in somewhat familiar territory, and second, despite the lack of exact 

analytical solutions for disordered materials, there is strong evidence for the validity of borrowing some 

concepts from the physics of crystalline solids. 

2.1.1. Solid State Physics in an Ideal Lattice 

The physics of charge transport in a perfect lattice can be derived from the first principles of 

quantum mechanics and is covered in standard solid state physics texts (Kittel, 1966;  Ashcroft and 

Mermin, 2005). In a crystalline lattice, we can obtain solutions to Schrödinger’s equation, namely the 

familiar Bloch wave functions, 

  , 2.1 

where  has the same periodicity as the lattice. The periodicity restricts the allowable energies, giving 

rise to band structures (Ashcroft and Mermin, 2005).  

The concept of band structures, and most especially forbidden energy bands, is fundamental to the 

understanding of the electrical properties of condensed matter, and gives a description of why certain 
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materials are conductors (effectively no band gap due to partially filled bands or overlapping bands) while 

others are semiconductors (band gap ) or insulators (band gap ). 

In the case of amorphous materials, the lack of long-range order undermines the mathematical 

underpinnings of Eq. 2.1 and consequently, all the resulting theory describing crystalline solids using 

Bloch’s theorem. Nevertheless, the transparency of common glass makes it quite clear that amorphous 

materials can have an energetic band gap despite the lack of periodicity that allows for a straightforward 

analytic description (Mott, 1978). Despite the difficulties involved in exact quantum mechanical 

calculations, perturbation methods and statistical techniques have led to useful physical models. In  

Sections 2.1.2 and 2.1.3, we will review a few of the most important concepts in the physics of amorphous 

solids. 

2.1.2. Localization through Disorder 

In crystalline materials, energetic band structures dominate conduction; however, in amorphous 

materials it has been shown that conduction is dominated by the density of spatially localized trap states. 

The 1977 Nobel Prize in Physics was awarded to Philip Warren Anderson, Sir Nevill Francis Mott, and 

John Hasbrouck van Vleck “for their fundamental theoretical investigations of the electronic structure of 

magnetic and disordered systems” (Nobel Media AB, 2014). Anderson and Mott’s great contribution was 

the concept of localization, that is, a transition from spatially extended quantum states to states confined to 

a localized region (Anderson, 1958;  Anderson and Mott, 1978;  Mott, 1978;  Mott and Davis, 2012). Such 

transitions in the spectrum of allowed quantum states in a material are effectively metal-insulator 

transitions (Zallen, 1983). In crystalline semiconductors, the conductivity can be similarly altered 

extrinsically by means of doping. Although disordered materials can surely be doped, localized states are 

intrinsic to amorphous materials. Mott demonstrated that by not neglecting electron-electron interactions, 

localization must occur in materials at low enough atomic densities (Zallen, 1983;  Mott and Davis, 2012). 

Anderson demonstrated localization by explicitly adding disorder to a periodic lattice. The starting 

point for Anderson localization is the tight-binding Hamiltonian (Anderson, 1958;  Anderson and Mott, 

1978;  Elliott and Elliott, 1990).  

   2.2 
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The diagonal basis states  are the sites of a periodic lattice. These basis states are given a random 

distribution of energies  characterized by a width . The nearest-neighbor couplings are given by  (or 

rather  inside the second sum for potentials due to a random distribution of nearest-neighbor 

distances). The perturbation methods applied by Anderson on this model are quite arduous, but they lead to 

an important result. What Anderson showed is that instead of a band gap of forbidden energies between the 

valence and conduction states, “one may have a continuum (of allowed states) in energy but not in space” 

(Anderson and Mott, 1978). The criteria for disorder-induced localization is . Numerical 

calculations of the spatial extent of electron wave functions show increasing localization with increasing 

 (Yoshino and Okazaki, 1977).  

In Fig. 2.1 we observe the effect of disorder on the familiar crystalline band diagram. In the case 

of disorder, instead of an empty band gap of forbidden states, we observe a region of localized states. This 

region is termed the mobility gap and is bounded by mobility edges (Zallen, 1983;  Mott and Davis, 2012). 

The lack of sharp features in the band diagram for the amorphous case is a result of such features requiring 

long-range order to be present (Zallen, 1983). The density of states in the mobility gap can be negligibly 

small for a broad range of energies away from the mobility edges, hence the transparency of glass. 

Material-specific specific structures such as dangling bonds can cause peaks in the density of 

localized states in the mobility gap (Mott, 1978;  Zallen, 1983;  Elliott and Elliott, 1990;  Mott and Davis, 

2012). Examples of these will be discussed in 3.1.1. 

2.1.3. Effects of Disorder on Electrical Conductivity 

Localized states in the mobility gap can strongly influence a material’s electrical properties. The 

dielectric breakdown models outlined in Section 2.2 and Chapter 3 are based on runaway hopping 

conduction. This section briefly reviews conduction models in amorphous solids. Consider the case of a 

single dominant charge carrier: an electron in a Fermi glass, that is, an amorphous material with the Fermi 

energy below the mobility edge and therefore among the localized states (Mott, 1978;  Mott and Davis, 

2012). The dominant conduction mechanism will depend on the thermal energy compared to the mobility 

gap energy.  
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FIG. 2.1.  Idealized band diagrams for periodic (top) and amorphous non-metals (bottom). Adapted from 
(Zallen, 1983) 

2.1.3.1. Multiple Trapping 

At high enough temperatures, electrons can be excited into the extended states above the mobility 

edge. Electrons in the extended states have motion limited by scattering, as in metallic conduction, as well 

as trapping in the energetically shallow localized states below the mobility edge (see paths C and D in Fig. 

2.2.) (Zallen, 1983). This transport is known as multiple trapping (MT) because any single carrier may 

undergo many trapping and de-trapping events (Zallen, 1983). The number of carriers in extended states, 
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FIG. 2.2.  Simplified diagram of the energetic states in a Fermi glass. Short lines between the conduction 
band  and the valence band  represent localized states. Dots represent filled states below the fermi 
level . Electrons undergoing multiple trapping conduction follow paths C and D. Hopping a distance  is
shown by either path A or B.  is the energy difference from the initial to the final state in the mobility 
gap to another. Adapted from (Zallen, 1983) 

and therefore the resulting conductivity, depends on a Boltzmann factor of the energy gap from the Fermi 

level to the mobility edge over the thermal energy (Rose, 1951). This conductivity is 

  , 2.3 

where  is the minimum metallic conductivity, related to the degree of localization in the material 

(Mott, 1978;  Mott and Davis, 2012). 
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2.1.3.2. Hopping and Percolation 

Excitations into extended states are not the only charge transport mechanisms available because of 

localized states in amorphous materials. Charges may, assisted by phonons, quantum mechanically tunnel 

from one (occupied) localized state to another (vacant). Such transport is known as hopping. 

Hopping conductivity is a product of a Boltzmann factor  where  is the energy 

gap between two states, a factor  that depends on the phonon spectrum, and a factor  for the 

overlap of the wave functions (Mott and Davis, 2012). With sufficient thermal energy, nearest neighbor 

hops are preferred (see path A in Fig. 2.2). Such hopping is termed thermally activated hopping (TAH) and 

has temperature dependence similar to Eq. 2.3:  

 .   2.4 

As temperature decreases the probability for an electron to hop a larger distance  to reach a 

smaller energy difference  becomes significant (see path B in Fig. 2.2). This hopping mechanism is 

called variable range hopping (VRH) because the hopping range can vary with temperature and the defect 

density of states. By considering more than only nearest-neighbor hops in this way, the conductivity 

dependence on temperature changes to (Mott, 1978;  Zallen, 1983;  Mott and Davis, 2012)  

 . 2.5 

The factor  in the numerator depends on the density of states and the localization length  (Zallen, 1983;  

Mott and Davis, 2012). 

This same  form can also be found by statistical methods considering defects 

randomly distributed in energy and space (Ambegaokar, et al., 1971). In either case, the spatial distribution 

of traps in the material can be approximated as a large network of resistors. In such percolation models, 

more favorable transitions have an equivalent lower resistance, effectively shorting out the larger resistors 

corresponding to unfavorable transitions (Ambegaokar, et al., 1971). The distribution of resistance values 

maps onto the distribution of trap state energies. Completion of a conduction path follows a path favoring 

lower resistances (energies). This can lead to enhanced conduction as circuitous low resistance paths can 

add additional favorable paths for charge flow to the statistically unlikely lowest resistance path comprised 
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of a direct chain of lowest resistance (energy) states. This construct makes the notions of percolation path 

and percolation thresholds—both spatial and energetic distortions—relevant to conduction in HDIM. 

To summarize, we have reviewed some of the relevant conduction mechanisms by which charge 

can propagate in amorphous materials. We see that the relationship between the defect density of states 

(DOS) spatial and energetic distributions and the thermal energy not only changes conductivity but also the 

physical mechanism of charge transport in disordered materials. A more in-depth discussion of the effects 

of temperature and radiation on conductivity is beyond the scope of this introduction. For further insights 

on this topic, I recommend (Gillespie, 2013;  Sim and Dennison, 2013).  

2.2. Crine Mean Field Theory 

We now transition to a discussion of breakdown in amorphous solids. When an electron hops from 

one trap to another it can gain energy as it travels through an electric field. If it gains sufficient energy to 

liberate additional charges upon impact, a cascade of charge can propagate into an avalanche breakdown. 

Therefore, the likelihood of breakdown depends on the relationship between the temperature-dependent 

probabilities of charge escaping defects, the distribution of defect energies, the non-uniform spacings 

between defect sites, and the external electric field.  

The simplest model of breakdown due to charge motion between defect states is the mean field 

theory, or canonical Crine model (Crine, et al., 1989). This model assumes a single mean defect energy 

 with the defects spaced periodically with a mean separation of . Although this is obviously the 

incorrect picture for HDIM, it is the starting point for creating an approximate physical model of 

breakdown. 

2.2.1. Runaway Miller-Abrahams Hopping as Dielectric Breakdown 

Given the assumptions of the mean field theory we can derive breakdown in one dimension by 

describing the TAH motion of charges (for simplicity we will assume only electrons) in a periodic 1D array 

of localized defects or traps. This is commonly known as Miller-Abrahams hopping (MAH) (Miller and 

Abrahams, 1960). In the absence of an applied electric field, there is no net current because there is an 

isotropic hopping probability. However, as shown in Fig. 2.3, an applied electric field distorts the potential 



13 

FIG. 2.3.  Potential energy versus position diagram. (a) No electric field and (b) with applied electric field. 
The fields acts to reduce the energy necessary to initiate the degradation process through thermally assisted 

tunneling from the defect Gibbs energy of activation,  by an amount , where  is the 

mean defect separation. The red curves are the carrier potential and the blue dashed curves are the electric 
field contributions to the potential energy, as functions of position. 

wells and creates a preferential hopping direction (Miller and Abrahams, 1960;  Wintle, 1983). The net 

probability of hops per second  in the direction opposite the field  is  

    2.6 

with a unitless transition frequency factor , Gibbs activation energy—essentially well depth—( ), 

charge ( ), mean defect spacing ( ), electric field ( ), Boltzmann’s constant ), and temperature ( ). 

Although Eq. 2.6 is illustrative for the present derivation, it can be written more conveniently as 
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 .  2.7 

In 1999 Crine transitioned from considering the energy gained and lost by individual hops to the 

Maxwell stress energy (Crine, 1999). To explain this shift, and include it in the present derivation, we 

depart from our strictly 1-D model for a moment to understand how the bonds within a polymeric material 

are affected by an applied stress due to internal or external electrostatic fields. Consider an electric field  

across two faces of a cubic unit volume acting as a parallel plate capacitor. The strain energy required to 

compress this unit volume by an amount is (Crine, 1999;  Anderson, et al., 2004) 

 . 2.8 

More detailed vector or tensor calculations of the strain energy for more realistic, anisotropic 

shapes yield similar results that differ only by a constant of order unity. The energy strain on the defect 

sites is defined by the density of defects—e.g., ionization sites or broken bonds—associated with 

electrostatic discharge . This is the inverse of the cubic mean activation volume 

, corresponding to one such defect. This point is generally ambiguous in the literature although it is 

occasionally suggested as in (Crine, 2007).  

If we set the strain energy of Eq. 2.8 in a volume  equal to the Gibbs defect activation 

energy , we can solve for the critical electric field  just strong enough to produce one defect per 

activation volume 

 .  2.9 

The critical field is usually interpreted as the field at defect distortion begins to be significant (Crine, 

2002b). Although electrical aging can happen at lower fields due to existing defects, the likelihood of 

runaway hopping and the creation of new defects is low below  (Crine, 1999;  2002b). At fields 

somewhat below the critical field, one can envisage interconnected regions of defective activation 

volumes—that have essentially undergone an insulator-to-conductor transition—that allow current to 

propagate through the material via a percolation-like network. Such a percolation-like model lends itself to 

a decreased but still finite probability of breakdown with decreasing field. As the probability of completing 

a percolation path across the sample at a given defect density decreases, this also predicts an onset field 
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 at the percolation threshold for defect densities below which breakdown will not occur. Above the 

critical field one must consider the creation of new defects. For processes that permit repair of the defect, 

dynamic percolation models need to incorporate defect activation volumes with a finite lifetime. The Crine 

model does not explicitly consider changes in  but this is discussed in 3.2.1. 

Alternate theories (Wintle, 1983;  Dissado and Fothergill, 1992;  Lewis, 2002;  Crine, 2005b;  

Montanari, et al., 2005), which produce equivalent results, consider the energy  acquired by a 

charge carrier with charge as it moves through a mean field over the mean separation distance between 

defects. One can also note the similarities to rate theories in chemistry (Eyring, et al., 1935;  Crine, 2016a) 

and the Onsager capture length theory (Onsager, 1938;  Belmont, 1975). 

2.2.2. Static Voltage Endurance Time 

Given a model for the critical field, a thermodynamic model for the electric field aging process has 

been developed to predict the mean time to failure or static voltage endurance time (SVET)  as a 

function of high electric field and temperature (Crine, et al., 1989;  Dissado and Fothergill, 1992;  Dang, et 

al., 1996;  Parpal, et al., 1997;  Crine, 2005b). There are direct equivalences between the thermodynamic 

model for ESD and Mott’s model for thermally activated hopping conductivity (Mott and Davis, 2012). As 

with this conductivity model,  and  represent a mean defect activation volume (or barrier width) 

and a mean defect activation energy (or barrier height of the energy well), respectively (see Fig. 2.3 (a)) 

(Wintle, 1983;  Dennison, et al., 2009). 

On average, the forward and backward movements of charge carriers from one trap state to an 

adjacent site can be thought of as a rate process, where motion with (against) the field decreases (increases) 

the barrier height of the Gibbs free energy, as shown in Fig. 2.3 (b). At breakdown, the critical energy 

gained from electron motion through the electric field across a defect volume of width  from Eq. 2.8, is 

just sufficient to overcome the barrier height  leading to a cascade of charge. Thus Eq. 2.7 can lead to 

a similar model of the probability of breakdown as a function of applied field , temperature , and time 

the field is applied  (Parpal, et al., 1997): 

 .   2.10 
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Considering the probability of breakdown to be equal to unity at the endurance time, 

. The ratio  corresponds to the defect to defect tunneling frequency ; therefore, 

 can be thought of as the quantum energy uncertainty for a broken bond or  as the 

probability of tunneling through the barrier in Fig. 2.3. Solving Eq. 2.10 with  for the endurance 

time to breakdown under an applied field, we find 

 . 2.11 

Eq. 2.11 is the canonical mean field theory aging equation. Eq. 2.10 is a natural step in the derivation of 

2.11; although, it is not typically used in the literature. In Chapters 5 and 6, it will be shown that this form 

of the mean field theory can also be useful in estimating the likelihood of breakdown. 
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CHAPTER 3 

3. THEORETICAL DEVELOPMENT 

3.1. Dual-defect Model 

Although the Crine model can be a useful approximation and is a significant improvement over 

rudimentary empirical models of electrostatic breakdown such as the inverse power law and others (Chinh, 

et al., 1996), the Crine model often fails to adequately described observed aging phenomena (Andersen and 

Dennison, 2015a;  Andersen, et al., 2015;  Crine, 2016b). This will be discussed in detail in Chapters 6 and 

7.  

One of the primary theoretical developments of this work is to propose a simple extension to the 

Crine model by considering two representative defect types rather than one. Similar notions have been 

proposed by other authors (Cho, et al., 2000;  Kao, 2004). This is represented in Fig. 3.1. These defect 

species are: (i) high-energy ( ) chemical defects, such as dangling bonds and (ii) low-energy ( ) 

physical defects, such as a kink in a polymer chain (Andersen, et al., 2015). High-energy defects have a 

negligible repair rate, even at high temperatures. However, low-energy defects can have a significant repair 

rate that increases with increasing temperature. A more detailed discussion of these defects is given in 

section 3.1.1. 

The dual defect mechanism multiple-trapping model equates the total probability of failure from 

either type of defect to the sum of failures for both  and  type processes: 

   3.1 

This extension to Eq. 2.10 assumes the probabilities  and  are independent of the other defect type. 

Once again, to find , we set =1 in Eq. 3.1 and solve for . Thus, 

 .  3.2 

In both Eq. 3.1 and Eq. 3.2 it is apparent that the temperature will affect dielectric breakdown since  is 

found competing in the leading, exponential, and hyperbolic trigonometric terms for each defect 

contribution. The dominant term will depend on the both the specific intrinsic material properties and the 
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extrinsic conditions. So while it is easy to see that temperature should have an important effect on 

breakdown, what that effect is may vary from material to material and environment to environment. It is 

reasonable to assume that Eq. 3.1 and Eq. 3.2 are only valid for  (the well depth must be deep 

compared to the thermal energy; otherwise, we would have excitations into the conduction band with its 

much higher density of states rather than hopping between localized states). For now, we have also 

assumed that the field stress energy is less than the defect energy (i.e., ) lest the concept of 

FIG. 3.1. Band diagram representing the Crine model (top) and dual-defect model (bottom). Compare to 
Fig. 2.1. Note that higher energy defects correspond to lower electron energy states. 
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hopping between potential wells would fall apart (see Fig. 2.3). Neither of these assumptions are made 

explicit in the model. If care is not taken, one may inadvertently extrapolate into regimes where this model 

may no longer be a valid approximation. 

3.1.1. Defect Mechanisms 

We turn our attention now to specific processes involved in ESD to establish relevant values for 

 and . Consider two types of breakdown process types which we will refer to as  and . 

Type  processes are lower energy reversible process, which may have a significant rate of defect repair. 

Type  processes are higher energy largely irreversible processes, with a negligible defect repair rate at 

temperatures that would not otherwise alter the material. 

In type  viscous or inelastic deformation processes, breakdown of the material is due to direct 

stress on molecular segments causing irreparable damage with no bond repair possible (Crine, 2005b), 

where the ends of broken bonds with unpaired sites can act as electron traps (Crine, et al., 1989;  Griffiths, 

et al., 1998;  Kao, 2004). In these processes, there is little ionization or segmental motion. Such defects can 

be generated by the breaking of carbon-carbon bonds of the C2H4 monomer alkane single bonds along 

polymer chains with dissociation energy =3.65 eV per bond (Frederickson and Dennison, 2003). We 

can expect similar values of  for many polymers, due to the similarity in carbon-carbon bonds in their 

polymer chains. The energy distribution for the deep level defects should be fairly narrow since the bonds 

are relatively homogeneous.  will be largely independent of the environment surrounding the bond 

and should not depend on the orientation of the bond with respect to the field since it is an impact 

ionization process creating a point defect. The bond breaking process will not have a significant 

temperature dependence at accessible temperatures below the melting temperature  or decomposition 

temperature, because . 

The total density of such bonds can be estimated from the mass density of LDPE and the mass of 

the mer to be 4·1022 bonds/cm3 (assuming one bond per mer). The density of broken bonds  

due to a bond-breaking dose  at complete breakdown can be estimated from radiation damage studies as 

≈1.5·1018 broken bonds/cm3 with the following considerations.   
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(i) The dose (deposited energy—from the field or from incident electron radiation—per unit 

mass) at breakdown is ~2·105 Gy, since irrecoverable electron radiation damage (e.g., 

electron transport and emission properties) typically occurs for doses 105 Gy (Torrisi, et 

al., 2004;  Hoffman, et al., 2009) and mechanical failure occurs at 106 Gy (Shinyama 

and Fujita, 2006).  

(ii) Results from radiation damage experiments show the mean energy required to break such 

a bond is ≈130 eV (Zallen, 1983). 

(iii)  The efficiency of radiation to break bonds is ≈36 (Zallen, 1983). This independent 

estimate of broken bonds in the amorphous region ≈7.5·1018 

broken bonds/cm3 is consistent with the estimated density of chains, ~1.5·1018 broken 

bonds/cm3 (see 5.2), since there is one broken bond per chain. Note, both  and  

should be reduced by ~½, since ESD is limited to transport across amorphous regions and 

 is further reduced by a factor of ⅓ when a percolation threshold in the amorphous 

region which are typically 50% of the material is taken into account (Dennison and 

Brunson, 2008). The value obtained, ≈1.5·1018 cm-3, is consistent with a range of 

published values for LDPE near 1·1018-3·1018 cm-3 (Cho, et al., 2000;  Brunson, 2010).  

Taken together, these estimates, in conjunction with Eq. 2.9, lead to a critical field for broken 

bond defects of ~295 MV/m, with ≈1.5·1018 broken bonds/cm3 and =3.65 eV/bond. 

Type  processes are reversible; that is, they require a low enough activation energy that such 

defects can be spontaneously repaired due to thermal activation. These can include weak van der Waals 

bonds and main chain reconfiguration energies such as chain rotations and kinks. Creation of such defects 

in molecular or crystalline segments of the polymer chains result either from charge injection and impact 

ionization or from conformational defect (kink) generation (Kao, 2004). As the injected charge becomes 

trapped at these defect sites in the ionized molecular segments and on chain segments, a high-localized 

field develops leading to breakdown. 
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We will consider one potential type of reversible defects further, kink defects. Trans-gauche 

rotational barriers for typical isolated longer alkane chains are 0.36 eV/kink. In polymers, close proximity 

of other chains leads to chain-chain interactions and steric hindrance that limits kink formation. It is often 

found that formation of two kinks in close proximity (which minimize displacement of the overall chain) 

are energetically more favorable than formation of a single kink and the concomitant large displacement of 

the rest of the chain. This is referred to as formation of a Kuhn pair with a minimum kink separation (Kuhn 

length) of ~3.5 C-C bond lengths (~1.3 nm) for low-density polyethylene (LDPE) (Anderson, et al., 2004). 

A very crude estimate of the magnitude of this effect is based on the ~25% increase in maximum working 

temperatures of cross-linked polyethylene versus LDPE. We can therefore estimate the defect energy as 

approximately twice the kink formation energy plus ~25% additional energy to account for chain-chain 

interactions and steric hindrance; =(1.25·2·0.36 eV/kink)=0.90 eV. An upper bound on  can be 

estimated as ~14% of the mer density (sees sections 6.2.1 and 6.2.2), <3·1021 Kuhn pairs/cm3. This 

assumes a minimum separation of Kuhn pairs equal to the minimum kink separation of 3.5 mers and only 

~50% of the total chains can contribute, since only chains in the amorphous region are free to develop 

kinks unhindered. These same approximations for polyimide using a working temperature ~75% above 

LDPE (DuPont Document K-15345-1, 2011), minimal crystallinity, and a Kuhn length of ~8 nm (Chauvet 

and Laurent, 1993), predict =1.3 eV and <5·1020 Kuhn pairs/cm3. 

We can expect that  will be substantially different for different polymers due to strong 

variations in the chain structure, rigidity, and crosslinking. The energy distribution for these defects should 

be broader, since the local chain environments are not homogeneous.  should depend on the 

orientation of the bond with respect to the field, since this provides the torque to reorient the chains. The 

applied field has a well-defined direction; however, the field due to internal charge accumulation will be 

largely isotropic and will not provide net torque. There may even be a saturation effect, as more kinks 

develop to align the chain segments in the disordered regions with , or as bond breaking becomes 

prevalent, producing shorter chains which align more easily with the field. The kink formation process will 

also have a significant temperature dependence at accessible temperatures below the melting temperature or 
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decomposition temperature. Thermal annealing may reduce the equilibrium defect density for these lower 

energy defects. 

3.1.2. Voltage Ramp Rate Effects 

Having proposed a new theory of breakdown, we now begin to investigate what predictions it 

makes in practical conditions or laboratory experiments. The service lifetime of a dielectric material in 

application may range from years to decades. Nevertheless, design engineers must rely on accelerated 

measurements orders of magnitude shorter in time to estimate long-term behavior, highlighting the 

importance of estimating the effects of accelerating voltage ramp rates. Consider that a dielectric, whether 

in service or in a breakdown test, is not instantly brought to some potential , but rather undergoes a ramp 

up processes by either a continuous ramp or a voltage step up process to reach either the breakdown voltage 

or the waiting voltage for an endurance time scenario. This section briefly reviews other published work on 

ramp rate dependence then considers predictions of the dual-defect models outlined above.  

The simplest assumption is that a material’s breakdown electric field strength, , does not vary 

significantly with voltage ramp rate (Dissado and Fothergill, 1992). Indeed, this is the ideal case because, if 

valid, it follows that the results of reasonably accelerated tests will be appropriate for any application. 

Explicitly this is 

 , 3.3 

where  is a constant. Dissado and Fothergill discuss a model for the ramp rate dependence of breakdown 

derived from probabilistic rather than physical considerations (Dissado and Fothergill, 1992): 

  or       3.4 

They mention that in some cases  may be at least an order of magnitude larger than , which is often 

close to unity, essentially reducing Eq. 3.4 to Eq. 3.3. If the two empirical parameters  and  are 

constrained to be positive, this model predicts that slower ramp rates tend to have lower breakdown fields. 

The example they give shows a change of ~20% in breakdown voltage by increasing the ramp rate by about 

a factor of five. However, they note at very low ramp rates that Eq. 3.4 fails and there can be a significant 

shift to higher breakdown fields (Dissado and Fothergill, 1992). 
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Turning to physical theories, we start again with the mean field theory model from Eq. 2.10. A 

first order approximation for how the estimated breakdown field  depends on the uniform ramp rate 

 comes by assuming that the ratio of breakdown fields at two different ramp rates is the same as 

the ratio of the probability of breakdowns at those same ramp rates. This is done by setting the ratio of Eq. 

2.10, evaluated at  and , equal to the ratio of the mean experimental ramp rate  where 

. Recalling that  we can estimate that  

   3.5 

Where and r has units of Hz. This simplified physics model is convenient in 

that it only depends on the ramp rate and one material constant . Like the empirical model, this 

model predicts that at lower ramp rates the breakdown field decreases. For example, a ramp rate of  is 

greater than  by a factor of ~2.45. Also, at some slow ramp rate Eq. 3.5 must break down, as does 

Eq. 3.4, since it does not make sense for  as . 

We now develop a more complete correction for ramping time from probability considerations. 

The probability to break down a sample of thickness  when exposed to a field for a time  is given by 

Eq. 2.10 or Eq. 3.1; the probability of survival is . The probability to survive  

incremental voltage steps of volts, each for a time  up to a some voltage , is 

the product of the survival probabilities of each increment: 

   3.6 

The complementary probability of breakdown  is 

   3.7 

This assumes that breakdown during each voltage step in the ramp to breakdown is independent of 

the other steps. Unlike the models discussed above,  and  appear in Eq. 3.1 in such a form that 

one cannot isolate the breakdown voltage (or field) as a function of ramp rate. However, a simple numerical 

scheme could iteratively calculate either the  or  (holding the other constant) needed to achieve 

a specified probability of breakdown. This model predicts significantly lower breakdown fields for 
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FIG. 3.2. Cumulative probability of breakdown during the voltage step-up process as a function of ramp 
maximum electric field. Results shown are based on Eq. 3.7 using material properties from fits to LDPE 
breakdown data for four ramp rates up, including the typical experimental ramp rate of 20 V per 3.5 s and 
the ASTM upper bound of ramp rates, 500 V/s.  The vertical dashed line indicates the Weibull scale 
parameter corresponding to the 63.2% likelihood of breakdown from the 20 V per 3.5 s data—293 MV/m. 

materials with slower ramp rates (Andersen, et al., 2015), in agreement with the empirical model (assuming 

the two empirical parameters  and  are constrained to be positive) and the simplified physical model. For 

example, given material constants from LDPE, assuming a 50% likelihood of breakdown ( ), the 

characteristic breakdown voltage increases by a factor of ~1.75 when increasing the ramp rate from 1 V/s to 

100 V/s. 

Figure 3.2 shows  for step-up tests as a function of applied field up to 400 MV/m for four 

different ramp rates, including the 20 V steps at 3.5 sec intervals used most often in the tests reported here 

and for a maximum ramp rate of 500 V/s intervals as recommended in the ASTM standard (ASTM D 3755-

14, 2014). As expected, the probability of breakdown decreases for faster ramp rates. The analysis in Fig. 

3.2 uses Eq. 3.7 with = 0.95 eV and =2.8·1021 cm-3, and = 1.07 eV and =3.15·1019 

cm-3 (Andersen, et al., 2015). 
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A more complete description of the breakdown probability as a function of ramp rate than Eq. 3.5 

would require consideration of Eq. 3.7. Unfortunately, the breakdown voltage  as a function of  

is impossible to determine analytically. Given changes in either  or  only, it should be possible 

to fit data using numerical schemes. Similarly, an analytic solution for Eq. 3.7 may be possible in the 

product calculus limit of a continuous ramp rate . This could be a topic for future theoretical 

work. 

Finally, the probability of breakdown occurring in a SVET test over an elapsed time 

 due to either a breakdown during ramping or at  is the sum of Eqs. 3.1 and 3.7: 

 

   3.8 

In this case we identify  and solving for  we find 

  3.9 

This correction for the ramp rate will be shown to be small for the data in section 5.4.1.2. Section 5.4.1.1 

compares Eqs. 3.3 through 3.7 to breakdown data at several applied ramp rates in four example polymers. 

3.2. Effects of Considering Recoverable Defects 

Let us examine what happens if we allow the defect density  to change. Granted, in many 

cases  may be well approximated as a constant, but in cases of exposure to radiation, active chemistry, 



26 

or thermal annealing of defects  might change considerably. For now, to simplify the math, we will 

only consider one defect species since adding another is straightforward. These would be unoccupied or 

low-occupancy defects and the interactions between any charges in the material are negligible compared to 

the effect of the applied field. In the limit of very low defect densities, we would expect the probability of 

breakdown to decrease since transport is less likely between more distant trap states. Conversely, at very 

high densities, the energy gained by a hop in the direction of an applied field would not be very different 

from that of a hop against the field, decreasing the net probability for hopping with defect spacings from 

some maximum value at a finite field and temperature. 

However, we see that in Eq. 2.10 , meaning that although 

 as  as expected,  can only increase with decreasing . Perhaps 

even more troubling is the endurance time Eq. 2.11, , which goes to zero at 

zero defects and infinity at large defect densities. This behavior is exactly opposite of what we expect. 

While the energy gained by charges hopping over longer distances does increase, the likelihood of such 

long hops must decrease at large distances. We see that there is nothing built into the theory to account for 

tunneling probability dying off with decreasing . 

The natural place to expect to find the anticipated but missing limiting behavior is in the tunneling 

frequency factor  since this ought to decrease with decreasing . In the literature regarding MAH, the 

Crine Model, or other related models,  is invoked with a rough order of magnitude estimate of the related 

frequency (Wintle, 1983) or said to be proportional or about equal to  where  is Planck’s constant 

(Crine, et al., 1989;  Lewis, et al., 1996;  Parpal, et al., 1997;  Andersen, et al., 2015). If any physical 

argument is stated, it is said to be related to the phonon frequency. Considering the expected limiting 

behavior with defect density , it becomes a glaring omission to exclude it from  if  is not 

effectively constant. 

For MAH, which had a similar problem in its earliest formulations, it is sufficient to consider a 

frequency  that takes into account the tunneling probability as a function of distance. Considering that the 
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frequency factor should fall off like the transmission probability of tunneling through a square barrier of 

length  then 

   3.10 

Now, so long as  , one observes the desired limiting behavior for MAH. 

Also, if  , the thermal energy term in Eq. 3.10 may be neglected. In simplified notation by 

combining constants  and ,  shrinks faster than 

 grows so long as . We would expect  to be the largest close to breakdown, and even 

with fairly extreme values of  = 300 MV/m, assuming 3.65 eV C-C bonds for , and room 

temperature, we get  indicating that the correction results in the desired behavior given any 

reasonable conditions.  

While this correction to  does not build in requirements of  and , 

it represents a significant conceptual improvement to MAH. Unfortunately, this correction is insufficient to 

correct the Crine model in three dimensions; however, the same correction would work on the earliest 

versions of the Crine model that consider only the defect spacing  (Crine, et al., 1989). The problem 

arises when we consider the 1-D Maxwell stress tensor rather than the energy gained in a hop from one 

defect to the next. The argument of the  function is  rather than . Recalling 

, the same correction . In short, the 

exponential as written cannot dominate the hyperbolic sine and we still have  as  

which does not make sense. 

Examining hops in three dimensions, even those not necessarily to the nearest neighboring defect, 

in other words VRH, does not give the desired limiting behavior either. The failure with VRH comes from 

distances cubed and densities (rather than cubed roots of densities) in the energy factor  for 

 (Mott, 1969;  Zallen, 1983;  Boer, et al., 2002). This results is an exponent of the 
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form  which does not improve the limiting behavior. This also ignores the part of  that 

depends on the defect density of states , the defect energy density within a few  of the Fermi 

level. For our purposes this is essentially . In any case, regarding the average hopping distance, 

one gets  which is the standard hopping frequency factor for VRH yet again (Boer, et al., 

2002). Unfortunately, this solution does not result in the limiting behavior we expect. 

The simplest form to get the behavior we expect—though otherwise physically unjustified apart 

from similarities to the MAH fix—would be 

   3.11 

where  is the undisturbed intrinsic defect density (field, dose, and temperature are zero). In this way, 

unless the applied field is too strong, we will expect the probability of breakdown to decrease with 

decreasing density. In addition, when the density of defects is not changed significantly, our original theory 

is only altered by a small constant factor. If we require our formula to reduce to the previous form of the 

Crine model when the defect density does not change, we could say 

 .  3.12 

The adjustments of Eq. 3.11 or Eq. 3.12 give endurance times going to infinity at very low and very high 

defect densities with a minimum at some finite density. In any case, we see that the Crine model and dual-

defect model of breakdown fail to describe the expected limiting case for the low defect density limit 

without such a correction. It is straightforward to see that so long as the fraction of total bonds in a defect 

mode is small, this correction (either Eq. 3.11 or Eq. 3.12 ) will be small as well. 

The use of the 1-D Maxwell stress has long been debated and continues to be a disputed topic in 

the literature (Lewis, et al., 1996;  Crine, 1999;  Palit, 2014;  Crine, 2016b). It is interesting to note that 

Crine’s most recent published work rejects the 1-D Maxwell stress as the physical mechanism for bond 

stressing in favor of electrostriction—a mechanical deformation of dielectrics related to the square of the 

polarization and often assumed to be a small enough effect to safely ignore (Crine, 2013;  2016b). The 1-D 

Maxwell stress is the very assumption that caused the theoretical difficulties outlined above. In these recent 
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works, he attempts to reconcile discrepancies between his model and some experimental data by 

considering electrostriction despite continuing to refer to that model and this field of study in general as 

poorly understood and confusing (Crine, 2016b). Some of the deviations he shows from the dependence 

of the Maxwell stress could be bimodal in agreement with the dual-defect model, but the data are too sparse 

for meaningful fits with the dual-defect model. Given the disputations regarding this point of the theory, 

adding the somewhat ad hoc correction Eq. 3.12 to get the expected physical limiting behavior is perhaps 

justifiable. 

An important consequence of the probability of breakdown vanishing in the limit of either few or 

many defects is that there must be a peak in breakdown probability at some critical defect density. This 

peak marks a resonance in the hopping or tunneling probability of charges propagating through defect 

states. Fig. 3.3 plots this relationship. In region A, as the defect density decreases, trap isolation can 

dominate and the likelihood of breakdown vanishes despite the large energy gained when hops occur. In 

region B, as the defect density increases, breakdown likelihood again decreases both increasing the time 

charges spend in trap states and decreasing the energy gained by hops. This model predicts that for 

dielectrics subject to trap-creating radiation the risk of ESD can decrease with increasing dose after the 

peak defect density has been reached. Such behavior is analogous to Paschen’s law for dielectric 

breakdown in gas. In gas at very low pressure, there are not enough molecules to cause avalanche 

ionization. Conversely, at high pressure charge moving between gas molecules, on average, does not gain 

much energy before impact. This results in a product of pressure and electrode distance with a minimum 

breakdown potential where avalanche ionization is most probable. Indeed, comparisons between Paschen 

breakdown and breakdown in solids are nothing new (Ridley, 1975). 

3.2.1. Dynamic Breakdown Models 

Having examined what happens if the defect density changes significantly, let us examine how the 

defect density  is effected by temperature and electric field. The rate of change of the defect density 

must be related to the rate of defect creation minus the rate of annihilation (Lewis, et al., 1996). So let us 
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FIG. 3.3. Plot of the probability of breakdown  versus defect density  holding all other parameters 
constant. The dashed vertical line marks the peak of the distribution and the resonance for breakdown to 
occur. Region A left of the peak is where defect isolation dominates. Region B to the right of the peak is 
the trap-dominated region.   

consider a rate of creation operator  acting on available bonds and an annihilation-rate operator  

acting on the existing defects 

.   3.13 

For now, let us not worry about the form of . Equation 3.13 can have solutions of the form 

 .  3.14 

The steady-state solution for this as  is simply 

 . 3.15 
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At this point we need to discuss the form of . To get this far we have assumed that 

does not depend on time or defect density. If applied field or temperature changes in time then 

this is clearly not the case but if we assume that they change very slowly, it may not be a bad 

approximation. Considering that defects are thermally switched on and off and depending on defect energy 

and applied field, our operator becomes (Lewis, et al., 1996;  Crine, 1999;  Andersen, et al., 2015) 

 .  3.16 

It is clear, assuming  (as stated before), that Eq. 3.15 has not been solved for 

, and we have violated basic rules of solving differential equations by ignoring the time dependence 

of the creation and annihilation operators. While the time dependence of slowly varying temperature or 

electric field might be ignored,  contains , the very term we are solving for. 

