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ABSTRACT 

Optimization of biogas production by use of a microbially enhanced inoculum  

by 

Anna Doloman, Doctor of Philosophy 

Utah State University, 2019 

 

Major Professor: Dr. Charles Miller 
Department: Biological Engineering 
 

Biogas, created from anaerobic transformation of organic matter, is a high-energy 

fuel that can serve as a substitute for conventional fossil-based fuels. Yields of biogas can 

be increased by optimizing anaerobic digestion. In addition to exploration of reactor 

designs to reach high biogas yields, use of the right combinations of microorganisms for 

different organic wastes can lead to process stability over longer periods of operation. 

The goal of this research was to develop and test an approach for optimization of biogas 

production by engineering microbial consortia. Specifically, a consortium that can digest 

algal biomass, collected from wastewater lagoons or open waterbodies. Algal biomass is 

rich in nitrogen and phosphorous and can be used in anaerobic co-digestion of nitrogen-

poor substrates, in addition to being digested as a sole substrate. However, breakdown of 

algal cell walls requires specific microbial enzymatic machinery that is not readily 

available in many sources of inocula.  

The research described here addresses the problem of digesting algal biomass 

with novel algalytic bacteria isolated from sediments from the Logan City, Utah, 

Wastewater Treatment Lagoons. Bacteria were used to augment a microbial consortium 
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that hasn’t digested algal biomass before, leading to an enhanced biogas production from 

this type of substrate. The research also addresses the current state of the anaerobic 

microbiology field and expands on previous efforts to analyze microbial interactions in 

wastewater treatment systems. Specifically, a computational model is developed to aid 

with in silico prognosis of the ability of anaerobic consortia to form complex aggregates 

in anaerobic reactors with an upflow mode of feeding substrate. In addition, the model 

provides insights into bioaugmentation of the microbial aggregates with novel metabolic 

capabilities. Combining modeling predictions and laboratory experiments in anaerobic 

digestion will lead to improved design and more stable engineered systems, and also 

higher yields of biogas.  
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PUBLIC ABSTRACT 

 

Optimization of biogas production by use of a microbially enhanced inoculum  

Anna Doloman 

 

A renewable energy source, biogas, comprises of methane (80%) and carbon 

dioxide (15%), and is a great alternative to the conventional fossil-based fuels, such as 

coal, gas and oil. Biogas is created during anaerobic biological digestion of waste 

materials, such as landfill material, animal manure, wastewater, algal biomass, industrial 

organic waste etc. A biogas potential from organic waste in the United States is estimated 

at about 9 million tons per year and technology allows capture of greenhouse gases, such 

as methane and carbon dioxide, into a form of a fuel. In the light of global climate change 

and efforts to decrease carbon footprint of fuels in daily life, usage of biogas as an 

alternative fuel to fossil fuels looks especially promising.  

The goal of this research was to develop and test an approach for optimization of 

biogas production by engineering microorganisms digesting organic waste. Specifically, 

bacteria that can digest algal biomass, collected from the wastewater lagoons or open 

waterbodies. The research also expands on the previous efforts to analyze microbial 

interactions in wastewater treatment systems. A computational model is developed to aid 

with prognosis of microbial consortia ability to form complex aggregates in reactors with 

upflow mode of feeding substrate. Combining modeling predictions and laboratory 

experiments in organic matter digestion will lead to more stable engineered systems and 

higher yields of biogas.  
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CHAPTER I 

INTRODUCTION  

1. Literature review and justification  

1.1 Need for a sustainable source of energy to substitute for fossil fuels  

Anaerobic digestion (AD) is a biochemical process of converting organic 

particulate into biogas, with methane (80%) and carbon dioxide (15%) as main 

components. Organic particulate supplied for AD can be in a form of landfill material, 

animal manure, wastewater, algal biomass, industrial, institutional, and commercial 

organic waste. The end product of AD, biogas, produces up to 27 MJ/m3 of heat during 

combustion, which is higher than conventional fossil fuels, such as coal and firewood (23 

and 13 MJ/m3 respectively) [1]. In the light of global climate change and efforts to decrease 

carbon footprint of fuels in daily life, usage of biogas as an alternative fuel to fossil fuels 

looks especially promising. Carbon intensity of biogas generated from organic waste is 14 

kg CO2/GJ, while that of fossil fuels (including gasoline, diesel and natural gas) is on 

average 80 kg CO2/GJ [1]. A biogas-methane potential from organic waste in the United 

States is estimated at about 9 million tons per year [2]. Therefore, there is a potential to 

substitute utilization of fossil fuels for the utilization of a sustainable and renewable source 

of energy, biogas from anaerobic digestion.  

1.2 Need for microbial-enhanced inoculum for anaerobic digestion 

Anaerobic digestion, being a dynamically changing microbiological process, has 

long been manipulated only at the level of reactor design and physico-chemical 

maintenance. Manipulation on the level of microorganisms in the system has just started 

to emerge, given a rising number of studies investigating key bacterial players in AD [3-



2 
 

7]. Since AD consists of tightly bound biochemical stages – hydrolysis, 

acetogenesis/acidogenesis and methanogenesis – each of these stages is a possible aim for 

targeted manipulation of microbial consortia. A targeted manipulation at a certain stage of 

AD can remove a process bottleneck associated with rate-limiting hydrolysis, 

accumulation of volatile fatty acids that are toxic to the methanogenic bacteria and even 

low amount of biogas production. Ways to manipulate microbial consortia may include 

inoculation of anaerobic digesters with a mixture of specially-grown microbial consortia. 

For example, a consortium that has enzymatic machinery necessary for the initial 

hydrolysis of a supplied feedstock for the anaerobic digestion. Such an addition to the 

anaerobic reactor will decrease the time of hydrolysis stage and speed-up the overall 

process of anaerobic digestion. A targeted inoculation of anaerobic reactor with a special 

pre-defined microbial consortium can aid not only the hydrolysis stage, but also the stage 

of the methane formation (methanogenesis). Since methanogenic bacteria have a slow 

growth rate [8], addition of an actively growing methanogenic consortium would increase 

the methane production rate in anaerobic reactor.  

1.3 Specifics of anaerobic reactor define possibilities for improvement of 

biogas production 

The anaerobic reactor of current interest with a high-rate of AD capability is the 

Upflow Anaerobic Sludge blanket reactor (UASB) (Figure 1-1). After more than 30 years 

of intense research and industrial applications, the UASB reactor has gained a general 

praise for the exceptional rates of anaerobic digestion and high amounts of produced 

methane as the end product [9, 10]. The upflow movement of a feed wastewater in the 

system creates conditions for the formation of unique microbial structures, anaerobic 
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granulated sludge [11, 12], located in the sludge bed of the reactor (Figure 1-1). Anaerobic 

bacteria immobilized in granulated sludge are exceptionally good at digesting a supplied 

organic feed and have a high capacity to withstand possible fluctuations during the AD 

process (changes in pH, outbursts of ammonia or decreased hydraulic retention time). 

However, granulated sludge takes a long time to form in newly started UASB reactors (2-

3 months) [13, 14], posing a possible target for microbial manipulation. This manipulation 

can be in inoculating UASB reactor with a pre-formed granular consortium. Preliminary 

lab-scale UASB reactors (with microorganisms capable of digesting a future substrate of 

interest) can be used to create a granulated consortium of particular interest. Once the 

granular biomass is formed, it can serve as a source of inoculum for an industrial-scale 

reactor. The main advantage of utilizing this lab-to-

industry approach is that inoculum can be custom-

designed to meet the required substrate-specific 

metabolic activity. By augmenting sludge with a 

bacterium that possess unique metabolic features, not 

present in the native microbial community, one can 

prepare multiple substrate-specific inoculums in small 

batches that will serve as seeding inoculums to improve 

digestion on a larger scale of treatment [15]. Laboratory practices of introducing a 

microorganism of interest into a granulated sludge have been successfully implemented for 

methanogenic species [16], some acetogenic and acidogenic species [17, 18] and lipolytic 

species [19]. However, there are no reports on augmentation with microorganisms that 

initiate the hydrolysis stage of a complex biomass (a rate limiting step of AD). A potential 

Figure 1-1. A schematic of a 
UASB reactor 
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set of studies to reach this aim would include incorporation of a hydrolytic bacterium into 

a pre-formed anaerobic granular sludge.  

1.4 Anaerobic digestion of a problematic substrate, algal biomass, can be 

improved with microbial manipulations 

Algae, being widely present in eutrophicated lakes and wastewater lagoons, can 

serve as a biomass source for production of biofuels. Algal biomass has long been used for 

biodiesel production, due to its high lipid content [20-22]. Despite this, AD of algal 

biomass has received less attention due to the presence of complex polysaccharides in the 

structure of algal cell walls, which makes the hydrolysis of this biomass a rate-limiting step 

in the biomethane production process. This limitation can be resolved with initial pre-

treatment of algal biomass utilizing thermal, chemical or ultrasound processes [23-27]. 

However, these pretreatments are not energy-effective and are time consuming. Possible 

solution is a biological pretreatment. Specifically, use of bacteria that can lyse algal 

biomass.  

Sources of bacteria with algalytic capabilities can be water or sediments of the 

highly eutrophicated lakes. Eutrophicated environments have a very distinct feature: 

abundance of Phosphorous and Nitrogen, leading to high concentrations of both bacteria 

and algae, competing for this abundant commodity [28, 29]. Because of competition, 

bacteria have developed sophisticated defense mechanisms to outcompete algae not only 

with the higher growth rates, but also with secretion of bioactive substances. Those 

substances can suppress algal growth or facilitate hydrolysis of the algal biomass, by lysing 

the cell walls. Some of the bioactive substances, like exoenzymes and peptides of various 

chemical structures, have been detected and successfully utilized for biological control of 
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harmful algal blooms [30]. For example, two strains of algalytic Pseudomonas spp. bacteria 

that were identified to secrete exoenzymes disrupting the cell walls of diatoms 

(Chaetoceros spp. and Stephanodiscus spp.) in marine and freshwater environments [31, 

32]. Another freshwater bacterium Alcaligenes denitrificans demonstrated an algalytic 

behavior towards cyanobacteria causing harmful algal blooms, Microcystis spp. [33].  

