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ABSTRACT 

Changing Nonhuman Impulsive Choice  

by 

C. Renee Renda, Doctor of Philosophy 

Utah State University, 2018 

Major Professor: Gregory J. Madden, Ph.D. 
Department: Psychology 

Impulsive choice describes the preference for smaller, sooner over larger, later 

rewards. The process thought to underlie impulsive choice is excessive delay discounting, 

which characterizes the rapid devaluation of a reward as a function of the delay until its 

receipt. Strong, positive correlations have been observed between excessive delay 

discounting and several problematic behaviors (e.g., substance dependence, gambling). 

Excessive delay discounting may be a transdisease process, and interventions designed to 

reduce discounting may reduce the maladaptive behaviors with which it correlates. The 

research described in Chapters 2-5 explores two methods to change nonhuman impulsive 

choice. The first method took its lead from a study in which working-memory training 

reduced delay discounting in human stimulant-dependent individuals. Using a back-

translational approach, Chapter 2 evaluated the cross-species generality of this finding. 

Although working-memory training improved working-memory performance, it did not 

influence nonhuman impulsive choice. The experiments described in Chapters 3-5 used a 
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training regimen involving prolonged exposure to immediate or delayed food reinforcers 

(immediacy- and delay-exposure training, respectively). Previous research has shown that 

delay-exposed rats make fewer impulsive choices than immediacy-exposed rats. Chapter 

3 sought to determine the duration of this effect. Replicating prior findings, there was a 

significant between-group difference in impulsive choice immediately following training. 

This effect remained significant after a 120-day test-retest interval. In Chapter 3, and in 

previous reports, it is unclear whether delay-exposure training reduces impulsive choice, 

or if immediacy-exposure training increases impulsive choice. To address this limitation, 

Chapter 4 assessed within-subject changes in impulsive choice and compared the effects 

of delay- and immediacy-exposure training on impulsive choice to developmental 

reductions in impulsivity. The results from this experiment suggest that delay-exposure 

training reduces impulsive choice and that immediacy-exposure training does not 

increase it. All prior studies of delay- and immediacy-exposure training have evaluated 

its effects after at least 90 training sessions (approximately 9,600 training trials). Chapter 

5 demonstrated that the delay-exposure training effect can be obtained in fewer sessions 

than has been previously employed. Finally, Chapter 6 provides a summary of all four 

papers.  

(174 pages) 
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PUBLIC ABSTRACT 

Changing Nonhuman Impulsive Choice  

C. Renee Renda 

Preference for smaller-sooner over larger-later rewards characterizes one type of 

impulsivity—impulsive choice. Impulsive choice is related to a number of maladaptive 

behaviors including substance abuse, pathological gambling, and poor health behaviors. 

As such, interventions designed to reduce impulsive choice may have therapeutic 

benefits. The purpose of this dissertation was to explore two methods to change 

nonhuman impulsive choice. In doing so, we hope to provide a baseline that future 

research can use to assess variables that are less amenable to human research (e.g., drug 

self-administration following reductions in impulsive choice). In Chapter 2, we failed to 

reduce nonhuman impulsive choice using working-memory training, a finding both 

inconsistent and consistent with the extant human literature. Chapters 3-5 sought to better 

understand a training regimen that generates large between-group differences in 

nonhuman impulsive choice—delay- and immediacy-exposure training. The results from 

Chapters 3 and 4 suggest that prolonged exposure to delayed food rewards produces large 

and long-lasting reductions in impulsive choice. Chapter 5 showed that the delay-

exposure training effect can be obtained in fewer sessions than has previously been 

employed. A better understanding of the effects of delay-exposure training on nonhuman 

impulsive choice may have implications for the design and implementation of a human 

analog. 
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CHAPTER 1 

INTRODUCTION 

Impulsivity is a broad construct that encompasses several problem behaviors such 

as risk taking and sensation seeking, tendencies to act prematurely or with little 

forethought, and impulsive choice (for review, see Evenden, 1999). Impulsive choice 

describes the propensity to choose smaller-sooner rewards (SSRs) in lieu of larger-later 

rewards (LLRs; e.g., Ainslie, 1974). Several human and nonhuman studies have 

demonstrated that the subjective value of a reinforcer decreases as a function of the delay 

to its receipt (e.g., Green, Myerson, Shah, Estle, & Holt, 2007; Madden, Bickel, & 

Jacobs, 1999; Mazur, 1987; Rachlin, Raineri, & Cross, 1991). This phenomenon is 

termed “delay discounting,” and excessive delay discounting (i.e., rapid devaluation of 

delayed rewards) is one process thought to underlie impulsive choice.  

Over the past two decades, delay discounting has received considerable attention. 

Figure 1-1 (adapted from Madden & Bickel, 2010) shows the number of articles 

published each year in the PubMed database from 1980 to 2016 with the keyword “delay 

discounting.” It is impossible to point to any one event as the causal factor for the 

increase in delay-discounting research. Rachlin et al. (1991) provided a convenient task 

used to quantify delay discounting in humans, and Myerson and Green (1995) 

demonstrated orderly hyperbolic discounting functions in individual participants. 

Chapman and Elstein (1995) extended the study of discounting to health outcomes, and 

Madden, Petry, Badger, and Bickel (1997) reported a positive relationship between 

excessive delay discounting and substance abuse. Since then, several studies have  
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Figure 1-1. Articles published per year in the PubMed database with the keyword “delay 
discounting.” Figure adapted from Impulsivity: The Behavioral and Neurological Science 
of Discounting (p. 4), by G. J. Madden and W. K. Bickel, 2010, Washington, DC: 
American Psychological Association. Copyright 2010 by the American Psychological 
Association. Permission to adapt one figure from a book chapter was not required by the 
American Psychological Association; see Appendix A.  

examined delay discounting and how it relates to a myriad of maladaptive behaviors (for 

meta-analyses, see Amlung, Vedelago, Acker, Balodis, & MacKillop, 2017; MacKillop et 

al., 2011). In humans, excessive delay discounting is observed with nearly all types of 

substance use (e.g., Heil, Johnson, Higgins, & Bickel, 2006; Madden, et al., 1997; 

Vuchinich & Simpson, 1998). Similar relationships have also been reported in the 

nonhuman literature (though these findings are not without exceptions; for review, see 

Stein & Madden, 2013). For example, nonhuman impulsive choice predicts the 

acquisition (e.g., Zlebnik & Carroll, 2015) and escalation (Anker, Perry, Gliddon, & 
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Carroll, 2009) of cocaine self-administration, demand for cocaine (Koffarnus & Woods, 

2013) and nicotine (Diergaarde et al., 2008), and maintenance of methamphetamine 

responding (Marusich & Bardo, 2009). Excessive delay discounting in humans is also 

correlated with pathological gambling (e.g., Alessi & Petry, 2003; Petry, 2001), obesity 

(e.g., Bickel et al., 2014; Jarmolowicz et al., 2014), internet addiction (Saville, Gisbert, 

Kopp, & Telesco, 2010), failure to engage in preventative health care (e.g., weekly 

exercise, routine dental and physician visits, wearing sunscreen; Bradford, 2010; 

Daugherty & Brase, 2010), and risky behaviors (e.g., Chesson et al., 2006; Odum, 

Madden, Badger, & Bickel, 2000).  

Given that excessive delay discounting is a common process underlying many 

problem behaviors, it may be a transdisease process (i.e., a neurobehavioral process 

operating across two or more maladaptive behaviors; Bickel, Jarmolowicz, Mueller, 

Koffarnus, & Gatchalian, 2012; Bickel & Mueller, 2009). This view suggests that 

therapeutically reducing discounting may be an effective intervention for a wide range of 

addictions and other behavioral maladies.  

A variety of behavioral approaches have been successful at reducing delay 

discounting in humans (for reviews, see Gray & MacKillop, 2015; Koffarnus, 

Jarmolowicz, Mueller, & Bickel, 2013). For example, Bickel, Yi, Landes, Hill, & Baxter 

(2011) showed that stimulant-dependent individuals that completed a commercially-

available working-memory training (WMT) program discounted delayed money less 

steeply than a control group that completed sham training (i.e., these individuals were 

given the correct answers, and thus did not need to engage working memory). Other 
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strategies to change human delay discounting include episodic future thinking (e.g., Lin 

& Epstein, 2014; Peters & Büchel, 2010), reframing the intertemporal choice (e.g., 

DeHart & Odum, 2015; Magen, Dweck, & Gross, 2008), and contingency management 

for substance use (e.g., Landes, Christensen, & Bickel, 2012; Yi et al., 2008).  

Reductions in nonhuman impulsive choice have also been observed (e.g., Mazur 

& Logue, 1978; Smith, Marshall, & Kirkpatrick, 2015; Stein et al., 2013; Stein, Renda, 

Hinnenkamp, & Madden, 2015). For example, Stein et al. (2013) exposed two groups of 

weanling Long Evans rats to 120 training sessions in which lever pressing produced 

either immediate (i.e., immediacy-exposure [IE] training) or delayed (i.e., delay-exposure 

[DE] training) food reinforcers. Immediately following training, impulsive choice was 

evaluated using a within-session increasing-delay procedure (Evenden & Ryan, 1996). 

Results showed that DE rats made significantly fewer impulsive choices than IE rats (see 

also Stein et al., 2015) and that this between-group difference remained at follow-up tests 

conducted approximately 66 (Stein et al., 2013) and 48 (Stein et al., 2015) days after the 

initial assessment was completed. Taken together, the human and nonhuman literature 

provide evidence that impulsive choice can be changed.  

The purpose of this dissertation was to explore two methods to change nonhuman 

impulsive choice. The first method was based on the human study conducted by Bickel et 

al. (2011) in which stimulant-dependent individuals that completed a commercially-

available WMT program discounted delayed money less steeply than a control group that 

completed sham training. Using a back-translational approach, the experiment described 

in Chapter 2 evaluated the cross-species generality of the WMT effect. The experiments 
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in Chapters 3-5 sought to better understand the effects of DE/IE training. Chapter 3 was 

designed to evaluate the durability of the DE-training effect. Chapter 4 compared the 

effects of DE/IE training on impulsive choice relative to maturational changes in 

impulsivity. In Chapter 5, DE/IE training duration was parametrically manipulated to 

determine if a more efficient training regimen can be employed. Finally, Chapter 6 

provides a summary of Chapters 2-5.  
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CHAPTER 2 

WORKING-MEMORY TRAINING: THE EFFECTS ON DELAY  

DISCOUNTING IN MALE LONG EVANS RATS1 

Abstract 

Delay discounting describes the devaluation of a reward as the delay to the receipt 

of the reward increases. Because steep delay discounting is robustly correlated with a 

number of behavioral problems (e.g., substance dependence, gambling) and some 

evidence suggests steep discounting precedes and predicts drug taking in humans and 

rats, this study sought to experimentally reduce rats’ delay discounting. Human 

stimulant-dependent participants given working-memory training reportedly decreased 

their rates of discounting relative to a sham-training group (Bickel et al., 2011). To 

evaluate the cross-species generality of this effect, 38 male Long-Evans rats, matched on 

pre-training delay-discounting rates, were randomly assigned to receive 140 sessions of 

working-memory training or sham training (which required no memory of the sample 

stimulus). Large between-group differences in working memory were observed after 

training; however, post-training delay-discounting rates were undifferentiated across 

groups. Potential explanations for these findings are discussed.  

 

                                                      
1 Chapter 2 of this dissertation was adapted from “Working-memory training: The effects 
on delay discounting in male long evans rats,” by C. R. Renda, J. S. Stein, and G. J. 
Madden, 2015, Journal of the Experimental Analysis of Behavior, 103, 50-61. Permission 
to reprint this material was granted by John Wiley & Sons, and the corresponding license 
agreement and permission-to-use letter is provided in Appendix B.  
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Introduction 

Steeply discounting the value of delayed rewards is correlated with substance-

dependence (MacKillop et al., 2011), pathological gambling (Petry & Casarella, 1999), 

obesity (Weller, Cook, Avsar, & Cox, 2008), and risky behaviors (Chesson et al., 2006; 

Odum, Madden, Badger, & Bickel, 2000). In addition, evidence from human longitudinal 

studies (Audrain-McGovern et al., 2009; Brody et al., 2014; Khurana et al., 2013; Kim-

Spoon, McCullough, Bickel, Farley, & Longo, 2014) and animal studies (Koffarnus & 

Woods, 2013; Perry, Larson, German, Madden, & Carroll, 2005; Perry, Nelson, & 

Carroll, 2008) suggest that steeply discounting delayed rewards is predictive of drug 

taking. Given these findings, Bickel, Jarmolowicz, Mueller, Koffarnus, and Gatchalian 

(2012) have suggested that steep delay discounting is a trans-disease process and that 

therapeutic reductions in discounting may ameliorate discounting-related pathology.  

One method by which steep delay discounting may be therapeutically addressed is 

suggested by the neural substrates involved in impulsive choice. McClure, Ericson, 

Laibson, Loewenstein, and Cohen (2004) found that the evolutionarily older limbic 

system is more active when individuals choose a smaller-sooner reward (SSR) over a 

larger-later reward (LLR). By contrast, the evolutionarily newer frontal cortex and 

parietal system are more active when the LLR is chosen (see also, Ballard & Knutson, 

2009; McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007). Bickel et al. (2007) 

proposed a framework to characterize the above correlations by parsing neural activity 

into two distinct systems—the impulsive system (limbic areas, including the nucleus 

accumbens) and the executive system (frontal cortex and parietal system). The impulsive 
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system disproportionately weights immediate over delayed rewards, whereas the 

executive system works to reduce this bias. This Competing Neurobehavioral Decision 

Systems (CNDS) theory posits that maladaptive behavior is the result of a weak executive 

system, a strong impulsive system, or some combination thereof.  

Studies supporting the CNDS theory include those demonstrating that a) separate 

neural systems are activated when choosing SSRs versus LLRs (McClure et al., 2007; 

McClure et al., 2004; Tanaka et al., 2004), b) transcranial magnetic stimulation of brain 

structures responsible for executive-system behavior affects delay discounting (Essex, 

Clinton, Wonderley, & Zald, 2012; Figner et al., 2010; Sheffer et al., 2013), c) steep 

discounting and executive dysfunction are independently correlated with many of the 

same maladaptive behaviors (e.g., Gunstad et al., 2007; Kubler, Murphy, & Garavan, 

2005; Petry & Casarella, 1999; Roca et al., 2008; Weller et al., 2008), d) taxing the 

executive system (i.e., increasing working memory load) increases delay discounting 

(Hinson, Jameson, & Whitney, 2003; but see Franco-Watkins, Pashler, & Rickard, 2003 

for an alternative interpretation), e) poor working-memory ability is correlated with steep 

delay discounting in humans (Shamosh et al., 2008) and in rats (Renda, Stein, & Madden, 

2014; but see Dellu-Hagedorn, 2006), f) overlap analyses of neuroimaging studies that 

separately assessed working memory and delay discounting revealed large activity 

clusters in the left lateral prefrontal cortex that were unique to these two processes 

(Wesley & Bickel, 2013), and g) one study has demonstrated decreased delay discounting 

following working-memory training (WMT) in human stimulant-dependent individuals 

(Bickel, Yi, Landes, Hill, & Baxter, 2011). In the latter study, participants were randomly 
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assigned to either a WMT group or a sham-training group. Where the former group 

completed a commercially available training regimen designed to enhance working-

memory performance, the latter completed the same program but were given the correct 

answers. Pre- to post-training reductions in the discounting of delayed rewards were 

observed only in the WMT group. 

We sought to evaluate if WMT would decrease delay discounting in male Long 

Evans rats. Beyond evaluating the cross-species generality of the WMT effect on delay 

discounting, there were two reasons for conducting this study. First, Bickel et al. (2011) 

reported that WMT participants’ post-training assessment of working memory was not 

different from their pre-training assessment. This may have been because the post-

training working-memory assessment was sufficiently different than that of the WMT 

program, or perhaps because participants completed a maximum of only 15 sessions of 

WMT. To address the former, rats completed a working-memory assessment that was 

similar to the training task; the latter was addressed by exposing our rats to 140 sessions 

of WMT. Second, if WMT could be used to experimentally reduce delay discounting in 

rats, then this would provide an opportunity to evaluate the causal relation between 

differences in delay discounting and subsequent propensity for drug-taking (Stein et al., 

2013).  

In the present experiment, an adjusting-delay procedure was used to quantify pre-

training rates of delay discounting. Rats with the most similar pre-training discounting 

rates were paired. One rat from each pair was randomly assigned to the WMT group; the 

other rat was assigned to the Sham-training group. WMT was a variation of the titrating-
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delay match-to-position (TDMTP) task, a commonly used operant preparation to assess 

working memory in nonhumans (see, Kangas, Vaidya, & Branch, 2010; Porritt & Poling, 

2008). We selected this task for two reasons. First, Bickel et al. (2011) hypothesized that 

the width of the temporal window across which an organism could recall events would be 

negatively correlated with rates of delay discounting (see also, Yi, Landes, & Bickel, 

2009); by significantly increasing the span of time across which rats could recall sample-

stimulus information, we expected significant decreases in delay discounting. Second, the 

medial prefrontal cortex is implicated in delayed match-to-position tasks (see, e.g., Sloan, 

Good, & Dunnett, 2006). According to the CNDS theory, improvements in this frontal 

area should produce a stronger executive system, thereby decreasing delay discounting. 

Following 140 sessions of WMT or Sham training, groups were compared on working-

memory performance and delay discounting.  

Method 

Subjects 

Subjects were 38 experimentally naïve male Long-Evans rats (Harlan, 

Indianapolis, IN), approximately 75 days old at intake. Rats were housed individually 

within polycarbonate cages in a temperature- and humidity-controlled animal colony 

room operating on a 12-hr light/dark cycle (light onset at 7:00 am). Free access to water 

was available in rats’ home cages throughout the study. Rats were food restricted to 

maintain their weights at approximately 85% of their dealer-supplied free-feeding growth 
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curve. Approval for this study was granted by the Institutional Animal Care and Use 

Committee at Utah State University. 

