
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-1974

Asynchronous Logic Design with Flip-Flop Constraints Asynchronous Logic Design with Flip-Flop Constraints

David Franklin Cox
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Cox, David Franklin, "Asynchronous Logic Design with Flip-Flop Constraints" (1974). All Graduate Theses
and Dissertations. 6956.
https://digitalcommons.usu.edu/etd/6956

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6956?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ASYNCHRONOUS LOGIC DESIGN WITH

FLIP-FLOP CONSTRAINTS

by

David Franklin Cox

A dissertation submitted in partial fulfillment
of the requirements for the degree

Approved:

of

DOCTOR OF PHILOSOPHY

lil

Electrical Engineering

UTAH STATE UNIVERSITY
Logan, Utah

1974

ABSTRACT

Asynchronous Logic Design with

Flip-Flop Constraints

by

David Franklin Cox, Doctor of Philosophy

Utah State University, 1974

Major Professor: Ronald L. Thurgood , Ph.D .

Department: Electrical Engineering

Some techniques are presented to permit the implemen­

tation of asynchronous sequential circuits using standard

flip-flops. An algorithm is presented for the RS flip­

flop, and it is shown that any flow table may be realized

using the algorithm (the flow table is assumed to be

realizable using standard logic gates). The approach is

shown to be directly applicable to synchronous circuits,

and transition flip-flops (JK, D, and T) are analyzed using

the ideas developed. Constraints are derived for the

X

flow tables to meet to be realizable using transition flip­

flops in asynchronous situations, and upper and lower bounds

on the number of transition flip-flops required to implement

a given flow table are stated.

(121 pages)

I

A~YNCHRONOUS LOGIC DESIGN WITH

FLIP-FLOP CONSTRAINTS

by

David Franklin Cox

A dissertation submitted in partial fulfillment
of the requirements for the degree

Approved:

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

UTAH STATE UNIVERSITY
Logan, Utah

1974

ACKNOWLEDGMENTS

With sincere appreciation, I would like to thank

Dr. Ronald Thurgood for his encouragement and help, and

for being both advisor and friend during the preparation

of this thesis.

I would also like to thank Dr. Alvin Despain for his

inspiring discussions of pertinent points and critical

review of the final paper. A special note of thanks

go to Dr. Glen Smerage, Dr. William Jones, and Professor

William Fletcher for their support. I am very grateful

to Dr. Michael Windham of the Math department for taking

the time to serve on my committee, and for providing a

sympathetic ear in times of need.

Finally, to my wife, Chris, for her patience in

typing the rough and final drafts, and to my children,

Shaun and Kelli, I extend a husband's and father's

gratitude for the sacrifices they have made.

ii

David Franklin Cox

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

iii

Page

1

Combinational and sequential systems 1
Synchronous and asynchronous sequential systems 2

CHAPTER II CLASSICAL ASYNCHRONOUS LOGIC DESIGN

Asynchronous problem formulation
State reduction
State code assignment
State and output maps

CHAPTER III HAZARDS AND RACES

Logic delays
Multiple input change problems
Essential hazards
Synthesis of example problem

CHAPTER IV BISTABLE ASYNCHRONOUS SUBSYSTEMS

Flip-flop types
RS flip-flop
Characteristic equation
Logic realization of RS flip-flop

CHAPTER V AN ALGORITHM FOR DESIGNING ASYNCHRONOUS

4

4
7

12
15

18

18
21
22
24

28

28
29
30
31

SEQUENTIAL CIRCUITS USING RS FLIP-FLOPS 33

Characteristic map equation
Selecting the minterm entries
Algorithm statement .

CHAPTER VI AN APPLICATION OF THE MAP-METHOD TO
SYNCHRONOUS CIRCUITS

Problems in synchronous design
Synchronous analysis
Example .
D realization.
T realization .
JK realization
RST realization
Summary for sequential flip-flops

33
36
41

42

42
43
46
48
49
50
50
52

TABLE OF CONTENTS (continued)

RS flip-flop
D flip-flop
T flip-flop
JK flip-flop
RST flip-flop
"Don't-care" conditions

iv

Page

53
53
53
53
54
54

CHAPTER VII AN APPLICATION OF THE MAP-METHOD TO
TRANSITION FLIP-FLOPS 56

Types of transition flip-flops 56
Clocked JK flip-flop 56
JK state constraints 59
Input constraints 61
Flow table constraints for JK flip-flop 61
Three-variable flow table 63
Four-variable flow table 65
D flip-flop 68
Flow table constraints for D flip-flop 70
Clocked T flip-flop . 71
Flow table constraints for clocked T flip-flop 73
Unclocked T flip-flop 74
Flow table constraints for unclocked T flip-

flop 76
"One's-catching" negative-edge triggered JK

flip-flop 77
Bounds on transition flip-flops to realize a

given flow table 80
Two-state synthesis example 82
Four-state synthesis example 86
Four-state synthesis using RS algorithm 88

CHAPTER VIII SUMMARY AND CONCLUSIONS 91

91
92

Summary
Conclusions

BIBLIOGRAPHY

APPENDIXES

Appendix A
Appendix B

VITA

Flow Table Reduction
Column Transition Constraints

94

99

100
104

111

V

LIST OF FIGURES

Figure Page

1. Flow table form. 5

2. Normal fundamental mode primitive flow table 7

3. State diagram 7

4. Pair chart for flow table of Figure 2 9

5. Minimized flow table 12

6. Minimized state diagram 13

7. Necessary adjacencies . 14

8. Flow table with "transition" state 15

9. Flow matrix 15

10.

11.

12.

Karnaugh

Karnaugh

Partial

map for

map for

Z-map

13. Complete Z-map

yl

y2

14. Critical race condition

15. Hazard situation

16. Static "l" hazard for change in z

17. Functional hazard situation

18. Essential hazard condition

19. Nonessential hazard condition

20. Flow table derived from Figure 9

21. State and output maps for example of

Chapter II

16

16

16

17

19

19

20

21

22

23

24

26

LIST OF FIGURES (Contin u ed)

Figure

22. Circuit diagram for example problem

23. RS flip-flop flow table

24. RS flip-flop flow matrix and output map

25. RS flip-flop circuit diagram

26. RS NOR flip-flop and symbol .

27. State and output maps of Figure 21

28. Characteristic map equation for Q1

29. Complete specification for Q1 excitation

30. Complete specification for Q2 excitation

31. Flip-flop excitation expressions

32. Sequential circuit with RS flip-flops

33. D flip-flop symbol, characteristic map,

characteristic equation

34. T flip-flop symbol, characteristic map,

characteristic equation

and

and

35. JK flip-flop symbol, characteristic map, and

characteristic equation

36. RST flip-flop symbol, characteristic map,

characteristic equation, and constraint

equations .

37. Flow table for synchronous design

38. Flow matrix for synchronous problem

39. State maps for synchronous problem

40. Input excitation maps for realization with

D flip-flops .

vi

Page

27

29

30

31

32

35

36

38

39

40

40

44

44

44

45

46

47

47

48

LIST OF FIGURES (Continued)

Figure

41. Realization expression for T flip-flops .

42. Realization expressions for JK flip-flops

43. Realization expressions for RST flip-flops

44. Clocked JK flip-flop primitive flow table and

merged flow table

vii

Page

49

50

51

57

45. Clocked JK characteristic equations and maps 58

46. Map equations with static constraints for

JK flip - flop . 59

4 7. Possible "next state" entries in JK realizable

flow table

48. Acceptable vertical transitions for JK flip-

62

flop 62

49. Three-variable flow table column and Q3 map 64

50. Four-variable map column . 65

51. Q1Q2 and Q3Q4 maps with entry constraints and

required column equalities 67

52. Primitive and merged flow tables for D flip-

flop 68

53. Flow matrix and characteristic equations for

D flip-flop 69

54 . Static state constraints on D flip-flop 70

55. Acceptable vertical transitions for D flip-

flop 71

56. Clocked T flip-flop primitive flow table and

merged flow table

57. Clocked T flip-flop flow matrix and

characteristic equations

71

72

LIST OF FIGURES (Continued)

Figure

58. Clocked T flip-flop state constraints

59. Clocked T flip-flop acceptable vertical

transitions

60. Unclocked T flip-flop flow table, flow matrix,

and characteristic equations

61. Unclocked T static state constraints

62. Unclocked T flip-flop acceptable states and

transitions

63. Commercial "one's-catching" and classical JK

realizations .

6 4. "One's - catching" JK flip- flop functional

descriptives .

65. Generation of an RS flip-flop from a transition

viii

Page

72

73

74

75

76

77

79

flip-flop . 81

66. Simple two-state flow table 83

67. Acceptable flow tables 83

68. Flow matrices and input maps for JK and clocked

T flip-flops . 84

69. Flow matrices and input maps for D and

unclocked T flip-flops 85

70. Four-state system implemented with one

unclocked T flip-flop . 86

71. Schematic comparison of flip-flop and classical

realizations . 87

72. Reproduction of Figure 20 88

73. Example problem of Chapter II realized with T

flip-flops 89

lX

LIST OF FIGURES (Continued)

Figure Page

74. Transition-realizable flow table expansion for

flow table of Figure 72 90

75. Example of merging process 102

ABSTRACT

Asynchronous Logic Design with

Flip-Flop Constraints

by

David Franklin Cox, Doctor of Philosophy

Utah State University, 1974

Major Professor: Ronald L. Thurgood, Ph.D.

Department: Electrical Engineering

Some techniques are presented to permit the implemen­

tation of asynchronous sequential circuits using standard

flip-flops. An algorithm is presented for the RS flip­

flop, and it is shown that any flow table may be realized

using the algorithm (the flow table is assumed to be

realizable using standard logic gates). The approach is

shown to be directly applicable to synchronous circuits,

and transition flip-flops (JK, D, and T) are analyzed using

the ideas developed. Constraints are derived for the

X

flow tables to meet to be realizable using transition flip­

flops in asynchronous situations, and upper and lower bounds

on the number of transition flip-flops required to implement

a given flow table are stated.

(121 pages)

CHAPTER I

INTRODUCTION

Combinational and sequential systems

The realm of basic logic design is usually broken

into two major divisions. The first is normally called

"combinational" logic design and consists of a set of

input variables I 1 , I 2 , ... In, a set of output variables

o1 , o2 , ... Orn' and a mapping f from the input variables

to the output variables wherein the combinational design

objective is to physically implement a logic device that

is isomorphic to the mapping function f relating two sets

of physically realizable logic variables. i.e.

(a) I = o . Ii = 1' 2 ' n},
i

(b) 0 = { o. I j = 1' 2 ' m}'
J

(c) f I + 0.

At any instant of time for a given input Ik' a unique

output O can be accurately predicted. q

The second major division of logic design is sequential

logic design. Sequential circuits have inputs and outputs,

but also require positing internal "states" to adequately

describe them. Briefly, a sequential circuit (or machine)

can be described as having the following properties

(Hartrnanis and Stearns, 1966):

1. A finite set of inputs that may be applied to

the circuit in a sequential order.

2. A finite set of internal states in which the

circuit may be in.

3. The next state of the circuit is determined by

the present circuit state and the present input.

4. A finite set of outputs that are determined by

the combination of circuit state and input.

The above properties can be concisely stated as

follows:

(a) s is a finite nonempty set of states;

(b) I is a finite nonempty set of inputs;

(c) 0 is a finite nonempty set of outputs;

(d) N s X I -+ s is called the next state function;

(e) z s X I -+ 0 is called the output function.

It should be noted that the output function involves

both the input and the state of the circuit. Sequential

2

circuits that have this property are called "Mealy" circuits .

If the output is a function of the circuit state only,

the circuit is called a "Moore" circuit.

Synchronous and asynchronous sequential systems

Sequential circuits can be subdivided into what are

called "synchronous" and "asynchronous" sequential circuits.

Synchronous sequential circuits are sequential circuits

whose events are constrained to occur only at specified

instances of time, and are usually controlled by a device

that provides "clock" pulses. The clock pulses need not

be evenly spaced in time but must be spaced far enough

apart so that all transient circuit action has vanished

at the time the next clock pulse occurs.

Asynchronous sequential circuits do not have a

"clocking" constraint on them and their circuit action

commenses from the time an input changes (assuming the

circuit has started in a stable state) and stops only when

it can achieve a state coexistent with the new input (known

as a "stable" state). In this report some current methods

used in asynchronous logic design will be outlined, and an

algorithm will be presented wherein the asynchronous design

can be implemented using standard set-reset flip-flops. A

less formal method will be given for the transition-type

flip-flops, and an application to synchronous sequential

circuits will be outlined.

3

CHAPTER II

CLASSICAL ASYNCHRONOUS LOGIC DESIGN

Asynchronous problem formulation

D. A. Huffman presented a method for designing an

asynchronous circuit from problem specifications in 1954.

His method basically consists of reducing the problem

statement to a flow table from which the state function,

N, can be derived after some flow table manipulation

(Huffman, 1954).

4

It is assumed that the inputs are known, and a certain

sequence of inputs is to give a specified output sequence.

The flow table is then constructed from the problem statement

in the following form:

1. The columns of the flow table are unique to a given

input

2. The rows of the flow table are unique to a given

state.

3. If the intersection of the input column and state

row is to indicate a stable condition in the circuit, then

the entry in that position is given the label of the row

that it is in, and circled to indicate that it is stable.

4. If a column-row intersection is unstable, the

entry in that position is labeled according to the row

it is to move to (the new state).

5. If a "don't care" condition arises, or an impossible

input condition is evident, then a dash is entered into

the column-row intersection.

It should be clear that the entries in the flow table

merely indicate the next state the circuit is to move

into from a given input/state condition; i.e. the flow

table is a tabular representation of the "next state"

function N. See Figure 1 for the flow table form.

inputs

states Il 12

s1 6) s3

s2

s3 (5)

Figure 1. Flow table form.

I n

s2

(9
s m

I

0

zl

z2

z3

z
m

If the flow table is constructed such that there is

5

only one stable state per row, the table is called a primitive

flow table. The output can be listed alongside each state­

entry in the table, or it can be listed along the right

side of the table as shown in Figure 1 if the table is

primitive. If the outputs for transient states are known,

they can be put in with the states shown. Usually these

transient state outputs are left until later, however.