In most of the cases, disruption of algal cells makes the cell components available 

for the attacking bacteria to utilize and proliferate. However, in closed and controlled 

systems like anaerobic digesters, release of the algae cell components can boost the 

performance of the whole chain of anaerobic fermentative microorganisms. A small 

amount of algalytic bacteria can fuel the whole microbial network and enhance biogas 

production from algal biomass without need for the costly chemical and thermal pre-

treatments. An exciting opportunity lies in augmenting a very stable fermentative 

consortium with algalytic bacteria, to achieve high rates of anaerobic digestion of algal 

biomass. Anaerobic granulated sludge formed in the UASB reactor described earlier is a 

suitable candidate for the augmentation studies.  

1.5 Little is known on the mechanism of anaerobic granulation 

Current body of knowledge provides a spectrum of theories on the process of 

anaerobic granulation. The main reasoning for the granulation per se is the upflow velocity 

inside sludge bed of a UASB reactor. Microbial cells moving up with the flow of the feed 

tend to stick to other microbial cells. Such sticking behavior prevents a washout of the 

microbial inoculum from a reactor (the outlet for the digested feed is located in the top part 

of a UASB reactor) [34, 35]. The most widely accepted theory states that granulation starts 

with a formation of a future granule’s core, comprised of filamentous methanogenic 
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bacteria Methanothrix, together with Methanosarcina, which secrete extracellular 

polymers (ECP) [36-38]. Initial aggregation can also be due to the syntrophic associations 

between either hydrogenotrophic or acetotrophic methanogens and syntrophic fatty-acid 

oxidizing bacteria [39]. The surface of the formed core can have a charge and be attractive 

for the oppositely charged anaerobic bacteria that are present in the dispersed inoculum of 

a UASB rector [40-42]. Hydrophobic nature of some anaerobic microorganisms makes 

them more inclined towards aggregation and attachment to the negatively charged granular 

core [43]. Chemo-attractance of other bacteria towards ECPs and substrate around the 

granule core can also plays an important role in the further aggregation and formation of 

mature granules [44, 45]. Despite these possible explanations of the granulation process, 

no speculations have been made on the introduction mechanisms of new microbial species 

into a mature granular consortium. A model, validated with experimental data, is needed 

to promote understanding of this subject. One of the possible model engines that can predict 

and simulate microbial behavior based on only intrinsic characteristics of a microbial cell 

(its growth rate, chemo-attractance towards any substance and rate of substrate utilization) 

is iDynoMiCS software package [46]. This software is able to simulate fairly accurate 

substrate conversion rates and formation of any cell aggregates [47, 48]. A successfully 

modeled process of anaerobic granulation with incorporation of new microbial species and 

adaptation to a new type of substrate will facilitate any possible engineering approaches to 

modify anaerobic granulated consortia for the needs of digesting a substrate of interest.  

2. The aim, hypothesis and specific objectives of the research 

The aim of this work is to develop and test an approach for optimization of biogas 

production by engineering microbial consortia. Specifically, a consortium digesting algal 
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biomass, collected from the wastewater lagoons or open waterbodies. Sediments from the 

local Logan City, Utah, Wastewater Treatment Lagoons (LCWL) are used as a starting 

material for the algalytic bacteria enrichments. The choice of a starting material was 

governed by a history of LCWL experiencing algal blooms over the 50 years of treating 

municipal wastewater from Cache Valley. Despite the bloom outbreaks every summer, a 

thick layer of microbial sediments in LCWL still contributes to the effective water 

treatment process [49]. Thus, the main hypothesis is that microbial sediments in LCWL 

have been adapted to deal with the microalgal blooms outbreaks and possess an algalytic 

metabolic activity, which can be harnessed for the good of anaerobic digestion in the 

bioreactors. To test this hypothesis and develop a roadmap for similar future work, the 

following specific objectives are addressed: 

1) Characterize and preserve the active anaerobic sludge from UASB reactor; 

2) Isolate and identify algalytic bacteria from LCWL sediment-seeded UASB 

reactor treating microalgal biomass; 

3) Augment active granular sludge with algalytic bacteria and test the efficiency 

of anaerobic digestion of algal biomass; 

4) Develop a computational model for granular sludge formation and apply it to 

predict augmentation success in silico.   

3. Significance 

A combination of the research conducted for each chapter in this dissertation 

provides a roadmap for the optimization of biogas production via targeted engineering of 

the microbial community inside anaerobic reactor. This is the first coherent study bringing 

together high-throughput sequencing techniques, targeted isolation from environmental 
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sample and a direct augmentation of the established microbial consortia inside the UASB 

reactor for improved anaerobic digestion. Studies described in every chapter of this 

dissertation are dependent on the results and knowledge gained from the previous chapters, 

thus being parts of a holistic study of a multistep strategy for improving biogas production 

by use of a microbially enhanced inoculum.  

In addition to providing an example of a bottom-up strategy of improving anaerobic 

digestion, research also contributes to the fundamental understanding of the aspects of 

anaerobic granulation. The last two chapters on the modeling of microbial aggregation 

describe a ready-to-use tool for engineers willing to tackle microbial aspects of anaerobic 

digestion, in addition to the traditionally equipment-based optimization approaches in the 

field of anaerobic treatment.        

Results and techniques of this dissertation research can have strong applications on 

the industrial scale for enhancing biogas yields from the organic matter of choice. 

Preservation of the active anaerobic inoculum can help to reduce the operational down time 

of the industrial- and laboratory-scale digesters (at least 20-30 days), thus increasing the 

yields of the biogas for the same period of operation time. An opportunity to preserve active 

anaerobic inoculum at convenient conditions and temperatures can stabilize the 

intermittent flow of wastewater treated in small-scale facilities, which are dependent on the 

discontinuous supply of feed from multiple locations.    

An approach to the augmentation of the established anaerobic consortia with the 

microorganism possessing a metabolic feature of interest for the digestion can be used to 

further increase biogas yields during anaerobic digestion. Having a computational model 

that can predict success or failure of the bioaugmentation scenario can greatly reduce the 



9 
 

costs of preliminary laboratory studies prior to the application on a large scale.  

4. Structure of the dissertation 

This dissertation is structured in a multiple paper format. Chapter 1 provides an 

overview and justification of the subject area investigated in the dissertation. An in-depth 

literature review for each sub-subject investigated in this research is provided in every 

chapter.  

Chapter 2 – “Qualitative analysis of microbial dynamics during anaerobic digestion 

of microalgal biomass in a UASB reactor” is a paper published in a peer-reviewed journal 

and focuses on characterizing microbial community within algal-fed anaerobic reactor. 

Specifically, the paper makes connection with the type of the feed supplied into the UASB 

reactor (mixed algal biomass and sodium acetate) and the fluctuations in the microbial 

composition over the period of anaerobic digestion. The key microbial groups are identified 

and potential key hydrolytic bacteria are suggested.  

Chapter 3 – “Activity of preserved anaerobic sludge” is a paper submitted for 

publication and describes the effect of the storage conditions on the preservation the active 

anaerobic sludge. Chapter 4 – “Isolation and characterization of an algalytic bacterium 

from a wastewater lagoon” is a manuscript submitted for publication and describes 

isolation of potentially algalytic bacteria from the sediments-became-anaerobic sludge of 

a UASB reactor digesting algal biomass and sodium acetate. Isolated algalytic bacteria 

were tested as augmenting objects for the granular sludge, described in the Chapter 5 – 

“Augmentation of granular anaerobic sludge with algalytic bacteria enhances methane 

production from microalgal biomass”, which is a manuscript in preparation for submission.  

Chapter 6 – “Modeling de novo granulation of anaerobic sludge” is a paper 
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published in a peer-reviewed journal and describes a novel computational model developed 

to visualize anaerobic granulation and predict methane yields from the resulting consortia 

fed with a substrate of interest. The following and the last research chapter, Chapter 7 – “A 

model for augmented granulated sludge” is a paper based on the Chapter 6 model, taking 

it further and predicting a structure of an augmented granule grown on cellulose-rich 

substrate and transferred to the lipid-rich feed.  

Finally, Chapter 8 – “Summary and engineering significance” presents conclusions 

from the whole research conducted in the dissertation. The chapter also provides 

recommendations for the future work. 
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CHAPTER II 

QUALITATIVE ANALYSIS OF MICROBIAL DYNAMICS DURING ANAEROBIC 

DIGESTION OF MICROALGAL BIOMASS IN A UASB REACTOR 1 

Abstract  

Anaerobic digestion (AD) is a microbiologically coordinated process with 

dynamic relationships between bacterial players. Current understanding of dynamic 

changes in the bacterial composition during the AD process is incomplete. The objective 

of this research was to assess changes in bacterial community composition that 

coordinates with anaerobic co-digestion of microalgal biomass cultivated on municipal 

wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of 

microalgae decomposition and biogas production. Samples of the sludge were collected 

throughout AD and extracted DNA was subjected to next-generation sequencing using 

methanogen mcrA gene specific and universal bacterial primers. Analysis of the data 

revealed that samples taken at different stages of AD had varying bacterial composition. 

A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was 

identified to be putatively responsible for the hydrolysis of microalgal biomass. The 

methanogenesis phase was dominated by Methanosarcina mazei. Results of observed 

changes in the composition of microbial communities during AD can be used as a road 

map to stimulate key bacterial species identified at each phase of AD to increase yield of 

biogas and rate of substrate decomposition. This research demonstrates a successful 

exploitation of methane production from microalgae without any biomass pretreatment. 

                                                             
1 Doloman A., Soboh Y., Sims R.C., Miller C.D.: Microbial Dynamics During Anaerobic Digestion of 
Microalgal Biomass and Sodium Acetate in UASB Reactors. International Journal of Microbiology, vol. 
2017, 12 pages, 2017 
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Introduction  

Anaerobic digestion (AD), being a dynamically changing microbiological 

process, has long been manipulated only at the level of reactor design and 

physicochemical maintenance. Manipulation on the level of microorganisms in the 

system is more recent as evidenced by the rising number of studies investigating key 

bacterial players in AD [1–5]. Since AD consists of tightly linked biochemical stages that 

include hydrolysis, acetogenesis/acidogenesis, and methanogenesis, each of these stages 

is a possible aim for targeted manipulation of microbial consortia. A targeted 

manipulation at a certain stage of AD can remove a process bottleneck associated with 

rate-limiting hydrolysis, accumulation of volatile fatty acids that are toxic to the 

methanogenic bacteria, and even low amount of biogas production [6]. To facilitate 

targeted manipulation and monitor microbial diversity in working bioreactors, recent 

studies have highlighted the utilization of molecular techniques such as FISH (fluorescent 

in situ hybridization), DNA-hybridization on microchips, qPCR, and flow cytometry [7, 

8]. Such management would be beneficial in order to predict possible failures in the AD 

due to shifts in the microbial communities and also to maintain proper organic loading 

rates of substrate and assess overall healthy condition of digesters. 