Unfortunately, this complicates Eq. 3.13 to the point of where it is unsolvable analytically. Numerical 

methods would only be useful for very specific cases where the material properties and extrinsic conditions 

are known. Crine has published other expressions for , but these also depend on , which he 

agrees in later work is, or at least may be, the inverse defect density, resulting in circular reasoning (Crine, 

2002a;  2005a;  2007). 

Alternatively, let us consider the steady-state behavior of  from the beginning rather 

than starting with the differential equation. Let us suppose that 

   3.17 

where any change in defect density due to external dose is contained in the initial defect density . 

For , let us consider how many phonons we expect to have in the equilibrium state at the defect 

energy. The average occupancy of phonons of energy is simply the Planck distribution (Kittel, 1966). 

Considering the number of phonons at the defect energy  we find 

 .  3.18 
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Equation 3.18 is plotted in Fig. 3.4. Since we assume , the occupancy must be less than one. 

We see that this phonon mode is unlikely over the range of realistic temperatures; however, there are many 

bonds in a material. Consider that the defect density could be approximated as product of the available 

bond density  and the equilibrium number of phonons that can create defects . 

For , we get realistic -type defect densities using Eq. 3.19 (see 3.1.1, 6.2, and 7.2.2) 

(Andersen, et al., 2015).  

Adding the field dependence is tricky since the obvious place to add it is not in a separate term as 

in Eq. 3.17. Given that  we have the same issue as above with circular math. A possible 

solution (considering only the smaller numerator term since it will dominate) is to use the approximation 

 resulting in  

 .  3.20 

For either Eq. 3.19 or Eq. 3.20,  can only increase with increasing temperature. This still 

does not seem to capture the original conceptual model we have of defect annealing dominating at high 

temperatures and stopping breakdown. On the other hand, increased defect density means more trapping 

and less energy gained by hops between traps (region B in Fig. 3.3). This effect also decreases breakdown 

probability holding other factors constant. 

By examining the creation and annihilation operators (Eq. 3.16), we can see if the limiting 

behavior described above makes sense. Note that 

 ,  3.21 

so we see that in all cases . Approaching zero electric field or high thermal energy, we see that 

   3.22 
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FIG. 3.4. The phonon occupancy, or alternatively the fraction of available bonds in the defect state as a 
function of thermal energy (corresponding with temperatures up to ~470 K). This assumes that the defect 
energy on the order of 0.1 eV. 

and there is an equilibrium between creation and annihilation. At zero applied field, this is true regardless 

of finite temperature. From Eq. 3.13 we see that defect creation will tend to dominate unless there are more 

defects than available bonds, which seems unlikely. This agrees with the steady state behavior predicted in 

Eqs. 3.19 or 3.20. 

For  we assume  and  so  and we see that 

we can indeed safely ignore defect creation and recovery rates for the high-energy defects. 

Let us revisit Eq. 3.13 for  considering . 

 .  3.23 
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The solution to this equation is —which we know cannot be right—but because in this 

approximation defect annihilation is ignored, this result makes sense because only defect creation was 

allowed so eventually all available bonds will be in the defect mode. 

Although we have not solved the differential equation Eq. 3.13 for how the defect density changes 

over time, by examining the creation and annihilation operators and by considering steady-state behavior it 

can be shown that in general, defect creation tends to dominate over defect recovery, but that defect 

recovery should not be ignored as in Eq. 3.23. The difficulty in obtaining exact solutions lies in the fact that 

the rate of defect creation and recovery depends on the defect density itself. 

3.2.2. DC Partial Discharge 

In addition to describing a physical model of dielectric breakdown, the dual-defect model can be 

applied to the problem of DCPD as well. The field of DCPD theory and application is woefully behind that 

of ac partial discharge (ACPD) (Crine, 2005b;  Vu, et al., 2013;  Czaszejko, 2014;  Trnka, et al., 2014;  Corr, et 

al., 2016). Fig. 3.3 shows that as the defect density changes away from the resonance, the likelihood of 

breakdown tends to move toward zero. One effect of this could be that, as a discharge begins to propagate 

through a material, local heating thermally creates many  type defect sites and, with the sudden increase 

in  and subsequent trapping, the discharge can no longer propagate. On the other hand, if defect 

annihilation dominates to where  moves below the resonance, defect isolation could also stop the 

motion of charge. Either charge trapping or trap isolation due to variations in  could result in a partial 

discharge rather than a complete destructive breakdown. We have shown that in general that defect creation 

tends to dominate. Later, Chapter 4 will discuss observations that seem to match this description. 

Alternately, one might think of a lattice of defect sites with the density of high-energy defects 

near, but below, the percolation threshold. While high-energy defects are largely independent of 

temperature, their density could be increased through radiation damage or through prolonged exposure to  

field stress (the latter is the essence of endurance time tests). Additional low energy defects could act in 

concert with the high-energy defects to complete a percolation path. However, these low energy defects 

would have small average lifetime and be much more dependent on . The generation of such defects 
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would follow an Arrhenius behavior, much like the generation of phonons in a periodic crystalline lattice 

(Kittel, 1966) or the temperature dependence of photon emission in cathodoluminescence (Jensen and 

Dennison, 2015). Thus, completion of the percolation path would be expected to increase with increasing  

due to defect recovery, but would be transient. 

More sophisticated models would have to consider both spatial and energetic distributions of these 

defects, even distributions that change with temperature, dose, and stress imposed on the materials while 

under field F, or the time t a material is exposed to such stress. 

3.3. Summary of Theoretical Work 

In this chapter, the dual-defect model of electrical aging in HDIM has been outlined. This model is 

a simple extension of mean-field theory outlined in the previous chapter. Rather than considering only the 

average of the entire defect DOS, the dual-defect model considers the average contribution of two classes 

of defects, namely high energy chemical defects and low energy physical defects. The dual defect model 

may be used to describe the probability of breakdown due to intrinsic material properties and extrinsic 

conditions (Eq. 3.1). It can also be used to estimate the time to breakdown, (Eq. 3.2), and the likelihood of 

breakdown due to a voltage ramp-up, (Eq. 3.7). We have discussed other ramp rate effects in 3.1.2. Finally, 

to the extent possible, we have examined the effects of considering defect creation and recovery for the 

low-energy defects and how the variable nature of these defects with  and  leads to a candidate physical 

explication of DCPD.   
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CHAPTER 4 

4. EXPERIMENTAL METHODS 

Having proposed a new theory of dielectric breakdown—the dual defect model—we turn our 

attention to how this model, and indeed any model of breakdown, should be tested in the laboratory. This 

chapter describes both general considerations for performing breakdown tests, and the specific 

experimental details of the MPG experiments used to generate the data discussed in this dissertation. 

Chapter 4 begins with a general discussion of ESD test configurations and how they relate to the models 

outlined in Chapters 2 and 3, then transitions into a technical description of the MPG ESD test setup and 

how it is used. 

The tests described here are for the parallel-plate geometry test method, as shown in Fig. 4.1. The 

dielectric to be measured is sandwiched between two metal plates and a voltage is applied until breakdown 

occurs. Many dielectric breakdown test systems rely primarily on such leakage current measurements to 

identify breakdown, particularly those following the ASTM D3755-14 Standard Test Method for Dielectric 

Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials Under Direct-Voltage 

Stress (ASTM D 3755-14, 2014). Such measurements are critical for applications including high voltage 

direct current (HVDC) power, high voltage switching and control, microelectronics, spacecraft charging 

induced ESD mitigation, and advancing the understanding of breakdown physics in disordered dielectrics 

(Andersen, et al., 2015;  Andersen, et al., 2017). NASA handbooks recommend using the ASTM D3755 

test method for dielectric breakdown testing of spacecraft dielectrics (NASA HDBK-4002, 1999;  NASA 

HDBK-4002A, 2011;  Garrett and Whittlesey, 2012). 

Other ESD test methods used in spacecraft applications include the electron beam exposure 

method and the human body model (ECSS-E-ST-20-08C, 2012;  Garrett and Whittlesey, 2012;  Wilson, et 

al., 2013b;  Green and Dawson, 2015). While the electron beam method is a better approximation of the 

space environment, it introduces enough experimental difficulty to make fitting data to the models 

presented here unrealistic (e.g., one cannot measure surface potential without blocking the electron beam). 

The human body model is an impulse method more suited for components level testing, and in any case, 

does not model prolonged exposure of the lifetime to breakdown problem. It is also interesting to note that 
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FIG. 4.1. Block diagram of ESD test apparatus. Shown are a simple parallel-plate capacitor sample 
geometry with high voltage power supply, a cryogenic reservoir in thermal contact with sample plate, plus 
computer-automated voltage, current and temperature sensors.   

the electron beam method produces discharges without easily visible breakdown damage on test samples 

(Jensen, et al., 2013). In the context of spacecraft charging then, ESD includes both dielectric breakdown 

and partial discharge (PD). 

4.1. Definition of Breakdown 

Prior to outlining the experimentation, it is important to define what is being measured. 

Unfortunately, the imprecise definition of breakdown in the ASTM D3755-14 standard can cause 

misidentification of breakdown. This standard recommends identifying breakdown with a breaker or fuse 

that is tripped by a sudden rise in leakage current at breakdown, i.e., an arbitrary leakage current threshold. 

If the recommended test circuit current sensing element threshold is set too high, breakdown may occur 

undetected. Conversely, false positives may result from designating a low current threshold.  
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An operational definition of breakdown that is much less sensitive to these pitfalls is outlined 

herein. I propose an improved definition of breakdown based on the average rate of change of the leakage 

current with increasing voltage, rather than a simple current threshold, avoiding ambiguous association 

with anomalies in current traces. For tests that continuously monitor leakage current, breakdown can be 

detected by a transition from negligible current to an ohmic slope defined by the circuit’s current-limiting 

resistors. In practice, a fixed current threshold may be inadequate to define dielectric breakdown. Field-

enhanced conductivity, partial discharge, surface flashovers, incomplete breakdowns, and other phenomena 

may further obscure the characteristic dielectric breakdown signature. In Section 4.6.4, the MPG 

breakdown criterion is discussed in detail. Different types of pre-breakdown anomalies in current traces can 

now be clearly identified and studied, in addition to the breakdown itself. Alternatively, by Ohm’s law, one 

could consider the voltage drop across the test sample as a function of time as an indicator of breakdown, 

i.e., at breakdown the voltage drop on the sample drops dramatically without recovery. 

4.2. Voltage Step-up to Breakdown Tests 

Here we begin to discuss methods used to test breakdown theories, especially those in Chapters 2 

and 3. One standard breakdown test method is the voltage step-up test (ASTM D 3755-14, 2014). In these 

tests, the sample is subjected to voltage that increases incrementally until breakdown occurs. Unless 

otherwise stated, the applied voltage refers to the voltage applied to the entire test circuit. This is the test 

type shown in Fig. 4.2 as well a Fig. 4.7 through Fig. 4.10. 

Eq. 3.7 can be re-written as 

   4.1 

and can be used to fit an ensemble of such measurements. This explicitly predicts the probability of 

breakdown as a function of applied field , voltage ramp rate , 

and temperature . The other material properties such as defect densities and energies are contained in 

. Chapter 5 will compare the Crine model to the dual defect model for voltage step ups by comparing 

fits to data using  (Eq. 3.1) for the dual defect model and  (Eq. 2.10) from the Crine model. 

These fits will also be compared to empirical Weibull fits for this same test type. 
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FIG. 4.2. Voltage step-up test method. (A) The applied voltage increases over time until the test is ended. 
The MPG standard ramp rate is stepwise 20V/ 4s using a 30kV dc power supply. Tests of the voltage ramp 
rate dependence of breakdown are simply voltage step-up tests with either faster or slower ramp rates. (B) 
Current is measured as the applied voltage increases. Before breakdown, little or no current is measured. 
After breakdown current increases linearly according to Ohm’s law.   

(A)  

(B)   

This approach requires assuming that the empirical cumulative distribution (ECD) of the tests is a 

reasonably good approximation for the true underlying cumulative probability distribution (see Section 

5.2). This assumption improves with increasing test number, roughly as the square root of the test number. 
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4.3. Voltage Ramp-rate Dependence of Breakdown Tests 

Voltage step-up to breakdown tests can be done at different ramp rates to examine the ramp rate 

dependence discussed in 3.1.2 and shown in Fig. 4.2, Fig. 4.8, and Fig. 4.9. Due to the stochastic nature of 

ESD, several tests should be done at each ramp rate of interest to get decent statistics. Eq. 3.3 through Eq. 

3.5 predict how the nominal breakdown field (the mean or Weibull scale parameter field) changes with 

ramp rate . Equation 4.1 can be used in a numerical scheme to fit data so long as either the voltage step 

 or time step  are the same for each ramp rate studied (unless one has enough data to do 

meaningful fits in three-dimensional space). A numerical scheme is necessary to extract how  at 

breakdown changes with ramp rate. If comparisons are to be made to empirical models using this numerical 

method,  must be chosen to match the statistics used in those models. For example, when comparing 

average breakdown fields at different ramp rates, , or if Weibull statistics are to be used, 

. A study of this type is presented in 6.2.3. The numerical scheme for using Eq. 4.1 is found 

in Appendix C. 

4.4. Static Voltage Endurance Time Tests 

Static voltage endurance time (SVET) are conducted by incrementing the applied voltage to a 

plateau voltage , and then maintaining this static electric field across the sample until complete 

electrostatic breakdown occurred as shown in Fig. 4.3. Typical static voltages for the endurance time 

experiments described here were in the range of 4 kV to 9 kV. These values yielded endurance times from 

a few minutes to a few days. The appropriate value of the endurance time, as determined from the elapsed 

time as logged by the data acquisition program measured from when the initial voltage was applied, is 

discussed in 5.4.1.2 and 6.2.2. SVET measurements directly measure the endurance time,  to 

electrostatic breakdown at some subcritical field. SVET test the predictions made by 

  ,           2.11 

for a single defect model 
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FIG. 4.3. Static Voltage Endurance Time (SVET) test method. (A) The applied voltage increases over time 
until the waiting voltage is achieved. The static waiting voltage is maintained for the duration of the test. 
(B) Current is measured throughout the test. Breakdown is marked by a transition to a large, constant, 
current set by the residual resistance of the test circuit.   

(B)   

(A)  
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 ,  3.2 

or for the dual-defect model with 

   4.2 

for considering the voltage ramp to the static waiting voltage. 

Equations. 2.11, 3.2, and 4.2 (a simplified version of Eq. 3.9) are the predictions of the Crine 

model, dual-defect model, and the ramp-up to static voltage models respectively. The ramp-up correction 

could be applied to  from either Eq. 2.11 or Eq. 3.2.  

4.5. Temperature Dependence of Breakdown 

Section 2.1.3 outlines how charge transport mechanisms can change significantly with 

temperature. In 2.2, it was shown how both the Crine and dual-defect models are based on Boltzmann 

factors for the likelihood of hopping between localized defects and the temperature-dependent phonon 

spectrum. In a general sense, the temperature dependence predicted by these models is not straightforward, 

although once specific material properties and extrinsic conditions are identified, the models do make 

specific predictions for the likelihood of breakdown at any given temperature where the assumptions of the 

models are not violated (e.g., ). 

Voltage step-up tests, or even SVET tests, may be performed at desired temperatures to test the 

temperature dependence of breakdown. In practice, this requires the use of cryogenic fluid such as liquid 

nitrogen for cooling and vacuum baking for heating. Preliminary results from such tests are discussed in 

6.2.4. 

4.6. Experimental Procedures 

This section will review the hardware and methods used by the MPG to perform each of the tests 

described above. Detailed operating procedures for operating this equipment and the corresponding 

software can be found in Appendix A and Appendix C respectively.  
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4.6.1. Sample Preparation 

Good sample preparation and characterization prior to testing is key to good measurements. It has 

been shown that even batch-to-batch differences in the same material from the same manufacturer may 

significantly change charge transport properties presumably due to differences in initial defect densities due 

to sample manufacture and preparation (see 6.2.1) (Saiki, et al., 2015). The effects of unintended electrical 

aging, contamination, or other damage can drastically effect a material’s defect population and therefore, its 

charge transport properties (Dennison, 2015).  

Especially for space missions, it is important to bake test samples in vacuo to drive off water and 

other volatile compounds, which can significantly affect conductivity, work function, and electron emission 

(Garrett and Whittlesey, 2012;  Dekany, et al., 2013;  Dennison, et al., 2016a). Only by eliminating 

extrinsic factors that can effect conductivity and breakdown can one begin to test the intrinsic properties of 

a material. Details of the MPG sample preparation procedures are given in Appendix A. 

4.6.2. Electrostatic Discharge Chamber 

This section details the MPG ESD chamber setup. ESD tests were conducted using a modified 

ASTM method (ASTM D 149-97a, 2004;  ASTM D 3755-14, 2014) in a custom, high vacuum chamber 

(<10-3 Pa base pressure using a Pfieffer TSH 071E turbomolecular pump station backed with an oil-free 

diaphragm pump) (Brunson, 2010). See vacuum diagram in Fig. 4.4 (a). Pressure was monitored near the 

pumps with a Pfeiffer PKR 251 cold cathode and Pirani full range gauge. Electric fields were applied to the 

material using a variable high voltage power supply (CPS Precision, Model 130N/1314; 0-30 kV at 500 μA 

and ripple < 200 mV at full load) in a simple parallel plate capacitor geometry (Fig. 4.1 and Fig. 4.4 (b)). 

Voltage ( ) and current ( ) were monitored for the duration of the experiments using two interfaced 

multimeters (Amprobe®, Model 38XR-A; 100 μV and 100 nA resolution at 2 Hz acquisition rate) under 

LabVIEW control (details in Appendix C). Voltage is measured using a 1000/1 voltage divider.  
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FIG. 4.4. USU ESD system hardware. (a) Vacuum diagram. (b) Exploded view of ESD test assembly 
showing: (A) Adjustable pressure springs, (B) Polycarbonate insulating layer in cryogenic configuration—
located between D and E during room temperature tests, (C) Cryogen reservoir, (D) Thermally conductive, 
electrically isolating layer, (E) Sample and mounting plate, (F) Sample, (G) HV Cu electrode, (H) Cu 
thermocouple electrode, (I) Polycarbonate base.   

(a) 

(b) 
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FIG. 4.5. Pressure applied to samples with increasing spring compression. The grey region indicates the 
recommended range of pressures to ensure good sample contact with electrodes. 

Samples (F, in Fig. 4.4 (b)) were clamped between a metal sample mounting plate (E) and six 

highly polished (<200 nm rms surface roughness) 1.98±0.08 cm2 active area beveled Cu high voltage 

electrodes (G). This allowed testing of six samples during a single vacuum cycle. A spring clamping 

mechanism (A) was employed to apply uniform sample contact pressure of a few hundred kPa, in 

compliance with standard methods (ASTM D 257-99, 1999). This pressure has been measured with 

FlexiForce sensors at each electrode as a function of the number of turns applied by a hex key is shown in 

Fig. 4.5. Test voltages were typically reached by incrementing the applied voltage at ≈20 V at 

≈4 s time intervals up to 15 kV or until breakdown occurred and the test was ended (see Fig. 4.10 (a) 

with additional details in Appendix C). Current increased significantly at breakdown (typically up to on the 

order of 10 μA) with leakage current limited by the sum of any residual sample resistance and two in-series 

current limiting resistors ( =100 MΩ each in Fig. 4.1). Given extreme values of the materials tested, the 

RC time constant  of the system is 50 ms, much less than  or the 0.4 s maximum time constant 

prescribed by the ASTM standard (ASTM D 3755-14, 2014). The active area of the device under test leads 

to sample capacitance on the order of 250 pF depending on the individual sample thickness and sample 

permittivity. 
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Test were typically conducted at room temperature (25±1 °C) (Dekany, et al., 2013), but could be 

set to range from ~150 K to 360 K. Measurements were made by cooling samples in thermal contact with a 

liquid nitrogen filled aluminum cryogen reservoir (C) or baking the entire chamber for high temperatures. 

Temperature was monitored with Type K thermocouples attached to two Cu temperature sensors (H) in 

good thermal contact with the sample, but electrically isolated (I). Temperatures typically increased less 

than 0.6 K/min or 15 K during a single cryogenic step-up testing cycle. A CHO-THERM layer (D) 

provides good thermal conductivity between the cryogen reservoir and the sample plates while maintaining 

electrical isolation.  

Fig. 4.6 uses a generalized circuit diagram to compare the USU MPG test circuit to other test 

circuits described with at least some detail (Rowland, et al., 1986;  Ho and Jow, 2013;  Kerwien, et al., 

2016;  Ritamäki, et al., 2017b). The addition of a capacitor parallel to the device under test can assist with 

breakdown, particularly when the power supply cuts out at breakdown. The large-area breakdown method 

effectively has many parallel test capacitors (Ritamäki, et al., 2017b). The MPG design has received some 

criticism for having large current limiting resistors. However, we show that the associated concerns are 

typically negligible in 4.6.5. The ammeter is unique to the MPG setup, and is either replaced by some other 

triggering mechanism as in (Ho and Jow, 2013;  ASTM D 3755-14, 2014) or is omitted altogether with 

voltage drops serving as detection of breakdown as in (Kerwien, et al., 2016;  Ritamäki, et al., 2017b). 

4.6.3. Data Processing Software 

Details of data processing and storage are detailed in Appendix C but are reviewed briefly here. 

Voltage, current, and time data generated by the LabVIEW control program are output in a text file. A 

custom Igor PRO macro uses these files to plot the data (see Fig. 4.7). The user can then identify 

breakdown (see Section 4.6.4) and other interesting test features, such as voltage ramp rate or pre-

breakdown current traces. Data and experiment parameters from each test are entered into a sortable Excel 

matrix that includes many built-in calculations and error analysis (e.g., breakdown electric field was 

calculated using the sample thickness and breakdown voltage). 

Once series of tests of interest are completed with data entered into the results matrix, macro data 

analyses could be performed (e.g., dual-defect model fits to a series of tests on a given material). These 
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FIG. 4.6. Generalized breakdown circuit with corresponding available component values from several 
published test setups (Rowland, et al., 1986;  Ho and Jow, 2013;  Kerwien, et al., 2016;  Ritamäki, et al., 
2017b).    

analyses are described in detail in Chapter 5 but include statistical Weibull analyses, fitting to theoretical 

models, and analyses of DCPD. 

4.6.4. Breakdown Criteria 

This section discusses challenges associated with accurately identifying breakdown using this 

measurement technique and practical considerations for improving the interpretation of observed 

phenomena. I propose enhanced breakdown criteria that mitigates the difficulties that have been 

experienced with identifying breakdown and other features in difficult cases (Andersen and Dennison, 

2017). Breakdown can be identified based on the average time rate of change of leakage current as opposed 

to simply a current threshold. Here dc breakdown tests are emphasized; however, the results may be easily 

adapted to ac breakdown testing. 
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FIG. 4.7. Current traces from a prototypical voltage step-up test in baked polyimide (PI) under vacuum 
conditions tested at a ~5V/s ramp rate. At low voltages up to ~3 kV, no leakage current is observed. As 
voltage increases, pre-breakdown current traces are observed. In this test, a clear discontinuity in the 
observed current occurs at breakdown. Supposing a sensing threshold A (40 μA), the true breakdown 
voltage would have been missed. At B (30 μA), the true breakdown voltage would be observed for this test. 
At C and D (20 and 10 μA respectively), partial discharges would erroneously indicate a breakdown 
voltages below the true value.   

To understand the currently accepted breakdown criteria and their limitations let us review a few 

selected statements from ASTM D3755-14 section 8 Criteria of Breakdown which is the de facto standard 

for dc breakdown tests recommended by NASA space environment effects mitigation guidelines (NASA 

HDBK-4002A, 2011;  Garrett and Whittlesey, 2012;  ASTM D 3755-14, 2014). The typographical error in 

8.2 is from the original text and therefore has not been corrected.  

“8.1 Dielectric breakdown is generally accompanied by an increase in current in the test circuit 

that will activate a sensing element such as a circuit breaker, a fuse, or current-sensing circuit. If 

sensitivity of the element is well coordinated with the characteristics of the test equipment and the 

material under test, its operation will be a positive indication of breakdown. 

8.2 Failure of a circuit breaker to operate is not be a positive criterion of the absence of 

breakdown. A breaker can fail to trip because it is set for too great a current or because of 
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malfunction. On the other hand, if the tripping circuit is set for too low a current, currents due to 

leakage or partial discharge (corona) will cause it to trip before breakdown voltage is reached. 

8.3 Observe the specimen during the test to ascertain that tripping of the breaker or current-sensing 

circuit is not caused by flashover… 

8.4 Observation of actual rupture or decomposition is positive evidence of specimen breakdown. 

In test position, however, these physical evidences of breakdown are not always apparent. If 

breakdown is in question, it is common practice to repeat the test on the same specimen. 

Breakdown is confirmed when reapplication of test voltage results in a substantially lower 

breakdown voltage.” 

This breakdown criterion defines breakdown as a sudden increase in observed current above some 

threshold value implemented in analog hardware. The European standard for such tests has essentially the 

same requirements for identifying breakdown (IEC 60243-1, 2013; IEC 60243-2, 2013). As the true 

breakdown threshold is not easy to predict a priori, the ASTM standard cautions that a threshold set too 

low may be sensitive to sub-breakdown current such as PD. On the other hand, if the threshold is set too 

high, breakdown may occur without reaching the arbitrary current threshold. While post-breakdown 

observation of visual damage or repetition of the test on a particular sample can sometimes clarify a 

questionable or missed breakdown event, critical information about the breakdown voltage or time is often 

lost. Because voltage stress history can affect the breakdown potential (see 3.1.2), previous stress applied to 

an unbroken sample in an initial test attempt may invalidate subsequent test attempts (Andersen, et al., 

2015). 

The MPG ESD system continuously monitors the leakage current during HVDC breakdown tests. 

Even following breakdown, observed currents in this system are generally well below 50 μA, precluding 

the use of even the smallest commonly available fuses rated down to ~2 mA (Brunson, 2010). The 

equivalent of a fuse in MPG experiments would be some threshold current value that, if reached, defines 

breakdown. This criterion alone is insufficient since, as shown in Fig. 4.7, observed pre-breakdown current 

can—at least temporarily—be a large fraction of the nominal breakdown current set by the current limiting 

resistors ( ) in the circuit, shown by a black dashed line. Observed pre-breakdown current traces include 
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PD and field-enhanced conductivity. Blue dashed lines in Fig. 4.7 show arbitrary current thresholds that 

would miss the breakdown voltage (A), a threshold that would correctly identify the breakdown voltage 

(B), and two thresholds (C and D) where PD would have tripped the current sensing element early. 

Due to the continuous monitoring of leakage current, in most cases including Fig. 4.7, breakdown 

is easily visible as a transition from very low current or intermittent PD, to a large current set by the 

current-limiting resistors . This is especially true at slow voltage ramp rates. We typically recorded the 

breakdown voltage as the average of the two voltages on either side of this transition. This method of 

identifying breakdown was severely challenged in less common cases without a clear transition to a smooth 

ohmic slope, such as those shown in Fig. 4.8. 

Figure 4.8 (a) shows two cases that lack a clear transition to breakdown. In both cases, a region of 

erratic current transients increase well below the expected breakdown. Although one trace has a transition 

to a smooth breakdown slope, both tests showed visible breakdown damage, confirming breakdown as per 

ASTM D3755-14 8.4. It is evident that in some cases the breakdown rupture leaves some residual 

resistance in the circuit with resistance on the same order as the current limiting resistors. Figure 4.8 (b) 

shows plots for faster ramp rate tests at 125 V/s, 300 V/s, and 500 V/s. At accelerated rates, it can be 

especially difficult to identify a transition to an ohmic slope, if the expected ohmic slope is even completely 

achieved. Faster ramp rates also suffer from a decrease in the accuracy of measured breakdown voltage and 

loss of information about pre-breakdown phenomena (Moser, et al., 2017). 

It is apparent that a single threshold current value—independent of applied voltage and other test 

conditions—is an insufficient breakdown criterion. Furthermore, it is clear that measurements of time- and 

voltage-dependent current are useful in establishing a more universal and accurate breakdown criterion. A 

useful criterion for dielectric breakdown must be distinguished from other behaviors, such as: 

� PD (transient current spikes through the sample) 

� Surface flashover (transient current trace like PD in the leakage current, but where the 

voltage drops such that the point lies on the  ohmic curve indicating current flowing 

around the sample) 
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FIG. 4.8. Current traces from example voltage step-up tests in biaxially-oriented polypropylene (BOPP). 
Dashed lines correspond to Ohms law for the circuit’s current limiting resistors. (a) Plot of two step-up 
tests with ~5 V/s ramp rate. In the test with the open markers, an area of erratic traces proceeds the smooth 
ohmic slope. The test with solid markers does not transition to a smooth slope. (b) Plot of three step up tests 
at ramp rates of 125 V/s, 300 V/s, and 500 V/s. In these cases, there is not a clear discontinuity from 
negligible current to current measurements increasing ohmically with applied voltage.   

� Arcing on the external components of the chamber (marked by sudden drops in sustained 

breakdown currents) 
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� Field-enhanced conductivity (FEC) (smooth monotonically increasing measureable 

currents above the noise at higher fields, but not ohmic) 

� Current of voltage meter errors that occasionally happen 

These pre-breakdown phenomena are discussed in detail in the Section 4.6.5. A definition of 

breakdown based on rate of change of leakage current, rather than a simple threshold, automatically filters 

out transient non-breakdown phenomena. In practice, this requires continuous monitoring of leakage 

current rather than simply a breaker or fuse. For typical high-resistance dielectric thin film samples, 

minimum current sensitivity needed to observe all the above phenomena depends on electrode geometry 

and ammeter duty cycle. For the MPG-like setup, less than 100 nA sensitivity is required. 

Breakdown is defined by the voltage (or field) at which an insulator no longer blocks significant 

current flow; therefore, even ohmic-like traces below the expected smooth  ohmic behavior must be 

considered breakdowns. NASA spacecraft charging mitigation guidelines state that insulators are 

considered at low risk of charging anomalies if bulk resistivity is on the order of 1012 Ω∙cm or less (NASA 

HDBK-4002A, 2011). Such materials should have enough conductivity to bleed away charge fast enough 

to make breakdown very unlikely. Given typical relative permittivity of order 3, our electrode area of 1.98 

cm2 and a typical sample thickness of about 25 μm, this threshold resistivity is equivalent to a sample 

resistance of ~109 Ω compared to the MPG system’s  ~2∙106 Ω (Andersen, et al., 2015). Thus, such 

nominally safe materials would have slopes on the order of ~10% of the  ohmic breakdown curve. This 

is effectively a voltage-dependent current threshold, where transient currents exceeding this threshold are 

not considered breakdown. 

Based on the considerations outline above, I propose the following improved operational 

definition of the electrostatic breakdown voltage for step-up tests:  

Breakdown voltage can be defined as the average voltage between the last applied voltage 

with current below 10% of the  expected ohmic breakdown curve and the first voltage with 

current increasing (though not necessarily smoothly) between 10% and 110% of the  ohmic 

breakdown curve. 
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In some test configurations, such as static voltage endurance time (SVET) tests, current versus 

time (rather than voltage) or some other variable may be of interest. For SVET tests, current transitions 

from a baseline to a constant value at breakdown. Any intermediate behavior is likely to happen over such 

small time increments compared to the SVET wait time that they may be absorbed into the uncertainty 

without much consequence. There is the possibility of one or more points dropping back below the 10% 

curve due to external arcing after an apparent breakdown. This happens infrequent and is generally an 

obvious deviation from a breakdown slope. 

Since PD and flashover generally return to the baseline current, they will not qualify as breakdown 

using this definition. Increases in current significantly steeper than the  ohmic curve do not make sense 

in terms of Ohm’s law for our circuit . These increases are likely due to the ammeter response to 

increasingly rapid DCPD—so rapid that return to baseline current may not be observed (see Fig. 4.9 (a)). 

Most FEC—which is relatively infrequent in MPG tests—will be well below the 10% curve; further, FEC 

by definition increases supra-linearly with voltage and can therefore be distinguished from breakdown.  

Figure 4.9 revisits the same example tests from Fig. 4.8. Regions of current increasing linearly 

with voltage above the minimum breakdown current (red dashed line) are identified with orange lines. In 

Fig. 4.9 (a) a grey line indicates a slope corresponding to a resistance much less than . Purple dashed 

lines connect the last sub-breakdown point to the first point of a breakdown region. The average voltage of 

these two points—the last measurement of a sample not yet broken down and the first measurement 

corresponding to a broken down sample—is identified as the breakdown voltage. The voltage difference 

between these two points contributes to the measurement uncertainty but is often small; especially for slow 

voltage ramp rates (see Appendix B). Secondary or even tertiary breakdowns can be observed after 

incomplete breakdowns; however, the initial breakdown is the primary failure. Using this criterion for data 

with an obvious transition to breakdown, as in Fig. 4.7, does not change the value of the breakdown 

voltage. 

We propose that dielectric breakdown voltage be defined more precisely as the average voltage 

between the last voltage with current below 10% of the  expected ohmic breakdown curve and the first 

voltage with current increasing between 10% and 110% of the  ohmic breakdown curve. This definition 
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FIG. 4.9. Data from the same tests in Fig. 4.8 with breakdowns identified using proposed criteria. Orange 
lines are linear fits to breakdown current regions. Purple dotted lines connect the last baseline current 
datum with the first point corresponding to a measurement of breakdown. The breakdown voltage is the 
average of these two points with its uncertainty dominated by the spread of these two points. In (a) the grey 
line has slope corresponding to a resistance much less than the current limiting resistors and therefore 
cannot be identified as breakdown. Secondary breakdowns to the  slope are shown in two cases; 
however, they are not reported as the primary breakdown.   

requires continuous, or at least intermittent, monitoring of low-level leakage currents; it is, however, far 

less sensitive to false negatives or false positives that may arise from using a breakdown current threshold 



55 

criterion as outlined in ASTM Standard D3755. The identification of breakdown in fast voltage ramp-rate 

tests is also improved. 

4.6.5. Observable Phenomena 

Having established what constitutes breakdown the various features seen in ESD experiments can 

more easily be identified. In the previous section, many of these features were anomalies that obscured the 

identification of breakdown. In this section, they are identified as interesting experimental results thereby 

undergoing an “anomalous  obvious” transition (Zallen, 1983). Figure 4.10 indicates features observed in 

typical step-up test I-V curves (labeled A through E) including those seen frequently only in test systems 

that measure lower currents and use slower voltage ramp rates. These additional features are often 

accentuated in log current versus applied voltage curves, such as Fig. 4.10 (b). 

As described above, complete dielectric breakdown in the MPG ESD system is indicated by a 

transition from negligible currents to: 

A. Post-breakdown ohmic current with slope determined by the current limiting resistors 

 in the test circuit. See Fig. 4.10 (a) and (b). 

Typical step-up tests in the USU system for insulating materials with >1016 Ω-cm are expected to 

have steady leakage currents of <10-8 A as applied voltages are increased until breakdown, with linearly 

increasing ohmic currents of >10-5 A determined by two 100 MΩ current limiting resistors in series 

with the sample. For ~90% of highly insulating materials tested, the leakage current below breakdown is 

below the sensitivity of the ammeter, as seen in Fig. 4.11 (a). Such leakage currents are routinely observed 

for these materials in high sensitivity constant voltage conductivity test systems (Brunson, 2010;  Dekany, 

et al., 2013;  Kiethley Instruments, 2016). 

Two related features, which exhibit monotonically increasing current with increasing voltage, well 

above current sensitivity, are observed in some materials. 

B. Dielectric breakdown with significant residual resistance. This current steadily increases 

in an ohmic fashion, but with more resistance than the ESD circuit with no sample 

present. See Fig. 4.10 (b); also see (Dennison, et al., 2016b). This is interpreted as a 

partial breakdown of the material, perhaps through only a fraction of the sample  



56 

FIG. 4.10. Observed Phenomena. Examples of current traces from three voltage step-up tests on PEEK 
films together with the expected breakdown current (dashed lines) and 10% of the breakdown current (dot-
dashed lines) are shown or reference. (a) Linear I-V plot. (b) Semi-logarithmic IV plot. Plot features are 
indicated as: (A) Dielectric breakdown marked by transition to a linear ohmic slope corresponding to the 
circuit’s current limiting resistors; (B) Dielectric breakdown with some residual resistance; (C) Field-
enhanced conductivity; (D) Surface flashover; and (E) DCPD. (c) Images of post-test breakdown damage 
sites: the thermoset polymer Kapton E (left) usually breaks down with circular holes, while the thermal 
plastic LDPE (center) is more irregular.  Expanded PTFE (right) can breakdown rather spectacularly due to 
large amounts of charge stored in the high density of mechanical voids in the material.  Note the much 
larger length scale for the expanded PTFE damage site.   
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FIG. 4.11. Comparisons of total applied voltage, sample voltage, and leakage current. The device under test 
(DUT) voltage was calculated using Eq. 4.3. Transient current spikes and voltage drops correspond to PD. 
(a) Test on Kapton HN with no measureable field-enhanced conductivity. Most tests in materials tested do 
not exhibit field-enhanced conductivity that we can measure. (b) Kapton HN test with measurable field-
enhanced conductivity (FEC) corresponding to only a 2% correction in DUT voltage at . Most 
observations of FEC in our setup have similarly negligible effects on the applied voltage. (c) An extreme 
example of field-enhanced conductivity in a Kapton E test. This material had a greater tendency to exhibit 
measurable field-enhanced conductivity than other tested materials. While the correct breakdown voltage is 
still clearly identifiable via Eq. 4.3 (in this case the correction would be ~20%), this would not be 
considered a successful test.   
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thickness. Even in cases when there is no transition to Post-breakdown ohmic current, 

after the test there is visible evidence of breakdown on the sample surface, 

indistinguishable from the damage observed for full breakdowns. Examples of 

breakdown damage are in Fig. 4.10 (c).  