An example (from Unger, 1969) will now be given to

illustrate the procedure. A sequential circuit is to have

two inputs, x 1 and x 2 , and one output, Z. Z is to go on

when x
1

goes on only if x
2

was on during the previous "off"

time of x 1 . x 2 is allowed to come on and go off during

the "off" time of x 1 as well as come on and stay on until

after x 1 goes on. Z is to go off when x 1 goes off and wait

for the sequence of events to reoccur.

The primitive flow table is constructed from the

statement of the problem by assuming an initial input and

output condition. It will be convenient here to start

6

with inputs and output set to zero. Figure 2 shows the

completed primitive flow table. We will assume that simul­

taneous input changes do not occur (which simplifies Unger's

problem). When only single input changes occur the operation

is known as "normal mode", and when the inputs are allowed

to change only when the system is in a stable state, the

operation is "fundamental mode". Hence, Figure 2 is a

normal fundamental mode primitive flow table. Dashes are

placed in forbidden input transition spaces to indicate

the "don't care" condition. A state diagram is shown in

Figure 3, and is equivalent to the flow table but may

provide a more intuitive interface between the word statement

of the problem and the flow table.

xlx2

state 00 01 11 10 z

1 CD 3 2 0

2 1 7 0 0

3 4 0 5 0

4 © 3 6 0

5 3 CD 6 1

6 1 5 (D 1

7 3 0 8 0

8 4 7 ® 0

Figure 2. Normal fundamental mode primitive flow table.

11/0

Figure 3.

10/0 10/0

00/0

State diagram.

State reduction

00/0

The next step in the synthesis procedure is to try to

reduce the number of states. This will generally (but not

7

8

always) reduce the gate-count of the final circuit. The

method, bacically, is to compare pairs of rows and see

if any combination of input changes will lead to the same

state. If such is the case, then the two compared states

are called "equivalent" and further comparisons can be made

to see if all input changes take the rows to the same or

equivalent states. The process is continued until all the

states (rows) have been placed into equivalence classes.

This effectively partitions the set of states into non­

intersecting sets, the union of which consists of the initial

primitive set of states. Each equivalence class will then

represent one state in the final circuit.

The logical behavior of the sequential circuit will

not be modified by eliminating redundant states. The

method of Paull and Unger (1959) will be used (an alternate

method is given in Appendix A). The state reduction consists

of eliminating all incompatible pairs of states. To define

"compatible" we have to first define "cover".

Definition: A state S of a flow table A is said to
a

cover state Sb of flow table B if, for any finite input

sequence, the output from A when started in S is identical
a

to the output from B when started in Sb whenever the B output

is specified.

Definition: Two states of a flow table are compatible

if they are both covered by some row of a flow table A. A

set of states of a flow table that are covered by a single

state of some flow table is called a compatible set, or

a compatible.

A convenient way to check for incompatibles is by

constructing a pair chart as shown in Figure 4. If two

states that are assumed to be equivalent have different

next state entries in one (or more) of their columns then

the compatibility of the first two states implies the

compatibility of the two different state entries in that

column.

The states are now compared pair-wise and if an output

incompatibility is noted, an "x" is placed in the pair

intersection square. If no output incompatibility exists,

then implied pairs are written in the square. If neither

of the above occur, then the square is left blank.

1

2

14 X 14 X

X 57 X 3

26 X 14 X

X 26 X 4

X X X X X X X X

5

X X X X X X X X

6

28 X 28 X 57 X 68 X 68 X 57 X

X X X X X 68 X 7

14 X 14 X 57 X 68 X 57 X 14 X

28 X X X X 68 X 57 X
8

Figure 4. Pair chart for flow table of Figure 2.

9

The chart is then filled in as follows: (Note that

states 5 and 6 have outputs of "1" and the other states

all have outputs of "O"). All combinations that have

incompatible outputs have an "x" placed in them. Pairs

that imply other pairs have the other pairs written in the

box. After all pairs are entered, a check for incompat­

ibles is made. A start is made from one of the output

incompatible squares. Assume we start from square 15.

Since it 1s output incompatible, we place an "x" in the

square . We check all other squares for entries of "15"

and if we find one, an "x" is placed within the square in

which it is found and the square is considered to be an

incompatible. This process is continued until no more

x's can be entered. When the search for the entry of

incompatible pairs in other squares is completed, a second

"x" is placed in the original incompatible pair's square

(15) to indicate that the square need not be referenced

again. When the table is complete, the compatibles can

be grouped so as to minimize the total number of states.

The rules for checking the pair chart are as follows:

10

1. Start the compatible list (c-list) with the compat­

ible pairs in the first column from the right having at

least one entry without an x in it.

2. Move to the left, column by column. Let S. be
1

the set consisting of all non-x entries in column i. Take

the intersection of S. with current c-list. If the
1

11

intersection has more than one member, add the set consisting

of i appended to the intersection. Delete duplicate entries

and entries that are contained in other entries. Add pairs

consisting of i and any members of S. that did not appear
l

in any of the intersections.

3. The final c-list plus those states not yet included

in the c-list comprise the final groupings of states, and

are called maximum compatibles.

The pair chart of Figure 4 yields the following:

Start: C = {78}

s6 = <P C = {78}

s5 = 6 C = {78, 56 }

s4 = <P C = {78, 56}

s3 = 4 C = {78, 56, 34}

sz = <P C = {78, 56, 34}

s1 = 2 C = {78, 56, 34, 12}

All states are included in the final c-list, hence the

final c-list is

C = {78, 56, 34, 12}.

Now we choose compatibles from the c-list such that

every row of the original table is covered by at least

one of the compatibles, and the set is "closed" in the

sense that any set of rows implied by any compatible in

the set is a subset of at least one compatible of the set.

It is obvious that each element of the c-list is required

to completely cover the original table so we have to use

each maximum compatible.

The final flow table then looks like Figure 5.

xlx2
state 00 01 11

a a,0 b d

b b,0 b,0 C

C a b c,1

d b b d,0

Figure 5. Minimized flow table.

10

a,0

C

c,1

d,0

12

34

56

78

The states are listed as letters so as not to be

confused with the original state numbers (which are given

on the right) . The output is listed for each stable state.

State code assignment

12

The next step in the synthesis procedure is the state

assignment. Each state is assigned a binary valued code

such that the internal state transitions are not dependent

on the binary values of the state variables. If more than

one state variable is required to change for a giv ~ n transi­

tion, then inherently unequal delays in the circuit make

it virtually impossible for the two states to change value

simultaneously. Such a condition is called a race and will

be discussed later in this report. In most cases, then,

what is needed is essentially a gray-code assignment for

the states. Adjacent states are coded so that only one

state variable changes per transition (adjacent states

are states connected with a transition arrow on the state

diagram, if one were drawn).

Starting with the flow table of Figure S, we can

draw a state diagram for the four states and assign binary

values to the states so that each transition involves

only a change in one state variable. Since there are only

four states, the minimum number of state variables required

for a unique code is two. Figure 6 shows the state diagram

for the flow table of Figure 5.

Figure 6. Minimized state diagram.

The state diagram of Figure 6 cannot be gray-coded

with only two state variables as it's drawn. An extra

state variable could be added to bring the total possible

number of states to eight . This would give four extra

states to use in which transitions could pass through one

or more states before settling in the final state, and

would give some flexibility to the state assignment.

A Liu (1963) or Tracey (1966) assignment could also be

made, but will not be commented on here.

An alternate method would be to note the availability

of extra "b's" in column "01" of Figure S. For an input

13

14

of "01" every state has state "b" as its transition

objective. It is possible in this case to have the tran­

sition pass through one or more of the other states before

settling at state "b". Figure 7 shows the necessary

adjacencies (those determined from columns other than "01").

The transition from "a" to "b" is seen to have been removed,

and can be routed through state "d". The modified flow

table is shown in Figure 8. Note that total state a - 01

Figure 7. Necessary adjacencies.

has been changed from "b" to "d". Since the output, Z,

is constant for a given state, it is noted on the right

of the flow table (it should be remembered that transition

states do not, as yet, have specified outputs). Binary

values for the states can now be assigned as follows:

a +00; d +01; b +11; C +10.

X X 1 2

stat e 00

a a

b b

C a

d b

01 11

d d

b C

b C

b d

10

a

C

C

d

z

0

0

1

0

Figure 8. Flow table with "transition" state.

The state assignment can be modified (permuted)--the

important point is that each entry must be adjacent to

the one above and below it ("a" and "c" are adjacent).

15

The flow matrix (binary values assigned to the states)

can now be drawn as shown in Figure 9. The state values

are placed in "Karnaugh" order to facilitate the construc­

tion of the state maps.

xlx2

2 00 01 11 10

00 00 01 01 00

01 11 11 01 01

11 11 11 10 10

10 00 11 10 10

Figure 9. Flow matrix.

State and output maps

The state variable maps are simply maps taken from

the flow matrix with one entry-variable shown. The maps

are shown in Figures 10 and 11.

16

X X 1 2
00 01 11 10

00 0 0 0 0

01 1 1 0 0

11 1 1 1 1

10 0 1 1 1

Figure 10. Karnaugh map for Y1 .

xlxZ
00 01 11 10

00 0 1 1 0

01 1 1 1 1

11 1 1 0 0

10 0 1 0 0

Figure 11. Karnaugh map for Y2 .

The output map, or Z-map, is taken from the flow matrix

with entries placed only in the stable state positions.

It is shown in Figure 12. Transition arrows are indicated

to show beginning and end points for the transitions. Since

xlx2

Y1Y2 00 01 11 10

00

01

11

10

z

Figure 12. Partial Z-map.

the output (Z) is the same for indicated entries on a

given row, only verticle transitions need to be indicated.

The transition entries can be derived as follows:

1. A "0" initial to "0" final entry should have a

"0" in the transition position(s).

2. A "0" initial to "1" final entry (or vice-versa)

may have a "O", "1", or "-" ("don't care") entry in the

transition position(s). Usually a"-" is preferred for

later flexibility in deriving the boolean expressions.

3. A "1" initial to "1" final entry should have a

"1" in the transition position(s).

The reason for the above constraints is to prevent

unnecessary "glitches" on the output. The complete z­
map is shown in Figure 13.

X X 1 2
00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 - -

10 - - 1 1

z

Figure 13. Complete Z-map.

17

From the above maps the expressions for the states and

output can be written. The next chapter describes subtleties

to be aware of when going from the map to the boolean

expressions (and hence to the circuit realization).

Logic delays

CHAPTER III

HAZARDS AND RACES

18

Inherent in any physical implementation of a digital

circuit are logic delays. In combinational circuits these

delays may not bother the circuit function but in sequential

circuits random delays play funny tricks.

It was mentioned earlier that races should be avoided

in asynchronous sequential design because critical races may

lead to improper circuit action. An example of this is shown

in Figure 14. If the input changes from x 1x 2y 1y 2 = 0111

to x 1x 2y 1y 2 = 0011 the state is unstable and tries to go to

x 1x 2y 1y 2 = 0000. Since both state variables are unstable

(y 1 and y 2) they will both try to change to "0" simul­

taneously. The probability that y 1 and Yz will both switch

simultaneously is virtually zero, and hence the circuit

may end up in state 01 or 10, depending on which state

variable switched first. The proper state assignment is

one way of alleviating the critical race problem, and

cycling through other states going to the same final state

is another way.

A more subtle problem in sequential circuits due to

random delays is the existence of combinational hazards.

Each state variable is essentially generated through

xlx2

Y1Yz 00 01

00 00

01 01

11 00 11

10 10

Figure 14. Critical race condition.

combinational logic, and any stray hazard pulses may cause

the circuit to jump into the wrong state.

A "0" static hazard occurs when a single input change

takes the output function from a "0" to a "0" and a momen­

tar y "1" may occur on the output at the time of the input

change. A "1" static hazard is similar except for output

polarity.

The reason for a hazard existing is illustrated in

Figure 15. If adjacent implicants are not covered by a

common cover, then the possibility of a hazard pulse

occurring is present.

xy

z 00 01 11 10

F = yz + xz

Figure 15. Hazard situation.

If the input goes from xyz = 110 to xyz = 111, the

-map function F can be expressed as xyz + xyz, x = y = 1.

19

Note that only one variable is changing (due to the fact

that only adjacent changes are assumed). With the

variables assuming their respective values we have

F = xy (z + z)

-
= z + z.

The common boolean reduction for the above situation

is "l", but if z is generated from z through an inverter,

there will be some delay after z switches from "l" to "0"

before z switches from "0" to "1". This will give rise

to a static "1" hazard as shown in Figure 16.

z 1 -------.

0

z 1

0-----~

z + z ~ ----,u
t +

Figure 16. Sta tic "1" hazard for change in z.

20

A dynamic hazard occurs when a single variable input

change causes the output to change three times when normally

only a single output change would be expected. The cause

of the dynamic hazard is due to different signal paths

reaching the output with different delays. A thorough

treatment of hazards can be found in Unger (1969).

A fix for the static hazards is to include a common

cover for all adjacent implicants. This would add the

term "xy" for the example of Figure 15. The function

would then be

F = yz + xz + xy.

For the stated transition it would reduce to

F = z + z + 1

= 1.

Hence no "O" pulse would occur. If all static hazards

are fixed in this manner then the single-input-change

dynamic hazards will have been corrected also (Unger 1969).

Multiple input change problems

For multiple input changes higher order hazards may

occur with the output oscillating on and off two or more

times before settling down. A hazard of this type, called

a f unctional hazard, may occur due to the function imple­

mented and not from the method of forming the combinational

logic. An example of this is shown in Figure 17. An

input change from xy = 00 to xy = 11 should cause the

y~

~tilij
F = xy + xy

Figure 17. Functional hazard situation.

output, F, to remain at "1". However, due to unequal

internal delays in the logic (the "AND" gate realizing

21

xy may have a smaller delay time than the "AND" gate

realizing xy) F would in reality put out a small "0"

pulse. There is no known way to inhibit multiple-input­

change hazards.

Essential hazards

Up to now, only combinational hazards due to inputs

hav e been mentioned. Asynchronous sequential circuits

have special problems due to arbitrary delays inherent

in the feedback, or state, variables in conjunction with

the delays in the input variables. Figure 18 shows a

possible hazard situation with a single-input-change

a b

1 CD 2

2 3 G) n>2

3 0 n

Figure 18. Essential hazard condition.