The spectrum of substrates used for the AD has broadened greatly during the last 

five years, with utilization of a previously thought difficult to digest biomass, such as 

biomass with high cellulose content like grass and silage [9–13]. One substrate still 

resistant to AD is microalgal biomass. Microalgae, being widely present in eutrophicated 

lakes and wastewater lagoons, can serve as a biomass source for the production of 

biofuels. Microalgal biomass has been historically used for biodiesel production, due to 
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its high lipid content [14–16], and only within the last 5–7 years have microalgae 

received an increased attention as a substrate for AD. Resistance of microalgal biomass to 

AD is mainly contributed by the presence of complex polysaccharides in the structure of 

microalgal cell walls, which makes the hydrolysis of this biomass a rate-limiting step in 

the biomethane production process. This limitation can be resolved with initial 

pretreatment of microalgal biomass by thermal, chemical, ultrasound, and ozonation 

processes and even application of constant magnetic field [17–26]. In addition to the 

difficulties with initial hydrolysis of microalgae, natural low carbon to nitrogen ratio of 

this substrate is not sufficient to sustain AD, and to overcome this limitation, a usual 

strategy is blending microalgal biomass with rich carbon sources prior to digestion, such 

as paper and maize silage [24, 27, 28]. Co-digestion with conventional AD substrates, 

such as swine manure and waste activated sludge, is also popular, but in some cases 

yields of methane are decreased, yielding, however, higher total biogas yields [29, 30].  

In our study, we investigated AD of intact microalgal biomass, harvested from 

wastewater lagoons (Logan Wastewater Lagoons, Logan, Utah). The Logan Lagoons 

municipal wastewater treatment plant utilizes a system of facultative lagoons in parallel 

and series arrangement with a total wastewater detention time of 60 to 90 days, occupies 

an area of 640 acres (2.56 km), and treats 10–15MGD. Microalgal biomass grows at the 

surface of the water-air interface throughout the lagoon system. Harvested microalgal 

biomass for the experiment was mixed with sodium acetate to increase carbon to nitrogen 

ratio. Anaerobic digestion was performed in an upflow anaerobic sludge blanket reactor 

(UASB). In the UASB process, influent is distributed throughout the system in upflow 

mode, bottom to up, flowing through a sludge blanket of anaerobic microorganisms. A 
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constant contact between influent and microorganisms in a sludge bed results in a 

digestion of organic matter in the influent and production of a biogas. Generated biogas 

in a form of gas bubbles raises to the upper part of the reactor, where it is captured in a 

gas collection dome. A mixture of digested influent and sludge is kept from rising into 

the gas collection dome due to the separating baffles, installed around the circumference 

of the reactor. Liquid without sludge and heavy particles is allowed to pass into the 

effluent collection system, located above baffles. 

In this study sludge bed microorganisms were analyzed over the course of time to 

assess microbial dynamics and to identify potential alga-lytic bacteria via analysis of a 

bacterial metagenome. Understanding how microorganisms coordinate AD of microalgal 

biomass will help to maintain biosystem stability during future AD and can be 

incorporated into the growing knowledge database on the microbiology of AD. This 

information can be further utilized to create an effective system to monitor AD with 

molecular techniques (FISH, qPCR, etc.) and to design effective microbial consortia that 

will increase biogas yields. 

Materials and Methods  

1. Reactor design and operation  

Duplicates of UASB reactors were made of Plexiglass at the Utah Water Research 

Laboratory (UWRL) and each had a working volume of 32.4 L. Reactors had deflectors 

to prevent washout of sludge bed solids and three phase separators to direct collection 

of biogas. There were three sample collection ports along the height of the reactor and a 

substrate distribution system 5 cm above the reactor bottom. 
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Thermostat control of a rubber heating tape around reactor, thermocouple, and insulation 

enabled maintenance of a temperature regime at 35 ± 2 ℃. A peristaltic pump with a 

double channel head was used to feed both reactors. Generated biogas passed through the 

ice-cooling system to ensure moisture-free monitoring of biogas flow via flow meter with 

a working range of 0 to 500 sccm/min. The flow meters were calibrated using a mixture 

of methane and carbon dioxide of 80% and 20%, respectively, and were connected to 

a Campbell Scientific data logger type CR800 to measure millivolts of the output form 

the flow meters. The methane composition was measured every 5 to 6 days using a gas 

chromatograph (GC) with a thermal conductivity detector (TCD), a packed column 

(Alltec, CTR1) 1.83m × 6.35 mm, and a Valco injection valve with a 500 𝜇𝜇L sample 

loop. 

Each reactor was seeded with 11 L of anaerobic sediment from Logan Lagoons, 

Utah, which resulted in 9.7gVSS (dry weight)/L of reactor volume. Sediments from 

Logan Lagoons were chosen as a reliable source of the anaerobic inoculum utilized in 

previous AD studies [32]. Reactors were fed with a mixture of microalgal biomass and 

sodium acetate to achieve a final C/N ratio of 21 : 1.Microalgal biomass was obtained by 

continuous centrifugation of the water from Logan Lagoons every 10–15 days. 

Microalgae comprised the genera such as Scenedesmus, Chlorella, Chlorococcum, 

Chlamydomonas, Synedra, Navicula, Schroederia, and Euglena, Coelastrum and some 

members of nonheterocystous cyanobacteria. The average COD of microalgal biomass 

was 72 g/L, with C/N ratio of 5/1. To increase the C/N ratio to the favorable value 

for anaerobic digestion of 21:1, sodium acetate was chosen as a rich, readily available 

carbon source. The feedstock had a final pH of 6-7 and pH fluctuations were adjusted 
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with a hydrochloric acid solution. To acclimatize inoculum to the microalgae and sodium 

acetate in a feedstock, low organic loading rates (OLR) were initially applied, 0.9 

gCOD/L⋅d, which were gradually increased during the operation of the reactor based on 

reactor performance and COD removal efficiency. Final OLR was 5.4 gCOD/L⋅d. 

Hydraulic retention time for the substrate was gradually decreased from 7 days to 

5 days. Reactors were operated for 81 days. 

2. Sampling, DNA extraction, and sequencing 

Samples of the sludge bed microbial community were taken throughout the time 

course of anaerobic digestion (days 19, 57, and 75). Duplicate sludge bed samples were 

obtained from bottom and upper sampling ports of the UASB reactors and were stored 

at −80°C immediately after the collection. Extraction of DNA was performed using 

PowerSoil DNA isolation kit (MoBio, Carlsbad) following the manufacturer’s 

instructions. Resulting DNA was used for the PCR amplification with mcrA gene specific 

primer set and universal bacterial 16S rDNA specific primer set (Supplemental Table 2-

1) [33–35]. Each primer had a preceding adapter sequence (forward or reverse) specific 

for the IlluminaMiSeq platform. PCR reactions were performed using KAPA HiFi 

HotStart ReadyMix (Kapa Biosystems, Wilmington) under the following conditions: 

initial denaturation at 95°C for 3 minutes, followed by 25 cycles consisting of 30 seconds 

at 95°C, 30 seconds at primer annealing temperature, and 30 seconds at 72°C. Final 

extension lasted 5 minutes at 72°C. Primer annealing temperature was 50°C for primer 

pair 338F and 785R and 56°C for ML primer pair. PCR products were submitted to the 

Molecular Research Core Facility at the Idaho State University (Pocatello, ID, USA) for 
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further purification, library preparation (Nextera kit), and sequencing on the Illumina 

MiSeq platform (following manufacturer’s instructions [36]). 

3. Computational Analysis 

Analysis of 16S rRNA gene data was performed using a MiSeq SOP pipeline, 

described by Kozich et al. [37] and implemented on MOTHUR software [38]. Analysis 

included (1) quality trimming of the reads, (2) chimera check with UCHIME algorithm, 

(3) extraction of unique reads and alignment to the classification databases, (4) actual 

classification using Bayesian classifier, and (5) OTU identification. Sequences generated 

from PCR with both types of primers, universal bacterial 338F and 785R and 

methanogen-specific MLr-MLf, were processed in a similar pipeline, with the only 

difference regarding database used for the sequences alignment and classification. For 

sequences generated with 338F and 785R primer set, SILVA V4 database 

(http://www.arb-silva.de/) was used for the classification and alignment. For sequences 

generated with mcrA gene specific primer set, a database for classification and alignment 

was manually created from pooling the mcrA sequences from FunGene database 

(http://fungene.cme.msu.edu/).The algorithm  for analysis of mcrA sequences in 

MOTHUR software was previously described [39]. To build a phylogenetic tree of the 

classified mcrA sequences, MEGA 6.06 package was used, incorporating Tamura-Nei 

model with maximum likelihood analysis and 1000 bootstraps.  

The internal MOTHUR command unifrac.weighted was used to calculate the 

significance of separate clustering of sequences from the samples taken at different time 

points of anaerobic digestion. A statistical tool in MOTHUR, HOMOVA, was used to 

calculate the level of variation among samples depending on the duration of anaerobic 
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digestion. In more detail, algorithm assessed variability of OTU composition at different 

time points during AD, comparing level of variation for one pair of samples at a time 

(e.g., difference in variation of OTU composition between initial inoculum and samples 

taken at the end of AD). Beta-diversity for each sample amplified and sequenced with 

universal bacterial primer pair was estimated in a comparative heat map, while looking at 

the relative abundance of each OTU across all samples. Bacterial OTUs of interest were 

pulled from the classification table with custom Python scripts. Finally, depth of the 

conducted sequencing effort (rarefaction curve) was calculated using summary.single 

command with estimation of Good’s coverage. A figure illustrating a general workflow 

of sample analysis can be found in the Supplemental Figure 2-2. 

4. Data accessibility 

All metagenome sequences (both universal bacterial and mcrA gene specific) are 

accessible through the NCBI Sequence Read Archive (SRP058350). 

