
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1974 

Asynchronous Logic Design with Flip-Flop Constraints Asynchronous Logic Design with Flip-Flop Constraints 

David Franklin Cox 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Cox, David Franklin, "Asynchronous Logic Design with Flip-Flop Constraints" (1974). All Graduate Theses 
and Dissertations. 6956. 
https://digitalcommons.usu.edu/etd/6956 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/6956?utm_source=digitalcommons.usu.edu%2Fetd%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


ASYNCHRONOUS LOGIC DESIGN WITH 

FLIP-FLOP CONSTRAINTS 

by 

David Franklin Cox 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

Approved: 

of 

DOCTOR OF PHILOSOPHY 

lil 

Electrical Engineering 

UTAH STATE UNIVERSITY 
Logan, Utah 

1974 



ABSTRACT 

Asynchronous Logic Design with 

Flip-Flop Constraints 

by 

David Franklin Cox, Doctor of Philosophy 

Utah State University, 1974 

Major Professor: Ronald L. Thurgood , Ph.D . 

Department: Electrical Engineering 

Some techniques are presented to permit the implemen­

tation of asynchronous sequential circuits using standard 

flip-flops. An algorithm is presented for the RS flip­

flop, and it is shown that any flow table may be realized 
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CHAPTER I 

INTRODUCTION 

Combinational and sequential systems 

The realm of basic logic design is usually broken 

into two major divisions. The first is normally called 

"combinational" logic design and consists of a set of 

input variables I 1 , I 2 , ... In, a set of output variables 

o1 , o2 , ... Orn' and a mapping f from the input variables 

to the output variables wherein the combinational design 

objective is to physically implement a logic device that 

is isomorphic to the mapping function f relating two sets 

of physically realizable logic variables. i.e. 

(a) I = o . Ii = 1' 2 ' n}, 
i 

(b) 0 = { o. I j = 1' 2 ' m}' 
J 

(c) f I + 0. 

At any instant of time for a given input Ik' a unique 

output O can be accurately predicted. q 

The second major division of logic design is sequential 

logic design. Sequential circuits have inputs and outputs, 

but also require positing internal "states" to adequately 

describe them. Briefly, a sequential circuit (or machine) 

can be described as having the following properties 

(Hartrnanis and Stearns, 1966): 

1. A finite set of inputs that may be applied to 

the circuit in a sequential order. 



2. A finite set of internal states in which the 

circuit may be in. 

3. The next state of the circuit is determined by 

the present circuit state and the present input. 

4. A finite set of outputs that are determined by 

the combination of circuit state and input. 

The above properties can be concisely stated as 

follows: 

(a) s is a finite nonempty set of states; 

(b) I is a finite nonempty set of inputs; 

(c) 0 is a finite nonempty set of outputs; 

(d) N s X I -+ s is called the next state function; 

(e) z s X I -+ 0 is called the output function. 

It should be noted that the output function involves 

both the input and the state of the circuit. Sequential 

2 

circuits that have this property are called "Mealy" circuits . 

If the output is a function of the circuit state only, 

the circuit is called a "Moore" circuit. 

Synchronous and asynchronous sequential systems 

Sequential circuits can be subdivided into what are 

called "synchronous" and "asynchronous" sequential circuits. 

Synchronous sequential circuits are sequential circuits 

whose events are constrained to occur only at specified 

instances of time, and are usually controlled by a device 

that provides "clock" pulses. The clock pulses need not 

be evenly spaced in time but must be spaced far enough 



apart so that all transient circuit action has vanished 

at the time the next clock pulse occurs. 

Asynchronous sequential circuits do not have a 

"clocking" constraint on them and their circuit action 

commenses from the time an input changes (assuming the 

circuit has started in a stable state) and stops only when 

it can achieve a state coexistent with the new input (known 

as a "stable" state). In this report some current methods 

used in asynchronous logic design will be outlined, and an 

algorithm will be presented wherein the asynchronous design 

can be implemented using standard set-reset flip-flops. A 

less formal method will be given for the transition-type 

flip-flops, and an application to synchronous sequential 

circuits will be outlined. 

3 



CHAPTER II 

CLASSICAL ASYNCHRONOUS LOGIC DESIGN 

Asynchronous problem formulation 

D. A. Huffman presented a method for designing an 

asynchronous circuit from problem specifications in 1954. 

His method basically consists of reducing the problem 

statement to a flow table from which the state function, 

N, can be derived after some flow table manipulation 

(Huffman, 1954). 

4 

It is assumed that the inputs are known, and a certain 

sequence of inputs is to give a specified output sequence. 

The flow table is then constructed from the problem statement 

in the following form: 

1. The columns of the flow table are unique to a given 

input 

2. The rows of the flow table are unique to a given 

state. 

3. If the intersection of the input column and state 

row is to indicate a stable condition in the circuit, then 

the entry in that position is given the label of the row 

that it is in, and circled to indicate that it is stable. 

4. If a column-row intersection is unstable, the 

entry in that position is labeled according to the row 

it is to move to (the new state). 

5. If a "don't care" condition arises, or an impossible 



input condition is evident, then a dash is entered into 

the column-row intersection. 

It should be clear that the entries in the flow table 

merely indicate the next state the circuit is to move 

into from a given input/state condition; i.e. the flow 

table is a tabular representation of the "next state" 

function N. See Figure 1 for the flow table form. 

inputs 

states Il 12 

s1 6) s3 

s2 

s3 (5) 

Figure 1. Flow table form. 

I n 

s2 

(9 
s m 

I 

0 

zl 

z2 

z3 

z 
m 

If the flow table is constructed such that there is 

5 

only one stable state per row, the table is called a primitive 

flow table. The output can be listed alongside each state­

entry in the table, or it can be listed along the right 

side of the table as shown in Figure 1 if the table is 

primitive. If the outputs for transient states are known, 

they can be put in with the states shown. Usually these 

transient state outputs are left until later, however. 



An example (from Unger, 1969) will now be given to 

illustrate the procedure. A sequential circuit is to have 

two inputs, x 1 and x 2 , and one output, Z. Z is to go on 

when x
1 

goes on only if x
2 

was on during the previous "off" 

time of x 1 . x 2 is allowed to come on and go off during 

the "off" time of x 1 as well as come on and stay on until 

after x 1 goes on. Z is to go off when x 1 goes off and wait 

for the sequence of events to reoccur. 

The primitive flow table is constructed from the 

statement of the problem by assuming an initial input and 

output condition. It will be convenient here to start 

6 

with inputs and output set to zero. Figure 2 shows the 

completed primitive flow table. We will assume that simul­

taneous input changes do not occur (which simplifies Unger's 

problem). When only single input changes occur the operation 

is known as "normal mode", and when the inputs are allowed 

to change only when the system is in a stable state, the 

operation is "fundamental mode". Hence, Figure 2 is a 

normal fundamental mode primitive flow table. Dashes are 

placed in forbidden input transition spaces to indicate 

the "don't care" condition. A state diagram is shown in 

Figure 3, and is equivalent to the flow table but may 

provide a more intuitive interface between the word statement 

of the problem and the flow table. 



xlx2 

state 00 01 11 10 z 

1 CD 3 2 0 

2 1 7 0 0 

3 4 0 5 0 

4 © 3 6 0 

5 3 CD 6 1 

6 1 5 (D 1 

7 3 0 8 0 

8 4 7 ® 0 

Figure 2. Normal fundamental mode primitive flow table. 

11/0 

Figure 3. 

10/0 10/0 

00/0 

State diagram. 

State reduction 

00/0 

The next step in the synthesis procedure is to try to 

reduce the number of states. This will generally (but not 

7 
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always) reduce the gate-count of the final circuit. The 

method, bacically, is to compare pairs of rows and see 

if any combination of input changes will lead to the same 

state. If such is the case, then the two compared states 

are called "equivalent" and further comparisons can be made 

to see if all input changes take the rows to the same or 

equivalent states. The process is continued until all the 

states (rows) have been placed into equivalence classes. 

This effectively partitions the set of states into non­

intersecting sets, the union of which consists of the initial 

primitive set of states. Each equivalence class will then 

represent one state in the final circuit. 

The logical behavior of the sequential circuit will 

not be modified by eliminating redundant states. The 

method of Paull and Unger (1959) will be used (an alternate 

method is given in Appendix A). The state reduction consists 

of eliminating all incompatible pairs of states. To define 

"compatible" we have to first define "cover". 

Definition: A state S of a flow table A is said to 
a 

cover state Sb of flow table B if, for any finite input 

sequence, the output from A when started in S is identical 
a 

to the output from B when started in Sb whenever the B output 

is specified. 

Definition: Two states of a flow table are compatible 

if they are both covered by some row of a flow table A. A 

set of states of a flow table that are covered by a single 



state of some flow table is called a compatible set, or 

a compatible. 

A convenient way to check for incompatibles is by 

constructing a pair chart as shown in Figure 4. If two 

states that are assumed to be equivalent have different 

next state entries in one (or more) of their columns then 

the compatibility of the first two states implies the 

compatibility of the two different state entries in that 

column. 

The states are now compared pair-wise and if an output 

incompatibility is noted, an "x" is placed in the pair 

intersection square. If no output incompatibility exists, 

then implied pairs are written in the square. If neither 

of the above occur, then the square is left blank. 

1 

2 

14 X 14 X 

X 57 X 3 

26 X 14 X 

X 26 X 4 

X X X X X X X X 

5 

X X X X X X X X 

6 

28 X 28 X 57 X 68 X 68 X 57 X 

X X X X X 68 X 7 

14 X 14 X 57 X 68 X 57 X 14 X 

28 X X X X 68 X 57 X 
8 

Figure 4. Pair chart for flow table of Figure 2. 

9 



The chart is then filled in as follows: (Note that 

states 5 and 6 have outputs of "1" and the other states 

all have outputs of "O"). All combinations that have 

incompatible outputs have an "x" placed in them. Pairs 

that imply other pairs have the other pairs written in the 

box. After all pairs are entered, a check for incompat­

ibles is made. A start is made from one of the output 

incompatible squares. Assume we start from square 15. 

Since it 1s output incompatible, we place an "x" in the 

square . We check all other squares for entries of "15" 

and if we find one, an "x" is placed within the square in 

which it is found and the square is considered to be an 

incompatible. This process is continued until no more 

x's can be entered. When the search for the entry of 

incompatible pairs in other squares is completed, a second 

"x" is placed in the original incompatible pair's square 

(15) to indicate that the square need not be referenced 

again. When the table is complete, the compatibles can 

be grouped so as to minimize the total number of states. 

The rules for checking the pair chart are as follows: 

10 

1. Start the compatible list (c-list) with the compat­

ible pairs in the first column from the right having at 

least one entry without an x in it. 

2. Move to the left, column by column. Let S. be 
1 

the set consisting of all non-x entries in column i. Take 

the intersection of S. with current c-list. If the 
1 



11 

intersection has more than one member, add the set consisting 

of i appended to the intersection. Delete duplicate entries 

and entries that are contained in other entries. Add pairs 

consisting of i and any members of S. that did not appear 
l 

in any of the intersections. 

3. The final c-list plus those states not yet included 

in the c-list comprise the final groupings of states, and 

are called maximum compatibles. 

The pair chart of Figure 4 yields the following: 

Start: C = {78} 

s6 = <P C = {78} 

s5 = 6 C = {78, 56 } 

s4 = <P C = {78, 56} 

s3 = 4 C = {78, 56, 34} 

sz = <P C = {78, 56, 34} 

s1 = 2 C = {78, 56, 34, 12} 

All states are included in the final c-list, hence the 

final c-list is 

C = {78, 56, 34, 12}. 

Now we choose compatibles from the c-list such that 

every row of the original table is covered by at least 

one of the compatibles, and the set is "closed" in the 

sense that any set of rows implied by any compatible in 

the set is a subset of at least one compatible of the set. 

It is obvious that each element of the c-list is required 

to completely cover the original table so we have to use 

each maximum compatible. 



The final flow table then looks like Figure 5. 

xlx2 
state 00 01 11 

a a,0 b d 

b b,0 b,0 C 

C a b c,1 

d b b d,0 

Figure 5. Minimized flow table. 

10 

a,0 

C 

c,1 

d,0 

12 

34 

56 

78 

The states are listed as letters so as not to be 

confused with the original state numbers (which are given 

on the right) . The output is listed for each stable state. 

State code assignment 

12 

The next step in the synthesis procedure is the state 

assignment. Each state is assigned a binary valued code 

such that the internal state transitions are not dependent 

on the binary values of the state variables. If more than 

one state variable is required to change for a giv ~ n transi­

tion, then inherently unequal delays in the circuit make 

it virtually impossible for the two states to change value 

simultaneously. Such a condition is called a race and will 

be discussed later in this report. In most cases, then, 

what is needed is essentially a gray-code assignment for 

the states. Adjacent states are coded so that only one 

state variable changes per transition (adjacent states 

are states connected with a transition arrow on the state 

diagram, if one were drawn). 