Apparatus 

Nineteen identical operant chambers were used (Med-Associates, St. Albans, 

VT). Each chamber was equipped with a white-noise speaker and housed within a sound-

attenuating cube. Experimental manipulanda were positioned on the front and rear walls 

of the chamber. A food receptacle was centered on the front wall (6 cm above the grid 

floor). A pellet dispenser positioned outside of the chamber delivered 45 mg food pellets 

(Bio-Serv, Frenchtown, NJ) to the food receptacle. To either side of the food receptacle 

were two low-profile retractable levers (10.5 cm above the grid floor). One identical lever 

was centered on the rear wall (10.5 cm above the grid floor). A 28-V DC cue light was 

positioned above each lever.  

Procedures 

 Figure 2-1 illustrates the approximate timing and sequence of experimental  
 
conditions.  

Figure 2-1. Order of experimental conditions and approximate age of rats. Age varied 
due to mastery-based criteria.  
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 Pre-training tasks.   

Lever training. An autoshaping procedure was used to establish lever pressing on 

the two levers located on the front wall. Levers were presented in a strictly alternating 

order and rats continued in the 100-trial sessions until they pressed the lever to earn food 

in ≥ 90% of the trials. In subsequent sessions, the rear-wall lever was inserted at the 

beginning of each trial. A single press to this lever inserted one lever on the front wall 

 (order alternating between trials) and a single press delivered two food pellets. Initial 

training ended when the rat completed ≥ 90% of the arranged trials for two consecutive 

sessions.  

 Amount discrimination. To ensure that rats could discriminate between 1- and 3-

pellets of food, an amount-discrimination task was conducted. Each 60-trial session was 

partitioned into 15 blocks of 4 trials each. The first two trials within a block were forced-

choice trials. These trials began with the insertion of the rear-wall lever and the 

illumination of its associated cue light. When the lever was pressed it retracted, the cue 

light turned off, either the left or right lever on the front was inserted (order randomly 

determined), and the cue light above the lever was lit. For half of the rats, when the left 

lever was pressed the lever retracted, the cue light turned off, and 1 pellet was delivered 

to the food receptacle (for the remaining rats, 3 pellets were delivered; pressing the other 

lever led to the other reward amount). The remaining two trials in a block were free-

choice trials in which both the left and right levers (and cue lights) were presented 

following a rear-wall response. A response to either lever retracted both levers, 

extinguished both cue lights, and delivered the reward assigned to the pressed lever. 
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Failure to respond on forced- or free-choice trials within 30-s was scored as an omission. 

Omitted forced-choice trials were repeated. A variable ITI ensured that new trials began 

every 90 s. Amount-discrimination sessions continued until the 3-pellet reward was 

selected on ≥ 90% of the free-choice trials for two consecutive sessions. 

 Assessing delay discounting. An adjusting-delay task was used to quantify delay 

discounting (Mazur, 1987). Trial structure was the same as that used in the amount-

discrimination task but when the lever associated with the larger reward was pressed a 

delay was imposed between the response and the 3-pellet reward. During the delay, the 

lever(s) retracted and the cue light above the LLR lever remained illuminated. The delay, 

initially set at 0 s, adjusted based on each rat’s choices in the preceding trial block. 

Choosing the LLR on both free-choice trials incremented the delay by 1 s, whereas 

choosing the SSR on both free-choice trials decreased the delay by 1 s. The delay 

remained constant if both rewards were selected once in the two free-choice trials. The 

final delay value obtained in a session served as the starting delay for the subsequent 

session. A programming error occurred during the first 19-25 sessions in which both cue 

lights accompanied the delay to the LLR. An additional 20 sessions were conducted 

following the correction of the programming error. Adjusting delays typically stabilize in 

30 sessions or less (see, e.g., Craig, Maxfield, Stein, Renda, & Madden, 2014; Mazur, 

2012) and have good test-retest reliability when assessed in a fixed number of sessions 

(McClure, Podos, & Richardson, 2014). Each rat’s mean adjusted delay (MAD) over the 

final nine sessions served as the measure of delay discounting.  
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 Working-memory training and Sham training. 

 Group Assignment. Rats with the most similar MADs were paired. One rat from 

each pair was randomly assigned to the WMT group and the other to the Sham group.  

 Interim Training. All rats completed a training phase that shaped the sequence of 

responses required in the subsequent task. Sessions were composed of 80 trials, which 

began with presentation of either the left or the right lever (strictly alternating between 

trials) and the corresponding cue light. A lever press caused the rear-wall lever, and its 

cue light, to be presented. Pressing the rear-wall lever resulted in a 2-pellet reward and 

initiated a 20-s ITI, with white-noise accompaniment. To signal the upcoming trial, the 

white-noise speaker cycled on and off (every 0.25 s) during the final 3 s of the ITI. 

Failure to respond on any lever within 10 s was scored as an omission and that trial was 

repeated. Across several sessions, the response requirement programmed on the side 

levers was gradually increased from a fixed-ratio 1 (FR 1) to an FR 10.  

Working-memory training (WMT). Rats assigned to the WMT group completed 

140 WMT sessions in which they earned food by making correct choices in a modified 

TDMTP task (see, e.g., Kangas et al., 2010; Porritt & Poling, 2008). In this procedure, 

rats were required to remember a cue over a delay period (i.e., retention interval) in 

which the cue was absent. The retention interval gradually increased (decreased) as the 

rat’s percent correct was above (below) the accuracy criteria described below. Data from 

the first 65 sessions of this procedure have been previously reported (see Renda et al., 

2014). 
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Each trial began by inserting either the right or the left lever (i.e., the “sample 

lever”) and illumination of the corresponding cue light. The sample lever inserted was 

selected randomly with the constraint that each lever was presented an equal number of 

times per session and the same sample lever could not be presented in more than four 

trials consecutively. Upon completion of an FR 10 on the sample lever, the lever was 

retracted, its cue light darkened, the rear-wall lever was inserted into the chamber (and its 

cue light illuminated), and the retention interval timer was initiated. A fixed interval (FI) 

schedule programmed on the rear-wall lever served as the retention interval timer; a 

single response after the interval elapsed presented the left and right front-wall levers and 

their cue lights simultaneously (i.e., the “comparison levers”). The FI arrangement on the 

rear-wall lever was designed to a) reduce the likelihood of mediating behavior during the 

retention interval (e.g., sitting in front of the correct sample lever) and b) require an 

operant response during the retention interval, thereby making the task more similar to 

the NIMH definition of working memory (NIMH, 2010). That is, rats had to actively 

maintain task relevant information and resist interference during the rear-wall task (for a 

similar procedure, see Harper, Hunt, & Schenk, 2006). A response on the comparison 

lever that matched the position of the sample stimulus was scored as correct and resulted 

in two food pellets; a mismatch was scored as incorrect and did not result in food 

delivery. After correct or incorrect trials, a fixed 20-s ITI, with white-noise 

accompaniment, was initiated. To signal the upcoming trial, the white-noise speaker was 

cycled on and off every 0.25 s during the final 3 s of the ITI.  
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Limited-hold contingencies were in place such that a response was required 

within 25 s for the sample lever and 10 s for the rear-wall and comparison levers. Failure 

to respond before the limited-hold elapsed was scored as an omission. A correction 

procedure was in place such that omitted or incorrect trials were repeated until the correct 

comparison lever was selected. During each session, eight 0-s retention interval trials 

occurred pseudorandomly (with the constraint that only two could occur consecutively). 

Intermixing these 0-s retention interval trials has been shown to maintain higher accuracy 

and minimize response bias (see Jones & White, 1994; Sargisson & White, 2001). 

Sessions ended after 48 (non-correction) trials or 2 hrs, whichever occurred first. 

After the first session, the duration of the first retention interval within a session 

was set equal to the last retention internal experienced in the preceding session. 

Subsequently, following every eighth trial, percent correct was calculated over the 

preceding 20 (non-correction) trials; for the first two calculations within a session, 

responses made in the prior session were used. Based on these percent correct 

calculations, the duration of the retention interval in the next trial was changed (or not) 

using the titration rules outlined in Table 2-1. In general, if local percent correct was very 

high, the retention interval increased in duration; the opposite was true when  

percent correct declined. After 65 sessions, the retention interval was reset to 0 s because 

the accuracy of some rats’ performance was declining, due in part to side bias. To 

continue WMT while better detecting and ameliorating this problem, the retention 

interval decreased when percent correct began to decrease on any single lever (early  
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Table 2-1.  
 
Criteria used to titrate the duration of the retention interval and amount by which the 
interval was titrated. Different criteria were used in the range of sessions shown in the 
first column.  
 

Session 

Increase if           
overall % correct 

is 

Decrease if 
overall % correct 

is  

Decrease if           
% correct on 
either lever is 

Titration 
increment 

1-65 ≥ 90% < 70% < 70% 0.25 s or 2%* 
66-95 ≥ 90% < 80% < 80% .06 s 
96-140 ≥ 90% < 80% < 80% 0.25 s or 2%* 

Note: *whichever was larger. 

detection of lever bias) and increased more slowly across sessions 66-95; the latter 

restriction was relaxed in sessions 96-140 (see Table 2-1).  

Sham training. Sham-trained rats also completed 140 sessions, each composed of 

48 trials. Events occurring within the trial were, with one exception, exactly as 

experienced by their MAD-matched WMT rat. For example, if on the first trial the WMT 

rat received a left sample stimulus and experienced 10-s retention interval, then the Sham 

rat to which it was matched started the session with a left sample stimulus and 

experienced a 10-s “retention” interval. However, at the end of the retention interval the 

Sham rat was presented with only one pseudorandomly selected comparison lever (no 

more than four consecutive presentations of the same comparison lever and an equal 

number of left and right lever presentations each session). For the Sham-trained rat, food 

was delivered after pressing the comparison lever with a probability set to the overall 

obtained reinforcement rate of its MAD-matched WMT rat. Trials in which the WMT rat 

failed to respond (i.e., omissions) were not completed by the Sham rat. Sham rats 
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completed the same response requirements on the front- and rear-wall levers and the 

same limited-hold contingencies were in place. Omitted trials were repeated.  

 Post-training tasks.  

 Assessing working memory. To evaluate the effects of WMT vs. Sham training 

on subsequent working-memory performance, all rats completed a TDMTP task. This 

task, outlined by Kangas et al. (2010), was used because it provides a sensitive, 

continuous metric of working-memory performance that is not subject to ceiling effects. 

With the following three exceptions, the trial structure was identical to the WMT task: a) 

the retention interval duration was increased by 1 s following two consecutive correct 

trials and decreased by 1 s following a single incorrect trial, b) the correction procedure 

was omitted, and c) no 0-s delay trials were arranged. To ensure that the Sham rats could 

accurately complete the task, the retention interval was initially set to 0 s and both rats in 

the WMT/Sham pair completed this match-to-position task until the Sham rat achieved ≥ 

85% correct for two consecutive sessions. Sessions ended after 48 completed trials or 

after 2 hrs, whichever came first. Based on pilot data collected in our lab, 10 working-

memory assessment sessions were conducted under the TDMTP task.  

 Reassessing delay discounting. The amount-discrimination and adjusting-delay 

tasks (as described above) were repeated, with the latter lasting a fixed 25 sessions.  

 Reassessing working memory. To determine if the effects of WMT on working-

memory performance persist, the working-memory assessment was repeated for 10 

sessions using the procedures described above.   
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Data analysis 

To quantify delay discounting, MADs were calculated over the final nine sessions 

of the pre- and post-training adjusting-delay tasks for all rats, with lower MADs 

reflecting steeper delay discounting. Because MADs were not normally distributed, they 

were natural log-transformed before statistical analyses were conducted. Matched-

samples t-tests were used to assess between-group differences in pre- and post-training 

MADs. The slopes of lines of best fit were used to evaluate any differences in trend over 

the final nine sessions. To determine if pre-training MADs were predictive of changes in 

delay discounting following working-memory (or sham) training (i.e., a rate-dependent 

effect; see Bickel, Landes, Kurth-Nelson, & Redish, 2014), change in delay discounting 

scores (post-training MAD divided by pre-training MAD) was regressed onto mean-

centered pre-training MADs. Separate regression analyses were conducted for WMT and 

Sham groups. T-tests were used to determine if the slope coefficients (b) significantly 

differed from zero. In the post-training working-memory assessments, the average 

retention interval within a session served as the measure of working-memory 

performance, with higher retention intervals indicative of better working memory. For 

data collected in these sessions, a mixed-model ANOVA with a within-subject factor 

(Session) and a between-subject factor (Group) was used to evaluate if retention intervals 

were higher in the WMT group and if they increased more rapidly across sessions when 

compared to the Sham group. Bonferroni corrected post-hoc comparisons were made by 

conducting separate one-way ANOVAs resulting in a criterion alpha value of .005. 

Another mixed-model ANOVA was conducted to determine if retention intervals  
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changed from the first post-training working-memory assessment to the reassessment, 

with Time as the within-subject factor and Group as the between-subject factor.  

Results 

Following random assignment of rats to the WMT or Sham-training group, there 

was no significant between-group difference in pre-training MADs in the initial test of  

delay discounting, t(18) = .98, p = .34 (see Table 2-2) and the linear trends in grouped 

MAD values over the last nine sessions were judged to be equivalent and stable (WMT 

slope = 0.028, Sham slope = 0.027). There were no significant between-group differences 

in free- or forced-choice omissions or latency to make a response over the final nine 

sessions of the delay-discounting assessment, p > .25 in all cases (see Table 2-3).  

 

 

Table 2-2.  

Pre- and post-training mean adjusted delays (SEM) for WMT and Sham-trained rats.  
 

 MAD (s) 
Group Pre-training Post-training 
WMT 20.63 (3.72) 17.95 (2.50) 
Sham 19.34 (3.39) 15.65 (3.18) 

Note: MADs and SEM were calculated over the final nine sessions of the adjusting-delay 
procedure. No significant between-group differences were observed. MAD, mean 
adjusted delay; WMT, working-memory trained rats; Sham, sham-trained rats.  
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Table 2-3.  
 
Omissions and response latencies (s) on forced- and free-choice trials (SEM) during the 
pre- and post-training adjusting-delay task. 
 

 Pre-training Post-training 
 WMT SHAM WMT SHAM 

Forced-choice omissions 0.64 
(0.47) 

0.22 
(0.11) 

0.32 
(0.21) 

0.08 
(0.03) 

Free-choice omissions 0.35 
(0.22) 

0.11 
(0.04) 

0.22 
(0.18) 

0.08 
(0.02) 

Latency to respond: Forced-choice 1.91 s 
(0.14) 

1.84 s 
(0.11) 

1.77 s 
(0.15) 

1.58 s 
(0.09) 

Latency to respond: Free-choice 1.79 s 
(0.11) 

1.79 s 
(0.10) 

1.73 s 
(0.13) 

1.64 s 
(0.10) 

Note: Omissions and latencies to respond to forced- and free-choice trials were averaged 
over the final nine sessions of the adjusting-delay procedure. No significant between-
group differences were observed. WMT, working-memory trained rats; Sham, sham-
trained rats. 

Figure 2-2 shows the titrating retention intervals of individual rats assigned to  

the WMT group. Data are from the final 75 sessions of WMT2. After 140 sessions of  

training, there were no visually apparent increasing trends and the average retention 

interval from sessions 131-135 was not significantly different from the average retention  

interval from sessions 136-140, t(18) = .37, p = .72. Over the final five sessions of WMT,  

the mean latency to respond on the rear-wall lever for WMT rats was 1.83 s (SD = 1.69), 

suggesting that these rats did not linger in front of the to-be-remembered sample-stimulus  

lever during the retention interval. This is consistent with our observations of rats in a 

pilot study in which no overt mediating behaviors (e.g., pressing the rear-wall lever while 

                                                      
2 Spline curves fit to these rats’ retention intervals over the first 65 sessions are presented 
in Renda et al. (2014). No significant differences were observed between the retention 
interval achieved at session 65 and those reached by session 140, t(18) = .45, p = .66. 
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Figure 2-2. Retention intervals during working-memory training. Each line shows the 
average retention interval obtained in each session for individual rats across the final 75 
sessions of working-memory training. Rats in the Sham-training group experienced the 
same “retention” intervals during these sessions. 

orienting body position to the previously inserted sample lever; see Chudasama & Muir, 

1997) were recorded.  

 Table 2-4 shows motivational measures collected during the final five sessions of  

WMT and Sham training. The only significant difference between groups was the latency  

to press the comparison lever, which was longer in the WMT group, t(18) = 4.40, p < 

.001; an expected outcome given that only WMT rats were required to choose between 

two comparison levers. 

 Figures 2-3A and 2-3B show individual rats’ retention intervals across the 10  

sessions of the first post-training working-memory assessment for rats assigned to the  

WMT and Sham groups, respectively. Figure 2-3C represents the average retention  

intervals for the WMT group (black data path) and the Sham group (gray data path). 

There was a significant main effect of Session, F(1, 18) = 81.68, p < .001, and a  
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Table 2-4.  

Omissions and latencies to respond to the sample and comparison stimuli (SEM) during 
WMT/Sham training and the initial and final working-memory assessments. 
 