22

constraint (only the two columns with the changing input are

sho wn). The flow table has two input columns and three

row s shown. If the initial state is assumed to be 1-a,

the position is stable. If the input is then changed to

"b", the circuit that realizes the flow table may have some

of its state variables see changes in other state variables

bef o re the first state variables see the input change. In

this case the initial movement on the table will be vertical

instead of horizontal. For the input change in Figure 18

the initial transition may be from 1-a to 2-a instead

of 1-a to 1-b. From 2-a the circuit is taken to 3-a

and thence to 3-b when the input change is finally sensed.

From there it goes to n-b. This is not the 2-b destina­

tion originally designed for. The above aberration is

called an "essential hazard" and can be checked for in

a flow table in the following manner: For some initial

total state and an input variable x, if three changes

1n x take the system to a state different from the state

that only one change in x takes it to (assuming both

sequences start in the same total state), then an essential

hazard exists. The only solution for an essential

hazard is to insert delay elements in the state variable

feedback paths to insure that input changes are seen by

the system before the state variable changes are sensed.

A related hazard condition called a "nonessential

hazard" (or d-trio) is shown in Figure 19. Starting in

1

2

3

a b

CD z
3@

@z

Figure 19. Nonessential hazard condition.

total state 1-a, three consecutive input changes of the

same variable (only one shown in Figure 19) take the system

to the same total state that only one input change would,

23

but it is possible to cycle through state 3 if the state

variable changes were sensed first. The static behavior

24

of the system would be correct, but a possible output

transient may occur if the output for state 3-a is different

from the outputs for 1-a and 2-b. Some of the transient

problems for the output were mentioned in conjunction with

the Z-map of Chapter II.

~r_nthesis of example problem

With the above race and hazard conditions in mind

we can review the example problem of Chapter II and specify

the circuit realization. The flow table is redrawn in

Figure 20. (The flow table is redrawn from Figure 9 with

the states numbered for easy reference).

xlx2
state 00 01 11 10 z

1 0 2 2 0 0

2 3 3 @ @ 0

3 0 0 4 4 0

4 1 3 @ © 1

Figure 20. Flow table derived from Figure 9.

A check for essential hazards shows that the condition

exists for the 1-00 to 1-11 transition, the 2-11 to 2-00

transition, the 2-10 to 2-00 transition, the 3-00 to 3-11

transition, the 3-00 to 3-10 transition, and the 4-11

to 4-00 transition. There are two single-input-change

essential hazards (2-10 to 2-00 and 3-00 to 3-10) so care

must be taken to insure that the state variable changes

are sensed after the input change. This may necessitate

the addition of delays in the feedback paths.

Boolean expressions can be derived from the Y-maps

and Z-map as indicated in Figure 21. Note that the Y-map

adjacencies are covered. If hazard pulses occur on the

state variable outputs, the system would think it was in

25

an entirely different state and improper circuit action

could ensue. The Z-map adjacencies (none in this case) may

be covered if transient output pulses are not desired.

It might be noted that a simpler expression could

be written for Y2 by covering the "O's",

i.e. y2 = (xz + Yz) (xl + Y1)·

The above expression could also be derived by factoring

the "l's" cover expression. The circuit realization is

shown in Figure 22.

This completes the classical synthesis procedure.

Enough of the procedure has been presented to give an idea

of the methods and problems of asynchronous logic design,

and the next four chapters will be concerned with flip­

flops and their application to synchronous and asynchronous

logic design.

26

xlx2
00 01 11 10

00 0 0 0 0

01 1 1 0 0

11 1 1 1 1

10 0 1 1 1

-
Y1 = x1Y2 + x2Y1 + x1Y1

X X 1 2
00 01 11 10

00 0 1 11 0

01 Cl 1 11 1)

11 1 1 0 0

10 0 J, 0 0

- - - -
Yz = XzY1 + Y1Yz + X1Y2 + xlx2

xlx2
00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 1~ --

10 - - 11 1

z
z =

Figure 21. State and output maps for example of Chapter II.

27

z

y

Figure 22. Circuit diagram for example problem.

CHAPTER IV

BISTABLE ASYNCHRONOUS SUBSYSTEMS

Flip-flop types

In synchronous sequential design, by far the majority

of synthesis techniques involve clocked flip - flops. The

four major types of flip-flops are the RS (Reset-Set),

D (Data, or Delay), JK (it is unknown what J and K stand

for), and T (Toggle). Sometimes the RS and T flip-flops

are combined into one device with the R, S, and T inputs

and called an RST flip-flop. The purpose of a flip-flop

is to store a bit of information when a specified event

occurs on one or more of the inputs (the bit could be

a "0" or a "1"). The different types of flip-flops are

categorized by the input sequencing required to store the

required bit of information . The output of all flip-flops

is labeled Q, and if its inverse is also available it is

labeled Q.

The RS flip-flop can be completely characterized

through level logic inputs without positing internal

states other than the output state. The D, JK, and T

flip-flops are essentially transition flip-flops and

28

require additional internal state variables to be accurately

characterized using the Huffman method of asynchronous

analysis. For this reason the present chapter will be

concerned with the RS flip-flop only, and its application

29

in the synthesis of asynchronous sequential logic circuits.

Transition flip-flops will be treated in Chapters VI and VII.

RS flip-flop

The basic RS flip-flop has two inputs and one output.

The inputs are labeled "Set" and "Reset", and the output

is labeled "Q". Assume an initial state of "0" for Q,

S, and R.

at "0".

If Sand R remain at "0", then Q will also remain

If R goes to "l" (with S remaining at "0"), Q

will remain at "0". If S goes to "l" (with R remaining

at "0") or oscillates between "0" and "l", Q will go to and

remain at "l". With S set at "0", if R now goes to "l", then

Q will go to "0" and remain there until R = 0 and S = 1

again (which repeats the process). If both Sand R go

to "l" at the same time, then the circuit action is

undefined.

The RS flip-flop can now be described by a flow table

as shown in Figure 23. Since the circuit operation was so

state 01 11 10

2 CD
® 1

Figure 23. RS flip-flop flow table.

Q

0

1

simple, the primitive flow table was bypassed and all

entries were entered by inspection. Due to the fact that

the output (Q) is different for each row, a merge (or

simplification) of the rows is not possible. The flow

table has a minimum number of rows as shown.

The flow matrix and state (Y) map are shown in

Figure 24. Note that Q = y, so that the state could be

labeled Q if desired. Since there is only one state, the

flow matrix and Y-map are the same.

RS

y 00 01 11 10

0 0 1 0

1 1 1 0
y

RS

q 00 01 11 10

0 0 0

1 1 0
Q

Q

0

1

Figure 24. RS flip-flop flow matrix and output map.

Characteristic equation

The "characteristic equation" for the RS flip-flop

can be taken from the output map of Figure 24. If the

constraint that Rand S cannot be "1" simultaneously is

added, we have

Q = s + Rq

SR= 0.

"Q" is the next state function defined by R, S, and q. "q"

is the present state (or output) of the flip-flop and

equals Q for static conditions. If an input change causes

30

an output transition then q will eventually assume the

value Q defined by the characteristic equation. "q" may

be thought of as being the system state variable. The

second equation (SR= 0) is a constraint to be met by

the designer and not a functional relationship of the

flip-flop.

Logic realization of RS flip-flop

A possible circuit diagram for the RS flip-flop is

shown in Figure 25. A more common configuration is shown

in Figure 26. The evolution from Figure 25 should be

evident.

s -----o Q

Figure 25. RS flip-flop circuit diagram.

An inverter may b~ placed on the output if Q is

desired, or it may be noted that the point labeled "Q"

31

in Figure 26 is actually the inverse of Q for all acceptable

inputs.

However the RS flip-flop is realized physically,

the diagrammatical symbol used for it in this report

will be as shown in Figure 26.

set s Q ~ output

- R Q ~ -reset output

Figure 26. RS NOR flip-flop and symbol.

32

CHAPTER V

AN ALGORITHM FOR DESIGNING ASYNCHRONOUS

SEQUENTIAL CIRCUITS USING

RS FLIP-FLOPS

Characteristic map equation

In Chapter II the Huffman synthesis method (with

the Paull-Unger minimization method) was presented and

it was shown how to generate the Karnaugh maps defining

the state variables in terms of themselves and the inputs.

In this chapter a method will be given wherein the state

variables are realized by RS flip-flops, and the Set

and Reset inputs of the RS flip-flops will be functions

of the flip-flop outputs (states) and the system inputs.

The original state variable maps will be the starting

point from which the maps defining the Set and Reset

inputs to the flip-flops are generated.

Since the flip-flop is to represent the state

variable, its next state function (or characteristic

equation) must somehow be related to the Y-map that

generates the state variable which the flip-flop is to

replace. If we think of the variables of the character­

istic equation as functions of other variables, then it

is an easy step to go to maps to represent those functions.

The characteristic equation is

Q. = s. + R.q.,
l l l l

33

h · h · th . bl Q S d R-w ere 1 represents t e 1- state varia e. . , . an .
l l l

will be functions of the system inputs, I, and the flip-

flop outputs (or state variables) Q . . i.e.
l

Q. Q X I -+ Q
l

s. Q X I -+ s
l

R. Q X I -+ R
l

q. is one of
l

the independent variables and hence is

not a function of the other independent variables. Note

that

I = {xlx2 x Ix. = O,l;i = 1, 2, n} n 1

Q = {qlq2 qml qj = O,l;j = 1, 2, m}.

Since the Karnaugh map is essentially a graphical

representation of the functional relationship, we can

replace the symbols in the characteristic equation with

the appropriate Karnaugh map. The Boolean operators are

valid if we assume that the operations take place between

corresponding minterms of the maps, and the map variables

are identical and in the same position on each map

(Caldwell, 1958).

The example of Chapters II and III will be used to

illustrate the method. The state and output maps of

Figure 21 are reproduced in Figure 27 for reference. The

state variables (y 1 and y 2) will be relabeled q 1 and q2

with the next state variables (Y1 and Y2) changed to Q1

and Q2 .

34

01 11 10

0 0 0 0

1 1 0 0

1 1 1 1

0 1 1 1

01 11 10

0 1 1 0

1 1 1 1

1 1 0 0

0 1 0 0

01 11 10

0 0 0 0

0 0 0 0

0 0 - -
- - 1 1

z

Figure 27. State and output maps of Figure 21.

The characteristic equation is then written with maps

replacing the functional symbology as shown in Figure 28.

Each map must be a function of the same variables

(x 1 , x 2 , q1 , q 2) as stated previously, and the variables

35

must be in the same position on each map for the boolean

operators between the maps to be valid.

xlx2 xlx2
00 01 11 10 qlq2 00 01 11 10

00 0 0 0 0 00

01 1 1 0 0 01 + =
11 1 1 1 1 11

10 0 1 1 1 10

s1

X X 1 2
00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

10 1 1 1 1
-

Figure 28. Characteristic map equation for Q1 .

Selecting the minterm entries

The Q1 map is identical to the Y1 map derived from

the classical synthesis, and the q 1 map simply shows that

q 1 is identical to itself. This provides the starting

point for filling in the s1 and R1 maps. The procedure

is outlined as follows:

1. Place "O's" in each minterm position of s1 where

a "O" occurs in the equivalent minterm of Q1 .

36

2. Place "O's" in each minterm position of R1 where

q1 = 1 occurs and where a "0" occurs in the equivalent

rninterrn of Q1 .

37

3. Place a "-" ("don't care") in each min term position

of R1 where q1 = 0 occurs and where a "O" occurs in the

equivalent minterm of Q1 .

4. Place a "1" in each minterrn position of s1 where

q1 = 0 occurs and where a "1" occurs in the equivalent

rninterm position of Q1 .

S. Place a "1" in each minterm position of R1 where

q1 = 0 occurs and where a "1" occurs in the equivalent

rninterrn position of Q1 .

6. Place a"-" in each rninterrn position of s1 where

q1 = 1 occurs and where a "1" occurs in the equivalent

minterm position of Q1 .

7. Pa.ace a "1" in each minterm position of R.1 where

q1 = 1 occurs and where a "1" occurs in the equivalent

minterm position of Q1 .

8. If a"-" occurs in the Q1 map, then a"+" (a

"don't care" with caution) is placed in the corresponding

minterms of s1 and R.1 . When the final coverings are placed

to derive the expressions from the maps it should be noted

that the choice of s1 = 1 and R1 = 0 is not allowed. All

other combinations are permitted (i.e. s1 = 1, R1 = 1;

s1 = 0, R1 = 1, etc.). Note that a"-" does not occur

in Q1 for this example.

The above procedure has accounted for the SR= 0

constraint, and the algorithm uniquely specifies the S

and R map entries for a fully specified Q map. Figure 29

shows the completed s1 and R1 maps (using the algorithm)

of Figure 28.

xlx2 X X 1 2
00 01 11 10 00 01 11 10

00 0 0 0 0 00 0 0 0 0

01 1 1 0 0 = 01 1 1 0 0 +
11 1 1 1 1 11 - - - -

10 0 1 1 1 10 0 - - -

xlx2 xlx2

2 00 01 11 10 2 00 01 11 10

00 - - - - 00 0 0 0 0

01 1 1 - - 01 0 0 0 0

11 1 1 1 1 11 1 1 1 1

10 0 1 1 1 10 1 1 1 1

Figure 29. Complete specification for Q1 excitation.

A quick check could be made of the Sand R maps to

insure that the minterm positions of S that have a "1"

or"-" entry correspond only to "1" entries in the

respective minterm positions of R.

The Set and Reset maps of Q2 are similarly derived,

and are shown in Figure 30. Expressions for s1 , R1 , s2 ,

and R2 can now be written as shown in Figure 31. The R

expressions are found from the "0" terms of the R maps.

38

39

xlx2 xlx2

00 01 11 10 00 01 11 10

00 0 1 1 0 00 0 1 1 0

01 1 1 1 1 =
01 - - - -

+
11 1 1 0 0 11 - - 0 0

10 0 1 0 0 10 0 1 0 0

xlx2 xlx2
00 01 11 10 00 01 11 10

00 - 1 1 - 00 0 0 0 0

01 1 1 1 1 01 1 1 1 1

11 1 1 0 0 11 1 1 1 1

10 - 1 - - 10 0 0 0 0
-

Figure 30. Complete specification for Q2 excitation.

The circuit diagram can be drawn once the excitation

functions are derived, and is shown in Figure 32. Inputs

are indicated on the left to simplify the circuit schematic.