Starting with the flow table of Figure S, we can 

draw a state diagram for the four states and assign binary 

values to the states so that each transition involves 

only a change in one state variable. Since there are only 

four states, the minimum number of state variables required 

for a unique code is two. Figure 6 shows the state diagram 

for the flow table of Figure 5. 

Figure 6. Minimized state diagram. 

The state diagram of Figure 6 cannot be gray-coded 

with only two state variables as it's drawn. An extra 

state variable could be added to bring the total possible 

number of states to eight . This would give four extra 

states to use in which transitions could pass through one 

or more states before settling in the final state, and 

would give some flexibility to the state assignment. 

A Liu (1963) or Tracey (1966) assignment could also be 

made, but will not be commented on here. 

An alternate method would be to note the availability 

of extra "b's" in column "01" of Figure S. For an input 

13 
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of "01" every state has state "b" as its transition 

objective. It is possible in this case to have the tran­

sition pass through one or more of the other states before 

settling at state "b". Figure 7 shows the necessary 

adjacencies (those determined from columns other than "01"). 

The transition from "a" to "b" is seen to have been removed, 

and can be routed through state "d". The modified flow 

table is shown in Figure 8. Note that total state a - 01 

Figure 7. Necessary adjacencies. 

has been changed from "b" to "d". Since the output, Z, 

is constant for a given state, it is noted on the right 

of the flow table (it should be remembered that transition 

states do not, as yet, have specified outputs). Binary 

values for the states can now be assigned as follows: 

a +00; d +01; b +11; C +10. 



X X 1 2 

stat e 00 

a a 

b b 

C a 

d b 

01 11 

d d 

b C 

b C 

b d 

10 

a 

C 

C 

d 

z 

0 

0 

1 

0 

Figure 8. Flow table with "transition" state. 

The state assignment can be modified (permuted)--the 

important point is that each entry must be adjacent to 

the one above and below it ("a" and "c" are adjacent). 

15 

The flow matrix (binary values assigned to the states) 

can now be drawn as shown in Figure 9. The state values 

are placed in "Karnaugh" order to facilitate the construc­

tion of the state maps. 

xlx2 

2 00 01 11 10 

00 00 01 01 00 

01 11 11 01 01 

11 11 11 10 10 

10 00 11 10 10 

Figure 9. Flow matrix. 

State and output maps 

The state variable maps are simply maps taken from 

the flow matrix with one entry-variable shown. The maps 

are shown in Figures 10 and 11. 



16 

X X 1 2 
00 01 11 10 

00 0 0 0 0 

01 1 1 0 0 

11 1 1 1 1 

10 0 1 1 1 

Figure 10. Karnaugh map for Y1 . 

xlxZ 
00 01 11 10 

00 0 1 1 0 

01 1 1 1 1 

11 1 1 0 0 

10 0 1 0 0 

Figure 11. Karnaugh map for Y2 . 

The output map, or Z-map, is taken from the flow matrix 

with entries placed only in the stable state positions. 

It is shown in Figure 12. Transition arrows are indicated 

to show beginning and end points for the transitions. Since 

xlx2 

Y1Y2 00 01 11 10 

00 

01 

11 

10 

z 

Figure 12. Partial Z-map. 



the output (Z) is the same for indicated entries on a 

given row, only verticle transitions need to be indicated. 

The transition entries can be derived as follows: 

1. A "0" initial to "0" final entry should have a 

"0" in the transition position(s). 

2. A "0" initial to "1" final entry (or vice-versa) 

may have a "O", "1", or "-" ("don't care") entry in the 

transition position(s). Usually a"-" is preferred for 

later flexibility in deriving the boolean expressions. 

3. A "1" initial to "1" final entry should have a 

"1" in the transition position(s). 

The reason for the above constraints is to prevent 

unnecessary "glitches" on the output. The complete z­
map is shown in Figure 13. 

X X 1 2 
00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 - -

10 - - 1 1 

z 

Figure 13. Complete Z-map. 
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From the above maps the expressions for the states and 

output can be written. The next chapter describes subtleties 

to be aware of when going from the map to the boolean 

expressions (and hence to the circuit realization). 



Logic delays 

CHAPTER III 

HAZARDS AND RACES 
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Inherent in any physical implementation of a digital 

circuit are logic delays. In combinational circuits these 

delays may not bother the circuit function but in sequential 

circuits random delays play funny tricks. 

It was mentioned earlier that races should be avoided 

in asynchronous sequential design because critical races may 

lead to improper circuit action. An example of this is shown 

in Figure 14. If the input changes from x 1x 2y 1y 2 = 0111 

to x 1x 2y 1y 2 = 0011 the state is unstable and tries to go to 

x 1x 2y 1y 2 = 0000. Since both state variables are unstable 

(y 1 and y 2) they will both try to change to "0" simul­

taneously. The probability that y 1 and Yz will both switch 

simultaneously is virtually zero, and hence the circuit 

may end up in state 01 or 10, depending on which state 

variable switched first. The proper state assignment is 

one way of alleviating the critical race problem, and 

cycling through other states going to the same final state 

is another way. 

A more subtle problem in sequential circuits due to 

random delays is the existence of combinational hazards. 

Each state variable is essentially generated through 



xlx2 

Y1Yz 00 01 

00 00 

01 01 

11 00 11 

10 10 

Figure 14. Critical race condition. 

combinational logic, and any stray hazard pulses may cause 

the circuit to jump into the wrong state. 

A "0" static hazard occurs when a single input change 

takes the output function from a "0" to a "0" and a momen­

tar y "1" may occur on the output at the time of the input 

change. A "1" static hazard is similar except for output 

polarity. 

The reason for a hazard existing is illustrated in 

Figure 15. If adjacent implicants are not covered by a 

common cover, then the possibility of a hazard pulse 

occurring is present. 

xy 

z 00 01 11 10 

F = yz + xz 

Figure 15. Hazard situation. 

If the input goes from xyz = 110 to xyz = 111, the 

-map function F can be expressed as xyz + xyz, x = y = 1. 
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Note that only one variable is changing (due to the fact 

that only adjacent changes are assumed). With the 

variables assuming their respective values we have 

F = xy ( z + z) 

-
= z + z. 

The common boolean reduction for the above situation 

is "l", but if z is generated from z through an inverter, 

there will be some delay after z switches from "l" to "0" 

before z switches from "0" to "1". This will give rise 

to a static "1" hazard as shown in Figure 16. 

z 1 -------. 

0 

z 1 

0-----~ 

z + z ~ ----,u 
t + 

Figure 16. Sta tic "1" hazard for change in z. 
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A dynamic hazard occurs when a single variable input 

change causes the output to change three times when normally 

only a single output change would be expected. The cause 

of the dynamic hazard is due to different signal paths 

reaching the output with different delays. A thorough 

treatment of hazards can be found in Unger (1969). 

A fix for the static hazards is to include a common 

cover for all adjacent implicants. This would add the 



term "xy" for the example of Figure 15. The function 

would then be 

F = yz + xz + xy. 

For the stated transition it would reduce to 

F = z + z + 1 

= 1. 

Hence no "O" pulse would occur. If all static hazards 

are fixed in this manner then the single-input-change 

dynamic hazards will have been corrected also (Unger 1969). 

Multiple input change problems 

For multiple input changes higher order hazards may 

occur with the output oscillating on and off two or more 

times before settling down. A hazard of this type, called 

a f unctional hazard, may occur due to the function imple­

mented and not from the method of forming the combinational 

logic. An example of this is shown in Figure 17. An 

input change from xy = 00 to xy = 11 should cause the 

y~ 

~tilij 
F = xy + xy 

Figure 17. Functional hazard situation. 

output, F, to remain at "1". However, due to unequal 

internal delays in the logic (the "AND" gate realizing 
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xy may have a smaller delay time than the "AND" gate 

realizing xy) F would in reality put out a small "0" 

pulse. There is no known way to inhibit multiple-input­

change hazards. 

Essential hazards 

Up to now, only combinational hazards due to inputs 

hav e been mentioned. Asynchronous sequential circuits 

have special problems due to arbitrary delays inherent 

in the feedback, or state, variables in conjunction with 

the delays in the input variables. Figure 18 shows a 

possible hazard situation with a single-input-change 

a b 

1 CD 2 

2 3 G) n>2 

3 0 n 

Figure 18. Essential hazard condition. 
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constraint (only the two columns with the changing input are 

sho wn). The flow table has two input columns and three 

row s shown. If the initial state is assumed to be 1-a, 

the position is stable. If the input is then changed to 

"b", the circuit that realizes the flow table may have some 

of its state variables see changes in other state variables 

bef o re the first state variables see the input change. In 

this case the initial movement on the table will be vertical 

instead of horizontal. For the input change in Figure 18 



the initial transition may be from 1-a to 2-a instead 

of 1-a to 1-b. From 2-a the circuit is taken to 3-a 

and thence to 3-b when the input change is finally sensed. 

From there it goes to n-b. This is not the 2-b destina­

tion originally designed for. The above aberration is 

called an "essential hazard" and can be checked for in 

a flow table in the following manner: For some initial 

total state and an input variable x, if three changes 

1n x take the system to a state different from the state 

that only one change in x takes it to (assuming both 

sequences start in the same total state), then an essential 

hazard exists. The only solution for an essential 

hazard is to insert delay elements in the state variable 

feedback paths to insure that input changes are seen by 

the system before the state variable changes are sensed. 

A related hazard condition called a "nonessential 

hazard" (or d-trio) is shown in Figure 19. Starting in 

1 

2 

3 

a b 

CD z 
3@ 

@z 

Figure 19. Nonessential hazard condition. 

total state 1-a, three consecutive input changes of the 

same variable (only one shown in Figure 19) take the system 

to the same total state that only one input change would, 
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but it is possible to cycle through state 3 if the state 

variable changes were sensed first. The static behavior 
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of the system would be correct, but a possible output 

transient may occur if the output for state 3-a is different 

from the outputs for 1-a and 2-b. Some of the transient 

problems for the output were mentioned in conjunction with 

the Z-map of Chapter II. 

~r_nthesis of example problem 

With the above race and hazard conditions in mind 

we can review the example problem of Chapter II and specify 

the circuit realization. The flow table is redrawn in 

Figure 20. (The flow table is redrawn from Figure 9 with 

the states numbered for easy reference). 

xlx2 
state 00 01 11 10 z 

1 0 2 2 0 0 

2 3 3 @ @ 0 

3 0 0 4 4 0 

4 1 3 @ © 1 

Figure 20. Flow table derived from Figure 9. 

A check for essential hazards shows that the condition 

exists for the 1-00 to 1-11 transition, the 2-11 to 2-00 

transition, the 2-10 to 2-00 transition, the 3-00 to 3-11 

transition, the 3-00 to 3-10 transition, and the 4-11 

to 4-00 transition. There are two single-input-change 



essential hazards (2-10 to 2-00 and 3-00 to 3-10) so care 

must be taken to insure that the state variable changes 

are sensed after the input change. This may necessitate 

the addition of delays in the feedback paths. 

Boolean expressions can be derived from the Y-maps 

and Z-map as indicated in Figure 21. Note that the Y-map 

adjacencies are covered. If hazard pulses occur on the 

state variable outputs, the system would think it was in 

25 

an entirely different state and improper circuit action 

could ensue. The Z-map adjacencies (none in this case) may 

be covered if transient output pulses are not desired. 

It might be noted that a simpler expression could 

be written for Y2 by covering the "O's", 

i.e. y2 = (xz + Yz) (xl + Y1)· 

The above expression could also be derived by factoring 

the "l's" cover expression. The circuit realization is 

shown in Figure 22. 

This completes the classical synthesis procedure. 

Enough of the procedure has been presented to give an idea 

of the methods and problems of asynchronous logic design, 

and the next four chapters will be concerned with flip­

flops and their application to synchronous and asynchronous 

logic design. 
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xlx2 
00 01 11 10 

00 0 0 0 0 

01 1 1 0 0 

11 1 1 1 1 

10 0 1 1 1 

-
Y1 = x1Y2 + x2Y1 + x1Y1 

X X 1 2 
00 01 11 10 

00 0 1 11 0 

01 Cl 1 11 1) 

11 1 1 0 0 

10 0 J, 0 0 

- - - -
Yz = XzY1 + Y1Yz + X1Y2 + xlx2 

xlx2 
00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 1~ --

10 - - 11 1 

z 
z = 

Figure 21. State and output maps for example of Chapter II. 
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z 

y 

Figure 22. Circuit diagram for example problem. 



CHAPTER IV 

BISTABLE ASYNCHRONOUS SUBSYSTEMS 

Flip-flop types 

In synchronous sequential design, by far the majority 

of synthesis techniques involve clocked flip - flops. The 

four major types of flip-flops are the RS (Reset-Set), 

D (Data, or Delay), JK (it is unknown what J and K stand 

for), and T (Toggle). Sometimes the RS and T flip-flops 

are combined into one device with the R, S, and T inputs 

and called an RST flip-flop. The purpose of a flip-flop 

is to store a bit of information when a specified event 

occurs on one or more of the inputs (the bit could be 

a "0" or a "1"). The different types of flip-flops are 

categorized by the input sequencing required to store the 

required bit of information . The output of all flip-flops 

is labeled Q, and if its inverse is also available it is 

labeled Q. 