  
Training Initial Assessment Final Assessment 

 WMT SHAM WMT SHAM WMT SHAM 
Sample 
omissions 1.25 (0.73) 0.16 

(0.11) 
8.51 

(3.44)* 
0.96 

(0.86) 
11.89 
(4.84) 

2.37 
(1.05) 

Comparison 
omissions 0.01 (0.00) 0.01 

(0.00) 
0.06 

(0.05) 
0.01 

(0.01) 
0.05 

(0.04) 
0.01 

(0.01) 
Latency to 
respond: sample 

3.84 s 
(0.81) 

3.24 s 
(0.56) 

7.08 s 
(0.98)** 

3.44 s 
(0.67) 

6.65 s 
(0.81)* 

4.19 s 
(0.74) 

Latency to 
respond: 
comparison 

1.85 s 
(0.10)*** 

1.37 s 
(0.06) 

5.84 s 
(0.68)** 

3.14 s 
(0.53) 

5.85 s 
(0.62)* 

3.69 s 
(0.54) 

Note: Omissions and latencies to respond to the sample and comparison stimuli were 
averaged over the final five sessions of WMT/Sham training and the two post-training 
assessments of working memory. Significantly different than Sham-trained rats: *p < .05, 
**p < .01, ***p < .001. WMT, working-memory trained rats; Sham, sham-trained rats. 

significant interaction between Session and Group, F(1, 18) = 27.75, p < .001; thus, 

retention intervals increased more rapidly in the WMT group. Post-hoc comparisons 

revealed significant between-group differences in the average retention interval obtained 

at every session, p’s < .001. Table 2-4 depicts omission and latency data for the WMT 

and Sham rats in these post-training assessments of working memory. In the final five 

sessions of the initial working-memory assessment, WMT rats had significantly more 

sample omissions, t(18) = 2.10, p = .05, and significantly longer latencies to respond on 

the sample and comparison levers, t(18) = 3.04, p < .01 and t(18) = 3.15, p < .01, 

respectively. No significant difference was observed in comparison omissions over the 

final five sessions, p > .30.  
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Figure 2-3. Average retention intervals from each session of post-training working-
memory assessments. Panels A and B show retention intervals obtained during the initial 
working-memory assessment for individual WMT and Sham rats, respectively. Panel C 
shows between-subject averages and SEM for the WMT group (black data paths) and the 
Sham group (gray data paths). Panels D and E show the average retention intervals in the 
reassessment of working memory for individual WMT and Sham rats, respectively. Panel 
F shows the between-subject averages and SEM from this final assessment, separated by 
group. * p < .001; + p < .005 

 Table 2-2 shows post-training MADs for the WMT and the Sham-trained groups. 

No significant between-group differences were observed, t(18) = .72, p = .48. Likewise, 

there were no significant between-group differences in free- or forced-choice omissions 

or latency to make a response over the final nine sessions, p’s > .20 (see Table 2-3). 

There was no significant correlation between post-training MADs and the average 

retention interval obtained during the final session of WMT, r = .22, p = .36; likewise, 

there were no significant correlations between post-training MADs and the final retention 
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interval obtained during the initial assessment of working memory for the WMT or the 

Sham-trained groups, r = .27, p = .27 and r = .36, p = .13, respectively.  

 In a reanalysis of the data obtained by Bickel et al. (2011), Bickel et al. (2014) 

reported rate-dependent effects of WMT on delay discounting. That is, individuals with 

steeper pre-training discounting rates had the greatest reduction in discounting rates 

following WMT. In the present study, low pre-training MADs (i.e., steeper delay 

discounting) were not predictive of larger post-training changes in MADs for the WMT 

group, b = -.26, t = -1.29, p > .20, or the Sham group, b = -.31, t = -1.81, p > .05. 

 Figures 2-3D and 2-3E show individual rats’ retention intervals over the final 

working-memory assessment (following the delay-discounting assessment) for the WMT 

and Sham groups, respectively. Figure 2-3F represents the average retention interval 

obtained each session for the WMT group (black data path) and the Sham-trained group 

(gray data path). There was a significant main effect of Session, F(1, 18) = 86.75, p < 

.001, and a significant Session by Group interaction, F(1, 18) = 5.19, p = .01. Post-hoc 

comparisons revealed significant between-group differences in the average retention 

interval from sessions 2-9, p’s < .005. With the Bonferroni corrected alpha value of .005, 

the differences at session 1 and session 10 only approached significance, p = .009 and p = 

.006, respectively. There were no significant correlations between post-training MADs 

and the reassessment of working memory for the WMT or the Sham-trained groups, r = 

.37, p = .12 and r = .34, p = .15, respectively. Table 2-4 shows omission and latency data 

for the WMT and Sham rats in the final assessment of working memory. Over the last 

five sessions, WMT rats had significantly longer latencies to respond to the sample and 
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comparison levers, t(18) = 2.21, p < .05 and t(18)= 2.51, p < .05, respectively. There were 

no significant differences in sample or comparison omissions over the final five sessions, 

p’s > 05.   

 A separate ANOVA conducted on the retention intervals obtained at session 10 of 

the first working-memory assessment and the reassessment revealed a significant Time 

by Group interaction, F(1, 18) = 30.31, p < .001, but no significant main effect of Time, p 

= .99. Thus, retention intervals tended to decrease slightly for the WMT rats and increase 

slightly for the Sham rats from the initial assessment of working memory to the 

reassessment. 

Discussion 

 The current study examined effects of extended WMT on subsequent working-

memory performance and delay discounting in male Long-Evans rats. Although WMT 

enhanced post-training working-memory performance relative to the Sham-trained rats, 

there was no significant between-group difference in post-training delay discounting. 

These findings are in contrast to Bickel et al.’s (2011) report that WMT decreased human 

stimulant abusers’ rates of delay discounting by approximately 50%.  

What underlies this null effect of WMT on delay discounting is, of course, 

impossible to say with certainty. Recognizing the speculative nature of what follows, we 

will discuss four possible accounts for this trans-species failure to replicate the Bickel et 

al. (2011) findings; perhaps these speculations will prove useful in designing future 

experiments. First, it is possible that the working-memory ability of the WMT rats did not 
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improve (relative to the Sham-trained rats) by the working-memory training that was 

provided. One piece of evidence against this is the post-training retention intervals across 

which our rats remembered the sample stimulus are, to the best or our knowledge, the 

highest reported in the titrating-delay match-to-position literature (e.g., Porritt & Poling, 

2008, using a similar procedure, reported a mean peak retention interval of 32.85 s, SEM 

= 4.56, whereas our WMT rats achieved a mean peak retention interval of 68.32 s, SEM = 

5.71, in the post-training reassessment of working memory). More robust evidence that 

WMT positively impacted working-memory ability would have been obtained had WMT 

rats performed better than Sham rats in a novel working-memory task (for review of 

rodent working-memory preparations, see Dudchenko, 2004; Pontecorvo, Sahgal, & 

Steckler, 1996) and future studies might include such a post-training test phase. One 

caution is that effects of working-memory training often do not generalize to improved 

performance on novel tasks (Ball et al., 2002; Owen et al., 2010; Redick et al., 2013); 

indeed such was the case in the  Bickel et al. study—WMT did not enhance post-training 

working-memory performance when the tasks used in testing were different from those 

used in training.   

 A second possible account of the trans-species failure to replicate the Bickel et al. 

(2011) finding has to do with differences in the working-memory tasks used in training. 

In our WMT phase, the duration over which rats remembered the sample stimulus was 

increased when accuracy was high, whereas in the Bickel et al. study, the number of 

stimuli to be remembered was increased (i.e., memory capacity). For example, in the 

Sequence Recall of Digits test employed by Bickel and colleagues, humans were initially 
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asked to recall a sequence of three digits. With each correct response, the to-be-

remembered sequence increased by one digit, up to a maximum of 10 digits; no explicit 

retention interval was arranged. By contrast, our rats recalled a single stimulus (left/right 

sample lever presentation) over long retention intervals. Our task was selected because 

Bickel et al. hypothesized that widening the temporal window across which events could 

influence behavior was important in influencing discounting; increasing the working-

memory retention interval to a duration approximating the delays to reinforcement in the 

delay-discounting task seemed the most direct translation of this hypothesis. Beyond this, 

our task was designed to approximate the NIMH definition of working memory – “the 

active maintenance and flexible updating of goal/task relevant information…in a form 

that has limited capacity and resists interference.” Rats were required to maintain 

information about the location of the sample stimulus while completing an interference 

task on the rear-wall lever during the retention interval. Further, the rats were required to 

update task relevant information by forgetting the prior sample stimulus with each new 

trial. Nonetheless, our task did not increase rats’ ability to recall multiple stimuli (i.e., 

memory capacity) and this may underlie our failure to observe an effect of WMT on 

subsequent delay discounting. Future nonhuman studies should employ a working-

memory task that could potentially expand subjects’ working-memory capacity (e.g., an 

odor non-match to sample task; Dudchenko, Wood, & Eichenbaum, 2000).  

 A third account of the trans-species failure to replicate relates to the nature of the 

rewards arranged in the two studies. In the Bickel et al. (2011) study, participants 

completed three delay-discounting tasks in which verbal descriptions of rewards and 
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delays were provided. In two of these tasks the rewards and delays were hypothetical and 

asymptotic working-memory performance was significantly correlated (or nearly so) with 

post-training discounting rates (rho = -.61, p = .02 and rho = -.52, p = .06 when the LLR 

was $1000 and $100, respectively). In the third discounting task, real rewards and delays 

were arranged such that participants received the outcome they had chosen on a randomly 

selected trial. In the latter task, working memory performance was not correlated with 

post-training discounting rates, rho = -.37, p = .19. This finding is consistent with the 

current study (i.e., when real rewards were arranged in both studies, improvements in 

working memory were not predictive of lower delay discounting). Why the effects of 

working-memory enhancement would be confined to the discounting of hypothetical 

events is not immediately obvious. 

 A final account of the trans-species failure to replicate is that the Bickel et al. 

(2011) finding is a Type 1 error. Participants that completed WMT in that study did not 

improve their working-memory ability in a post-training assessment of working memory 

and the extent to which participants’ working-memory skills improved on the training 

tasks was not reported. Bickel et al. hypothesized the training tasks were sufficiently 

different from the post-training working-memory assessment, such that skills acquired in 

one task did not generalize to the other. Why these enhanced skills generalized to the 

delay-discounting task is unclear. A direct replication of this study is needed to address 

this concern.   

 In conclusion, the current study failed to provide evidence that WMT reduces 

delay discounting in male rats. This finding is inconsistent with the human literature and 
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may be due to procedural differences, a species difference, or a Type 1 error. Future 

studies should examine the effects of increasing rats’ working-memory capacity on 

subsequent delay discounting. There is also a need to replicate the effects of WMT on 

human delay discounting with real and hypothetical rewards. Experimentally 

manipulating nonhuman delay discounting is important as it allows an exploration of the 

possible causal relation between individual differences in delay discounting and 

maladaptive behaviors (e.g., in nonhuman models of drug self-administration). 
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CHAPTER 3 

IMPULSIVE CHOICE AND PRE-EXPOSURE TO DELAYS: III. 

FOUR-MONTH TEST-RETEST OUTCOMES IN  

MALE WISTAR RATS1 

Abstract 

Delay discounting describes the tendency for organisms to devalue outcomes 

because they are delayed. Robust, positive correlations exist between excessive delay 

discounting and many maladaptive behaviors (e.g., substance abuse, obesity). Several 

studies have demonstrated that delay discounting can be reduced and this may hold 

promise for improving treatment outcomes. One method of reducing delay discounting 

provides rats with extended training with delayed reinforcement (i.e., delay-exposure 

training) and this significantly reduces impulsive choices, relative to rats trained with an 

equal number of immediate-reinforcement sessions (i.e., immediate-exposure training). 

To evaluate the stability of this effect, 12 weanling male Wistar rats were randomly 

assigned to receive either delay-exposure or immediate-exposure training for 120 

sessions. Impulsive choice was assessed using an increasing-delay procedure 

immediately following training and 120 days after completion of the initial assessment. 

Delay-exposed rats discounted delayed food rewards significantly less than immediate-

                                                      
1 Chapter 3 of this dissertation was adapted from “Impulsive choice and pre-exposure to 
delays: III. Four-month test-retest outcomes in male Wistar rats,” by C. R. Renda, and G. 
J. Madden, 2016, Behavioural Processes, 126, 108-112. Permission to reprint this 
material was granted by Elsevier, and the corresponding license agreement is provided in 
Appendix C.  
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exposed rats in the initial assessment and the reassessment conducted 120 days later. 

These results are encouraging as they suggest that the effects of delay-exposure training 

are robust to the passage of time and intervening experience.  

Introduction 

Impulsivity is a multifaceted construct that describes many forms of maladaptive 

behaviors (for review, see Evenden, 1999). One such form of impulsivity—impulsive 

choice—involves preference for smaller, sooner rewards (SSR) over larger, later rewards 

(LLR). Delay discounting describes the subjective devaluation of the LLR, and this 

process is thought to underlie impulsive choice (for reviews, see Madden and Johnson, 

2010; Stein and Madden, 2013; Odum, 2011).  

Strong, positive correlations have been observed between excessively discounting 

delayed rewards and many problematic behaviors such as substance abuse (e.g., Heil et 

al., 2006; Madden et al., 1997; Vuchinich & Simpson, 1998; for meta-analysis, see 

MacKillop et al., 2011), poor health behaviors (e.g., Bradford, 2010; Daugherty and 

Brase, 2010), and pathological gambling (e.g., Albein-Urios et al., 2012; Alessi and 

Petry, 2003; Petry, 2001). Because excessive delay discounting is a common process 

shared among many problematic behaviors, some consider it a trans-disease process 

(Bickel et al., 2012; Bickel and Mueller, 2009). If excessive delay discounting underlies 

poor decision-making, exploring techniques for reducing impulsive choice may yield 

therapeutic benefits for a wide range of behavioral maladies (Bickel et al., 2015; Gray 

and MacKillop, 2015; Koffarnus et al., 2013).  
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Impulsive choice can be experimentally reduced in humans (for review, see Gray 

and MacKillop, 2015; Koffarnus et al., 2013) and nonhumans (Mazur and Logue, 1978; 

Stein et al., 2013, 2015). In humans, reductions in impulsive choice have been observed 

using a number of strategies such as working-memory training (Bickel et al., 2011), 

contingency management of substance use (e.g., Landes et al., 2012; Yi et al., 2008), and 

episodic future thinking (e.g., Peters and Büchel, 2010; Lin and Epstein, 2014). In 

nonhumans, a training regimen involving early and extended exposure to delayed 

reinforcement resulted in significant decreases in impulsive choice (Stein et al., 2013, 

2015). In the latter studies, one group of weanling Long Evans rats learned to press a 

lever for food delayed by 17.5 s; the rats subsequently completed 120 sessions of this 

Delay-Exposure (DE) training. A second group of rats completed the same sessions but 

food was delivered immediately after the lever press (Immediate-Exposure group; IE). At 

the post-training impulsive-choice assessment, DE rats made significantly fewer 

impulsive choices than IE rats (common language [CL] effect size2 = .80 and .82, 

respectively in Stein et al., 2013, 2015). These differences remained significant at retests 

conducted approximately 66 and 48 days, respectively, after rats were given the 

opportunity to consume oral alcohol.  

One goal of the current study was to systematically replicate the methods of Stein 

et al. (2013, Stein et al., 2015) to evaluate the duration of the DE effect at a longer 

                                                      
2 CL effect size was calculated, as it is robust to normality violations (see McGraw and 
Wong, 1992); as applied to these data, CL effect size is the likelihood that a randomly 
sampled DE rat will make fewer impulsive choices than a randomly sampled IE rat 
(Lakens, 2013). 
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follow-up interval. As such, the follow-up interval was extended to 120 days and rats did 

not consume alcohol during the test-retest interval. A second goal of the current study to 

examine whether the DE effect generalizes to a different strain of rats. To that end, 

Wistar rats were used instead of Long Evans rats. Wistar rats are commonly used in 

studies assessing delay discounting as a predictor for cocaine self-administration (e.g., 

Anker et al., 2009; Perry et al., 2005; Perry et al., 2008; Regier, Claxton, Zlebnik, & 

Carroll, 2014; Broos et al., 2012). Evaluating the DE effect in Wistars was conducted as a 

precursor to a larger study of the effect of this training on cocaine self-administration.  

Method 

Subjects 

Subjects were 12 naïve, male Wistar rats (Harlan, Indianapolis, IN) approximately 

21 days old at intake. Rats were block-randomized to either the DE or IE groups (n = 6 

per group). Rats were individually housed in an animal colony operating on a 12 hr 

light:dark cycle (light onset at 7:00 am). After 5 days of free access to food, rats were 

gradually food restricted to 85% of their dealer-supplied growth curve free-feeding 

weights. They were maintained at this weight for all behavioral assessments but were 

otherwise given free access to food during the test-retest interval. Throughout the 

experiment, rats had free access to water in their home cage. Experimental sessions were 

conducted daily at the same time. Supplemental food was provided 2 hrs post-session.  

Apparatus 

Six identical operant chambers (Med Associates, St. Albans, VT), housed within 
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ventilated sound-attenuating cubicles and equipped with white-noise speakers, were used. 

Two low-profile retractable levers were positioned on the front wall of each chamber 

(10.5 cm above the grid floor). A pellet dispenser delivered 45-mg food pellets (Bio-Serv, 

Frenchtown, NJ) to a receptacle that was centered between the two front-wall levers. An 

identical lever was centered on the opposing chamber wall (10.5 cm above the grid floor).  

Above each lever was a 28-V cue light. 

Procedures  

Figure 3-1 depicts the order of experimental conditions and approximate age of 

the rats. 

Delay-Exposure and Immediate-Exposure Training. An autoshaping 

procedure was used to establish responding on the rear-wall lever (for a detailed 

description, see Stein et al., 2013). Autoshaping continued until rats pressed the rear-wall 

lever to earn ≥ 90% of the reinforcers for 2 consecutive sessions. Next, rats received 120 

sessions of DE or IE training. For both groups, the presentation of the rear-wall lever and  

the cue light marked the beginning of each trial. For DE rats, one lever press retracted the 

lever and initiated a 17.5-s delay during which the cue light remained illuminated.  

 
 

Figure 3-1. Order of experimental conditions and approximate age of the rats. 
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Following the delay, the cue light was extinguished and two food pellets were delivered. 