Results  

1. Anaerobic digestion of microalgal biomass and sodium acetate 

Results on utilization of a UASB reactor to digest a mixed feedstock of 

microalgae and sodium acetate are described in a recently published paper by two of this 

paper’s authors [40] and this research is specifically aimed at results from analysis of 

microbial community that lead to the process of anaerobic digestion. Briefly, feedstock 

for the anaerobic digestion was combined with final C/N ratio of 21/1 and biogas 

production rate was 37 L/day during the last week of reactors operation (days 

74–81, Figure 2-1). At organic loading rates corresponding to the initial COD of influent 

6.25g/L that was increased to 27.2 g/L, the UASB reactors demonstrated an average COD 
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removal rate of 79% [40]. Utilization of microalgal biomass and sodium acetate as a 

feedstock for AD in UASB yielded, on average, 85% methane in the produced biogas 

[40]. The fraction of methane gas that was produced explicitly from microalgal biomass 

was calculated from the mass balance of influent COD conversion including production 

of cell mass [41]. Method and calculations are described in detail in the paper by Soboh 

et al. [40] and it demonstrates an estimation of 11–26% of methane being produced 

explicitly from decomposition of microalgal biomass. With the satisfactory performance 

of both reactors, samples of sludge bed were taken during the operation of AD (days 19, 

57, and 75) and processed as described in Materials and Methods. 

 

 
Figure 2-1. Biogas production rate and changes in the OLR during AD of microalgae and 

sodium acetate in two reactors. Arrows point to the days, when sludge samples were 

taken. 
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2. Sequencing of the DNA from the sludge samples 

A total of 7,433,629 reads were generated during the sequencing of all samples 

from the amplification of 16S rRNA and methanogen-specific mcrA genes. Sequencing 

of PCR product from amplification with 16S rRNA universal bacterial primer set resulted 

in 5,721,724 reads, while sequencing after amplification with primer set specific for the 

mcrA gene yielded 171,190 reads. In the 16S rRNA set, 975,677 reads were identified as 

unique. Rarefaction curve for the depth of the sequencing effort for 16S rRNA data is 

demonstrated in Figure 2-2. For the mcrA gene set, after quality trimming and chimera 

checking, 64.7% of new sequences were identified as unique (other reads were copies of 

those in a unique set) and used for further classification. 

 
Figure 2-2. Rarefaction curve of the microbial diversity throughout the time course of 

anaerobic digestion of microalgae and sodium acetate. 
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3. Classification of identified OTUs in bacterial 16s rRNA samples 

Amplification and sequencing with universal bacterial primers (338F and 785R) 

resulted in identification of 640 different bacterial OTUs. To understand dynamic 

changes in the microbial composition of a sludge bed during the AD of microalgal 

biomass and sodium acetate, it was necessary to identify key shared OTUs among all 

samples. A command get.sharedseqs in the MOTHUR package was used. Shared among 

all of the samples were 61 core taxa, and an additional 10 taxa groups were assigned as 

“unclassified”. The core 61 taxa were distributed among 11 major phyla, Firmicutes, 

Bacteroidetes, Proteobacteria, Spirochaetes, Synergistetes, Armatimonadetes, 

Tenericutes, Actinobacteria, OD1, Verrucomicrobia, and Thermotogae. Dynamics of 

microbial composition during the course of AD can be observed in Figure 2-3. 

The Proteobacteria phylum had the biggest decrease in the number of assigned 

sequences in comparison with initial inoculum composition. In reactor 1 (Figure 2-3(A)), 

Proteobacteria-assigned sequences decreased from 48% in the initial inoculum to 23% on 

day 19; and in reactor 2 a decrease was from 51% to mean 26% across the sludge bed. 

The opposite was true for the sequences assigned to the Bacteroidetes phylum, where 

there was a defined increase from 11% (10% for the reactor 2) to the 42% (32% for the 

reactor 2) of the total classified sequences in 19 days of reactors operation on microalgal 

biomass and sodium acetate.  

To define major bacterial contributors in the microbial composition during 

digestion of microalgae and sodium acetate, core OTUs were classified on the order level 

(Figure 2-4). Both reactors demonstrate similar patterns of microbial dynamics during 

AD. These patterns include an increase in the number of sequences classified as 
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Bacteroidales, Pseudomonadales, Enterobacteriales, and Synergistales during the start-up 

of reactors (the 19-day period) and a decrease in the number of sequences related to 

Syntrophobacterales, Rhodocyclales, Actinomycetales, and Lactobacillales during the 

same 19-day start-up period. The period after the start-up, sampling days 57 and 75, is 

characterized by a specific increase in the amount of Clostridiales in both reactors and an 

increase of Pseudomonadales in reactor 2. Percentagewise, in reactor 1, 

Pseudomonadales reached the highest of 17% of the microbial population on day 19 

(down and upper fractions combined), whereas in reactor 2, the highest population of 

Pseudomonadales was on day 75, 60%. For Clostridiales, a complete opposite pattern is 

observed: the highest population for reactor 1 was on day 75, when Clostridiales 

comprised 80.7% of the microbial population, while for reactor 2 number of Clostridiales 

sequences was not higher than 54.4% on day 57. 
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Figure 2-3. Microbial dynamics on phyla level in the UASB reactors (reactor 1 (A) and 

reactor 2 (B)) digesting microalgal biomass and sodium acetate. Phyla Armatimonadetes, 

Tenericutes, Actinobacteria, OD1 and Verrucomicrobia contributed each less than 1% of 

the total shared microbial population among all samples (“Other”).   

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4. Microbial dynamics on order level for UASB reactor 1 (A) and reactor 2 (B), 

digesting microalgal biomass and sodium acetate.  

A B
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4. Comparative qualitative and statistical analysis of bacterial population profiles 

throughout the course of AD 

To assess the statistical relevance of changes in the bacterial group composition 

between samples of 16S rRNA taken at different time points of AD, unifrac.weighted 

command in MOTHUR was used. This command compares pairwise all the sampling 

groups and upper and down samples were combined. Results of assessment of separation 

significance are presented in Table 2-1. Since𝑊𝑊Sig has a 𝑝𝑝 value that should be <0.05 

[42], results in Table 2-1 demonstrate a significant (𝑊𝑊Sig < 0.001 and 𝑊𝑊Sig < 0.05) 

separation of OTU groups at different stages of AD. 

 

Table 2-1. Calculation of significance of 16S rRNA samples separation at different time 

points of anaerobic digestion.  

 
 

 

 

 

 

An additional statistical assessment was conducted to ensure close relation of 

samples taken at the same time points of AD but from different reactors. This was 

necessary from the standpoint of replicating the experimental design in two reactors. 

From the heat map (Supplemental Figure 2-1), calculated with jclass algorithm in 

MOTHUR, one can see that beta-diversity (internal compositional heterogeneity) of 

samples taken at the same time point from two reactors is closely related to each other 

Groups WScore WSig 
Day19 – Inoculum 1 <0.0010 
Day19 – Day57 1 0.017 
Inoculum – Day57 1 <0.0010 
Day19 – Day75 0.602815 0.018 
Inoculum – Day75 0.895479 <0.0010 
Day57 – Day75 0.404311 <0.0010 
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(bright red color, on a diagonal of the pyramid), whereas samples are significantly 

different in OTU composition when compared to samples taken at different time points 

(19th day and 57th day, e.g.). 

5. Classification of identified OTUs in mcrA gene sequencing data  

Reads generated from amplification with methanogen mcrA gene specific primer 

set were quality trimmed and analyzed in MOTHUR software package. Classification of 

aligned reads in a FunGene database resulted in the identification of 14 different species 

of methanogenic bacteria and 2 uncultured/unclassified archaeal species. A phylogenetic 

tree of all identified species (all time points of AD) is depicted in Figure 2-5. 

Clustering of the total number of reads related to the identified methanogenic 

species on the order level demonstrated a single order dominated system (Table 2-2). 

General dynamics of the number of total methanogenic reads sequenced during the time 

course of AD is depicted in Figure 2-6. Results presented in Figure 2-6 indicate an 

increase in the number of methanogen-related reads during the time course of the AD. A 

high number of methanogenic reads identified on the 57th day of reactors operation is in 

agreement with the exponential increase in the amount of biogas being produced after 

this time point (Figure 2-1). Assessment of the species distribution in the identified 

dominant Methanosarcinales order revealed a single-species dominant methanogenic 

system (Figure 2-7), with Methanosarcina mazei leading to the digestion of microalgae 

and sodium acetate on the last stage of anaerobic digestion, methanogenesis. 
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Table 2-2. Total number of reads related to the identified methanogenic species during 

the course of AD of microalgae and sodium acetate. “Up” and “down” labels next to the 

day of sampling refer to the upper or bottom part of the sampled sludge bed. Data is 

combined for both reactors. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Phylogenetic tree of all identified methanogenic species in the amplified 

mcrA gene samples.  

 

 

 

 

 In
oc

ul
um

 

D
ay

 1
9,

 u
p 

D
ay

 1
9,

 d
ow

n 

D
ay

 5
7,

 u
p 

D
ay

 5
7,

 d
ow

n 

D
ay

 7
5,

 u
p 

D
ay

 7
5,

 d
ow

n 

Methanobacteriales 0 0 1 15 0 7 2 
Methanocellales 0 1 0 0 0 0 0 
Methanomicrobiales 9 14 27 12 5 0 0 
Methanosarcinales 61 1466 808 42459 44169 14166 10829 



30 
 

 

 

Figure 2-6. Dynamics of the number of methanogenic reads sequenced during the time 

course of AD of microalgae and sodium acetate. “Up” and “down” labels next to the day 

of sampling refer to the upper or bottom part of the sampled sludge bed. 

 
 

 

Figure 2-7. Dynamics of relative abundance of species members of Methanosarcinales 

order during the time course of AD of microalgae and sodium acetate.  
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Discussion  

In this study, the microbial dynamics governing anaerobic digestion of microalgal 

biomass and sodium acetate were analyzed. Use of metagenome sequencing revealed a 

dynamic shift in bacterial community structures over the time course of AD. Initial 

bacterial inoculum for start-up of the AD process in a UASB reactor was taken from 

anaerobic sediments in the Logan Lagoons (a wastewater treatment facility in Logan, 

Utah). These sediments are thought to contribute to the exceptional performance of 

Logan Lagoons wastewater treatment facility for over 40 years [43]. Testing this 

exceptional productivity of sediments on AD of microalgal biomass (which accumulates 

in the lagoons and is a significant carbon source for the microorganisms) led to the 

identification of the key microorganisms contributing to the hydrolysis of microalgal 

biomass and subsequent methane production in this study. Since microalgal biomass in 

Logan Lagoons has a low natural C/N ratio (5/1) that is not sufficient for successful 

anaerobic digestion (batch preliminary experiments [44]), microalgae were mixed with 

sodium acetate to increase C/N ratio to 21/1. 