Note that the voltage drop across the sample decreases significantly when this happens. 

Device under test (DUT) voltage can be obtained using Ohm’s law for a series circuit 

   4.3 

This correction for post-breakdown currents clearly has no effect on the breakdown 

voltage. 

C. Field-enhanced conductivity (FEC). Consecutive current measurements increase super-

linearly with voltage, at higher voltages near breakdown. See Fig. 4.10 (b). This is 

attributed to field-enhanced dark current conductivity. Such currents seldom exceed a few 

percent of the expected breakdown (in ~15% of tests) current and only very rarely exceed 

10% of that current (almost exclusively in more conductive materials such as Kapton E) 

(Wintle, 1983). While FEC is not the target measurement of this system, measurements 

of currents up to a few μA are consistent with current densities of 10-4 to 10-2 A/m2 

attributed to FEC (~0.02-2 μA for our electrode area) as reported in the literature (Li, et 

al., 2015). Equation 4.3 is needed to calculate the voltage drop across the test sample 

when this occurs. Fortunately, this correction is usually not needed, or is only on the 

order of only a few percent (Fig. 4.11 (a) and (b), respectively). On the rare occurrence of 

FEC causing a significant voltage drop across the sample, the test may be invalidated 

since voltage ramp-up has been arrested (Fig. 4.11 (c)). The voltage drop on the DUT 

could be mitigated with the use of smaller current limiting resistors, which will be 

implemented in a planned upgrade to the MPG test system. Experiments with current 

limiting resistors ranging an order of magnitude smaller to an order of magnitude larger 

did not show any effect in breakdown voltage or DCPD behavior with the exception that 

the apparent  
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DCPD magnitude transitioned from being dominated by the ammeter duty cycle to the 

being dominated by the limited current. 

On rare occasions, breakdowns and transitions to ohmic behavior are observed at very low 

voltages for a specific sample of a material. See Fig. 5.2 (b) in the Chapter 5. These features are attributed 

to sample imperfections or damage to the sample surface. Often there is clear evidence in images of the 

specific sample either before or after the breakdown test showing these sample defects. 

Further, most low-ramp-rate step-up tests performed with the MPG system exhibit additional 

transient current features in breakdown I-V curves, most often with only a single sequential current 

measurement above the leakage current or current sensitivity level. One such feature is: 

D. Surface Flashover. Occasionally, a sudden (often-large) voltage drop is measured 

together with current corresponding to the ohmic current at this reduced voltage. Such 

surface discharge traces are found to be very infrequent at low pressures <10-3 Pa where 

MPG measurements are typically made, and to increase in frequency more than an order 

of magnitude as pressure is increased to ~100 Pa where Paschen discharge is more likely 

to occur. See Fig. 4.10 (b) and Fig. 4.12 (a). This is interpreted as a brief surface 

flashover, where current temporarily bypasses the shorted test sample in the circuit.  

On several occasions at which surface flashover features were observed in the I-V curves, 

there were features observed on the surface indicating arcing at the edges of the samples. 

Tests at elevated pressure—well beyond typical MPG operating conditions—reveal 

increased instances of surface flashover in addition to traces that seem to indicate 

discharges to areas of the chamber not possible in normal pressure ranges. At pressures of 

only a few torr, breakdown is not observed at all due to Frank-Hertz effect as shown in 

Fig. 4.12 (b) (Franck and Hertz, 1914). Fig. 4.12 (c) is an example of unusually severe 

visible damage associated with surface flashover.  
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FIG. 4.12. Evidence of surface flashover. (a) Current traces from a test of BOPP with standard test 
parameters excepting elevated chamber pressure. Typical tests are in the the 10-5 torr range. This test at 
~10-2 torr shows a much more frequent surface flashover than typical tests, but no atypical DCPD behavior.
(b) Test on BOPP with pressure in 100 torr range. Not typical behavior observed but the oscillating negative 
current is consistent with the Frank-Hertz effect. (c) Damage done by unusually severe surface flashover on 
LDPE. Notice the outline of the electrode area is clearly visible as is charring extending radially away from 
the electrode area toward the exposed areas of the aluminum sample mounting.  

(a)  

(b)  (c)  
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On very infrequent occasions, very large transient currents are observed, well above the ohmic 

breakdown curve (see for example, Fig. 4 in (Moser, et al., 2017)). These are attributed to instrumentation 

malfunctions, such as erroneous readings by the current or voltmeters or the data acquisition card. 

By far the most frequent transient current features are those we classify as dc partial discharge 

(DCPD), labeled E in Fig. 4.10 (b). We have previously referred to these DCPD traces as pre-breakdown 

arcing (Andersen and Dennison, 2014;  Andersen and Dennison, 2015b). HVAC partial discharge testing is 

not performed in the MPG laboratory, which is not yet equipped with an off-the-shelf standard PD monitor 

typically used for most HVAC and HVDC partial discharge tests performed in other labs (Morshuis and 

Smit, 2005). Nevertheless, we can clearly distinguish DCPD from other transient features discussed above. 

No visible damage to the sample has been observed in tests with DCPD terminated prior to breakdown. On 

average, more than 10 DCPD traces of varying amplitude are observed in a single step-up run. Although 

these DCPD features can be observed in successive current measurements (particularly at voltage 

approaching the breakdown voltage), they generally are distinct, single measurements of current that return 

to the background or field-enhanced conductivity levels for subsequent current measurements. The onset 

and frequency of these DCPD vary significantly from material to material of the same sample geometry 

indicating that they most likely depend on the sample material rather than being an artifact of the test 

apparatus. The easy identification of surface discharges (see D above) adds credence to the notion that 

DCPD traces must be a bulk phenomenon.  

DCPD measured with slow ammeters are more frequent and of higher current amplitude at higher 

applied fields. Observed DCPD transient current features ranged over two orders of magnitude in current 

below the breakdown current. This is discussed further in 574.7. 

Note that there is a significant the body of published work on DCPD has been done in the context 

of DCPD in gaseous voids in polymers or at polymer-polymer or polymer-conductor interfaces. In many 

cases, the test sample thicknesses are on the order of ~10-3 m with voids ranging from ~10-3 m to ~10-4 m 

(Kazuo, 1978;  1980;  Fromm, 1995;  Corr, et al., 2016;  Imburgia, et al., 2016). Such void dimensions are 

greater than our sample thickness (~25 μm). The DCPD reported in this dissertation in bulk dielectric thin 

films are significantly different from such studies on gaseous voids. Studies with gas-filed voids are 
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conducted near atmospheric pressure. This leads to gas discharge across the voids. Our samples have no 

such large voids. There may be surface irregularities in the sample and clamped electrodes trapping gas or 

internal voids in the polymers with dimensions as large as ~10-7 m to ~10-6 m although we have no direct 

evidence of their existence or nature. There are also undoubtedly small voids within the bulk polymers, 

such as gaps between disordered polymer chains on the order of ~10-8 m to ~10-9 m. Further, our 

experiments are conducted in ≤ 10-3 Pa vacuum so gas filled voids are unlikely. The difference mean that 

mechanisms for gas discharge across large voids is not necessarily an expected mechanism this study. 

4.6.6.  Post-Breakdown Cataloging 

After samples have been tested, the sample thickness is measured using a computer-interfaced 

digital micrometer (Mitutoyo IP65 ±1 μm) and optical microscope images are taken of the breakdown sites 

(see Table A.1). The used samples are then labeled with relevant test and materials parameters and stored in 

plastic containers in case they are needed again for further analysis. This has been especially useful if any 

details of an experiment have been called into question. For more details on post-breakdown 

characterization and storage, see Appendix A and (Hansen, 2014). 

4.7. High Temporal Resolution Measurements of Pre-Breakdown Events 

As described above, many PD are observed prior to complete dielectric breakdown. To investigate 

these DCPD with greater time resolution, two additional methods have been employed. First, the test setup 

was modified to include a 100 MHz oscilloscope (Tektronix TBS 2000 Series) measuring voltage across a 

10 kΩ shunt resistor in series with the ESD circuit placed between the ~200 MΩ current limiting resistors 

and ammeter. Current was monitored as usual at ~2 Hz with the Amprobe® ammeter and at ~10 kHz with 

the oscilloscope, and the data from both instruments were correlated in time. An example of these 

measurements is shown in Fig. 4.13 (a). These measurements were not affected by removing the ammeter 

from the circuit. The decay time for each DCPD is limited by the RC time constant of the measurement 

circuit (approximately 40 ms). The maximum current is limited by the current limiting resistors and 

therefore the DCPD amplitude grows with increasing voltage; however, this change is small compared to 

the differences in DCPD amplitude observed by the ammeter. One of the difficulties of this technique was 
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FIG. 4.13. Supplementary measurements of DCPD in voltage step-up tests. (a) DCPD events from a step-
up to breakdown test in PI. In-line shunt resistor oscilloscope traces of DCPD were correlated to DCPD as 
seen by the standard ammeter; five of these are shown here. Large amplitude ammeter events correspond to 
many DCPD of similar amplitude as seen by the oscilloscope. (b) DCPD measured during a voltage step-up 
test on BOPP by a 2.4 GHz WiFi antenna connected to a 50 Ω load oscilloscope shunt, together with the 
standard ammeter curve. The inset shows two examples of individual trigger events. As in (a), larger 
amplitude ammeter traces correspond to multiple DCPD as seen by the antenna. 

the correlation of events seen in the oscilloscope on the order of tens of ms with those seen by the 

LabVIEW control program which takes one datum every 4s. The duty cycle of the ammeter also meant that 

sometimes, fast PD would not be recorded by the ammeter. To further exacerbate the problem, the 

LabVIEW program only recorded time from the beginning of the experiment rather than local time like the 
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oscilloscope. Cell phone video of both screens running simultaneously allowed for correlation of events 

seen in both instruments to be made. The setup could surly be improved; however, only a few step-up tests 

were needed to observe many PD. 

The second DCPD supplementary detection technique used was the common RF antenna PD 

detection method, shown in Fig. 4.13 (b) (Tang, et al., 2006;  El-Hag, et al., 2013;  Liu, et al., 2015). The 

short time scales of individual DCPD result in a broad frequency-space signal, and detection antennas cited 

in the literature observe frequencies from 1 MHz to 5 GHz (Tang, et al., 2006;  El-Hag, et al., 2013;  Liu, et 

al., 2015). HVAC partial discharge testing is not performed in our laboratory, which is not yet equipped 

with an off-the-shelf PD monitor typically used for most HVAC and HVDC partial discharge tests 

performed in other labs (Morshuis and Smit, 2005). However, ubiquitous 2.4 GHz WiFi antennas fall 

within the range of typically used DCPD detection antennas. A 2.4 GHz WiFi antenna, placed adjacent to a 

vacuum chamber glass window, was connected to a 50 Ω load and monitored using an oscilloscope 

(Tektronix TDS 2014) and custom LabVIEW data acquisition software. While this adaptation of standard 

PD detection method serves as an independent detection of DCPD in the MPG ESD system and shows that 

they are much faster than the ESD circuit RC time constant, spectral information and improved timing 

would require a broad-band antenna and efforts to reduce ringing in the circuit (Chen, et al., 2017).  

These experiments confirm our detection of DCPD and show that high-amplitude DCPD, as seen 

by the ammeter, can represent the current integrated over many DCPD of roughly the same magnitude. 

This assumption is critical for the analysis discussed in 5.5 and 6.2.5. 
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CHAPTER 5 

5. ANALYSIS OF ESD AND PD TESTS 

“There is terror in numbers” (Huff, 2010). Relating breakdown data to theoretical or even 

empirical models can be a nontrivial task. Evaluating mathematical theory using experimental data 

inevitably requires the use of statistical methods. Perhaps the principal numerical terror for the author is 

unintentionally falling into the following trap—that “if you can’t prove what you want to prove, 

demonstrate something else and pretend that they are the same things. In the daze that follows the collision 

of statistics with the human mind, hardly anybody will notice the difference” (Huff, 2010). To mitigate 

such statistical peril, a good scientific theory must make falsifiable predictions (Popper, 1963). The analysis 

methods presented in this chapter demonstrate how the theoretical models from Chapters 2 and 3 as well as 

commonly used empirical models of breakdown can be evaluated using data from experiments outlined in 

Chapter 4. While Chapter 4 explained important details of how individual tests were performed, this 

chapter discusses the methods used for analyzing and making sense of data from ensembles of tests. The 

following sections in this chapter describe tools capable of gauging how well theoretical predictions of 

dielectric breakdown match observations or if they are any good at all. Test data shown in this chapter is 

primarily for explaining the analysis methods used. For Sections 5.2 through 5.4 the data are from 60 step-

up to breakdown tests at room temperature performed on samples of biaxially-oriented polypropylene 

(BOPP). Results and conclusions of these analyses for four prototypical polymers are presented in Chapter 

6 and Chapter 7 respectively. 

5.1. Sortable Data Matrix 

The most important tool in analyzing ESD data is the ESD Quality Summary Table Excel matrix. 

This Excel database is the foundation of all MPG ESD analyses. It is the repository of all MPG ESD data 

and corresponding sample information. Each test results is an entry containing sample information, test 

parameters, test results, and built in calculations of derived quantities. Adapted from a MPG Excel 

worksheet for electron-beam measurement data, the ESD Quality Summary Table sorting capabilities 

allows for the comparison of any test parameters or results of interest. For example, the breakdown fields 
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for room temperature tests in ascending order from a certain period of time in a given material is easily 

available for exporting into other programs such as Igor Pro. Any tests with questionable results, perhaps 

due to operator error, have been highlighted so that they can easily be filtered out. While some entries are 

specific to individual test types, the following are a few of the primary categories: sample material, sample 

thickness, test temperature, ramp rate, sample location, bakeout date, test date, chamber pressure, test type, 

breakdown voltage, breakdown electric field, time to breakdown, etc. Some of these, such as breakdown 

voltage are calculated quantities. For example, the breakdown voltage is the average of the last voltage 

before breakdown and the first voltage where breakdown has occurred. Likewise, the breakdown electric 

field is the quotient of the breakdown voltage and sample thickness. 

Derived quantities and their uncertainties are calculated and tabulated automatically. The 

uncertainty analysis is outlined in Appendix B. Further details on the data and calculations in the ESD 

Quality Summary Table are provided in Appendix C. At the time of writing, this matrix contains 

information from nearly 1000 tests performed by various MPG students over the last ten years. Sadly, 

much of the earliest MPG data has been lost due to poor data management. Although I created this matrix 

and performed many of the tests therein, it contains results from the efforts of many of my predecessors and 

is now maintained by students that I have helped train. Whenever major changes or additions are made, 

new versions are created and old ones are saved as backups lest some mistake corrupt the data or 

calculations. The analysis in the following sections of this chapter begin with selecting relevant quantities 

from the ESD Quality Summary Table. 

5.2. The Empirical Cumulative Distribution of Events 

The results of repeated observations of some event can be represented explicitly by the empirical 

cumulative distribution (ECD). The ECD estimates the probability of occurrence  of an event as a 

function of a variable (for now let us assume the electric field  but the same principle applies to many 

other quantities, e.g., time) based on data points  as (Van der Vaart, 1998) 

   where  . 5.1 
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FIG. 5.1. Empirical Cumulative Distribution (ECD) of 60 breakdowns in BOPP. Dashed lines are the same 
ECD shifted left and right by the average of the uncertainties in the measurements.    

Figure 5.1 is an example of an ECD plot It is apparent that Eq. 5.1 is only a valid approximation of the true 

underlying cumulative probability distribution for large . Thus, we can empirically estimate the probability 

of breakdown (or PD) directly from the data given enough tests. The ECD can then be compared to 

empirical or physical models of the cumulative distribution functions (CDF) of breakdowns. In statistics, 

often the probability density function (PDF) is used to represent the distribution of an observable. The PDF 

is simply the derivative of the CDF. For example, the normal distribution is the PDF derivative of the error 

function—a CDF. For the analysis in this dissertation, it is more convenient to use the CDF. A useful 

feature of CDFs is that they always range in value from zero to unity as a function of some variable of 

interest. In other words  is probability distribution such that . 

Plots of the ECD preclude the use of standard error bars (see further details in Appendix B). 

Equation 5.1 relies on counting how many events happened below some value of the variable in question. 

Uncertainties, especially overlapping uncertainties, frustrate any attempts at standard error propagation. 

However, we estimate the uncertainty in the ECD as the average of the standard deviations of the data. This 
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is clearly an overestimation of the uncertainty; however, it demonstrates that the ECD is well defined. Fig. 

5.1 is an example of an ECD from 60 breakdown tests in BOPP with dashed lines representing our estimate 

of uncertainty in the ECD. 

5.3. Empirical Models of Breakdown 

This section reviews the canonical empirical models that are typically used to characterize 

measurements of dielectric breakdown. These models are various Weibull functions (Dissado and 

Fothergill, 1992). In many cases of random uncertainties it is assumed that measurements should be 

normally distributed (Taylor, 1997). At first pass, the uninitiated might suggest reporting the average and 

standard deviation of breakdown voltages. However; Gaussian statistics are not applicable to failure 

statistics that need to account for the removal for samples from the test population once they have broken 

down (Dissado and Fothergill, 1992). The breakdown strength of a dielectric material is often listed in 

tables as a constant value, occasionally with a note that the value listed corresponds to a certain temperature 

or thickness (Andersen, et al., 2017). This convenient representation can belie the stochastic nature of 

breakdown and that, even under ideal conditions, repeated tests result in a distribution of breakdowns with 

applied electric field.  

While fits with empirical models generally lack much, if any, physical insights into a material, 

they are useful in that they are mathematically simple compared to physics-based models. This facilitates 

the comparison of different materials, but extrapolation can be risky since it is unclear what physical 

mechanisms may need to be assumed for the observed behavior to continue into unmeasured territory. 

Weibull functions are frequently used to describe the probability of dielectric failure due to increasing 

stress factors. In this study, it models the increasing probability of failure due to ESD with increasing 

applied field. As with other probability distributions, such as Gaussians, Weibull distributions are 

characterized by a centroid and a width parameter. 

In this section we discuss how the empirical ECD of breakdown data is fit to two-, three-, and 

five-parameter Weibull functions, using methods similar to prior studies (Dissado and Fothergill, 1992;  

Chauvet and Laurent, 1993;  Rytöluoto, et al., 2015). Further step-by-step details of fitting Weibull 

functions to data can be found Appendix D. Most Weibull analysis in the literature is done using black box 
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software packages, such as Weibull++ (Rytöluoto, et al., 2014;  Boggs, 2017a). Discussions with several 

presenters at the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) where Weibull 

plots of breakdown tests are a common sight revealed that many researchers rely on software packages 

without a detailed understanding of how they work. The analysis below was developed independently 

based on available published literature. A free trial version of Weibull++ was obtained and the resulting 

calculations agreed with the tools I have developed (more details can be found in Appendix B). Weibull 

confidence intervals can be made using various methods that are also discussed in Appendix B. Such 

confidence intervals are purely statistical constructs that do not directly reflect the measured 

instrumentation uncertainty as much as quantify the stochastic distribution of the measurements. For this 

reason, we have elected not to use them in this study; opting instead for reporting the uncertainty in the 

fitting parameters together with the mean measurement uncertainty in each case. 

5.3.1. Two-Parameter Weibull Model 

The simplest Weibull function of field  has only two parameters  the field corresponding to a 

63.2% probability of breakdown, and a width parameter : 

 .  5.2 

The width parameter  is at some level related the width of the spatial end energetic distributions of the 

trap states. In the Crine and dual-defect models, which assume delta function distributions in energy,  

must be driven by the width of the spatial distribution of defects, that is the width of the distribution of 

. It is straightforward to linearize this function with the transformation (Chauvet and Laurent, 1993) 

   and  .  5.3 

One then transforms the ECD of a data set in the same way, and, by fitting it to a line, the Weibull 

parameters can be extracted. Upon linearization, it often appears that the first few low-probability events at 

low fields do not follow the same trend as the rest of the data. This could be the result of extrinsic 

imperfections in some samples or tests (e.g., sample damage or impurities or contamination) resulting in a 

breakdown at an unusually low field not representative of the material itself. Linear fits in the transformed 

coordinates (at least in Igor Pro) are sensitive to the inclusion of these outliers. Fitting with Eq. 5.2 to the 
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untransformed data is less sensitive to the inclusion of these points (Fig. 5.2). For the data shown, the linear 

fit excluding outliers to the transformed data and the Weibull fit to the untransformed data are the same 

within the uncertainty of the resulting fitting parameters as in Fig. 5.3. In previous generations, 

linearization greatly facilitated fitting; however, modern computer fitting packages eliminate the advantage 

of fitting with linearized data. Plotting in the transformed coordinates is still convenient in that salient 

features can be more easily identified; however, numerical fitting is better using the untransformed data. 

Indeed, for more complicated equations in subsequent sections, fitting untransformed data becomes the 

only practical option. Therefore, future fits will be done to data (excluding obvious outliers) in the 

untransformed coordinates then the fits will be transformed via Eq. 5.3 for plots. This also simplifies the 

representation of uncertainty of fitting parameters. In the transformed space the Weibull fit , 

 however, .  

5.3.2.  Three-Parameter Weibull Model 

 Equation 5.2 assumes that the probability of breakdown reaches zero as the field goes to zero. 

There are indications that there can be a non-zero threshold field for breakdowns (Chauvet and Laurent, 

1993;  Laurent, et al., 1994;  Andersen and Dennison, 2014;  2015b;  Andersen, et al., 2015). Incorporating 

a threshold field into a Weibull distribution Eq. 5.2 requires a third parameter  and yields (Dissado and 

Fothergill, 1992;  Chauvet and Laurent, 1993)  

 .  5.4 

One can construct a transformation of Eq. 5.4 into a linear form similar to Eq. 5.3, namely (Chauvet and 

Laurent, 1993) 

   and  .  5.5 

However, Eq. 5.5 is not a unique transformation due to the reduction from three parameters to two 

in a linear transformation. One can iteratively optimize such a fit or instead, as done in this analysis, fit the 

untransformed data with Eq. 5.4 prior to transforming it via Eq. 5.3. When  Eq. 5.4 reduces to Eq. 5.2. 
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FIG. 5.2. 2-Parameter Weibull Fits. (a) Data shown in untransformed coordinates. Fitting with (e2) gives 
the same result whether or not the first three points are included hence they are indistinguishable. (b) Data 
transformed via Eq. 5.3 with linear fits. The transformation shows that the lowest three data do not follow 
the prevailing trend.    

(a) 

(b) 

The fitting parameters, due to their clear physical interpretations, are all constrained to be positive 

( ). Furthermore we require the threshold field to be less than the critical field, i.e., 

. 
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FIG. 5.3. Two- and three-parameter Weibull fits to BOPP breakdown data. Outliers excluded. The best 3-
parameter fit deviates significantly from the data at lower fields in this case.    

5.3.3. Mixed Weibull Model 

Another common fitting method is to mix two or more Weibull distributions as a way to model 

multiple breakdown modes (Dissado and Fothergill, 1992;  Rytöluoto, et al., 2015). Though this will lead 

to better fits, it is at the expense of an expanded parameter set. As an example, a recent study of a bimodal 

breakdown distribution in a LDPE nanodielectric composite material was fit to a two-parameter Weibull 

distribution (Wang, et al., 2014b). 

In general, any number  of probability distributions can be mixed using normalization factors  

and  where the total probability function is 

   5.6 

where normalization as probability distribution requires 

   5.7 

For the case of , Eq. 5.7 simplifies to 

 ,  5.8 

where  satisfies Eq. 5.7. As an example, the mixture of two 2-parameter Weibull functions is 
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 .  5.9 

Here, p represents the fractional weight of the first two-parameter Weibull distribution, and  are their 

distribution centroids, and  and  are the corresponding width parameters. 

There is no clear way to linearize Eq. 5.9, which is to be expected. If this is a better fit to the data, 

we would expect to see a mixture of two lines in the coordinate system used in Fig. 5.2 (b). Again, the most 

straightforward method is to fit the data to the function in question, then transform it via Eq. 5.3 in order to 

compare it to the other fitting equations. In other words, no data are being fit to linear functions for any of 

the Weibull distributions; however, data and Weibull fits are plotted in a coordinate system where a 2-

parameter Weibull function is linear in order to facilitate visual comparisons. Fig. 5.4 is an example of a 

mixed Weibull fit to breakdown data in BOPP. One should beware that adding additional fitting parameters 

may automatically improve fits to data as additional parameters add additional degrees of freedom without 

necessarily adding any physical insight. This is discussed further in the Chapter 6. 

5.4. Fitting with Physical Models 

Having outlined how breakdown data can be analyzed with empirical Weibull models, we return 

to a discussion of comparing theoretical physics-based models to breakdown data. These models are much 

more complicated than the simple Weibull equations, but our fundamental assumption is that models based 

on materials physics will be more useful than empirical models for three reasons. First, physical models are 

more conceptually satisfying than empirical models. Second, explicitly stating physical quantities can guide 

extrapolation. If an extrapolation extends into a regime where one of the underlying physical assumptions 

of the model is violated (e.g., the thermal energy is greater than the defect energy), the user can know to 

mistrust such calculations. Such red flags are not built into empirical models. Third, physics-based models 

can use results from independent measurements of material properties to make predictions, even before 

tests are performed. 

This section outlines analysis methods using physics-based models. Some of this analysis will 

utilize Weibull statistics outlined in the previous section.  
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FIG. 5.4. Comparison of a 5-parameter mixed two-Weibull fit to a standard 2-parameter Weibull fit in 
BOPP. The mixed Weibull clearly follows the data more closely than the 2-parameter fit.    

5.4.1. Comparing Crine and Dual-defect Models 

The preeminent materials properties based model of dielectric breakdown is the well-known Crine 

model shown in MPG nomenclature in Eq. 2.11. (Crine, et al., 1989;  Dissado and Fothergill, 1992;  

Martinez-Vega, 2013). 

  ,           2.11 

Despite the fact that Crine himself is still working to improve and modify his theory to this day, newly 

proposed models in this field of study should be compared to Crine’s canonical model (Lewis, et al., 1996;  

Palit, 2014;  Crine, 2016b). In this section, I will outline the analysis used to compare the Crine model to 

the dual-defect model proposed in 3.1. The results of this comparison will be discussed in 6.2. 

5.4.1.1. Voltage Step-up Test Comparisons 

A search of the relevant published literature to date reveals that the Crine model has not been 

applied to voltage step-up tests. Eq. 2.11 refers to the time endurance problem, discussed in Section 5.4.1.2. 

To relate the Crine model to the ECD of a set of voltage step-up tests, one must consider Eq. 2.10 and the 
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likelihood of breakdown due to a voltage step-up process as discussed in 3.1.2. We will continue to refer to 

the mean-field approximation based theory as the Crine model, despite its novel formulation in this 

dissertation. Considering only a mean-field approximation as Crine does, we need to consider Eq. 3.7 for 

only one defect species . This is 

 .  5.10 

We will compare this to the dual-defect model prediction 

   3.7 

where for two defect species 

 . 5.11 

Equations 5.10 and 5.11 will be compared to the ECD, Eq. 5.1, for several data sets in the Chapter 6. The 

application of physics-based breakdown theory to voltage step-up tests in this way is, to the best of our 

knowledge, a novel approach. Fitting with these equations is non-trivial due to the product series. In Igor 

Pro the standard curve-fitting package does not have sufficient options; it is necessary to create a dummy fit 

function in the standard curve-fitting interface, then open up the corresponding fitting routine and alter the 

code. Details of the routine are in Appendix C. To avoid problems with the representation of numbers even 

with double precision, it is essential to combine as many constants as possible into the fitting parameters, 

then to back out the desired values after the numerical calculations. To do this we can simplify Eq. 5.11 to 

   5.12 

where here 

   and .  5.13  

Of course, for the Crine model assumptions, there would only be one of each combined variable  and . 

Therefore, the material temperature, average sample thickness, time at each voltage step, and relative 

permittivity need to be known to extract the defect energy  and defect density . Igor Pro requires 

initial guesses for any user-defined fitting function, therefore we need physically reasonable ranges for both 
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 and . As we are for now only considering only room temperature tests at the MPG standard ramp rate of 

20V/4s (or for MPG tests before September 14th, 2015 20V/3.5s due to a LabVIEW glitch) both 

 K (Dekany, et al., 2012) and  are fixed. The relative permittivity and average sample thickness 

 will be unique to each material but range from 2.4-3.5 and 24-30 μm, respectively, for the materials used 

in this study. Realistically, we expect the defect energies must fall somewhere between  as a lower 

bound ( 0.03 eV) and the dissociation energy of the strong C-C bonds in a polymer ( 3.65 eV) as an 

upper bound (Phillips, 1983;  Andersen, et al., 2015). Estimations of bond densities span orders of 

magnitude, but reasonable estimations of broken bond densities in LDPE are ~1018 bonds/cm3 and total 

available bonds are 1022 bonds/cm3 (Andersen, et al., 2015). For  this range is a staggering ~10-54 to 

~1013. The variable  can range from ~10-7 to ~2∙10-3. Splitting these variables into  and  defect types 

we get (assuming at least 0.5 eV between defect types),  ~10-29 to ~1013 and  ~10-54 to ~10-29 then for 

reasonable densities  ~10-7 to ~10-4 and  ~10-5 to ~2∙10-3. For Igor Pro, good fits for most materials 

have been obtained with initial guesses of 10-5 and 10-4 corresponding to approximately  1 eV 

and 1020 cm-3. Fig. 5.5 gives an example of such fits for BOPP done in untransformed coordinates 

then transformed via Eq. 5.3. In this case, both Crine and dual-defect model fits give the same trend line. A 

discussion of this and fits to other polymers studied is given in the Chapter 6. 

5.4.1.2. Static Voltage Endurance Time 

 In this section, we discuss the evaluation of SVET data. SVET is the most difficult to obtain of 

the tests discussed in this dissertation, but perhaps the most insightful. SVET data directly probes the 

lifetime of insulating materials under prolonged electric field stress. Obtaining statistically significant 

quantities of SVET can be very onerous, even for waiting voltages close to the nominal breakdown data. 

The 58 SVET tests in LDPE discussed in this dissertation took approximately 68 days of instrument time to 

collect not counting tests that broke down before reaching the waiting voltage. I am grateful for my 

predecessors in the MPG who collected the majority of this data. Over a dozen SVET tests have been 

attempted by the MPG on polyimide (PI), however, only nine have been successful (often breakdown 

occurs before the waiting voltage is achieved, or the test is terminated prior to breakdown due to scheduling 
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FIG. 5.5. Fits using defect-driven models. In this case, both models result in identical trend lines. (a) Fits 
and data shown in untransformed coordinates. (b) Data transformed via Eq. 5.3 for easier comparison to 
Weibull fits.    

(a) 

(b) 

constraints) and no meaningful analysis can be extracted from these data. There has been much discussion 

over SVET results in the literature for many materials. In most cases, only ten or so tests of each material 

are used to establish the authors’ conclusions (Dissado and Fothergill, 1992;  Crine, 1999;  Palit, 2014;  

Crine, 2016b). Lack of more extensive studies on SVET behavior could be the source of some of the 
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confusion in the literature. Indeed, I am only able to present SVET data for one material, discussed in more 

detail in 6.2.2. 

For repeated SVET tests at a single waiting voltage one can use a variant of the Weibull statistics I 

have discussed in 5.3 to analyze the results (Dissado and Fothergill, 1992;  Mazzanti, 2017). The tests 

discussed here were performed over a range of static voltages although some were repeated. Many tests 

done at each static voltage over a range of voltages would be ideal but very impractical. 

In 3.1.2 the complicated complete time endurance equation for a voltage ramp up to a waiting 

voltage was introduced as 

               3.9 

While, it is conceptually more complete to consider the ramp-up process, is it significant and necessary? 

The product series related to the ramp-up is the primary source of the difficulties in fitting discussed in the 

previous section. Fig. 5.6 compares SVET predictions with and without this correction, together with the 

limiting worst case of considering the waiting voltage during the step up process. The black curve assumes 

no contribution from the ramping process, the yellow curve assumes each ramp step field places as much 

stress on the material as the static field, and the green curve weights each ramp time interval with the 

appropriate field-dependent failure probability. The differences between these cases are only visible at the 

highest waiting fields and are all contained within the estimated uncertainty in the fitting parameters. Note 

that even at high fields the discrepancy in time to breakdown between the correct (green) curve and the 

approximate (black) curve is <5% at ≥1 s and is <20% of the variation due to ±5% uncertainties in the 

defect energies at =1 s or indeed the spread in the data (see Fig. 6.2). Thus, we can safely use Eq. 3.2. 

for  without the correction for the ramp-up process—at least for our study on LDPE. This simplifies the 

fitting of SVET data. The results of this fit are discussed in detail in 6.2.2. 
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FIG. 5.6. Comparison of various SVET predictions. Traces include the prediction with no correction for the 
ramp up to the static waiting voltage (black), with the correction (green), and substituting the waiting 
voltage stress for the ramp-up voltages (yellow). The blue curves represent 5% variations in the black 
SVET prediction.    

5.4.2. Analysis of Tests of Variable Extrinsic Conditions 

The probability of breakdown, as predicted by both the Crine and dual-defect models depend 

significantly on extrinsic material conditions such as the voltage ramp or rather the rate of change of 

electric field , temperature , and ionizing radiation that can change . Empirical models of ramp rate 

effects were discussed in 3.1.2 in the context of the physical models. The temperature dependence is 

theoretically very difficult. Except for the leading frequency factor and the product series for the ramp-up, 

the remainder of the breakdown theory we have discussed is made of various Boltzmann factors. 

Temperature dependence is featured in each of these terms except the index of the product series. The 

dominant factor will depend greatly on both the material properties and the other test conditions and good 
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analytical predictions can only be made when most of these terms are known and constant (although this is 

not necessarily the case, e.g., the temperature is likely to effect the rate of  type defect creation and 

annihilation).  

For radiation effects, we have already discussed the effects of changing the defect density in 3.2. 

Depending the dose rate, we can model such effects as either changes in the initial defect density  for 

slow cumulative effects; otherwise, another term would need to be added to the already difficult differential 

Eq. 3.13 for changes in the defect populations. 

 For tests that change the extrinsic conditions of the sample, ideally, many tests at each test 

conditions are needed to obtain good statistics. For example, Weibull fits to a group of tests at a given 

ramp-rate yield the Weibull centroid parameter , which is directly comparable for physics-based models 

with probability set to 63.2%. While large numbers of repeated tests over a range of conditions is ideal, it is 

often impractical. A limited number of tests may still be sufficient to show changes in breakdown 

likelihood if the effects are large. 

Section 6.2.3 describes a study of tests across several voltage ramp rates for three materials. 

Section 6.2.4 discusses the MPG measurements at cryogenic and elevated temperatures together with 

radiation exposure. Due to limited quantities of tests for each value of the varied extrinsic condition, these 

measurements were analyzed with by comparing  from Eq. 5.2, a two-parameter Weibull fit. The shape 

parameters were not particularly useful in most cases as it was very sensitive to the number of tests in each 

condition, which varied significantly. Nevertheless, this is sufficient for investigating dominant trends from 

preliminary measurements. 

5.5. Non-shorting Partial Discharges as Precursors for Breakdown 

We now transition into a discussion of the analysis of DCPD as observed during MPG ESD tests. 

Section 1.1.2 reviewed briefly the need for both improved accelerated ESD test methods and improved 

theoretical understanding of DCPD. Section 3.2.2 discusses a conceptual model for DCPD related to the 

dual-defect model of breakdown via  type recoverable shallow defects. Finally, in 4.6.5 and 4.7 MPG 

measurements of DCPD are explained. This section focuses on how these measurements of DCPD are 

characterized and compared to dielectric breakdown events. If DCPD can be shown to be a key indicator of 
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long-term breakdown behavior, they could be used to greatly expedite the characterization of candidate 

dielectrics for extreme applications (Andersen and Dennison, 2015b). Finally, the establishment of 

relationship between breakdown and DCPD may provide insights into the dual-defect model-particularly 

recoverable defect mechanisms.  

5.5.1. Observing DCPD 

Typically, measurements of PD and breakdown are independent from one another. This may be 

because only one or the other phenomena might be the target of a given measurement. For example, test 

setups may only be sensitive to one of the two phenomena or if a test can detect both one is considered a 

nuisance. While we acknowledge that there have been other reports of researchers seeing both DCPD and 

breakdown (Rytöluoto, et al., 2015), this section focuses on why they are not typically reported together. 

As shown in Fig. 5.7 (a), the observed frequency of the DCPD with the USU MPG setup increase 

substantially with increasing voltage. For all four materials studied, no DCPD were observed below a 

threshold voltage. It may be that the apparent threshold is simply a consequence of the fact that the 

observed rates at threshold voltages predict at most a few DCPD per run. 

Given the observed frequency of DCPD for a given material in the USU MPG setup, we can 

estimate the frequency one would expect to see DCPD for different setups with different hypothetical 

ammeter duty cycles and voltage ramp rates. Fig. 5.7 (b) shows the estimated DCPD count rate for LDPE 

and BOPP as a function of voltage ramp rate, given various instrument duty cycles. This count rate is 

estimated as the product of the average DCPD frequency above DCPD inception, the duty cycle, and 

duration of a test run (estimated as the ratio between the nominal breakdown voltage and the voltage ramp 

rate). Given a duty cycle and estimated DCPD frequency, the estimated DCPD count per run decreases 

with increasing voltage ramp rate. The average estimated DCPD frequencies above inception for each 

material in Fig. 5.7 (a) are 4.7±0.3 Hz for BOPP, 1.35±0.09 Hz for PI, 0.86±0.04 Hz for LDPE, and 

0.54±0.05 Hz for polyether ether ketone (PEEK). 
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FIG. 5.7. Frequency of DCPD. (a) Estimated frequency of DCPD from data versus applied field scaled by 
breakdown field, corrected for equipment duty cycle and smoothed with a 500 V boxcar method. (b) 
Estimated DCPD count measurement for various duty cycles versus voltage ramp rate. Upper blue curves 
correspond to the material with the highest average DCPD frequency, BOPP. The lower cyan curves 
represent the estimates for LDPE. Square markers indicate the estimates using the most common USU
ramp rate (~5 V/s) and duty cycle (~12%) for BOPP while diamond markers indicate estimates of the 
ASTM method with a 500 V/s ramp rate and a 50% duty cycle.    