For IE rats, one lever press immediately extinguished the cue light and two food pellets 

were delivered. For the remainder of the trial, no experimental stimuli were presented; 

trials began every 60 s. Failure to respond within 20 s of lever insertion was scored as an 

omission and omitted trials were repeated. Sessions ended after 80 completed trials or 

after 2 hrs, whichever came first.  

Impulsive-Choice Task. Immediately following DE or IE training, an increasing-

delay procedure (Evenden and Ryan, 1996) was used to assess impulsive choice. Sessions 

were divided into three trial-blocks, each separated by a 7-min blackout. Each trial-block 

consisted of 6 forced- and 14 free-choice trials. In forced-choice trials, the rear-wall lever 

and cue light were presented at trial onset. One response retracted the lever, extinguished 

the light, and either the left or right front-wall lever and cue light were presented. One 

response to the front-wall lever retracted the lever, extinguished the light, and the 

reinforcer associated with that lever was delivered. A post-food blackout ensured that 

new trials began every 90 s. Free-choice trials were identical to forced-choice trials with 

the exception that both levers (and cue lights) were presented following a rear-wall lever 

press, and both levers were retracted following a choice. Failure to respond to any lever 

within 30 s was scored as an omission and forced-choice trials were repeated.  

Amount-discrimination sessions were conducted initially; all free-choice trials in 

these sessions were between one and three food pellets sans delay. Following 2 

consecutive days with ≥ 90% choice of the larger reward, the delay to the larger reward 

was increased across trial-blocks in the following order: 0, 15, and 30 s. If the LLR was 
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selected, the cue light above the lever remained lit until the delay elapsed and three 

pellets were delivered. Following 7 sessions in the impulsive-choice procedure, a single 

amount-discrimination session was conducted to evaluate if choice was sensitive to 

reward amount and delay, or instead showed a habitual pattern of avoiding the larger 

reward after the first trial block. Subsequent to that probe session, testing continued for at 

least 6 more sessions and until the following stability criteria were met: 1) ≥ 80% choice 

of the larger reward in the 0-s delay block for 5 consecutive sessions, 2) percent LLR 

choice in each of the final 5 sessions did not deviate by more than 20% from the 5-day 

mean, and 3) no monotonic increasing or decreasing trend was observed over the last 3 

sessions. Testing was terminated upon meeting this stability criterion.  

Impulsive choice was reassessed 120 days after the completion of the initial 

assessment. During the test-retest interval, all rats completed approximately 22 sessions 

in an operant task not relevant to the current experiment (all rats completed the same task, 

with no significant differences in reinforcer rate across groups). Subsequently, rats were 

returned to their free-feeding weights and remained in their home cages until the 

impulsive-choice reassessment.  

Data Analysis. Separate, independent-samples t-tests were used to examine 

between-group differences in the following measures from training: 1) number of days to 

acquire rear-wall lever pressing and 2) trials completed, omissions, and response 

latencies during DE/IE training (averaged over the final 10 sessions).  

Percent LLR choice was averaged across the final 5 days of the assessments. To 

quantify impulsive choice, area under the curve (AUC; see Myerson et al. 2011) was 
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calculated from the average percent LLR choice for each rat; higher AUC values indicate 

greater preference for the LLR. Pearson’s r correlation coefficients were used to examine 

the relationship between post-training AUC scores and those obtained 120-days later at 

the retest. Separate, mixed-model ANOVAs were used to examine the main effects of the 

within-subject factor (Time), the between-subject factor (Group), and the interaction for 

the following measures: 1) AUC values, 2) number of days to meet the amount-

discrimination criteria and the impulsive-choice stability criteria, 3) percent LLR choice 

during the amount-discrimination probe sessions, and 4) omissions and response latencies 

(averaged over the final 5 sessions). Post-hoc comparisons of significant findings were 

made by conducting separate, independent-samples t-tests. Bonferroni’s correction was 

applied to the post-hoc comparisons resulting in a criterion alpha value of .025. All other 

tests were deemed statistically significant at p < .05.  

Results 

The behavior of one DE rat was excluded from analysis because an intractable 

side bias was evident in the impulsive-choice reassessment; this exclusion did not affect 

the significance of the tests prior to the follow-up. No between-group difference was 

observed in the number of days to establish rear-wall lever pressing, p = .58 (see Table 3- 

1). During the final 10 sessions of DE/IE training, there were no significant between- 

group differences in the number of trials completed, omissions, or response latencies, p’s 

> .22 (see Table 3-1).  
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Table 3-1.  

Mean days to acquire rear-wall lever pressing and the mean number of trials completed, 
response latencies, and omissions in DE/IE training (± SEM). 
  

 DE IE 
Days to acquire lever pressing 8.20 (1.28) 7.17 (1.22) 
Trials completed 80.00 (0.00) 80.0 (0.00) 
Response latencies 1.59 (0.44) 1.73 (1.14) 
Omissions 1.50 (0.82) 0.38 (0.38) 

Note: The number of trials completed, response latencies, and omissions were calculated 
over the final 10 sessions of DE/IE training. No significant between-group differences 
were observed. DE, Delay-exposure group; IE, Immediate-exposure group 

In the impulsive-choice assessments, there were no main effects of Time or Group 

and no Time x Group interaction in the number of days to meet the amount-

discrimination criteria, p’s > .18, or in the number of sessions required to meet the 

stability criteria, p’s > .30 (see Table 3-2). Figure 3-2 depicts mean percent LLR choice 

(± SEM) in the initial assessment (left panel) and the reassessment (right panel) of 

impulsive choice. The inset bar graphs show the mean (± SEM) and individual-subject 

AUC values. From test to retest, there was no main effect of Time and no Time x Group 

interaction, p = .57 and p = .34, respectively. However, a significant main effect of Group 

was observed, F(1, 9) = 27.28, p < .001. Post-hoc comparisons revealed significant 

between-group differences in AUC in the initial assessment, t(9) = 7.49, p < .0001; CL = 

.99, and the reassessment, t(9) = 3.30, p < .01; CL = .92. In addition, there was a strong, 

positive correlation between the initial and reassessment of AUC scores in the DE group, 

r = .91, p < .05, but not in the IE group, r = .40, p = .44. No significant main effects of 

Time or Group and no Time x Group interaction were observed in percent LLR choice 
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Table 3-2.  

Mean days to meet the discrimination and stability criteria, mean percent LLR choice in 
the probe sessions, and the mean omissions and response latencies in the initial 
assessment and reassessment of impulsive choice (± SEM). 
 

 Initial Assessment Reassessment 
 DE IE DE IE 

Days to meet amount-
discrimination criteria 3.00 (0.45) 2.50 (0.22) 4.20 (1.24) 3.00 (0.52) 

Days to meet stability 
criteria 17.80 (3.80) 19.33 (3.30) 15.00 (0.45) 20.83 (5.52) 

Percent LLR choice: 
Probe session 0.98 (0.01) 0.94 (0.04) 0.96 (0.02) 0.97 (0.02) 

Omissions 0.44 (0.26) 0.40 (0.36) 0.60 (0.55) 0.10 (0.10) 
Latency to respond: 
SSR Forced-choice 2.19 (0.55) 1.56 (0.10) 2.02 (0.33) 1.37 (0.09) 

Latency to respond: 
LLR Forced-choice 1.62 (0.38) 2.05 (0.44) 1.70 (0.38) 1.83 (0.47) 

Latency to respond: 
SSR Free-choice 2.12 (0.31) 1.61 (0.10) 3.82 (1.32) 1.49 (0.18) 

Latency to respond: 
LLR Free-choice 2.11 (0.57) 1.29 (0.09) 1.97 (0.39) 1.19 (0.09) 

Note: Omissions and response latencies were calculated over the final 5 sessions of the 
initial and reassessment of impulsive choice. No significant main effects of Time or 
Group or Time x Group interactions were observed. DE, Delay-exposure group; IE, 
Immediate-exposure group 

for the amount- discrimination probe sessions, p’s > .34 (see Table 3-2). Finally, there 

were no main effects of Time or Group and no Time x Group interaction in the number of 

omissions, p’s > .29, or the latency to respond on forced- and free-choice SSR or LLR 

trials, p’s > .08 (see Table 3-2).   

Discussion 

The present research examined the longer-term effects of DE training in male 

Wistar rats. As in prior research conducted with Long Evans rats (Stein et al., 2013,  
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Figure 3-2. Mean percent LLR choice in the initial assessment (left panel) and 
reassessment (right panel) of impulsive choice. Solid and dashed data paths represent the 
DE and IE group, respectively. The inset graphs represent mean and individual-subject 
AUC values for the DE rats (open data points) and the IE rats (closed data points). Error 
bars depict ± SEM. * p < .01; *** p < .0001 

2015), Wistar rats randomly assigned to the DE group made significantly fewer 

impulsive choices than those assigned to the IE group. The Stein et al. (2013, 2015) 

findings were extended to show that DE-training effects may be observed 120 days after 

the initial impulsive-choice assessment (the longest prior test-retest interval was 66 days). 

It is noteworthy that 120 days of the Wistar rats’ life corresponds to approximately 11 

human years when one considers the relative lifespans of these species (Hubrecht and 

Kirkwood, 2010); thus, the effects of DE training last a significant portion of the rats’ 

lifespan.  

In the Stein et al. (2013, 2015) studies, rats were given the opportunity to 

consume alcohol during the test-retest interval. Rats in the present study consumed no 

alcohol; however, both groups completed an operant task for a portion of the test-retest 
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interval. Because reductions in impulsive choice were observed at follow-up in spite of 

this intervening task, the present study, when combined with those of Stein et al., 

suggests that the effect of DE training on impulsive choice is robust to a variety of 

intervening events. Future research might further explore how robust the DE-training 

effect is by examining if it generalizes to other impulsive-choice assessments (e.g., 

adjusting-delay task; Mazur, 1987) or to impulsive-choice tasks arranged in different 

chambers or with different rewards. If DE training proves robust in these generalization 

tests, studies should be undertaken to adapt the training for use with, for example, pre-

school children. Embedding DE training into a game played in pre-school classrooms 

might reduce impulsive choice in the game, in the classroom, and perhaps beyond.  

Finally, it is noteworthy that the effect of DE training was more pronounced in 

this study than in prior reports (Stein et al., 2013, 2015). The reason for the larger effect 

size can only be speculated upon. Because the procedures are unchanged from past 

studies, the rat-strain difference (Wistars vs. Long Evans) may be responsible, a 

possibility to be evaluated in future studies. 

Conclusion 

The present study provides encouraging results for researchers interested in 

producing large, long-lasting reductions in impulsive choice that are robust to intervening 

experiences. Such an effect may provide a useful baseline against which future studies 

are conducted (e.g., effects of reducing impulsive choice on subsequent acquisition of 

cocaine self-administration; Perry et al., 2005). 
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CHAPTER 4 

IMPULSIVE CHOICE AND PRE-EXPOSURE TO DELAYS: IV. 

EFFECTS OF DELAY- AND IMMEDIACY-EXPOSURE  

TRAINING RELATIVE TO MATURATIONAL  

CHANGES IN IMPULSIVITY1 

Abstract 

Impulsive choice describes preference for smaller, sooner rewards over larger, 

later rewards. Excessive delay discounting (i.e., rapid devaluation of delayed rewards) 

underlies some impulsive choices, and is observed in many maladaptive behaviors (e.g., 

substance abuse, gambling). Interventions designed to reduce delay discounting may 

provide therapeutic gains. One such intervention provides rats with extended training 

with delayed reinforcers. When compared to a group given extended training with 

immediate reinforcers, delay-exposed rats make significantly fewer impulsive choices. 

To what extent is this difference due to delay-exposure training shifting preference 

toward self-control or immediacy-exposure training (the putative control group) shifting 

preference toward impulsivity? The current study compared the effects of delay- and 

immediacy-exposure training to a no-training control group and evaluated within-subject 

changes in impulsive choice across 51 male Wistar rats. Delay-exposed rats made 

                                                      
1 Chapter 4 of this dissertation was adapted from “Impulsive choice and pre-exposure to 
delays: IV. Effects of delay- and immediacy-exposure training relative to maturational 
changes in impulsivity,” by C. R. Renda, J. M. Rung, J. E. Hinnenkamp, S. L. Lenzini, 
and G. J. Madden, in press, Journal of the Experimental Analysis of Behavior. 
Permission-to-use letters are provided in Appendix D.   
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significantly fewer impulsive choices than immediacy-exposed and control rats. 

Between-group differences in impulsive choice were not observed in the latter two 

groups. While delay-exposed rats showed large, significant pre- to post-training 

reductions in impulsive choice, immediacy-exposed and control rats showed small 

reductions in impulsive choice. These results suggest that extended training with delayed 

reinforcers reduces impulsive choice, and that extended training with immediate 

reinforcers does not increase impulsive choice.  

Introduction 

The subjective value of a reinforcer decreases as a function of the delay to its 

receipt. This process is referred to as delay discounting, and it often underlies a specific 

type of impulsivity—impulsive choice (for review, see Evenden, 1999). Impulsive choice 

describes preference for a smaller-sooner reward (SSR) over a larger-later reward (LLR). 

That is, if an LLR is discounted steeply, such that its subjective value falls below the 

objective (i.e., present) value of an SSR, preference will, all else being equal, be directed 

toward the SSR (i.e., an impulsive choice). 

A large literature has revealed a positive correlation between steeply discounting 

delayed rewards and maladaptive behaviors such as substance abuse (e.g., Heil, Johnson, 

Higgins, & Bickel, 2006; Madden, Petry, Badger, & Bickel, 1997; Vuchinich & Simpson, 

1998; for meta-analysis, see MacKillop et al., 2011), pathological gambling (e.g., Albein-

Urios, Martinez-Gonzalez, Lozano, Clark, & Verdejo-Garcia, 2012; Alessi & Petry, 

2003; Petry, 2001; for review, see Reynolds, 2006), obesity (e.g., Davis, Patte, Curtis, & 
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Reid, 2010; Weller, Cook, Avsar, & Cox, 2008; for meta-analysis, see Amlung, Petker, 

Jackson, Balodis, & MacKillop, 2016), risky sexual behaviors (Chesson et al., 2006), and 

other health-decrementing behaviors (e.g., Bradford, 2010; Daugherty & Brase, 2010; 

Odum, Madden, Badger, & Bickel, 2000). How steeply an individual discounts delayed 

rewards is also correlated with the severity of substance use (e.g., Albein-Urios et al., 

2012; MacKillop et al., 2010; Vuchinich & Simpson, 1998). The possibility that steep 

delay discounting plays a causal role in human addictive behavior comes from 

longitudinal studies showing that discounting rates predict initiation of substance use in 

humans (Audrain-McGovern et al., 2009; Khurana et al., 2013; Kim-Spoon, McCullough, 

Bickel, Farley, & Longo, 2014). Similarly, high levels of impulsive choice in rats 

precedes and predicts acquisition of cocaine self-administration (e.g., Perry, Larson, 

German, Madden, & Carroll, 2005; Perry, Nelson, & Carroll, 2008) and may be related to 

responding in other drug self-administration preparations (e.g., escalation, demand, 

maintenance; e.g., Anker, Perry, Gliddon, & Carroll, 2009; Koffarnus & Woods, 2013; 

Marusich & Bardo, 2009; for review, see, e.g., Stein & Madden, 2013). This (and other) 

evidence led Bickel, Koffarnus, Moody, and Wilson (2014) to suggest that excessive 

delay discounting may serve as a behavioral marker for addiction. As such, it may prove 

useful in identifying individuals at risk for developing an addiction, and interventions 

designed to decrease the extent to which delayed outcomes are discounted may prevent or 

ameliorate human addictive disorders (Bickel, MacKillop, Madden, Odum, & Yi, 2015; 

Gray & MacKillop, 2015).  
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Koffarnus, Jarmolowicz, Mueller, and Bickel (2013) reviewed four studies that 

used therapeutic interventions to reduce delay discounting in substance-dependent 

individuals. Moderate effect sizes (Cohen’s d = -0.41 to -0.59) were observed through 

working-memory training (Bickel, Yi, Landes, Hill, & Baxter, 2011), contingency 

management for both smoking (Yi et al., 2008) and opioid-dependence (Landes, 

Christensen, & Bickel, 2012), and a money-management intervention for cocaine and/or 

alcohol use (Black & Rosen, 2011). In addition, reductions in delay discounting have 

been observed with other strategies such as episodic future thinking (e.g., Lin & Epstein, 

2014; Peters & Büchel, 2010) and framing effects (e.g., DeHart & Odum, 2015; Magen, 

Dweck, & Gross, 2008).  

In nonhumans, systematic training regimens have produced reductions in 

impulsive choice (e.g., Mazur & Logue, 1978; Renda & Madden, 2016; Smith, Marshall, 

& Kirkpatrick, 2015; Stein et al., 2013; Stein, Renda, Hinnenkamp, & Madden, 2015). In 

the Stein et al. (2013, 2015) and Renda and Madden (2016) studies, one group of 

weanling rats was trained for 90-120 sessions to press a lever that produced food 

following a 17.5-s delay (i.e., delay-exposure [DE] training). In each of these studies, a 

second group of rats was trained for the same duration to press the same lever, but with 

the same amount of food delivered immediately (i.e., immediacy-exposure [IE] training). 

After training, a within-session, increasing-delay procedure (e.g., Evenden & Ryan, 

1996) was used to assess impulsive choice. Compared to rats in the IE group, DE rats 

made fewer impulsive choices in all three studies; the common language (CL) effect 
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sizes2 were large: CL = .80 (Stein et al., 2013), CL = .82 (Stein et al., 2015), and CL = .99 

(Renda & Madden, 2016). In addition, significant between-group differences in 

impulsive choice remained following test-retest intervals of approximately 48 (Stein et 

al., 2015; CL = .76), 66 (Stein et al., 2013; CL = .73), and 120 days (Renda & Madden, 

2016; CL = .92).  