To better assess the composition of the microbial community during AD of 

microalgal biomass and sodium acetate, duplicate UASB reactors were constructed, each 

bearing two sampling ports located at the bottom and upper parts of the sludge bed. Such 

sampling allowed examining the influence of a direct exposure of microorganisms to the 

substrate at the bottom of the reactor, contrary to the exposure of microorganisms at the 

upper part of the sludge bed to the already predigested substrate (by the microorganisms 

at the bottom part of the sludge bed). 
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Results demonstrated a fairly close distribution of microorganisms across the 

sludge bed (Supplemental Figure 2-1), with the only exception of the number of assigned 

reads to the order of Clostridiales during the start-up of the reactor (19 days of operation) 

and the order of Pseudomonadales at day 75 of reactor operation (Figure 2-4). Even 

though bottom and upper sampling ports of sludge bed are located 20 cm apart, this 

distance can indeed differentiate between two different stages of anaerobic digestion: 

initial hydrolysis and acidogenesis/acetogenesis. A dominant system comprising 

Clostridiales at day 57 and day 75 with the second dominant order of Pseudomonadales 

can be observed from Figure 2-7. Clostridiales are also dominant at day 19 (the bottom 

part), and Pseudomonadales can be given no exceptional role. Comparison of dynamics 

changes in the number of assigned reads to those two orders reveals that amount of 

Clostridiales stayed relatively the same after reactor start-up (day 19), while amount of 

Pseudomonadales increased by 370% at the bottom part of the sludge bed and by 1727% 

at the upper part of sludge bed. 

Such a dynamic change in the number of assigned reads to the order of 

Pseudomonadales during the start-up period of a UASB reactor suggests that supplied 

substrate for AD (microalgal biomass and sodium acetate) was a trigger of bacterial 

growth of members of the Pseudomonadales order. Previous studies also report increased 

amount of Pseudomonadales in AD of microalgal biomass [45]. 

In addition to the change in the number of Pseudomonadales-assigned reads, the 

start-up period boosted growth of Enterobacteriales and Bacteroidales (Figure 2-4). 

Prevalence of Bacteroidales on the 19th day of AD correlates with the suggestion that this 

is a hydrolysis phase, and Bacteroidales generally comprise genera of bacteria with 
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distinct saccharolytic activities, such as Bacteroides that produce acetic acid as an end 

product [46]. These bacteria are often found at the initial stages of anaerobic digestion 

[47, 48]. 

For two other orders, Pseudomonadales possess mostly nonfermenting 

metabolism, while Enterobacteriales are fermenters and can produce fatty acids and lactic 

acids. Genera of Pseudomonas and Enterobacter have been detected at high numbers in 

eutrophicated lakes with microalgal blooms [49–51]. Members of Pseudomonas spp. 

were recently ascribed to have distinct microalgal cell degrading abilities [52] and ability 

to degrade microalgal toxins, microcystins [53–56]. A combined alga-lytic activity of two 

members of Pseudomonadales and Enterobacteriales orders, Pseudomonas aeruginosa 

and Citrobacter freundii, has been reported for cyanobacteria that were collected from 

municipal wastewater lagoon [57]. While alga-lytic activity of Pseudomonas spp. 

predominantly aimed at cyanobacteria, alga-lytic activity of Enterobacter spp. expands 

also to green algae [58–60]. Since both cyanobacteria and green algae were present in the 

feedstock for the described here AD in a UASB reactor (see Materials and Methods), we 

can suggest that members of Pseudomonadales and Enterobacteriales orders have an 

alga-lytic activity towards microalgal biomass from Logan Wastewater Lagoons. 

Alga-lytic activity might not only be characteristic for Pseudomonas and 

Enterobacter but was also observed for other members of our bacterial community in a 

UASB reactor. Reads of the Thermotogales order were identified during the presumably 

acidogenic-methanogenic phase of AD (57th day, Figure 2-4), where, due to the 

continuous flow of microalgal biomass and sodium acetate, hydrolysis still takes lace. 

Thermotogales were previously reported to have an alga-lytic activity towards green 
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microalgae [61, 62]. This lytic behavior might be managed by the extracellular enzymes 

of Thermotogales, amylases, which make it possible for the bacterium to ferment 

carbohydrate polymers of microalgal biomass to hydrogen [63, 64]. However, to make 

this process happen, microalgal biomass should be initially disrupted to release 

carbohydrates. Therefore, if considering that initial microalgal biomass disruption 

occurred during the initial hydrolysis phase of AD during start-up of reactors (samples 

taken on day 19) and bacteria from Proteobacteria phylum have successfully initiated the 

degradation process, we would expect secondary hydrolyzing agents, such as 

Thermotogales, to be active after some delay from the initial hydrolytic phase. Also, 

since Thermotogales convert microalgal carbohydrates into the hydrogen, hydrogen can 

be supplied to methanogenic bacteria that were detected in the abundance at the 57th day 

of AD (Figure 2-6). 

Another order of bacteria detected at the initial stage of AD (day 19) is 

Synergistales. Presence of these bacteria at the hydrolytic stage of AD can be due to the 

metabolic preferences of these bacteria to consume amino acids and complex 

proteinaceous compounds [65]. Synergistales were also previously reported to be present 

in similar environments as a UASB reactor, wastewater treatment lagoons, and anaerobic 

sludge [3, 66]. Detection of Synergistales in the anaerobic digestion is in agreement with 

previously published data by Delb`es et al. [67], but exact role of these bacteria in AD is 

not yet known. 

The presence of specific alga-lytic bacterial orders in our reactor is attributed to 

the fact that initial inoculum for AD was taken from the sediments in the Logan 

Wastewater Lagoons. An observed high degree of decomposition of microalgal biomass 
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(average COD removal rate of 79%, as observed by Soboh et al. [40]) can be explained 

with a long term adaptation of the facultative aerobic microorganisms to the algal 

residues present at the bottom of the lagoons ponds (48 years of Logan Wastewater 

Lagoons operation) and selection of species that are able to efficiently degrade microalgal 

biomass to maintain stability of the Lagoon system. Previous studies have pointed to the 

specific recalcitrance of microalgal cells to AD, which is usually conducted with either 

acid or temperature pretreatment of microalgal biomass [19, 21, 28, 29, 68–72]. These 

studies also demonstrated a methane composition of up to 60%in a produced biogas from 

fermentation of microalgal biomass and 73% in codigestion with swine manure. In our 

case, produced biogas had on average 85% methane composition [40], which might be 

because of a more intense decomposition of microalgal biomass by alga-lytic bacteria 

identified at the 19th day of AD in a UASB reactor. 

Moving deeper into the process of AD, to the microbial community on day 57, 

Clostridiales order occupies the most attention. An increase in the amount of Clostridiales 

at this sampling time (Figure 2-4) could be due to the high content of polysaccharides in 

the hydrolyzed microalgal biomass. Generally, Firmicutes are prevalent at the 

acetogenic/acidogenic stages of anaerobic digestion due to their ability to ferment sugars 

and amino acids into acetic and lactic acid [3, 73, 74]. Members of Clostridiales order 

were also reported in abundance in other microalgae digestion experiments [45]. Previous 

studies on Logan Lagoons microbiome have identified a high diversity of Clostridium 

spp. and a dominance of a Clostridiales order [32]. The role of Clostridiales in the AD of 

microalgal biomass and sodium acetate can be relevant to both hydrolysis and acetogenic 

stages, since initial high percentage of Clostridiales in the inoculum (Figure 2-4) 
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characterizes the sediments of the Logan Lagoons as a nurturing environment for these 

microorganisms. Ellis et al. tested Clostridium saccharoperbutylacetonicum on digestion 

of microalgal biomass from Logan Lagoons and did not observe any success, even 

though this bacterium has amylolytic activity towards starch-based polymers that are 

present in microalgal cell walls [75]. Clostridium saccharoperbutylacetonicum was able 

to ferment microalgal biomass only after acidic-basic pretreatment of microalgae with 

sulfuric acid and sodium hydroxide [76]. This leads to a thought that Clostridium spp. 

identified in our study might indeed be involved in the second step of AD of microalgal 

biomass and a pretreatment step (by other bacterial consortia) is vital for the final 

conversion of microalgal biomass into the set of alcohols, such as ethanol, acetone, and 

butanol.  

Acidogenic/acetogenic phase of AD in our study has revealed the presence of 

another bacterial taxa, in addition to the Clostridiales order. Sulfate-reducing bacteria, 

members of Desulfovibrionales order, were detected at the 57th day (Figure 2-4). With 

regard to the dynamics of methanogenic bacteria population throughout AD, as depicted 

in Figure 3, and presence of Desulfovibrionales at the same time point, a competitive 

interaction for substrate might take place between two types of anaerobic microorganisms 

[77, 78]. Possible way to communicate this observation is that the higher number of 

sulfate-reducers in the upper sampling point at day 19th correlates with the higher 

thermodynamic possibility of sodium acetate assimilation via sulfate reduction, rather 

than via methanogenesis (Table 2-3). The decrease in the relative abundance of sulfate-

reducers later during the AD (Figure 2-4) could be due to the exhaustion of sulfate in the 

bioreactor and sulfate is electron acceptor during substrate assimilation by 
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Desulfovibrionales (initial sulfate might have come with the inoculum from sediments in 

the lagoons and is not present in the supplied microalgal biomass during AD) [79]. 

Simultaneously we observed a shift from low number of methanogenic sequences to the 

high number later during the AD (day 57th, Figure 2-6). Ozuolmez and colleagues 

observed a similar shift from high numbers of sulfate-reducers to higher numbers of 

methanogens during a cocultivation of Methanosaeta concilii and Desulfovibrio vulgaris 

on acetate [80]. 

 
Table 2-3.  Free Gibbs energy required for the assimilation of acetate via sulfate-

reduction and methanogenesis [80].   