(a) 

(b) 

The distribution of these DCPD features with applied voltage are clearly stocasitic in nature and 

vary significantly from material to material, but are consistent for many different step-up tests on the same 
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materials; again, this strongly suggests that DCPD features are clearly not experimental artifacts (Andersen 

and Dennison, 2014). 

Following is a summary of potential factors in order of likely impact in the distinctiveness of our 

measurements, or at least reported measurements, of DCPD during breakdown tests: 

(i) Continuous monitoring of leakage current (see 4.1). The standard procedure for step-up 

to breakdown tests recommends the use of a fuse or breaker to indicate breakdown 

(ASTM D 3755-14, 2014). If leakage current is not monitored continuously then it will 

be extremely unlikely that DCPD will be observed (Andersen and Dennison, 2017). At 

most, if the current sensing element has a low tripping threshold, DCPD would result in a 

false positive in the dielectric breakdown test. Likewise, as shown in Fig. 5.7 (b), setups 

with poor duty cycles may also struggle to observe DCPD. Likewise, as shown in Fig. 5.7 

(b), setups with poor current sensor duty cycles may also struggle to observe DCPD. 

(ii) Ammeters used were sensitive down to 10 nA. Depending on the breakdown voltage in a 

given test, current through our test circuit at breakdown is limited to ~40 μA. With 

DCPD observations as small as ~0.1 μA, they might easily be missed by a setup 

exclusively designed to test for dielectric breakdown and only sensitive to higher leakage 

current amplitudes. 

(iii) The use of slower ramp rates than most standard tests (ASTM D 3755-14, 2014). As 

shown in Fig. 5.7 (b), the estimated DCPD count decreases dramatically with increasing 

voltage ramp rate. MPG step-up tests, with an average voltage ramp rate of 5 V/s, are 

likely to see 100 times more DCPD events than using a 500 V/s ramp in a given run. In 

LDPE, an average of 17 DCPD observations occurred (unadjusted for amplitude). At 500 

V/s we would expect fewer than one in twenty tests to include even a single DCPD 

observation. 

(iv) Stepwise ramping with sharp edges in the applied voltage profile used in these tests may 

trigger more DCPD than a continuous voltage ramp (Wang, et al., 2014a). 
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FIG. 5.8. Images of USU MPG high voltage electrodes. (a) Photograph of beveled high voltage electrode. 
(b) SEM image of polished electrode surface. The largest futures are smaller than 1 μm.  

(a) (b) 

(v) Large flat electrode areas, rather than sharp needles often used in breakdown tests 

(Dissado and Fothergill, 1992). See Fig. 5.8 and Section 4.6.2. 

(vi) Beveled electrode edges that minimize edge effects (Chauvet and Laurent, 1993). See 

Fig. 5.8 and Section 4.6.2. 

(vii) Polished electrodes to minimize the effects of protrusions (Arevalo and Dong, 2014;  

Zavattoni, et al., 2014). See Fig. 5.8 and Section 4.6.2. 

(viii) Spring-loaded sample clamping system to maintain a uniform electric field. See Section 

4.6.2. 

(ix) Samples that extend well beyond the electrode area to reduce surface flashover. See 

Section 4.6.2. 

(x) High quality samples of uniform thickness used to minimize impurities and associated 

erroneous breakdown. See Appendix D. 

(xi) Samples were baked prior to testing, to remove any absorbed water or other volatiles 

(Zavattoni, et al., 2014). See Section 4.6.1. 
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(xii) Tests were performed under high vacuum well below pressures with possible Paschen 

discharges (<10-3 Pa base pressure), rather than in oil or some other dielectric medium. 

See Section 4.6.2. 

Having discussed in detail many of the reasons that DCPD are rarely reported in breakdown tests 

of polymer films we note again that there are other reports of DCPD in thin films. Several studies from the 

University of Tempere report DCPD in during breakdown tests of thin polypropylene films ranging from 4-

25 μm (Rytöluoto and Lahti, 2013;  Rytöluoto, et al., 2015;  Rytöluoto, 2016;  Ritamäki, et al., 2017a;  

Ritamäki, et al., 2017b). The DCPD they report are in conjunction with the large-area metalized film self-

clearing breakdown method. Their reports include DCPD of sufficient energy to vaporize sections of the 

thin-film electrodes without the observation of a breakdown rupture in the polymer dielectric (Rytöluoto, et 

al., 2015;  Ritamäki, et al., 2017a). Such observations are consistent with the notion of bulk DCPD through 

dielectric films. A research group at W.L. Gore and Associates, Inc. doing similar large area tests on ~6 μm 

PTFE and BOPP films do not report DCPD directly, but they do report using filtering criteria to distinguish 

between breakdowns, DCPD, and flashover events (Kerwien, et al., 2016). In these studies, and indeed 

breakdown studies in general, transients such as flashover and PD are generally considered a nuisance to be 

suppressed or filtered out so as not to be misidentified as breakdown (see 4.1 and 4.6.4) (IEC 60243-1, 

2013;  IEC 60243-2, 2013;  ASTM D 3755-14, 2014;  Andersen and Dennison, 2017). Although DCPD are 

not typically the target of dc tests on thin films, such detections have been published independently. 

5.5.2. Energy Budget for DCPD and Breakdown Events 

In this section, we compare the energy of DCPD events to the energy required to effect the 

observed damage of breakdown from our ESD tests. We have shown that in 4.7 that the true discharge time 

in much less than the RC time constant. Let us assume breakdown to be an adiabatic process, i.e., only the 

energy stored in the DUT capacitor is available to effect a discharge (Boggs, 2017b). One might imagine 

that perhaps the observed DCPD are simply discharges that should have been breakdowns, but, due to poor 

apparatus design, died off before complete breakdown due to lack of available energy. Comparing 

distributions of breakdowns and DCPD (see Sections 5.5.3 and 5.5.4) suggests that this is very unlikely 

since we already know that DCPD can happen at much higher voltages than the lower end of the 
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breakdown distribution. Nevertheless, consider the following calculations. The total energy stored in our 

simple parallel plate capacitor is simply 

   5.14 

which or a limiting low energy case of our largest thickness (from PI) paired with the smallest relative 

dielectric constant (from LDPE) is 

 .  5.15 

By integrating all the current of the smallest discharge in Fig. 4.13 (a) one calculates ~350·10-9 C. 

This corresponds to roughly 3.7·10-4 J at 2016 V. Inserting this voltage into Eq. 5.14 yields 3.9·10-4 J. Also, 

note that fitting the data with an exponential decay yields a time constant of 0.0428±0.001s, in agreement 

with the calculated RC time constant of ~0.05 s for the MPG ESD circuit. This excellent agreement shows 

that the DCPD are fully discharging the DUT capacitor. Fig. 4.13 shows that this is the case for DCPD in 

general over the whole voltage range. 

Let us now consider the energy it takes to cause the observed damage that occurs at complete 

dielectric breakdown (see Fig. 4.10 (c)). At a minimum, this is the decomposition energy of the polymer 

(which is the same as the enthalpy of formation). One may also consider the decomposition of the 

elemental constituents together with the heating of the resulting gas into a regime of very good 

conductivity. This process as described in Bogg’s CEIDP Whitehead Lecture is where the first term in the 

total enthalpy of formation of polyethylene and its constituents and the second term describes the energy 

needed to heat the resulting gas (Boggs, 2017b). 

  5.16 

Using Boggs’ values for volumetric heat capacity =2×106 J∙m-3∙K-1, and a very large = 

5000K and the mass density of LDPE ( =962 kg∙m-3) we need only to estimate the mass of the material 

that has been destroyed. Note that more than half the energy required by Eq. 5.16 goes into heating process 

alone. Optical microscope images of breakdown sites in LDPE show that breakdown volumes range over 

four orders of magnitude ( 10-13 to 10-10 m-3 given ~25 μm thick samples and hole diameters ranging 

from ~10-5 to ~10-3 m) with no apparent correlation between breakdown field and hole size (see Appendix 
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A)(Hansen, 2014). For the larger hole sizes on the order of 10-11 m-3 we see that the adiabatic assumption is 

violated since Eq. 5.16 yields ~0.18 J corresponding to over 52 kV (the power supply can only apply up to 

30 kV and typical breakdowns are less than 10 kV). Perhaps in these cases additional damage is done after 

the initial breakdown so let us consider the smaller holes of about 10-13 m-3 in size. Small holes require ~1.8 

mJ by Eq. 5.16 corresponding to ~5 kV (~197 MV/m in our geometry) to get that energy in the DUT 

capacitor Eq. 5.15. These values are roughly consistent for the lower end of the breakdown distribution for 

LDPE. 

As is shown in the Sections 5.5.3 and 5.5.4 (see Fig. 5.11) many DCPD are observed at voltages 

much larger than 5 kV. Since the observed DCPD energy at a given energy are well approximated by the 

energy of the DUT capacitor (Eq. 5.14) we can say that most DCPD have more than enough energy to 

cause destructive breakdown yet do not. In other words, the DCPD cannot be the result of a breakdown that 

failed due to some limitation of the test circuit (see also Section 4.6.5). What is curious is that the material 

can withstand such discharges without vaporizing sections of the sample. Nevertheless, this result is 

consistent with published results of DCPD and breakdown energies with mostly overlapping energy ranges 

(and DCPD vaporizing sections of thin film electrodes without perforating the dielectric) from the 

University of Tampere (Rytöluoto, et al., 2015;  Ritamäki, et al., 2017b). 

5.5.3. Comparing Distributions of Events 

In this section, we review the efforts to compare DCPDs to breakdowns. We note again that the 

setup used for these tests was not originally intended to measure DCPD. Initially, all of the phenomena 

described in Section 4.6.5 apart from breakdown were unanticipated and puzzling. Nevertheless, the 

similarities between breakdown and then-termed pre-breakdown arcing event distributions were too 

obvious to ignore. Even without a clear understanding of the physical origins of pre-breakdown DCPD 

events, it became clear that if the distribution of breakdowns in test materials could be shown to be 

approximated well by the distribution of DCPD events versus applied field, this could greatly accelerate the 

characterization of the breakdown distributions and possible threshold field for materials tested. The 

destructive nature of step-up to breakdown tests, particularly in the parallel plate configuration, results in a 

single datum per test. The prospect of accurately determining the distribution of breakdowns, especially the 
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inception field where breakdowns are least likely to occur, becomes onerous. The popular test method of 

vapor-deposited electrodes on a large sample sheet allows for multiple breakdowns and increased data 

collection rates, but it has been shown that these events are not fully independent of each other, possibly 

skewing these results for predictions of breakdown distributions. (Kerwien, et al., 2016). 

After the author’s two years of experience with the MPG ESD system initial efforts at comparing 

these two phenomena were presented (Andersen and Dennison, 2014). At that point in time, we referred to 

DCPD as “pre-breakdown arcing” or “pre-arcing.” This initial analysis was not very rigorous, but led to 

further development. Fig. 5.9 from that paper shows a representation of data for 89 LDPE and 36 PI 

(Kapton) step-up tests. In this study, Fig. 5.9 shows the PDF with the fit to the ECD and compares it to a 

Gaussian fit to the estimated frequency of DCPD in Fig. 5.10. As discussed in Section 5.3 the ECD of 

breakdown events are not expected to be Gaussian but rather Weibull since each time a sample breaks 

down, it is removed from the sample population. While this was essentially comparing apples to oranges, it 

was a step toward more sophisticated methods. Note that the data presented here is not the same population 

of tests discussed in 5.4.1.1. They include some data that were later shown to contain errors (for LDPE 

some tests were done with a bad electrode plate design that was identified at a later date), different batches 

of PI were grouped together, and obviously subsequent tests were not included. 

The fraction of total samples broken down versus breakdown field was fit to Eq. 5.2 and is shown 

in Fig. 5.9 with results in Table 5.1. The onset of breakdowns  is defined here as . 

Similarly, the field at which nearly all breakdowns have occurred, , is defined as . In 

Fig. 5.9 and Fig. 5.10  to  defines the blue region,  to  defines the yellow region, and the red 

region is defined as field values above . We noted that the two polymers in Fig. 5.9 exhibit similar 

high field behavior, which would be expected if  Type defects are roughly the same for each material. 

However,  and the width of the blue regions in Fig. 5.9 differ significantly, suggesting larger 

differences in  Type defects. As expected,  is higher for PI (Kapton)—the more rigid of the two 

materials and therefore larger  type defect energies—than for LDPE. 
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FIG. 5.9. Histograms of the fraction of total breakdowns versus breakdown electric field compared to the 
probability of breakdown at those fields given by Weibull distributions (black curves) for (a) 89 LDPE and 
(b) 36 Kapton (PI) step-up breakdown tests.  to  defines the blue region,  to  defines the 
yellow region, and the red region is defined as field values above .   

FIG. 5.10. Histograms of the frequency of short duration, recoverable breakdown events or “pre-arcs” 
observed during step-up breakdown tests for (a) LDPE and (b) polyimide. Frequencies have been corrected 
as described in the text. Black dashed curves are Gaussian fits, based on Eq. (3). Error bars for  and 

 are shown.  The colored regions match those of Fig. 5.9. 

A first pass at a statistical analysis was conducted for the DCPD observed during ESD test before 

complete breakdown occurs for the same step-up voltage tests in Fig. 5.9 in an attempt to compare the 

distributions of ESD and DCPD events. 

Typical threshold amplitudes for the smallest arcs observed above background noise were 0.09 μA 

for LDPE and 0.07 μA for PI, as determined from ~0.5 s intervals of current acquired, integrated and 

averaged by the ammeter over its meter response time of ~0.5 s.  Initial oscilloscope DCPD measurements 
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suggested that the measured arc rate needed to be corrected for multiple short duration arcing events of 

about the same amplitude occurring within these sampling intervals. The DCPD rates measured with the 

ammeter were corrected for these multiple DCPD per acquisition time by estimating the number of single 

arcs in higher current events as the measured current divided by the average ammeter single arc current, 

estimated as 0.15±0.05 μA.  Shapes of the corrected arc rate distributions (see Fig. 5.10) are largely 

insensitive to the specific choice of single arc current values, i.e., as long as this value was big enough not 

to include noise and small enough to get most of the events, the shape of the distribution did not change. 

Figure 5.10 shows a histogram of number of corrected DCPD events versus applied field divided 

by the average breakdown field for both LDPE and polyimide step-up tests. These frequency data are fit 

with a field-dependent Gaussian distribution 

   5.17 

centered at the peak in the data ≈ , with a width , and normalized with  to match 

the amplitude of the peak. The frequencies have been corrected to reflect only a ~0.5 s ammeter data 

collection interval per 3.5 s at each voltage. The results are tabulated in Table 5.1. 

 

Table 5.1. Results from preliminary study comparing ESD and DCPD distributions. 
 Results of fits to initial breakdown data Results of fits to initial DCPD data 

Material  

(MV/m) 

 

(unitless) 

  

(MV/m) 

  

(MV/m) 

  

(MV/m·s) 

 

(MV/m) 

  

(MV/m) 

  

(MV/m) 

LDPE 293 6.96 189±6 345±17  1200±400 80±10 160 ±20 310±30 

PI  336 10.9 253 ±8 373±11 7000±3000 53±3 280 ±30 384±17 

 

 

The Gaussian fit was used as a first-order approximation to the DCPD rate assuming a random 

distribution of DCPD events with average breakdown, but does not account for removal of specimens from 
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the sample population after breakdown. A similar Gaussian distribution of the mean radius of random 

polymer coils is predicted from random walk models of chain kink density (Zallen, 1983;  Cho, et al., 

2000).  This can be related to the entropic contribution to elastic strain energy for basic theories of rubber 

elasticity (Anderson, et al., 2004;  Trnka, et al., 2014). 

We compared  to . A cursory observation of Fig. 5.9 and Fig. 5.10 suggests that for 

both LDPE and PI, ESD breakdown can begin to occur at about the same field as DCPD is observed in 

samples that have not yet broken down. To make initial quantitative comparisons, we assumed a Gaussian 

probability for DCPD up to where the frequency starts to decrease and a Weibull distribution probability 

for breakdown. Compare the fields at which there is a ~5% probability of observing either arcing ( ) 

or breakdown ); for LDPE 160±20 MV/m ≈ =189±6 MV/m and for polyimide 

=280±30 MV/m =253±8 MV/m within the uncertainty. 

This study of step-up measurements of LDPE and polyimide indicates that the field for the onset 

of catastrophic ESD breakdown is approximately the as the same field where DCPD begins. This initial 

study was suggestive, though unsophisticated, and not entirely convincing (Andersen and Dennison, 2014). 

Clearly, a more sophisticated method to compare the distributions of DCPD and breakdown events was 

needed. 

5.5.4. Quantile-Quantile Analysis Method 

After further study and consultation with statisticians, we applied quantile-quantile (q-q) analysis 

to the problem. Q-q plots directly compare the cumulative distributions of two observables. In section 5.2 

we discussed the ECD of events in the context of breakdowns. Likewise, Eq. 5.1 

   where             5.1 

can be applied to DCPD to create a corresponding ECD. 

For breakdowns, this calculation is straightforward in that each experiment yields one breakdown 

at a given field. Counting DCPD is more difficult because they are observed at many amplitudes. In order 

to more accurately count DCPD, a typical small DCPD value as recorded by the ammeter (0.15 μA) was 

estimated; larger amplitude arcs were divided by this small DCPD value to determine nearest integer 
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multiple of DCPD per ammeter measurement time. The shape of the resulting distribution of adjusted 

DCPD is quite insensitive to the choice of the chosen small DCPD value, so long as this value is above the 

noise of the system (i.e., 0.085 μA) and not so large as to eliminate too much data (i.e., 0.5 μA). As 

shown in Fig. 4.13, the DCPD amplitudes are not strictly the same since they increase with increasing 

voltage, but their variation is much smaller than the variation in amplitude as recorded by the ammeter so it 

is not a bad assumption. 

Figure 5.11 compares the ECD of 96 breakdown tests in LDPE to the ECD of the 46,057 

discretized DCPD events from those same tests. It should be noted that in many voltage step-up tests there 

is very erratic behavior where the current changes greatly from one measurement to the next without 

returning to baseline current before clear breakdown occurs. When these traces are too erratic to distinguish 

between any of the cases described above, any DCPD therein are not countable (Moser, et al., 2015). This 

tends to occur at the higher fields just before breakdown so many DCPD are likely to be missed this way; 

therefore, we expect the distribution of DCPD to be somewhat distorted or shifted. This is evident in Fig. 

5.11 and its inset. Although the two ECDs in Fig. 5.11 appear to be similar, to camper two sample 

populations of different sizes to each other, a robust, non-parameterized statistical method was required. 

To create a q-q plot it is convenient to begin with comparing ECD plots. In Fig. 5.11 the dashed 

lines show two examples of quantile matching. For an ECD plot, the y-axis represents the estimated 

probability of occurrence, or quantile. For each quantile  there is an -axis value for each ECD plotted. 

These -axis pairs for each  become - and - values  and  on the q-q plot. For two samples of 

different sizes, some type of interpolation is necessary to get matching quantiles. Since there are many 

more DCPD than breakdowns, the quantiles of DCPD events were linearly interpolated to match the 

quantiles of the breakdowns. Fig. 5.12 shows the q-q plot corresponding to the ECDs in Fig. 5.11. The 

results of the q-q analyses will be presented in 6.2.5. 

If the underlying distributions are precisely the same, the q-q plot will follow a unitary linear 

relationship, namely . Any other linear q-q plot demonstrates that the two distributions are indeed 

correlated, while q-q plots deviating significantly from linearly show that the distributions are not 

correlated (Hoaglin, 1985). Nonzero intercepts indicate that one population is shifted by a constant relative 
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FIG. 5.11. The empirical cumulative distributions (ECD) of breakdown and DCPD events from 96 voltage 
step-up to breakdown tests in LDPE at room temperature. The inset shows the ECDs normalized to the 
highest field value for each type. Red and green dashed lines show examples of matching quantiles from 
two ECDs. For two ECDs plotted together, one quantile—the -axis value—corresponds to two -axis
values which become the ( ) pairs on a q-q plot. The ECDs shown here yield the q-q plot Fig. 5.12.    

to the other. Slopes other than unity reflect a relative scaling factor between the distributions. The data in 

Fig. 5.12 are an example of correlated data, and when normalized show that the underlying distribution are 

practically identical. 

The advantage of the q-q plot method is that it results in a non-parametric plot that is easy to 

interpret qualitatively—if the distributions are correlated, the q-q plot will be linear; otherwise, it will not. 

The drawback is that for a two-sample q-q plot, quantifying the results becomes more complicated than a 

simple linear correlation, especially for a q-q plot comparing two data sets rather than a single data set to a 

known distribution function. Calculating a linear correlation coefficient gives artificially good results due 

to the sorting in Eq. 5.1 required when creating ECDs for the q-q plot, even for q-q plots that clearly 

deviate from linear. In our previous publication we erroneously used this method to determine the 

significance of the fit (Andersen and Dennison, 2015b). The methods that do exist, such as a two-sample 

Kolmogorov-Smirnov statistic or other methods, result in a confidence interval around the q-q plot that 

statistically gives a range of confidence of where the data actually are on the plot (Einmahl and McKeague, 
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FIG. 5.12. Quantile-Quantile plot based of the ECDs for DCPD and breakdowns from LDPE tests in Fig. 
5.11. Dashed black lines are unity slope for reference. The inset is the q-q plot with data normalized to the 
maximum field for each data type.    

1999;  Rosenkrantz, 2000;  Valeinis, et al., 2010). Further details are in Appendix B. From the author’s 

perspective, such methods are not satisfying measures of the goodness or significance of the linear fit. For 

the purposes of this study, we contrast the q-q plots comparing DCPD and breakdowns to q-q plots of 

uncorrelated data in 6.2.5. 
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CHAPTER 6 

6. RESULTS 

This chapter discusses the results of the tests outlined in Chapter 4 that we used to evaluate the 

theory presented in Chapter 3, analyzed with methods described in Chapter 5. The results are summarized 

as follows. Voltage step-up tests show reasonable agreement with the dual-defect model proposed in this 

dissertation (Andersen and Dennison, 2015a;  Andersen, et al., 2015). SVET tests on LDPE show very 

good agreement with the dual-defect model (Andersen, et al., 2015). Voltage ramp-rate tests did not agree 

well with predictions in a likely refutation of some simplifying assumptions (Andersen, et al., 2016;  

Moser, et al., 2017). Cursory temperature- and radiation-dependent tests show conceptual agreement with 

the Crine and dual-defect model (Andersen, et al., 2015;  Kippen, et al., 2016). Finally, we show a 

significant correlation between DCPD and dielectric breakdown (Andersen and Dennison, 2014;  2015b). 

6.1. Summary of Data 

To date, the MPG has performed roughly 1000 breakdown tests on nearly a dozen different 

materials since 2007. Of these tests, those in Table 6.1. Detailed materials properties are listed in Appendix 

D. The SVET tests on LDPE took a total of 68 days of acquisition time. Measured endurance times 

conducted at electric fields from 180 to 290 MV/m spanned almost five orders of magnitude in time from 

~10 s to several days. Many of the PEEK samples were exposed to high-energy β- radiation, tested at 

elevated temperatures, or both. Thousands of DCPD measurements—primarily from the tests above—

corresponding to hundreds of thousands of DCPD events were used for the q-q analysis.  

6.2. Comparison of Empirical and Physical Models to the Breakdown Data 

6.2.1. Step-up Test Results 

We begin by comparing the ECD of the room temperature voltage step-up tests in BOPP, PI, 

LDEP, and PEEK to 2-, 3-, and 5- parameter Weibull distributions as shown in Table 6.2 

   ,              5.2 

   ,              5.4 
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Table 6.1. Summary of tests described in this dissertation. 
Material No. of room temp. 

tests 

No. of SVET tests No. of voltage 

ramp rate tests 

No. of temp. or 

radiation tests. 

BOPP 60 N/A 78 N/A 

PI 2008 30 N/A N/A N/A 

PI 2012-2013 38 N/A N/A N/A 

PI 2017 29 N/A 29 N/A 

LDPE 84 58 14 54 at different 

temps. 

PEEK 11 N/A N/A 76 at different 

temps. and doses. 

 

 

and 

 .           5.9  

With Weibull fits for different materials, or even different batches of nominally the same material, 

we can begin to make comparisons. As stated before,  corresponds to the 63.2% probability of 

breakdown and is reported as the nominal breakdown voltage. While  is important, the shape parameter  

is also critical as it indicates the stability of the material or in other words the width of the ECD. Higher 

values of  correspond to more stable materials. For example, the 2008 and 2017 batches of PI have very 

similar breakdown voltages but the much lower shape parameter in the 2008 batch indicates a greater 

likelihood of breakdown at lower voltages. We see that for BOPP and PI 2012-2013 a threshold field for 

breakdown can be clearly defined. For PEEK, which only had 11 tests, anything more complicated than a 

two-parameter Weibull is an exercise in futility; there simply are not enough data. Note that the ASTM 

standard for dc breakdown testing recommends only five tests (ASTM D 3755-14, 2014). Excepting 

cursory material comparisons, this seems woefully inadequate. 
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Let us first examine the ballpark breakdown values. Due to its application in the capacitor 

industry, BOPP breakdown strength has been widely investigated in recent years. Measurements using the 

large-area self-healing technique report BOPP breakdowns in the range of 500-700 MV/m for capacitor 

grade films (Xu and Boggs, 2006;  Xu, et al., 2008;  Li, et al., 2015;  Kerwien, et al., 2016;  Ritamäki, et 

al., 2017b). The measured value of  MV/m (see Table 6.2) is between these two values, and is 

closer to the manufacture’s value for the material used. However the manufacturer’s value of breakdown 

for the BOPP used for tests at USU is 200 MV/m (Goodfellow Corp., 2017). Upon discussing this 

discrepancy at a conference it was suggested that the difference in intended material application by the 

manufacturer—and therefore different manufacturing processes—may explain this deviation (Boggs, 

2017a). Additionally, the reported values were done using a very different test method where testing was 

allowed to continue beyond the initial breakdown (Xu and Boggs, 2006;  Xu, et al., 2008;  Li, et al., 2015;  

Kerwien, et al., 2016;  Ritamäki, et al., 2017b). It has been shown that small-area tests tend to yield higher 

breakdown values for the same films compared to large-area tests; however, they acknowledge that this is 

largely due to increased likelihood of encountering extrinsic week points (Rytöluoto, et al., 2015). For 

pristine samples, this is less likely to be the case.  

For PI, our measurements are consistent with nominal breakdown fields at ~300 MV/m as 

reported by both the manufacturers and other experimentalists (Haq and Raju, 2006;  Diaham, et al., 2010;  

2011;  Goodfellow, 2016b). Polyethylene on the other hand comes in many flavors including high-density, 

low-density, and cross-linked and even just LDPE may have varying concentrations of crystalline phase 

polymer. Unfortunately, while experimental details are often sparse, extensive materials details can be even 

rarer. Examples of breakdown values with epoxy mold electrode tests report fields approaching 100 MV/m 

(Sekii and Kazama, 2004;  Noguchi, et al., 2008), roughly half of the 200 MV/m quoted by the 

manufacturer of our samples which is still significantly lower than the  we measure at ~300 MV/m 

(Goodfellow, 2016a). For our very limited data set at room temperature for unirradiated PEEK we report a 

nominal breakdown strength of ~200 MV/m compared to the 110-150 quoted by the manufacturer and 400-

500 MV/m reported in the literature for capacitor grade films generally with the self-healing method (Ho 

and Jow, 2009;  Pan, et al., 2009;  Ho and Jow, 2013;  Goodfellow Corp., 2016). Again the breakdown can  
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Table 6.2. Comparison of Weibull fits to voltage step-up tests. 
Material 2-parameter Weibull 

function 
3-parameter Weibull 
function 

5-parameter Weibull 
function 

BOPP  
MV/m 

  

 
MV/m 

 MV/m 
  

  
 MV/m 
 MV/m 

  
  

PI 2008  MV/m 
  

 MV/m 
 MV/m 

  

  
 MV/m 
 MV/m 

  
  

PI 2012-2013  
MV/m 

  

 MV/m 
 MV/m 

  

  
 MV/m   
 MV/m 
  

  

PI 2017  
MV/m 

  

 
MV/m 

 MV/m 
  

  
 MV/m 
 MV/m 

  
  

LDPE  
MV/m 

  

 
MV/m 

 MV/m 
  

  
 MV/m 

 
MV/m 

  
  

PEEK  MV/m 
  

 MV/m 
 MV/m 
  

  
 MV/m 
 MV/m 

  
  

 

 

be highly sensitive to details of the morphology (Ho and Jow, 2013). In the Chapter 6, we discuss in detail 

the importance of considering material variability. 

Figure 6.1 shows the transformed ECD of breakdown data for these four materials together with 

Weibull and physics-model fits. Although, as shown here, mixed Weibull functions can provide a better fit 

to some data, it is difficult to infer any physical significance. It is plausible that the better fit is the result of 
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FIG. 6.1. Step-up to breakdown tests together with Weibull and physics-based fits for room temperature 
tests of (a) BOPP, (b) PI, (c) LDPE, and (d) PEEK.  In each case the better of the 2- or 3-parameter Weibull 
fit (see Table 6.2) is shown.    

simply adding more fitting parameters or perhaps there are indeed two breakdown modes or mechanisms 

requiring a mixture of two distributions. In either case there is not a straightforward way to extract intrinsic 

parameters of physical interest from the empirical fit (Laurent, et al., 1994). Both the Crine model fits, 
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 ,    5.10 

and the dual defect model fits, 

   3.7 

result in estimations of defect energy and density. The fitting results are tabulated in Table 6.3. 

 

Table 6.3. Comparison of Crine and dual-defect model fits to voltage step-up tests. 
Material Crine model Dual-defect model 

BOPP  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 

PI 2008  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 

PI 2012-2013  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 

PI 2017  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 

LDPE  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 

PEEK  eV 
cm-3 

 eV 

cm-3 

 eV 

cm-3 
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Uncertainties are only listed for parameters where the resulting uncertainties were not much larger 

than the parameters themselves. For such fits, Igor Pro still output repeatable results, even without 

complete fit convergence after a limited number of iterations. We first note that all results fall into the 

realm of physically reasonable results based on the range of realistic energies and densities discussed in 

5.4.1.1. While the results are all near 1 eV and 1020 cm-3, recall that even a few  (~0.03 eV) represent 

significant differences in transition probabilities and therefore the results show significant variation from 

one sample to the next. Given that C-C bonds are 3.65 eV, we cannot rule out that two different -type 

defects may be contributing to breakdown if these results are to be taken at face value. As stated earlier, 

fitting step-up to breakdown data with physics-based equations is novel to the best of our knowledge. The 

product series used assumes that each step is statistically independent and thus neglects any aging 

(particularly changes in defect density). Relaxing this assumption would require solving Eq. 3.13 without 

neglecting the time dependence of . For this reason, we cannot expect the results to be exact, only 

indicative of the underlying physical mechanisms. 

In Fig. 6.1, we note that for BOPP, PI 2008, PI 2017, and PEEK, the dual defect model gives 

essentially the same result as the Crine model. This is also evident in the similarities between the resulting 

defect energies. Applying Occam’s razor, we must conclude that, in these cases we cannot claim any 

advantage over Crine’s mean field approximation. In other words, this suggests that only one defect 

mechanism dominates for these materials in their corresponding test conditions. This is consistent with 

others’ results for BOPP only showing bimodal behavior after significant thermal aging (Ritamäki, et al., 

2017b). For LDPE and PI 2012-13, the dual-defect fit is clearly an improvement over the Crine model fit. 

In a previous publication we suggested that, for LDPE, that when a mixed Weibull fit is better than a single 

Weibull fit there must be two underlying defect modes consistent with our dual-defect model of breakdown 

(Andersen and Dennison, 2015a). In other words, when a mixed Weibull fit is better than a single Weibull 

fit, we would expect that the dual-defect model fit would be better than a Crine model fit and in LDPE this 

is indeed the case. For PI 2012-2013 this is also true although the improvements are smaller. Fits to PI 2017 

did not corroborate this conclusion, as the mixed Weibull is the best Weibull fit while both physics-based 

models give essentially the same result. Nevertheless, visually we see that the data for PI 2008 and PI 2017 
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agree very well at higher fields while deviating at lower fields. This perhaps indicates the same  defect 

mechanism but different  type defects, which seems reasonable for two flavors of the same material. 

While the physics-model fits do not show this, the mixed Weibull fits are indicative of such behavior. 

Turning to PEEK, we see that there is not enough data to tell whether any bimodal behavior exists, even 

with Weibull distributions. 

To summarize, Weibull fits to step-up data are simple and practical for comparing materials or test 

conditions. When mixed Weibull fits are better than single Weibull fits, this may indicate multiple 

underlying defect mechanisms but in any case, Weibull statistics do not offer any estimations of the 

material defect energies and densities. Both Crine and dual-defect model fits offer estimates of defect 

energies and densities. Except in one case in this study, the dual-defect model is a better fit to obviously 

bimodal data. 

6.2.2. Static Voltage Endurance Time Results 

In this section, we discuss the results of SVET tests on LDPE. Fig. 6.2 shows the measured data 

for time to breakdown as a function of applied field for LDPE endurance time tests for the data acquired at 

20 V per 3.5 s ramp rate to a static voltage. The green bars on the right axis indicate the time scales in 

larger units. Error bars in time for the data are less than the size of the symbols, except as shown at <200 

s. Error bars in electric field are largely determined by the ~2% variations in film thickness. 

There is a definite transition between two separate field regimes evident in Fig. 6.2, suggesting 

that a new composite model is required which incorporates at least two defect mechanisms. The data below 

~270 MV/m with endurance times on the order of a few hours to several days were dominated by the 

recoverable  type defect processes and can be fit (red dashed curve) by the Crine model, 

  ,           2.11 

with =0.95 eV and =7·1021 cm-3. The data above ~270 MV/m with endurance times on the order 

of ~10 s to ~1 hr can also be fit (blue dashed curve) separately by Eq. 2.11 with = 3.65 eV and 

=1.5·1018 cm-3. 
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FIG. 6.2. Dual-defect mechanism model fit for endurance time data for LDPE. Data (solid cyan boxes) are 
fit (purple line) with the dual-defect extension of the Crine model given by Eq. 3.2, with =0.95 eV, 

= 3.65 eV, =7·1021 cm-3, and =1.75·1018 cm-3. The purple dashed lines show a ±5% 

variation in the  and . The dashed lines indicates the separate contributions from  (blue) and 

 (orange) type defects. Two low field tests that were terminated without breakdown (open cyan boxes) 
are also included. The green bars on the right axis indicate the time scales in larger units. The grey dotted 
line shows the ramping time to a given field for the data acquired at 20 V per 3.5 s. Error bars in time for 
the data are less than the size of the symbols, except as shown when  <200 s. Error bars in electric field 
are largely determined by the ~2% variations in film thickness. Vertical grey lines correspond to the 
Weibull breakdown fields from voltage step-up tests. 

Unlike the fits to the step-up tests, the defect energies for the fits were based on independent 

measurements of defect energy values for the fitting parameters and are in excellent agreement with the 

values discussed in Section 3.1.1.1. For  type irreparable defects,  and  agree with the 

predicted values ≈1.5·1018 broken bonds/cm3 and =3.65 eV/bond (see 3.1.1). For  type 

reparable defects,  and  agree with the predicted values ≈3·1020 Kuhn pairs/cm3 and 

=0.90 eV (see 3.1.1). Errors in the fitting parameters are estimated by assuming a ±5% deviation in 

the values of  and  used in 

   3.2 
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to produce the purple curves in Fig. 6.2; these show a maximum deviation in the endurance time of ~1 

order of magnitude consistent with a spread in the measured data. 

Included in Fig. 6.2 are two SVET tests at low applied field that were terminated prior to 

breakdown, giving a lower limit on the breakdown time observable at those fields. These are well above the 

predicted times extrapolated from the fit to the SVET tests with breakdowns. Although more 

experimentation is needed in this region, these results are consistent with the notion of a minimum 

threshold field for breakdown presented with published electrokinetic models (Lewis, et al., 1996;  

Griffiths, et al., 1998). 

Note that the endurance time used to generate the purple curve in Fig. 6.2 is approximated as the 

elapsed time at the static field, and does not include the ramping (step-up) time (shown as the dotted back 

line). At short elapsed times this slightly overestimates the endurance time by underestimating the time the 

sample is exposed to a nonzero . However, as discussed in 5.4.1.2, this effect is negligible compared to 

the spread in the data. Vertical grey lines corresponding to the Weibull centroid parameters from the fits to 

voltage step-up tests are shown for comparison. Interestingly  the critical field for lower-energy 

subdistribution of breakdowns corresponds with the transition in dominance between the two defect types. 

This suggests that  type defects dominate low-field long wait time SVET behavior. 

In summary, it is remarkable how well the dual-defect model fits the observed data using 

independent estimations of defect energies in LDPE (see Table 6.4). The corresponding defect densities are 

also in good agreement with such estimations. The Crine model can be fit to a portion of the observed data 

for each defect type, but the predictions clearly deviate significantly over the whole range of measurements. 