Although DE training produces large and lasting between-group differences in 

impulsive choice, it is unclear whether this difference is attributable to decreases in 

impulsive choice in the DE group, increases in impulsive choice in the IE group, or some 

combination of the two. The IE group served as the control group in these prior studies, 

holding constant the rats’ experience with levers, the chamber, number of opportunities to 

respond for a food reinforcer, etc., but with no exposure to delayed-reinforcement 

contingencies. If extended exposure to immediate reinforcement increases impulsive 

choice in IE rats, then prior reports have over-estimated the impulsivity-reducing effects 

of DE training. Additionally, prior research has shown that impulsive choice in rodents 

decreases with age (e.g., Doremus-Fitzwater, Barreto, & Spear, 2012; Pinkston & Lamb, 

2011; Simon et al., 2010). Because DE training spans from early adolescence (~34 post-

natal days) into adulthood (~160 post-natal days), any reductions in impulsive choice in 

the DE group may reflect maturation; IE training may inhibit this developmental 

progression thus accounting for the between-group differences observed in prior research.  

                                                      
2 As applied to these data, CL effect size is the probability that a randomly selected DE rat will make less 
impulsive choices than a randomly selected IE rat (Lakens, 2013). CL effect size is robust to violations of 
normality (see McGraw & Wong, 1992). 
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The current study sought to address this limitation by assessing pre-training levels 

of impulsive choice and by the addition of a control group that did not receive training. 

First, rats completed a locomotor assessment3 using a circular corridor apparatus. Next, 

impulsive choice was assessed using a within-session, increasing-delay procedure (e.g., 

Evenden & Ryan, 1999). Rats were assigned to the DE (n=17), IE (n=17), or no-training 

control (CONT; n=17) groups in a way that minimized between-group differences in 

locomotor activity and pre-training levels of impulsive choice. Following the pre-training 

assessments, DE and IE rats received 120 sessions of their respective training. The 

CONT group completed the same pre- and post-training assessments but they were fallow 

while rats in the DE/IE groups completed training. Finally, impulsive choice was 

reassessed immediately post training.  

Method 

Subjects 

Subjects were 52 naïve male Wistar rats (Harlan Laboratories, Indianapolis, IN), 

approximately 21 days old at intake. One rat assigned to the IE group was excluded from 

analysis because of a persistent side bias. This study was conducted in cohorts of four to 

eight rats per cohort over the course of approximately 22 months. All rats were 

individually housed in a humidity and temperature controlled animal colony room that 

                                                      
3 The locomotor assessment served as a precursor for future studies in our lab examining the effects of 
DE/IE training on subsequent drug self-administration. Because locomotor activity in the circular corridor 
is predictive of drug self-administration (e.g., Piazza et al., 1989), matching based on this variable ensures 
that differences in drug responding are not due to differences in baseline locomotor activity. Prior research 
has found no difference in locomotor behavior (as measured with the circular corridor) between high- and 
low-impulsive rats (see Perry et al., 2005; Perry et al., 2008). 
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operated on a 12-hr light:dark cycle (lights on at 7:00 am). Following 7 days of ad-

libitum food access, rats were gradually restricted to 85% of their growth curve free-

feeding weights. Unless otherwise noted, all rats were maintained at their 85% weight for 

the duration of the study. Free access to water was available in the home cage. 

Experimental sessions were conducted at the same time each day and supplemental food 

was delivered approximately 2 hrs post session. All work was conducted under a protocol 

approved by the Institutional Animal Care and Use Committee at Utah State University.  

Apparatus 

Nineteen operant chambers (Med Associates, St. Albans, VT), each housed within 

a sound-attenuating cubicle with a ventilation fan, were used. Two low-profile retractable 

levers were positioned on the front wall (6.5 cm above the grid floor) of the chamber. A 

food dispenser was positioned outside the chamber that delivered 45-mg pellets (Bio-

Serv, Frenchtown, NJ) to a receptacle centered between the two front-wall levers (2.5 cm 

above the grid floor). An identical lever was centered on the rear-wall of the chamber 

(6.5 cm above the grid floor). A 28-V cue light was placed above each lever and a white-

noise generator was positioned in the upper right corner of the rear wall (13 cm above the 

grid floor). During lever training, an 8-ounce plastic water bottle was mounted outside 

the chamber. The spout entered the chamber to the left of the rear-wall cue light (4 cm 

above the grid floor).  

Locomotor activity was assessed with a circular corridor apparatus constructed of 

two PVC pipes (30.5 cm in height, 66.0 and 45.7 cm, for the diameter of the outside and 

inside walls, respectively; see, e.g., Perry et al., 2008; Piazza, Deminiere, Le Moal, &        
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Simon, 1989). Four infrared sensors were mounted within the walls of the corridors (5.1 

cm above the grid floor), and were equidistant from each other such that their placement 

formed four quadrants (i.e., one sensor at 0°, 90°, 180°, and 270°). The top of the 

apparatus was covered with a removable sheet of clear Plexiglas. The room was equipped 

with a white-noise generator. 

Procedures 

Figure 4-1 depicts the order of experimental conditions and the median age of rats 

during each condition. Briefly, locomotor activity was assessed followed by lever-press 

training. Next, rats completed amount-discrimination training and a pre-training 

impulsive-choice assessment. Rats were then assigned to the DE, IE, or CONT group. 

While DE and IE rats completed their respective training, CONT rats remained fallow in  

their home cages but were otherwise treated identically as DE and IE rats; that is, CONT 

rats were maintained at their 85% free-feeding weight, handled, and fed in the 

 

Figure 4-1. Order of experimental conditions and the median age of the rats during each 
condition. 
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same manner as the other groups. After 120 days, all rats completed amount-

discrimination training followed by the post-training impulsive-choice assessment. The 

details of each phase are outlined below. 

Locomotor assessment. Prior to food deprivation, locomotor activity was 

assessed using the procedures outlined by Perry et al. (2005). Rats were placed in the 

circular corridor apparatus for two 45-min sessions, and sessions were conducted across 

two consecutive days. Locomotor counts were defined as an interruption of two adjacent 

photobeams in succession; breaking the same photobeam twice consecutively was not 

scored as a locomotor count. A white-noise generator was on for the duration of testing.  

Lever training. Lever training was conducted during overnight sessions; access 

to water was provided during these sessions. Each session consisted of four 20-trial 

blocks during which white noise was presented, and each block was separated by a 60-

min blackout during which no stimuli were presented. Initially, rats were trained to press 

the two front-wall levers. Each trial began with the insertion of either the left or right 

front-wall lever (order pseudorandomly determined). If 55 s elapsed without a response, 

the cue light above the lever was illuminated for up to 5 s. If the lever was not pressed 

during the 60-s trial, the lever retracted, the cue light turned off, and one food pellet was 

delivered. Pressing the lever during the trial delivered one food pellet, retracted the lever, 

and a new trial was initiated. Training continued until rats pressed the inserted lever on ≥ 

90% of the trials in the final two trial blocks. The same procedure was used to train rear-

wall lever pressing, the exception being that the consequence of pressing the rear wall 

was the retraction of that lever and the insertion of one of the front-wall levers. One food 
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pellet was delivered for pressing the front-wall lever. Training continued until rats 

pressed the rear- and front-wall levers on ≥ 90% of the trials in the final two trial blocks. 

Throughout the experiment, sessions were conducted at approximately the same time 

daily (between 9:00 am and 5:00 pm), and individual rats progressed to the next phase 

after meeting the task-specific progression criteria (if present).  

Pre-training amount discrimination. Amount-discrimination sessions were 

composed of three, 20-trial blocks, with each block separated by a 7-min blackout. Each 

block was composed of 6 forced-choice trials followed by 14 free-choice trials. All trials 

began by activating the light-cued rear-wall lever. When this lever was pressed, either 

one (forced-choice trials) or two (free-choice trials) front-wall levers were inserted into 

the chamber and the corresponding cue light(s) illuminated. Pressing either lever once 

retracted the lever(s), turned the cue light(s) off, and delivered the food amount 

programmed on the lever—either one or three pellets (lever assignment counterbalanced 

across rats). An adjusting inter-trial interval (ITI) ensured that a new trial started every 60 

s. Failure to respond to a lever within 30 s retracted the lever(s), turned off the cue 

light(s), and was scored as an omission. Omitted forced-choice trials were repeated. 

White noise was presented throughout the session during this and all subsequent phases. 

Sessions ended when all 60 trials were completed or if 2 hrs elapsed. Amount-

discrimination training sessions continued until rats selected the three-pellet alternative 

on ≥ 90% of the trials across two consecutive sessions.   

Pre-training impulsive-choice assessment. Impulsive choice was assessed using 

a within-session, increasing-delay procedure (e.g., Evenden & Ryan, 1996). Sessions 
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were structured identically to the amount-discrimination sessions, with the exception that 

the delay to the three-pellet alternative increased across the three successive trial blocks 

in the following order: 0, 15, 30 s. The one-pellet alternative was always delivered 

immediately.  

Following 6 sessions, all rats completed a single amount-discrimination probe 

session (i.e., the delay to the three-pellet reward was 0 s throughout the session). This 

session was conducted to ensure that rats were not habitually responding to avoid the 

LLR during the second and third trial blocks. After this probe session, rats were returned 

to the increasing-delay procedure for at least 6 additional sessions and until the following 

stability criteria were met: 1) ≥ 80% choice of the three-pellet alternative in the 0-s delay 

block for 5 consecutive sessions, 2) area under the curve4 (AUC; see Myerson, Green, & 

Warusawitharana, 2001) in each of the final 5 sessions did not deviate by more than 20% 

from the mean of these final 5 sessions, and 3) no monotonic increasing or decreasing 

trend in AUC over the final 5 sessions.  

If, during the impulsive-choice assessment, preference for the three-pellet 

alternative in the 0-s delay block fell below 60% for two consecutive sessions, rats were 

placed into remedial amount-discrimination sessions (programmed as above and 

continued until achieving two consecutive days of ≥ 90% choice of the three-pellet 

alternative). If this failed to re-establish sensitivity to reward amount, two or more 

sessions were conducted in which only the lever associated with the three-pellet 

                                                      
4 AUC is a summary measure of delay discounting, reflecting the area under the stable 
percent LLR choices made at the range of delays investigated. Thus, higher values of 
AUC reflect a greater preference for the LLR (i.e., greater self-control). 
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alternative was presented for 60 trials. Subsequently, remedial amount-discrimination 

sessions were conducted until the aforementioned criterion was met. Thereafter, 

impulsive-choice sessions continued until the stability criteria were met.  

Group assignment. Because this study was conducted in cohorts, rats were 

assigned to DE, IE, or CONT groups in a way that minimized between-group differences 

in pre-training impulsive choice (AUC) and 2-day mean locomotor counts.   

DE, IE, and no training. During DE and IE training sessions, each trial began 

with the insertion of the rear-wall lever and illumination of the cue light above that lever. 

For DE rats, a single press retracted the lever and initiated a 17.5-s delay, after which the 

cue light turned off and two food pellets were delivered. For IE rats, a single response 

retracted the lever, turned off the cue light, and delivered two food pellets immediately. 

Two pellets were delivered so the reward amount during exposure training would not 

match either reward available in the impulsive-choice assessments. For both groups, 

failure to press the rear-wall lever within 20 s was scored as an omission and omitted 

trials were repeated. An adjusting ITI ensured a new trial began every 60 s. Sessions 

ended when the rats completed 80 trials or if 2 hrs elapsed. DE and IE training continued 

for 120 sessions. Rats in the CONT group were handled, weighed, and treated identically 

to rats in the DE and IE groups, but were fallow for 120 days. Due to experimenter error, 

six CONT rats were fallow for an additional 9-32 days; there was no difference in post-

training impulsive choice (AUC) for CONT rats that received additional fallow days and 

those that received 120 days (p = .94). 
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Post-training amount discrimination. After DE, IE, or no training, amount-

discrimination training sessions were conducted. The procedures and criteria to progress 

to the next phase were as described above with the exception that the food amounts 

assigned to the left and right levers during the pre-training amount-discrimination phase 

were switched. These assignments were unchanged for the remainder of the experiment.   

Post-training impulsive-choice assessment. After rats met the amount-

discrimination criteria, impulsive choice was reassessed. Procedures, stability criteria, 

and remedial sessions (if necessary) were as described above.   

Data Analysis  

Before conducting statistical analyses, univariate and bivariate normality of 

variables was assessed as appropriate; univariate normality was tested using the Shapiro-

Wilk test. When the data in question significantly differed from a normal distribution, 

nonparametric tests were used in lieu of their parametric counterpart.  

Prior to examining differences in impulsive choice, group differences in lever and 

exposure training were examined. A Kruskall-Wallis test was used to examine between-

group differences in the number of days to meet the lever-training acquisition criteria. 

Wilcoxon rank-sum tests were used to examine differences between the DE and IE 

groups on response latencies during the final 5 sessions of exposure training. All rats 

completed all 80 trials during these final sessions, so no analysis of trials completed was 

conducted. For all analyses here and below, p values < .05 were considered statistically 

significant.  
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Group differences in non-choice dependent measures from the impulsive-choice 

assessments were also evaluated. Kruskal-Wallis tests were conducted to examine 

between- and within-group differences on: 1) sessions to meet the amount-discrimination 

criterion, 2) sessions to stability of LLR choice, 3) omissions, and 4) latencies to press the 

SSR and LLR levers on forced- and free-choice trials (the latter two measures were 

averaged over the final 5 sessions). Minimal between-subject variability in pre-training 

impulsive choice precluded a valid assessment of the trait-like stability of this behavior 

over time.  

The effects of training and maturation on impulsive choice were examined using a 

generalized linear mixed effects (GzLME) analysis (for similar approaches, see Young, 

in press; Young, 2017). Of particular interest were the within-group differences in choice 

from pre- to post-training for CONT rats (maturation effects), differences in choice 

between the IE and CONT groups at the post-training assessment (to determine if IE 

training increases impulsivity), and finally, differences in choice between the DE and 

CONT groups (to determine if DE training increases self-control relative to changes due 

to maturation). Differences between the DE and IE groups in degree of impulsive choice 

were assessed for the purpose of evaluating the replicability of previous reports (Renda & 

Madden, 2016; Stein et al., 2013; Stein et al., 2015). Individual choices at each delay 

(SSR or LLR, coded as 0 and 1, respectively) across the final 5 sessions of the pre- and 

post-training impulsive-choice assessments served as the dependent variable in the 

GzLME analysis. This yielded 210 choices per rat (14 free-choice trials per delay x 3 



 

75 

delays x 5 stable sessions), per assessment. The outcome was specified as binomial to 

accommodate the binary nature of choice, and a logit link function was used.   

Ultimately, the GzLME is the equivalent of a repeated-measures logistic 

regression. The independent variables included in the model were Assessment (Pre-

training/Post-training), Group (DE/IE/CONT), and Delay (0 s/15 s/30 s) all as categorical 

variables, with all of their interactions; a significant three-way interaction was anticipated 

due to the nature of the study design (i.e., DE rats should have bigger changes in the 

likelihood of choosing the LLR from pre- to post-training than IE or CONT rats, and self-

control should decrease as the delay to the LLR increased, but to different extents across 

groups due to training and/or maturation). A random intercept of subject was included in 

the model. The results were nominally the same whether Delay was entered as a 

continuous or categorical predictor; thus, for ease of interpretation and facilitating 

comparisons, the categorical type was chosen. To evaluate the significance of the 

predictors in a manner similar to obtaining F-statistics in ANOVAs, Wald tests were 

computed using the Companion to Applied Regression (car) package (Fox & Weisberg, 

2002). The necessity of random slope effects of Delay (i.e., the functional equivalent of 

allowing for individual differences in discounting rates, above and beyond that captured 

by group-level differences) was subsequently evaluated using a likelihood ratio test. No 

other random effects were evaluated. 

All analyses were conducted in R (R Core Team, 2013). Normality testing was 

conducted using the nortest package (Gross & Ligges, 2015). GzLME models were fitted 

using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015), and the lsmeans 
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package (Lenth, 2016) was used to generate contrasts from the GzLME (to examine 

maturational and/or training effects). All other analyses were conducted using base R 

functions, except where noted. 

Results 

By nature of the assignment of subjects to groups, all groups were equivalent on 

measures of locomotor activity (see Table 4-1) and pre-training AUC at the start of the 

experiment (ps ≥ .28). Likewise, there were no between-group differences in the number 

of days to acquire lever pressing, Kruskal Wallis χ2 (2, N = 51) = .31, p = .86 (see Table 

4-1).  

During DE and IE training, rats in both groups completed all trials. Figure 4-2 

shows individual-subject latencies to respond and omissions during DE and IE training 

(top and bottom panel, respectively); bars correspond to medians and error bars to IQR. 

Over the final 5 sessions, DE rats had significantly longer response latencies, W = 226, p 

= .004, and made significantly more omissions, W = 230, p < .001, than IE rats.  

Table 4-1.  

Median (Q1-Q3) two-day locomotor counts and the number of days to meet lever-
training acquisition criteria.  
 

 DE IE CONT 
Locomotor counts 19.7 (16.6-24.0) 19.1 (16.8-21.7) 19.8 (15.3-23.4) 
Days to acquisition 
criteria  2 (2-2) 2 (2-2) 2 (2-2) 

Note: DE, IE, and CONT indicate delay-exposure, immediacy-exposure, and no-training 
control groups, respectively. No significant between-group differences were observed.  
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Figure 4-2. Median and individual-subject latencies to lever-press (top panel) and 
response omissions (bottom panel) in delay- (DE) and immediacy-exposure (IE) training. 
Error bars depict ± IQR. *** p < .005, **** p < .001. 

Table 4-2 shows pre- and post-training data from amount-discrimination and 

impulsive-choice phases. The median number of sessions to meet the stability criteria are 

shown, along with omissions and response latencies. No between-group differences in 

omissions or latencies were statistically significant in the pre- or post-training 

assessments, although differences in the latencies to respond on smaller-sooner forced-

choice trials in the post-training assessment approached significance, χ2 (2, N = 51) = 
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4.97, p = .08. From pre-to post-training, the only significant within-group non-choice 

difference was a reduction in the days to meet the amount-discrimination criteria in the IE 

group, W = 88.5, p = .05. Some response latencies either significantly, or nearly 

significantly declined from pre- to post-training in the CONT (forced SSR, W = 66, p = 

.006; forced LLR, W = 75, p = .02; free SSR, W = 49, p = .001) and IE groups (forced 

SSR, W = 95, p = .09; free LLR, W = 90, p = .06). 