The output function is the same as derived in Chapter II

(Figure 21) with q 1 substituted for y 1 :

Z = xlql.

The map procedure can be extended to cover any number

of state variables, but the maps become unwieldy to work

with for seven or more variables. The entries are specified

for any number of variables, however, since the procedure

given only deals with minterms and is not changed by the

map size.

40

xlx2
00 01 11 10

00 0 0 0 0 l.::) - - -

01 11 11 0 0 1 1 - -

11 1-
_,

- - 1 1 1 1

10 0 - - - (o1 1 1 1

xlx2
00 01 11 10

00 0 1 1 0 - 1 1 -

01 - - - - 1 1 1 1

11 - - 0 0 1 1 0 0

10 0 1 0
"---'

0 - 1 - -

Figure 31. Flip-flop excitation expressions.

qz s Q Ql
xl 1
- R Q Xz Ql
-
qz

xl

Xz
s Q Qz

-
ql 2

xl R Q Qz
ql

z

Figure 32. Sequential circuit with RS flip-flops.

41

Algorithm statement

Using the example given, an extension to the general

case should be obvious. The algorithm is given for the set

and reset maps of a given state variable. Reference need

only be made to the original excitation maps, but the entire

map equality can be drawn (as shown in Figures 28, 29, or 30)

as a memory aid.

Given the excitation map for state variable Q., the S.
1 1

and R. maps are derived as follows:
1

Q. = 0'
1

q.
1

q.
1

= 0:

= 1:

Q. = 1, q. = 0:
1 1

q. = 1:
1

Q. =-,all q.:
l l

s.
1

s.
1

s.
1

s.
1

s.
l

= 0. R. = ,
1

= O· R. = ,
1

= 1. R. = ,
1

= R. =
1

= +· R. = ,
l

-

1.

1.

0.

+.

The S. and R. maps are covered in the standard fashion
1 1

with a caution on the"+". A"+" is considered equivalent

to a"-" ("don't care"), but with the restriction that the

S. and R. maps cannot have a"+" in corresponding minterm
l 1

positions both grouped . in a "l's" grouping (i.e., they both

cannot be used as "l's" for a given S. and R. realization).
1 1

Static hazard conditions should be eliminated to insure

smooth state transitions since static "0" hazards could

cause an inadvertent set or reset. If one of the flip-flops

changed its state at the wrong time, an improper state

transition would occur, and proper action as defined by the

flow table could not be achieved in most cases.

CHAPTER VI

AN APPLICATION OF THE MAP-METHOD

TO SYNCHRONOUS CIRCUITS

Problems in synchronous design

If the technique presented 1n Chapter Vis tried

for asynchronous design using Tor D flip-flops, a

problem arises (the unclocked JK flip-flop is excluded

42

due to the improbability of simultaneous J and K transitions

occuring, hence it reduces to an RS flip-flop). In

describing the T and D flip-flops more than two states

are required to adequately describe their total operation

using logic levels as excitations. This means that a set

of equations is required to describe the circuit action-­

hence more than one state variable is needed.

For the RS flip-flop only two states were required

to describe the circuit operation, and hence only one

state variable was needed. As it turned out the RS flip­

flop output represented the state variable, and so was

accessible. Where more than one state variable is required

the relationship between them has to be maintained in the

state assignment for the flow table to be achieved.

Such is the case for only a small fraction of possible

flow tables. This problem will be discussed in Chapter VII.

Synchronous analysis

In synchronous sequential design the presence of a

"clock" signal supresses the requirement for positing

extra states for a complete description of the D, T, or

JK flip-flops, and the method of Chapter V can be used

effectively to produce maps for the inputs of the state

flip-flops. Note that it is possible for the JK flip­

flop to be used in synchronous design problems since the

initiating signal transition occurs only on the "clock"

input. The other flip-flop inputs are assumed to be at

a definite logic level when the clock transition occurs

(flip-flop action may occur on positive-going or negative­

going clock transitions, depending on how the flip-flop

is constructed. In this report excitation is assumed to

occur on the positive-going edge of the clock).

The characteristic map, characteristic equation, and

symbol are shown in Figures 33-36 for D, T, JK, and RST

flip-flops. The RST flip-flop is included for completeness.

Note that the clocked RS flip-flop would have the same

characteristic equation and map-generation algorithm as

described in Chapter V. In generating the RST character­

istic map the technique of Marcus (1969) was used. Each

minterm entry of the respective map indicates what the

flip-flop output will be upon the occurrence of a positive­

going transition on the clock input lead.

43

D Q

clock C Q

D

qD 0 1

0 0 QD = D

1

Figure 33. D flip-flop symbol, characteristic map, and
characteristic equation.

o-------1 T Q

clock C Q

T

qT 0 1

0 0 CD QT = TqT + TqT
1 1 0

QT

Figure 34. T flip-flop symbol, characteristic map, and
characteristic equation.

clock =t : t-----o:
JK

qJK 00 01 11 10

0 0 0 1 QJK = JqJK + KqJK
1 D 0 0 ([_

QJK

Figure 35. JK flip-flop symbol, characteristic map, and
characteristic equation.

44

constraints:

RS= 0

STqRST = 0

RTqRST = 0

clock

s Q
T

R Q
C

R s
TqRST 00

00 0

01 (1

11 0

10 IC 1

01 11 10

1 - 0
l) - 0
- - 0

1 - -)

QRST
QRST = S + RTqRST + TqRST

Figure 36. RST flip-flop symbol, characteristic map,
characteristic equation, and constraint
equations.

Only the RST flip - flop is seen to have constraints

on its inputs. When realizing the R, S, and T input maps

these constraints have to be accounted for.

The problem statement of a synchronous sequential

circuit is similar to the asynchronous case, but the race

and hazard problems need not be accounted for in the

synchronous problem. A state diagram or flow table is

constructed and a state reduction is attempted as in the

asynchronous case. The state assignment can be taken as

the minimum number of state variables to uniquely code

each state. All destination state transitions are taken

45

in one step since the clock essentially constrains the

circuit activity to occur at discrete points in time,

and all feedback paths (from flip-flop output to flip-flop

input) are nonfunctional at points in time other than

when the positive-going clock transition occurs. From

the transition matrix (flow table with states coded) the

state maps are drawn, and these are then used to generate

the flip-flop input maps as determined from the character­

istic equation.

Example

An example will be given to illustrate the procedure.

The minimized flow table of Figure 5 is redrawn (with the

states numbered) as shown in Figure 37. Since races are

xlx2

state 00 01 11 10 z

1 0 2 4 0 0

2 00 3 3 0

3 1 2 00 1

4 2 2 00 0

Figure 37. Flow table for synchronous design.

not a problem in synchronous design, cycles need not be

introduced for proper circuit operation. All transitions

are direct, as previously mentioned.

The states are assigned a binary code in a fashion

(generally) to realize the output function (Z) in the

46

47

simplest way. In this case (Figure 37) the output is

coincident with state 0 only, so access will be required

to both state variables (only two state variables are

required to uniquely realize four states). The flow matrix

is shown in Figure 38.

X X 1 2

2 00 01 11 10

00 00 01 10 00

01 01 01 11 11

11 00 01 11 11

10 01 01 10 10

Figure 38. Flow matrix for synchronous problem.

The state maps can be drawn as shown in Figure 39.

The state map is then used in the characteristic equation

of whichever flip-flop (or combination thereof) is desired

to implement the total system. If all flip-flops are avail­

able, each state map can be tried with all of the charac­

teristic equations to see which one would give the cheapest

realization in combinational logic.

X X 1 2 X X
1 2

2 00 01 11 10 2 00 01 11 10

00 0 0 1 0 00 0 1 0 0

01 0 0 1 1 01 1 1 1 1

11 0 0 1 1 11 0 1 1 1

10 0 0 1 1 10 1 1 0 0

Figure 39. State maps for synchronous problem.

48

D realization

To realize the states with D flip-flops it is necessary

to refer to the characteristic equation of the D flip-

flop. Figure 40 shows the generation of the inputs for

D1 and Dz. It is seen that the input maps are simply the

state maps. This may mean a lack of ability to generate

"don't care" conditions from specified conditions of the

state maps, whi c h could provide a means of further simpli­

fication. However, the single input may make up for the

lack of flexibility.

xlxZ
00 01 11 10 11 10

00 0 0 1 0 1 ~
01 0 0 1 1 01 1 1 =
11 0 0 1 1 11 1 1

10 0 0 1 1 10 1 1

D1

Dl = xl(ql + qz + Xz)

X X 1 Z
X X 1 Z

00 01 11 10 00 01 11 10

00 0 1 0 0 00 0 1 0 0

01 1 1 1 1 =
01 (1 1 1 1)

11 0 1 1 1 11 0 1 1 1

10 1 1 0 0 10 (1 1 0 0

Dz

Dz= xlxZ + qlqZ + q1qzx1 + xlqZ

Figure 40. Input excitation maps for realization with
D flip-flops.

T realization

The realization using T flip-flops is shown in

Figure 41. A fully specified state map generates a fully

specified T-rnap as in the D flip-flop case. Only the

generation of Q1 is shown for brevity. It should be

X X
1 2 xlx2 X X

1 2
q - 00

L.
01 11 10 qlq2 ~0~0--,---.--1_0~ q 2 00 01 11 10

00 0 0 1 0 00 0 00 1 1 1 1

01 0 0 1 1 1 01 1 1 1 1 :::

11 0 0 1 1 11 0 0 0 0
10 0 0 1 1 10 0 0 0 0

X X 1 2 xlx2
q2 00 01 11 10 q2 00 01 11 10

00 00 0 0 0 0

+ 01 01 0 0 0 0

11 0 0 1 1 11 1 1 1 1

10 0 0 1 1 10 1 1 1 1

- -
Tl::: xlql + xlx2ql + xlqlq2

T2::: xlx2q2 + xlx2ql

Figure 41. Realization expressions for T flip-flops.

evident that the T-rnap is identical to the Q-rnap where

q::: 0, and is the inverse of Q where q::: 1. T
1

and t
1

are filled in only where they contribute to Q1 to clarify

the process.

49

so
JK realization

The JK realization expressions are given in Figure 42,

along with the map equality for Q1 . The JK flip-flop is

seen to be similar to the T flip-flop with the exception

that half of the J and K maps consist of don't cares,

which may eliminate some of the combinational logic

altogether (as in the generation of K1).

xlx 2 xlx 2 xlx2
q 2 00 01 11 10 q 2 00 01 11 10 q2 00 01

00 0 0 1 0 00 0 0 T 0 00 1 1

01 0 0 1 1 01 0 0 1 11 01 1 1

11 0 0 1 1 11 - - - -1 11 0 0

10 0 0 1 1 10 - - - -
'-'

10 0 0
-

X X 1 2 X X
1 2

q 2 00 01 11 10 q2 00 01

00 - - - - 00 0 0

+ 01 - - - - 01 0 0

11 0 0 1 1 11 1 1

10 In 0 1 1 10 1 1

Kl ql

Jl = xlx2 + xlq2 J2 = qlxl + xlx2

Kl = xl Kz = xlx2qlq2

11

1

1

0

0

11

0

0

1

1

Figure 42. Realization expressions for JK flip-flops.

RST realization

10

1

1

0

0

10

0

0

1

1

The RST flip-flop is the last flip-flop to be looked

at in the synchronous sequential example. The realization

expressions are given in Figure 43. Filling out the S, R,

and T-rnaps is complicated by the fact that the three

QRST = S + RTqRST + TqRST

RS= 0

51

STqRST = 0

RTqRST = 0

s1 = xlx2 + xlq2
= Xl(Xz + qz)

X X
1 2

X X
1 2 Rl = 0

2
00 01 11 10

00 0 0 1 0
2 00 01 11 10 --

00 0 0 1' 0
Tl

-
= xlql

-
01 0 0 1 1 =

01 0 0 1 11
s 2 = xlx2

11 0 0 1 1 11 0 0 - _I Rz = 0

1 0 0 0 1 1 10 0 0 ,_::,.. - T2
- -

= xlx2ql

xlx2 X X 1 2

2 00 01 11 10
2

00 01 11 10 00 01 11 10

00 - - 1 - 00 1 1 - 1 0 0 0 0 0
-

+
01 - - 1 1 01 1 1 - - 1 0 0 0 0

11 - - 1 1 11 0 0 1 1 1 1 1 1 1

10 - - 1 1 10 0 0 1 1 0 1 1 1 1

xlx2 xlx2

2 00 01 11 10 2 00 01 11 10

00 0 0 - 0 00 1 1 1 1 '

+
01 0 0 - - 01 1 1 1 1

11 11 1 0 0 11 0 0 0 0

10 11 1 0 0 10 0 0 0 0

Figure 43. Realization expressions for RST flip-flop.

constraints must also be met. The best way to fill out

the maps is to fill in the required minterm entries that

give the required equality, and then check T and t for

proper matching before further filling in to meet the

constraints. Initially "O's" can be filled in the s1-

map where Ql = 0' and in the T1-map where Ql = 0 and

ql = 0. The "O's" in Tl where ql = 0 go into "l's"

in tl where ql = 0. The corresponding minterms of i\
ca n be filled in with 11 -' s 11

• For minterms where Q1 = 0

and q 1 = 1, place "l' s " in T1 and " - 's" in R1 (or " - 's"

in T1 and "O' s " in R1). Note that there is a cho i ce that

may be made, thereby making the R, S, and T-maps non ­

unique for fully specified Q-maps.

Where Q1 had "l's", and q1 = 0, set s1 = 1, R1 = 1,

and t 1 = - (or S 1 For Q1 = 1 and

Another choice

may be made here. The entries could be placed side by

side in the maps so that when the final covers are placed,

the optimum choice can be made.

The availability of multiple minterm entry selections

is due to the fact that there are two complete flip-flops

combined into one. Each separate flip-flop is capable of

setting or resetting the combined flip-flop, hence more

than one choice is available in certain situations.

Summary for sequential flip-flops

The previous algorithms for determining the input

equations for specified types of flip-flops is summarized

52

53

as follows. The RS flip-flop is equivalent to the asyn-

chronous case and the RS algorithm is taken from Chapter V.

RS flip-flop

The characteristic and constraint equations are:

Q = S + Rq, RS= 0; where Q represents entries in the

"next state" map, and q represents the "present state"

variable.

Q = 0: (a) s = 0 in all corresponding minterms.