The RS flip-flop can be completely characterized 

through level logic inputs without positing internal 

states other than the output state. The D, JK, and T 

flip-flops are essentially transition flip-flops and 
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require additional internal state variables to be accurately 

characterized using the Huffman method of asynchronous 

analysis. For this reason the present chapter will be 

concerned with the RS flip-flop only, and its application 
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in the synthesis of asynchronous sequential logic circuits. 

Transition flip-flops will be treated in Chapters VI and VII. 

RS flip-flop 

The basic RS flip-flop has two inputs and one output. 

The inputs are labeled "Set" and "Reset", and the output 

is labeled "Q". Assume an initial state of "0" for Q, 

S, and R. 

at "0". 

If Sand R remain at "0", then Q will also remain 

If R goes to "l" (with S remaining at "0"), Q 

will remain at "0". If S goes to "l" (with R remaining 

at "0") or oscillates between "0" and "l", Q will go to and 

remain at "l". With S set at "0", if R now goes to "l", then 

Q will go to "0" and remain there until R = 0 and S = 1 

again (which repeats the process). If both Sand R go 

to "l" at the same time, then the circuit action is 

undefined. 

The RS flip-flop can now be described by a flow table 

as shown in Figure 23. Since the circuit operation was so 

state 01 11 10 

2 CD 
® 1 

Figure 23. RS flip-flop flow table. 

Q 

0 

1 

simple, the primitive flow table was bypassed and all 

entries were entered by inspection. Due to the fact that 

the output (Q) is different for each row, a merge (or 



simplification) of the rows is not possible. The flow 

table has a minimum number of rows as shown. 

The flow matrix and state (Y) map are shown in 

Figure 24. Note that Q = y, so that the state could be 

labeled Q if desired. Since there is only one state, the 

flow matrix and Y-map are the same. 

RS 

y 00 01 11 10 

0 0 1 0 

1 1 1 0 
y 

RS 

q 00 01 11 10 

0 0 0 

1 1 0 
Q 

Q 

0 

1 

Figure 24. RS flip-flop flow matrix and output map. 

Characteristic equation 

The "characteristic equation" for the RS flip-flop 

can be taken from the output map of Figure 24. If the 

constraint that Rand S cannot be "1" simultaneously is 

added, we have 

Q = s + Rq 

SR= 0. 

"Q" is the next state function defined by R, S, and q. "q" 

is the present state (or output) of the flip-flop and 

equals Q for static conditions. If an input change causes 
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an output transition then q will eventually assume the 

value Q defined by the characteristic equation. "q" may 

be thought of as being the system state variable. The 

second equation (SR= 0) is a constraint to be met by 

the designer and not a functional relationship of the 

flip-flop. 

Logic realization of RS flip-flop 

A possible circuit diagram for the RS flip-flop is 

shown in Figure 25. A more common configuration is shown 

in Figure 26. The evolution from Figure 25 should be 

evident. 

s -----o Q 

Figure 25. RS flip-flop circuit diagram. 

An inverter may b~ placed on the output if Q is 

desired, or it may be noted that the point labeled "Q" 
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in Figure 26 is actually the inverse of Q for all acceptable 

inputs. 



However the RS flip-flop is realized physically, 

the diagrammatical symbol used for it in this report 

will be as shown in Figure 26. 

set s Q ~ output 

- R Q ~ -reset output 

Figure 26. RS NOR flip-flop and symbol. 
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CHAPTER V 

AN ALGORITHM FOR DESIGNING ASYNCHRONOUS 

SEQUENTIAL CIRCUITS USING 

RS FLIP-FLOPS 

Characteristic map equation 

In Chapter II the Huffman synthesis method (with 

the Paull-Unger minimization method) was presented and 

it was shown how to generate the Karnaugh maps defining 

the state variables in terms of themselves and the inputs. 

In this chapter a method will be given wherein the state 

variables are realized by RS flip-flops, and the Set 

and Reset inputs of the RS flip-flops will be functions 

of the flip-flop outputs (states) and the system inputs. 

The original state variable maps will be the starting 

point from which the maps defining the Set and Reset 

inputs to the flip-flops are generated. 

Since the flip-flop is to represent the state 

variable, its next state function (or characteristic 

equation) must somehow be related to the Y-map that 

generates the state variable which the flip-flop is to 

replace. If we think of the variables of the character­

istic equation as functions of other variables, then it 

is an easy step to go to maps to represent those functions. 

The characteristic equation is 

Q. = s. + R.q., 
l l l l 
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h · h · th . bl Q S d R-w ere 1 represents t e 1- state varia e. . , . an . 
l l l 

will be functions of the system inputs, I, and the flip-

flop outputs (or state variables) Q . . i.e. 
l 

Q. Q X I -+ Q 
l 

s. Q X I -+ s 
l 

R. Q X I -+ R 
l 

q. is one of 
l 

the independent variables and hence is 

not a function of the other independent variables. Note 

that 

I = {xlx2 x Ix. = O,l;i = 1, 2, n} n 1 

Q = {qlq2 qml qj = O,l;j = 1, 2, m}. 

Since the Karnaugh map is essentially a graphical 

representation of the functional relationship, we can 

replace the symbols in the characteristic equation with 

the appropriate Karnaugh map. The Boolean operators are 

valid if we assume that the operations take place between 

corresponding minterms of the maps, and the map variables 

are identical and in the same position on each map 

(Caldwell, 1958). 

The example of Chapters II and III will be used to 

illustrate the method. The state and output maps of 

Figure 21 are reproduced in Figure 27 for reference. The 

state variables (y 1 and y 2) will be relabeled q 1 and q2 

with the next state variables (Y1 and Y2) changed to Q1 

and Q2 . 
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01 11 10 

0 0 0 0 

1 1 0 0 

1 1 1 1 

0 1 1 1 

01 11 10 

0 1 1 0 

1 1 1 1 

1 1 0 0 

0 1 0 0 

01 11 10 

0 0 0 0 

0 0 0 0 

0 0 - -
- - 1 1 

z 

Figure 27. State and output maps of Figure 21. 

The characteristic equation is then written with maps 

replacing the functional symbology as shown in Figure 28. 

Each map must be a function of the same variables 

(x 1 , x 2 , q1 , q 2) as stated previously, and the variables 
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must be in the same position on each map for the boolean 

operators between the maps to be valid. 

xlx2 xlx2 
00 01 11 10 qlq2 00 01 11 10 

00 0 0 0 0 00 

01 1 1 0 0 01 + = 
11 1 1 1 1 11 

10 0 1 1 1 10 

s1 

X X 1 2 
00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

10 1 1 1 1 
-

Figure 28. Characteristic map equation for Q1 . 

Selecting the minterm entries 

The Q1 map is identical to the Y1 map derived from 

the classical synthesis, and the q 1 map simply shows that 

q 1 is identical to itself. This provides the starting 

point for filling in the s1 and R1 maps. The procedure 

is outlined as follows: 

1. Place "O's" in each minterm position of s1 where 

a "O" occurs in the equivalent minterm of Q1 . 
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2. Place "O's" in each minterm position of R1 where 

q1 = 1 occurs and where a "0" occurs in the equivalent 

rninterrn of Q1 . 

37 

3. Place a "-" ("don't care") in each min term position 

of R1 where q1 = 0 occurs and where a "O" occurs in the 

equivalent minterm of Q1 . 

4. Place a "1" in each minterrn position of s1 where 

q1 = 0 occurs and where a "1" occurs in the equivalent 

rninterm position of Q1 . 

S. Place a "1" in each minterm position of R1 where 

q1 = 0 occurs and where a "1" occurs in the equivalent 

rninterrn position of Q1 . 

6. Place a"-" in each rninterrn position of s1 where 

q1 = 1 occurs and where a "1" occurs in the equivalent 

minterm position of Q1 . 

7. Pa.ace a "1" in each minterm position of R.1 where 

q1 = 1 occurs and where a "1" occurs in the equivalent 

minterm position of Q1 . 

8. If a"-" occurs in the Q1 map, then a"+" (a 

"don't care" with caution) is placed in the corresponding 

minterms of s1 and R.1 . When the final coverings are placed 

to derive the expressions from the maps it should be noted 

that the choice of s1 = 1 and R1 = 0 is not allowed. All 

other combinations are permitted (i.e. s1 = 1, R1 = 1; 

s1 = 0, R1 = 1, etc.). Note that a"-" does not occur 

in Q1 for this example. 



The above procedure has accounted for the SR= 0 

constraint, and the algorithm uniquely specifies the S 

and R map entries for a fully specified Q map. Figure 29 

shows the completed s1 and R1 maps (using the algorithm) 

of Figure 28. 

xlx2 X X 1 2 
00 01 11 10 00 01 11 10 

00 0 0 0 0 00 0 0 0 0 

01 1 1 0 0 = 01 1 1 0 0 + 
11 1 1 1 1 11 - - - -

10 0 1 1 1 10 0 - - -

xlx2 xlx2 

2 00 01 11 10 2 00 01 11 10 

00 - - - - 00 0 0 0 0 

01 1 1 - - 01 0 0 0 0 

11 1 1 1 1 11 1 1 1 1 

10 0 1 1 1 10 1 1 1 1 

Figure 29. Complete specification for Q1 excitation. 

A quick check could be made of the Sand R maps to 

insure that the minterm positions of S that have a "1" 

or"-" entry correspond only to "1" entries in the 

respective minterm positions of R. 

The Set and Reset maps of Q2 are similarly derived, 

and are shown in Figure 30. Expressions for s1 , R1 , s2 , 

and R2 can now be written as shown in Figure 31. The R 

expressions are found from the "0" terms of the R maps. 
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xlx2 xlx2 

00 01 11 10 00 01 11 10 

00 0 1 1 0 00 0 1 1 0 

01 1 1 1 1 = 
01 - - - -

+ 
11 1 1 0 0 11 - - 0 0 

10 0 1 0 0 10 0 1 0 0 

xlx2 xlx2 
00 01 11 10 00 01 11 10 

00 - 1 1 - 00 0 0 0 0 

01 1 1 1 1 01 1 1 1 1 

11 1 1 0 0 11 1 1 1 1 

10 - 1 - - 10 0 0 0 0 
-

Figure 30. Complete specification for Q2 excitation. 

The circuit diagram can be drawn once the excitation 

functions are derived, and is shown in Figure 32. Inputs 

are indicated on the left to simplify the circuit schematic. 

The output function is the same as derived in Chapter II 

(Figure 21) with q 1 substituted for y 1 : 

Z = xlql. 

The map procedure can be extended to cover any number 

of state variables, but the maps become unwieldy to work 

with for seven or more variables. The entries are specified 

for any number of variables, however, since the procedure 

given only deals with minterms and is not changed by the 

map size. 
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xlx2 
00 01 11 10 

00 0 0 0 0 l.::) - - -

01 11 11 0 0 1 1 - -

11 1-
_, 

- - 1 1 1 1 

10 0 - - - (o1 1 1 1 

xlx2 
00 01 11 10 

00 0 1 1 0 - 1 1 -

01 - - - - 1 1 1 1 

11 - - 0 0 1 1 0 0 

10 0 1 0 
"---' 

0 - 1 - -

Figure 31. Flip-flop excitation expressions. 

qz s Q Ql 
xl 1 
- R Q Xz Ql 
-
qz 

xl 

Xz 
s Q Qz 

-
ql 2 

xl R Q Qz 
ql 

z 

Figure 32. Sequential circuit with RS flip-flops. 
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Algorithm statement 

Using the example given, an extension to the general 

case should be obvious. The algorithm is given for the set 

and reset maps of a given state variable. Reference need 

only be made to the original excitation maps, but the entire 

map equality can be drawn (as shown in Figures 28, 29, or 30) 

as a memory aid. 

Given the excitation map for state variable Q., the S. 
1 1 

and R. maps are derived as follows: 
1 

Q. = 0' 
1 

q. 
1 

q. 
1 

= 0: 

= 1: 

Q. = 1, q. = 0: 
1 1 

q. = 1: 
1 

Q. =-,all q.: 
l l 

s. 
1 

s. 
1 

s. 
1 

s. 
1 

s. 
l 

= 0. R. = , 
1 

= O· R. = , 
1 

= 1. R. = , 
1 

= R. = 
1 

= +· R. = , 
l 

-

1. 

1. 

0. 

+. 

The S. and R. maps are covered in the standard fashion 
1 1 

with a caution on the"+". A"+" is considered equivalent 

to a"-" ("don't care"), but with the restriction that the 

S. and R. maps cannot have a"+" in corresponding minterm 
l 1 

positions both grouped . in a "l's" grouping (i.e., they both 

cannot be used as "l's" for a given S. and R. realization). 
1 1 

Static hazard conditions should be eliminated to insure 

smooth state transitions since static "0" hazards could 

cause an inadvertent set or reset. If one of the flip-flops 

changed its state at the wrong time, an improper state 

transition would occur, and proper action as defined by the 

flow table could not be achieved in most cases. 