We note that confining fits to step-up tests to use these same energy values results in predictions much 

narrower than the range of observed results; hence, the different values from fits in the previous section. At 

lower fields, we note there may be deviation toward a non-zero threshold field, which is not built into the 

dual-defect or Crine models directly. Nevertheless, this is perhaps the most compelling evidence we present 

in favor of the dual-defect model. 
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Table 6.4. Defect energies and densities from SVET fits and independent measurements. 
Method -type Defects -type Defects 

Estimations from independent 
materials properties (see 3.1.1) 

=3.65 eV/bond 

≈1.5·1018 broken bonds/cm3 

=0.90 eV 

<3·1021 Kuhn pairs/cm3 

SVET Fitting Parameters (see 
Fig. 6.2) 

= 3.65 eV 

=1.75·1018 cm-3 

=0.95 eV 

=7·1021 cm-3 

Comparison of fitting parameters 
and independent estimations of 

materials properties 

 

   

 

 
 

 

 

6.2.3. Voltage Ramp Rate Dependence Results 

In this section we exam the effect of voltage ramp rate on the breakdown field. Each set of ramp 

rate tests was compiled into a single graph for each material, showing the breakdown field at that ramp rate. 

Fig. 3.3 shows the breakdown field versus ramp rate for three polymeric materials: BOPP, PI, and LDPE. 

The starting point for this study was existing data from our early experiments on Kapton E that we had 

found to follow Eq. 3.5 reasonably well (Andersen, et al., 2016;  Moser, et al., 2017). However, as shown 

in Fig. 4.10, recent analysis of the Kapton E data has identified unacceptably high field-enhanced current 

for our circuit, severely altering the voltage ramp rate and for this reason, they cannot be compared to the 

data shown here. This may explain why Kapton E results did not agree with the general behavior shown in 

this section. 

To review, the voltage ramp rate dependence models considered here are: 

(i)  the constant value model 

    ,                     3.3 

(ii) the standard empirical model (Dissado and Fothergill, 1992) 

  or   ,  3.4 

(iii) the simplified physical model based on the Crine model (Andersen, et al., 2016;  Moser, 

et al., 2017) 

   3.5 

and  
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(iv) the more complicated ramp-up probabilistic model stemming from the Crine assumptions 

(Andersen, et al., 2016) 

 .  3.7 

Each of these models are used as fits to the data in Fig. 6.3. We see in Fig. 6.3 that the assumption 

that the breakdown field is constant independent of ramp rate is not a bad model. For each of these data 

sets, allowing the fitting parameters  and  of the empirical model to be negative, results in reasonable fits 

as well. Surprisingly, this would predict slightly lower breakdown fields with increasing ramp rate. It 

should be noted, however, that the uncertainties in  and  are much larger than the best-fit values, 

effectively reducing Eq. 3.4 to Eq 3.3. For these three materials, both the simplified physical model and the 

stochastic model are obviously poor fits to the data. 

The probabilistic model Eq. 3.7 did not provide a good fit to any of the data, using standard least 

squares fitting routines. In each case, the modified Igor Pro fitting software returned the error “there may be 

no dependence on these parameters.” We were able to obtain fits with the stochastic model, by restricting 

the data fit to those tests where the time step =4 sec was held constant. Fortunately, this was the case 

for almost all for the data included in Fig. 6.3. Given the poor results and the difficulty involved in 

developing a Crine-model fitting routine for ramp-rate dependence, dual-defect model fits were not 

attempted. 

The failure of the physics based models likely shows that the assumptions—particularly that each 

ramp step is independent and that defect densities are constant—made in their formation are not valid for 

these tests. Relaxing these assumptions would require solutions to the differential Eq. 3.13 discussed in 

3.2.1. As shown in Sections 6.2.1 and 6.2.2, theory derived from these same assumptions matched data 

quite well for voltage step-up tests and very well for SVET tests. Perhaps this improvement is in part 

because we showed that considering the ramp-up to the static waiting voltage did little to alter the predicted 

outcome. Here, each voltage step has the same duration in time. One could expect that at low voltages—

when the applied field does not distort the defect energy much—there would not be significant changes to 

the materials defect structure. However, at voltages near breakdown, new defects could be created or even  
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FIG. 6.3. Plots of the Weibull characteristic breakdown field vs voltage ramp rate with constant, empirical 
and physics-model fits. 
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annealed via local heating; this contradicts the assumption that each voltage step is independent of the 

others. 

The results of the current study favor the model that breakdown is approximately constant with 

respect to voltage ramp rate. More testing, especially at slower ramp rates (the most time consuming tests), 

would be helpful in testing the voltage ramp rate dependence of breakdown. Tests of similar ramp rates 

using different voltage steps and corresponding time increments would investigate separately the 

dependence of  and  in the physics based models, 

A significant result, discussed in Section 4.6.4, is that slower ramp rates reveal insightful behavior 

that is unclear or indistinguishable at faster ramp rates. The most salient result of this study, however, is 

that slower ramp rates also yield more accurate and precise data simply because the step size is smaller. 

6.2.4. Temperature and Radiation Dependence Results 

To review the temperature dependence of our model let us review Eq. 3.1 (which reduces to the 

mean field Crine model for one defect type). 

           3.1 

As discussed in Chapter 3, and 5.4.2, temperature place a role in the probability of breakdown as it varies 

the phonon frequency, the various Boltzmann factors, and the defect density . Similarly, incident 

radiation may directly change  for either  or  species, and, at least during exposure, effect the 

conductivity through RIC, or even raise the temperature. In this section, we review some preliminary tests 

on the effects of temperature and radiation on breakdown. 

Fig. 6.4 (a) shows data for all MPG ESD tests on LDPE to date (excluding voltage ramp rate tests) 

across temperatures ranging from ~130 K to ~325 K. Temperature dependent tests are much more time 

consuming than room temperature tests primarily due to heating and cooling times to reach the target 

temperature and returning to room temperature for vacuum breaks. Some additional complexity is added by 

using liquid nitrogen, coolant, or heaters together with temperature monitoring. For this reason, data are 

particularly sparse at the lowest temperatures. At higher, more accessible temperatures, there is a greater 
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FIG. 6.4. Temperature effects on LDPE. (a) All LDPE standard ramp-up test data across temperatures from 
~130 K to ~325 K. (b) Weibull scale parameter and average DCPD count for groups of tests of similar 
temperatures. 

(a) 

(b) 

data density but also a greater spread in the data since more tests were done at these temperatures. We 

present the following two explanations of the observed data in Fig. 6.4 (a). 

First, that over the ranges tested there is no significant temperature dependence for LDPE since the 

spread of data from 55-490 MV/m is large compared to the apparent trend at lower temperatures that only 
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ranges from 235-348 MV/m. Fig. 6.4 (b) shows only ~20% change in the Weibull characteristic breakdown 

with temperature. To do even simple Weibull analysis, tests of similar temperatures had to be grouped 

together, especially at lower temperatures.  

Second, we might be beginning to observe a small linear temperature dependence of  for 

LDPE in the range of ~130 K to ~240 K (dashed green line). There seems to be an abrupt change to a 

nearly temperature-independent behavior above ~240 K (dashed brown line). These data are consistent with 

higher temperature measurements by Shinyama (Shinyama and Fujita, 2006) who observed a roughly 

temperature-independent breakdown field strength of ~450 MV/m over 295 K to 330 K at 1 kV/s ramp 

rates for similar 25 μm thick LDPE samples;  then decreased linearly to ~250 MV/m at 385 K.  

This transition in electric field strength in LDPE may be related to a LDPE structural phase 

transition (Dennison and Brunson, 2008). This β transition is routinely observed in branched polyethylene, 

and has been associated with conformational changes along polymer chains in the interfacial matrix of 

disordered polymers between nanocrystalline regions in the bulk.
 
Similar abrupt (often discontinuous) 

changes near ~250 K have been seen in prior studies of mechanical and thermodynamic properties 

(Anderson, et al., 2004) and electron transport properties including dark current conductivity (Dennison 

and Brunson, 2008;  Dennison, et al., 2009) radiation induced conductivity (Dennison, et al., 2007;  

Dennison, et al., 2009;  Gillespie, et al., 2014), loss tangent (Phillips, 1983) and dielectric constant 

(Phillips, 1983). These changes may result from a discontinuous change in the activation volume at the 

glass transition to allow a smaller field value to bring about complete breakdown. 

Fig. 6.4 (b) also shows the average DCPD count per run versus temperature for LDPE. We see 

that the discretized DCPD count is significantly reduced <200 at the lowest temperatures. The large 

discontinuity above ~250 K where the count drops by ~50% and then begins to increase again from ~280 K 

to ~330 K may be due to the glass transition in LDPE occurring over the temperature range discussed 

above. Given that we model DCPD as primarily driven by  type defects, we expect them to vary 

significantly with temperature as has been observed. 

We also examine preliminary tests of breakdown and DCPD in PEEK at elevated temperatures 

and as a function of β- dose (acquired at the Idaho Accelerator Center) ranging from ~10 to ~70 MRad 
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(Kippen, et al., 2017). Given the discussion in 3.1.1 and 3.2 temperature should effect  while dose 

should effect both  and . Radiation may also change  by introducing new high-energy defect 

modes and effecting the average chemical defect energy. Fig. 6.5 (a) shows the average DCPD count per 

run versus temperature and irradiated dose for PEEK. Like with LDPE, there is a trend to increased DCPD 

with increasing temperature. For the unirradiated samples, the average DCPD count increased from 1 to 

132 as temperature increased from 280 K to 360 K. The DCPD per run also increase significantly with 

increased dose. For room temperature tests, the DCPD count increased by more than a factor of three at 75 

Mrad compared to the unirradiated PEEK. The trend of breakdown field increasing with dose is much 

clearer than the effect of temperature at a given dose (There is a single outlier at the highest radiation (75 

MRad) and temperature (~360 K). Fig. 6.5 (b) shows the breakdown electric field versus temperature and 

dose from the same tests of PEEK. Note the similarities in the shape overall dose and temperature 

dependence between breakdown field and DCPD count. The changes in breakdown field in PEEK with 

dose and temperature range between one and four times the magnitude of the ~20 MV/m average 

uncertainty in the breakdown fields.  

These measurements show that DCDP depend on both temperature and on defect density through 

radiation dose. As suggested by the discussion in Section 3.2, higher temperatures lead to more low-energy 

defects and increased likelihood of completing a percolation network leading to more DCPD. Alternately, 

increased dose increases defect density (especially  type defects since presumably  type defects will 

tend to anneal out over time between irradiation and breakdown measurements), and thereby reduces the 

density of low-energy defects required to complete the percolation network. The temperature and dose 

trends in Fig. 6.4 (b) and Fig. 6.5 (a) are qualitatively consistent with the dual–defect model. We expect 

temperature difference to effect  type defect processes, especially DCPD and the lower portion of the 

breakdown distributions. Although it is clear that additional tests are needed to enhance the comparisons 

presented here, the limited breakdown data at different temperatures and doses indicate trends consistent 

with expected behaviors. Q-q analyses for the tests at various temperatures and doses described in this 

section are quite sparse given the limited breakdowns at each unique combination of dose and temperature.  
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FIG. 6.5. Temperature and dose effects in PEEK. (a) Average DCPD count per run versus temperature and 
dose for PEEK. (b) Nominal breakdown electric field versus temperature and dose for PEEK. Note the 
similarities in temperature and dose dependence.    
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Nevertheless, these appeared to show good correlation except for PEEK samples having been exposed to 

75 Mrad. 

In summary, for LDPE and PEEK tests discussed here, we see that DCPD are sensitive to 

temperature and radiation damage. This result agrees qualitatively with the dual-defect model that 

considers both recoverable and irrecoverable defect species. Both breakdown and DCPD may be affected 

by the glass phase transition in LDPE. PEEK tests show a significant effect on breakdown with dose, but 

although there are hints at temperature dependence of breakdown, future tests will be needed to clarify 

these results. 

6.2.5. Comparison of Breakdown and Pre-Breakdown Event Quantiles 

We now transition to the results from the q-q analysis explained in 5.5.3. These q-q plots compare 

the ECDs of breakdown events and the observed DCPD. Fig. 6.6 (a)-(d) contain the q-q plots for DCPD 

and breakdowns of LDPE, PI, PEEK, and BOPP, respectively. Plots are shown with room temperature data 

except Fig. 6.6 (c) for PEEK. As shown above, PEEK tests were spread across several temperatures and 

doses. For PEEK, data from tests done at 360 K are shown. The DCDP count accuracy for the few room 

temperature tests was reduced due to field-enhanced conductivity and erratic current traces convoluted with 

the DCPD. Due to the difficulty of counting DCPD between the last baseline current and breakdown, we 

re-plot the q-q plots normalized to the maximum field value in the insets (Andersen and Dennison, 2015b). 

Clear outliers in measured breakdown field values, attributed to extrinsic sample damage or 

instrumentation issues identified above, were neglected in the statistical analysis presented in this study; 

this represented less than 1% of the tests considered here (Andersen and Dennison, 2015a). 

To contrast the q-q plots in Fig. 6.6 observe the two q-q plots of two pairs of arbitrary uncorrelated 

data sets shown in Fig. 6.7. Fig. 6.7 (a) compares vacuum chamber pressure and sample thickness from the 

LDPE room temperature data. Fig. 6.7 (b) compares the DCPD events from LDPE to the measured sample 

thicknesses of PI. Unlike the q-q plots in Fig. 6.6, these clearly do not exhibit a linear trend, indicating that 

the variables chosen are not correlated, as expected. 

It is clear from Fig. 6.6 that the DCPD and breakdowns are related for each of the polymers 

studied. Except for PI, the normalized q-q plots suggest that not only are the underlying distribution  
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FIG. 6.6. Quantile-Quantile plots of DCPD and dielectric breakdowns with linear fits. Dashed black lines 
are unity slope for reference. Insets are normalized to the maximum field for each data type. (a) LDPE (b) 
PI (c) PEEK (d) BOPP.    
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FIG. 6.7. Quantile-Quantile plots of two uncorrelated data sets each and linear fits. Dashed black lines are 
unity slope for reference. (a) Sample thickness and chamber pressure from a set of breakdown tests. (b) 
DCPD in LDPE tests and PI sample thickness.    

(a) 

(b) 

functions of DCPD and breakdowns correlated, they are nearly identical. To show the predictive power of 

this method, Fig. 6.8 is a q-q plot comparing the DCPD from 5 step-up runs of LDPE to 14 breakdowns 

from different tests from the same batch of material. Unlike the plots in Fig. 6.6, the DCPD used are not 

from the same runs as the breakdowns to which they are compared. Although there is a single outlier at 
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FIG. 6.8. Quantile-Quantile plots of DCPD and breakdowns from different tests with linear fit. Dashed 
black line is unity slope for reference.    

~230 MV/m, this exercise strongly suggests that there is a fundamental underlying relationship between the 

likelihood of DCPD and the likelihood of dielectric breakdown. Comparing DCPD to breakdowns from 

different batches do not yield linear q-q plots. 

Given that many DCPD are observed during a single breakdown test, using the DCPD distribution 

as an estimate for the distribution of breakdowns, the characterization of HVDC insulating material, 

especially the inception field, can be greatly expedited. With further development, the correlation of DCPD 

and breakdown could be applied to condition monitoring diagnostic techniques similar to those used to 

detect and localize ACPD (Zhu, et al., 2017). This connection between DCPD and breakdown may be the 

most significant result of this dissertation. 
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CHAPTER 7 

7. CONCLUSIONS 

This final chapter provides of summary of the context and conclusions drawn from the work in 

this dissertation. This will include a discussion of the contributions to the theoretical descriptions of 

breakdown and dc partial discharge (DCPD), comments on how the work here effects the application of 

this work—particularly in the field of spacecraft charging, and potential future work related to the research 

presented here. 

7.1. Physical Insights in Context of the Others’ Work 

This dissertation is primarily concerned with what we call the dual-defect model of electrical 

aging. The term electrical aging encompasses dielectric breakdown, DCPD, and the variable nature of the 

material itself due to fluctuations in defect density allowed under the theory. As we have shown, our model 

is a simple extension of Crine’s mean field theory for electrical aging that can be derived from thermally 

assisted hopping transport in highly disordered insulating materials (Miller and Abrahams, 1960;  

Ambegaokar, et al., 1971;  Crine, et al., 1989;  Crine, 1999). We simply consider the mean contributions of 

two defect species rather than one—or the average contribution of all defects—and allow the lower energy 

of the two defect types to vary significantly with temperature and electric field stress.  

The notion of two defect flavors, physical and chemical or deep and shallow, or  and  as they 

have been referred to here, is not in itself novel, even in terms of aging models with static defect density 

(Chen, 2014). The uniqueness of the physical theory is from: (i) applying two defect types to a Crine-like 

model, and (ii) in such a model allowing for variable defect densities. To be fair, we do not always use both 

of those assumptions simultaneously in every case presented here due to the difficulty in solving the 

differential equation Eq. 3.13 for the time evolution of the defect density. Lewis’ model is conceptually 

similar for a single variable defect type. However, as we have shown, ignoring the time dependence of the 

defect creation and annihilation operators invalidates his and other similarly simple results (Lewis, et al., 

1996).  
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Without correcting for the variable nature of defects, the limiting behavior of the Crine model is 

shown to be non-physical, (see Section 3.2). Crine himself in his most recent published work acknowledges 

that the state of the theory is very incomplete (Crine, 2016b). Other recent work in this area has included 

phenomenological computer modeling of breakdown (Palit, 2014). While we do not claim that the dual-

defect model is not without limitations (e.g., it fails to predict observed ramp rate data), it represents a 

significant contribution to the theory of aging and breakdown in HDIM and has already been recognized as 

such in a new book on the topic (Raju, 2016). While it is still an approximation, we have shown in several 

cases that it is an improvement over the simpler mean field approximation. 

We present what is perhaps the first physics-based modeling of voltage step-up tests. Although the 

results between static voltage endurance time (SVET) and step-up tests in LDPE are not in perfect 

agreement, this represents a step toward establishing an equivalence between the two methods (Dissado and 

Fothergill, 1992). To the best of our knowledge, we also present what is the first theoretical description of 

dc electrical aging that encompasses both dielectric breakdown and DCPD. 

7.2. Important Applications 

Apart from the contributions to the physics theory of aging in HDIM, this work has many practical 

applications. The practical improvements or potential improvements stemming from this work are outlined 

in this section. 

7.2.1. Considerations for DC Dielectric Breakdown Testing 

Sections 4.1 and 4.6.4 outline the operational definition of breakdown developed for MPG ESD 

testing (Andersen and Dennison, 2017). This definition based on a voltage-dependent threshold together 

with the requirement of sustained ohmic breakdown current is much less sensitive to false positives and 

false negatives cited in the ASTM standard test method (ASTM D 3755-14, 2014). The phenomena that 

might otherwise cause false positives such as DCPD or flashover are now clearly identifiable. This test 

method requires continuous or at least intermittent active current monitoring rather than a fuse or breaker 

that will trip with elevated leakage current. 
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Additionally, we show that for step-up tests, slow ramp rates at ~1% of the recommended 500 V/s 

greatly improve the precision and accuracy of tests, due primarily to simply having smaller voltage step 

sizes. 

In Section 6.2.1, we show that there can be significant variation in results for nominally the same 

material. This underscores the need, especially for very sensitive applications, to test the material from the 

same manufacturer and preferably, the same batch of materials as what will be used in application to the 

extent possible. More comments on this are in the Section 7.2.2. 

7.2.2. Considerations for Spacecraft Charging Mitigation 

The primary context for the USU materials physics group (MPG) research for over the past two 

decades has been spacecraft charging effects. To that end, most of the work done in this dissertation was 

with this application in mind. This section reviews considerations stemming from the work done in this 

dissertation that should be of interest to space environment effects engineers. 

The risk presented by electrostatic discharge (ESD) varying greatly from mission to mission 

depending on the specific space environment conditions and spacecraft configuration and relevant time 

scales range from hours (orbital periods) to decades (mission lifetimes) (Dennison, 2015). Depending on 

the space plasma environment, material selection, material thicknesses (either thin films and coatings or 

virtual capacitors set by charge deposition and range) potentials may range from hundreds of volts to tens 

of kilovolts (Dennison, 2015). Spacecraft charging effects mitigation standards offer the following 

guidelines for spacecraft modelers to design spacecraft systems to be immune to the effects of expected 

ESD pulse characteristics and frequencies: 

� Refer to a table of breakdown voltage values for common insulators measured using 

standard methods (NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012;  ASTM D 

3755-14, 2014). 

� For materials not listed in available tables use a conservative estimate. Spacecraft 

charging standards estimate minimum breakdown thresholds—below which spacecraft 

are assumed to be safe from ESD—over a wide range of 1 to 20 MV/m (Rodgers and 
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Hilgers, 2003;  NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012;  JERG-2-

211A, 2012). 

� Test specific materials and components to be used to determine breakdown thresholds 

and add a safety margin either by testing in conditions exceeding expected worse case 

scenarios or simply assuming the thresholds stated above (Rodgers and Hilgers, 2003;  

NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012;  JERG-2-211A, 2012). 

� Given a breakdown voltage threshold, use spacecraft charging software to estimate the 

time the spacecraft will spend at potentials at or exceeding the threshold value and assess 

the ESD threat for the mission (Rodgers and Hilgers, 2003;  ISO, 2011;  NASA HDBK-

4002A, 2011;  Garrett and Whittlesey, 2012;  JERG-2-211A, 2012). 

As we have shown, dielectric breakdown is a complicated, stochastic, process. In the cases of 

sensitive missions and/or extreme charging environments, the concept of dielectric strength may not be 

well approximated by a constant value. Nevertheless, breakdowns strengths are most often represented by a 

single value, perhaps with the occasional caveat that it may depend on thickness or temperature (NASA-

CR-149341, 1972;  NASA-CR-165590, 1982;  Cho, et al., 2005;  NASA HDBK-4006; ISO 11221, 2011;  

NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012). Concurrently, guidelines and relevant 

literature also strongly advise that materials be tested for their specific application (NASA-CR-149341, 

1972;  Ferguson, 2007; ISO 11221, 2011;  NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012; 

JERG-2-211A, 2012). We now briefly discuss how physical theories of breakdown can improve mission 

relevance of tests, what tests to consider, and how to interpret their results. 

As presented As presented in Chapters 2 and 3, physical models of conductivity and breakdown in 

insulating materials are driven by the distribution of electronic defect energies and densities, temperature, 

applied electric field, the time over which a given set of conditions persists, and the history of the materials 

(aging). Assuming static, intrinsic, defect energies and densities, the breakdown strength may vary 

significantly with extrinsic conditions such as temperature and charging rate. One should also be aware of 

aging effects, contamination, or even variations in manufacturing methods or conditions as any of these can 

significantly alter defect populations and therefore charging properties (Dennison, 2015;  Saiki, et al., 
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2015). Breakdown field strengths can evolve as the interaction with the space environment modifies the 

defect distributions and conductivity. For example, radiation damage from the space environment can 

introduce new defects and increase the defect density, thereby affecting the distributions of ESD events. 

For most space missions it is important to bake test samples in vacuo to drive off water and other volatile 

compounds which can significantly affect conductivity, work function and electron emission (Garrett and 

Whittlesey, 2012;  Dekany, et al., 2013;  Andersen, et al., 2015;  Dennison, et al., 2016a). Given these 

effects, consider the following: 

A. Zeroth Order Breakdown Testing 

Look Up a Number. Spacecraft charging standards from different space agencies estimate a lower 

bound for ESD threshold fields below which the risk of ESD is insignificant (Rodgers and Hilgers, 2003;  

NASA HDBK-4002A, 2011;  Garrett and Whittlesey, 2012;  JERG-2-211A, 2012). Although these 

recommended values range over an order of magnitude, it is noteworthy that they represent an ESD design 

criterion that does not depend on temperature, charging history, or even material!  

To estimate such an absolute lower bound in the electric field physically needed to achieve 

breakdown, we assume that breakdown is a cascade process where a liberated charge (e.g., an electron)  

must gain enough energy  through its motion over a distance  through an electric field  to liberate 

additional charges upon impacting another defect. This threshold field is given in one dimension by  

 . 7.1 

it is reasonable to assume that the lowest possible defect energies that could contribute to ESD must greater 

than a few  at room temperature, i.e., >0.1 eV. Assuming a maximum average defect spacing, , 

smaller than 10-7 m gives, as a limiting case, that electric fields below 1 MV/m can be considered safe for 

insulators in general. This agrees with the lowest value cited in a charging standard (JERG-2-211A, 2012). 

For fields above 1 MV/m more consideration is required. Turning from extreme cases to more realistic 

estimates, one can expect ionization energies of 1-10 eV and defect spacings closer to ~10-8 m, resulting in 

minimum breakdown fields on the order of 10-100 MV/m.  

The next logical step might be to be look up the tabulated dielectric strength of the material in 

question. Materials manufacturers, spacecraft charging standards, and other sources list tables of dielectric 
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strengths for many insulating materials. Caveat emptor! These sources most often lack even basic 

experimental details (e.g., test method used, sample preparation, temperature or voltage ramp rate) needed 

to gauge their relevance for a given space mission. Consider Fig. 7.1, which compares breakdown field 

estimates for three common insulating polymers, LDPE, BOPP, and Kapton HN (PI). Fig. 7.1 (a) shows the 

manufacturer’s published values for breakdown for 25 μm films of these polymers; other than noting 

substantially lower values for these materials in bulk rather than in thin films, no uncertainties, qualifiers, 

sample preparation (e.g., cleanliness or vacuum bake out) or test methods are stated explicitly (Goodfellow, 

2016a;  2016b;  2016c). Handbook values can be useful for some applications, or as a starting point for 

comparing materials, but there are simply too many variables to take handbook values for granted when 

materials are to be used on sensitive space missions. 

It is impossible to perfectly simulate both flight conditions and mission durations on the ground; 

however, considering mission conditions and possible changes in material properties over mission lifetimes 

can guide accelerated test methods. Taken together, tests such as the following begin to predict how 

materials’ likelihood for dielectric breakdown can change with different conditions. 

B. First Order Breakdown Testing: Voltage Step-Up Tests 

First, establish a nominal room temperature breakdown field using voltage step-up to breakdown 

tests with a moderate ramp rate (Moser, et al., 2017). Industry standard test configurations subject samples 

to up to 500V/s (NASA HDBK-4002A, 2011;  ASTM D 3755-14, 2014). Not only is this charging rate 

orders of magnitude faster than any realistic operational condition encountered by spacecraft (NASA 

HDBK-4002A, 2011;  Garrett and Whittlesey, 2012), but accuracy and precision of such tests suffer 

significantly as a result (Moser, et al., 2017). Standard ESD tests performed by the MPG typically use a 

conservative, though still very rapid compared with space applications, ramp rate of 20V/4s at room 

temperature (see Chapter 4). 

The careful interpretation of voltage step-up tests is important for estimating the fields at which 

ESD is likely to occur. At least 50 of our standard ESD tests were performed on each of the materials in 

Fig. 7.1; Fig. 7.1 (b) shows the averages and standard deviations together with error function fits to the 

data. This method assumes a Gaussian distribution of the results. 
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FIG. 7.1. Successively more accurate representations of dielectric strength for LDPE, BOPP, and PI 
(Kapton). (a) Manufacturer values (see Appendix D). (b) Averages and standard deviations with underlying 
error function fits to USU step-up tests. (c) Empirical cumulative distributions of USU step-up tests.    

(a) 

(b) 

(c) 
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Figure 7.1 (c) is the empirical cumulative distribution (ECD) of the results. For each material, the 

ECD predicts higher probability of breakdown at lower fields than predicted by a Gaussian or other 

symmetrical distributions. A well-chosen physics model or a Weibull distribution would be better-suited 

fitting function for modeling this behavior (see Chapter 5). Thus, a more accurate average breakdown 

threshold may be significantly lower than what one would expect from application of just an average and 

standard deviation of voltage step-up test results. This has important consequences in establishing the 

highest acceptable field in a given spacecraft or component design, especially for missions with long 

duration or for low tolerance of the number of acceptable ESD events. That is, even low probability events 

at low fields can pose unacceptable risks for long missions or for low fault tolerance systems. This 

reinforces the importance of measuring and considering a field-dependent probability distribution of 

breakdown strength over a single average value. 

C. Second Order Testing: Varying Key Test Parameters 

Given this baseline, voltage step-up tests at different temperatures, radiation doses, or different 

ramp rates can be done to determine the dependencies of the material in question (see 4.4, 4.5, and 5.4.2). 

For example, SVET experiments hold a sample below its nominal breakdown voltage and measure the time 

to breakdown. Samples held at subcritical voltage for prolonged times—as will typically be encountered in 

space applications—can eventually breakdown. In essence, SVET tests determine the time a sample must 

be held at a given subcritical field before a significant probability of breakdown is reached. See Fig. 6.2. 

The time required to obtain these data was 68 days of instrument time making it likely to be impractical to 

obtain such results for many different candidate spacecraft materials. Results from smaller data sets at 

fields near the nominal electrostatic breakdown field can be fit to empirical or physical models in order to 

extrapolate the results to the comparatively very slow ramp rates and much longer times typical of 

spacecraft missions. 

An important open question in the study of ESD is whether there is a threshold field below which 

breakdown will not occur (Crine, 2005b). Measurements shown in Fig. 6.2 taken at fields below 130 MV/m 

did not observe breakdown for several weeks, suggesting that there may be a threshold field below 17 
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MV/m for LDPE. Unfortunately, the time required to obtain the data necessary to definitively establish 

such threshold fields can be extremely long. 

Arcing tolerances and risks will depend on individual spacecraft or systems and space 

environments. Therefore, modelers will have to ask themselves how much risk they can tolerate and how 

much testing is feasible given budget and time constraints. 

In summary, we offer the following considerations when selecting breakdown thresholds for use 

in models. 

� Define your mission parameters and requirements then tailor ESD tests, together with 

materials and components, to be as close to worst case flight conditions as possible. 

Dielectrics that will experience fields less than 1 MV/m are very unlikely to be at risk for 

ESD. 

� Handbook values for breakdown are not wrong, but they were often developed for very 

different applications (e.g., breakdown tests in oil with a pin electrode at 500V/s). 

However, these handbook test values are often inappropriate for spacecraft charging 

applications, or should at least be used with great care. 

� Breakdown is not well characterized by as single number. Consider a probability 

distribution that depends not only on the material, but also on the conditions it is 

subjected to over time (Andersen and Dennison, 2015a;  Andersen, et al., 2015;  

Dennison, 2015;  Saiki, et al., 2015). The acceptable probability for a given mission 

needs to be determined by considering mission objectives and ESD tolerances. 

� Taken together, SVET tests, tests at different ramp-rates, total radiation doses, and 

temperatures, can be used to more accurately estimate material behaviors, particularly at 

subcritical fields, extended radiation exposure times, slower ramp rates of field build up, 

and different temperatures. 

� Physics-based or even well-chosen empirical models can estimate behavior of materials 

for times and conditions not achievable with testing of materials through judicious 

extrapolation (Andersen and Dennison, 2015a;  Andersen, et al., 2015;  Dennison, 2015). 
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7.2.3. Potential for Highly Accelerated DC Dielectric Strength Testing 

We have shown several materials have been observed to exhibit a phenomenon that may serve as 

an early indicator of electrical breakdown (see 4.6.5, 4.7, 5.5, and 6.2.5). Q-q analysis shows that DCPD 

correlate strongly to the distribution of ESDs (6.2.5). Given that there are most often many non-shorting dc 

partial discharges per destructive breakdown test, measurements of the distribution of non-shorting dc 

partial discharges with applied field could be used as an accelerated means of estimating ESD threshold 

fields. If resources for only a few voltage step-up tests are available, the destructive breakdowns alone are 

unlikely to yield information about the threshold field (as seen in Fig. 7.1 (c) only a small fraction of total 

events occur at the lowest fields). However, the numerous non-shorting dc partial discharges are much 

more likely to reveal lower fields with small likelihoods of breakdown but that become more and more 

significant at long endurance times. One possible method of establishing the threshold for DCPD, and 

therefore breakdown, would be to repeatedly ramp up through voltages where both DCPD and breakdown 

are relatively unlikely but still possible. An example of such a test is shown in Fig. 7.2 (a). In this test, a 

sample of 25 μm LDPE was ramped up to 4000 V ten times. Note that less than 12% of DCPD in such 

LDPE films are observed below 4000 V (157.5 MV/m). The lowest voltage of a DCPD trace was 3081 V 

(121.3 MV/m), which would have less than a 9% chance of occurrence in a standard destructive tests based 

on the cumulative distribution of events for LDPE used in 6.2.5. Figure 7.2 (b) is a histogram of the 

observed DCPD in each ramp-up, corrected for the large-amplitude events encompassing multiple fast 

DCPD as discussed in Section 4.7. It appears that the DCPD count per run is decreasing exponentially with 

successive ramp-ups, which might make these tests less effective. However, if the second ramp-up is an 

anomaly, that may not be the case. Additional tests are needed to establish whether DCPD consistently 

decrease with successive ramp-ups. While this is only a preliminary test, such a method could be used to 

improve estimations of DCPD and breakdown thresholds especially if only a small number of samples are 

available for testing.  

7.3. Summary of Dissertation 

Having (nearly) come to the end of this dissertation, what follows in this section is a summary of 

the key points in each chapter. 
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FIG. 7.2. Non-destructive test of LDPE to probe DCPD at lower voltages. (a) Ten voltage ramp-ups to 
4000 V (black dots) together with DCPD traces (cyan crosses). (b) Histogram of corrected DCPD with one 
bin per voltage ramp-up and an exponential decay fit (black dash). In step-up to breakdown tests, only 
~12% of DCPD happen below 4000 V. The traces with the smallest voltage (3081 V) has less than a 9% 
chance of occurrence in a destructive test.  

(a) 

(b) 

Chapter 1: Introduction. This short chapter is an introduction to the importance and difficulty of 

researching dc electrical aging of HDIM. From a scientific perspective, HDIM are an interesting and 

difficult problem due to the complexity inherent in a lack of any long-range structure to the material. 

Approximations are needed to provide theoretical descriptions and a balance must be sought between 
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theories that work reasonably well and the complexity that comes with considering which assumptions to 

make. This work is primarily concerned with spacecraft charging applications, as ESD is the primary cause 

of spacecraft failures and anomalies due to the space environment. Other uses include estimating the 

lifetime of dielectrics for HVDC power applications and micro- or nanoelectronics. 

Chapter 2: Theoretical Background. After a brief review of band theory in crystalline solids, a 

review of the physics of charge transport in amorphous solids is presented. Conductivity in HDIM is a 

function of the spatial and energetic density of states of localized defect states and temperature. By 

considering a mean field theory of runaway thermally assisted hopping, one can derive the canonical 

physics-based model of dialectic aging—the Crine model. 

Chapter 3: Theoretical Development. A simple extension of the mean field theory is presented that 

considers two defect species rather than one. These defect types are high-energy (deep) chemical defects 

and low-energy (shallow) physical defects. Low-energy defects may be close enough to the thermal energy 

so that they have considerable creation and recovery rates. This theory is used to predict the time to 

breakdown for SVET tests and the likelihood of breakdown during a voltage step-up test. Voltage ramp-

rate effects are also considered. Considering recoverable defects leads to a correction in the limiting 

behavior of the breakdown theory and a conceptual physical model for dc partial discharge (DCPD). 

Chapter 4: Experimental Methods. The test equipment and test procedure for dielectric breakdown 

tests are outlined. Each test configuration is discussed in context with the relevant theory. An enhanced 

operational definition of breakdown is outlined. Observed phenomenon are discussed, with particular 

attention given to DCPD. Supplementary measurements of DCPD observed during breakdown tests are 

presented. 

Chapter 5: Analysis. This chapter outlines the methods used to evaluate ensembles of tests. 

Methods for empirical Weibull fits and physics-model fits are discussed. We discuss the q-q analysis for 

comparing DCPD and breakdown events. 

Chapter 6: Results. The results of the statistical comparisons of the theoretical models to the 

experimental data are presented. Fits to voltage step-up tests resulted in physically reasonable values with 

physics-based fits. SVET data for LDPE showed excellent agreement with the dual-defect model presented. 
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Voltage ramp-rate dependent tests did not agree will with the theoretical predictions. Initial results for 

temperature and radiation-dependence are discussed in context of the theory. Finally, we show excellent 

agreement between the distributions of breakdown and DCPD events for four polymers. 

Chapter 7: Conclusions. The dual-defect model is a significant contribution to the advancement of 

the physics of aging in HDIM. Without adding too much complexity, it offers significant improvements in 

many cases over the single defect mean-field approximation. The correlation of DCPD and breakdown 

events may lead to substantial improvements in material characterization. Considerations for testing for 

terrestrial and space-bound applications are discussed. A roadmap for future work in this field is presented. 

Appendix A: Instrumentation Procedures. Detailed instructions are outlined that cover sample 

preparation, testing, and long term storage. The proper use, maintenance, and troubleshooting the relevant 

Materials Physics Group equipment is described. 

Appendix B: Error Analysis. This describes the estimation of experimental uncertainties and their 

propagation into calculations. Statistical confidence intervals for empirical cumulative distributions are 

discussed.  

Appendix C: Details of Data Acquisition and Processing Software. This appendix outlines the 

flow of data and the software used to acquire and processes it. The processing of individual test results and 

the details of synthesizing groups of tests is described. 

Appendix D: Materials Data. Manufacturers’ values for relevant physical properties are listed for 

the materials used in this dissertation. 

7.4. Future Work 

It seemed that most questions, when answered, lead to further questions. This section outlines 

some of the questions that have been raised during this research that time and resources did not allow to be 

addressed and must be left to future work. This section will serve as a roadmap for further research in this 

area, particularly by members and future members of the MPG. 
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7.4.1. Theoretical Work 

This dissertation has shown both advantages and disadvantages to the dual-defect model. The area 

with the poorest agreement between predictions and results was the ramp-rate predictions (see 6.2.3). The 

product series used in  

            3.7 

assumes that each voltage step is independent of all others and does take into account changes in defect 

concentrations. To relax this assumption, one must solve 

   3.13 

without ignoring the critical time dependence of Eq. 3.16 inherent in , considered here as 

. 