(b) q = 0: R =

(c) q = 1: R = 1.

Q = 1: (a) q = 0: s = 1, R = 0.

(b) q = 1: s = R = 0. '

D flip-flop

The characteristic equation is: Q = D. The'input

maps are identical to the state variable maps.

T flip-flop

The characteristic equation is: Q = Tq + Tq.

Q = 0: (a) q = 0: T = 0.

(b) q = 1: T = 1.

Q = 1: (a) q = 0: T = 1.

(b) q = 1: T = 0.

JK flip-flop

The characteristic equation is: Q = Jq + Kq. It

should be obvious that this is similar to the T flip-flop

with the "T" function being shared by "J" and "K".

Q = 0: (a) q = 0: J = 0' K =

(b) q = 1: J = - K = 1.

Q = 1: (a) q = 0: J = 1, K =

(b) q = 1: J = K = 0.

RST fli:e-flo:e

The characteristic and constraint equations are:

Q = s + RTq + Tq, RS = 0' STq = 0 ' and RTq = 0.

Q = 0: (a) s = 0 in all corresponding minterms.

(b) q = 0: T = 0' R = -

(c) q = 1: T = R = 1.
'

or T = 1, R = -

Q = 1: (a) q = 0: s = R = 0' T = 1·
'

or S = 1, R = 0, T - -

(b) q = 1: S = R = 0, T = 0.

"Don't care" conditions

If "don't cares" occur in the state maps, they are

inserted in the corresponding minterm positions of the

T, D, and JK input maps. The RS and RST input maps

should have a"+" inserted in the corresponding minterm

positions, and final covers placed so as not to contradict

the constraint equations as was done for the RS flip-flop

in Chapter V.

Each minterm position can be considered separately

for a choice of which entry algorithm is desired (if a

choice is available). In this way a more optimum map may

be achieved in terms of the minimum number of logic

54

gates required in the final implementation. The best way

to do this is to draw out the maps in the characteristic

equation and observe how each entry is being placed.

Previous entries can be altered as the form of the map

takes shape.

55

CHAPTER VII

AN APPLICATION OF THE MAP METHOD TO

TRANSITION FLIP-FLOPS

Types of transition flip-flops

It was mentioned in Chapter IV that transition flip­

flops required more than one state variable to adequately

describe them using the Huffman approach. In this chapter

the clocked JK, "one's-catching" JK, D, T, and unclocked T

flip-flops will be analyzed and their use in realizing

asynchronous flow matrices will be described. The method

will consist of modifying a given flow table into a form

that is realizable using the selected transition flip­

flop.

Clocked JK flip-flop

The clocked JK flip-flop to be analyzed is the same

one used in Chapter VI. Its flow table and reduction are

shown in Figure 44. The table is set up with the enabling

clock transition ("0" to "1") dividing the flow table into

two vertical halves. Since circuit action occurs only

during the clock transition, this facilitates filling out

the flow table. Note that the table is normal only with

respect to the clock transitions. The state reduction was

chosen with "don't cares" to give simpler characteristic

expressions.

56

001 011 010 100 101 111 110 Q

2 3 4 5 0

2 1 0 3 4 6 0

3 1 2 0 4 15 0

4 1 2 3 0 16 0

5 1 G) 6 7 8 0

6 2 5 © 7 8 0

7 3 5 6 0 8 0

8 4 5 6 7 ® 0

9 9 10 11 12 13 1

10 9 @ 11 12 6 1

11 9 10 @ 12 7 1

12 9 10 11 @ 16 1

13 9 @ 14 15 16 1

14 10 13 ~ 15 16 1

15 11 13 14 @ 16 1

16 12 13 14 15 @ 1

CJK

state 000 001 011 010 100 101 111 110 Q

a G) 0 3 4 0 ® 0 ® 0

b 1 2 0 0 15 16 0

C ® 10 11 @ @ Q3) @ @ 1

d 9 @ @ 12 6 7 1

Figure 44. Clocked JK flip-flop primitive flow table
and merged flow table.

The state assignment and state maps are shown in

Figure 45. The characteristic equation consists of two

equations. This means that in certain cases a pair of

states in a flow matrix may be realized with one flip­

flop. It will be seen that such is the case, and the

conditions under which this is possible will be discussed.

CJK

2
000 001 011

00 00 00 01

01 00 00 01

11 11 10 10

10 11 10 10

JK C=0

2 00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

10 1 1 1 1

JK C=0
qlq2 00 01 11 10

00
i----+---++---+---.-1

01
t---+--+--+---l

11
~----++-----l

10

010 100 101

01 00 00

01 - -

11 11 11

11 - 00

C=l
00 01 11 10

0 0 0 0

11- - 1 11
!11 1 1 11

- 0 0 -

C=l
00 01 11 10

0 0 0 0

- - 1 1

Tl 1 1 rr -
_J 0 0 L

111

00

11

11

00

110

00

11

11

-

Q

0

0

1

1

Figure 45. Clocked JK characteristic equations and maps.

58

The characteristic equations are required to derive

the flip-flop input maps. As an example, a single input,

two-state map will be used to illustrate the conditions

to be met by the two states.

JK state constraints

The map relationships are shown in Figure 46 for a

single input, two-state flow matrix without regard to

01

11 1 1

10 Q] Q,
-
C

0 0

0 0 +

1 1

1 1

ql

Q, Q,

C

0 0

1 1

1 1

0 0

qz

- -
01 CC

11

10

=

-

-

Q2

-

-

Q,
L

K

0 0

0 0 +
1 1

1 1

ql

1 1

Q Q 1 1 + Q, Q,
0 0

Q Q 0 0 Ql Ql
C J ql C

Figure 46. Map equations with static constraints for
JK flip-flop.

0 0

1 1

1 1

0 0

the output function. It will be shown how the output

function can be included in any acceptable (in terms of

flip-flop constraints) flow table later in this chapter.

A single input is assumed to keep the analysis simple, and

59

is not necessarily a functional constraint on a realization

using clocked JK flip-flops. Conditions on Q
1

are derived

from observation of the required map relationships, and

the minterm entries of Q1 are placed in the pertinent

positions of the "C" and "C" maps in the Q
1

equation.

Since it is implicit in the map equations that all of

the maps have the same input, only the left-most map in

any one equation has its inputs shown. This practice will

be carried throughout the chapter. The clock entries

from the Q1 equation are copied into the Q
2

equation where

the "C" and "C" maps occur. The Q1 map must have "O's"

in its first row (q 1q 2 = 00), and "l's" in its third row

(q 1q 2 = 11) to meet the static requirements of the Q
1

equation. The Q2 map must have "l's" in its second row

min term positions (q 1 q 2 = 01) if the Q
1

map has "l's"

in the corresponding positions. Note that both minterms

need not be "1" if only one position of the Q
1

map has

a "l". These positions are marked with a "c" (for check)

as a reminder. The input maps can be filled in while

watching for transitions occurring in the "C" map and

the "J" or "K" maps. One of the original assumptions

was that when a transition on the clock line occurs (in

the positive, or "0" to "1", direction), the "J" and "K"

lines should be stable.

60

Input constraints

Transitions in the flow matrix should be compared

with the corresponding minterm positions in the "C" map.

If the "C" map has a "0" to "1" change in the direction

of the transition, then the "J" and "K" maps should be

checked to see that their corresponding minterm positions

contain no logic changes for the same transition. This

is to insure that simultaneous changes do not occur on

the transition input (clock) and level inputs (J or K).

Flow table constraints for JK flip-flop

The initial flow table has to be set up to represent

a realizable circuit using JK flip-flops. Using the

characteristic equations for the JK flip-flop, it is

easy to see that only the column transitions in the flow

diagram are inherently constrained. The transition

constraints, along with the static constraints, make up

the characteristic equation-induced constraints.

Using the previously derived map relations for Q1

and Q
2

, it is evident that only certain states are allowed

in each of the four possible vertical minterm positions

of any given "next state" column. The allowed states

are shown in Figure 47. For the states shown, there are

2x3x2x4 = 48 possible different choices for one column

in a flow table with four states. Of these forty eight

possible choices, only twelve meet the "transition"

constraints as specified by the characteristic equations.

61

1npu t 1 mn co u
state

1 1, 2

2 1,2,3

3 3,4

4 1,2,3,4

Figure 47. Possible "next state" entries in JK realizable
flow table.

The twelve allowed columns are shown in Figure 48, along

1 J=0 1 J=0

1 K=l 1 K=0

3 C=ql 3 C=ql
1 2

1 J=- 1 J=-

3 K=0 3 K=l

3 C=ql 4 C=ql
3 4

state I 1 1 00
2 1 _ 00
3 3 - 11
4 1 00

Q2 i<

1 J=0 1

1 K=0 1

3 C=0 4

3 4

2 J=l 2

2 K=l 2

3 C=ql 3

1 2

1 = 00
2 = 01
3 = 11
4 = 10

ql J c ql C q2

J=0 1 J=- 1 J=-

K=l 3 K=l 3 K=0

C=0 3 C=l 3 C=l

1 2

J=l 2 J=l 2 J=l

K=0 2 K=0 2 K=l

C=ql 3 C=0 4 C=0

3 4

62

Figure 48. Acceptable vertical transitions for JK flip-flop.

63

with the derivation of the first one. The selection

criteria was based on the fact that none of the derived

flip-flop inputs could be functions of q 2 (the internal

flip-flop variable). The flip-flop output is identical

to q 1 . A perusal of the possible transitions shows that

different states with the same output (1 and 2, or 3 and 4)

cannot coexist in the same column in their stable positions.

It is for this reason that the Z-map can always be

constructed such that the system output (Z) is not a

function of q 2 .

Three-variable flow table

A flow table with three state variables could have

two of the three variables realized by a JK flip-flop if

the flow table meets the constraints set by the character­

istic equations. A single input-column of some arbitrary

flow matrix is shown in Figure 49. It should be obvious

that the transitions for the two state variables used to

represent the JK flip-flop must meet the same vertical

transition constraints in each of the four-state halves

of the column (a simple application of the characteristic

equations for the column will show this). The "next

state" entries of the flow table column are a
1

b
1

through

a 8b 8 , where "a" refers to a binary "1" or "O" and is

the q 3 portion of the next state code, and "b" refers

to a two-bit binary code that refers to the q 1q
2

portion

of the next state code. It is assumed that the state

variables q1 and q 2 are to be realized with the JK flip­

flop. That means columns b 1 , b 2 , b 3 , b 4 , and bs, b 6 , b 7 ,

bS must be one of the twelve acceptable transitions.

I

albl 2
0 1

azbz 00 al as

011 0 3 a3b3 01 az a6

010 0 4 a4b4 11 a3 a?

100 1 1 asbs 10 a4 as

101 1 2 a6b6 Q3

111 1 3 a7b7 al = az

110 1 4 asbs a3 = a4

as = a6

a? = as

Figure 49. Three-variable flow table column and Q3 map.

64

If it is assumed that q1 is the output of the JK

realization, then Q3 can be a function only of q1 , itself,

and the system input variables because q 2 is an inaccessible

variable. This puts the constraint on Q3 such that

a 1 = a 2 , a 3 = a 4 , as= a 6 , and a 7 = as· If the flow table

for the desired function can be manipulated to meet the

above constraints, then the function's state behavior can

be realized with a JK flip-flop in combination with an

RS flip-flop and logic gates. The RS flip-flop could also

be realized with logic gates, if desired.

In manipulating the flow table, the output should not

be a function of the JK flip-flop internal variable (q 2).

If it is, then a transition position in the Z-map could

be modified to eliminate this dependency.

Four-variable flow table

A four-variable flow table can be implemented using

two JK flip-flops if the flow table conforms to the

constraints of the characteristic equations. Figure 50

shows one column of a four-variable map with the columns

qlq2q3q4
000

000

001

001

010

010

011

011

100

100

101

101

110

110

111

111

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

I

al bl

az bz

a3 b3

a4 b4

as bs

a6 b6

a7 b7

as b8
a 9 b 9
alOblO

allbll

a12b12

a13b13

a14b14

alSblS

a16b16

a b

1 1

1 2

1 3

1 4

2 1

2 2

2 3

2 4

3 1

3 2

3 3

3 4

4 1

4 2

4 3

4 4

Figure SO. Four-variable map column.

65

labeled with the binary code, and a corresponding two­

tuple. The "next state" entries are labeled "ab". "a"

refers to the destination major group (defined by state

variables q 1q 2), and "b" refers to the destination sub­

group (defined by state variables q
3

q
4

). Substituting

the column into the characteristic equations shows that

each of the subgroups (groups of four minterm positions

where state label "a"= constant) must consist of one of

the twelve vertical transition assignments and the inputs

to the q 3q 4 flip-flop should not include q 2 . This assures

that the JK flip-flop representing the q
3

q
4

state variable

pair can be realized.

66

A rearrangement of the variables shows what constraints

must be met by the "a's", "b's", q 1q 2 and q 3q
4

. Figure 51

gives some insight to these constraints. Since only q
3

is available from the q 3q 4 flip-flop, any input to the q
1

q
2

or q 3q 4 flip-flops cannot include q
4

. Hence we have the

equalities shown at the right of Figure 51. It is evident

that each column of the Q1Q2 and Q
3
Q

4
maps must meet the

constraints imposed by the characteristic equations. That

means each vertical column (a
1

a
5

a
9

a
13

, a
2

a
6

a
10

a
14

, a
3

a
7

-

allal5' a4a8al2al6' b1bzb3b4, b5b6b7b8, b9b10bllb12' and

b 13 b 14 b 15 b 16) must be one of the twelve acceptable vertical

transition columns. The equalities in Figure 51 imply that

the first two columns are equal and the last two columns

q q 3 4

2 00

00 al
01 as
11 ag
10 a13

q q 1 2

4 00

00 bl
01 bz
11 b3
10 b4

qlq2q3q4
000 0

000

001

001

010

0101

011

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

0

1

0

0

I

01 11

az a3

a6 a7

alO all

a14 alS

01 11

bs bg

b6 blO
b 7 bll
bs b12

a k

a 1

b m

b n

C k

C 1

d m

d n

e 0

e p

f q

f r

g 0

g p

h q

h r j

10

a4 al = az a3 = a4 '
as as = a6 a7 = as '
a12 ag = alO; all= a12

a16 a13= a14; a1s= a16

10

b13 bl = bs bg = bl3

b14 b z = b6 b10= b14

blS b 3 = b7 b11= blS

b16 b4 = bs b12= b16

first column

Necessary vertical transitions:

a b k o

C d 1 p

e f m q

g,h,n,r.