Acetate assimilation via sulfate reduction: 
CH3COO- + SO4

2-  2HCO3
- +HS- ΔG0 = -47.6 kJ mol-1 

Acetate assimilation via methanogenesis: 
4CH3COO-   3CH4 + HCO3

-  ΔG0 = -31.0 kJ mol-1  
 

 

With respect to the methanogenesis and its outcompeting of sulfate-reduction, our 

results demonstrate that AD of microalgal biomass with sodium acetate was selective 

towards a single-species dominant methanogenic system. Methanosarcina mazei was 

prominently proliferating at the 57th day of AD (Table 2-2, Figure 2-3). Presence of 

Methanosarcina spp. in anaerobic reactors is common due to their high growth rates, 

rapid consumption of a broad spectrum of substrates (acetate, methanol, and hydrogen), 

and a high stress resistance to the fluctuations in the anaerobic digester, such as pH and 

OLR [78, 81–84]. A particular dominance of Methanosarcina mazei in the UASB reactor 

fed with microalgal biomass and sodium acetate has not yet been reported by others. 
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Possible explanations on why M.mazei was dominant can be due to several factors 

based on the nature of the supplied substrate (microalgal biomass and sodium acetate): 

(1) addition of sodium acetate as a feedstock into the reactor creates conditions of 

elevated amount of acetate that can only be consumed by species of methanogen with 

high growth rates and high acetate turnover rates, such as Methanosarcina mazei [85]; (2) 

slight fluctuations were observed in the pH during the AD [40] and Methanosarcina 

mazei have been previously reported to be able to withstand even higher pH fluctuations 

for a short period of time, as opposed to such species of Methanosarcina as 

Methanosarcina barkeri [86]. 

To summarize the analysis of metagenome during anaerobic digestion of 

microalgal biomass and sodium acetate, a general flow of microbial dynamics is 

proposed in Figure 2-8. 

 

 

Figure 2-8. Proposed set of key microorganisms involved in anaerobic digestion of 

microalgal biomass and sodium acetate. 

 

Conclusions  

A demonstrated analysis of a bacterial metagenome during anaerobic digestion of 

microalgal biomass and sodium acetate has provided a valuable insight into complex 

microbial interactions and can be used for further studies leading to cultivation of key 
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microorganisms of interest. For microalgal biomass digestion, metagenome analysis was 

especially valuable to identify potential alga-lytic bacteria (members of the orders 

Bacteroidales, Pseudomonadales, and Enterobacteriales), and further studies will include 

isolation of this poorly studied group of microorganisms. Identification of new bacteria 

influencing anaerobic digestion of previously thought recalcitrant microalgal biomass has 

practical applications for increasing yields of biogas from such an abundant and 

sustainable type of substrate. 
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CHAPTER III 

PRESERVED ACTIVITY OF ANAEROBIC SLUDGE AFTER A YEAR OF 

STORAGE 2 

Abstract  

There is a need for a broad study addressing different preservation conditions of 

anaerobic sludge and its activity after a prolonged storage. This current study compares 

four different preservation methods of mesophilic anaerobic sludge for a period of up to 

12 months: storage at 23 ± 2℃, +4 °C, ‒20°C and freeze-dried. Anaerobic sludge was 

removed from a microalgae and sodium acetate fed UASB reactor at organic loading rate 

of 5.4 gCOD/L·d. Samples for preservation were withdrawn from upper and bottom ports 

of the UASB reactor at a steady-state and samples had 19.95 g/L VSS and 23.45 g/L 

VSS, respectively. Specific methanogenic activity (SMA) tests were performed on the 

sludge samples after 2.5, 6 and 12 months of storage. Results demonstrate a statistically 

significant decrease in the production of methane for the bottom port preserved sludge, 

dependent on the duration of the storage (a decrease from 60 ml CH4/g VSS to 45 ml 

CH4/g VSS) and a non-significant change in the methane production in the upper port 

preserved sludge, regardless of the technique used for preservation. A varying 

susceptibility to the storage of the two types of the anaerobic sludge can be explained by 

the content of the methanogenic microorganisms, with bottom port sludge having a 

higher amount of the methane producing species. Interestingly, lyophilized samples were 

able to produce similar amounts of biogas when compared to the other three storage 

conditions, with the only difference of having a longer re-activation period.       

                                                             
2 Doloman A., Sims R., Miller C., submitted to Bioresource Technology, 2019 
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Introduction  

Anaerobic digestion that has reached a steady state of biogas production and has a 

fully adapted microbial composition is in an optimal process state. Such a state of an 

engineered system is important to maintain in order to obtain high rates of organic matter 

conversion and generation of energy in a form of a methane gas mixture. However, 

industrial units need to be sent for maintenance, repaired or simply shifted to a new set 

up. In this case, a highly active microbial sludge cannot be wasted. This product needs to 

be preserved for future use and can be distributed to seed new anaerobic digesters. 

Therefore, answering the question of how this active anaerobic sludge can be preserved is 

of high importance for both scientific laboratories and industrial anaerobic digestion 

facilities.  

Several studies have been conducted to address this question over the last 20 

years and the longest preservation period examined was 10 months [1, 2]. Less studies 

report preservation of dispersed sludge and more are interested in storability of 

granulated sludge. All the available studies tested simple storage of an intact anaerobic 

sludge at ambient room temperature and under refrigeration [3]. Only two studies tested 

preservation at more than two conditions: room temperature, 37°C, under refrigeration 

and under freezing conditions (-18°C), and after lyophilization [4, 5]. The last two 

methods were checked only with the addition of the cryoprotectants, to ensure no losses 

due to the cell lysis at unfavorable conditions [5]. 

The preserved sludges were characterized by two main aspects: changes in the 

methanogenic activity and changes in the VSS/TSS ratio. In addition, some studies also 

tackled the changes in the morphology of the microorganisms and granular structures 
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after varying storage conditions [1, 2]. Methanogenic activity, or specific methanogenic 

activity (SMA) is generally tested on hydrogen or acetate as a substrate for 

hydrogenotrophic and acetoclastic methanogens, respectively. The SMA testing 

procedure was first introduced by Valcke and Verstraete [6] and later adapted as a 

standard procedure in many laboratories. Changes in the VSS/TSS ratio are usually 

indicative of the changes in the digestion rates of the tested substrate with microbial seed 

and are used to assess aging of the sludge [7].  

A general conclusion made by the authors of previous works is that storage of the 

untreated sludge (in tubes or even simply intact in reactors) at room conditions is the 

most stable option, providing the shortest reactivation times and highest preserved 

activity. To different extent refrigeration and lyophilization were claimed to significantly 

decrease sludge activity, but there was no enough statistical evidence to prove this claim. 

Moreover, there was not any test to see if duration of the storage is the main cause of 

decreased activity, not the technique itself.   

The study conducted here aimed at filling the knowledge gap with thorough 

statistical analysis of effects on preserved sludge activity by both techniques and storage 

period. Simplified storage conditions were tested, without prior pre-treatment or addition 

of the cryoptrotectants into the sludge to be preserved. The study also compares re-

activation times needed for differently stored sludge to reach a maximum of biogas 

production and statistically derives a relationship between the method used for storage 

and the length of storage.  
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Materials and Methods  

1. Anaerobic sludge sampling 

Anaerobic sludge for preservation studies was sampled from a 32.4L UASB 

reactor under steady-state conditions, treating microalgal biomass and sodium acetate. 

Reactor was operated for 57 days prior to sampling and had 2.2g/L*day of OLR, at 80% 

COD removal capacity and 23 L/day biogas production rate, with 85% methane 

composition [8]. Samples for preservation were withdrawn from two sampling ports in 

the UASB reactor (Figure 3-1), one located 15 centimeters above the other. Samples 

taken from the bottom sampling port had volatile suspended solids content (VSS) of 

23.45 g/L, while samples from upper sampling port had 19.95 g/L VSS. Samples were 

distributed among 15ml centrifuge tubes and placed immediately under varying 

temperature conditions (room temperature 23 ± 2°C, refrigeration at +4 °C and freezing 

at ‒20°C). No prior washing or addition of cryoprotectants took place. Freeze-drying of a 

fourth set of samples was conducted immediately after sampling (LABCONCO, Kansas 

City, MO), following the manufacturers instructions and without addition of any 

cryoprotectants. Freeze-dried samples were subsequently stored at room temperature. All 

the samples were stored for 12 months and duplicates of 15ml tubes were sacrificed after 

2.5, 6 and 12 months for the analysis of changes in VSS/TSS ratio and methane 

producing activity (SMA). 

2. Assessment of preserved sludge activity 

Prior to the assessment of the activity of the preserved sludge after each period of 

time, triplicates of preserved samples were analyzed for changes in VSS content. Activity 

of the preserved sludge was analyzed following a protocol for Specific Methanogenic 
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Activity (SMA) determination [9], in 150ml serum vials. Triplicates of vials were 

inoculated with 10ml of preserved sludge, 40ml of sterile SMA media [10] and acetate in 

concentration of 1g COD/L, as a carbon source for the methanogenic microorganisms. 

Freeze-dried samples were resuspended in 15ml of the sterile anaerobic SMA media, 

prior to the inoculation into serum vials. Inoculated vials were flushed with N2/CO2 

(80:20 v/v), closed with serum bottle caps, and fitted with one-way stopcocks with luer 

connections (HDPE, Cole-Parmer, Vernon Hills, IL) for gas sampling. Vials were 

incubated at 35±2°C with occasional manual shaking. Methane was measured in Agilent 

7890B Gas Chromatograph, with Gas Pro column (60m*320µm), at 25°C oven 

temperature with thermal conductivity detector operating at 250 °C. Helium was used as 

a carrier gas (constant pressure 20psi) and injections were done in a split mode 1:30. 

Activity of the sludge after preservation (SMA) was expressed in milliliters of CH4 per 

gram of loaded VSS. Initial SMA of a freshly sampled sludge from both ports was used 

as a reference value. Negative control vials for self-digestion and methanation without 

addition of acetate were included in each testing set. Resulting values of SMA were 

adjusted with deduction of the activity in the negative control vials.     

3. Statistical analysis 

Triplicates of each storage technique were analyzed for each storage time point. 

Data was analyzed with Statistical Analysis Software (SAS 9.04, SAS Institute Inc., 

Cary, NC), following the two factor factorial design and repeated measures ANOVA. A 

p-value of 0.05 was used as a threshold for the significant difference between samples 

activity when compared among four storage conditions and duration of storage. The same 

threshold was used to define which of the factors, preservation period or preservation 
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technique, have an effect on the methanogenic activity of the sludge. 

 
 
Figure 3-1. UASB reactor used for sampling sludge.  
 
 
Results and Discussion 

1. Influence of the storage technique 

Four storage techniques (room temperature, refrigeration, freezing and 

lyophilization) had no statistically different effect on the SMA of either of the sludge 

types, regardless of the duration of storage (Table 3-1). The value of the probability for 

the techniques to have a significant varying effect on the storage is above the threshold of 

0.05 (above 0.065 for upper port samples and above 0.638 for bottom port samples). This 

means that changes in the sludge SMA over preservation period are irrespective with the 

method used for storage and are quite similar among four techniques (storage at 23 ± 

2°C, at +4 °C, at ‒20°C and lyophilized). For the samples taken from the bottom port, 

there is also a significant influence of the interaction between the technique chosen for 

storage and a period of storage (p-value is 0.0184, Table 3-1).  