CHAPTER VI 

AN APPLICATION OF THE MAP-METHOD 

TO SYNCHRONOUS CIRCUITS 

Problems in synchronous design 

If the technique presented 1n Chapter Vis tried 

for asynchronous design using Tor D flip-flops, a 

problem arises (the unclocked JK flip-flop is excluded 
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due to the improbability of simultaneous J and K transitions 

occuring, hence it reduces to an RS flip-flop). In 

describing the T and D flip-flops more than two states 

are required to adequately describe their total operation 

using logic levels as excitations. This means that a set 

of equations is required to describe the circuit action-­

hence more than one state variable is needed. 

For the RS flip-flop only two states were required 

to describe the circuit operation, and hence only one 

state variable was needed. As it turned out the RS flip­

flop output represented the state variable, and so was 

accessible. Where more than one state variable is required 

the relationship between them has to be maintained in the 

state assignment for the flow table to be achieved. 

Such is the case for only a small fraction of possible 

flow tables. This problem will be discussed in Chapter VII. 



Synchronous analysis 

In synchronous sequential design the presence of a 

"clock" signal supresses the requirement for positing 

extra states for a complete description of the D, T, or 

JK flip-flops, and the method of Chapter V can be used 

effectively to produce maps for the inputs of the state 

flip-flops. Note that it is possible for the JK flip­

flop to be used in synchronous design problems since the 

initiating signal transition occurs only on the "clock" 

input. The other flip-flop inputs are assumed to be at 

a definite logic level when the clock transition occurs 

(flip-flop action may occur on positive-going or negative­

going clock transitions, depending on how the flip-flop 

is constructed. In this report excitation is assumed to 

occur on the positive-going edge of the clock). 

The characteristic map, characteristic equation, and 

symbol are shown in Figures 33-36 for D, T, JK, and RST 

flip-flops. The RST flip-flop is included for completeness. 

Note that the clocked RS flip-flop would have the same 

characteristic equation and map-generation algorithm as 

described in Chapter V. In generating the RST character­

istic map the technique of Marcus (1969) was used. Each 

minterm entry of the respective map indicates what the 

flip-flop output will be upon the occurrence of a positive­

going transition on the clock input lead. 
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D Q 

clock C Q 

D 

qD 0 1 

0 0 QD = D 

1 

Figure 33. D flip-flop symbol, characteristic map, and 
characteristic equation. 

o-------1 T Q 

clock C Q 

T 

qT 0 1 

0 0 CD QT = TqT + TqT 
1 1 0 

QT 

Figure 34. T flip-flop symbol, characteristic map, and 
characteristic equation. 

clock =t : t-----o: 
JK 

qJK 00 01 11 10 

0 0 0 1 QJK = JqJK + KqJK 
1 D 0 0 ([_ 

QJK 

Figure 35. JK flip-flop symbol, characteristic map, and 
characteristic equation. 
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constraints: 

RS= 0 

STqRST = 0 

RTqRST = 0 

clock 

s Q 
T 

R Q 
C 

R s 
TqRST 00 

00 0 

01 (1 

11 0 

10 IC 1 

01 11 10 

1 - 0 
l) - 0 
- - 0 

1 - - ) 

QRST 
QRST = S + RTqRST + TqRST 

Figure 36. RST flip-flop symbol, characteristic map, 
characteristic equation, and constraint 
equations. 

Only the RST flip - flop is seen to have constraints 

on its inputs. When realizing the R, S, and T input maps 

these constraints have to be accounted for. 

The problem statement of a synchronous sequential 

circuit is similar to the asynchronous case, but the race 

and hazard problems need not be accounted for in the 

synchronous problem. A state diagram or flow table is 

constructed and a state reduction is attempted as in the 

asynchronous case. The state assignment can be taken as 

the minimum number of state variables to uniquely code 

each state. All destination state transitions are taken 
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in one step since the clock essentially constrains the 

circuit activity to occur at discrete points in time, 

and all feedback paths (from flip-flop output to flip-flop 

input) are nonfunctional at points in time other than 

when the positive-going clock transition occurs. From 

the transition matrix (flow table with states coded) the 

state maps are drawn, and these are then used to generate 

the flip-flop input maps as determined from the character­

istic equation. 

Example 

An example will be given to illustrate the procedure. 

The minimized flow table of Figure 5 is redrawn (with the 

states numbered) as shown in Figure 37. Since races are 

xlx2 

state 00 01 11 10 z 

1 0 2 4 0 0 

2 00 3 3 0 

3 1 2 00 1 

4 2 2 00 0 

Figure 37. Flow table for synchronous design. 

not a problem in synchronous design, cycles need not be 

introduced for proper circuit operation. All transitions 

are direct, as previously mentioned. 

The states are assigned a binary code in a fashion 

(generally) to realize the output function (Z) in the 
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simplest way. In this case (Figure 37) the output is 

coincident with state 0 only, so access will be required 

to both state variables (only two state variables are 

required to uniquely realize four states). The flow matrix 

is shown in Figure 38. 

X X 1 2 

2 00 01 11 10 

00 00 01 10 00 

01 01 01 11 11 

11 00 01 11 11 

10 01 01 10 10 

Figure 38. Flow matrix for synchronous problem. 

The state maps can be drawn as shown in Figure 39. 

The state map is then used in the characteristic equation 

of whichever flip-flop (or combination thereof) is desired 

to implement the total system. If all flip-flops are avail­

able, each state map can be tried with all of the charac­

teristic equations to see which one would give the cheapest 

realization in combinational logic. 

X X 1 2 X X 
1 2 

2 00 01 11 10 2 00 01 11 10 

00 0 0 1 0 00 0 1 0 0 

01 0 0 1 1 01 1 1 1 1 

11 0 0 1 1 11 0 1 1 1 

10 0 0 1 1 10 1 1 0 0 

Figure 39. State maps for synchronous problem. 
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D realization 

To realize the states with D flip-flops it is necessary 

to refer to the characteristic equation of the D flip-

flop. Figure 40 shows the generation of the inputs for 

D1 and Dz. It is seen that the input maps are simply the 

state maps. This may mean a lack of ability to generate 

"don't care" conditions from specified conditions of the 

state maps, whi c h could provide a means of further simpli­

fication. However, the single input may make up for the 

lack of flexibility. 

xlxZ 
00 01 11 10 11 10 

00 0 0 1 0 1 ~ 
01 0 0 1 1 01 1 1 = 
11 0 0 1 1 11 1 1 

10 0 0 1 1 10 1 1 

D1 

Dl = xl(ql + qz + Xz) 

X X 1 Z 
X X 1 Z 

00 01 11 10 00 01 11 10 

00 0 1 0 0 00 0 1 0 0 

01 1 1 1 1 = 
01 (1 1 1 1 ) 

11 0 1 1 1 11 0 1 1 1 

10 1 1 0 0 10 ( 1 1 0 0 

Dz 

Dz= xlxZ + qlqZ + q1qzx1 + xlqZ 

Figure 40. Input excitation maps for realization with 
D flip-flops. 



T realization 

The realization using T flip-flops is shown in 

Figure 41. A fully specified state map generates a fully 

specified T-rnap as in the D flip-flop case. Only the 

generation of Q1 is shown for brevity. It should be 

X X 
1 2 xlx2 X X 

1 2 
q - 00 

L. 
01 11 10 qlq2 ~0~0--,---.--1_0~ q 2 00 01 11 10 

00 0 0 1 0 00 0 00 1 1 1 1 

01 0 0 1 1 1 01 1 1 1 1 ::: 

11 0 0 1 1 11 0 0 0 0 
10 0 0 1 1 10 0 0 0 0 

X X 1 2 xlx2 
q2 00 01 11 10 q2 00 01 11 10 

00 00 0 0 0 0 

+ 01 01 0 0 0 0 

11 0 0 1 1 11 1 1 1 1 

10 0 0 1 1 10 1 1 1 1 

- -
Tl::: xlql + xlx2ql + xlqlq2 

T2::: xlx2q2 + xlx2ql 

Figure 41. Realization expressions for T flip-flops. 

evident that the T-rnap is identical to the Q-rnap where 

q::: 0, and is the inverse of Q where q::: 1. T
1 

and t
1 

are filled in only where they contribute to Q1 to clarify 

the process. 

49 



so 
JK realization 

The JK realization expressions are given in Figure 42, 

along with the map equality for Q1 . The JK flip-flop is 

seen to be similar to the T flip-flop with the exception 

that half of the J and K maps consist of don't cares, 

which may eliminate some of the combinational logic 

altogether (as in the generation of K1). 

xlx 2 xlx 2 xlx2 
q 2 00 01 11 10 q 2 00 01 11 10 q2 00 01 

00 0 0 1 0 00 0 0 T 0 00 1 1 

01 0 0 1 1 01 0 0 1 11 01 1 1 

11 0 0 1 1 11 - - - -1 11 0 0 

10 0 0 1 1 10 - - - -
'-' 

10 0 0 
-

X X 1 2 X X 
1 2 

q 2 00 01 11 10 q2 00 01 

00 - - - - 00 0 0 

+ 01 - - - - 01 0 0 

11 0 0 1 1 11 1 1 

10 In 0 1 1 10 1 1 

Kl ql 

Jl = xlx2 + xlq2 J2 = qlxl + xlx2 

Kl = xl Kz = xlx2qlq2 

11 

1 

1 

0 

0 

11 

0 

0 

1 

1 

Figure 42. Realization expressions for JK flip-flops. 

RST realization 

10 

1 

1 

0 

0 

10 

0 

0 

1 

1 

The RST flip-flop is the last flip-flop to be looked 

at in the synchronous sequential example. The realization 



expressions are given in Figure 43. Filling out the S, R, 

and T-rnaps is complicated by the fact that the three 

QRST = S + RTqRST + TqRST 

RS= 0 
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STqRST = 0 

RTqRST = 0 

s1 = xlx2 + xlq2 
= Xl(Xz + qz) 

X X 
1 2 

X X 
1 2 Rl = 0 

2 
00 01 11 10 

00 0 0 1 0 
2 00 01 11 10 --

00 0 0 1' 0 
Tl 

-
= xlql 

-
01 0 0 1 1 = 

01 0 0 1 11 
s 2 = xlx2 

11 0 0 1 1 11 0 0 - _I Rz = 0 

1 0 0 0 1 1 10 0 0 ,_::,.. - T2 
- -

= xlx2ql 

xlx2 X X 1 2 

2 00 01 11 10 
2 

00 01 11 10 00 01 11 10 

00 - - 1 - 00 1 1 - 1 0 0 0 0 0 
-

+ 
01 - - 1 1 01 1 1 - - 1 0 0 0 0 

11 - - 1 1 11 0 0 1 1 1 1 1 1 1 

10 - - 1 1 10 0 0 1 1 0 1 1 1 1 

xlx2 xlx2 

2 00 01 11 10 2 00 01 11 10 

00 0 0 - 0 00 1 1 1 1 ' 

+ 
01 0 0 - - 01 1 1 1 1 

11 11 1 0 0 11 0 0 0 0 

10 11 1 0 0 10 0 0 0 0 

Figure 43. Realization expressions for RST flip-flop. 



constraints must also be met. The best way to fill out 

the maps is to fill in the required minterm entries that 

give the required equality, and then check T and t for 

proper matching before further filling in to meet the 

constraints. Initially "O's" can be filled in the s1-

map where Ql = 0' and in the T1-map where Ql = 0 and 

ql = 0. The "O's" in Tl where ql = 0 go into "l's" 

in tl where ql = 0. The corresponding minterms of i\ 
ca n be filled in with 11 -' s 11

• For minterms where Q1 = 0 

and q 1 = 1, place "l' s " in T1 and " - 's" in R1 (or " - 's" 

in T1 and "O' s " in R1). Note that there is a cho i ce that 

may be made, thereby making the R, S, and T-maps non ­

unique for fully specified Q-maps. 

Where Q1 had "l's", and q1 = 0, set s1 = 1, R1 = 1, 

and t 1 = - ( or S 1 For Q1 = 1 and 

Another choice 

may be made here. The entries could be placed side by 

side in the maps so that when the final covers are placed, 

the optimum choice can be made. 

The availability of multiple minterm entry selections 

is due to the fact that there are two complete flip-flops 

combined into one. Each separate flip-flop is capable of 

setting or resetting the combined flip-flop, hence more 

than one choice is available in certain situations. 

Summary for sequential flip-flops 

The previous algorithms for determining the input 

equations for specified types of flip-flops is summarized 
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as follows. The RS flip-flop is equivalent to the asyn-

chronous case and the RS algorithm is taken from Chapter V. 

RS flip-flop 

The characteristic and constraint equations are: 

Q = S + Rq, RS= 0; where Q represents entries in the 

"next state" map, and q represents the "present state" 

variable. 

Q = 0: (a) s = 0 in all corresponding minterms. 