   3.16 

As discussed in 3.2.1, this would require numerical techniques with results highly dependent on 

both the individual material in question through , , and extrinsic considerations such as 

temperature and applied field. Attempts to date to create such a numerical routine have not yet been 

successful and have had to be left for future work. 

Solving this differential equation will allow one to consider materials as truly dynamic defect 

density dependent on , , and  ( ) could be one way to characterize the effect of aging on a 

material. Given, , one could trivially update predictions to Eq. 3.7 or indeed the SVET 

equation, Eq. 3.2. It is likely that such an improvement may reconcile the discrepancies between defect 

energies derived from step-up tests and SVET tests that we see. Additionally, one might directly predict 

and model DCPD, as changes in  will affect the likelihood of breakdown as discussed in 3.2. 

There is still disagreement on the physical process that deforms the defect energy when an 

external electric field is applied (see 3.2.1). To summarize, proposed mechanisms include simply the 

energy gained by the motion on an electron in an applied field , the 1D Maxwell stress 
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( as used in this dissertation), or electrostriction which grows faster than  (Crine, 2016b). 

Related questions are clearly establishing nature of  (which we have assumed to be in inverse defect 

density but this is not always clear in the literature) (Crine, 2007;  2016b), and explicitly building into the 

theory a physics-based threshold field at which the static voltage endurance time goes to infinity or the 

probability of breakdown goes to zero. 

7.4.2. Recommended ESD System Upgrades 

The following are recommended upgrades to the USU MPG ESD test system as resources become 

available. 

� Smaller current limiting resistors, approximately 20-40 MΩ. This would reduce the 

voltage drop due to field-enhanced conductivity (see 4.6.5) by an order of magnitude. 

Although this is rarely an issue, it would be better to mitigate it if materials with 

significant field-enhanced conductivity (e.g., Kapton E) are to be tested. Reducing the 

current limiting resistance also reduces the instrumental response time constant.  

� More sensitive ammeter, down to 0.001 μA for improved sensitivity to DCPD and field-

enhanced conductivity. Faster ammeter response would be desirable; this would allow 

smaller voltage increments to be used at a given ramp rate and permit multiple current 

measurements over a given ramp time increment. 

� Feedthroughs, particularly power and TC feedthroughs, rated to higher voltages to 

increase the voltage range of the setup without external arcing. The present 

configurations limit the maximum applied voltage to ~13-15 kV rather than the 30 kV 

power supply limit. This would allow testing of thicker samples. 

� Thermocouple multiplexer for automated temperature measurements. 

� Multiple in-situ RF antennas and oscilloscope for PD detection and localization. A 

broadband antenna such as a Rogoswski coil would enable spectral analysis in addition to 

detection (Chen, et al., 2017). 
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� Additional vacuum gauge on the chamber side of the main valve. This would improve 

measurements of pressure in the chamber itself rather than at the pump and allow for 

improved leak checking. 

� Include DUT voltage plots (e.g., Fig. 4.11) as a standard output of the MPG analysis 

macro. This would automatically correct for any issues, though rare, when the DUT 

voltage does not match the output voltage. 

� Addition of a second parallel test apparatus would double sample throughput.  

Additionally, an second test setup with the capability to do large-area breakdown tests (Xu, et al., 

2008;  Rytöluoto and Lahti, 2013;  Rytöluoto, et al., 2015;  Kerwien, et al., 2016;  Rytöluoto, 2016;  

Ritamäki, et al., 2017b). Such a setup would allow us to directly compare our existing tests to this popular 

new method. Such a chamber could be the first for in vacuo large-area self-healing breakdown 

measurements. To my knowledge, the large-area self-healing film electrode method has not yet been 

applied to SVET tests. While it is not completely clear that non-destructive tests comply with the 

assumptions of Weibull statistics of independent different discharge events, they may be ideal for SVET 

measurements, as the test would continue with multiple breakdowns until the electrodes are spent. This 

could be very helpful for accelerating what is perhaps the most difficult and time-consuming breakdown 

test type. Note that in this test method, it is more difficult to distinguish DCPD and breakdown (Rytöluoto 

and Lahti, 2013;  Ritamäki, et al., 2017b). 

7.4.3. Experimental Work at USU 

There is practically no end to the tests that would be interesting to do. Of particular interest might 

be ceramic or glassy materials, multilayer dielectrics, or nanodielectrics. Testing new materials or, even 

additional tests of previously tested materials, would surely yield interesting results provided sufficiently 

many tests are done for each type to get decent statistics (see the results for PEEK in 6.2.1). Given the 

results of the work presented in this dissertation, the following are suggested to be pursued first by the 

MPG: 

� As implied by the preceding section, it would be helpful to use multiple RF antennas to 

locate DCPD. Sub-nanosecond time resolution would be needed to obtain spatial 
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resolutions on the order of centimeters. This would be possible with 10 GHz multi-

channel storage oscilloscope. While one could say where in the plane of the sample a 

DCPD would occur, this method would not be capable of finding at what depth in the 

sample DCPD occur. If broadband antennas are used, spectra may provide further 

insights into DCPD. 

� Section 6.2.4 presents the results of preliminary tests on the effects of temperature and 

radiation. Further tests at different temperatures and total ionizing doses are needed to 

confirm the trends hinted at in this section. Particularly of interest, is the identification of 

the glass phase transition and its effect on the temperature dependence of breakdown 

starting with more temperature-dependent tests of LDPE. Tests of irradiated samples as a 

function of time after applied dose could probe defect recovery effects. 

� In 3.2 we consider the dynamic nature of the materials yet we do not consider the 

variability of the relative permittivity . While this is not likely to be a large effect, the 

MPG has recently acquired the capability to directly measure  and it would be 

interesting to compare it for aged (voltage increased to DCPD levels but tests stopped 

prior to breakdown) and un-aged samples. This could compliment breakdown and 

conductivity measurements on the effect of temperature, total ionizing dose, and dose rate 

through the modification of the defect density.  

� The MPG has a significant library of optical microscope images of breakdown sites (see 

Appendix A). To date, no damage has been observed for samples that have exhibited 

DCPD, but have testing terminated prior to breakdown. It would be interesting to 

compare SEM images of untested samples, aged samples (DCPD, but no breakdown), 

and breakdown damage. 

� In section 5.5.2 we noted that many of the larger breakdown damage sites violate the 

adiabatic breakdown assumption. More work needs to be done to look at the breakdown 

site size and shape trends. A continuation of Hansen’s study of the characteristics of 
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breakdown damage in different materials with comparisons of materials, temperatures, 

and post-breakdown behavior may be of interest (Hansen, 2014). 

� To continue the study presented in 6.2.3, additional voltage ramp rate tests, especially 

similar ramp rates at different profiles (e.g., 20 V per 4 s, 5 V per s, 100 V per 20 s).  

� Static voltage endurance time (SVET) tests in LDPE showed the best agreement to the 

dual-defect model of any test presented in this dissertation (see 6.2.2). Nevertheless, more 

LDPE tests at lower waiting voltages are needed to probe the existence of a threshold 

field. SVET tests on other materials, especially other materials described in this 

dissertation such as PI, BOPP, and PEEK, would be valuable in generalizing the result 

reported for LDPE to other materials. 

� More tests for DCPD at low field with low probability of occurrence (see Fig 7.2) to 

study the threshold field. Confirmation that multiple scans for DCPD can be taken on a 

single sample for subcritical field ramps may lead to a new test method. Possible test 

configurations include repeated ramp-ups, ramping up then ramping down, or low-

voltage SVET tests to observe DCPD.  

7.4.4. Round Robin Tests: DCPD and Breakdown Correlation 

While 6.2.5 demonstrates a strong correlation between DCPD and breakdown events in four 

materials, this is the first such study. There has been significant discussion in the community as to the 

merits of such tests, the physical origins of DCPD events, and the proposed correlation of DCPD with 

breakdown field distribution (Rytöluoto, 2016;  Andersen and Dennison, 2017;  Boggs, 2017a). Before 

DCPD distributions can truly be considered proxy for ESD distributions, this would have to be established 

by studies at other institutions by other research groups. We call on other researchers with the capability of 

detecting DCPD during voltage-step-up tests to compare the distributions of DCPD and breakdown. Given 

a successful Round-Robin tests campaign, the results could lead to a new standard method for highly 

accelerated characterization of the likelihood of breakdown under dc fields for dielectric materials.  
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FIG. A.1. Sample preparation area in room 217 A. 

9. APPENDIX A 

 INSTRUMENTATION PROCEDURES 

This appendix contains the detailed procedures for the Materials Physics Group (MPG) 

electrostatic discharge (ESD) testing. The procedures outline sample preparation prior to testing, test 

procedures, and post-test sample handling and storage. This document is the cumulative effort of many 

MPG members including Amberly Evans-Jensen, Anthony Thomas, Charles Sim, Dan Arnfield, Sam 

Hansen, Steve Hart, Tyler Kippen, and Allen Andersen. 

9.1. A.1.   Sample Preparation 

(a) Samples are to be cut, cleaned, and mounted in the sample prep room (SER 217A).  Wear 

gloves throughout preparation. 

(b) Create a sample preparation area by laying down an area of aluminum foil, shiny side up, on 

the clean air bench in SER 217A. When working, the air should be flowing. Replace the white 

plastic curtain when finished. Ensure that sample preparation area is clean by spraying with 

methanol and wiping with a Kim wipe (Fig. A.1). 

(c) Clean all sample plates or other mounting hardware to be used with methanol. 
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FIG. A.2. Materials needed for sample prep: (left to right) knife, screwdriver, HV plate, and sample 
template. 

(d) Make sure the recessed portion of the base of the bakeout chamber is clean (except for edges 

where the O-ring sits). See Fig. A.7. 

(e) Gather necessary materials (other than samples) and clean with methanol. These include: 

knife, screwdriver, HV plates, sample template, rods and nuts for baking (Fig. A.2). 

9.1.1. A.1.1.   Cutting Samples 

Samples can be cut individually using a Plexiglas template (far right of Fig. A.2) or with the 

Creation PCUT CTE630HPGL sticker cutter machine (recommended). Detailed instructions for the sticker 

cutter can be found on the Big Blue MPF file server under 

Z:\Instruction & Procedures\Procedures\Sample Preparation\Sticker Cutter 

For manual cutting, please observe the following steps: 

(a) Retrieve the sample material, and if necessary, cut off a workable piece (some materials come 

in large rolls). 

(b) If samples are not thin film, they should be cut approximately to 1.75 in. by 2.75 in. This will 

ensure that they are larger than the electrode guard plates in the CV or ESD chambers. 

(c) If samples are thin film, they should be cut using the sample template. Do the cutting in the 

designated cutting area. Place the template over the sample, and while applying firm pressure 

to the template, cut around it with the knife. 
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FIG. A.3. HV plate showing mounting clamp. 

(d) If samples are stretchy, use extra caution not to stretch the samples. In any case, avoid 

bending, creasing, or any other physical abuse. 

9.1.2. A.1.2.   Sample Cleaning and Mounting 

(a) Clean the samples in the designated area only. 

(b) Spray sample with methanol and gently wipe with a Kim wipe. Repeat for both sides. 

(c) Carefully inspect samples for any residual dust particles. Repeat previous step as necessary. 

(d) Because many samples charge up and attract dust in the air, turn on the fan on the clean air 

bench. The switch is under the table on the right side. 

(e) If samples are not thin films or are smaller than the standard sample size, this section is not 

relevant. 

(f) Samples are mounted on HV plates, which are used in both the ESD and CV chambers. Two 

Plexiglas clamps on either end of the plate secure the sample in place (Fig. A.3). 

(g) It is easiest not to remove the clamps, but rather to loosen them, and insert the sample. 

(h) Insert the sample on one end of the HV plate and tighten. (Fig. A.4) Insert in other end. Pull 

the sample taut (but do not overdo it) and tighten the other end. Avoid touching the central 

regions of the sample during this process. 
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FIG. A.4. Sample mounted halfway. 

FIG. A.4. Baking stack being built. 

(i) Stack multiple plates together on the stacking plate and fasten samples on the stack mounting 

jig with one nut at the top of each rod, as shown in Fig. A.5. Up to 20 sample plates can be 

mounted this way at one time. 

9.1.3. A.1.3.   Bakeout 

(a) Place all samples in the center of the bakeout chamber (Fig. A.6). If samples are not mounted, 

ensure that they are in sufficient contact with the chamber to ensure efficient heat transfer. 

(b) From here on, avoid touching samples; gloves may be removed. 

(c) The O-ring in the bakeout chamber does not fit well. Do not place it in the groove in the lid 

(the O-ring does not like to stay there and you risk dropping a greasy O-ring on your samples 

when putting the lid on). Rather, place it in the base, making sure it is seated an even distance 

from the edge. See Fig. A.7. 



154 

FIG. A.6. Bakeout chamber. 

FIG. A.7. O-ring seated around recessed portion of base of chamber. 

(d) Gently place the bakeout chamber lid on the base. Rotate it back and forth a few degrees to 

ensure that the O-ring is seated well. 

(e) Start the diffusion pump system as follows. This will prepare the pump system while it is 

isolated from the sample chamber. 

i. Insert the bakeout chamber into the oven (Fig. A.8). Take care to keep the 

chamber level. Attach the thermocouple to the bakeout chamber by 

pinching it beneath nut (Fig. A.10). Attach the vacuum hose using the 

quick-connect O-ring and clamp (Fig. A.10). Make sure the valve on the 

chamber is open. Close the oven door. Note: Use caution when opening and 

closing valves. The slower the better. Do not crank down on the valves. 

They will strip out. A snug fit will seal just the same as a super tight fit. 

ii. Make sure all valves (A, B, C, D) are closed (Fig. A.9). 

iii. Turn the "Power" on the pumping station. 
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FIG. A.8. Oven and pumping station. 

FIG. A.9. Pump system valves (center), mechanical pump, bottom. 
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FIG. A.10. Chamber in oven.  Note vacuum connection (A), main valve (B), and thermocouple (C). 

FIG. A.11. Cooling fan and diffusion pump. 

iv. Switch on the mechanical pump. 

v. Note: Ensure the diffusion pump fan comes on when the mechanical pump 

is turned on (Fig. A.11). Otherwise, the diffusion pump will overheat. 

vi. Slowly open the foreline valve (A) and evacuate the diffusion chamber. 

vii. Continue pumping until TC1 gauge reads approximately 10-1 Torr. (TC2 

gauge will not be used until crossover). It is best to have the needle buried 

below this limit, but TC1 Gauge has a lot of noise in it and therefore will 

usually not stay steady at high vacuum. If the gauge does not read, try 

unplugging it then plugging it in again. 
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viii. Turn on the diffusion pump. The pressure may go up a little due to gas 

molecules being released from the fluid. Let the diffusion pump warm up 

for 20 minutes before turning on the ion gauge. 

ix. Turn on the ion gauge. Note: To ensure the ion gauge is not damaged, make 

sure the pump has been running for at least 20 minutes before turning it on. 

If the gauge is not down to at least 10-3 Torr, turn off the ion gauge and 

check the valves to make sure only the foreline valve (A) is open. If you are 

nervous about damaging the gauge, just turn on the gauge for a couple of 

seconds to test where the pressure is. Most likely it will be in the correct 

range because the mechanical pump can get down to 10-3 Torr range by 

itself. 

(f) Crossover: This is to be completed after previous start up procedures have been finished for 

about 20 minutes. This will provide high vacuum for the diffusion pump system to the sample 

chamber. 

i. Ensure the sample chamber vacuum line is connected to the diffusion pump 

system inlet port on the top of the cart. 

ii. Close the foreline valve (A). 

iii. Open the rouging valve (B). This will allow the mechanical pump to begin 

pumping out the sample chamber while isolating the diffusion chamber. If 

you hear loud and/or high pitched noises from the chamber area there is a 

major leak indicating a poor seal on the O-ring. If this happens close (B) 

and open (A). Re-evaluate the O-ring seal. It may just need minor 

adjustments and/or cleaning and re-greasing. Once the lid is back in place 

attempt to start back at step (f) ii. 

iv. Evacuate (rough) the sample chamber until the TC2 gauge is at least below 

10-2 Torr. This will ensure the ion gauge will not be damaged. Occasionally 

this gauge is not responsive. Try unplugging it then plugging it back in or, if 
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you confirm that the rough vacuum is holding down the chamber lid and 

you are confident everything is working besides the gauge, wait ~10-15 

minutes before proceeding (note that there is some risk when proceeding 

with a gauge malfunction). 

v. Close roughing valve (B). 

vi. Open foreline valve (A). TC1 gauge may read a much higher pressure than 

the diffusion chamber because it is on the backing side of the diffusion 

pump. This is normal. 

vii. VERY SLOWLY open the main high vacuum valve (D). The valve does 

not need to be open all the way until it stops. A few turns will do. This will 

create a pumping path from the sample chamber to the diffusion pump and 

then to the mechanical pump. 

viii. Continue watching the gauges for a few minutes to ensure vacuum is still 

happening. After a short time TC2 gauge should be buried below the zero 

mark. Turn on the autorange switch for the ion gauge.  At this point, refer to 

Appendix C for the bakeout program instructions. Complete the bakeout 

before proceeding with vacuum shut down. 

(g) Shut Down: This will properly shut down the system so there is no damage to the diffusion 

pump. Proceed with this section only after the sample oven has cooled to ambient room 

temperature. Note: Proper cooling of the diffusion pump before exposure to atmospheric 

pressure is important to the life and stability of the pump fluid. Repeated insufficient cooling 

periods can be harmful. 

a. Option 1: Complete Shutdown 

i. Turn off the diffusion pump. 

ii. Let the mechanical pump and cooling fan run until the pump is cooled down 

to room temperature (~20 min.). 

iii. Turn off the mechanical pump. The fan will shut off as well. 
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iv. Backfill to atmospheric pressure through the vent valve (C) located on the 

upstream side of the diffusion pump. This will ensure that no mechanical 

pump fluid vapors are swept into the pumping system. 

v. Close all valves (A,B,C,D) and turn off the power. 

b. Option 2: Quick turnaround 

i. Isolation of the diffusion chamber may be desired if a quick turnaround for 

a re-pumping is needed or the sample chamber needs to be opened before 

the proper cooling time for the diffusion pump could be achieved. If this is 

the case, do the following: 

ii. Isolate the diffusion chamber by closing the foreline (A) and main high 

vacuum (D) valves. This can be done before it has cooled. 

iii. Turn off the mechanical pump. The fan will shut off as well. 

iv. Ensure that only the roughing valve (B) is open. Backfill to atmospheric 

pressure through the vent valve (C) located on the upstream side of the 

diffusion pump. Only valves (B) and (C) should be open. This will ensure 

that no mechanical pump fluid vapors are swept into the pumping system. 

v. Once the crossover is complete and the chamber lid is back in place, return 

to step (f) i. in beginning of the Crossover instructions. 

(h) Finishing Bakeout 

i. All thin-film samples currently being used need to be baked at temperature 

for 72 hours (Gillespie, 2013). Time must be allowed for warm-up and for 

cool-down. Plan accordingly. 

ii. If necessary, stop the bakeout program by hitting the 'stop' button, but you 

should keep collecting data as the chamber cools down. 

iii. Turn off the oven. The oven door may be opened for quicker cool-down. Do 

not continue until the chamber reaches room temperature. 
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iv. Turn off the diffusion pump. Let it sit for 20 minutes to allow the diffusion 

pump to be cooled to room temperature. 

v. Close the foreline pump and inlet valves (A,D) to isolate the diffusion 

pump. 

vi. Turn off the mechanical pump. 

vii. Connect the hose from the nitrogen cylinder to the leak valve at (C). Open 

the cylinder and begin nitrogen flow. Open main valve (D) to start flow, 

close it to finish. 

viii. Open the leak valve (C) and allow chamber to reach atmospheric pressure. 

ix. Close the leak valve (C), close the chamber main valve (D), and stop 

nitrogen flow. 

x. Disconnect the thermocouple and vacuum hose. 

xi. Move the chamber to near the glove box. Samples will be stored in a 

nitrogen environment in the glove box until use. See MPG glove box 

procedures. 

(i) Documenting Sample Preparation and Bakeout 

i. Record the bakeout in the bakeout logbook. Include material prepared, 

plates used, person preparing, date of bakeout, etc. …  

ii. Update white boards on the wall in SER 217 (Fig. A.12). Take care not to 

smudge previous entries. 

iii. Fill out the Bakeout Excel sheet. There is a template at Z:\Data & Analysis 

Folder\Data\Sample Preparation\Sample Bakeout or use the link Bakeout 

Template and save in the bakeout excel sheet folder for that year. 

iv. Save the raw text file in the bakeout file folder for that year. 

9.1.4. A.1.4.   Storage and Handling 

Samples are stored in the dry N2 glove box (Fig. A.13) until use. The location of all samples that 

have been prepared is to be recorded on the Sample Board (Fig. A.12) and updated each time a sample 
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FIG. A.13. Glove box. 

FIG. A.12. Sample board in room 217. 

location is changed. The sample board is a quick reference for determining the quantity of samples ready to 

test and the relevant information of samples to be used or currently in use. Any exposure to air during 

sample relocation and mounting should be minimized. Nitrile gloves should always be used and any 

contact with the sample material itself should be avoided, even with used samples. 

9.2. A.2.   USU ESD System 

WARNING: THE ELECTROSTATIC DISCHARGE CHAMBER OUTPUTS SEVERAL 

THOUSAND VOLTS! IT CAN BE DANGROUS AND POSSIBLY FATAL IF NOT OPERATED 

PROPERLY. MAKE SURE ALL CONNECTIONS ARE SECURE AND THE CHAMBER IS 

PROPERLY GROUNDED BEFORE CONTINUING WITH ANY EXPERIMENTS. REFER TO THE 
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FIG. A.14. Sample plate with high voltage wire attached. 

SCHEMATIC HANGING ON THE WALL NEXT TO THE CHAMBER IF THER ARE ANY DOUBTS 

ABOUT GROUNDING. 

9.2.1. A.2.1.   Startup Procedures 

9.2.1.1. A.2.1.1.   Room Temperature Tests 

Always use nitrile latex gloves when handling the inside of any high vacuum chamber! 

Contaminates prevent the chamber from reaching optimal, operational pressures. In addition, oil from 

human skin is a conductor and even a slight amount can create undesired conduction paths. 

(a) Attach the red high voltage (HV) lines to the sample plates and note which plate number is 

attached to which line (Fig. A.14). As a rule of thumb, line A should be attached to the plate 

which has the smaller number written on it. The two wires for line B (red high voltage and 

white Teflon) have metal rings around them they will not be mixed up (Fig. A.15). The 

electrode plate is also etched with A and B sides for reference. 

(b) Create the sample stack (bottom to top): 

i. Polycarbonate base plate 

ii. HV electrode plate 
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FIG. A.15. High voltage (HV) wires which attach to the sample plates. Note the metal rings on the B HV 
wires. 

iii. Sample plates (sample-side down) 

iv. Polycarbonate insulating layer 

v. Aluminum cryogenic reservoir 

The stack is held together by four custom compression screws (Fig. A.16). When tightening 

down the compression screws, thread them down until they are just barely catching on the 

springs. Then, in alternating fashion, screw each down an equal amount of turns using an 

Allen wrench. About 4 full turns are all that are needed to achieve the right amount of sample 

contact pressure of a few hundred kPa, in compliance with standard methods (ASTM D 257-

99, 1999). 

(c) Close the chamber lid and pump down. Check, clean, and regrease the O-ring as needed. Wait 

until the pressure is around 10-5 mbar before operating the chamber. (For reference use the 

“ESD Chamber Startup Checklist” found at Z:\Instrumentation\Chambers&Systems\ESD\ 

Documentation\Instructions & Procedures) If the main chamber is under vacuum with the 

main chamber valve closed but the pumping system is off pump the vacuum system to 100 
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FIG. A.16. The sample stack assembly with compression screws. Compression screws are indicated by the 
yellow arrows. 

mbar or lower before SLOWLY opening the main chamber valve. Do this even if the chamber 

is under vacuum and only venting is required. 

(d) Check the following connections: 

i. “HV monitor” port (Fig. A.17 a) to the Meterman set for voltage 

measurements (Fig. A.17 b) 

ii. “Electrode current” port (Fig. A.17 c) to the Meterman set for current 

meausrments (Fig. A.17 d) 

iii. Optical sensors from the top of each Meterman to serial ports of the 

computer 

iv. Ground wire cluster from left feedthrough to the back of the HV switch box 

(Fig. A.18) 

v. Plug the blue wire on the switch box to red “A” dock and the brown ground 

wire into the black dock, beneath the red “A” dock (Fig. A.19). 

(e) Plug the white HV wire into one of the high voltage feed through leads (Fig. A.20). 
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FIG. A.17. ESD Metereman 38XRA multimeters and HV switch box. (a) HV Monitor: the white circle is 
where the other end of the HV multimeter cable in (b) connects.  (b) HV multimeter, the yellow circle 
indicates the position this meter needs to be set in order to measure voltage. Note the position of the plugs 
outlined in white. (c) Current monitor connection highlighted in the white circle (d) Current multimeter, the 
yellow circle indicates the position this meter needs to be set in order to measure current. Note the position 
of the plugs outlined in white. 

FIG. A.18. (a) Grounding bundle attached to the outside of the ESD switch box. (b) Grounding bundle 
attached to the outside of the chamber. There is only one way these two connectors (outlined in yellow) 
will attach to their respective plugs. 

  



166 

FIG. A.19. Testing position of blue HV wire and grounding wire (left). Blue HV wire plugged into red 
“HV A” dock. Grounded positions shown right. 

FIG. A.20. High voltage feedthrough to the chamber.  The unused feedthrough has been damaged and 
although it is vacuum safe it is not suitable for ESD tests. B1 is the center pin. Clockwise from the unused 
pin are A1, A2, A3, B3, and B2. 
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FIG. A.21. High voltage feed through PVC safety cover. 

FIG. A.22. Sample plate switches outlined in white. “A” switch corresponds to sample plate A and the “B” 
switch likewise corresponds to sample plate B. Only one switch should be in the on position during a run 
and it should only either be the “A” or the “B” switch. 

(f) Cover the leads with the PVC pipe (Fig. A.21). This PVC safety cover is for YOUR (the 

operator’s) protection. DO NOT REMOVE THE COVER DURING ANY HIGH VOLTAGE 

RUN. 

(g) On the HV box, turn on either the first A or the first B switch, depending on which plate is 

being run (move the switch fully to the right, not to the middle position). (Fig. A.22) 

(h) Prepare and start the ESD VI LabVIEW program (see Appendix C). 
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FIG. A.23. TC connections in the ESD chamber. Left- TC partially inserted into cryogenic reservoir. Right- 
TC electrodes circled in red on the ESD electrode plate. 

9.2.1.2. A.2.1.2.   Cryogenic Testing 

The setup for a Cryogenic temperature-dependent test is for the most part identical as the room 

temperature setup above but for one minor modification to the sample stack setup and the addition of extra 

procedures. 

From room temperature setup section, note the following changes: 

(a) In part (b) above, the locations of the aluminum cryogenic reservoir and the polycarbonate 

insulating layer should be swapped. Therefore the sample stack assembly should be (from 

bottom to top: 

i. Polycarbonate base 

ii. HV electrode plate 

iii. Sample plates (sample-side down) 

iv. Aluminum cryogenic reservoir 

v. Polycarbonate insulating layer 

This is done so that there is better thermal contact and conduction between the sample plates 

and the aluminum cryogenic reservoir. This helps to cool the sample quickly and efficiently. 

(b) Ensure the thermocouple (TC) for the reservoir is attached (Fig. A.23). Also, ensure the TC 

plugs for the electrode plate are plugged in properly. 
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FIG. A.24. N2 gas hose attached to the back of the Pfieffer TSH 071E turbomolecular pump station. 

(c) After the chamber has pumped down, it needs to be backfilled with nitrogen (N2) gas. This is 

done because N2 gas allows cooling by convection. To do this, follow these steps: 

i. Ensure the N2 gas hose is firmly attached to the back of the Pfeiffer 

turbomolecular pumping station (Fig. A.24). 

ii. Open the N2 gas tank and ensure it is flowing at no more than ~5 psi (Fig. 

A.25). 

iii. Turn off the Pfeiffer turbomolecular pumping station. 

iv. Seal the chamber by closing main valve (clockwise) on the underside of the 

ESD chamber (Fig. A.26) all the way, and then open it by backing off the 

valve (counter-clockwise) by about three to four turns. This ensures that the 

chamber can be quickly sealed when the N2 gas has been injected. 
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FIG. A.25. N2 gas tank next to glove box. The tank is controlled by the valve circled in red. Turn it CCW 
until the gauge circled in red jumps, this gauge indicates the remaining pressure in the tank. The valve in 
yellow controls the pressure coming out of the tank, which is read by the gauge, circled in yellow. The blue 
valve directs gas to the ESD and bakeout chambers, while the purple valve directs gas to the glove box. 

FIG. A.26. ESD chamber main valve. 

v. The turbomolecular pump will take about five minutes to wind down if it is 

running properly. When the turbomolecular pump has wound down and the 

pressure is high enough (~10-1 mbar) the pumping station will begin 

injecting short bursts of N2 gas through the gas line attached to the back of 
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the station to aid in braking the turbomolecular pump and backfilling the 

chamber with N2. Injection is indicated by a clicking noise. 

vi. Stay close to the chamber (as in do not leave while the turbomolecular 

pump is winding down) and monitor the pressure. Be prepared to close off 

the chamber quickly when the pressure has risen to about 10-2 mbar. Close 

the main chamber valve and seal off the chamber completely once the first 

click of N2 gas being injected is heard. 

vii. The chamber is still kept below atmospheric pressure at this point to prevent 

frosting on the inside that will ruin high vacuum conditions. 

(d) Continue by following rest of the steps as outlined in room temperature setup section. 

(e) Follow the same steps outlined in Preparing the ESD VI in Appendix C. It is useful to note in 

the comments field that this particular breakdown run is a cryogenic breakdown run. 

9.2.1.2.1 A.2.1.2.1   Chiller Tests 

(a) Make certain the coolant lines are connected from the chamber to the reservoir bucket and the 

chiller’s output (Fig. A.27). 

(b) Check that there is coolant in the bucket and that it is connected to the pump inlet. If more 

coolant is needed it is simply antifreeze mixed about 50/50 with water. Also, make sure that 

the pump outlet is connected to the chiller inlet (Fig. A.27). 

(c) Plug the fan into the power strip and make sure that it is on and blowing on the pump. This is 

important to keep the pump from getting too hot and heating up the coolant. 

(d) After the fan is turned on, plug in the pump and turn it on. Make sure that the coolant is 

flowing through by looking inside the reservoir and checking that coolant is flowing in from 

the chamber. Double check that there are not any leaks. Next, turn on the chiller using the 

power switch on the back. 

(e) Sample temperatures can be monitored through the yellow TC connections on the front panel 

of the switch box (Fig. A.18). Be warned that the temperature will first increase for a half an 

hour or so before it will begin to drop. 
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FIG. A.27. (a) lN2 hose connected to the back of the ESD chamber. Circled in red is where the lN2 comes 
out of the chamber. (b) lN2 hose connected to the valve control (circled in green) of the lN2 dewar. A quick 
release connector (black arrow) connects the hose to the chamber. 

(f) Once the temperatures of the samples and the cryogenic reservoir have bottomed out (i.e., has 

not changed more than ±2 °C in 15 minutes), then the chamber can be pumped down and 

cryogenic tests begun. You will leave the pump running during the cryogenic tests. Follow 

these procedures when pumping down and re-opening the ESD chamber to the pump: 

i. DO NOT OPEN THE CHAMBER VALVE FIRST. 

ii. Turn on the Pfeiffer turbomolecular pumping station. 

iii. Wait until the pressure has reached AT LEAST 10-1 mbar or less. 

iv. Open the main chamber valve (Fig. A.26) by turning it counterclockwise. 

v. Once the pressure in the chamber has reached ≤10-5 mbar, the tests may 

proceed. 

(g) Indicate the time and temperature on the table of the beginning of the test run. Also make sure 

that the sample type, plate number (if applicable), and electrode position are noted as well. 

(h) Proceed with steps (a)-(h) outlined in the room temperature test section above. 
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FIG. A.28. (a) lN2 dewar pressure gauge reading ~250 psi. (b) lN2 dewar vent/pressure release valve. 

(i) When the sample has broken down, collect ~10-15 points beyond the breakdown point to 

ensure it has properly broken down. In addition, mark the time and temperature on the table at 

which it broke down, also a rough estimate of the voltage from the graph in the LabVIEW 

program. 

(j) If multiple cryogenic runs are being done, one right after another, continue the same process 

as outlined above. 

9.2.1.2.2 A.2.1.2.2   Liquid Nitrogen Tests 

Cooling with liquid nitrogen (lN2) can begin once the chamber has been backfilled with N2 gas.  

(a) Make certain the lN2 hose is firmly attached to the ESD chamber and the lN2 dewar, the large 

tank housing the lN2 (Fig. A.27). 

(b) Check to make sure the pressure on the lN2 dewar is ≤100 psi (Fig. A.28 (a)). This ensures 

that when the lN2 is flowing it will not spill too much as some typically does near the dewar 

end of the hose. If the pressure on the dewar is >100 psi, vent the dewar to 100 psi by opening 

the vent valve (Fig. A.28 (b)). 
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FIG. A.29. PID temperature controller box. The blue arrow indicates the power cord from the LN2 valve 
controller. The black arrow indicates where the ESD cryogenic reservoir TC cable plugs into the PID 
control box. The red value on the PID control box is the temperature (°C) read from the TC cable plugged 
into it. The green value is the target temperature (°C). For more information on the PID box, read its 
separate documentation. 

(c) There is a safety valve on the tank (Fig. A.27 (b)) that requires a voltage to keep it open. This 

valve is controlled by the OMEGA CNL16033-E1 partial integration derivative (PID) 

controller (Fig. A.29). The temperature of the reservoir is read by the PID box and if the 

temperature it measures falls below what it is set to, then the PID will shut it off the valve. If 

the PID measures temperatures that are warmer than the target temperature, it will open the 

valve and allow the lN2 to flow. If for some reason the PID controller is not working, all that 

is required to keep the valve open is to plug the valve into a wall outlet. Once the valve is 

open, lN2 can flow freely from the Dewar, into the hose, through the cold reservoir inside the 

chamber, and out again.  

(d) Begin the flow of lN2 by opening the liquid valve on the tank and monitoring the pressure on 

the safety valve. It takes some finagling but try to keep the pressure between 10 psi and 20 

psi. Either gN2 or lN2 will be seen coming out the other side of where the Dewar connects to 

the chamber. 
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FIG. A.30. TC connections on switch box. Left to right, cryogenic reservoir, A side, and B side TCs. 

(e) Sample temperatures can be monitored through the yellow TC connections on the front panel 

of the switch box (Fig. A.30). 

(f) Keep a running table of times and temperatures for both the reservoir and the sample. 

Temperature measurements do not need to be taken more frequently than one every five 

minutes or so. 

(g) Once the temperatures of the samples and the cryogenic reservoir have bottomed out (i.e., 

have not changed more than ±2 °C in 15 min), then the chamber can be pumped down and 

cryogenic tests begun. Follow these procedures when pumping down and re-opening the ESD 

chamber to the pump: 

i. DO NOT OPEN THE CHAMBER VALVE FIRST. 

ii. Turn on the Pfeiffer turbomolecular pumping station. 

iii. Wait until pressure has reached AT LEAST 10-1 mbar or less. 

iv. Open the main chamber valve (Fig. A.26) by turning it counterclockwise. 

v. Once the pressure in the chamber has reached ≤10-5 mbar, the tests may 

proceed. 

(h) Indicate the time and temperature on the table of the beginning of the test run. Also make sure 

that the sample type, plate number (if applicable), and electrode position are noted as well. 
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FIG. A.31. Internal temperature measurements. TC inserted into the cryogenic reservoir (left). TC
feedthrough connections (right). 

(i) Proceed with step (a)-(h) outlined in the room temperature section above. 

(j) Continue the table of times and temperatures of both the reservoir and sample during the 

breakdown run. Temperature measurements do not need to be taken more frequently than one 

every five minutes or so. 

(k) When the sample has broken down, collect ~10-15 points beyond the breakdown point to 

ensure it has properly broken down. In addition, mark the time and temperature on the table at 

which it broke down, also a rough estimate of the voltage from the graph in the LabVIEW 

program. 

(l) If multiple cryogenic runs are being done, one right after another, continue the same process 

as outlined above. However, it is typical to want the chamber to warm up some before the 

next run is conducted so that a good spread of temperature-dependent data are collected. 

9.2.1.3. A.2.1.3.   High Temperature Tests 

The setup for a high temperature-dependent test is nearly identical to the room temperature run 

setup above, with the addition of these extra procedures: 

(a) Attach thermocouples to the ESD chambers and multimeters to read both the internal (Fig. 

A.31) and external temperatures (Fig. A.32) of the chamber. 
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FIG. A.32. External temperature measurements–Aluminum tape is used to attach the TC to the chamber 
and is read with the multimeter. 

FIG. A.33. Heater Tape. (left) Tie one end of the heater tape to the handle of the ESD chamber. (center) 
Wrap the tape around the chamber. Make sure that the internal wire is not exposed and that the wire from 
the two separate tapes do not cross. (right) Tape the heater tapes to the ESD chamber using aluminum tape 
so that they do not move. This will stop them from falling across each other when they are hot. Only put 
aluminum tape over the part that does not heat up. 

(b) Wrap the chamber in heater tape by tying the tape to the handles of the vacuum chamber. 

Make sure the wire inside the tape is not exposed and that the wires do not cross each other 

(Fig. A.33). 

(c) Plug the heater tapes into a transformer (this allows you to control the voltage that is put into 

the heater tape). Set the transformer to approximately 150 and adjust as needed (Fig. A.34). 

(d) Cover the ESD chamber with a fire blanket to help keep in the heat and raise the temperature. 

Follow the same steps outlined in Preparing the ESD VI in Appendix C. It is useful to note in the 

comments field that this particular breakdown run is a high temperature breakdown run. 
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FIG. A.34. Transformer. Variac transformer setting corresponding to an outer temperature of 
approximately 100 °C and an inner temperature of ~82 °C. 