To examine closer the influences of each technique on the SMA irrespective of 

the duration of storage, samples were grouped and plotted in relation to the technique 

used for storage (Figure 3-2). One can note that samples stored at ‒20°C demonstrated 
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lower mean amounts of SMA, both for upper and bottom port samples, even though 

statistically not significant. Therefore, storage at this temperature can be more 

detrimental to the anaerobic sludge microbial consortia, but more experiments are 

needed. This observation correlates nicely with the previously reported changes in the 

activity of the preserved anaerobic sludge [4, 5, 11].  

An interesting observation is related to lags in the activity of the preserved 

anaerobic sludge after freeze-drying. This topic is controversial in the available literature. 

One study [5] reported a very low activity of sludge after freeze-drying. Another study 

[12] provided a significant body of research demonstrating a stable behavior of 

methanogenic sludge when preserved via freeze-drying. In the study reported here, a low 

activity of sludge is not observed after lyophilization, just a prolonged delay in biogas 

generation (Figure 3-3), compared to other storage conditions. The delay does not depend 

on the time of the storage and is consisted at all check points (2.5, 6 and 12 months). This 

raises a question for future studies, which can focus on a detailed analysis of the freeze-

dried microbial community, with particular interest in the survival rates of the anaerobic 

sludge bacteria.  

The other three storage techniques (23 ± 2°C, at +4 °C and at ‒20°C) did not 

demonstrate a lag in the biogas generation (see bottom port sludge data on Supplemental 

Figure 3-2). 
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Table 3-1. Analysis of influence of either preservation method or the period of storage on 

the changes in the SMA of upper (a) and bottom (b) samples. “Num DF” stands for the 

numerator degrees of freedom, accounting for the number of either preservation methods 

or periods of storage (a), Num DF = a-1. “Den DF” stands for the denominator degrees of 

freedom, where numbers of experimental observations (N) is connected with the number 

of preservation methods or period of storage (a), Den DF = N-a. “F value” represents the 

dispersion of data. 

 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-2. Influence of the preservation method on the SMA of (a) upper and (b) bottom 

port samples. For upper port samples p-value was 0.315 and for bottom port samples p-

values was 0.9217 for SMA measured with different storage methods. Data was 

logarithmically transformed to ensure normal distribution.  

b) Bottom port 

Effect 
Num 

DF 
Den 
DF F Value p value 

Method 3 32 1.58 0.2137 

Period 3 32 35.72 <.0001 

Method * 
Period 

9 32 6.10 0.0184 

a) Upper port 

Effect 
Num 

DF 
Den 
DF F Value p value 

Method 3 32 8.11 0.0004 

Period 3 32 71.51 <.0001 

Method * 
Period 

9 32 5.23 0.0002 

a) b) 
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Figure 3-3. Biogas production from the upper port after (a) lyophilization, (b) storage at 

room temperature (23±2℃), (c) refrigeration (+4℃), and (d) freezer storage (-20℃), for 

the period of 2.5, 5, and 12 months. 
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2. Influence of the storage duration 

Changes in specific methanogenic activity of the preserved sludges for a period of 

12 months are depicted in the Figure 4, for both upper and bottom port samples. By 

comparing upper port sludge with bottom port sludge, one can observe a statistically 

significant increase of methanogenic activity at the 12 months’ time-point for upper port 

sludge (Figure 3-4, a); whereas the bottom port sludge demonstrates a trend of decreased 

SMA over the time of storage (Figure 3-4, b). Such a behavior can be caused by 

differences in a microbiological composition of the two sludges and a varying initial 

biomass density: 19.95 g/L VSS for the upper port sludge and 23.45 g/L VSS for the 

bottom port sludge. Initial analysis of the microbiological composition of two types of 

sludges was previously reported [13] and there is no major difference in the composition 

of bacteria (analyzed by 16S rRNA sequencing) between samples from the upper and the 

bottom ports. However, there was a difference in the number of classified sequences 

related to the methane producing bacteria, with samples taken from the bottom port 

having a higher number of methanogens compared to the number of methanogens in the 

upper port samples (4.7*104 mcrA gene copies VS 3.6*104 mcrA gene copies). Thus, 

higher number of methanogenic bacteria does not necessarily mean higher methane 

production after sludge storage. On the contrary, it can mean that sludge with higher 

number of methanogenic bacteria is more susceptible to the long-term storage losses in 

the methane production, regardless of the storage conditions.  

Both sludge types exhibited high variability in methane producing activity, which 

contributes to the high standard deviation bars on graphs (Figures 3-2, 3-4). Such 

variability can be due to the non-biological decomposition of the organic matter in the 

preserved sludges, as reported in previous studies [1, 2, 5]. Changes in the VSS/TSS ratio 
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of the stored sludge from two ports can be found in Supplemental Figure 3-2. Even 

though the ratio after 12 months of storage is not significantly different from the initial 

ratio, the ratio after storage for 6 months was significantly higher for both upper port and 

bottom port samples.  Increased ratio of VSS to TSS can be caused by the cell lysis and 

decomposition of simple organic matter from the cell.  

Specific methanogenic activities for upper and bottom port sludges stored for the 

period of 12 months under different storage methods are provided in Supplemental Figure 

3-3.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4. Comparison of the SMA for the (a) upper port sludge and (b) bottom-port 

sludge depending on the length of the storage (all techniques combined). Data was 

logarithmically transformed to ensure normal distribution. **Represents a statistically 

significant difference of p<0.001 compared with the SMA of the samples at the start of 

the preservation (Month 0). 

 

a) b) 
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Conclusions 

This study focused on the long-term storage of the anaerobic sludge, collected 

from the upper and bottom ports of a UASB reactor. Sludge was successfully stored for a 

period of 12 months without significant loss in methane generating activity. All four 

tested techniques for storage: at 23 ± 2 °C, at +4 °C, at ‒20°C and lyophilization (with 

subsequent storage at room temperature) have proven to preserve activity of the 

anaerobic sludge, although to different extents.  

When comparing sludge from the two sampling locations (upper and bottom 

ports), bottom port sludge demonstrated a lower overall methane activity the storage for 

the period of 12 months, while upper port sludge did not. Upper port sludge was less 

susceptible to the losses in the methane-generating activity over time, possibly due to the 

lower content of the methanogenic bacteria.  

Among the four storage techniques, sludge after lyophilization took the longest 

time to reach the maximum of biogas production, which was 10 to 17 days. Nevertheless, 

after the delay period sludge was fully active and quickly reached maximum of biogas 

production. 

Future studies would address in more details the effect different storage 

conditions and time on the microbial composition of major microbial groups in anaerobic 

sludge. In particular, testing the preserved activity of fermentative microorganisms, who 

initialize hydrolysis of organic substrate.  
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CHAPTER IV 

ISOLATION AND CHARACTERIZATION OF AN ALGALYTIC BACTERIUM 

FROM A WASTEWATER LAGOON 3 

Abstract  

Anaerobic digestion of microalgal biomass is a viable solution to the remediation 

of surface waters and sustainable production of energy in a form of biogas. Sediments 

from a wastewater-treating lagoon were used as a source of inoculum for anaerobic 

treatment of surface-collected microalgal biomass. The aim of this study was to isolate 

and identify a potential algalytic bacterium from a selective environment of an upflow 

anaerobic sludge blanket reactor (UASB) treating microalgal biomass. A pure culture of 

the isolated algalytic strain of Citrobacter freundii13 demonstrated a negative effect on a 

dominant member of microalgal biomass, Chlorella vulgaris. Microalgal cell counts were 

decreasing during the incubation in the microaerophilic environment with an algalytic 

isolate. The study also focused on developing a calibration method for distinguishing 

optical density readings of microalgae and bacteria cell counts. The described algalytic 

strain can be tested to remediate environments from the algal biomass, as well as to 

augment anaerobic digestion reactors treating algal biomass.  

Introduction  

The phenomenon of microalgal blooms in open ponds is one of the major issues 

vexing water management facilities all over the world. Microalgal blooms create 

                                                             
3 Doloman A., Pererva Y., Cortez M.H., Sims R.C., Miller C.D.: Isolation and characterization of an 
algalytic bacterium from a wastewater lagoon. World Journal of Microbiology and Biotechnology 
(submitted), 2019 
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difficulties with water quality by decreasing sunlight penetration and oxygen levels in 

water bodies and may lead to cyanotoxin contamination. The recent outbreak of 

cyanotoxins in Utah Lake, UT, USA in the summer of 2016 has led to serious concerns 

not only from local communities, which use water from the lake for drinking and 

recreation, but also from local authorities, who aim to find the best ways to prevent future 

outbreaks [1]. 

One way to deal with microalgal biomass is to use it for the production of 

valuable bioproducts and anaerobic digestion (AD) is one of the treatment options [2-5]. 

Anaerobic digestion solves the problem of disposing the microalgal biomass after 

harvesting from eutrophicated lakes and also produces a value-added product, biogas, 

with methane (80%) and carbon dioxide (15%) as the main components. Processing of 

microalgal biomass via AD has received less attention due to the presence of complex 

polysaccharides in the microalgal cell walls, which makes hydrolysis of this biomass the 

rate-limiting step in the biomethane production process [6, 7]. This limitation can be 

resolved with initial pre-treatment of microalgal biomass utilizing thermal, chemical or 

ultrasound processes [5, 7-10]. However, these pretreatments are not energy-efficient and 

are time consuming. A solution lies in the isolation of bacteria that are exceptionally 

good at digesting microalgal biomass, thus eliminating need for costly initial pre-

treatments of the microalgal biomass prior to AD.  

In Cache Valley, UT, the biggest open pond is also the area’s wastewater 

treatment facility, Logan City Wastewater Lagoon (LCWL). Due to the “open” nature of 

this facility the surface of the pond is covered with microalgae, with green algae and 

cyanobacteria being the major types. As the microalgal biomass layer thickens, some 
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biomass sloughs off the surface and sinks to the bottom of the lagoon. There, sloughed 

biomass mixes with the indigenous anaerobic bacterial community and is completely 

decomposed to biogas. Over 50 years of wastewater treatment (with occasional outbreaks 

of microalgal blooms) the bacteria in the LCWL sediments could have developed the 

capability to decompose microalgal biomass. Thus, in the current study, LCWL 

sediments were used as a source of possible algalytic bacteria. 