The left two columns of Figure 4-3 show individual-subject percent LLR choice 

across delays in the pre- and post-training impulsive-choice assessments for DE, IE, and 

CONT groups (top, middle, and bottom panels, respectively). The right column of Figure 

4-3 shows individual-subject and median (± IQR) change in percent LLR choice from 

pre- to post-training across delays. In the GzLME analysis, the interaction between 

Assessment, Group, and Delay was significant, χ2(4) = 57.55, p < .0001, as were the 

majority of the other predictors in the model (see Table 4-3). This model was improved 

by allowing the effect of delay to vary across subjects, χ2(5) = 461.57, p < .0001.   

Figure 4-4 shows the model-predicted percent LLR choice by delay (± 1 SEM) for 

all groups in the pre- and post-training impulsive-choice assessment (left and right 

panels, respectively). In the absence of a universally-agreed upon metric of fit for 

nonlinear models, the representativeness of the model predictions and the adequacy of the 

modeling procedure itself is reflected in comparing the group-level estimates in Figure 4-

4 to the individual-subject values in Figure 4-3. At the pre-training assessment, all rats 
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 Figure 4-3. Individual-subject mean percent larger-later reward (LLR) choice from 
stable sessions, plotted as a function of delay to the LLR. Left and middle columns 
correspond to pre- and post-training assessments, respectively. The right column shows 
individual-subject and median change in percent LLR choice across delays. Top, middle, 
and bottom panels correspond to the delay-exposure (DE), immediacy-exposure (IE), and 
no-training control (CONT) groups, respectively. Error bars depict ± IQR.  
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Table 4-3.  
 
Significance of predictors in the generalized linear mixed effects analysis, as determined 
by Wald tests. 
 

Predictor Chi-Square df p 
Group 3.90 2 .14 
Assessment 753.95 1 < .0001 
Delay 454.73 2 < .0001 
Group*Assessment 180.39 2 < .0001 
Group*Delay 4.20 4 .38 
Assessment*Delay 197.19 2 < .0001 
Group*Assessment*Delay 57.55 4 < .0001 

 

 

Figure 4-4. Predicted percent larger-later reward (LLR) choice plotted as a function of 
delay to the LLR, calculated from the fixed effects estimates from the generalized linear 
mixed effects model (predicted probabilities multiplied by 100). Left and right panels 
correspond to pre- and post-training assessments for delay-exposure (DE), immediacy-
exposure (IE), and no-training control (CONT) groups. Error bars represent ± 1 SEM. 
Note that due to the nature of the model (i.e., logistic) error bars are not always 
symmetrical. ‡ and # represent DE/IE and DE/CONT differences, respectively (p’s ≤ 
.005).  
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showed very low percent LLR choice at both the 15- and 30-s delays, and there were no  

significant differences between groups at any of the delays (ps > .15); thus, AUC was an 

adequate dependent measure for evaluating equivalence in choice at baseline.  

Overall, DE training reduced impulsive choice relative to both IE and CONT rats. 

Replicating previous studies, DE rats showed significantly greater percent LLR choice 

than IE rats at both the 15-s (59.76% vs. 8.43%; z = 4.57, p < .0001) and 30-s delays 

(30.11% vs. 3.48%; z = 2.81, p = .005). The DE rats also showed greater self-control than 

the CONT rats, although the effects were slightly smaller. This was evidenced by 

significantly greater percent LLR choice at the 15-s delay (59.76% vs. 20.92%; z = 2.86, 

p = .004), but a difference that only approached significance at the 30-s delay (30.11% 

vs. 8.61%; z = 1.75, p =.08). At the 15-s delay, IE training produced a near-significant 

difference in percent LLR choice relative to CONT rats (8.43% vs. 20.92%, respectively; 

z = 1.73, p = .08); however, choice at the 30-s delay was unaffected by IE training 

(3.48% vs. 8.61%; z = 1.08, p =.28).  

Lastly, there was evidence of a maturation-related reduction in impulsive-choice 

in the CONT group. From pre- to post-training, percent LLR choice significantly 

increased at both the 15-s (from 6.36% to 20.92%; z = 10.90, p < .0001) and 30-s delays 

(from 0.10% to 8.61%; z = 11.56, p < .0001).  

Discussion 

The present findings replicate the effect of DE training on impulsive choice 

(Renda & Madden, 2016; Stein et al., 2013; Stein et al., 2015). That is, DE-trained rats 
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made significantly more self-controlled choices than IE-trained rats. The present study, 

for the first time, evaluated the effect of DE training against a no-training CONT group. 

On average, DE training nearly tripled the prevalence of self-controlled choices; although 

at the 30-s delay to the LLR, this difference only approached statistical significance. This 

study is also the first to evaluate within-subject changes in impulsive choice from pre- to 

post- DE/IE training, revealing a large increase in self-controlled choices among DE rats 

(median increases of 44% and 33% at the 15- and 30-s delays, respectively), which 

surpassed the small developmental changes among CONT rats (median increases of 4% 

and 6% at the same delays). The significant difference in the magnitude of these changes 

was confirmed by the significant three-way interaction between Assessment, Group, and 

Delay; because all rats’ choices were at the floor and undifferentiated during baseline, 

group differences at post-training illustrate the differential changes in impulsive choice. 

That the CONT group showed a small, but significant increase in self-control from pre- 

to post-training is consistent with past cross-sectional studies demonstrating a maturation 

effect in rats (Doremus-Fitwater et al., 2012; Simon et al., 2010), mice (Pinkston & 

Lamb, 2011), and humans (Green, Myerson, & Ostaszewski, 1999).  

If DE training reduces impulsive choice relative to a no-training CONT group, 

one might expect IE training to have the opposite effect. The present findings provide 

little support for this hypothesis. Among IE rats, there was a modest increase in median 

self-controlled choices from pre-to post-training assessments at the 15-s delay (+1%) but 

not at the 30-s delay (no change). While this suggests that IE training did not increase 

impulsive choice above baseline levels, this conclusion is tempered by the preponderance 
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of impulsive choice at baseline. More illuminating is the post-training comparison of 

impulsive choice between IE and CONT groups. The group difference was not significant 

at either the 15- or 30-s delays to the LLR; however, the difference approached 

significance at the 15-s delay. Thus, no strong evidence supports the hypothesis that IE 

training reduces developmental increases in self-control. This conclusion should be 

evaluated further in future studies.   

Two procedural changes from past studies of DE training are notable. First, in the 

present study, DE training commenced in early adulthood (M = 67 post-natal days) 

instead of adolescence (M = 34 post-natal days). That the effect size of the difference 

between DE and IE groups’ post-training AUC scores, CL = .81, is comparable to prior 

reports (CL = .80 to .99; Renda & Madden, 2016; Stein et al., 2013; Stein et al., 2015) 

suggests that age at training initiation is not a critical variable influencing the 

effectiveness of DE training (see also Peterson & Kirkpatrick, 2016). Future studies may 

wish to examine the DE-training effect in older adult rats, as this may have translational 

utility should a form of DE training be developed for use in humans. Second, in prior 

studies, DE rats had no programmed experience with immediate reinforcement until the 

post-training impulsive-choice assessment. In the present study, the pre-training 

impulsive-choice assessment necessitated early experience with immediate reinforcement 

during amount-discrimination training and impulsive-choice sessions, particularly in the 

first trial block (0-s delay to all reinforcers). The present finding that DE training 

significantly reduced impulsive choice in rats that were not naïve to programmed 

immediate reinforcement suggests that sequestering rats from immediate reinforcement is 
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unnecessary. To the extent that these findings may be translated to humans, this finding 

suggests that a form of DE training could reduce impulsive choice in humans, who will 

have considerable prior experience with immediate gratification.   

Because DE training produces large reductions in impulsive choice that last for at 

least 4 months (see Renda & Madden, 2016), three potentially fruitful directions for 

future research will be briefly discussed. First, all prior studies have provided rats with 

extensive DE training; is this lengthy training necessary, or would less DE training 

suffice? Second, is DE training robust to disruptors other than the passage of time? For 

example, while the effects of DE training generalize from the training lever (located on 

the rear wall of the chamber) to the choice levers (located on the opposite wall), we do 

not know if the effects of DE training would be disrupted if impulsive choice were 

assessed in a new chamber, with qualitatively different reinforcers, or if the delay-

bridging stimulus presented between the response and the reinforcer were changed or 

omitted. Third, although DE training has proven effective in two outbred rat strains—

Long Evans (Stein et al., 2013; Stein et al., 2015) and Wistars (current experiment; Renda 

& Madden, 2016), its effects have not been evaluated in females rats or in inbred strains 

known to make impulsive choices (e.g., Lewis rats; see, e.g., Anderson & Woolverton, 

2005; Madden, Smith, Brewer, Pinkston, & Johnson, 2008). Answering these questions 

with rats may influence the direction taken if/when DE training is modified with the aim 

of influencing human decision-making, particularly among high-impulsive individuals at 

risk of developing a substance-use disorder.  
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Given that steep delay discounting is predictive of drug taking in human 

longitudinal studies (e.g., Audrain-McGovern et al., 2009) and high levels of impulsive 

choice are predictive of subsequent cocaine self-administration in rats (e.g., Perry et al., 

2005), an important area for future DE-training research will be to further examine the 

effects of this training on subsequent drug self-administration. Stein et al. (2013) found 

that DE rats consumed more oral alcohol than did IE rats, but this effect was not 

replicated by Stein et al. (2015). Given the robust correlation between impulsive choice 

in rats and subsequent acquisition of cocaine self-administration (e.g., Perry et al., 2005; 

Perry et al., 2008; for review, see Stein & Madden, 2013) future research should evaluate 

the effects of DE training on cocaine self-administration. Future research might also 

evaluate the effects of DE training on behaviors that reflect clinical features of addiction 

in humans; for example, choosing to take an immediate drug reward when delays are 

imposed on access to non-drug rewards (Huskinson, Woolverton, Green, Myerson, & 

Freeman, 2015; Lamb, Maguire, Ginsburg, Pinkston, & France, 2016; Maguire, Gerak, & 

France, 2013). 

In conclusion, the present findings replicate prior research on the impulsivity-

reducing effect of DE training (Renda & Madden, 2016; Stein et al., 2013; Stein et al., 

2015) and extend that finding to a no-training CONT group. While there is much research 

still to be conducted on the effects of a more refined or more effective version of DE 

training, that a form of systematic training can produce large and lasting reductions in 

impulsive choice is a hopeful finding given the robust relation between delay discounting 

and addictions (Bickel et al., 2014).  
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CHAPTER 5 

IMPULSIVE CHOICE AND PRE-EXPOSURE TO DELAYS: V. 

PARAMETRIC MANIPULATION OF DELAY- 

EXPOSURE TRAINING DURATION 

Abstract 

Preference for smaller, sooner over larger, later reinforcers characterizes one type 

of impulsivity—impulsive choice. Impulsive choice is related to a number of maladaptive 

behaviors, and interventions designed to reduce impulsive choice may ameliorate those 

behaviors. In rats, a training regimen involving prolonged exposure to delayed 

reinforcement (i.e., delay-exposure training) produces large and long-lasting reductions in 

impulsive choice. In prior studies, impulsive choice was assessed following at least 90 

delay-exposure training sessions. Whether such an extensive training history is necessary 

has not been evaluated. The purpose of the present experiment was to parametrically 

manipulate training duration to determine if reductions in impulsive choice can be 

obtained in fewer sessions. One hundred sixty rats completed 0, 30, or 60 sessions of 

delay- or immediacy-exposure (i.e., control) training. Results showed that, relative to the 

30-session condition, 60 sessions of delay-exposure training reduced impulsive choice, 

and the effect size for the 60-session condition is comparable to prior studies employing 

90-120 training sessions. Importantly, the delay-exposure training effect observed 

following 60 sessions remained after a 120-day test-retest interval. 
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Introduction 

Impulsivity is a multifaceted construct implicated in a number of problematic 

behaviors including risk taking, novelty seeking, inattention, impulsive action, and 

impulsive choice (for review, see Evenden, 1999). Operationally defined, impulsive 

choice is the preference for smaller-sooner rewards (SSRs) in lieu of larger-later rewards 

(LLRs). Delay discounting, one process that may underlie impulsive choice, characterizes 

the subjective devaluation of delayed reinforcers (e.g., Green, Myerson, Shah, Estle, & 

Holt, 2007; Madden, Bickel, & Jacobs, 1999; Mazur, 1987; Rachlin, Raineri, & Cross, 

1991).  

In humans, delay discounting has been associated with a number of pathological 

conditions. For instance, excessive delay discounting (i.e., rapid devaluation of delayed 

reinforcers) is observed in almost all types of substance use (for meta-analyses, see 

Amlung, Vedelago, Acker, Balodis, & MacKillop, 2017; MacKillop et al., 2011), with 

more pronounced effects in clinically addicted populations (MacKillop et al, 2011). In 

nonhumans, similar relationships are observed, though these findings are not without 

exceptions (for review, see Stein & Madden, 2013). For example, nonhuman impulsive 

choice predicts the acquisition (Perry, Larson, German, Madden, & Carroll, 2005; Perry, 

Nelson, & Carroll, 2008; Zlebnik & Carroll, 2015) and escalation (Anker, Perry, Gliddon, 

& Carroll, 2009) of cocaine self-administration, demand for cocaine (Koffarnus & 

Woods, 2013) and nicotine (Diergaarde et al., 2008), and maintenance of 

methamphetamine responding (Marusich & Bardo, 2009). Excessive delay discounting in 
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humans is also correlated with compulsive gambling (e.g., Alessi & Petry, 2003; Petry, 

2001), obesity (e.g., Bickel et al., 2014; Jarmolowicz et al., 2014), internet addiction 

(Saville, Gisbert, Kopp, & Telesco, 2010), poor health behaviors (see, e.g., Bradford, 

2010; Daugherty & Brase, 2010), and risky behaviors (e.g., Chesson et al., 2006; Odum, 

Madden, Badger, & Bickel, 2000). Given this accumulating evidence, excessive delay 

discounting may be a transdisease process (Bickel, Jarmolowicz, Mueller, Koffarnus, & 

Gatchalian, 2012; Bickel & Mueller, 2009). If true, then therapeutically reducing delay 

discounting may be an effective intervention for a number behavioral maladies.  

A variety of behavioral approaches have been successful at changing delay 

discounting in humans (for reviews, see Gray & MacKillop, 2015; Koffarnus, 

Jarmolowicz, Mueller, & Bickel, 2013) and in nonhumans (e.g., Mazur & Logue, 1978; 

Smith, Marshall, & Kirkpatrick, 2015; Stein et al., 2013; Stein, Renda, Hinnenkamp, & 

Madden, 2015). One approach that generates large reductions in nonhuman impulsive 

choice involves prolonged exposure to delayed reinforcement (Renda & Madden, 2016; 

Stein et al., 2013; Stein et al., 2015). In these studies, weanling rats were first trained to 

lever press using a delayed- (delay-exposure [DE] group) or an immediate-reinforcement 

(immediacy-exposure [IE] group) autoshaping procedure. Next, both groups completed 

90-120 training sessions in which lever pressing resulted in delayed or immediate food 

reinforcers (DE and IE training, respectively). Immediately following training, impulsive 

choice was evaluated using a within-session increasing-delay procedure (Evenden & 

Ryan, 1996). In each of these studies, DE rats made significantly fewer impulsive choices 

than IE rats. Renda, Rung, Hinnenkamp, Lenzini, and Madden (in press) showed that this 
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between-group difference is the result of DE training shifting preference toward the more 

self-controlled alternatives (and not IE training shifting preference toward the more 

impulsive alternatives). 

Prior research has demonstrated that the DE training effect is robust to the 

passage of time and potentially disruptive intervening events (Renda & Madden, 2016; 

Stein et al., 2013; Stein et al., 2015). In Renda & Madden (2016), impulsive choice was 

reassessed 120 days after the initial assessment was completed. Impulsive-choice scores 

from the initial assessment and reassessment were significantly correlated in the DE 

group, and DE rats made significantly more self-controlled choices than IE rats at both 

time points. It is notable that, during a portion of the test-retest interval, rats were 

exposed to an operant task (Renda & Madden, 2016) or had the opportunity to self-

administer oral alcohol (Stein et al., 2013; Stein et al., 2015).  

DE training uses a multifaceted approach to reduce impulsive choice, and 

identifying the effective components of this training regimen is warranted. For example, 

DE rats learn to lever press with delayed reinforcement. Learning the contingent relation 

between a response and a delayed reinforcer may be a critical component of DE training. 

Killeen (2011) argued that the memory for a response that produces a reinforcer decays 

as the response-reinforcer delay is lengthened. He suggested that high levels of 

nonhuman impulsive choice (i.e., greater preference for the SSR) may reflect a failure to 

assign credit to the response that produced the LLR. As a result of learning to lever press 

with delayed reinforcement, DE rats may better learn the response-delayed reinforcer 

contingency resulting in greater preference for the LLR relative to IE rats. A second 
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component that may contribute to the effectiveness of DE training is that rats are exposed 

to DE/IE training for an extended period of time. Although previous research has varied 

the number of training sessions from 90 (Stein et al., 2015) to 120 (Renda & Madden, 

2016; Renda et al., in press; Stein et al., 2015), the total number of trials was held 

constant. In these prior studies, rats completed approximately 9,600 training trials. 

Evaluating if such a prolonged training history is necessary or if the DE training effect 

increases as a function of training duration is warranted. If the same effect can be 

achieved in fewer sessions, this would reduce the overall cost in terms of time and money 

associated with this research line.  