Follow the same procedure for starting a run as outlined in the room temperature test section. The 

only additional thing you need to do is turn on the multimeters, connected to the thermocouples that 

monitor the internal and external temperatures. 

9.2.1.4. A.2.1.4.   SVET Testing 

Setup procedures are identical to those found in the room temperature run setup above. See 

Appendix C how to adjust the LabVIEW control. The process is the similar to the room-temperature 

instructions apart from the changes outlined for this test type. It is useful to note in the comments field that 

this particular breakdown run is a SVET run. 

9.2.2. A.2.2.   Maintenance 

� In between tests. If the chamber is not going to be used for more than 1 day, it should be 

shut and pumped down to 10-1 mbar using the Pfeiffer turbomolecular pump. 

Maintaining vacuum when not in use prevents moisture from finding its way inside and 

contaminating any of the parts or samples. 

� High voltage electrode polishing: Often charred carbon from the polymer is deposited 

onto the electrode at breakdown (Fig. A.35). This charred carbon, if left unresolved, will 

potentially increase with additional breakdowns and eventually cause irregular and 

dubious data. If taken care of quickly it can be removed with methanol and a Kimwipe. 
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FIG. A.35. Black carbon char marks left on an electrode from a large ESD event through a polymer. 

However, most of the time, charring tends to cause scratches in the copper and it is best 

to remove the electrodes and to polish them. The following describes how to properly 

polish the electrodes. Read all the instructions before proceeding.  

(a) The electrodes need to be polished on an exceedingly flat surface. There are two 

surfaces one can use to polish the electrodes:  

i. In the SER building machine shop there is a metal block with a flat surface. 

ii. In the sample preparation room, SER 217A, are some glass plates, these 

may also be used as a flat surface. 

(b) All polishing should be done by rubbing the electrodes slowly, evenly, and gently in 

a circular motion. Do not go to fast or push too hard, this could create an uneven 

surface on the electrode, which will create places for preferential electric fields. 

(c) First, the electrodes should be polished using the 600-grit sandpaper. This stuff is 

used to remove all the charred carbon from the copper electrode. Only polish the 

electrode enough to remove any char marks from the electrode. Excessive polishing 

with this sandpaper could result in shortening the height of the electrode just enough 

that its surface is not flush with the electrode plate. 

(d) The electrodes should be polished using an optical cloth and 6 μm, 3 μm, and 1 μm polishing 

fluids found in SER 217A. 
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(e) Starting with the 6 μm fluid first and working down to the one μm fluid, put a small 

dab of the fluid on the optical cloth, rub the electrode evenly and gently in a circular 

motion on one of the flat surfaces described in part a. Polish each electrode in each 

fluid for AT LEAST 15 minutes. A good mirror surface can be obtained by 

following these procedures: 

i. Thoroughly rinse each electrode prior to moving on to the next polishing 

fluid. These fluids contain microscopic diamond particles suspended in 

liquid; even the smallest amount left on the surface of the electrode will ruin 

the next polishing run. 

ii. In addition, make sure that NO AMOUNT of polishing fluid from one 

bottle is mixed into another; the contaminated bottle will become entirely 

unusable. 

(f)  Once all electrodes have been polished, place them in a dichloromethane vibration 

bath for 1 hour. This removes any excess polishing fluids and oils. (Note that 

dichloromethane is no longer in use in the USU MPG lab due to its personal safety 

and environmental hazards. Acetone is now used for the primary ultrasonic bath 

followed by a secondary bath in methanol.) 

(g) Take note of which electrode is which when placing the electrodes in a vibration 

bath. This can be accomplished by placing the A1 electrode in a different beaker than 

the A2, A3, or B side electrodes or place each in a separate container. This is done so 

that any potential problems that might arise from inconsistency are avoided. 

(h) After all six electrodes have been cleaned using the dichloromethane, place them in 

an acetone vibration bath for 15 minutes, again making sure the individual electrodes 

can be differentiated one from another. After completing these two baths and giving 

the electrodes time to dry, they are ready to be placed back into the ESD chamber. 

� Spare Parts: There are spare parts for the ESD chamber in a box on the blue shelves in 

SER room 217B. This box contains spare wavy spring washers for the electrodes, 100 
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MΩ resistors, set screws, bits of wire, nylon threaded rod, and other small parts that 

might be needed for the chamber. Each compartment of the box or any container in the 

box should be labeled. 

� Cleaning: If not having been under vacuum for prolonged periods of time (~2-3 days), all 

parts should be cleaned in a ultrasonic bath. If the part or piece is non-metal, plastic, or it 

has plastic parts on it, it should be cleaned in methanol (completely submerged) for one 

hour in a vibration bath. If the part is completely metal, 15 minutes submerged in acetone 

and 45 submerged in methanol (both in an ultrasonic bath) should be sufficient. There is a 

ultrasonic vibration bath with a timer in the sample preparation room, SER room 217A. 

An additional ultrasonic vibration bath can be found in SER 21 and is used for cleaning 

larger parts. DO NOT CLEAN PLASTIC PARTS IN ACETONE! ACETONE IS 

CORROSIVE TO PLASTICS (POLYCARBONATE, NYLON, ETC.) AND IT WILL 

MELT THEM. ACETONE SHOULD ONLY BE USED TO CLEAN METAL PARTS. 

Before, during, and after cleaning, the parts should be handled with nitrile gloves. In 

addition, if the parts are not to be placed immediately back inside the chamber, after 

cleaning, they should be put inside the glove box with dry nitrogen gas to prevent 

recontamination. 

9.2.3. A.2.3.   Troubleshooting 

� Getting down to pressure: Because the ESD chamber runs at 10s of kilovolts, there is the 

possibility of extreme danger if it is not properly grounded. Establishing the proper 

grounding path and avoiding floating conductors as much as possible will ensure operator 

safety. Improper grounding can be evidenced by, but is not limited to, the following: 

(a) Is the chamber lid adequately in place? 

(b) Are any wires stuck between the chamber lid and the rim it sits in? 

(c) Does the chamber lid O-ring need any vacuum grease? The viton gasket can be 

problematic. Regreasing and resting the O-ring usually fixes this problem 
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(d) Are all quick connects firmly attached and tightened down on the vacuum hoses, 

pumping station, and ESD chamber? 

(e) Is there a leak in any of the vacuum plumbing underneath the chamber? This can be 

tested by squirting a little bit of acetone near any questionable leaks while 

monitoring the pressure from the pumping station. If while squirting the pressure 

jumps significantly and then drops, there is a leak. This test can only be done at 

pressures of ~10-2 mbar and lower. 

(f)   Have the insides of the chamber been exposed to atmosphere for a prolonged amount 

of time (>5 days) or handled without nitrile gloves? If so, the inside parts may need 

to be appropriately cleaned in methanol and acetone. See cleaning instructions above 

for a description of suitable cleaning procedures. 

(g) Has the pressure been staying constant at 3.4·10-3 mbar for a prolonged period of 

time? Check the Pirani gauge on the Pfieffer TSH 071E turbomolecular pumping 

station. Prolonged exposure to atmospheric pressures while the gauge and station are 

turned on can cause buildup of oxidized particles and contamination on the inside of 

the gauge. If this occurs, carefully follow the cleaning instructions for the Pirani 

gauge found in the Pfeiffer documentation folder in SER 217. 

(h) Has work been done on the Pfeiffer Turbomolecular Pumping Station that has 

required it being completely disassembled? E.g., has the mechanical pump or Pirani 

gauge been disassembled? If this is the case, examine first the mechanical pump and 

make sure there are no particulates in the diaphragms. If so, clean the diaphragms 

thoroughly using Kim wipes and methanol and ensuring that not particles are left 

behind. If the Pirani gauge has been removed and handled, make sure no particulates 

have made their way into there. If the pumping station is not misused, it should not 

be the problem. 

� Common electrical issues: 
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(a) Arcing heard (and sometimes seen) on the outside of the chamber in the following 

locations: 

i. TC plugs on front of the switch box (Fig. A.30): 

ii. Inside of the switch box itself. 

Origins of arcs can be located audibly using a plastic stethoscope. Arcs may be 

located optically in a darkened room. 

(b) Erratic behavior in the measured current prior to and at breakdown: 

i. Very low currents at breakdown (~1-5 μA) with extremely high 

resistances (~1000s of MΩ). This can be caused by the sample 

plate shorting to a TC electrode. This does not invalidate the 

breakdown voltage but it alters the apparent DCPD and breakdown 

current magnitudes. 

ii. Non-ohmic behavior at breakdown, e.g., the breakdown curve is 

non-linear. This could be due to an incomplete breakdown or 

external arcing. 

(c) The first step to establishing proper grounding is to thoroughly check conduction 

paths in the chamber with a multimeter. A handy tool for this job is the system 

schematic. Check each wire and connection as much as it is possible and mark it off 

on a printed schematic. In addition, make sure that each wire’s insulation has not 

corroded, deteriorated, or broken in any place. Typical problems include:  

i. The white HV plug at the feedthrough is not in the correct position. 

ii. The light switch for power is actually off. 

iii. Loose electrode to HV wire connection. 

iv. HV plate not connected or the wire from the current limiting 

resistors came loose in the chamber at the feedthrough (try the 

other plate if the chamber is closed). 
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v. AB toggle switches not right (in which case you did apply voltage 

and may have broken down but got no data) 

vi. A BNC cable may not be connected. 

9.3. A.3.   Post-Breakdown Measurements 

Following breakdown testing samples are not discarded. Thickness is measured after breakdown 

to avoid damaging the sample. Breakdown site images are taken and samples are labeled and stored for 

potential future reference. 

9.3.1. A.3.1.   Sample Thickness 

In order to calculate electric field we need to know the sample thickness. The uncertainty in the 

breakdown field decreases significantly if the individual sample thickness and its uncertainty is used as 

opposed for the average thickness and corresponding uncertainty for all samples of that type. Thickness of 

each sample needs to be measured a total of six times. Calibrate the equipment, open the correct program 

(see below), and measure directly above and below each electrode contact point to do this. Using a digital 

Mitutoyo IP65 No. 293-330 digital micrometer (±1 μm resolution) with USB connectivity, measurements 

are to be entered directly into the Excel sheet “Thickness Template V2.xlsx” or the newest version. This 

sheet is found in Z:\Data & Analysis\Data\Electron Transport\ESD\Analysis Programs and a copy of it 

should be place in each folder corresponding to thickness measurements in the ESD file structure on the 

Big Blue file server. This Excel sheet automatically calculates the mean and standard deviation of the 

mean. These values should be copied as and pasted as numbers (rather than a simple copy and paste which 

would copy the formulas rather than the values) into the newest version of the ESD Quality Summary 

Matrix in the corresponding fields. Note that each sample will correspond to three entries (one for each 

electrode) in the matrix. Save the thickness, Excel worksheet as a new file with the corresponding sample 

name. 
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9.3.2. A.3.2.   Optical Measurements 

Breakdown site images show significant variation and may yield interesting information if the size 

or shape of the breakdown sites correspond to test parameters such as voltage, temperature, or material 

(e.g., thermoplastic versus thermoset plastic). 

(a) File destination: Prior to the image being taken, the file destination must be selected in the 

following location on Big Blue: Data + Analysis… Data…Electron Transport… ESD… 

Material Type… Test Type… Images. Once saved in the correct location, images should be 

titled using the correct naming convention: material thickness voltage date electrode number 

and file type: for example, KapE1mil_K20V 5-30-08 B_2.CR2. 

(b) Imaging: Tested samples are to be handled carefully to prevent further damage, imaged under 

the new microscope camera. Images need to be previewed to ensure the full breakdown site is 

imaged, and image quality is acceptable for taking measurements and recording attributes; 

focus, lighting, window size, and background color are of particular importance. Attention 

needs to be given to the image background surface as well as lighting so that breakdowns are 

clear in the image for analysis. A measurement scale should be present in each image for 

proper scaling while measuring sites graphically. For future reference, a slide reticle with 

increments in micrometers (μm) should be used to create an accurate scale. 

(c) Analysis: Images can be analyzed using photo editing software, the following should be noted 

within the ESD Quality Summary Table: 

i. Presence of actual breakdown 

ii. Major and minor axis diameters 

iii. Damage area (see suggestions) 

iv. Irregular features notes 

v. Presence of secondary breakdown and subsequent measurements 

vi. Discolorations 

Images’ major and minor axis of each breakdown should be measured using the photo 

software’s pixel measurement tool. For our axis measurements, we took 5 measurements of 
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FIG. A.36. Estimated breakdown hole volume verses breakdown voltage. 

each scale in 1/100th inch increments using the software pixel measurement tool. The average 

of these measurements was used to convert our major/minor axis measurements (in pixels) to 

1/100th inch measurements; this was later converted into micrometers in our matrix. Scaling 

of our images was eventually determined to be identical, at which point a single measurement 

was used to determine the proper scale. If the measurement fell within 10 pixels of our 

determined data set average scale of 169 pixels to 1/100th inch, then the data set average was 

used. A standard ratio of 169 (check) pixels per 1/100th inch was used for the remainder of 

our set. This was determined by averaging the scale measurements of previous samples. 

(d) Characterization: Data entered into the matrix can be sorted based on any recorded trait. Table 

A.1 shows shorthand abbreviations which were used. 

(e) Initial results: studies have been reported by Sam Hansen in (Hansen, et al., 2014a;  2014b). 

Here we report no apparent trend in hole volume with breakdown voltage as shown in Fig. 

A.36. More work is needed in the characterization of the breakdown site images, but the 

cataloging system outlined here has laid the groundwork for such studies.  
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Table A.1. ESD Image Analysis Categories. 
Category Comments Example 
1.  
rnd, melt 
ring: 

Round melt ring, no unusual shape or coloration, this is in reference to 
the shape, not the size. Melt ring refers to the obvious zone around the 
breakdown hole where material has been melted, but no char is present. 
This melt zone is the same shape as the actual breakdown hole. This 
seems to be common in LDPE samples. 

 
2.  
part. BD: 

Partial breakdown refers to those samples that were obviously effected 
by melting and or discoloration, however the material was not completely 
vaporized, meaning no breakdown hole was present. 

 
3.  
2nd partial 
breakdown 

A complete breakdown is present and noted appropriately; this 
ADDITIONAL notation is in reference to a secondary damage zone, 
though incomplete as in the partial breakdown described above. To be 
classified as secondary this damage was not connected to the primary 
ESD site by melting or missing material and appeared independent of the 
other site. 

 
4. 
no vis BD 

Some samples exhibit no signs of breakdown, a sample under 
microscope showed no melt ring or breakdown. Major and minor axis are 
entered as “–“. Samples having zero signs of melting, that appear 
unaffected receive this description. Make sure that small breakdowns are 
not mistakenly passed over, since many pinhole-sized breakdowns are 
easy to miss. 

 

5. 
Irregular 

Irregular breakdown do not exhibit uniform roundness as in the case of 
“rnd, melt ring” and do not have a standard description. For this reason, 
the term “irregular” should be followed with a short justification, or 
description of the irregularity. Breakdowns exhibiting a jagged 
breakdown perimeter are considered irregular. Due to the shape being 
irregular, a major and minor axis measurement does little to indicate the 
actual size of the area in question. These measurements (major and minor 
axis) should still be taken however. Shown at right is an irregular 
breakdown; the shape is not elliptical, there is no correlation of the melt 
zone to displaced material, and multiple holes are present. 

 

6. 
rnd 
melt/char: 

Refers to the rnd melt rings that exhibited a dark or black discoloration in 
the melt ring surrounding a rnd melt ring breakdown. The discoloration 
may indicate a different process of destruction than other non-colored 
sites. 

 
7. 
rnd, melt 
ring, mult 
part bd: 

Same as in #1, with the note of additional partial breakdowns as in #2 
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9.3.3. A.3.3.   Long-term Storage 

Used samples are to be placed in a Ziploc plastic bag. Any handling of samples outside the bag 

should be done with nitrile gloves to prevent contamination with skin oils. The label includes critical 

identifying information together with check boxes for the status of the sample and the corresponding 

analysis. 

The ESD file naming convention currently is: 

Material Thickness Temp Vstep Plate# Electrode# Date-of-bake.txt 

For example: 

KaptonHN 2mil 300K 20V 5 A1 6-26-13.txt or LDPE 1mil 300K 60V _ B3 3-30-15.txt. 

An example of the label follows: 

File:______________________  Test Date:__   /__/20_ 
Plate/Elec:________  Thickness: □1 mil □2 mil___μm 
Ramp Rate: □20V/4s    ____V/____s 
Run Type: □Ramp  □Endurance  □Temp 
Temp: □RT □LT □HT ____K   Bakeout: ___/___/20__ 
Done: □Breakdown □Thickness □Image □Matrix   
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10. APPENDIX B 

 ERROR ANALYSIS 

The calculations and figures in this dissertation show that the uncertainty in measurements is small 

compared to the variations in measurement due to real trends and stochastic variations described. This 

appendix outlines the representation of uncertainty in USU Materials Physics Group (MPG) dielectric 

breakdown and other associated measurements. 

10.1. B.1.   Uncertainties in Measurements 

For electrostatic discharge tests the values of interest are the electrostatic fields ( ) at which 

breakdown and pre-breakdown arcing occurs and the time ( ), current ( ), and temperature ( ) at which 

these occur. In order to quantify ESD test results, we must estimate the uncertainty in each of these values 

for all ESD data. Care was taken to consider any likely source of error to ensure no underestimation of the 

uncertainty of measurements presented. Estimations of uncertainty will consider both the accuracy and 

precision of measurement uncertainty.  

Let us start with the most important, and perhaps most complicated of these, the electrostatic field, 

. The field across an insulating sample in a parallel plate capacitor geometry (assuming  in the 

capacitor) is simply the applied voltage divided by the sample thickness— . The total uncertainty 

the field is the result of contributions in the uncertainties in the sample thickness and the applied voltage 

(Taylor, 1997). 

  B.1 

We will see that many of these are so small that especially for large  they quickly become 

insignificant. Let us address these one by one. This calculation has been automated into the ESD Quality 

Summary Table.  

 is the precision in the voltage given by the power supply, namely a CPS Precision High 

Voltage Power Supply Model 130N/1314 which is rated to have <200 mV ripple at full load. This is 2% at 
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only a 10 V and its contribution decreases further as the voltage increases. This is negligible and in any 

case, the applied voltage is measured regardless independently. In other words, this term is both negligible 

and redundant.  

 is the uncertainty in the voltage step given by the circuit’s response to the LabView 

program output. During a detailed analysis of this voltage step, assumed to be 20 V every 4 s, it was 

discovered that is in fact a cycle of three 16±1 V steps then one 33±1 V step. The net effect comes to 20±7 

V steps. This encompasses both the accuracy and precision of the voltage step. As of September 14th, 2015 

this has since been corrected and in subsequent tests does not affect  since the voltage is read on the 

multimeter regardless of the step size. For now we can include it since at large voltages, one volt does not 

matter much. The uncertainty in the voltage step can be measured directly by examining consecutive 

voltage measurements. The Igor Pro macro “RampRate v1-2.ipf” found in Z:\Data & 

Analysis\Data\Electron Transport\ESD\Analysis Programs reads in such measurements and outputs the 

average voltage step and its uncertainty. 

 is the accuracy in the voltage divider in the ESD circuit. The variable resister in this 

circuit can be adjusted so that the voltage read on the multimeter is 1/1000 of the voltage applied across the 

sample. This is achieved by measuring the HV in line using a high voltage probe simultaneously with 

voltage measurements in the voltage divider and changing the potentiometer until the two match up to 

exactly a factor of 1000. This potentiometer has been adjusted on occasion but comparisons were done 

before and after measurements (see IGOR experiment HV probe vs Multimeter in 

Z:\Instrumentation\Chambers & Systems\ESD\Characterization Measurements\CPS Power Supply RR 

Tests) and in the worst observed case, this discrepancy is less than 1.9%. Note that this means that 

 regardless of the applied voltage. So far, this is the first significant contribution to our 

uncertainty at large voltages. 

 is another significant contribution and varies from event to event. The MPG definition of 

breakdown (see 4.1 and 4.6.4) is Breakdown voltage can be defined as the average voltage between the last 

voltage with current below 10% of the  expected ohmic breakdown curve and the first voltage with 

current increasing (though not necessarily smoothly) between 10% and 110% of the  ohmic breakdown 
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curve. The uncertainty then is the difference in voltage from the first measurement at breakdown and the 

last measurement before breakdown divided by two. As an overestimation of the maximum uncertainty, the 

entire difference between events rather than the half difference was used for the error bars represented in 

this dissertation. For measuring DCPD,  but for  we subtract the voltage with 

the last baseline current from the first voltage with steady breakdown current. 

 is the uncertainty in our Amprobe®, Model 38XR-A multimeter. For dc voltage 

measurements, is rated to 100 μV ± (0.25 % + 5 dgts). At typical breakdown voltages this is an accuracy of 

essentially . Again, we see this is negligible, especially at high voltages. 

Now we come to the uncertainty in thicknesses ( ). Each identifiable sample was measured in six 

locations distributed along our polymer samples with a Mitutoyo IP65 No. 293-330 digital micrometer (± 1 

μm accuracy). The average ( ) and standard deviation of the mean ( ) were calculated for each 

sample. This is recorded in the ESD Quality Summary table and in individual measurement files in the 

ESD directory. For older data files that could not be matched to the physical sample, the average thickness 

and uncertainty of all samples of that type (perhaps bakeout batch) were used. 

Both in the ESD sample chamber and in the measuring process, the polymer samples are 

compressed.  was calculated for both the ESD chamber and the micrometer. 

—the pressure divided by the Young’s modulus. In either configuration both LDPE and Kapton 

have . This is small compared to most of our other thickness uncertainties. 

For uncertainty in time we have 

 

 is the precision in the time stability (drift) of the power supply (CPS Precision H.V. 

Power Supply Model 130N/1314) This is rated to 0.005% after an hour 0.01% after 8 hours. Since the 

majority of our experiments take less time than this we will assume 0.01%. We will see that this is small 

compared to the largest term. 
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 is the precision in the timing of the LabView Program. Each data point in our LabView 

data acquisition program is time stamped from the start time of the experiment and stored in an array. The 

LabView time stamps are the primary time stamps and are recorded as integer ms. Sub-millisecond 

uncertainty is obviously negligible for test times ranging from tens of minutes to tens of days. We assume 

that the any inaccuracy in the computer’s clock is negligible.  

 is the uncertainty in the time of an event given our definition of that event. For pre-

breakdown arcs, usually characterized by a single data point, this is at most on the order of a single time 

step. At breakdown, we use the same methodology as determining the breakdown voltage. The breakdown 

time is simply the average of the last time with baseline current and the first time with confirmed 

breakdown current and  is the difference of these divided by two. This can vary from run to run, but 

is always greater than or at least equal to one half time step. 

The ammeter has 100 nA precision so  so for breakdown currents in the tens of μA this is 

less than 1%. Uncertainties is partial discharge and field-enhanced conductivity values can reach as high as 

100% but in most cases are closer to tens of percent.  

For temperature measurements, one must consider the precision of the thermocouple and the 

accuracy of the temperature reading in its location. K-type thermocouples typically have a nominal 

precision of the greater of 2.2 °C or 0.75% (OMEGA, 2018). The accuracy of the temperature readings 

depends on the thermal gradient between the thermocouple junction and the sample. The spring-loaded 

copper thermocouple electrodes in the ESD sample stack are in direct contact with the sample material so 

this effect should be small. The estimated uncertainty for temperature measurements used was ±2.5 °C. 

This variation is only ~1% of the temperature range of the tests presented in 6.2.4. These uncertainties are 

summarized in Table B.1. 

From Table B.1 it is clear that the primary sources of uncertainty are the uncertainties in 

breakdown voltage , sample thickness , and measured current . The uncertainty 

in the breakdown voltage results from the finite time for complete breakdown to occur. In many tests, this 

time is much smaller compared to the time step in the voltage ramp rate and therefore the uncertainty is 

limited only by the voltage step size (typically 20 V). However, it is also common to observe that the  
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Table B.1. Summary of tests described in this dissertation. 
Source of uncertainty Type of uncertainty Significance 

 
Precision 0.02% at 1000 V 

 
Accuracy and precision 0.7% at 1000 V 

 
Accuracy 1.9% at 1000 V 

 
Physical effect Varies from ~2-30% 

 
Accuracy and 

precision 

0.25% 

0.01%  

 
Precision and physical effect ~3% for measured samples 

~7% for unmeasured samples 

 
Accuracy 0.1% 

 
Precision ~0.01% 

 
Precision ~0.0002 % at 10 min 

 
Physical effect and precision ~0.3% at 10 min 

 
Precision <1-100% depending on event 

type 

 Accuracy and precision ±2.5 °C 

 

 

transition from negligible leakage current to ohmic current (see 4.6.4) to occur over several voltage steps. 

The uncertainty is therefore due physical processes in the material rather than instrumentation and therefore 

cannot be mitigated.  

The uncertainty in sample thickness  is generally more than twice as large for the many 

samples have not had their thicknesses measured directly compared to those with direct measurements. The 

average variability is sample thickness varied by material. Unfortunately, samples from many older tests 

were not stored in a way where the samples could be uniquely paired to their corresponding tests data. For 

such samples, the average thickness of all samples of that type had to be assumed with the associated 
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uncertainty in the mean thickness. In other words, it is critical to measure each sample’s thickness to reduce 

. After thickness measurements were identified as a critical way of reducing uncertainty in 

breakdown field, all identifiable samples were measured as well as all subsequent samples. Over 70 % of 

samples presented in this dissertation had individual thickness measurements.  

Finally, the uncertainty in current measurements is limited by the precision of the ammeter. This 

precision is excellent for typical breakdown current (<1% uncertainty), but becomes significant when 

considering events with currents approaching 100 nA. This includes DCPD and field-enhanced 

conductivity measurements (see 4.6.5). A more sensitive ammeter could mitigate this issue (see 7.4.2). 

10.2. B.2.   Statistical Confidence Intervals

Distribution functions such as a probability density function (PDF) or cumulative distribution 

function (CDF) such as Weibull distributions are often accompanied by confidence intervals. For now, I 

will focus on CDFs. There are commercially available programs such as Weibull++ that will automatically 

produce user-defined confidence intervals (see Fig. B.1) (Rytöluoto, et al., 2014;  Boggs, 2017a). From my 

limited exposure to such programs, it is not apparent how these are calculated. Weibull++ appears to find a 

region that, for 95% confidence, contains as near to 95% of the data as possible. While such programs are 

surely very useful for those applications the developers have tailored them for, they are not well suited for 

this analysis here. For instance, units of voltage or field are not available. As far as Weibull fits are 

concerned, initial Weibull++ results from a trial download are in good agreement with my Igor Pro 

analysis, however, Weibull++ lacks an obvious way to put uncertainties on the fitting parameters. It is 

convenient that several Weibull distributions and mixed Weibulls are built in; however, for the purposes of 

MPG analysis the custom Igor Pro macro described in Appendix C is more convenient. 

The two-parameter Weibull CDF has a closed form way of estimating confidence intervals. 

However, this is valid only for the two-parameter case (Thoman, et al., 1969;  Heo, et al., 2001). For 

Weibull functions with more than two parameters, there exists a variety of methods for estimating 

confidence intervals, many of which rely on tables of reference values and/or are computationally difficult 

(Lawless, 1978;  Heo, et al., 2001). In most cases results from different methods are reasonably consistent 

(Heo, et al., 2001). 
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 FIG. B.1. LDPE data imported into WEIBULL++ and plotted with 95% confidence bands. Note that 
spurious data is included in the top plot but not the bottom plot. 

Given that I am interested in the ECD of my data as applied not only to Weibull distributions but 

also to Q-Q plots and physics model fits, some non-parametric measure of confidence would be preferred. 

If I can use the same standard for all my analysis, I would prefer such a method. Like for Weibull plots, 

various methods and generalizations of sometimes staggering complexity have been devised for drawing 

confidence intervals around Q-Q plots (Einmahl and McKeague, 1999;  Rosenkrantz, 2000;  Valeinis, et 

al., 2010). Of these I have found the most straightforward to be the Kolmogorov-Smirnov (K-S) statistic 

(Smirnov, 1948;  Rosenkrantz, 2000;  Valeinis, et al., 2010). The advantage of this method is that it can be 
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 FIG. B.2. LDPE breakdowns with estimated experimental uncertainty and 95% and 99% K-S confidence 
bars. 

applied to any data set and a candidate CDF in a way that does not depend on the CDF, , so long as 

one is assumed to exist (Smirnov, 1948). For the ECD of the data,  the confidence interval can be 

shown to be simply 

   B.3 

where  can be found in a table of calculated values based on the desired confidence interval and sample 

size  (Smirnov, 1948). Rather than confidence bars containing 95% of the data as in Fig. B1, the K-S 

statistic confidence bars enclose an area with 95% confidence of where the data actually may be. See Fig. 

B.2 as an example. 

 Figure B.2 also has the much narrower bands representing the average of the standard deviations 

in the experimental uncertainty. Although any of these are valid, it seems that the average of the 

experimental deviations the most useful in that it reflects known uncertainties rather than arising from 

statistical variations. 

The K-S statistic may just as easily be applied to Q-Q plots comparing data and a CDF, but a two-

sample K-S statistic or other complicated method is required to place confidence bars on an empirical or 
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two-sample Q-Q plot (Einmahl and McKeague, 1999;  Rosenkrantz, 2000;  Valeinis, et al., 2010). However 

since there are many more DCPD than breakdowns and since , it may be justified to use 

approximate the DCPD field uncertainty as negligible compared to that of the breakdowns. In other words, 

using the ECD of the DCPD as a CDF may not be a horrible approximation. 
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FIG. C.1. MPG ESD Data Flowchart. Black arrows represent computer inputs into test systems, green 
arrows represent raw data, blue arrows represent derived or manipulated data, and purple arrows represent 
calculated results including plots. Cyan circles represent instruments that generate data. Grey pentagons 
represent software functions with the exception of the ESD Quality Summary Table, which has its own 
symbol to highlight its central role in the data flow. All data and results are stored on the MPG file server, 
Big Blue, in the ESD archives. 

11. APPENDIX C 

 DETAILS OF DATA ACQUISITION AND PROCESSING SOFTWARE 

This appendix outlines the computer control, data acquisition, and data processing used to 

generate and analyze Materials Physics Group (MPG) electrostatic discharge (ESD) data.  

11.1. C.1.   Logical Flowchart 

Figure C.1 is the logical flowchart for MPG ESD data. For the purposes of this appendix, version 

numbers of programs are not discussed. In general, the newest version should be used if it is functioning 

correctly. 
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The process shown begins with bakeout as that generates a unique sample name as sample plate 

and bakeout date combinations should be unique. Bakeout temperature curves may also be of interest. The 

ESD.vi program controls the ESD test and acquires voltage, current, and time data. Data from each test are 

analyzed by several Igor Pro routines, the most important of which is ESD Analysis.ipf. Results from these 

programs—including breakdown voltage, test identifiers, and test parameters—are passed to the ESD 

Quality Summary Table sortable matrix together with thickness, breakdown site dimensions, and 

temperature data. With the exception of some DCPD, all relevant data are stored in the ESD Quality 

Summary Table. From this matrix, individual results can be sorted and grouped together to allow for 

studies of larger trends. Raw data, processed data, plots, and results are archived in the ESD file structure 

on Big Blue. 

Some work should be done to improve this flow, for example combining some Igor Pro functions, 

and adding a temperature multiplexer to record temperature electronically data rather than the lab 

notebook; however, this is representative of the data flow to date. 

11.2. C.2.   LabVIEW 

11.2.1. C.2.1.   Bakeout 

See Appendix A for instructions on operating the bakeout chamber. The bakeout program simply 

records the temperature measured by a thermocouple placed in the oven during a sample bakeout at user-

defined time intervals. Data are plotted in real time in the program for monitoring. The data are output as a 

.txt file. Note that if the bakeout computer is on the same electrical ground as the ESD chamber, the 

bakeout computer may shut down or restart when breakdown occurs.  

(a) Turn the multimeter on and plugged into the wall. Make sure it is reading the correct 

temperature. 

(b) Check the computer date and time time on the taskbar and correct if needed.  

(c) Create a bakeout text file, located in the folder "bakeout current year" on the desktop of the 

computer by the bakeout oven. 

(d) Open the VI (on desktop) labeled TempPress 7.1. 

(e) Fill out the required fields (see Fig. C.2): 
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FIG. C.2. TempPress bakeout program main screen. 

i. Meter Port 1:COM 2 

ii. Meter Type 1: Me-22 

iii. Start Recording: set to present time 

iv. Stop Recording: set to 4 days in future (or longer for longer bakeouts) 

v. Recording Interval: 15 minutes 

vi. Record File: browse for the file created in (c) 

(f) Start the program by clicking the white arrow in the upper left corner. Assure that the correct 

temperature appears in the black display area under Meter 1 (around 20 °C). 

(g) Turn the oven on and set temperature according to table on the oven front (oven dial is not 

calibrated). Currently we bake LDPE at 65° C, and all other thin film samples at 105° C. 

11.2.2. C.2.2.   ESD Tests 

See Appendix A for instructions on setting up the ESD system. The ESD VI controls the power 

supply that provides the high voltage for breakdown and records time and voltage and current data from the 

ESD system multimeters (see 4.6.2). 

� Preparing the ESD VI: 
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FIG. C.3. ESD LabVIEW VI computer interface. The LabVIEW VI run button (white arrow) is outlined in 
green. Menu Control is outlined in thick black. Panic Button is outlined in red. Output file information and 
location is outlined in yellow. 

(a) Run LabView and open “ESD V1-01.llb” located n the “ESD VI’s” folder on the 

desktop (Fig. C.3). Refer to Fig. C.4 for steps b-d. 

(b) Fill in Sample Type first part of the naming convention, (‘material’ ‘thickness’ 

‘temp.’ ‘voltage ramp rate’, e.g., LDPE 1mil 300K 20V4s), Plate # (e.g., P1), 

electrode location being used (A or A2, etc.), and Sample Bake Date with the date 

the sample was baked out (1-18-08, not 1/18/08; using / will create new folders). 

These fields are used to name the output file. 

(c) Fill in the comments. Example: 
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FIG. C.4. ESD LabVIEW output file setup. Fill in the comments section before each test run. The area in 
the green box shows text not visible without scrolling. 

Sample Location: B1 

Chamber Pressure: 6.3E-6 mbar 

Sample History: 

Prepared by: Steve 

Preparation date: 1-18-08 

Bakeout Temperature: 120C 

Bakeout Duration: 3 days 

Bakeout Log File Name: ESD 1-18-08.txt 

Exposure to Atmosphere time: 15 min 

Storage in Nitrogen Time: 2 days 
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Other Comments: 

Person Running program: Dan 

(d) Click the file symbol beside the Save Location field. Browse to the folder for the 

material being run. The folder structure for data files should be: “(year) tests”  

”material name”  ”type of test (e.g., RmT, Cryo, Time dep)". Click “Use Current 

Dir” to select the desired folder as the save location for the data file. E.g., if the 

current year is 2012, the material being tested is LDPE, and the test run is a time-

dependent run, then the file directory location should be named: 

“\ESDtest\2012\LDPE\Time dependent.” 

(e) Change Menu Control to “Limbo” (Fig. C.3). For instrumentation instructions, see 

Appendix A. 

� Starting a test: 

(a) Switch the HV monitor Meterman to the second voltage position from the left and 

the current monitor Meterman to μA. Push the RS232 button on both units. Confirm 

that batteries are charged and that “sleep off” option is enabled for both of the 

meters. (This can be done by pressing and holding the MIN MAX AVG button while 

turning the switch from OFF to the desired function.) 

(b) Turn on the left light switch below the switch box (Fig. C.5); this controls the power 

to the high voltage power supply. If the light is RED, TAKE CAUTION! This means 

the power supply is currently ON and may be supplying high voltage to the circuit! 

(c) In the ESD VI, click the white arrow in the upper left corner to run the program (Fig. 

C.3). 

(d) A dialog box will appear asking for the number of configuration sections (Fig. C.6). 

Enter 0 if the configuration file is already set correctly (from a previous run) or 1 to 

define a new configuration. For normal room temperature (and cryogenic) runs, the 

configuration file should have the following values (Fig. C.7): 

i. Starting Voltage: always 0V 
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FIG. C.6. Configuration Sections window. 0 is entered if a previous configuration file is going to be used. 
Enter 1 if a new configuration file is to be created. Select 2 if there needs to be two sections created in the 
configuration file, e.g., a ramp up to a wait voltage for a time-dependent run. 

FIG. C.7. Configuration file setup window. Starting Voltage and Ending Voltage tells the ESD VI what 
voltages to begin and end with. Voltage Step is how many volts one wishes to increment each step (e.g., 20, 
50, 100); standard procedure is 20 V increments. Time Per Step is set to 1. Measurements Per Step 
programs how many points are desired to be measured at a given voltage; a 1 is usually entered here unless 
an endurance time run is being conducted. Wait Time is set to 1. 

FIG. C.5. ESD power supply switch (outlined in red).This switch controls the bank of plugs to the right of 
it. In this image the current position is “on,” turned to the right and the CPS power supply cord is outlined 
in yellow.  The red light (under the switch) indicates that the power supply is on and the user should take 
caution. 
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ii. Ending Voltage: ~15000V 

iii. Voltage Step: 20V 

iv. Time Per Step: 4 (An error message will appear during testing if 

there is a time step error, 4s or longer should not cause this error.) 

v. Measurements per Step: 1 

vi. Wait Time: 1 

(e) Once the above values have been entered, click okay and a save dialog box will 

come up. Room temperature and cryogenic runs are saved as “ESDConfig.txt” in the 

“ESDtest” folder on the desktop of the ESD computer. 

(f)  Change the Menu Control (Fig. C.3) from Limbo to Take Data to start data 

acquisition. The Menu Control value will automatically change to Stop and the graph 

will clear before showing new data.  

(g) Another dialog box will appear requesting the location of the configuration file (Fig. 