(b) q = 0: R = 

(c) q = 1: R = 1. 

Q = 1: (a) q = 0: s = 1, R = 0. 

(b) q = 1: s = R = 0. ' 

D flip-flop 

The characteristic equation is: Q = D. The'input 

maps are identical to the state variable maps. 

T flip-flop 

The characteristic equation is: Q = Tq + Tq. 

Q = 0: (a) q = 0: T = 0. 

(b) q = 1: T = 1. 

Q = 1: (a) q = 0: T = 1. 

(b) q = 1: T = 0. 

JK flip-flop 

The characteristic equation is: Q = Jq + Kq. It 

should be obvious that this is similar to the T flip-flop 

with the "T" function being shared by "J" and "K". 



Q = 0: (a) q = 0: J = 0' K = 

(b) q = 1: J = - K = 1. 

Q = 1: (a) q = 0: J = 1, K = 

(b) q = 1: J = K = 0. 

RST fli:e-flo:e 

The characteristic and constraint equations are: 

Q = s + RTq + Tq, RS = 0' STq = 0 ' and RTq = 0. 

Q = 0: (a) s = 0 in all corresponding minterms. 

(b) q = 0: T = 0' R = -

(c) q = 1: T = R = 1. 
' 

or T = 1, R = -

Q = 1: (a) q = 0: s = R = 0' T = 1· 
' 

or S = 1, R = 0, T - -

(b) q = 1: S = R = 0, T = 0. 

"Don't care" conditions 

If "don't cares" occur in the state maps, they are 

inserted in the corresponding minterm positions of the 

T, D, and JK input maps. The RS and RST input maps 

should have a"+" inserted in the corresponding minterm 

positions, and final covers placed so as not to contradict 

the constraint equations as was done for the RS flip-flop 

in Chapter V. 

Each minterm position can be considered separately 

for a choice of which entry algorithm is desired (if a 

choice is available). In this way a more optimum map may 

be achieved in terms of the minimum number of logic 
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gates required in the final implementation. The best way 

to do this is to draw out the maps in the characteristic 

equation and observe how each entry is being placed. 

Previous entries can be altered as the form of the map 

takes shape. 
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CHAPTER VII 

AN APPLICATION OF THE MAP METHOD TO 

TRANSITION FLIP-FLOPS 

Types of transition flip-flops 

It was mentioned in Chapter IV that transition flip­

flops required more than one state variable to adequately 

describe them using the Huffman approach. In this chapter 

the clocked JK, "one's-catching" JK, D, T, and unclocked T 

flip-flops will be analyzed and their use in realizing 

asynchronous flow matrices will be described. The method 

will consist of modifying a given flow table into a form 

that is realizable using the selected transition flip­

flop. 

Clocked JK flip-flop 

The clocked JK flip-flop to be analyzed is the same 

one used in Chapter VI. Its flow table and reduction are 

shown in Figure 44. The table is set up with the enabling 

clock transition ("0" to "1") dividing the flow table into 

two vertical halves. Since circuit action occurs only 

during the clock transition, this facilitates filling out 

the flow table. Note that the table is normal only with 

respect to the clock transitions. The state reduction was 

chosen with "don't cares" to give simpler characteristic 

expressions. 
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001 011 010 100 101 111 110 Q 

2 3 4 5 0 

2 1 0 3 4 6 0 

3 1 2 0 4 15 0 

4 1 2 3 0 16 0 

5 1 G) 6 7 8 0 

6 2 5 © 7 8 0 

7 3 5 6 0 8 0 

8 4 5 6 7 ® 0 

9 9 10 11 12 13 1 

10 9 @ 11 12 6 1 

11 9 10 @ 12 7 1 

12 9 10 11 @ 16 1 

13 9 @ 14 15 16 1 

14 10 13 ~ 15 16 1 

15 11 13 14 @ 16 1 

16 12 13 14 15 @ 1 

CJK 

state 000 001 011 010 100 101 111 110 Q 

a G) 0 3 4 0 ® 0 ® 0 

b 1 2 0 0 15 16 0 

C ® 10 11 @ @ Q3) @ @ 1 

d 9 @ @ 12 6 7 1 

Figure 44. Clocked JK flip-flop primitive flow table 
and merged flow table. 



The state assignment and state maps are shown in 

Figure 45. The characteristic equation consists of two 

equations. This means that in certain cases a pair of 

states in a flow matrix may be realized with one flip­

flop. It will be seen that such is the case, and the 

conditions under which this is possible will be discussed. 

CJK 

2 
000 001 011 

00 00 00 01 

01 00 00 01 

11 11 10 10 

10 11 10 10 

JK C=0 

2 00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

10 1 1 1 1 

JK C=0 
qlq2 00 01 11 10 

00 
i----+---++---+---.-1 

01 
t---+--+--+---l 

11 
~----++-----l 

10 

010 100 101 

01 00 00 

01 - -

11 11 11 

11 - 00 

C=l 
00 01 11 10 

0 0 0 0 

11- - 1 11 
!11 1 1 11 

- 0 0 -

C=l 
00 01 11 10 

0 0 0 0 

- - 1 1 

Tl 1 1 rr -
_J 0 0 L 

111 

00 

11 

11 

00 

110 

00 

11 

11 

-

Q 

0 

0 

1 

1 

Figure 45. Clocked JK characteristic equations and maps. 
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The characteristic equations are required to derive 

the flip-flop input maps. As an example, a single input, 

two-state map will be used to illustrate the conditions 

to be met by the two states. 

JK state constraints 

The map relationships are shown in Figure 46 for a 

single input, two-state flow matrix without regard to 

01 

11 1 1 

10 Q] Q, 
-
C 

0 0 

0 0 + 

1 1 

1 1 

ql 

Q, Q, 

C 

0 0 

1 1 

1 1 

0 0 

qz 

- -
01 CC 

11 

10 

= 

-

-

Q2 

-

-

Q, 
L 

K 

0 0 

0 0 + 
1 1 

1 1 

ql 

1 1 

Q Q 1 1 + Q, Q, 
0 0 

Q Q 0 0 Ql Ql 
C J ql C 

Figure 46. Map equations with static constraints for 
JK flip-flop. 

0 0 

1 1 

1 1 

0 0 

the output function. It will be shown how the output 

function can be included in any acceptable (in terms of 

flip-flop constraints) flow table later in this chapter. 

A single input is assumed to keep the analysis simple, and 
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is not necessarily a functional constraint on a realization 

using clocked JK flip-flops. Conditions on Q
1 

are derived 

from observation of the required map relationships, and 

the minterm entries of Q1 are placed in the pertinent 

positions of the "C" and "C" maps in the Q
1 

equation. 

Since it is implicit in the map equations that all of 

the maps have the same input, only the left-most map in 

any one equation has its inputs shown. This practice will 

be carried throughout the chapter. The clock entries 

from the Q1 equation are copied into the Q
2 

equation where 

the "C" and "C" maps occur. The Q1 map must have "O's" 

in its first row (q 1q 2 = 00), and "l's" in its third row 

(q 1q 2 = 11) to meet the static requirements of the Q
1 

equation. The Q2 map must have "l's" in its second row 

min term positions (q 1 q 2 = 01) if the Q
1 

map has "l's" 

in the corresponding positions. Note that both minterms 

need not be "1" if only one position of the Q
1 

map has 

a "l". These positions are marked with a "c" (for check) 

as a reminder. The input maps can be filled in while 

watching for transitions occurring in the "C" map and 

the "J" or "K" maps. One of the original assumptions 

was that when a transition on the clock line occurs (in 

the positive, or "0" to "1", direction), the "J" and "K" 

lines should be stable. 
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Input constraints 

Transitions in the flow matrix should be compared 

with the corresponding minterm positions in the "C" map. 

If the "C" map has a "0" to "1" change in the direction 

of the transition, then the "J" and "K" maps should be 

checked to see that their corresponding minterm positions 

contain no logic changes for the same transition. This 

is to insure that simultaneous changes do not occur on 

the transition input (clock) and level inputs (J or K). 

Flow table constraints for JK flip-flop 

The initial flow table has to be set up to represent 

a realizable circuit using JK flip-flops. Using the 

characteristic equations for the JK flip-flop, it is 

easy to see that only the column transitions in the flow 

diagram are inherently constrained. The transition 

constraints, along with the static constraints, make up 

the characteristic equation-induced constraints. 

Using the previously derived map relations for Q1 

and Q
2

, it is evident that only certain states are allowed 

in each of the four possible vertical minterm positions 

of any given "next state" column. The allowed states 

are shown in Figure 47. For the states shown, there are 

2x3x2x4 = 48 possible different choices for one column 

in a flow table with four states. Of these forty eight 

possible choices, only twelve meet the "transition" 

constraints as specified by the characteristic equations. 

61 



1npu t 1 mn co u 
state 

1 1, 2 

2 1,2,3 

3 3,4 

4 1,2,3,4 

Figure 47. Possible "next state" entries in JK realizable 
flow table. 

The twelve allowed columns are shown in Figure 48, along 

1 J=0 1 J=0 

1 K=l 1 K=0 

3 C=ql 3 C=ql 
1 2 

1 J=- 1 J=-

3 K=0 3 K=l 

3 C=ql 4 C=ql 
3 4 

state I 1 1 00 
2 1 _ 00 
3 3 - 11 
4 1 00 

Q2 i< 

1 J=0 1 

1 K=0 1 

3 C=0 4 

3 4 

2 J=l 2 

2 K=l 2 

3 C=ql 3 

1 2 

1 = 00 
2 = 01 
3 = 11 
4 = 10 

ql J c ql C q2 

J=0 1 J=- 1 J=-

K=l 3 K=l 3 K=0 

C=0 3 C=l 3 C=l 

1 2 

J=l 2 J=l 2 J=l 

K=0 2 K=0 2 K=l 

C=ql 3 C=0 4 C=0 

3 4 

62 

Figure 48. Acceptable vertical transitions for JK flip-flop. 
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with the derivation of the first one. The selection 

criteria was based on the fact that none of the derived 

flip-flop inputs could be functions of q 2 (the internal 

flip-flop variable). The flip-flop output is identical 

to q 1 . A perusal of the possible transitions shows that 

different states with the same output (1 and 2, or 3 and 4) 

cannot coexist in the same column in their stable positions. 

It is for this reason that the Z-map can always be 

constructed such that the system output (Z) is not a 

function of q 2 . 

Three-variable flow table 

A flow table with three state variables could have 

two of the three variables realized by a JK flip-flop if 

the flow table meets the constraints set by the character­

istic equations. A single input-column of some arbitrary 

flow matrix is shown in Figure 49. It should be obvious 

that the transitions for the two state variables used to 

represent the JK flip-flop must meet the same vertical 

transition constraints in each of the four-state halves 

of the column (a simple application of the characteristic 

equations for the column will show this). The "next 

state" entries of the flow table column are a
1

b
1 

through 

a 8b 8 , where "a" refers to a binary "1" or "O" and is 

the q 3 portion of the next state code, and "b" refers 

to a two-bit binary code that refers to the q 1q
2 

portion 



of the next state code. It is assumed that the state 

variables q1 and q 2 are to be realized with the JK flip­

flop. That means columns b 1 , b 2 , b 3 , b 4 , and bs, b 6 , b 7 , 

bS must be one of the twelve acceptable transitions. 

I 

albl 2 
0 1 

azbz 00 al as 

011 0 3 a3b3 01 az a6 

010 0 4 a4b4 11 a3 a? 

100 1 1 asbs 10 a4 as 

101 1 2 a6b6 Q3 

111 1 3 a7b7 al = az 

110 1 4 asbs a3 = a4 

as = a6 

a? = as 

Figure 49. Three-variable flow table column and Q3 map. 
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If it is assumed that q1 is the output of the JK 

realization, then Q3 can be a function only of q1 , itself, 

and the system input variables because q 2 is an inaccessible 

variable. This puts the constraint on Q3 such that 

a 1 = a 2 , a 3 = a 4 , as= a 6 , and a 7 = as· If the flow table 

for the desired function can be manipulated to meet the 

above constraints, then the function's state behavior can 

be realized with a JK flip-flop in combination with an 

RS flip-flop and logic gates. The RS flip-flop could also 

be realized with logic gates, if desired. 



In manipulating the flow table, the output should not 

be a function of the JK flip-flop internal variable (q 2). 

If it is, then a transition position in the Z-map could 

be modified to eliminate this dependency. 