Figure 51. Q1Q2 and Q~Q4 maps with entry constraints
and required column equalities.

67

are equal in the Q1Q2 map and Q3Q4 map. If each column

of a four variable flow table meets the above criteria,

then it can be realized with two JK flip-flops and some

interconnection logic.

The above manipulations show the form that each of the

two, three, and four variable flow tables must be in to

achieve their realizations using JK flip-flops. Larger

flow tables can be examined column by column using similar

techniques. Some synthesis examples will be given at

the end of this chapter.

D flip-flop

The primitive flow table and reduction for the D

flip-flop are shown in Figure 52. The state assignment

01 11 10 Q
2 4 0

2 1 @ 7 0

3 2 0 4 0

4 1 3 © 0

5 ® 6 7 1

6 5 ® 7 1

7 6 0 8 1

8 5 7 8 1

01 Q
2 0

b 1 0 7 0

C 5 ®0® 1

d ® 6 4 1

68

Figure 52. Primitive and merged flow tables for D flip-flop.

and characteristic equations are given in Figure 53.

Using the characteristic equations the characteristic

CD
00 01 11 10

0 00 01 00 00

1 00 01 11 -

1 10 11 11 11

0 10 11 - 00

CD CD

qlq 2 00 01 11 10 00 01 11 10

00 0 0 0 0 0 0
,-..,
1 0 0

0 1 0 1 1 0 1 11 -

11 1 1 1 1 0 1 11 1

10 1 0 0 0 1 - 0

Ql
Q == 1 Cql + Cq2

Figure 53. Flow matrix and characteristic equations
for D f lip-flop.

maps can be checked as shown in Figure 54 to determine

static constraints on the two states that represent the

D flip-flop. It is seen from an inspection of the maps

that the same type of static constraints that held for

the JK flip-flop also hold for the D flip-flop. The "c"

in the Q2 map means that if the Q1 map has a "1" in the

same minterm position, then the "c" in Q2 must be a "1".

This means the first state row of a flow table column can

have only one of two entries (1 or 2); the second state

69

qlq2
00 0 0 0

01 0 Q 1 = +
11 1 1 1

10 Ql 1 0

Ql c ql C q2

qlq2
00 0

01 C + Ql 1 = .
11 1

10 Ql 0

Q2 c D C q2

Figure 54. Static state constraints on D flip-flop.

row can have one of three entries (1, 2, or 3); the third

state row can have one of two entries (3 or 4); and the

fourth state row can have one of four entries (1, 2, 3,

or 4). This is the same as the JK flip-flop, but out

70

of the forty eight possible columns, only nine are accept­

able to be used as entries in the D flip-flop flow table.

The acceptable transitions are listed in Figure 55, along

with their resultant input expressions. The acceptance

criteria is such that each input variable of the flip-flop

(C or D) cannot be a function of q 2 since it is inaccessible

(as in the JK case).

Flow table constraints for D flip-flop

The flow table that is to be realized using D flip­

flops must meet the requirements as set forth in the JK

1 C=ql 1 C=O 1 C=0 1 C=l 1 C=ql
1 D=0 1 D=ql 1 D=0 3 D=- 3 D=l

3 3 4 3 3

1 3 4 1 3

1 C=ql 2 C=ql 2 C=0 2 C=0

3 D=0 2 D=l 2 D=l 2 D=ql

4 3 3 4

4 1 3 4

Figure 5 5 • Acceptable vertical transitions for D flip-
flop.

flip-flop section, since the derivation is identical. The

only change is in the characteristic equations, and these

give rise to the nine acceptable vertical transitions in

the D flip-flop case as opposed to the twelve in the JK

flip-flop case.

Clocked T flip-flop

The clocked T flip-flop primitive flow table and

merged flow table are shown in Figure 56. The flow matrix

CT CT

state 00 01 11 10 Q state 00 01 11 10 Q
1 CD 2 - 4 0 a CD 2 3 4 0

2 1 @ 7 - 0 b 1 a) 7 0

3 - 2 G) 4 0 C ® 6 G)@ 1

4 1 - 3 © 0 d 5 @ 3 1

5 ® 6 - 8 1

6 5 ® 3 - 1

7 - 6 G) 8 1

8 5 - 7 ® 1

Figure 56. Clocked T flip-flop primitive flow table and
merged flow table.

71

and characteristic equations are shown in Figure 57, and

CT

2 00 01 11 10

00 00 01 00 00

01 00 01 11 -

11 11 10 11 11

10 11 10 00 -

CT

qlq2 'r-0_0~0_1~1_1---.---1_0~
00 0 0 0 0
01 i-.:--r:--r::;:l=t=:=;-1

11 U.:....._j___:U::::1 :::::t=l:::::'..__J
10 0

CT

00 01 11 10

00 0 1 0 0

01 0 1 1

11 0 =1~=
10 0 0

Q2
Q2 = Tql + TCql + Cq2

Figure 57. Clocked T flip-flop flow matrix and character­
istic equations.

the static state constraints are given in Figure 58. Note

11

10

=

t

0

0 +

1

1

ql

0

C

c

1

1 +

0

0

0

1

1

0

C q2

Figure 58. Clocked T flip-flop state constraints.

72

73

that the flip-flop output (Q) is defined to be identical

to the state variable ql for all of the flip-flops. The

static state constraints are seen to be the same as the

JK and D flip-flops. The transition constraints as derived

from the application of the characteristic maps to

forty eight possible transition cases are shown in

1 C=ql 1 C=ql 1 C=O 1 C=O 1 C=l 1 C=l
1 T=ql 1 T=O 1 T=O 1 T=ql 3 T=l 3 T=O
3 3 3 4 3 3

1 2 3 4 1 2

1 C=q
1 1 C=ql 2 C=ql 2 C=ql 2 C=O 2 C=O

3 T=O 3 T=l 2 T=l 2 T=ql 2 T=ql 2 T=l
3 4 3 3 3 4

3 4 1 2 3 4

Figure 59. Clocked T flip-flop acceptable vertical
transitions.

the

Figure

The derivation is identical to the JK case. The vertical

transition set is identical to the JK flip-flop vertical

transition set, so a flow table that can be realized with

59.

JK flip-flops can also be realized with clocked T flip­

flops without having to change its form. Note that there is

no vertical transition where "C" has a positive transition

and T also changes.

Flow table constraints for clocked T flip-flop

If a given flow table is to be realized with clocked

T flip-flops, it must conform to the specifications set

forth in the JK flip-flop flow table constraint section.

74

Since the clocked T flip-flop acceptable vertical transition

set is identical to the JK flip-flop set, all flow tables

that can be realized with JK flip-flops can also be realized

with T flip-flops. Simultaneous adverse clock and T

transitions are more likely to occur using T flip-flops,

however, and should be watched for. An adverse transition

is one where the clock input has a positive transition

coincident with a "T 11 transition (either positive or

negative). If this occurs, an alternate column should

be tried to see if the problem can be alleviated.

Unclocked T flip-flop

The unclocked T flip-flop primitive flow table and

merged flow table are identical. The flow table, flow

matrix, and characteristic equations are shown in Figure 60.

T T

state 0 Q 0 1

1 2 0 0 01 00

2 @3 0 1 01 11

3 4 G) 1 1 10 11

4 © 1 1 0 10 00

T T

0 1 2 0 1

0 0 0 00 1 0

1 0 1 01 1 1

1 1 1 11 0 1

0 1 0 10 0 0

Figure 60. Unclocked T flip-flop flow table, flow matrix,
and characteristic equations.

The output (Q) is again chosen to be identical to q
1

for

convenience, and to conform with previous analysis. The

unclocked T flip-flop is controlled by only one input (T)

and changes its output state only upon the occurrence of

a positive - going transition on it. The static state

constraints can be found by plotting the characteristic

maps, as shown in Figure 61. Only one column is shown

qlq Z
00 0 0 0

01 0 + Q 1 =
11 1 1 1

10 Ql 1 0

Ql T ql T q z

qlq 2
00 1 0

01 1 1 + Ql 1 = .
11 0 1

10 0 Ql 0 0

Qz T ql T qz

Figure 61. Unclocked T static state constraints.

with the state assignment on the left. Since all columns

(external inputs) are derived in the same way, only one

column is needed to show the relationship.

The unclocked T flip-flop has more constraints on

75

its vertical state transitions, as is evident from Figure 61.

The state assignment possibilities and acceptable transitions

are shown in Figure 62. 4 There are only 2 = 16 possible

static assignments, and out of these sixteen only four are

I I
2 state Q

0- 1 1, 2 0
-1 2 2,3 0
1- 3 3,4 1
-0 4 4,1 1

1 T=l 1 T=ql 2 T=ql 2 T=0
3 3 2 2
3 4 3 4
1 4 1 4

Figure 62. Unclocked T flip-flop acceptable states and
transitions.

acceptable. These four are a subset of the D flip-flop

set, and hence also a subset of the JK flip-flop and

clocked T flip-flop set. It should be evident that the

JK and clocked T flip-flops are the most versatile of the

existing transition flip-flops available.

Flow table constraints for unclocked T flip-flop

The JK specifications on allowable flow tables also

apply to the unclocked T flip-flop (due to the similarity

of its derivation), except for the fact that only four

vertical transition sets are allowed in the groupings.

This makes the unclocked T flip-flop the least versatile

of the group. However, due to the single input, if a

76

flow table can be realized using the unclocked T flip­

flop, then it may be a cheaper realization due to the

decrease in required connections.

"One's-catching" negative-edge
triggered JK flip-flop

77

A commercially available JK flip-flop will be analyzed

to show how the flow table may be derived from the circuit

configuration. Figure 63 shows an equivalent circuit

representation of a "one's-catching" negative-edge triggered

JK flip-flop, and the classical flip-flop as derived

JO-

s2 Q2 s1 Ql
c~ -

R2 Qz R Q

c commercial

R

Sz Qz s1 Ql

Rz Q:~ Ql

J
c classical

Figure 63. Commercial "one's-catching" and classical JK
realizations.

Q

Q

78

from the flow table of Figure 44. The output is affected

only on the negative-going transition of the clock line

in the "one's-catching" JK, and was chosen to be coincident

with q 1 for consistency. The classical JK realization is

given for comparison. It's schematic was derived using

state maps of Figure 45 along with the RS flip-flop

algorithm of Chapter V.

Since the realization uses RS flip-flops, the RS

flip-flop characteristic maps can be used in "reverse"

order to derive the state maps (Q1 and Q2) for the

commercial JK. The inputs from the flip-flops can be

taken from the diagram (Figure 63) and plugged into the

input expressions of the characteristic maps. The resulting

flow matrix, flow table, characteristic equations, and

acceptable vertical transition set are given in Figure 64.

The operation of the flip-flop can be easily predicted

from the flow table. This saves having to trace through

the circuit schematic as all the functional specifications

are contained in the table. It should be evident from

the flow table that the flip-flop is susceptible to spikes

on the "J" input when the flip-flop's output is "0", and

the clock is high; and is susceptible to spikes on the "K"

input when the flip-flop's output is "l", and the clock is

high.

The acceptable vertical transition set is unique due

to the fact that some of the columns have stable states

flow matrix:

state

flow table:

characteristic
equations:

1

2

3

4

2
0

1

1

0

CJK

000 001 011 010 100 101 111 110

00 00 00 00 00 00 01 01

11 11 11 11 01 01 01 01

11 11 11 11 11 10 10 11

00 00 00 00 10 10 10 10

CJK

000 001 011 010 100 101 111 110

CD CD CDCD©<D 2 2

3 3 3 3 00 0 CD
G) G) ® G) G) 4 4 Q)
1 1 1 1 © © © 3

Ql = Cql + Cqz = Q

Q2 = Kqz + Cq2 + CJql + qlq2

acceptable vertical transitions:

1 J=0 1 J=0 1 J=0 1 J=- 1 J=-
2 K=- 2 K=0 2 K=l 3 K=- 3 K=0

3 C=ql 3 C=l 4 C=l 3 C=0 3 C=ql
1 4 4 1 4

1 J=- 2 J=l 2 J=l 2 J=ql
3 K=l 2 K=- 2 K=0 2 K=l

4 C=ql 3 C=ql 3 C=l 4 C=l

4 1 4 4

Figure 64. "One's-catching" JK flip-flop functional
descriptives.

in each row--thereby creating a problem in realizing

the output function (Z) if the output differs in the

common rows where q 1 is constant. If such is the case,

the flow table can always be modified in such a way so

as to be realizable. This will be discussed in the next

section.

79

Bounds on transition flip-flops
to realize a given flow table

80

It has been shown that two state variables are required

to describe a transition flip-flop (the ones that are looked

at in this chapter). The minimum bound on the number of

transition flip-flops required to realize a minimized

flow table with n state variables is therefore n/2 if n

is even, or n/2 + 1 if n is odd. n is assumed to be the

least number of state variables required to uniquely code

all of the states (which number is denoted s) in the
0

flow table, and is not less that log
2

s
0

• Note that it

is assumed that none of the states of the flow table are

equivalent, i.e. the table is in minimal form.

The maximum number of transition flip-flops required

to realize a given flow table is simply equal to the number

of state variables required to uniquely code each state.

If N is the required number of flip-flops, then it is

evident that

n/2 ~ N < n.

To show that n is an upper bound on N requires a

demonstration of the equivalence of the RS flip-flop to

the transition flip-flops. In Chapter V it was noted

that an RS flip-flop can be used to represent each of

the state variables, and a synthesis procedure was given

where any flow table could then be realized using this

flip-flop. The required number of flip-flops was n.

The flow table shown in Figure 65 represents an

equivalent flow table for the RS flip-flop if the inputs

(Sand R) are "zeroed" when the flip-flop is turned on.

Since each of the transition flip-flops covered contains

RS

state 00 01
1 2 CD
2 0 3

3 4 4

4

11 10

1 2

3@

G)G)
1 1

QT t------o Q

QT o---+----<l Q

Figure 65. Generation of an RS flip - flop from a transition
flip-flop.

all of th e columns of th e flow t able in their respective

vertical transition sets, it is possible to realize the

flow table with all of them. The "T" realization is

shown below the flow table. Note that the RS= 11 column

is arbitrary since this input is not allowed.