C.8). 

(h) To stop the program before it finishes the configured run (for example, if there is 

arcing or if the sample breaks down), hit the panic button (Fig. C.3) to bring the 

power supply to zero and stop the program. Remember to hit the panic button again 

to clear it before starting a new run. Wait until the voltage on the multimeter reads 

zero before hitting the panic button a second time. 

(i)  After the run ends, turn the power supply off, unplug the blue HV wire and return it 

to the HV dock (Fig. A.19 in Appendix A), and turn off the A or B switch. 

� Starting a SVET run: Except for the configuration file, an endurance time run is for the 

most part identical to standard test as described above. 

(a) First, proceed with steps (a)-(c) outlined in the section above. 

(b) Note the following changes for part (d): 

a. Enter 2 in the dialog box requesting the number of configuration sections 

and click okay. The first section steps up the voltage in 20V increments to 
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FIG. C.8. Configuration file selection box. 

the desired target voltage for breakdown. The second section keeps the 

voltage static at this target voltage and makes a measurement of current, 

voltage, and time every four seconds. How long the sample is held at this 

voltage is determined by the second section. 

b. When the configuration window pops up (Fig. C.7), note that it states 

“section 0”, however this means section 1; entering section 1’s values” 

i. Starting voltage: always 0 

ii. Ending voltage: enter the desired target voltage for breakdown, 

e.g., 7200, 6500, etc. 

iii. Voltage Step: always 20 

iv. Time Per Step: always 4 

v. Measurements per Step: 1 

vi. Wait Time: always 0 for section 1 
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c. Hit okay when finished entering the above values for section 1. The value in 

the “Section” field will change to 1 which means values entered will be in 

the SECOND configuration section. These are the following values for the 

second configuration section: 

i. Starting Voltage: always the desired target voltage for breakdown, 

e.g., 7200, 6400, etc. 

ii. Ending Voltage: this field does not need to be changed. 

iii. Voltage Step: always 0 for section 2. 

iv. Time Per Step: this field does not need to be changed. 

v. Measurements per Step: this field determines how long the 

chamber will be running. A value of 1200 will leave the chamber 

operating at the static voltage for one hour. It is always best to 

overestimate the time to breakdown. For example, if a given target 

voltage is believed to take three hours to breakdown, the number of 

measurements would be 3600 (3 hours * 1200). However, should 

the material take longer than this, it is safe to enter larger times 

corresponding to days or weeks depending on the available test 

time.  

d. Click okay and a dialog box will popup prompting for the desired save 

location and name of the configuration file. The configuration file should 

always be saved to the “ESDtest\Configuration Files” folder located on the 

desktop of the ESD computer. The name should reflect that this is an 

endurance time run. 

(c) Continue with the rest of the steps described in the Stating a Test section above. 

(d) Depending on the voltage being applied, endurance time runs can last for several 

days. Because of this, the batteries in the current and voltage multimeters need to be 

changed when they are drained. However, a battery pack with three 9V batteries 
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connected in parallel for each multimeter has been created so that the batteries do not 

need to be changed as often. Have at least three to six fully charged batteries on hand 

so that when any batteries in the battery pack die they can quickly be replaced. DO 

NOT PLUG ANY OF THE MULTIMETERS INTO A WALL OUTLET! AT 

BREAKDOWN THEY CAN POTENTIALLY BE FRIED! Dead batteries or 

swapping batteries will cause a lapse in the data. This is typically very apparent in 

the data and only a problem if breakdown occurs during the down time. 

(e) Once the material has broken down, the ESD program can be stopped like any other 

run by hitting the panic button, changing the menu control to “Limbo,” turning off 

the HV power supply, unplugging the blue HV wire and plugging it in the HV dock, 

turning off the multimeters, and turning the A or B switch off. 

11.3. C.3.   Test Data Analysis 

This section describes how to take the raw data generated by the ESD LabVIEW data acquisition 

software and process it in a useful, standard way. It is important to follow the naming convention for 

individual runs. The ideal naming convention for files in these folders should relate all the relevant 

information about the test in question while being as concise as possible. Many older files contain merely 

sample material and bake out date or even less information. The present naming convention is “material 

thickness temp Vstep plate# electrode# date-of-bake.ext” e.g., KaptonHN 2mil 300K 20V 5 A1 6-26-13.txt 

or LDPE 1mil 300K 60V _ B3 3-30-15.pxp. If an unusual time step (not 4s) is used for a ramp rate test the 

in place of the “Vstep”, enter the entire ramp rate e.g., 40V8s. 

11.3.1. C.3.1.   ESD File Structure 

Of critical importance is the ability to store data in an organized structure that allows it to be easily 

retrieved again. This section outlines the file structure on the MPG Big Blue file server. The following 

sections assume that the raw data have been placed in its correct location in the ESD file structure on Big 

Blue: Z:\Data & Analysis\Data\Electron Transport\ESD. 

The ESD file structure is as follows: 
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ESD 

� Analysis Programs 

� Bakeout Files 

o Processed 

o Raw 

� Materials 

Each material has its own set of subfolders as follows. There is a “Materials folder 

template” that contains the following structure for each material tested. This is standard 

for each material. There may be empty folders if a given type of test has not yet been 

done for that sample. (note NBD stands for “No Breakdown”) 

o Temp Dependent 

o RT Ramping 

o Summary 

o Time Endurance (note that EBD stands for “Early Breakdown” in Time 

Endurance (SVET) tests) 

Each of these folders other than the “Summary” folder contains the following set 

of folders. 

� Images 

� Multimeter 

� T data 

� Thickness 

Each of these contains the folders 

� Processed 

� Raw 

� Papers&Presenations 

� Procedures 

� Old ESD to sort 
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This is what remains of the old, less organized, ESD file structure. It contains all the files 

that have not yet been sorted into the new structure and/or are poorly labeled. 

11.3.2. C.3.2.   Igor Pro ESD Analysis 

Each raw .txt file in the “raw” folders should be processed. If you are processing many data it may 

be convenient to copy the folder of raw data to your local machine, leaving the files on Big Blue intact, 

process everything, then copy the processed data to the appropriate place on Big Blue. 

Some of the very oldest data, or if there are data with problems or changes with the LabVIEW 

generated header files, may not be able to be processed normally. In that case, just read the .txt file into 

Igor Pro under Data-Load Waves-Load General Text and plot the data manually. Normally you should only 

have to do the following: 

(a) Ensure the newest version of the "ESD Analysis" Igor Pro Procedure file is copied to the 

"processed" folder that will be the destination of your processed data. This ensures that the 

results can be matched to the version used. 

(b) Click on the "ESD Analysis" Igor Pro Procedure file and go to "Macros" in the toolbar. 

Compile if needed then execute "ESD Analysis…". Browse to the raw data file to be 

processed. Usually the corresponding "raw" folder will be accessible one folder level up. 

(c) The program will run and several plots will appear. For each ESD run in the raw data file 

(newer tests should normally only contain one) there will be four plots. Voltage vs Time, 

Current vs ln(Time), Current vs Time, and Current vs Voltage. For most tests only the Current 

vs Voltage plot will be of interest. The other plots are more useful for static voltage endurance 

time (SVET) tests. 

(d) At this point, save this Igor Pro Experiment! Use the same file name as the raw data file if it is 

named correctly (if not then correct it). Save the file in the corresponding “processed” folder. 

The new processed file’s name, type and file location will be sufficient to identify it in the 

future. 
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FIG. C.9. A and B markers in Igor Pro plot. 

(e) For standard ramp up tests enlarge the Current vs Voltage graph. The markers should already 

be visible. If not, "Ctrl+I" toggles the info bar with the markers as does "Graph", "Show Info" 

in the toolbar. The markers should be visible in the bottom left of the info bar (See Fig. C.9). 

(f) Place the A marker (crossed circle) on the last datum with current below the 10% breakdown 

current dashed line and the B marker (x-ed box) on the first datum above the 110% 

breakdown line that is part of a clear breakdown slope (an identifiable slope corresponding to 

between 10% and 110% of expected circuit’s maximum expected limited current). See Fig. 

C.10 and the ESD breakdown criteria document for further details in Z:\Data & 

Analysis\Data\Electron Transport\ESD\Analysis Programs. 

(g) Ensure the A marker goes on the last pre-breakdown datum; otherwise there could be errors in 

the "get PDs" macro later on. 

(h) The x and y values of the data marked will now appear in the info bar (see Fig. C.11). These 

data will be entered in the ESD Quality Summary Table as described in the following section. 

In the case of static voltage endurance time or other data, the markers can be used in a similar 

way to find the breakdown time rather than the breakdown voltage. 
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FIG. C.10. A and B markers in place for marking the last datum of pre-breakdown current (A) and the first 
datum with clear breakdown (B). Note the dashed guidelines marking the expected breakdown current and 
10% of the expected breakdown current based on the ESD System circuit. 

FIG. C.11. The values of markers A and B markers placed in an Igor Pro plot. 

11.3.3. C.3.3.   ESD Quality Summary Table 

In the same directory as the primary instance of the Igor Pro ESD Analysis program is the ESD 

Quality Summary Table: Z:\Data & Analysis\Data\Electron Transport\ESD\Analysis Programs. This is not 

moved around to different directories, as it is the final repository of all USU MPG ESD data. It is sortable 

and selectable columns make it vital for the higher-level analysis described in following sections of this 

appendix. Any significant updates should be accompanied by an increase in the version number. Starting 

the entry from a run of tests would warrant this, but not necessarily every time new data from the same 
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batch is added. Take care not to mess up this matrix! One precaution is the storage of previous versions so 

that in the event of an error corrections can be made with the least pain possible. The intricacies of the 

matrix calculations are self-documented in the second tab and outlined in what should be an identical 

accompanying Word document in the same directory. These should be updated together. 

To the right of the last sortable column, the first four rows are suitable for storing values that will 

be used repeatedly but are not unique to a given experiment and thus do not merit their own sortable 

column. These include instrument uncertainties and calculations of the average measured thicknesses. 

There are many cases where current and voltage data exist for a lost and/or unidentifiable sample rendering 

thickness measurements impossible. In order to estimate the electric field, the average sample thickness and 

corresponding uncertainty is used. 

Each sample has the potential to be used for up to three breakdowns so the number of samples for 

a given material is calculated by the number of experiments performed on either electrode A2 or B2 (only a 

very small number of sample—if any—would not include one of these). So the number of samples for a 

given material (for LDPE, see cell BL3) is calculated using the COUNTIFS function. This function counts 

the number of times certain criteria are met over a range of cells. In this case the number of samples of a 

given material, , is given by the number of instances there is sample material with a non-zero 

thickness entry on electrode A2 added to the number of instances of the same sample material with non-

zero thickness entry on electrode B2. 

The average thickness for a given material is given using the SUMIFS function, which sums the 

entries from a range of cells that meet the specified criteria. In our case the average  is given by the 

sum of the measured thicknesses of a given sample with non-zero thickness entry on electrode A2 plus the 

sum of the measured thicknesses of a given sample with non-zero thickness entry on electrode B2 all 

divided by . The AVERAGEIFS function is not usable in this case because it does not handle OR 

statements that are needed to include entries on either A2 or B2. 

The standard deviation for each measured thickness, 

   C.1 
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requires a column calculation, column calculation  (together with a SUMIFS similar to 

those used before). The column is column G in the matrix. Then the uncertainty as the standard deviation of 

the mean is 

 .  C.2 

We now come to the sortable columns, focusing on those with built-in formulas. 

� Column A, “Sample Material.” 

� Column B, “Sample Thickness for Calculations (mm).” As stated before, there are data 

that cannot be correlated to a physical sample to measure because many of the earliest 

samples were not well labeled if they were saved at all. In order to estimate the sample 

thickness we use . So column B contains the statement that IF the measured thickness 

exists (the cell entry is greater than zero) then use the measured thickness, otherwise, 

reference the average thickness . 

� Column C, the “Mean Sample Thickness (mm)”, refers to the mean of six measurements 

done on that individual sample, not the mean of all the samples of that material type. 

� Column D, “Stdev of Mean Thickness (mm)”, is the standard deviation of those six 

measurements. Each sample measured has its own Excel file containing the individual 

measurements and standard deviation calculation. These are located in folders in the ESD 

file structure on Big Blue together with folders containing different data types for test 

configuration (room temperature step up, SVET, temperature-dependent, etc.). 

� Column E, “(delta_d/d)^2”. This is symbolically and is used later in the uncertainty 

calculations. This column is populated using the IF statement, IF the measured thickness 

exists (>0) then us from the measurements, otherwise use . Note that the 

numerator is not . We are trying to state how well we can guess the thickness 

based on the average and deviation of the measured thickness, not the uncertainty in the 

average itself. 
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� Column F. “(d_i-d_ave)^2” is symbolically  and is used in calculating the 

standard deviation of the measured thicknesses where  is the ith entry in column C. 

� Column G. “BD temp. (K)” is the temperature at breakdown and should usually be 

evident from the file name. 

� Column H. “Voltage Step (V)” should usually be evident from the file name or, if not, 

from the data itself. 

� Column I. “Sample Plate #” should also be in the file name. 

� Column J. “Electrode #” should be in the file name. 

� Column K. “Bakeout Date” should also be in the file name. Combinations of plate 

number and bakeout date, together with the individual electrode numbers, are unique. 

� Column L. “Test Date” is retrieved from the data file header and is displayed when data 

is processed in Igor Pro. 

� Column M. “Chamber Pressure (mbar)” is also retrieved from the data file header and is 

displayed when data is processed in Igor Pro. 

� Column N. “Type of Run” is evident from the file name, its location, notes in the data file 

header, the lab notebook, and often the data itself. 

� Column O. “Waiting Voltage (V)” is only applicable to SVET runs and is often in the file 

name or is evident in the data itself. Note that a mix of these are used (if there is a 

breakdown before the waiting voltage is reached we have to use the expected value) but 

the recorded voltage is always preferred. 

� Column P. “Waiting E-field (MV/m)” is calculated as (0.001*Waiting Voltage 

(V))/Sample Thickness for Calculations (mm) to get the units right. 

� Column Q. “Time in Nitrogen Storage (days)” estimates the time in the nitrogen storage 

glove box and is calculated as the test date minus the bakeout date so it does not account 

for time under vacuum prior to a test (this may be several days if SVET tests are being 

done) or other discrepancies. 
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� Column R. “Last Voltage (V) with Base Current” is the voltage at the last recorded data 

point at base current prior to breakdown or even pre-breakdown current that does not 

return to the base or zero current. This is obtained during Igor Pro plot analysis. 

� Column S. “First Voltage (V) of steady BD current (see 4.6.4).” Also obtained during 

Igor Pro plot analysis. 

� Column T. “delta_V_BD” or  is the column entries S – R, the first breakdown 

current voltage minus the last stead state current voltage. This is the window in which 

“true” ESD occurs. 

� Column U. “Breakdown Voltage (V)” is defined as the average between the first 

breakdown current voltage minus the last stead state current voltage or (S+R)/2. 

� Column V. “Breakdown E-Field (MV/m)” is given by (0.001*Breakdown Voltage 

(V))/Sample Thickness for Calculations (mm). 

� Column W. “BD Field Deff Uncertainty (MV/m)” is the uncertainty in the breakdown 

field due just to the way it is defined using the average of the first breakdown current 

voltage minus the last stead state current voltage. It is given by 0.001*(S-R)/2B. 

� Column X. “BD Field Uncertainty (MV/m)” is the entire uncertainty in the breakdown 

field given by the following formula (explained in greater detail in Appendix B) 

  B.1 

There are several other columns involving arcing, breakdown image analysis, and other 

breakdown features. These areas are still under development and are not expounded upon at this time. 

When entering new data into the table, do the following: 

(a) Check to see if a row exists for your test already. A unique combination of bakeout data, plate 

number, and electrode number should exist for each test. It is likely that for new data a row 

may not exist. Simply insert a row among rows of the same materials (this is important for 
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some of the calculations) or if it is the first of a new material make sure all the entries in the 

row are devoid of calculations. Refer to the table documentation about how to populate these. 

(b) Populate the general information from the naming convention and header information in the 

row. These are "Sample Material", "Sample Plate #", "Electrode #", "Bakeout Date", "Test 

Date", "Chamber Pressure (mbar)", and "Type of Run". These are taken directly from the file 

name for the test and the header information which is printed out in the command line of the 

ESD Analysis Igor Pro program automatically when it is executed. Simply copy and paste for 

most of these. 

(c) The voltage (x) values from the markers described in C.3.2 should be entered carefully into 

their corresponding columns "Last Voltage (V) with Base Current" and "First Voltage (V) of 

steady BD current (defined as the first definable slope about less than or equal to the inverse 

of about 200 MΩ)". If you did an endurance time test, you will be entering times into the 

corresponding time columns. 

(d) Fill in the other entries as data are available. Especially important is the sample thickness and 

its uncertainty which will reduce the uncertainty in the breakdown electric field calculations. 

For some tests, some fields are less important (e.g., breakdown times for standard voltage 

step-up to breakdown tests or measured ramp rate when the standard ramp rate is used) but it 

does not hurt to fill them in. Make sure to fill in any fields relevant to the test type 

(temperature for cryogenic tests or measured ramp rate for ramp rate tests, etc.). 

11.3.4. C.3.4.   Other Data Analysis  

Other ancillary measurements related to ESD tests need to be made, processed, and entered into 

the ESD Quality Summary Table. These include thickness and imagining or may be secondary results of 

the ESD data themselves such as voltage ramp rate. Post-breakdown sample imaging has its own 

procedures which can be found in Z:\Instruction & Procedures\Procedures\Electron Transport\ESD. 

� Sample Thickness: Sample thickness is important in that it is key to reducing the 

uncertainty in breakdown field. Recall that  so reducing the uncertainty in 

sample thickness  is key to reducing breakdown field uncertainty. Copy the newest 
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version of the Thickness Template Excel worksheet to the raw thickness folder for the 

material in question. For each measurement use the ratcheting micrometer in SER 217 

and follow the directions in the worksheet. “Save As” the sample name then repeat for 

each measurement, entering the results into the corresponding cells in the ESD matrix. 

� Voltage Ramp Rate: If any ramp rate other than the standard 20V/4s is used or if the 

ramp rate is otherwise called into question the Igor Pro Procedure “RampRate v#” 

(newest version) can be found in Z:\Data & Analysis\Data\Electron 

Transport\ESD\Analysis Programs. Open it with the Igor Pro Experiment in question 

(processed data file) already open and it will load into that experiment. Execute in the 

command line “RampRate(Voltage__V_, Time__ms_)” (or the correctly named voltage 

and time waves in the function) and the program will calculate the ramp rate, average 

voltage and time steps, and uncertainties. Beware that if there have been voltmeter errors 

causing the voltage data to drop unrealistically (often to zero) this can adversely affect 

the results. This will be obvious the in plots. You may have to manually adjust these 

points in the waves (usually the average of the points around it is sufficient) to get a 

reasonable answer for the ramp rate. 

11.4. C.4.   Macro Data Analysis 

This section discusses how to go about getting the science out of all these data that has been 

processed and archived in a big sortable matrix. Before doing this, it is strongly recommended that you 

make a copy of the ESD Quality Summary Table on your local machine and re-name it relevant to 

whatever project you are working one. Do not disturb the main instance of the matrix on Big Blue for this 

level of data analysis! 

You may be interested to know if breakdown field—or some other test parameter—changes with 

temperature, ramp rate, chamber pressure, or phase of the moon. The sortable, selectable columns of the 

matrix let you do this. See Fig. C.12. By clicking on the sorting arrows, you can see you can sort in 

ascending or descending alphabetical order, that certain entries can be selected or deselected, and other 

advanced options. This enables you to sort as desired. You most likely will want to unselect any materials 
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FIG. C.12. Sorting options for columns in the ESD Quality Summary Table. 

or test type you are not interested in. Note that, once the file is saved, unselected material may be 

effectively erased from the spreadsheet. Examples of two typical meta-analysis techniques follow below.

11.4.1. C.4.1.   Weibull Analysis and Fitting 

(a) First, the breakdown data must be in the ESD Quality Summary table. The column in question 

is the column of breakdown electric field values. Only runs with the same test configuration 

including temperature and ramp rate should typically be considered together. Any 

questionable runs (e.g., setup error, sample not baked, ramp up errors) or runs containing 

errors should be discarded. This column of breakdown fields should be sorted from smallest 

to largest. 

(b) Open an instance of the Igor Pro routine “EmpiricalCumulativeDist v1-1” or current version 

in Z:\Data & Analysis\Data\Electron Transport\ESD\Analysis Programs (This code is also 

included in current version of “QQcode.” I recommend loading the QQcode macro because if 
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you need it later, Igor Pro will not let you compile two instances of the same function in a 

macro). Before proceeding, save the experiment as a new file name in the desired location. 

(c) Create a new table (Windows>New Table, click ‘Do It’ in pop-up window). Paste the sorted 

breakdown field values into this table. Rename the wave of breakdowns fields something 

short but relevant such as “BDF.” This can be done by pasting “Rename wave0,BDF;” into 

the command line. These instructions will assume this wave name from now on. 

(d) In the command line, execute the function “ECDF(BDF)” which will give the corresponding 

quantile (or for large sample size probability) associated with the sorted ascending field 

values. From here you may create a plot of the Empirical Cumulative Distribution Function 

(ECD) of the breakdowns for the material in question (Windows>New Graph, under Y 

Wave(s) select BDF_ECD and under X Wave select BDF, click ‘Do It’). In Igor Pro, a 

“cityscape” mode is a good way to represent the stepwise ECD function. Double click the red 

plot to change the trace appearance. 

(e) ECD plots are not conducive to standard error bars; however, we can give some idea of the 

uncertainty by bounding the ECD with two copies of the original ECD by shifting it by ± the 

average of the standard deviations of the breakdown fields. This likely overestimates the 

variation of the ECD, but gives some idea of error bounds. Other methods exist (see Appendix 

B for more detail.)  

(f) We can now proceed with Weibull analysis. Save a new instance of the experiment for each 

Weibull fit (2, 3, and 5 parameters) to ensure that each individual fit is preserved. For Weibull 

analysis we transform the ECD in a way corresponding to the linearization of a 2-parameter 

Weibull cumulative distribution (Weibull, 1951;  Chauvet and Laurent, 1993), 

    ,             5.2  

  and    5.3
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(g) copies of the BDF and BDF_ECD waves and rename them if desired. To make copies 

you can add the BDF_ECD wave to the table by clicking Table>Append Columns to Table 

and selecting it. Highlight both columns and use ctrl+c to copy and ctrl+v to paste copies of 

these waves into the same table. They can be renamed if you highlight them, and while 

highlighted right click and ‘rename waves’ will appear as an option.  

(h) Transform the new waves. Using the default names of copied waves, executing the following 

in the command line will perform the transformation. 

•'BDF1'=log('BDF1') 

•'BDF_ECD1'=log(ln(1/(1-'BDF_ECD1' ))) 

Note that the last entry in the transformed ECD wave will read inf by definition. Error bar 

waves can be transformed in the same way. 

 Plot these new waves. The data in these coordinates are traditionally represented by markers.

 To fit data to a line select Analysis>Curve fitting. Select “From Target” and under Y Data 

“BDF_ECD1” or whatever you have named the transformed data and under X Data select 

“BDF1”. The default fit function is the line . Under output option you can select 

“X Range Full Width of Graph” if desired. If you only want to fit to some of the data, before 

opening the curve fitting window, select the plot and press ctrl+i which toggles the cursor 

menu. Drag and drop A and B cursors where desired then in the curve fitting menu under 

“Data Options” select the “Cursors” button. When you are ready to fit click “Do It.” Fitting 

parameter information is printed at the command line and a fit should appear on the plot.

 To plot untransformed data—which may be desirable for small data sets—requires the use of 

a custom fit function. In the curve fitting menu window, click “New Fit Function.” You are 

required to name your function and provide fitting coefficients and variables. For a 2-

parameter Weibull fit coefficients could be F0 and B (instead of beta). The independent 

variable could be x (this would be  above). In the fit expression type after “f(x)=” “1-exp(-

(x/F0)^B)” then click “Save Fit Function Now.” You will notice in the Curve Fitting Window 

that the “Do It” box cannot yet be selected. For custom fit functions, Igor Pro needs 
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reasonable guesses for the fitting coefficients. Under the “Coefficients” tab you can give 

initial guesses for F0 and B and constrain them to a certain range. F0 must be greater than 

zero and less than the maximum field value in the data. Beta is typically close to ten but must 

be positive, confining it from 0 to 50 or 0 to 100 usually works. With initial guesses in place 

you can now click “Do It” and perform the fit.

 Fitting to all points does may not result in a great fit. Record the parameters from the first fits 

over the full range anyway, then do another fit to the main cluster of points.

 Additionally, you can consider a 3-parameter fit by creating a new fitting function for

,           5.4

there is not a unique linearization and there is not a linearization for the mixed Weibull fit. In 

general, we can mix any number S of total subdistributions. 

   5.6 

case of =2, we can say 

,  5.8 

We see automatically that so long as  total probability is conserved. Note that both 

 and  are assumed to be constants but that is not a requirement; they could each be a 

function of F. Also note that each  could be of a different form. 

A mix of two two-parameter Weibull distributions is 

.  5.9 

 For each of these, Igor Pro can fit the untransformed data then export the fit to a wave. 

Transforming the exported wave lets us plot it against the “linearized” or rather transformed 

data where it is visually easier (and traditional) to compare candidate fits. Fitting function can 

be copied from previous instances of these fits for data in other materials.
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11.4.2. C.4.2.   Fitting with Physics Models 

This section outlines how to fit data using the Crine and dual-defect physics-based models. This is 

somewhat more difficult than using the Weibull fits. 

  3.7 

           3.1

this is the dual-defect model. However, using only one term in the sum reduces to the Crine 

mean field theory. Due to issues with representation of numbers in Igor Pro, we have to combine 

everything we can when fitting, then extract the variables of interest later,  and . We can use the 

following simplification. 

   5.12 

 and .  5.13 

Of course, for the Crine model assumptions, there would only be one of each combined variable  

and .  

(a) In Igor, make a copy of the experiment having already done the Weibull analysis described 

above.

(b) We are not able to enter the Crine or Dual-defect models into due to the product series 

required to consider the ramp-up process. For each model, we must create a dummy fitting 

function, and then modify it. To do this, go to Analysis>Curve Fitting then in the new box 

select “New Fit Function”. Name it Ptot (for the dual defect model) or Crine accordingly. 

Enter ‘F’ as the independent variable and Ga, Na, Gb, and Nb for the dual defect or for Crine 

‘G’ and ‘N’. In the ‘Fit Expression’ window, enter in a dummy function using all the 

coefficients and the variable just entered. For example “N*F+G” or “F+Ga+Gb+Na*Nb”. 
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Click “Save Fit Function” then click “Cancel” to exit the fitting routine. We now need to edit 

the dummy fitting routine in order to have it calculate either of the physics models. To open 

up the programing dialog enter “ctrl+m”. You will see something like the following in the 

procedure window:

Function Crine(w,F) : FitFunc 

 Wave w 

 Variable F 

 

 //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering 

them will 

 //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting 

dialog. 

 //CurveFitDialog/ Equation: 

 //CurveFitDialog/ f(F) = N*F+G 

 //CurveFitDialog/ End of Equation 

 //CurveFitDialog/ Independent Variables 1 

 //CurveFitDialog/ F 

 //CurveFitDialog/ Coefficients 2 

 //CurveFitDialog/ w[0] = G 

 //CurveFitDialog/ w[1] = N 

 

 return w[1]*F+w[0] 

End 

(c) Comment out the return line (see red) and paste the green highlighted text. The Igor Pro 

procedure window will look like:

Function Crine(w,F) : FitFunc 

 Wave w 

 Variable F 

 

 //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering 

them will 

 //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting 

dialog. 

 //CurveFitDialog/ Equation: 

 //CurveFitDialog/ f(F) =N*F+G 

 //CurveFitDialog/ End of Equation 

 //CurveFitDialog/ Independent Variables 1 

 //CurveFitDialog/ F 

 //CurveFitDialog/ Coefficients 2 

 //CurveFitDialog/ w[0] = G 
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 //CurveFitDialog/ w[1] = N 

 

 //return w[1]*F+w[0] 

 Variable j //counter 

 Variable p=1 //This will be the probability of breakdown. It needs to be initialized to one 

each time this runs 

 Variable y=1.2 //This factor is d/V_step, it is unique to each material thickness and is 

used to determine the number of field step increments 

  

 if ((F*y)<1) //We need to have at least 1. The value 1.2 is unique to Kapton, see Weibull 

Kapton Ptot v1-1.mw in same directory 

  

  p = 0 //We don't want garbage; this is a bit artificial but it should help later 

   

  else 

   

   for(j=1; j<=(F*y); j+=1) //do this until j reaches F*y 

   

    p=p*(1-w[0]*sinh(w[1]*(j^2))) //see Andersen 2015 IEEE 

TPS ESD paper  

    //all physical constants are absorbed into the fitting parameters 

to reduce numerical errors 

   

   endfor 

   

   p=1-p // finish the formula as given in Andersen 2015 IEEE TPS ESD 

paper  

   

   if   (!(p > 0 && p < 1)) //if p is not between zero and one 

  

    p = 1 //if things go outside of reason return 1 

  

   endif 

   

 endif 

  

 return p //return final value of p 

  

  

End 

 

 

Function Ptot(w,F) : FitFunc 

 Wave w 

 Variable F 
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 //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering 

them will 

 //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting 

dialog. 

 //CurveFitDialog/ Equation: 

 //CurveFitDialog/ f(F) = F+Ga+Gb+Na*Nb 

 //CurveFitDialog/ End of Equation 

 //CurveFitDialog/ Independent Variables 1 

 //CurveFitDialog/ F 

 //CurveFitDialog/ Coefficients 4 

 //CurveFitDialog/ w[0] = Ga 

 //CurveFitDialog/ w[1] = Na 

 //CurveFitDialog/ w[2] = Gb 

 //CurveFitDialog/ w[3] = Nb 

 

 //return F+w[0]+w[2]+w[1]*w[3] 

 //This function is built around the simplest form of Ptot from the Andersen 2015 IEEE 

TPS ESD paper 

 // All fitting parameters will need to be deconvoluted to extract physical values. 

  

 Variable j //counter 

 Variable p=1 //This will be the probability of breakdown. It needs to be initialized to one 

each time this runs 

 Variable y=1.2 //This factor is d/V_step, it is unique to each material thickness and is 

used to determine the number of field step increments 

  

 if ((F*y)<1) //we need to have at least 1. The value 1.2 is unique to Kapton, see Weibull 

Kapton Ptot v1-1.mw in same directory 

  

  p = 0 //We do not want garbage; this is a bit artificial but it should help later 

   

  else 

   

   for(j=1; j<=(F*y); j+=1) //do this until j reaches F*y 

   

    p=p*(1-w[0]*sinh(w[1]*(j^2))-w[2]*sinh(w[3]*(j^2))) //see  

Andersen 2015 IEEE TPS ESD paper  

    //all physical constants are absorbed into the fitting parameters 

to reduce numerical errors 

   

   endfor 

   

   p=1-p // finish the formula as given in Andersen 2015 IEEE TPS ESD 

paper  

   

   if   (!(p > 0 && p < 1)) //if p is not between zero and one 
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    p = 1 //if things go outside of reason return 1 

  

   endif 

   

 endif 

  

 return p //return final value of p 

  

End 

 

(d) Note that for each fitting routine we need to define the variable y, as it may vary from 

material to material based on the average sample thickness. This is the electric field step in 

units of MV/m. This is the voltage step divided by the average thickness for the samples used. 

(e) Compile the edited fitting funtions and now these can be used as regular fitting functions in 

Igor Pro. Note that you will have to provide guesses for the fitting parameters (see 5.4.1). 

Although these fitting parameters are labeled as Gs and Ns, they correspond to above  and  

defined in Eq. 5.13. The results can be sensitive to poor choices in the initial guesses. 

(f) After a good fit is found, it can be useful to redo the fit and output the result to a new wave. In 

the Curve Fitting dialog box, click the ‘Output Options’ tab and change the Destination from 

“_auto_” to “_New Wave_”. This new wave can be transformed in the same way Weibull fits 

are transformed so they can be compared to other fits in the Weibull-linear coordinates. 

11.4.3. C.4.3.   DCPDs and Q-Q plots 

This section outlines the process of performing a quantile-quantile q-q analysis, specifically to 

compare set of breakdowns to a set of DCPD (with same material/test conditions). Igor Pro procedure files 

can be found in Z:\Data & Analysis\Data\Electron Transport\ESD\Analysis Programs.  

Typically, each breakdown test results in many DCPD, so there will be many more DCPD data 

than breakdown data. If the two distributions are related, the resulting q-q plot will be linear and if the 

distributions are the same, the plot will show unity slope and zero intercept. 

(a) Before we can make a q-q plot we need the empirical cumulative distribution function (ECD) 

of each data set. If you have already done Weibull analysis creating the ECD of the 

breakdowns (C.4.1) was an important step and will already exist. Copy the ECD Igor Pro 

experiment for this data set and save it as something new. 

(b) In order to create an ECD of DCPD data must be entered into an Excel worksheet used to 

combine DCPD data from many runs. Several exist already, generally with the name 

‘“material”Arcs v#’ and previous versions can be cleared and populated with relevant data. 
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(c) These Excel worksheets need the current traces from all the experiments in question (columns 

may need to be added) only up to the breakdown. Post-breakdown data will contaminate the 

results. In ESD Analysis v3-3 or later there is a “Get PDs” macro. With the markers set on the 

I-V curve as outlined in C.4.1, executing this macro will bring a prompt to save a .txt file. 

This file contains all the current measurements up to the A marker and can be copied into the 

Excel DCPD sheet. The A marker may need to be adjusted in the case of field-enhanced 

conductivity. 

(d) To perform q-q analysis open the newest version of the “QQcode” Igor Pro macro. Before 

running the macro, copy from the Excel matrix the breakdown fields of interest in ascending 

order into a table. Rename that wave “BDF” for breakdown fields. The names here are 

arbitrary but they are what the macro will be looking for. Now in the Excel sheet for counting 

DCPD, columns B (electric field) and C (how many small arcs rounded to the nearest integer 

at this field) need to be copied into a new table in the Igor Pro program. Name “ArcF” and 

“Arcs” for the field that the DCPD are measured at, and the count of DCPD themselves. 

(e) Now under Macros, execute “QQ plots.” This macro results in QQ plots for the DCPD (y) and 

breakdowns (x). There is a point on the graph for each breakdown. Generally, there are many 

more DCPD than breakdowns and their ECD is likely to be much denser than the ECD of the 

breakdowns. In order to construct a QQ plot we need to match the quantiles of each 

distribution. Since there are many more DCPD data, we will interpolate these to get a reduced 

ECD of the DCPD that has quantiles that match the quantiles in the ECD of the breakdowns. 

We propose that a linear interpolation is sufficient since the DCPD data are so dense. The 

ECD of the DCPD with field plot also appears. 

(f) At this point the plots can be re-styled or analyzed further if desired, then exported. 

(g) For complicated reasons, you cannot do a simple linear correlation to get the statistical 

significance of the fit in the usual way (see Appendix B). 
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12.  APPENDIX D 

 MATERIALS DATA 

This document contains relevant material data for polymeric test materials used by the Materials 

Physics Group (MPG) for electrostatic discharge (ESD) tests. Data are provided from the manufacturers 

except for thicknesses and resistivity, which were measured. These materials are low density polyethylene 

(LDPE) (Goodfellow Cambridge Ltd., 2006;  Goodfellow, 2016a), polyimide (PI or Kapton HN) (DuPont 

Document K-15345-1, 2011;  Goodfellow, 2016b), biaxially-oriented polypropylene (BOPP) (Goodfellow, 

2016c;  Goodfellow Corp., 2017), and polyether ether ketone (PEEK) ( Goodfellow, 2016b).  

Table D.1. LDPE properties. 
Monomer Composition C2H4 
Measured Thickness (μm) 29.5±0.2 
Density (g/cm3) 0.92±0.01 
Relative Dielectric Constant 2.26±0.05 
Nominal Dielectric Strength (MV/m) 200 
Volume Resistivity (Ω·cm) 1015-1018 from manufacturer 

1018-1019 MPG equilibrium measurements 
Other Estimated crystallinity of 50% (Wintle, 1983), 

estimated peak fractional mass distribution of 
~6·103 amu or ~2 103 C2H4 mers per chain 
(Peacock, 2000;  Brunson, 2010). 

 

Table D.2. PI (Kapton HN) properties. 
Monomer 
Composition 

C22O5N2H10 C22O5N2H10 

Measured Thickness (μm) 24.8±0.8 26.4±0.5 
Density (g/cm3) 1.42±0.01 1.42±0.01 
Relative Dielectric Constant 3.4 3.4 
Nominal Dielectric Strength 
(MV/m) 

303 300 

Volume Resistivity (Ω·cm) 1.5·1017 from manufacturer 1018 from manufacturer 
(5±1)·1019 MPG measurements 

Other DuPont Kapton (2012-2013) Goodfellow Kapton (2017) 

 

Note: A third batch of Kapton was tested. This batch was received from a contractor in 2008 

without manufacturer’s data. 

 



230 

Table D.3. BOPP properties. 
Monomer 
Composition 

CH3 

Measured Thickness (μm) 27.6±0.4 
Density (g/cm3) 0.90±0.05 
Relative Dielectric Constant 2.4±0.2 
Nominal Dielectric Strength (MV/m) 200 
Volume Resistivity (Ω·cm) 1016-1018 from manufacturer 
Other N/A 

 

Table D.4. PEEK properties. 
Monomer 
Composition 

C19H12O3 

Measured Thickness (μm) 29.6±0.3 
Density (g/cm3) 1.26±0.05 
Relative Dielectric Constant 3.25±0.05 
Nominal Dielectric Strength (MV/m) 110-150 
Volume Resistivity (Ω·cm) 1015-1016 from manufacturer 

~2·1019 MPG measurements 
Other N/A 
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