Four-variable flow table 

A four-variable flow table can be implemented using 

two JK flip-flops if the flow table conforms to the 

constraints of the characteristic equations. Figure 50 

shows one column of a four-variable map with the columns 

qlq2q3q4 
000 

000 

001 

001 

010 

010 

011 

011 

100 

100 

101 

101 

110 

110 

111 

111 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

I 

al bl 

az bz 

a3 b3 

a4 b4 

as bs 

a6 b6 

a7 b7 

as b8 
a 9 b 9 
alOblO 

allbll 

a12b12 

a13b13 

a14b14 

alSblS 

a16b16 

a b 

1 1 

1 2 

1 3 

1 4 

2 1 

2 2 

2 3 

2 4 

3 1 

3 2 

3 3 

3 4 

4 1 

4 2 

4 3 

4 4 

Figure SO. Four-variable map column. 
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labeled with the binary code, and a corresponding two­

tuple. The "next state" entries are labeled "ab". "a" 

refers to the destination major group (defined by state 

variables q 1q 2), and "b" refers to the destination sub­

group (defined by state variables q
3

q
4

). Substituting 

the column into the characteristic equations shows that 

each of the subgroups (groups of four minterm positions 

where state label "a"= constant) must consist of one of 

the twelve vertical transition assignments and the inputs 

to the q 3q 4 flip-flop should not include q 2 . This assures 

that the JK flip-flop representing the q
3

q
4 

state variable 

pair can be realized. 
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A rearrangement of the variables shows what constraints 

must be met by the "a's", "b's", q 1q 2 and q 3q
4

. Figure 51 

gives some insight to these constraints. Since only q
3 

is available from the q 3q 4 flip-flop, any input to the q
1

q
2 

or q 3q 4 flip-flops cannot include q
4

. Hence we have the 

equalities shown at the right of Figure 51. It is evident 

that each column of the Q1Q2 and Q
3
Q

4 
maps must meet the 

constraints imposed by the characteristic equations. That 

means each vertical column (a
1

a
5

a
9

a
13

, a
2

a
6

a
10

a
14

, a
3

a
7

-

allal5' a4a8al2al6' b1bzb3b4, b5b6b7b8, b9b10bllb12' and 

b 13 b 14 b 15 b 16 ) must be one of the twelve acceptable vertical 

transition columns. The equalities in Figure 51 imply that 

the first two columns are equal and the last two columns 



q q 3 4 

2 00 

00 al 
01 as 
11 ag 
10 a13 

q q 1 2 

4 00 

00 bl 
01 bz 
11 b3 
10 b4 

qlq2q3q4 
000 0 

000 

001 

001 

010 

0101 

011 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

1 

0 

1 

0 

0 

I 

01 11 

az a3 

a6 a7 

alO all 

a14 alS 

01 11 

bs bg 

b6 blO 
b 7 bll 
bs b12 

a k 

a 1 

b m 

b n 

C k 

C 1 

d m 

d n 

e 0 

e p 

f q 

f r 

g 0 

g p 

h q 

h r j 

10 

a4 al = az a3 = a4 ' 
as as = a6 a7 = as ' 
a12 ag = alO; all= a12 

a16 a13= a14; a1s= a16 

10 

b13 bl = bs bg = bl3 

b14 b z = b6 b10= b14 

blS b 3 = b7 b11= blS 

b16 b4 = bs b12= b16 

first column 

Necessary vertical transitions: 

a b k o 

C d 1 p 

e f m q 

g,h,n,r. 

Figure 51. Q1Q2 and Q~Q4 maps with entry constraints 
and required column equalities. 
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are equal in the Q1Q2 map and Q3Q4 map. If each column 

of a four variable flow table meets the above criteria, 

then it can be realized with two JK flip-flops and some 

interconnection logic. 

The above manipulations show the form that each of the 

two, three, and four variable flow tables must be in to 

achieve their realizations using JK flip-flops. Larger 

flow tables can be examined column by column using similar 

techniques. Some synthesis examples will be given at 

the end of this chapter. 

D flip-flop 

The primitive flow table and reduction for the D 

flip-flop are shown in Figure 52. The state assignment 

01 11 10 Q 
2 4 0 

2 1 @ 7 0 

3 2 0 4 0 

4 1 3 © 0 

5 ® 6 7 1 

6 5 ® 7 1 

7 6 0 8 1 

8 5 7 8 1 

01 Q 
2 0 

b 1 0 7 0 

C 5 ®0® 1 

d ® 6 4 1 
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Figure 52. Primitive and merged flow tables for D flip-flop. 



and characteristic equations are given in Figure 53. 

Using the characteristic equations the characteristic 

CD 
00 01 11 10 

0 00 01 00 00 

1 00 01 11 -

1 10 11 11 11 

0 10 11 - 00 

CD CD 

qlq 2 00 01 11 10 00 01 11 10 

00 0 0 0 0 0 0 
,-.., 
1 0 0 

0 1 0 1 1 0 1 11 -

11 1 1 1 1 0 1 11 1 

10 1 0 0 0 1 - 0 

Ql 
Q == 1 Cql + Cq2 

Figure 53. Flow matrix and characteristic equations 
for D f lip-flop. 

maps can be checked as shown in Figure 54 to determine 

static constraints on the two states that represent the 

D flip-flop. It is seen from an inspection of the maps 

that the same type of static constraints that held for 

the JK flip-flop also hold for the D flip-flop. The "c" 

in the Q2 map means that if the Q1 map has a "1" in the 

same minterm position, then the "c" in Q2 must be a "1". 

This means the first state row of a flow table column can 

have only one of two entries (1 or 2); the second state 
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qlq2 
00 0 0 0 

01 0 Q 1 = + 
11 1 1 1 

10 Ql 1 0 

Ql c ql C q2 

qlq2 
00 0 

01 C + Ql 1 = . 
11 1 

10 Ql 0 

Q2 c D C q2 

Figure 54. Static state constraints on D flip-flop. 

row can have one of three entries (1, 2, or 3); the third 

state row can have one of two entries (3 or 4); and the 

fourth state row can have one of four entries (1, 2, 3, 

or 4). This is the same as the JK flip-flop, but out 
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of the forty eight possible columns, only nine are accept­

able to be used as entries in the D flip-flop flow table. 

The acceptable transitions are listed in Figure 55, along 

with their resultant input expressions. The acceptance 

criteria is such that each input variable of the flip-flop 

(C or D) cannot be a function of q 2 since it is inaccessible 

(as in the JK case). 

Flow table constraints for D flip-flop 

The flow table that is to be realized using D flip­

flops must meet the requirements as set forth in the JK 



1 C=ql 1 C=O 1 C=0 1 C=l 1 C=ql 
1 D=0 1 D=ql 1 D=0 3 D=- 3 D=l 

3 3 4 3 3 

1 3 4 1 3 

1 C=ql 2 C=ql 2 C=0 2 C=0 

3 D=0 2 D=l 2 D=l 2 D=ql 

4 3 3 4 

4 1 3 4 

Figure 5 5 • Acceptable vertical transitions for D flip-
flop. 

flip-flop section, since the derivation is identical. The 

only change is in the characteristic equations, and these 

give rise to the nine acceptable vertical transitions in 

the D flip-flop case as opposed to the twelve in the JK 

flip-flop case. 

Clocked T flip-flop 

The clocked T flip-flop primitive flow table and 

merged flow table are shown in Figure 56. The flow matrix 

CT CT 

state 00 01 11 10 Q state 00 01 11 10 Q 
1 CD 2 - 4 0 a CD 2 3 4 0 

2 1 @ 7 - 0 b 1 a) 7 0 

3 - 2 G) 4 0 C ® 6 G)@ 1 

4 1 - 3 © 0 d 5 @ 3 1 

5 ® 6 - 8 1 

6 5 ® 3 - 1 

7 - 6 G) 8 1 

8 5 - 7 ® 1 

Figure 56. Clocked T flip-flop primitive flow table and 
merged flow table. 
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and characteristic equations are shown in Figure 57, and 

CT 

2 00 01 11 10 

00 00 01 00 00 

01 00 01 11 -

11 11 10 11 11 

10 11 10 00 -

CT 

qlq2 'r-0_0~0_1~1_1---.---1_0~ 
00 0 0 0 0 
01 i-.:--r:--r::;:l=t=:=;-1 

11 U.:....._j___:U::::1 :::::t=l:::::'..__J 
10 0 

CT 

00 01 11 10 

00 0 1 0 0 

01 0 1 1 

11 0 =1~= 
10 0 0 

Q2 
Q2 = Tql + TCql + Cq2 

Figure 57. Clocked T flip-flop flow matrix and character­
istic equations. 

the static state constraints are given in Figure 58. Note 

11 

10 

= 

t 

0 

0 + 

1 

1 

ql 

0 

C 

c 

1 

1 + 

0 

0 

0 

1 

1 

0 

C q2 

Figure 58. Clocked T flip-flop state constraints. 
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that the flip-flop output (Q) is defined to be identical 

to the state variable ql for all of the flip-flops. The 

static state constraints are seen to be the same as the 

JK and D flip-flops. The transition constraints as derived 

from the application of the characteristic maps to 

forty eight possible transition cases are shown in 

1 C=ql 1 C=ql 1 C=O 1 C=O 1 C=l 1 C=l 
1 T=ql 1 T=O 1 T=O 1 T=ql 3 T=l 3 T=O 
3 3 3 4 3 3 

1 2 3 4 1 2 

1 C=q 
1 1 C=ql 2 C=ql 2 C=ql 2 C=O 2 C=O 

3 T=O 3 T=l 2 T=l 2 T=ql 2 T=ql 2 T=l 
3 4 3 3 3 4 

3 4 1 2 3 4 

Figure 59. Clocked T flip-flop acceptable vertical 
transitions. 

the 

Figure 

The derivation is identical to the JK case. The vertical 

transition set is identical to the JK flip-flop vertical 

transition set, so a flow table that can be realized with 

59. 

JK flip-flops can also be realized with clocked T flip­

flops without having to change its form. Note that there is 

no vertical transition where "C" has a positive transition 

and T also changes. 

Flow table constraints for clocked T flip-flop 

If a given flow table is to be realized with clocked 

T flip-flops, it must conform to the specifications set 

forth in the JK flip-flop flow table constraint section. 



74 

Since the clocked T flip-flop acceptable vertical transition 

set is identical to the JK flip-flop set, all flow tables 

that can be realized with JK flip-flops can also be realized 

with T flip-flops. Simultaneous adverse clock and T 

transitions are more likely to occur using T flip-flops, 

however, and should be watched for. An adverse transition 

is one where the clock input has a positive transition 

coincident with a "T 11 transition (either positive or 

negative). If this occurs, an alternate column should 

be tried to see if the problem can be alleviated. 

Unclocked T flip-flop 

The unclocked T flip-flop primitive flow table and 

merged flow table are identical. The flow table, flow 

matrix, and characteristic equations are shown in Figure 60. 

T T 

state 0 Q 0 1 

1 2 0 0 01 00 

2 @3 0 1 01 11 

3 4 G) 1 1 10 11 

4 © 1 1 0 10 00 

T T 

0 1 2 0 1 

0 0 0 00 1 0 

1 0 1 01 1 1 

1 1 1 11 0 1 

0 1 0 10 0 0 

Figure 60. Unclocked T flip-flop flow table, flow matrix, 
and characteristic equations. 



The output (Q) is again chosen to be identical to q
1 

for 

convenience, and to conform with previous analysis. The 

unclocked T flip-flop is controlled by only one input (T) 

and changes its output state only upon the occurrence of 

a positive - going transition on it. The static state 

constraints can be found by plotting the characteristic 

maps, as shown in Figure 61. Only one column is shown 

qlq Z 
00 0 0 0 

01 0 + Q 1 = 
11 1 1 1 

10 Ql 1 0 

Ql T ql T q z 

qlq 2 
00 1 0 

01 1 1 + Ql 1 = . 
11 0 1 

10 0 Ql 0 0 

Qz T ql T qz 

Figure 61. Unclocked T static state constraints. 

with the state assignment on the left. Since all columns 

(external inputs) are derived in the same way, only one 

column is needed to show the relationship. 

The unclocked T flip-flop has more constraints on 
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its vertical state transitions, as is evident from Figure 61. 

The state assignment possibilities and acceptable transitions 



are shown in Figure 62. 4 There are only 2 = 16 possible 

static assignments, and out of these sixteen only four are 

I I 
2 state Q 

0- 1 1, 2 0 
-1 2 2,3 0 
1- 3 3,4 1 
-0 4 4,1 1 

1 T=l 1 T=ql 2 T=ql 2 T=0 
3 3 2 2 
3 4 3 4 
1 4 1 4 

Figure 62. Unclocked T flip-flop acceptable states and 
transitions. 

acceptable. These four are a subset of the D flip-flop 

set, and hence also a subset of the JK flip-flop and 

clocked T flip-flop set. It should be evident that the 

JK and clocked T flip-flops are the most versatile of the 

existing transition flip-flops available. 

Flow table constraints for unclocked T flip-flop 

The JK specifications on allowable flow tables also 

apply to the unclocked T flip-flop (due to the similarity 

of its derivation), except for the fact that only four 

vertical transition sets are allowed in the groupings. 

This makes the unclocked T flip-flop the least versatile 

of the group. However, due to the single input, if a 
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flow table can be realized using the unclocked T flip­

flop, then it may be a cheaper realization due to the 

decrease in required connections. 