The purpose of the present study was to parametrically manipulate the duration of 

DE/IE training. A between-groups design was used to assess impulsive choice following 

0, 30, or 60 sessions of DE or IE training. In all groups, lever pressing was established 

using a delayed- (DE groups) or an immediate-reinforcement (IE groups) autoshaping 

procedure. Next, DE/IE training duration was manipulated between-groups (0, 30, 60 

sessions). The 0-session condition served to evaluate the effects of delayed- vs. 

immediate-reinforcement autoshaping on impulsive choice (i.e., whether learning the 

contingent relation between a response and a delayed reinforcer is sufficient to reduce 

impulsive choice relative to rats learning this relation with immediate reinforcement). 

Next, impulsive choice was assessed using a within-session increasing-delay procedure 

(Evenden & Ryan, 1996). To evaluate if any differences in training effectiveness were 

due to increased training duration, and not maturational reductions in impulsive choice 

(Doremus-Fitzwater, Barreto, & Spear, 2012; Pinkston & Lamb, 2011; Renda et al., in 
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press; Simon et al., 2010), an additional cohort of rats, matched to the age at which rats in 

the 60-session condition began the impulsive-choice assessment, completed the 0-session 

condition. Finally, if fewer training sessions produces comparable results to prior 

research (Renda et al., in press; Renda & Madden, 2016; Stein et al., 2013; Stein et al. 

2015), a logical question is whether those changes in impulsive choice are durable. Thus, 

impulsive choice was reassessed following a 120-day test-retest interval for training 

conditions that produced comparable effect sizes to that of prior research.  

Method 

Subjects 

One-hundred sixty experimentally naïve male Wistar rats (Harlan Laboratories, 

Indianapolis, IN) served as subjects. One-hundred twenty rats were approximately 21 

days old at intake; the remaining 40 rats were approximately 87 days old at intake. This 

study was conducted over 22 months in cohorts of 15 to 40 rats per cohort. Subjects were 

individually housed in a temperature- and humidity-controlled animal colony room. 

Following 7 days of ad-libitum food access, rats were food deprived based on their 

dealer-supplied 85% free-feeding weights. Supplemental feeding was delivered 

approximately 2 hrs after experimental sessions to maintain desired weight. Free access 

to water was available in their home cage throughout the experiment. Animal care and 

procedures were in accordance with the Institution of Animal Care and Use Committee at 

Utah State University.  
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Apparatus 

Thirty-six Med-Associates operant chambers were used. Each chamber was 

housed within a sound-attenuating cubicle outfitted with a ventilation fan. Experimental 

manipulanda were positioned on the front and rear chamber walls. Two retractable levers 

were positioned on the front wall of the chamber (6.5 cm above the grid floor). A food 

receptacle was centered between the two front-wall levers (2.5 cm above the grid floor). 

A pellet dispenser, positioned outside the chamber, delivered 45-mg pellets (Bio-Serv, 

Frenchtown, NJ) to the food receptacle. A third lever was centered on the rear wall of the 

chamber (6.5 cm above the grid floor). Above each lever was a 28-V cue light. A white-

noise generator was positioned in the upper right-hand corner of the rear wall (13 cm 

above the grid floor). 

Procedures 

Conditions were completed in the following order: 0, 30, and 60 sessions of DE or 

IE training, followed by assessments of impulsive choice; rats were randomly assigned to 

receive DE or IE training with the constraint that DE and IE group sizes be equal at 20 

rats. An additional cohort of 40 rats completed the 0-session condition; these rats were 

matched to the age at which the 60-session group began the impulsive-choice assessment 

(referred to as the “0-session Old condition”).  

All groups completed lever training followed by 0, 30, or 60 sessions of DE or IE 

training. After autoshaping (0-session Young and Old conditions) or DE/IE training (30- 

and 60-session conditions), amount-discrimination training was conducted followed by 
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an impulsive-choice assessment. Rats in the 60-session condition completed a 

reassessment of impulsive choice 120 days after the initial assessment was completed. 

Rats in the 0-session Old condition completed a lever reversal immediately after the 

initial impulsive-choice assessment. 

Lever training. An autoshaping procedure was used to establish lever pressing 

(c.f. Renda & Madden, 2016; Stein et al. 2013; Stein et al., 2015). Each 2-hr session 

consisted of 20 trials. The presentation of the rear-wall lever and corresponding cue light 

marked the beginning of a trial. For IE rats, a single lever press retracted the lever, 

extinguished the cue light, and delivered two food pellets immediately. For DE rats, a 

single lever press retracted the lever; however, two food pellets were delivered after a 

17.5-s delay, and the cue light was extinguished following the delay period. Failure to 

respond within 15 s was scored as an omission, and omitted trials were not repeated (as in 

Stein et al., 2013; Stein et al., 2015). In this phase, and in all subsequent phases, white 

noise was presented for the duration of the experimental session. To encourage the same 

rate of response acquisition across groups, a cycle to trial (C:T) ratio of 11 to 1 was used 

(see Gibbon, Baldock, Locurto, Gold, & Terrace, 1977). The intertrial interval served as 

the cycle time; the maximum duration that the cue light could be illuminated served as 

the trial time. The cycle and trial time for IE rats was 165 s and 15 s, respectively. 

Because food was delivered after a 17.5-s delay in the DE group, the trial time was 

longer. To hold the C:T ratio constant across groups, the cycle and trial times for the DE 

group was 357.5 s and 32.5 s, respectively. Lever training continued until the rats 

responded on at least 18 of the 20 trials for 2 consecutive sessions.  
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Delay- and immediacy-exposure training. After meeting the lever training 

acquisition criteria, rats in the 30- and 60-session conditions completed DE or IE training. 

The presentation of the rear-wall lever and the cue light marked the beginning of the trial. 

For DE rats, a lever press immediately retracted the lever and initiated a 17.5-s delay. At 

the end of the delay, the cue light was extinguished, and two food pellets were delivered. 

For IE rats, a lever press retracted the lever, extinguished the cue light, and two food 

pellets were immediately delivered. For both groups, failure to respond to the lever 

within 15 s was scored as an omission, and omitted trials were repeated. New trials began 

every 60 s. Sessions ended after 80 completed trials or if 2 hrs elapsed.  

Amount-discrimination training. Immediately following autoshaping (0-session 

Young and Old conditions) or DE/IE training (30- and 60-session conditions), amount-

discrimination training sessions were conducted to ensure that rats could discriminate 

different reinforcer amounts. These sessions were composed of three 20-trial blocks 

separated by a 7-min intercomponent blackout. In each trial block, there were 6 forced-

choice trials followed by 14 free-choice trials. Each trial began with the presentation of 

the rear-wall lever and cue light. A lever press retracted the lever, extinguished the cue 

light, and either one (force-choice trials) or both (free-choice trials) front-wall lever(s) 

and cue light(s) were presented. A lever press to a front-wall lever retracted the lever(s), 

extinguished the cue light(s), and the corresponding food reinforcer (either one or three 

pellets) was delivered. The assignment of reinforcer amount to the front-wall levers was 

counterbalanced across subjects. New trials began every 60 s. If a lever press did not 

occur within 30 s, the lever(s) was retracted and the cue light was extinguished. Omitted 
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forced-choice trials were repeated. Sessions ended after 60 trials were completed or after 

2 hrs elapsed. Amount-discrimination training continued until percent larger-reward 

choice during the free-choice trials was ≥ 90% for 2 consecutive sessions. 

Impulsive-choice assessment. A within-session increasing-delay procedure was 

used to examine impulsive choice (see Evenden & Ryan, 1999). The task structure was 

the same as in amount-discrimination training with the exception that the delay to the 

larger reward increased across successive trial blocks (0, 15, and 30 s). Remedial amount-

discrimination sessions were conducted if percent LLR choice in the 0-s delay dropped 

below 60% for 2 consecutive sessions (see Renda et al., in press, for the remedial-session 

protocol). The impulsive-choice assessment continued for at least 14 sessions and until 

the following stability criteria were met: 1) ≥ 80% choice of the three-pellet alternative in 

the 0-s delay block for 3 consecutive sessions, 2) area under the curve (AUC; see 

Myerson, Green, & Warusawitharana, 2001) in each of the final 3 sessions did not 

deviate by more than 20% from the mean of the final 3 sessions, and 3) no increasing or 

decreasing trend in AUC over the final 3 sessions.  

Impulsive-choice reassessment. For rats in the 60-session condition, impulsive 

choice was reassessed 120 days after the initial assessment was completed. During the 

test-retest interval, these rats remained in their home cages and had ad-libitum food 

access; food restriction resumed prior to the reassessment. The impulsive-choice 

reassessment included amount-discrimination training and was as described above, with 

the exception that the levers to which the SSR and LLR were assigned were reversed. If a 

lever bias was suspected, an additional lever reversal(s) was conducted.  
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Rats in the 0-session Old condition completed a lever reversal immediately 

following the initial assessment. The lever reversal was conducted because an 

uncharacteristically large proportion of these rats showed exclusive preference for the 

LLR across delays.   

Data Analysis  

Because rats in the 0- (Young), 30-, and 60-session conditions completed the 

autoshaping procedure at approximately the same age, the number of days to acquire 

lever pressing were collapsed across these conditions for the DE and IE groups, and 

compared to the 0-session Old DE and IE groups. Due to normality violations and the 

presence of outliers, data were rank-transformed, and group differences in responding 

were examined with a two-way ANOVA. Post-hoc analyses were conducted using 

Tukey’s multiple comparisons test. For this and subsequent analyses, p-values ≤ .05 were 

considered statistically significant. Spearman’s rho was used to assess the relation 

between the number of days to meet the autoshaping criterion and impulsive choice 

(AUC) for each group across conditions.  

Latency to respond and omissions (both averaged over the final 3 sessions of 

training) were examined during DE/IE training. Due to normality violations and outliers, 

data were rank-transformed, and separate two-way ANOVAs were conducted. Minimal 

variability was observed for the number of trials completed in DE/IE training across all 

groups (i.e., nearly all rats completed all 80 trials), and this measure was not included for 

analysis.  

For the impulsive-choice assessment, a Generalized Linear Mixed Effects 
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(GzLME) model was used to examine the effects of DE/IE training duration on impulsive 

choice (see Renda et al., in press). AUC (see Myerson, Green, & Warusawitharana, 2001)  

served as the dependent variable. Independent variables were Group (DE/IE), Condition 

(0-[Young]/30-/60-session), and the interaction. Planned post-hoc comparisons were the 

group differences in AUC for the 0-(Young), 30-, and 60-session DE conditions. Two 

separate GzLME models were used to compare the 0-session Young and 0-session Old 

DE and IE groups and the 0-session Old and 60-session DE and IE groups.  

Rats in the 60-session condition completed an impulsive-choice reassessment 120 

days after the initial assessment was completed. Wilcoxon matched-pairs signed rank test 

was used to examine within-subject changes in AUC at this follow-up, and Spearman’s 

rho was used to assess correlations between initial and reassessment AUC values. 

To facilitate comparisons across studies, common language (CL) effect sizes were 

calculated for the DE/IE groups at each condition. CL effect sizes were selected because 

they are robust to normality violations (see McGraw & Wong, 1992). AUC served as the 

dependent measure. CL effect size estimates range from .50 to 1.00 and describe the 

probability that a randomly selected DE rat will have a higher AUC value than a 

randomly selected IE rat (Lakens, 2013).  

Results 

Two rats were excluded from the experiment for failing to acquire lever pressing. 

Ten rats were excluded for failing to meet the amount-discrimination stability  

criterion in the initial impulsive-choice assessment. The significance of the analyses prior 
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to the exclusions were the same if these rats were included in the analyses. 

Table 5-1 depicts the median days in autoshaping for the Young and Old rats, 

separated by DE and IE training groups (data collapsed across training-duration 

conditions in Young rats). No significant Group by Age interaction was observed, p = 

.74. However, there were significant main effects of Group (DE rats required more 

sessions than IE rats), F(1, 147) = 37.19, p < .0001, and Age (Young rats required more 

sessions than Old rats), F(1, 147) = 10.58, p < .005. Post-hoc comparisons showed that 

Younger DE rats took significantly longer to acquire lever pressing than all other groups, 

p’s ≤ .05. Older DE rats took longer to acquire lever pressing than older IE rats, p < .01. 

The relationship between days to acquisition was significantly correlated with AUC in 

the 0-session Young DE group, rho = -.51, p < .05, but not in any other group, p’s > .26. 

Table 5-2 shows the median trials completed, response latencies, and omissions, 

averaged over the last 3 sessions of DE/IE training. Across all groups, nearly all rats 

completed all 80 trials. No significant main effect of Training Duration or Group x  

Table 5-1.  

Median (Q1-Q3) days to meet the lever press acquisition criteria in autoshaping.  
 
 Young Old 
 DE IE DE IE 
Days to acquisition 
criteria 8 (5-14)**† 6 (3-6) 6 (4-8)* 4 (2-5) 

Note: DE and IE represent delay- and immediacy-exposure training, respectively. The 
Young group included all rats from the 0-, 30-, and 60-session conditions as all rats in 
these conditions completed the autoshaping procedure at approximately the same age. 
Bolded text indicates within-condition DE/IE group differences. * p < .01; **p < .0001; † 
different than all other groups, p’s ≤ .05. 
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Table 5-2.  

Median (Q1-Q3) number of trials completed, response latencies, and omissions during 
DE/IE training.  
 

 30 session 60 session 
 DE IE DE IE 

Trials completed 80 (80-80) 80 (80-80) 80 (80-80) 80 (80-80) 
Latency 1.8 (1.1-3.3)** 0.6 (0.4-1.1) 1.4 (0.6-1.8)* 0.6 (0.4-1.2) 
Omissions 3.0 (0.3-6.8)*† 0.0 (0.0-4.1) 0.3 (0.0-1.6) 0.0 (0.0-0.3) 

Note: DE and IE represent delay- and immediacy-exposure training, respectively. 
Response latencies and omissions were calculated over the final 3 sessions of training. 
Bolded text indicates within-condition DE/IE group differences. *p ≤ .05; **p < .001; † 
different than all other groups, p’s < .05. 

Training Duration interaction was observed for latency to respond, p’s > .20. However,  

there was a significant main effect of Group, F(1, 73) = 23.58, p < .0001. DE rats showed 

significantly longer latencies to respond during training than IE rats, p’s ≤ .05. For 

omissions, the Group x Training Duration interaction was not significant, p > .15. There 

were significant main effects of Training Duration, F(1, 73) = 7.36, p < .01, and Group, 

F(1, 73) = 9.83, p < .005. Post-hoc comparisons revealed that the 30-session DE group 

made significantly more omissions than all other groups, p’s < .05.  

In the 0-session Old condition, nine DE rats and five IE rats had AUC values > 

.95 (i.e., near-exclusive selection of the LLR across all delays). To rule out lever bias as 

an alternative explanation, a lever reversal was conducted immediately following the 

initial assessment for all rats in the 0-session Old condition. If the difference in AUC 

from the initial assessment to the lever reversal was ± .20, an additional lever reversal(s) 

was conducted. Indicative of such a lever bias, two DE rats and four IE rats (all showing 

near-exclusive preference for the LLR across delays in the initial assessment) were 



 

111 

unable to meet the amount-discrimination criteria in the lever reversal after at least 20 

amount-discrimination training sessions (for both groups, the median percent LLR choice 

at the 0-s delay was 0). Two IE rats met the amount-discrimination criteria in the lever 

reversal, but subsequently exhibited a lever bias such that they showed near-exclusive 

choice of one lever at the 15- and 30-s delays regardless of whether the SSR or LLR was 

assigned to that lever. In addition, one DE rat never acquired lever pressing, and one IE 

rat never met the initial amount-discrimination criteria. Data for these ten rats were 

excluded from subsequent analyses. For the remaining 30 rats (n=17 DE, n=13 IE), stable 

AUC values were averaged across the final two reversals in which AUC differed by < 

.20.  

Figure 5-1 shows the individual-subject and median (IQR) AUC values for DE/IE 

groups across all conditions (data to the left of the dashed line are from the present 

experiment; data to the right are from previously published studies). In the GzLME 

analysis, the best model included main effects of Group, χ2(2) = 8.40, p = .015, and 

Training Duration, χ2(1) = 10.37, p = .001. However, there was no significant Group x 

Training Duration interaction, χ2 = 1.19, p = .55.  

To investigate the main effects, pairwise comparisons were adjusted for multiple 

comparisons using the False Discovery Rate method (Benjamini & Hochberg, 1995). 

Compared to other methods, the False Discovery Rate method more liberally controls for 

Type I error, which reduces the likelihood of a Type II error. Uncorrected p-values were 

examined for the comparison of the 0- and 60-session DE groups for exploratory  
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Figure 5-1. Area under the curve (AUC) for immediacy- (IE) and delay-exposed (DE) 
groups (top and bottom panels, respectively). Values to the left of the dashed line 
represent the data obtained from the current experiment; values to the right of the dashed 
line represent data from previously published studies. * indicates Long-Evans were used; 
all other studies employed Wistar rats. 

purposes (both corrected and uncorrected p-values are reported). 

Figure 5-2 shows the predicted AUC values obtained from the model. The main  

effect of Group revealed that DE rats had significantly higher AUC values than IE rats 

(for DE and IE groups, predicted AUC values were, respectively, .76 [SE = .04] and .52  
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Figure 5-2. Predicted area under the curve (AUC) values (+SEM) for the delay- (DE) and 
immediacy-exposure (IE) groups across training duration. **p ≤ .01. 

 [SE = .06], z = 3.22, p = .001). The main effect of Training Duration was confined to 

greater AUC values in the 60- relative to the 30-session condition, z = 2.87, p = .01. 

Comparisons between the 0- and 30-session, and 0- and 60-session training durations 

were non-significant, z’s ≤ 1.77, corrected p’s ≥ .12, uncorrected p’s ≥ .077.  