The synthesis procedure is to use the RS algorithm

for the generation of the input expressions, and then

combine the expressions with the input buffer to the

transition flip-flops. This realizes any n-state variable

flow table with n transition flip-flops, and hence places

an upper bound on the minimum number of flip-flops required.

81

After power is applied, a sanity cycle may be required

to place all of the flip-flops in their usable states

(2, 3 , or 4) .

Once the realization has been achieved, a backwards

application of the characteristic maps will give the

state maps, and from there the equivalent realizable

flow table can be generated. This flow table will meet

the acceptability criteria for column entries mentioned

earlier in this chapter.

The bounds on the required number of flip-flops to

realize a flow table only state that there exists some

equivalent flow table whose flow matrix can be used to

give realizable input equations for the type of flip­

flop desired. The generation of a minimum realizable

flow table seems to be an ad hoc procedure, and nothing

can be said about it at this time.

Two-state synthesis example

A simple two-state example will be given to show

how a given flow table may be modified into a flow table

that may be realized using JK, D, clocked T, and unclocked

T flip-flops. Assume the flow table shown in Figure 66.

A single positive transition on the "x" input will turn

on the output and it will stay on indefinitely after that.

Since all of the transition flip-flops use a minimum of

four states (two state variables) for realization, the

82

given flow table will have to be expanded. Keeping the

transitions of the original flow table in mind, and

X

state O 1 Z

1 0 2 0

2 2 G) 1

Figure 66. Simple two-state flow table.

checking the acceptable vertical transition lists for the

flip-flops, equivalent flow tables can be constructed

that may be realized using the appropriate flip-flop.

Figure 67 gives an equivalent flow table for each flip-

flop. It should be noted that the chosen flow tables

X X

state 0 1 z state 0 1 z
1 2 (1) 0 1 2 (!) 0
2@3 0 2@3 0
30)@ 1 3 ®® 1
4 3 3 1 4 3 3 1

JK clocked T

X X

state 0 1 z state 0 1 z
1 2 Ci) 0 1 2 CD 0
2 Q) 3 0 2@3 0
3@@ 1 3 4 4 1
4 3 3 1 4 4@ 1

D unclocked T

Figure 67. Acceptable flow tables.

83

are not unique, since different column choices could

have been made for all but the unclocked T flip-flop.

It should be emphasized that the output (Z) is inherently

specified to be a function of q1 in the state coding.

Figures 68 and 69 show the flow matrices and final input

X

2 0 1

00 01 00

01 01 11
q~ 0 1 - J = 1

1 1 -
11 11 11 J
1 0 11 11

X
JK

ql 0 1

0 0 0
K = 0

1 0 0

K

X

qlffl 0 0 1
C = xql

1 0 0

C

X X

0 1

0 01 00

1 01 11

ql~ 0 1 1
T = xql

1 0 0
1 11 11 T
0 11 11

X
clocked T

ql~ 0 0 1
C = xql

1 0 0

C

Figure 68. Flow matrices and input maps for JK and
clocked T flip-flops.

84

qlq2
0

0

1

1

X

0

1

1

0

X

0

1

1

0

0 1

01 00

01 11

11 11

11 11

D

0 1

01 00

01 11

10 10

10 10

unclocked T

z = q
1

X ql~
0 1 1 D = 1
1 1 1

D

X qlffl
0 0 1

C = qlx
1 0 0

C

X ql~ 0 0 1
T = xql

1 0 0

T

Figure 69. Flow matrices and input maps for D and
unclocked T flip-flops.

equations for each flip-flop. The input maps are taken

from the acceptable vertical transition specifications

instead of using the characteristic maps to save space.

It should be noted that the q
1

-row of the clock

input map for the clocked T flip-flop has a zero-to-one

transition where the T input map has a one-to-zero

transition. It was mentioned earlier in this chapter that

1n implementing the correct flow table, input transitions

of this sort must be avoided. In this case a fix would

85

be to substitute the 1, 3, 4, 4 vertical transition set

into the second column of the flow table. This would

give T = q1 + x, which would alleviate the problem.

Four-state synthesis example

For certain flow tables a definite reduction in

hardware can be achieved by using transition flip-flops.

Figure 70 shows one example of a four-state system being

X X

z
1 2 0 0 1 0
3 0

qlffl
T = X

2 0 1 1 0
3 @4 0 T
4 1 4 1

X
unclocked T flip-flop

0 1 qlq2
00 0
01 0 z =
11 0
10

z

Figure 70. Four-state system implemented with one
unclocked T flip-flop.

xql

realized by a single flip-flop. The key to the imple­

mentation is in realizing the output (Z) without requiring

access to the flip-flop internal variable (q
2

). The

output map shows the transitions that go to the "on"

state, and the intermediate position (minterm q
1

q
2
x)

has a choice of possible entries available to it. Placing

86

a "1" in it assures that the output can be realized from

accessible variables. If the output were a function of q
2

only, the flow table could have its state coding shifted

by one row (every row shifted down or up). This would

make the output a function of q
1

only.

A comparison of the classical realization and flip­

flop realization is shown in Figure 71. It should be

X
0
-----,l ~ TQ Q_r 1--- -~ z

V"' l ~ flip-flop realization

z

classical

realization

Figure 71. Schematic comparison of flip-flop and classical
realizations.

added that the essential hazard problem has been eliminated

in the flip-flop realization. This is not an accident,

but can also be achieved in other essential hazard flow

tables by using transition flip-flops.

87

Four-state synthesis using RS algorithm

If the example problem of Chapter II is to be realized

using transition flip-flops, a problem is encountered--how

to modify the flow table of Figure 20 into a flow table

that meets the column transition constraints. The flow

table to be realized is reproduced in Figure 72. Columns

xlx2
state 00 z

1 CD 2 2 1 0
2 3 3(D(D 0
3 G)G) 4 4 0
4 1 3 4 CD 1

Figure 72. Reproduction of Figure 20.

one and three are members of all the transition flip­

flop transition sets, but column two is not a member of

any while column four is a member of only the "one's­

catching" flip-flop.

If the T flip-flop is to be used, then the RS synthesis

algorithm can be used in conjunction with the T flip-

flop in RS form. The RS flip-flop equations are given

in Figure 31 and are as follows:

s1 = xlq2
- - -

Rl = xlx2q2
-

s2 = xlx2 + x2ql

R2 = xlql.

88

The equivalent input of the T flip-flop can be taken

from Figure 65:

T. = R.q. + s.q.,
l l l l l

where i indicates the i th flip-flop.

Combining the above two sets of equations (while

checking for static hazard conditions) gives the following

input equations for the T flip-flop:
-

Tl = xlx2qlq2 + xlqlq2
- -

Tz = xlqlq2 + xlx2q2 + x2qlq2

The circuit diagram is shown lil Figure 73. If desired,

xl z
x

2
o

Tl
Ql

Ql

xl o-----

xl o--

r- ----t
Xz o __ ...,.l.,__

'-----I

Figure 73. Example problem of Chapter II realized with
T flip-flops.

the

89

90

sixteen-state flow table can be derived from an application

of the characteristic maps, and is shown in Figure 74.

xlx2

QlQ2 00 01 11 10
11 22 21 21 22
12 22 23 23 22
13 14 14 24 24 ,,_ .
14 :14; i'l4'. 24 24 ' / ,, ,- '
21 22 '21', '21' 22

' - ,
\ I

22 @ 23 23 @
23 34 34 24 24
24 34 34 @@
31 32 41 42 42
32 @ 43 42 42
33 44 44 43 43
34 44 44 41 41
41 12 ; 41: 42 42
42 12 43 @®
43 44 44 '43', ,43',

\ \ - ., _,,
44 41 41

Figure 74. Transition-realizable flow table expansion
for flow table of Figure 72.

The overall flow table can give an insight as to what

type of sanity cycle would be required on power up.

It is seen from an inspection of the flow table that the

cycle consisting of x 1x 2 = 10, 00 would put the circuit

into an acceptable state for the desired operation.

Summary

CHAPTER VIII

SUMMARY AND CONCLUSIONS

A basic outline of the procedures used in analyzing

and synthesizing asynchronous sequential logic circuits

has been presented. The generation of the state variable

maps was seen to be immediately usable in the generation

of asynchronous sequential circuits using standard flip­

flops.

A method was presented in Chapter V that allowed the

generation of input expressions for RS flip-flops by

substituting functional expressions (in the form of

Karnaugh maps) into the characteristic equation of the

flip-flop. By using the state variable maps as "next

state" descriptions of the flip-flops, the input expressions

for the RS flip-flops were obtained. An algorithm was

presented that specified what each minterm position of

the Rand S maps should be, once the state variable map

was specified. The method was applied to synchronous

sequential circuits in Chapter VI, and seemed to work

quite well. The clock was assumed implicitly, and was

not considered to be an input in the respec t ive maps .

This is standard in current synchronous sequential desig n .

Transition flip-flops were analyzed in Chapter VII

using the same technique. The results were not as

91

92

comprehensive as in the RS flip-flop case, but nevertheless

some very interesting analysis tools were developed. All

of the transition flip-flops described required a minimum

of two state variables for complete characterization.

It was noted that one of the state variables would necessar­

ily be inaccessible, and this placed certain constraints

on allowable state transitions in any given column of a

flow table that was to be realized using transition flip­

flops. The flip-flop output was chosen to be identical

to one of the state variables.

The minterm-entry constraints of flow tables with

up to four state variables (and any number of inputs)

were specified. It was seen that each column of a flow

table was independent of the other columns with respect

to allowable minterm-entries.

Some examples were given to show possible approaches

in synthesizing asynchronous sequential problems. A

usable synthesis procedure was not specified, but bounds

on the number of transition flip-flops required to realize

any given flow table were specified, thereby assuring the

designer of the existence of a workable solution.

Conclusions

The analysis techniques developed in this paper give

a more complete picture of the action of flip-flops in

both asynchronous and synchronous logic systems. From a

93

given circuit configuration that contains flip-flops it

is possible to "work backwards" and get a complete flow

table description of the circuit. This lets the designer

see at a glance exactly what his circuit action will

be without having to trace through a circuit diagram.

Problems, such as essential hazards, can be easily spotted

and corrective techniques applied.

An existence proof was given for the generation of a

transition flip-flop realizable flow table from any given

flow table. This seems to imply that a flow table expansion

algorithm may exist. Further work should be done in this

area to see if one can be generated.

The structure of the analysis techniques lend them­

selves to computer programming. The RS flip-flop algorithm

is especially suited for programming, and could be included

in current design automation systems.

94

BIBLIOGRAPHY

Bartee, T. C., I. L. Lebow, and I. S. Reed. 1962. Theory
and design of digital machines. McGraw-Hill, New York.
324 p.

Batra, Vinod. 1970. Design of asynchronous unit delays.
IEEE Transactions on Computers, pp. 896-902.

Beizer, Boris. 1970. Towards a new theory of sequential
switching networks. IEEE Transactions on Computers,
pp. 939-956.

Beuscher, H. J., A. H. Budlong, M. B. Haverty, and
G. Waldbaum. 1971. Electronic switching theory and
circuits. Van Nostrand Reinhold, New York. 369 p.

Biswas, Nripendra N. 1974. State minimization of
incompletely specified sequential machines. IEEE
Transactions on Computers, pp. 80-84.

Bredeson, Jon G., and Paul T. Hulina. 1971. Generation
of a clock pulse for asynchronous sequential machines
to eliminate critical races. IEEE Transactions on
Computers, pp. 225-226.

Bredeson, Jon G., and Paul T. Hulina. 1973. Synthesis
of multiple-input change asynchronous circuits using
transition-sensitive flip-flops. IEEE Transactions
on Computers, pp. 524-531.

Brzozowski, J. A., and E. J. McCluskey. 1963. Signal
flow graph techniques for sequential circuit state
diagrams. IEEE Transactions on Electronic Computers,
pp. 67-76.

Caldwell, Samuel H. 1958. Switching circuits and logical
design. John Wiley & Sons, New York. 686 p.

Chuang, Y. H. 1969. Transition logic circuits and a
synthesis method. IEEE Transactions on Computers,
pp. 154-168.

Chuang, Henry Y. H., and Santanu Das. 1973. Synthesis of
multiple-input change asynchronous machines using
controlled excitation and flip-flops. IEEE Transactions
on Computers, pp. 1103-1109.

95

Curtis, H. Allen. 1973. A new type double-rank sequential
machine. IEEE Transactions on Computers, pp. 796-803.

Even, Shimon, and Albert R. Meyer. 1969. Sequential
boolean equations. IEEE Transactions on Computers,
pp. 2 3 0-240.

Friedman, A. D., and P. R. Menon. 1968. Synthesis of
asynchronous sequential circuits with multiple­
input changes. IEEE Transactions on Computers,
pp. 559-566.

Gill, A. 1962. Introduction to the theory of finite
state machines. McGraw-Hill, New york. 207 p.

Ginsburg, S.
theory.
148 p.

1962. An introduction to mathematic machine
Addison-Wesley, Reading, Massachussetts.

Harrison, Michael A.
automata theory.

1965. Introduction to switching and
McGraw-Hill, New York. 499 p.

Hartmanis, J., and R. E. Stearns. 1966. Algebraic structure
theory of sequential machines. Prentice-Hall,
New Jersey. 211 p.

Hennie 1 Frederic C. 1968. Finite state models for logical
machines. John Wiley & Sons, New York. 466 p.

Hill, Frederick T., and Gerald R. Peterson. 1968.
Introduction to switching theory and logical design.
John Wiley & Sons, New York. 449 p.

Huffman, David A. 1954. The synthesis of sequential
switching circuits. Journal of the Franklin Institute
257(3) :161-190, 257(4) :275-303.

Hurley, Richard B. 1961. Transistor logic circuits.
John Wiley & Sons, New York. 363 p.

Langdon, Glen G. Jr. 1968. Analysis of asynchronous
circuits under different delay assumptions. IEEE
Transactions on Computers, pp. 1131-1143.

Liu, C. N. 1963. A state variable assignment method for
asynchronous sequential switching circuits. Journal
of the Association for Computing Machinery 10:209-216.

Maki, Gary K., and James H. Tracey. 1970. State assignment
selection in asynchronous sequential circuits. IEEE
Transactions on Computers, pp. 641-644.

Maki, Gary K., James H. Tracey, and Robert J. Smith, II.
1969. Generation of design equations in asynchronous
sequential circuits. IEEE Transactions on Computers,
pp. 467-472.