"One's-catching" negative-edge 
triggered JK flip-flop 
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A commercially available JK flip-flop will be analyzed 

to show how the flow table may be derived from the circuit 

configuration. Figure 63 shows an equivalent circuit 

representation of a "one's-catching" negative-edge triggered 

JK flip-flop, and the classical flip-flop as derived 

JO-

s2 Q2 s1 Ql 
c~ -

R2 Qz R Q 

c commercial 

R 

Sz Qz s1 Ql 

Rz Q:~ Ql 

J 
c classical 

Figure 63. Commercial "one's-catching" and classical JK 
realizations. 

Q 

Q 
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from the flow table of Figure 44. The output is affected 

only on the negative-going transition of the clock line 

in the "one's-catching" JK, and was chosen to be coincident 

with q 1 for consistency. The classical JK realization is 

given for comparison. It's schematic was derived using 

state maps of Figure 45 along with the RS flip-flop 

algorithm of Chapter V. 

Since the realization uses RS flip-flops, the RS 

flip-flop characteristic maps can be used in "reverse" 

order to derive the state maps (Q1 and Q2) for the 

commercial JK. The inputs from the flip-flops can be 

taken from the diagram (Figure 63) and plugged into the 

input expressions of the characteristic maps. The resulting 

flow matrix, flow table, characteristic equations, and 

acceptable vertical transition set are given in Figure 64. 

The operation of the flip-flop can be easily predicted 

from the flow table. This saves having to trace through 

the circuit schematic as all the functional specifications 

are contained in the table. It should be evident from 

the flow table that the flip-flop is susceptible to spikes 

on the "J" input when the flip-flop's output is "0", and 

the clock is high; and is susceptible to spikes on the "K" 

input when the flip-flop's output is "l", and the clock is 

high. 

The acceptable vertical transition set is unique due 

to the fact that some of the columns have stable states 



flow matrix: 

state 

flow table: 

characteristic 
equations: 

1 

2 

3 

4 

2 
0 

1 

1 

0 

CJK 

000 001 011 010 100 101 111 110 

00 00 00 00 00 00 01 01 

11 11 11 11 01 01 01 01 

11 11 11 11 11 10 10 11 

00 00 00 00 10 10 10 10 

CJK 

000 001 011 010 100 101 111 110 

CD CD CDCD©<D 2 2 

3 3 3 3 00 0 CD 
G) G) ® G) G) 4 4 Q) 
1 1 1 1 © © © 3 

Ql = Cql + Cqz = Q 

Q2 = Kqz + Cq2 + CJql + qlq2 

acceptable vertical transitions: 

1 J=0 1 J=0 1 J=0 1 J=- 1 J=-
2 K=- 2 K=0 2 K=l 3 K=- 3 K=0 

3 C=ql 3 C=l 4 C=l 3 C=0 3 C=ql 
1 4 4 1 4 

1 J=- 2 J=l 2 J=l 2 J=ql 
3 K=l 2 K=- 2 K=0 2 K=l 

4 C=ql 3 C=ql 3 C=l 4 C=l 

4 1 4 4 

Figure 64. "One's-catching" JK flip-flop functional 
descriptives. 

in each row--thereby creating a problem in realizing 

the output function (Z) if the output differs in the 

common rows where q 1 is constant. If such is the case, 

the flow table can always be modified in such a way so 

as to be realizable. This will be discussed in the next 

section. 
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Bounds on transition flip-flops 
to realize a given flow table 
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It has been shown that two state variables are required 

to describe a transition flip-flop (the ones that are looked 

at in this chapter). The minimum bound on the number of 

transition flip-flops required to realize a minimized 

flow table with n state variables is therefore n/2 if n 

is even, or n/2 + 1 if n is odd. n is assumed to be the 

least number of state variables required to uniquely code 

all of the states (which number is denoted s) in the 
0 

flow table, and is not less that log
2 

s
0

• Note that it 

is assumed that none of the states of the flow table are 

equivalent, i.e. the table is in minimal form. 

The maximum number of transition flip-flops required 

to realize a given flow table is simply equal to the number 

of state variables required to uniquely code each state. 

If N is the required number of flip-flops, then it is 

evident that 

n/2 ~ N < n. 

To show that n is an upper bound on N requires a 

demonstration of the equivalence of the RS flip-flop to 

the transition flip-flops. In Chapter V it was noted 

that an RS flip-flop can be used to represent each of 

the state variables, and a synthesis procedure was given 

where any flow table could then be realized using this 

flip-flop. The required number of flip-flops was n. 

The flow table shown in Figure 65 represents an 

equivalent flow table for the RS flip-flop if the inputs 



(Sand R) are "zeroed" when the flip-flop is turned on. 

Since each of the transition flip-flops covered contains 

RS 

state 00 01 
1 2 CD 
2 0 3 

3 4 4 

4 

11 10 

1 2 

3@ 

G)G) 
1 1 

QT t------o Q 

QT o---+----<l Q 

Figure 65. Generation of an RS flip - flop from a transition 
flip-flop. 

all of th e columns of th e flow t able in their respective 

vertical transition sets, it is possible to realize the 

flow table with all of them. The "T" realization is 

shown below the flow table. Note that the RS= 11 column 

is arbitrary since this input is not allowed. 

The synthesis procedure is to use the RS algorithm 

for the generation of the input expressions, and then 

combine the expressions with the input buffer to the 

transition flip-flops. This realizes any n-state variable 

flow table with n transition flip-flops, and hence places 

an upper bound on the minimum number of flip-flops required. 
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After power is applied, a sanity cycle may be required 

to place all of the flip-flops in their usable states 

( 2, 3 , or 4) . 

Once the realization has been achieved, a backwards 

application of the characteristic maps will give the 

state maps, and from there the equivalent realizable 

flow table can be generated. This flow table will meet 

the acceptability criteria for column entries mentioned 

earlier in this chapter. 

The bounds on the required number of flip-flops to 

realize a flow table only state that there exists some 

equivalent flow table whose flow matrix can be used to 

give realizable input equations for the type of flip­

flop desired. The generation of a minimum realizable 

flow table seems to be an ad hoc procedure, and nothing 

can be said about it at this time. 

Two-state synthesis example 

A simple two-state example will be given to show 

how a given flow table may be modified into a flow table 

that may be realized using JK, D, clocked T, and unclocked 

T flip-flops. Assume the flow table shown in Figure 66. 

A single positive transition on the "x" input will turn 

on the output and it will stay on indefinitely after that. 

Since all of the transition flip-flops use a minimum of 

four states (two state variables) for realization, the 
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given flow table will have to be expanded. Keeping the 

transitions of the original flow table in mind, and 

X 

state O 1 Z 

1 0 2 0 

2 2 G) 1 

Figure 66. Simple two-state flow table. 

checking the acceptable vertical transition lists for the 

flip-flops, equivalent flow tables can be constructed 

that may be realized using the appropriate flip-flop. 

Figure 67 gives an equivalent flow table for each flip-

flop. It should be noted that the chosen flow tables 

X X 

state 0 1 z state 0 1 z 
1 2 (1) 0 1 2 (!) 0 
2@3 0 2@3 0 
30)@ 1 3 ®® 1 
4 3 3 1 4 3 3 1 

JK clocked T 

X X 

state 0 1 z state 0 1 z 
1 2 Ci) 0 1 2 CD 0 
2 Q) 3 0 2@3 0 
3@@ 1 3 4 4 1 
4 3 3 1 4 4@ 1 

D unclocked T 

Figure 67. Acceptable flow tables. 
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are not unique, since different column choices could 

have been made for all but the unclocked T flip-flop. 

It should be emphasized that the output (Z) is inherently 

specified to be a function of q1 in the state coding. 

Figures 68 and 69 show the flow matrices and final input 

X 

2 0 1 

00 01 00 

01 01 11 
q~ 0 1 - J = 1 

1 1 -
11 11 11 J 
1 0 11 11 

X 
JK 

ql 0 1 

0 0 0 
K = 0 

1 0 0 

K 

X 

qlffl 0 0 1 
C = xql 

1 0 0 

C 

X X 

0 1 

0 01 00 

1 01 11 

ql~ 0 1 1 
T = xql 

1 0 0 
1 11 11 T 
0 11 11 

X 
clocked T 

ql~ 0 0 1 
C = xql 

1 0 0 

C 

Figure 68. Flow matrices and input maps for JK and 
clocked T flip-flops. 
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qlq2 
0 

0 

1 

1 

X 

0 

1 

1 

0 

X 

0 

1 

1 

0 

0 1 

01 00 

01 11 

11 11 

11 11 

D 

0 1 

01 00 

01 11 

10 10 

10 10 

unclocked T 

z = q 
1 

X ql~ 
0 1 1 D = 1 
1 1 1 

D 

X qlffl 
0 0 1 

C = qlx 
1 0 0 

C 

X ql~ 0 0 1 
T = xql 

1 0 0 

T 

Figure 69. Flow matrices and input maps for D and 
unclocked T flip-flops. 

equations for each flip-flop. The input maps are taken 

from the acceptable vertical transition specifications 

instead of using the characteristic maps to save space. 

It should be noted that the q
1

-row of the clock 

input map for the clocked T flip-flop has a zero-to-one 

transition where the T input map has a one-to-zero 

transition. It was mentioned earlier in this chapter that 

1n implementing the correct flow table, input transitions 

of this sort must be avoided. In this case a fix would 
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be to substitute the 1, 3, 4, 4 vertical transition set 

into the second column of the flow table. This would 

give T = q1 + x, which would alleviate the problem. 

Four-state synthesis example 

For certain flow tables a definite reduction in 

hardware can be achieved by using transition flip-flops. 

Figure 70 shows one example of a four-state system being 

X X 

z 
1 2 0 0 1 0 
3 0 

qlffl 
T = X 

2 0 1 1 0 
3 @4 0 T 
4 1 4 1 

X 
unclocked T flip-flop 

0 1 qlq2 
00 0 
01 0 z = 
11 0 
10 

z 

Figure 70. Four-state system implemented with one 
unclocked T flip-flop. 

xql 

realized by a single flip-flop. The key to the imple­

mentation is in realizing the output (Z) without requiring 

access to the flip-flop internal variable (q
2

). The 

output map shows the transitions that go to the "on" 

state, and the intermediate position (minterm q
1

q
2
x) 

has a choice of possible entries available to it. Placing 
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a "1" in it assures that the output can be realized from 

accessible variables. If the output were a function of q
2 

only, the flow table could have its state coding shifted 

by one row (every row shifted down or up). This would 

make the output a function of q
1 

only. 

A comparison of the classical realization and flip­

flop realization is shown in Figure 71. It should be 

X 
0
-----,l ~ TQ Q_r 1--- -~ z 

V"' l ~ flip-flop realization 

z 

classical 

realization 

Figure 71. Schematic comparison of flip-flop and classical 
realizations. 

added that the essential hazard problem has been eliminated 

in the flip-flop realization. This is not an accident, 

but can also be achieved in other essential hazard flow 

tables by using transition flip-flops. 
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Four-state synthesis using RS algorithm 

If the example problem of Chapter II is to be realized 

using transition flip-flops, a problem is encountered--how 

to modify the flow table of Figure 20 into a flow table 

that meets the column transition constraints. The flow 

table to be realized is reproduced in Figure 72. Columns 

xlx2 
state 00 z 

1 CD 2 2 1 0 
2 3 3(D(D 0 
3 G)G) 4 4 0 
4 1 3 4 CD 1 

Figure 72. Reproduction of Figure 20. 

one and three are members of all the transition flip­

flop transition sets, but column two is not a member of 

any while column four is a member of only the "one's­

catching" flip-flop. 

If the T flip-flop is to be used, then the RS synthesis 

algorithm can be used in conjunction with the T flip-

flop in RS form. The RS flip-flop equations are given 

in Figure 31 and are as follows: 

s1 = xlq2 
- - -

Rl = xlx2q2 
-

s2 = xlx2 + x2ql 

R2 = xlql. 
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The equivalent input of the T flip-flop can be taken 

from Figure 65: 

T. = R.q. + s.q., 
l l l l l 

where i indicates the i th flip-flop. 

Combining the above two sets of equations (while 

checking for static hazard conditions) gives the following 

input equations for the T flip-flop: 
-

Tl = xlx2qlq2 + xlqlq2 
- -

Tz = xlqlq2 + xlx2q2 + x2qlq2 

The circuit diagram is shown lil Figure 73. If desired, 

xl z 
x

2
o 

Tl 
Ql 

Ql 

xl o-----

xl o--

r- ----t 
Xz o __ ...,.l.,__ 

'-----I 

Figure 73. Example problem of Chapter II realized with 
T flip-flops. 

the 
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sixteen-state flow table can be derived from an application 

of the characteristic maps, and is shown in Figure 74. 

xlx2 

QlQ2 00 01 11 10 
11 22 21 21 22 
12 22 23 23 22 
13 14 14 24 24 ,,_ . 
14 :14; i'l4'. 24 24 ' / ,, ,- ' 
21 22 '21', '21' 22 

' - , 
\ I 

22 @ 23 23 @ 
23 34 34 24 24 
24 34 34 @@ 
31 32 41 42 42 
32 @ 43 42 42 
33 44 44 43 43 
34 44 44 41 41 
41 12 ; 41: 42 42 
42 12 43 @® 
43 44 44 '43', ,43', 

\ \ - ., _,, 
44 41 41 

Figure 74. Transition-realizable flow table expansion 
for flow table of Figure 72. 