The 0-session Old condition was included to evaluate if differences across 

training durations were simply maturational reductions in impulsive choice. Two separate 

analyses were conducted. The first included the 0-session Young and Old conditions. If 

maturation did account for the anticipated increase in self-control as a function of DE 

training duration, we would either expect a main effect of Age or a significant Age x 

Group interaction. Neither the main effect of Age, χ2(1) = 0.91, p = .34, nor the 

interaction, χ2(1) = 0.75, p = .39, was significant. There was a near-significant main 

effect of Group among these minimally trained 0-session rats, χ2(1) = 3.78, p = .052. DE 

rats had higher AUC values than IE rats (predicted AUC values for DE and IE rats were, 
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respectively, .66 [SE = .06] and .48, [SE = .07], z = 1.88, p = .06).  

The second analysis included choices made by DE and IE rats in the 0-session 

Old and 60-session conditions. If maturation was responsible for the anticipated increase 

in self-control as a function of DE training duration, we would not expect a main effect of 

Condition (i.e., older rats would demonstrate less impulsive choice regardless of extended 

training), nor would we expect a Condition x Group interaction (i.e., the effect of DE vs. 

IE training would not depend on training duration). The interaction was non-significant, 

χ2(1) = 1.86, p = .39. Figure 5-3 shows the predicted AUC values obtained from the 

model including the non-significant interaction. Contrary to the maturation hypothesis, 

there was a significant main effect of Condition, χ2(1) = 8.87, p = .003. The 60-session 

rats had higher AUC values than the 0-session Old rats, z = -2.85, p = .004. There was  

also a significant main effect of Group, χ2(1) = 6.51, p = .01. DE rats had higher  

Figure 5-3. Predicted area under the curve (AUC) values (+SEM) for the delay- (DE) and 
immediacy-exposure (IE) groups in the 0-session Old and 60-session conditions.  
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AUC values than IE rats, z = 2.43, p = .015.  

Impulsive choice was reassessed following a 120-day test-retest interval in the 60-

session condition. In the reassessment, one DE rat and two IE rats were excluded from 

the analysis for failing to meet the amount-discrimination criteria or for demonstrating an 

intractable lever bias1. Figure 5-4 depicts the initial (T1) and reassessment (T2) AUC 

values for the DE and IE groups. From the initial assessment to the reassessment, there 

was a significant decrease in AUC values in the IE group, W = 85, p < .05, although the 

rank order of these rats remained relatively consistent. This was evidenced by a strong  

 

Figure 5-4. Individual-subject area under the curve (AUC) values for the delay- (DE) and 
immediacy-exposure (IE) groups (left and right panels, respectively). T1 and T2 
represent the initial impulsive-choice assessment and the 120-day reassessment, 
respectively.  

                                                      
1 In the impulsive-choice reassessment, a second lever reversal was conducted if percent 
LLR across delays was ≥ 90% with the exception of rats that replicated their preference 
from the initial impulsive-choice assessment.   
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correlation between initial and reassessment AUC values, rho = .68, p < .005. AUC 

values for rats in the DE group did not differ significantly from the initial assessment to 

the reassessment, W = -21, p = .69, and there was a near-significant correlation between 

these values, rho = .44, p = .058. Thus, reductions in impulsive choice following 60-

sessions of DE training remained after the 120-day test/retest interval. 

CL effect sizes for DE/IE differences in AUC are provided in Table 5-3. For the 

0-session Young and Old conditions, the effect sizes were small (CL = .64 and .60, 

respectively). In comparison, the addition of DE training in the 30- and 60-session 

conditions resulted in larger effect sizes; however, the CL effect sizes were equivalent 

(CL = .71), which is most likely attributable to the IE rats in the 60-session condition. 

These rats showed elevated levels of AUC compared to other IE groups in the current and 

previously published experiments (see Figure 5-1; Renda & Madden, 2016; Renda et al., 

in press; Stein et al., 2015). Because IE rats in the previously published experiments were 

older than those in the 60-session condition, this between-condition difference is unlikely 

due to maturation differences across the 0-, 30-, and 60-session conditions. Given the 

significant reduction in the 60-session IE group’s AUC values from the initial impulsive-

choice assessment to the reassessment (see Figure 5-4), this effect may reflect lever bias 

toward the LLR lever at the initial assessment. Finally, the CL effect size for the 60-

session condition at the impulsive-choice reassessment was comparable (CL = .80) to 

previously published experiments.  

 

 



 

117 

Table 5-3.  

Common language (CL) effect sizes for the DE/IE groups across conditions and for all 
published DE/IE studies.   
 
 Days in 

training 
CL effect size: 

Initial assessment 
Test-retest 

interval 
CL effect size: 
Reassessment 

Current experiment 

0 Young .64 - - 
0 Old .60 - - 

30 .71 - - 
60 .71 120 .80 

Stein et al. (2015)* 90† .82 48 .76 
Stein et al. (2013)*# 120 .80 66 .73 
Renda & Madden (2016) 120 .99 120 .92 
Renda et al. (in press) 120 .81 - - 

Note: * denotes Long Evans rats were used; all other studies used Wistar rats; # indicates 
that only 0- and 15-s delays were used in the impulsive-choice assessment; all other 
studies used 0-, 15-, and 30-s delays. † indicates that 90 training sessions were conducted, 
but the number of trials per session were approximately equal to the 120 conditions. DE 
and IE represent, respectively, delay- and immediacy-exposure training. 

Discussion 

The results of the current experiment replicate prior studies showing that DE- 

trained rats make significantly more self-controlled choices than IE-trained rats (Renda & 

Madden, 2016; Renda et al., in press; Stein et al., 2013; Stein et al., 2015). In the current 

study, DE/IE training duration was parametrically manipulated (0-, 30-, and 60-sessions). 

The results showed that increasing DE training duration from 30- to 60-sessions 

increased self-controlled choices, and the significant effect of 60 sessions of training was 

maintained at a follow-up test conducted 120 days later.  

Although the 60-session DE rats made significantly more self-controlled choices 

than the 30-session DE rats, two unanticipated findings from the GzLME analysis were 

observed. First, the difference in AUC values between the 0- (Young) and 60-session DE 



 

118 

conditions was only marginally significant with an uncorrected p-value. The five 0-

session Young DE rats that showed near-exclusive preference for the LLR across delays 

are likely responsible for this effect. The data for these rats may reflect sampling error or 

lever bias. In the lever reversal for the 0-session Old condition, six rats that showed near-

exclusive LLR preference across delays could not pass amount discrimination when the 

lever assignments were reversed immediately after the stability criteria were met in the 

initial assessment. The absence of a lever reversal for the 0-session Young condition is a 

limitation of the current study.  

A second unexpected finding was the lack of a Group x Training Duration 

interaction (i.e., we expected AUC to increase as a function of DE training duration; for 

the IE conditions, we expected AUC to remain relatively constant). However, the 

interaction was not significant, which is likely due to individual-subject variability 

particularly within the 0-session DE group and the 60-session IE group. As a whole, the 

60-session IE group was more self-controlled than other IE groups in the current 

experiment and in previously published studies (see Figure 5-1). At the impulsive-choice 

reassessment, the 60-session IE rats demonstrated a significant reduction in AUC values, 

suggesting regression to the mean, lever bias, or both. Lever reversals are rare in the 

rodent impulsive-choice literature, but they may be needed to evaluate the replicability of 

initial preferences. 

The 0-session Old condition was included in the current study to assess 

maturation as an alternative explanation for the expected increase in AUC as a function 

of DE training duration. As previously mentioned, the lever reversal conducted for this 
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group resulted in the exclusion of data for eight rats. Prior to the exclusion, there was a 

strong visual difference between DE and IE rats, which, in comparison to the 0-session 

Young condition, would suggest a possible interaction of age and delayed- vs. 

immediate-reinforcement autoshaping. Following the exclusion, there was no significant 

Condition x Group interaction.  

Two comparisons were made with the 0-session Old condition. The first 

compared AUC values in the 0-session Young and 0-session Old conditions. No main 

effect of Condition (i.e., Age) was observed, which was not expected given that 

impulsive choice tends to decrease with age (Doremus-Fitzwater et al., 2012; Pinkston & 

Lamb, 2011; Simon et al., 2010). The second comparison was between the 0-session Old 

and 60-session conditions. A significant Condition x Group interaction and a significant 

main effect of Condition would provide evidence against maturation as an alternative 

explanation for the increase in self-control as a function of DE training. Although the 

interaction was not significant, there was a significant main effect of Condition (the 60 

session DE/IE rats had greater AUC values than the 0-session Old DE/IE rats). The lack 

of an interaction is due, at least in part, to the 60-session IE rats. As previously 

mentioned, these rats had elevated AUC scores in comparison to all other IE groups and 

showed a significant reduction in AUC values at the 120-day reassessment. Although the 

interaction was non-significant, the estimates obtained from the model (see Figure 5-3), 

and the main effect of Condition, provide evidence that the effect of increasing DE 

training duration on impulsive choice is not due to maturation alone. Additional support 

comes from Renda et al. (in press) in which the effects of DE and IE training relative to 
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maturational reductions in impulsive choice were examined. In this study, a no-training 

control group completed a pre-test impulsive-choice assessment and a reassessment 

following 120 days. During the test-retest interval, these rats were fallow. At the 

reassessment, the no-training control group showed modest, but significant, reductions in 

impulsive choice (i.e., an effect of maturation on impulsive choice); however, 120 

sessions of DE training resulted in significantly greater self-control relative to this no-

training control group (i.e., the effects of 120 DE training sessions extended beyond the 

effects of simple maturation). The data for the no-training control group and the 0-session 

Old condition are comparable. Taken together, these data suggest that maturation alone 

cannot explain the effect of increasing DE training duration on impulsive choice.  

A small, but near-significant effect of delayed- vs. immediate-autoshaping on 

impulsive choice was observed. Additionally, the number of days to master the delayed-

reinforcement autoshaping criterion in the 0-session Young DE condition was 

significantly negatively correlated with impulsive choice (i.e., rats with greater self-

control mastered the delayed-reinforcement autoshaping criterion in fewer days); this was 

not the case for any other group. Because of additional DE training sessions, we may 

expect this relationship to disappear in the 30- and 60-sessions conditions (i.e., additional 

training sessions helped rats that struggled initially in the delayed-reinforcement 

autoshaping procedure to discriminate the response-delayed reinforcer contingency). The 

lack of correlation between the number of days to meet the autoshaping criterion and 

AUC in the 0-session Old DE condition may suggest an effect of age or a Type 1 error in 

the 0-session Young DE group. Regardless, these findings provide some initial support 
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that learning the response-delayed reinforcer contingency may be related to nonhuman 

self-control (Killeen, 2011). However, the delayed-reinforcement autoshaping procedure 

was not sufficient to produce the large DE/IE differences observed in prior research. 

Continued exploration of the mechanism underlying DE training is an important avenue 

for future research as this may result in a more efficient and/or more effective training 

regimen. 

Our initial question—does training duration influence the effectiveness of DE 

training—is difficult to answer given the individual-subject variability observed across 

the training conditions. Future research should add a 120-session DE/IE training 

condition with Wistar rats, which may result in more interpretable results from the 

GzLME analysis; such research is underway now. Regardless, the 60-session DE group 

was significantly more self-controlled than the 30-session DE group, and visually, it 

would appear that increasing DE training duration resulted in increased self-control. 

Importantly, 60 sessions of DE training produced reductions in impulsive choice that 

remained after a 120-day test-retest interval, and the obtained effect is comparable to 

studies employing 90-120 sessions. The CL effect sizes obtained for the current study 

provide support for these conclusions.   
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CHAPTER 6 

GENERAL DISCUSSION 

Summary and Conclusions 

Because excessive delay discounting (rapid devaluation of delayed reinforcers) is 

often observed in several maladaptive behaviors (e.g., substance abuse, pathological 

gambling, health-decrementing behaviors, etc.), efforts to reduce discounting may prove 

effective in future prevention and intervention research (see Bickel et al., 2015; Gray & 

MacKillop, 2015). The purpose of this dissertation was to explore two methods for 

changing nonhuman impulsive choice—working-memory training (WMT) and delay-

exposure (DE) training. Having experimentally reduced impulsive choice in the latter 

training regimen, future research can use this procedure to directly evaluate the effects of 

this behavior change on other behaviors of interest (e.g., drug self-administration, 

nonhuman addiction models).  

In Chapter 2, we failed to reduce nonhuman impulsive choice using a WMT 

procedure. The findings are in opposition to those reported for human stimulant-

dependent individuals in Bickel et al. (2011). First, whereas Bickel et al. saw no effect of 

WMT on subsequent working-memory performance, we observed a lasting between-

group difference. Second, whereas Bickel et al. found a significant reduction in delay 

discounting in the WMT group, we found no significant between-group difference.  

The conflicting results could reflect a species difference or a number of 

procedural differences (e.g., Bickel et al. increased the number of to-be-remembered 
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stimuli, whereas we increased the retention interval). After the experiment presented in 

Chapter 2 was published, Rass et al. (2015) reevaluated the effects of WMT on delay 

discounting in opioid-dependent individuals. In their study, two groups of methadone-

maintenance patients completed 25 sessions of WMT or Active-Control training. The 

WMT procedure was similar to that used by Bickel et al. (2011) in which the number of 

to-be-remembered stimuli increased as accuracy increased; the Active-Control group 

completed the same tasks, however, the number of to-be-remembered stimuli remained 

fixed at 2. Pre- and post-training assessments were conducted to evaluate the effects of 

WMT on working memory and delay discounting. The working-memory assessments 

included tasks that were both similar and dissimilar to the training program. Two delay-

discounting tasks were used. One task involved all real contingencies such that every 

choice resulted in the consequence delivered after the specified delay (similar to the 

present Chapter 2) and the other was a hypothetical task (similar to Bickel et al., 2011). 

Rass et al. reported that WMT improved performance on the working-memory tasks that 

were similar to those arranged in WMT, but not on dissimilar tests of working memory. 

In contrast to Bickel et al., delay discounting in the hypothetical and real outcomes tasks 

were undifferentiated across WMT and Active-Control groups.  

The findings from Rass et al. (2015) support the position that the effects of WMT 

do not generalize to working-memory assessments that are sufficiently different than the 

training program (for review, see Shipstead et al., 2012). However, Rass and colleagues 

did not observe an effect of WMT on delay-discounting performance. Procedural 

differences such as the participant sample (stimulant- vs. opioid-dependent participants), 
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control-group procedures (active vs. nonactive), assessment type (all real vs. hypothetical 

rewards), etc., could account for conflicting results. Direct and systematic replications are 

warranted to understand WMT as a method to reduce human and nonhuman impulsive 

choice.  

Although WMT did not affect nonhuman impulsive choice, other strategies have 

been successful in reducing impulsive choice (e.g., Eisenberger, Masterson, & Lowman, 

1982; Logue, Rodriguez, Pena-Correal, & Mauro, 1984; Mazur & Logue, 1978; Smith, 

Marshall, & Kirkpatrick, 2015; Stein et al., 2013; Stein et al., 2015). Chapters 3-5 sought 

to better understand DE/IE training, which generates large between-group differences in 

nonhuman impulsive choice. 

The purpose of Chapter 3 was to replicate prior research with a different rat strain 

and to extend the test-retest interval from approximately 66 days (as in Stein et al., 2013) 

to 120 days. We found that 120 days of DE/IE training produced a significant between-

group difference in impulsive choice in Wistar rats. Both groups completed an operant 

task for approximately 20 days of the test-retest interval. When impulsive choice was 

reevaluated 120 days after the initial impulsive-choice assessment was completed, the 

DE/IE training effect remained significant. Thus, DE/IE training produces long-lasting 

changes in impulsive choice that are robust to intervening experiences (see also Stein et 

al., 2013; Stein et al., 2015). This finding provides initial evidence that DE/IE training 

produces trait-like changes in impulsive choice. Future research should explore whether 

the DE/IE training effect would be obtained with a different impulsive-choice task (i.e., 

alternate form test-retest reliability; e.g., the adjusting-delay task; Mazur, 1987), and 
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whether this training would generalize if testing occurred in a different setting or with a 

different commodity. 

Chapter 4 evaluated the effects of DE and IE training on impulsive choice relative 

to naturally-occurring reductions in impulsive choice. The results provide the first 

nonhuman longitudinal evidence for developmental reductions in impulsive choice (for 

cross-sectional evidence of this effect in rodents, see Doremus-Fitzwater et al., 2012; 

Pinkston & Lamb, 2011; Simon et al., 2010). Importantly, DE-trained rats showed large 

reductions in impulsive choice from pre- to post-training that extended beyond the effects 

of maturation. By contrast, IE training did not increase impulsive choice relative to no-

training control rats. The results suggest that the DE/IE group differences observed in 

Chapter 4 and in prior research can be attributed to DE training shifting preference 

toward the more self-controlled alternatives.  

Finally, Chapter 5 demonstrated that 60 DE training sessions resulted in greater 

self-control relative to 30 DE training sessions, and that 60 DE training sessions produced 

comparable results to the studies that have employed 90-120 sessions. Importantly, the 

large between-group difference in impulsive choice immediately following 60 sessions of 

DE/IE training remained after a 120-day test-retest interval. 

The results from Chapters 3-5 provide a better understanding of the DE-training 

effect. DE training produces large, long-lasting reductions in nonhuman impulsive choice 

that can be obtained in 60 sessions. These findings add to the accumulating human (for 

reviews, see Gray & MacKillop, 2015; Koffarnus, Jarmolowicz, Mueller, & Bickel, 

2013) and nonhuman (e.g., Mazur & Logue, 1978; Smith et al., 2015; Stein et al., 2013; 
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Stein et al., 2015) research suggesting that impulsive choice can be reduced. If excessive 

delay discounting is a transdisease process, then reducing impulsive choice may be an 

effective intervention for a wide range of behavioral addictions. Future basic and 

translational research examining how reducing impulsive choice influences maladaptive 

behaviors (e.g., substance use) is warranted.  
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