Mano, Morris M. 1971.
Hall, New Jersey.

Computer logic design. Prentice-
450 p.

Marcus, Mitchell P. 1962. Switching circuits for
engineers. Prentice-Hall International, London.
296 p.

Marcus, Mitchell P. 1969. S-R-T flip-flop. IEEE
Transactions on Computers, pp. 568-569.

McCluskey, E. J. 1965.
switching circuits.

Introduction to the theory of
McGraw-Hill, New York. 318 p.

96

McIntosh, M. D. , and B. L. Weinberg. 1969. On asynchronous
machines with flip-flops. IEEE Transactions on
Computers, p. 473.

Mealy, George H. 1955. A method for synthesizing
sequential circuits. The Bell System Technical
Journal 34:1045-1079.

Miller, Raymond. 1965. Switching theory, vol. II:
sequential circuits and machines. John Wiley & Sons,
New York. 250 p.

Millman, J., and H. Taub.
switching waveforms.

1965. Pulse, digital, and
McGraw-Hill, New York. 958 p.

Moore, Edward F. 1956. Gedanken-experiments on sequential
machines. Found in Automata Studies, by C. E. Shannon
and J. McCarthy, editors. Princeton University Press,
pp. 129-153.

Muller, David E. 1959. Treatment of transition signals
in electronic switching circuits by algebraic
methods. IRE Transactions on Computers, p. 401.

Muller, David E. 1967. The general synthesis problem for
asynchronous digital networks. IEEE Conference
Record of Eighth Annual Symposium on Switching,
Automata Theory. (October, 1967), pp. 71-82.

Muller, D. E., and W. Scott Bartky. 1956. A theory of
asynchronous circuits I. Report no. 75, University
of Illinois, Digital Computer Laboratory. 16 p.

Muller, D. E., and W. Scott Bartkey. 1957. A theory of
asynchronous circuits II. Report no. 78, University
of Illinois, Digital Computer Laboratory. 41 p.

Paull, M. C., and S. H. Unger. 1959. Minimizing the
number of states in incompletely specified sequential
switching functions. IRE Transactions on Electronic
Computers, pp. 356-367.

Peatman, John B. 1972. The design of digital systems.
McGraw-Hill, New York. 457 p.

Phister, Montgomery. 1958. Logical design of digital
computers. John Wiley & Sons, New York. 408 p.

Saucier, Gabriele. 1972. State assignment of asynchronous
sequential machines using graph techniques. IEEE
Transactions on Computers, pp. 282- 288.

Sawin, Dwight H. 1974. Optimization of asynchronous
sequenti a l circuit realizations. IEEE Transactions
on Computers, pp. 186-188.

Servit, Michal. 1973. Hazard correction in asynchronous
sequential circuits using inertial dela y elements.
IEEE Transactions on Computers, pp. 1041 - 1042.

Singh, Shanker. 1969. Asynchronous sequential circuits
with feedback. IEEE Transactions on Computers,
pp. 440-450.

Singh, Shanker. 1971. On delayed-input asynchronous
sequential circuits. IEEE Transactions on Computers,
pp. 500-503.

Smith, John R., Jr., and Charles H. Roth, Jr. 1971.
Analysis and synthesis of asynchronous sequential
networks using edge-sensitive flip-flops. IEEE
Transactions on Computers, pp. 847-855.

Tan, Chung-Jen. 1971. State assignments for asynchronous
sequential machines. IEEE Transactions on Computers,
pp. 382-391.

Texas Instruments Incorporated. 1973. The TTL data book
for design engineers. First edition. Texas
Instruments Incorporated, Dallas. 640 p.

Thayse, Andre, and Marc Davio. 1973. Boolean differential
calculus and its application to switching theory.
IEEE Transactions on Computers, pp. 409-420.

97

98

Torng, H. C. 1964. Introduction to the logical design
of switching systems. Addison-Wesley, Reading,
Massachussetts. 286 p.

Tracey, James H. 1966. Internal state assignments for
asynchronous sequential machines. IEEE Transactions
on Computers, pp. 551-560.

Unger, S. H. 1959. Hazards and delays in asynchronous
sequential switching circuits. IRE Transactions
on Circuit Theory, pp. 17-25.

Unger, Stephen H. 1969. Asynchronous sequential switching
circuits. Wiley-Interscience, New York. 290 p.

Unger, Stephen H. 1971. Asynchronous sequential switching
circuits with unrestricted input changes. IEEE
Transactions on Computers, pp. 1437-1444.

99

APPENDIXES

100

Appendix A

Flow Table Reduction

The flow table reduction algorithm presented in

Chapter II basically checked the states for incompatibility.

If two states were not incompatible, they were considered

to be compatible.

A more direct method that gives the same results as

the above for fully specified flow tables is to check each

pair of states for compatibility, and then draw a merger

diagram to choose an optimum reduction. The procedure starts

from the primitive flow table. The flow table is checked

for redundant states (i.e., states that have the same out­

put, and whose entries are at or go to the same, or equiv­

alent, states). Two stable states are said to be equivalent

(and hence redundant) if they are in the same column of the

flow table, have the same output, and identical input

changes give rise to transitions to the same or equivalent

states. "Don't care" entries can be labeled as desired.

One row of the primitive flow table can be eliminated for

each pair of redundant states found.

After redundant states are eliminated, rows are checked

pairwise to see if they can be merged. In the primitive

flow table all state changes necessitated a change in the

row location. After a flow table is merged it is generally

possible to change stable states by merely changing the input

without requiring a row change (which means changing one

101

or more of the state variables). The merged flow table

will give the desired flow table reduction.

Two or more rows may be merged if there are no con­

flicting state numbers in any given column of the flow table

for the rows in question. A "don't care" condition is con­

sidered "wild" and may assume any number to insure compati­

bility. All of the state numbers in the merging rows are

written in the proper column of the merged row, and any

entry is circled (to indicate a stable state) if it 1s

circled in any of the merging rows. The outputs (Z) do not

affect merging, and may be written alongside the stable

states of the merged row, or left off entirely. The

primitive flow table can always be referred to when gener­

ating the output map.

An optimum merger is generally effected through the

use of a merger diagram. The diagram consists of a circular

array of the stable states (rows) with lines drawn between

those states that may be merged. An inspection of the merger

diagram then gives the desired merged, or reduced, flow

table. The merging is usually chosen to give the minimum

number of rows in the merged flow table.

The flow table of the example problem of Chapter II is

merged according the above criteria, and the process steps

are shown in Figure 75. The primitive flow table is taken

from Figure 2. An inspection of the primitive flow table

shows there are no redundant states.

xlx2
state 00 01 11 10 z

1 CD 3 2 0

2 1 7 0 0 ¾ 3 4 G) 5 0

4 © 3 6 0

5 3 0 6 1

6 1 5 © 1

7 3 G) 8 0

8 4 7 0
Merger diagram

Primitive flow table

merged row

1

3

5

7

X X 1 2
s 00 01 11 10

' 2 CD 3 7 0
'4 00 5 6

' 6 1 3 CD©
' 8 4 3 G)®

Merged flow table

z

0

0

1

0

Figure 75. Example of merging process.

The merger diagram gives two choices for a minimum­

row reduction. They are:

n 1 = {1,2; 3,4,5; o; 7,8},

and n 2 = {1,2; 3,4; 5,6; 7,8}.

102

A look at the outputs (Z) shows that G) and @ have outputs

of "1", and G) and © have outputs of "0". Although both

103

final mergings have the same number of rows (states), it is

generally better to group equal-output states together.

This generally gives a realization using fewer gates in the

final expression for the output (Z). The merged flow table

is then seen to be the same as the one generated in

Chapter II.

104

Appendix B

Column Transition Constraints

The requirements for acceptable state transitions

within any given column of a flow table for implementation

using transition flip-flops were given in Chapter VII. The

comment was made that input changes (column-to-column

transitions) may cause problems if level-input changes

occurred at the time of the enabling transition-input

change. This means that at the time the clock input changes

in a positive direction (for positive edge-triggered flip­

flops), the level inputs should not change (J, K, D, or T).

The acceptable columns of each flip-flop are listed

along with an arrow indicating the columns to which a

transition may cause problems. If such column-to-column

transitions should occur, a check on the input excitation

should be made to insure that the transition constraints

are met. It should be noted that for flow tables with

more than two state variables, transitions within a column

may entail transitions between acceptable vertical transition

sets. Such transitions should also be checked.

The JK inter-set transitions that may cause problems

are as follows:

1 1 1 1 1

1 3
-+

3 3 3

3 3 3 4 3

1 1, 3' 4, 2.

105

1 1 1 1 1

1 + 3 3 3 3

3 3 3 3 4

2 1, 2 ' 3' 4.

1 1 1 1 1 1 2 2

1 1
+

3 3 3 3 2 2

3 3 3 3 3 4 3 3

3 1 ' 1 ' 2' 3' 4' 1' 2.

1 1 1 1 1 1 2

1 1 3 3 3 3 2
+

4 3 3 3 3 4 3

4 2' 1, 2' 3, 4' 1.

1

3 All transitions allowed. -+

3

1

1

3 All transitions allowed. -+

3

2

1 1 1 1 2 2

3 1 1 3 2 2
-+

3 3 3 3 3 3

3 1, 2' 1' 1, 2.

1 1 1 1 1 2 2

3 1 1 3 3 2 2
+

4 3 3 3 3 3 3

4 1, 2 ' 1, 2' 1, 2.

2 1 1 1 1

2 3 3 3 3
+

3 3 3 3 4

1 1 ' 2 ' 3' 4 .

106

2 1 1 1 1
2 + 3 3 3 3

3 3 3 3 4

2 1, 2' 3, 4.

2 1 1 1 1 1 1 2
2

+ 1 1 3 3 3 3 2
3 3 3 3 3 3 4 3
3 1, 2' 1, 2' 3' 4, 1.

2 1 1 1 1 1 1 2
2

+ 1 1 3 3 3 3 2
4 3 3 3 3 3 4 3
4 1, 2' 1 ' 2 ' 3' 4, 2.

The D inter-set transitions that may cause problems

are as follows:

1 1 1

1
+ 3 3

3 3 3

1 1' 3 .

1 1 1 2

1 1 3 2 -+

3 3 3 3

3 1, 1 ' 1.

1 1 1 2

1 3 3 2 -+

4 3 3 3

4 1, 3' 1.

1

3 All transitions allowed. -+

3

1

107

1 1 1

3 -+ 1 3

3 3 3

3 1, 1.

1 1 2

3 -+ 3 2

4 3 3

4 1, 1.

2 1 1

2 -+ 3 3

3 3 4

1 1, 4.

2 1 1 1

2 -+ 1 3 3

3 3 3 4

3 1, 1, 4.

2 1 1 2

2 -+ 3 3 2

4 3 4 3

4 1, 4, 1.

The clocked T inter-set transitions that may cause

problems are as follows:

1 1 1

1
-+ 3 3

3 3 4

1 1, 4.

1 1 1

1
-+ 3 3

3 3 4

2 1, 4.

108

1 1 1 1 2

1 1 3 3 2 -+

3 3 3 4 3

3 1, 1, 4, 1.

1 1 1 1 1 2

1 1 3 3 3 2 -+

4 3 3 3 4 3

4 2, 1, 2, 4, 2.

1

3
All transitions allowed. -+

3

1

1

3 All transitions allowed. -+
3

2

1 1 1 2

3 1 3 2 -+
3 3 3 3

3 1 , 1, 1.

1 1 1 2

3 1
-+

3 2

4 3 3 3

4 2, 2, 2.

2 1 1

2 3 3
-+

3 3 3

1 2 , 3.

2 1 1

2 3 3 -+
3 3 3

2 2, 3.

2

2

3
-+

1

1

3

1

3

3

1

3

3

1

3

3

2

2

3

3 1, 1, 2, 3, 1.

2 1 1 1 2

2

4
-+

1

3

3

3

3

3

2

3

4 2, 2, 3, 2.

The unclocked T flip-flop has no restrictions placed

on its inter-set transitions because there is only one

input.

109

The "one's-catching" JK inter-set transitions that may

cause problems occur on the negative-going transition of

the clock input, and are as follows:

1 1 1 l

2 3 3 3
-+

3 3 3 4

1 1, 4, 4.

1

2

3

4

1

2

4

4

-+

-+

1

2

3

1,

1

2

3

1,

1

3

3

1,

1

3

3

1,

1

3

3

4'

1

3

3

4,

1

3

4

4'

1

3

4

4'

2

2

3

1.

2

2

3

1.

1

3

3

1

-+ All transitions allowed.

110

1 1 1 2

3
-+

2 3 2

3 3 3 3

4 1 ' 1' 1.

1 1 1 2

3
-+

2 3 2

4 3 3 3

4 1' 1, 1.

2 1 1 1

2
-+

3 3 3

3 3 3 4

1 1, 4 ' 4.

2 1 1 1 1 2

2
-+

2 3 3 3 2

3 3 3 3 4 3

4 1' 1 ' 4' 4, 1.

The above listings . provide a caution to the designer

and point out only possible problem spots. Many of the

inter-set transitions have "don't cares" for some or all of

their inputs, and a proper covering will alleviate any

improper level-input transition at the time of the enabling

clock transition.

VITA

David Franklin Cox

Candidate for the Degree of

Doctor of Philosophy

Dissertation: Asynchronous Logic Design with Flip-Flop
Constraints

Major Field: Electrical Engineering

Biographical Information:

Personal Data: Born at Alhambra, California,
May 14, 1940, son of Loren Elton and Alpha Mabel
Hannah Pearl Cole Cox; married Christine Marie
Edes October 26, 1968; father of Shaun David
and Kelli Christine Cox.

111

Education: Graduated from Riverside Polytechnic
High School in 1958; received Bachelor of
Science degree in Electrical Engineering from
the University of California at Berkeley in 1966;
received Master of Science degree in Electrical
Engineering from Stanford University in 1970;
candidate for Doctor of Philosophy degree from
Utah State University in 1974.

Professional Experience: 1966 to 1971, Electrical
Engineer in disc file development at IBM Corp.,
San Jose, California; 1972 to 1973, teaching
assistant at Utah State University.

	Asynchronous Logic Design with Flip-Flop Constraints
	Recommended Citation

	tmp.1518548412.pdf.7i4B3