The overall flow table can give an insight as to what 

type of sanity cycle would be required on power up. 

It is seen from an inspection of the flow table that the 

cycle consisting of x 1x 2 = 10, 00 would put the circuit 

into an acceptable state for the desired operation. 



Summary 

CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

A basic outline of the procedures used in analyzing 

and synthesizing asynchronous sequential logic circuits 

has been presented. The generation of the state variable 

maps was seen to be immediately usable in the generation 

of asynchronous sequential circuits using standard flip­

flops. 

A method was presented in Chapter V that allowed the 

generation of input expressions for RS flip-flops by 

substituting functional expressions (in the form of 

Karnaugh maps) into the characteristic equation of the 

flip-flop. By using the state variable maps as "next 

state" descriptions of the flip-flops, the input expressions 

for the RS flip-flops were obtained. An algorithm was 

presented that specified what each minterm position of 

the Rand S maps should be, once the state variable map 

was specified. The method was applied to synchronous 

sequential circuits in Chapter VI, and seemed to work 

quite well. The clock was assumed implicitly, and was 

not considered to be an input in the respec t ive maps . 

This is standard in current synchronous sequential desig n . 

Transition flip-flops were analyzed in Chapter VII 

using the same technique. The results were not as 
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comprehensive as in the RS flip-flop case, but nevertheless 

some very interesting analysis tools were developed. All 

of the transition flip-flops described required a minimum 

of two state variables for complete characterization. 

It was noted that one of the state variables would necessar­

ily be inaccessible, and this placed certain constraints 

on allowable state transitions in any given column of a 

flow table that was to be realized using transition flip­

flops. The flip-flop output was chosen to be identical 

to one of the state variables. 

The minterm-entry constraints of flow tables with 

up to four state variables (and any number of inputs) 

were specified. It was seen that each column of a flow 

table was independent of the other columns with respect 

to allowable minterm-entries. 

Some examples were given to show possible approaches 

in synthesizing asynchronous sequential problems. A 

usable synthesis procedure was not specified, but bounds 

on the number of transition flip-flops required to realize 

any given flow table were specified, thereby assuring the 

designer of the existence of a workable solution. 

Conclusions 

The analysis techniques developed in this paper give 

a more complete picture of the action of flip-flops in 

both asynchronous and synchronous logic systems. From a 
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given circuit configuration that contains flip-flops it 

is possible to "work backwards" and get a complete flow 

table description of the circuit. This lets the designer 

see at a glance exactly what his circuit action will 

be without having to trace through a circuit diagram. 

Problems, such as essential hazards, can be easily spotted 

and corrective techniques applied. 

An existence proof was given for the generation of a 

transition flip-flop realizable flow table from any given 

flow table. This seems to imply that a flow table expansion 

algorithm may exist. Further work should be done in this 

area to see if one can be generated. 

The structure of the analysis techniques lend them­

selves to computer programming. The RS flip-flop algorithm 

is especially suited for programming, and could be included 

in current design automation systems. 
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Appendix A 

Flow Table Reduction 

The flow table reduction algorithm presented in 

Chapter II basically checked the states for incompatibility. 

If two states were not incompatible, they were considered 

to be compatible. 

A more direct method that gives the same results as 

the above for fully specified flow tables is to check each 

pair of states for compatibility, and then draw a merger 

diagram to choose an optimum reduction. The procedure starts 

from the primitive flow table. The flow table is checked 

for redundant states (i.e., states that have the same out­

put, and whose entries are at or go to the same, or equiv­

alent, states). Two stable states are said to be equivalent 

(and hence redundant) if they are in the same column of the 

flow table, have the same output, and identical input 

changes give rise to transitions to the same or equivalent 

states. "Don't care" entries can be labeled as desired. 

One row of the primitive flow table can be eliminated for 

each pair of redundant states found. 

After redundant states are eliminated, rows are checked 

pairwise to see if they can be merged. In the primitive 

flow table all state changes necessitated a change in the 

row location. After a flow table is merged it is generally 

possible to change stable states by merely changing the input 

without requiring a row change (which means changing one 
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or more of the state variables). The merged flow table 

will give the desired flow table reduction. 

Two or more rows may be merged if there are no con­

flicting state numbers in any given column of the flow table 

for the rows in question. A "don't care" condition is con­

sidered "wild" and may assume any number to insure compati­

bility. All of the state numbers in the merging rows are 

written in the proper column of the merged row, and any 

entry is circled (to indicate a stable state) if it 1s 

circled in any of the merging rows. The outputs (Z) do not 

affect merging, and may be written alongside the stable 

states of the merged row, or left off entirely. The 

primitive flow table can always be referred to when gener­

ating the output map. 

An optimum merger is generally effected through the 

use of a merger diagram. The diagram consists of a circular 

array of the stable states (rows) with lines drawn between 

those states that may be merged. An inspection of the merger 

diagram then gives the desired merged, or reduced, flow 

table. The merging is usually chosen to give the minimum 

number of rows in the merged flow table. 

The flow table of the example problem of Chapter II is 

merged according the above criteria, and the process steps 

are shown in Figure 75. The primitive flow table is taken 

from Figure 2. An inspection of the primitive flow table 

shows there are no redundant states. 



xlx2 
state 00 01 11 10 z 

1 CD 3 2 0 

2 1 7 0 0 ¾ 3 4 G) 5 0 

4 © 3 6 0 

5 3 0 6 1 

6 1 5 © 1 

7 3 G) 8 0 

8 4 7 0 
Merger diagram 

Primitive flow table 

merged row 

1 

3 

5 

7 

X X 1 2 
s 00 01 11 10 

' 2 CD 3 7 0 
'4 00 5 6 

' 6 1 3 CD© 
' 8 4 3 G)® 

Merged flow table 

z 

0 

0 

1 

0 

Figure 75. Example of merging process. 

The merger diagram gives two choices for a minimum­

row reduction. They are: 

n 1 = {1,2; 3,4,5; o; 7,8}, 

and n 2 = {1,2; 3,4; 5,6; 7,8}. 
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A look at the outputs (Z) shows that G) and @ have outputs 

of "1", and G) and © have outputs of "0". Although both 
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final mergings have the same number of rows (states), it is 

generally better to group equal-output states together. 

This generally gives a realization using fewer gates in the 

final expression for the output (Z). The merged flow table 

is then seen to be the same as the one generated in 

Chapter II. 
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Appendix B 

Column Transition Constraints 

The requirements for acceptable state transitions 

within any given column of a flow table for implementation 

using transition flip-flops were given in Chapter VII. The 

comment was made that input changes (column-to-column 

transitions) may cause problems if level-input changes 

occurred at the time of the enabling transition-input 

change. This means that at the time the clock input changes 

in a positive direction (for positive edge-triggered flip­

flops), the level inputs should not change (J, K, D, or T). 

The acceptable columns of each flip-flop are listed 

along with an arrow indicating the columns to which a 

transition may cause problems. If such column-to-column 

transitions should occur, a check on the input excitation 

should be made to insure that the transition constraints 

are met. It should be noted that for flow tables with 

more than two state variables, transitions within a column 

may entail transitions between acceptable vertical transition 

sets. Such transitions should also be checked. 

The JK inter-set transitions that may cause problems 

are as follows: 

1 1 1 1 1 

1 3 
-+ 

3 3 3 

3 3 3 4 3 

1 1, 3' 4, 2. 
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1 1 1 1 1 

1 + 3 3 3 3 

3 3 3 3 4 

2 1, 2 ' 3' 4. 

1 1 1 1 1 1 2 2 

1 1 
+ 

3 3 3 3 2 2 

3 3 3 3 3 4 3 3 

3 1 ' 1 ' 2' 3' 4' 1' 2. 

1 1 1 1 1 1 2 

1 1 3 3 3 3 2 
+ 

4 3 3 3 3 4 3 

4 2' 1, 2' 3, 4' 1. 

1 

3 All transitions allowed. -+ 

3 

1 

1 

3 All transitions allowed. -+ 

3 

2 

1 1 1 1 2 2 

3 1 1 3 2 2 
-+ 

3 3 3 3 3 3 

3 1, 2' 1' 1, 2. 

1 1 1 1 1 2 2 

3 1 1 3 3 2 2 
+ 

4 3 3 3 3 3 3 

4 1, 2 ' 1, 2' 1, 2. 

2 1 1 1 1 

2 3 3 3 3 
+ 

3 3 3 3 4 

1 1 ' 2 ' 3' 4 . 
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2 1 1 1 1 
2 + 3 3 3 3 

3 3 3 3 4 

2 1, 2' 3, 4. 

2 1 1 1 1 1 1 2 
2 

+ 1 1 3 3 3 3 2 
3 3 3 3 3 3 4 3 
3 1, 2' 1, 2' 3' 4, 1. 

2 1 1 1 1 1 1 2 
2 

+ 1 1 3 3 3 3 2 
4 3 3 3 3 3 4 3 
4 1, 2' 1 ' 2 ' 3' 4, 2. 

The D inter-set transitions that may cause problems 

are as follows: 

1 1 1 

1 
+ 3 3 

3 3 3 

1 1' 3 . 

1 1 1 2 

1 1 3 2 -+ 

3 3 3 3 

3 1, 1 ' 1. 

1 1 1 2 

1 3 3 2 -+ 

4 3 3 3 

4 1, 3' 1. 

1 

3 All transitions allowed. -+ 

3 

1 
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1 1 1 

3 -+ 1 3 

3 3 3 

3 1, 1. 

1 1 2 

3 -+ 3 2 

4 3 3 

4 1, 1. 

2 1 1 

2 -+ 3 3 

3 3 4 

1 1, 4. 

2 1 1 1 

2 -+ 1 3 3 

3 3 3 4 

3 1, 1, 4. 

2 1 1 2 

2 -+ 3 3 2 

4 3 4 3 

4 1, 4, 1. 

The clocked T inter-set transitions that may cause 

problems are as follows: 

1 1 1 

1 
-+ 3 3 

3 3 4 

1 1, 4. 

1 1 1 

1 
-+ 3 3 

3 3 4 

2 1, 4. 
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1 1 1 1 2 

1 1 3 3 2 -+ 

3 3 3 4 3 

3 1, 1, 4, 1. 

1 1 1 1 1 2 

1 1 3 3 3 2 -+ 

4 3 3 3 4 3 

4 2, 1, 2, 4, 2. 

1 

3 
All transitions allowed. -+ 

3 

1 

1 

3 All transitions allowed. -+ 
3 

2 

1 1 1 2 

3 1 3 2 -+ 
3 3 3 3 

3 1 , 1, 1. 

1 1 1 2 

3 1 
-+ 

3 2 

4 3 3 3 

4 2, 2, 2. 

2 1 1 

2 3 3 
-+ 

3 3 3 

1 2 , 3. 

2 1 1 

2 3 3 -+ 
3 3 3 

2 2, 3. 



2 

2 

3 
-+ 

1 

1 

3 

1 

3 

3 

1 

3 

3 

1 

3 

3 

2 

2 

3 

3 1, 1, 2, 3, 1. 

2 1 1 1 2 

2 

4 
-+ 

1 

3 

3 

3 

3 

3 

2 

3 

4 2, 2, 3, 2. 

The unclocked T flip-flop has no restrictions placed 

on its inter-set transitions because there is only one 

input. 
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The "one's-catching" JK inter-set transitions that may 

cause problems occur on the negative-going transition of 

the clock input, and are as follows: 

1 1 1 l 

2 3 3 3 
-+ 

3 3 3 4 

1 1, 4, 4. 

1 

2 

3 

4 

1 

2 

4 

4 

-+ 

-+ 

1 

2 

3 

1, 

1 

2 

3 

1, 

1 

3 

3 

1, 

1 

3 

3 

1, 

1 

3 

3 

4' 

1 

3 

3 

4, 

1 

3 

4 

4' 

1 

3 

4 

4' 

2 

2 

3 

1. 

2 

2 

3 

1. 

1 

3 

3 

1 

-+ All transitions allowed. 
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1 1 1 2 

3 
-+ 

2 3 2 

3 3 3 3 

4 1 ' 1' 1. 

1 1 1 2 

3 
-+ 

2 3 2 

4 3 3 3 

4 1' 1, 1. 

2 1 1 1 

2 
-+ 

3 3 3 

3 3 3 4 

1 1, 4 ' 4. 

2 1 1 1 1 2 

2 
-+ 

2 3 3 3 2 

3 3 3 3 4 3 

4 1' 1 ' 4' 4, 1. 

The above listings . provide a caution to the designer 

and point out only possible problem spots. Many of the 

inter-set transitions have "don't cares" for some or all of 

their inputs, and a proper covering will alleviate any 

improper level-input transition at the time of the enabling 

clock transition. 
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