Materials and Methods 

1. Algalytic bacteria enrichments 

Bacterial enrichments were performed on anaerobic sludge from upflow 

anaerobic sludge blanket (UASB) reactors seeded with anaerobic sediments from the 

Logan City Wastewater Lagoons (LCWL), Utah [11, 12]. Microalgal biomass collected 

from the surface of the LCWL was supplied to the reactor as a substrate for microbial 

growth and biogas production. Fed biomass was a mixed culture, comprised primarily of 

Chlorella, Chlorococcum, Chlamydomonas, Scenedesmus, Synedra, Navicula, 

Schroderia, Euglena, Coelastrum and members of nonheterocystous cyanobacteria. 

Samples from the reactor sludge bed were collected on the 20th day after the start of 

anaerobic digestion, the time predicted when AD would be in the hydrolytic phase [11].  

Algalytic enrichments were performed using a modified double-layer-agar (DLA) 

method [13], with a model microalgae Chlorella vulgaris as the substrate, representative 

of the LCWL microalgal community. Briefly, Petri dishes with two layers of agar were 

prepared: the bottom layer contained 1.5% agar in distilled water and the upper layer 

contained 0.8% agar in a microalgal suspension (carbon source layer). The surface of the 

DLA plate was covered with the anaerobic sludge to allow initial screening of the 
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algalytic microorganisms (Figure 4-1).  

 

Figure 4-1. A double-layer-agar (DLA) technique to isolate algalytic microorganisms.  

 

Potential algalytic bacteria from the UASB sludge formed lysis zones on the 

surface of the DLA plate and subsequent enrichments were performed from those lysis 

zones. Isolated bacteria were expected to have a general fermentative behavior and thus 

two types of microbiological media were chosen for isolation of pure cultures: general 

medium for fermentative microorganisms, such as Tryptic Soy Broth (TSB), and a GH 

media specific to the most abundant type of bacterium identified for the hydrolysis stage 

(Pseudomonas spp. [14]. A series of both liquid and agar media were used to isolate pure 

strains of potentially algalytic bacteria.  

Individual isolates were Sanger sequenced with universal bacterial primers 

targeting 16SrRNA gene, 338F and 785R [15] and sequences were deposited in the 

GenBank under submission number SUB4433715. Isolates belonging to the Citrobacter 

freundii spp. were additionally characterized based on the phylogenetic relationship of 

the conserved Citrobacter-specific cfa gene sequence, encoding a cyclopropane fatty 

acids synthase [16]. Phylogenetic trees were constructed in MEGA X  [17] with 

Maximum likelihood statistical method, Bootstrap test of phylogeny, following Temura-

Nei model [18].  
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2. Qualitative and quantitative assessments of algalytic activity 

Pure cultures of the UASB sludge isolates were tested on DLA plates and in 

liquid media with Chlorella vulgaris as a substrate. Liquid media cultures were 

microaerophilic and incubated at 35±2 ˚C in the dark. These conditions were used to 

mimic the environment inside the anaerobic digester. Cultures of Chlorella vulgaris were 

grown at 25˚C in the Bolds Basal Media [19] in a growth chamber under continuous light 

(innova®42 incubator shaker series, New Brunswick Scientific) at 120 RPM. Bacterial 

isolates were maintained in the TSB media at 35±2 ˚C. Algalytic tests of bacteria in 

microalgal suspensions were conducted in 100 ml shaker flasks containing 50 ml of 

bacteria-algae cultures. Bacterial cultures were grown in TSB to the mid exponential 

phase, harvested by centrifugation and washed with BBM media to ensure no transfer of 

nutrients. Re-suspended bacterial pellets in the BBM media were inoculated into the mid-

exponential phase grown algae in BBM media. Final concentrations of bacteria (CFU/ml) 

and microalgae (whole cells/ml) were 7.5*107 and 3*106 respectively, in accordance with 

similar algalytic studies [20, 21]. Cultures of E.coli K12 strain were used as negative 

controls in the tests for algalytic activities. Microalgae-bacteria suspensions were 

incubated in the dark at 35±2 ˚C and 120 rpm. Measurements of the optical density (OD) 

were taken every 2-3 days. 

Quantitative analysis of the algalytic activity was conducted based on changes in 

the optical density of the bacteria-algae mix, measured at 600 and 750 nm, using a 

calibration method to distinguish between the algae and bacteria cells. The calibration 

method used to distinguish between algal and bacterial cells was based on the Beer-

Lambert Law of Absorbance  [22]: 
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𝐴𝐴 = 𝐴𝐴0 ∗ 𝑙𝑙 ∗ 𝐶𝐶, 

where: 

𝐴𝐴0 – specific absorptivity coefficient, which depends on the light wavelength; 

𝑙𝑙  – length of light path, which is a characteristic of the cuvette; 

C – concentration of an analyte.  

Assuming light absorbance by bacteria and algae are independent, the equations 

describing the absorbance of light by cells are: 

�
𝑂𝑂𝑂𝑂600 = 𝐴𝐴𝐵𝐵𝜆𝜆600 ∗ 𝑥𝑥𝐵𝐵 + 𝐴𝐴𝐴𝐴𝜆𝜆600 ∗ 𝑥𝑥𝐴𝐴
𝑂𝑂𝑂𝑂750 = 𝐴𝐴𝐵𝐵𝜆𝜆750 ∗ 𝑥𝑥𝐵𝐵 + 𝐴𝐴𝐴𝐴𝜆𝜆750 ∗ 𝑥𝑥𝐴𝐴

, 

where: 

𝑂𝑂𝑂𝑂600 – value of absorbance at the 600 nm setting; 𝑂𝑂𝑂𝑂750 – value of absorbance at the 

750 nm setting; 𝐴𝐴𝐵𝐵𝜆𝜆600 – specific optical density of bacteria at λ600 in BBM; 𝐴𝐴𝐵𝐵𝜆𝜆750 – 

specific optical density of bacteria at λ750 in BBM; 𝐴𝐴𝐴𝐴𝜆𝜆600 – specific optical density of 

algae at λ600 in BBM; 

𝐴𝐴𝐴𝐴𝜆𝜆750 – specific optical density of algae at λ750 in BBM; 𝑥𝑥𝐴𝐴 – cell number of algae; 𝑥𝑥𝐵𝐵 – 

cell number of bacteria.  

To get the highest precision, two separate calibrations were performed for pure bacterial 

cultures: for the range 106 – 109 CFU/mL and 109 – 1011 CFU/mL. 

3. Statistical analysis  

All the algalytic activity tests were carried out in triplicate and error bars 

represent standard deviations. Statistical analyses were conducted in the Statistical 

Analysis Software (SAS 9.04, SAS Institute Inc., Cary, NC). Analysis of variance in 

PROC GLM with residual diagnostics and post hoc mean comparisons was used to 

compare effects of the bacterial treatments on the microalgal population (confidence level 
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95%). Pairwise comparisons of single treatments were conducted with one-way ANOVA 

test in SAS.  

Results  

From the previously published analysis of the anaerobic sludge from a 

microalgae-fed UASB reactor, a hydrolysis period for the AD was identified to be within 

the first 20 days of the reactor operation [11]. Analysis of the 16S rRNA data for the 

microbial composition of the UASB reactor revealed possible algalytic microorganisms 

belonging to the orders of Bacteroidales, Pseudomonadales and Enterobacteriales. Thus, 

the samples for the isolation of the potentially algalytic bacteria were drawn from a 

second run of the UASB reactor with the exact same operation conditions and similar 

algal biomass feeding. The enrichment media were chosen based on the taxa predictions 

from the sequencing data. 

Anaerobic sludge that was used as a source of the enrichment culture formed 

colonies in the shape of craters on the double-layer-agar (DLA) plates with microalgae as 

a carbon source. The bacterial colonies grew into the depth of the soft upper layer of agar, 

which contained the microalgal biomass. Colonies, picked from the DLA plates, were 

transferred into the TSB or GH selective media and pure cultures were isolated by 

subsequent streaking on DLA plates. Pure cultures were microscopically inspected for 

purity and 16S rRNA genes were sequenced to allow precise classification.  

Identified isolates belonged to species of Pseudomonas, Alcaligenes, Citrobater 

and Acinetobacter. The algalytic behavior of the isolated bacteria was then assessed 

qualitatively and quantitatively in BBM media with microalgal suspensions. Qualitative 

analysis is demonstrated in Figure 4-2 and the most promising isolates were picked based 
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on the most profound changes in the color of the algal suspension over two weeks.  

 

 

 

 

 

Figure 4-2. Qualitative testing of the isolated bacteria algalytic activity in a Chlorella 

vulgaris suspension. Images were taken before and after bacterial incubation for two 

weeks in the dark. 

 

The most promising potential algalytic behavior was demonstrated by the 

Citrobacter sp.13 isolate. This isolate was classified as Citrobacter freundii sp., and more 

specifically, a novel strain among the Citrobacter freundii spp. based on the phylogeny of 

the conserved Citrobacter-specific cfa gene sequence [16]. The analysis showed a 96% 

similarity to the available sequences of the cyclopropane fatty acids synthase (cfa gene). 

Phylogenetic trees for the 16S rRNA gene fragment and cfa sequences are provided in 

Figure 4-3.  
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Figure 4-3. Phylogenetic trees of clustering a) 16S rRNA gene fragment (200bp) among 

Citrobacter spp.; and b) cfa gene sequences (100bp) from the Citrobacter freundii 

strains.  

 

A wild type strain of E.coliK12 was chosen as a negative control in the 

quantitative assessment of the algalytic behavior. The results of the comparative 

influence of E.coliK12 and C.freundii sp. isolate 13 on the Chlorella vulgaris cell counts 

are depicted in Figure 4-4. Dynamic changes in the both bacterial and microalgal cell 

counts during each bacteria incubation in the microalgal suspension are provided in the 

Supplementary Figure 4-1.  
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Figure 4-4. Influence of E.coliK12 and C.freundii sp. isolate 13 on microalgae C.vulgaris 

cell counts in the BBM media after 40 days of microaerophilic incubation without light. 

Error bars represent standard deviation.  

 

Statistical analysis of the differences among microalgal cell counts under two 

bacterial influences showed a significant difference for the microalgae under the 

influence of the C.freundii sp. isolate 13 (p=0.004). Full output from the statistical 

analysis is provided in the Supplemental Material (Figures 4-2 and 4-3).  

Discussion  

The described results demonstrate a successful isolation and primary 

characterization of an algalytic Citrobacter freundii sp. isolate 13 bacterium that 

exhibited a negative effect on the Chlorella vulgaris microalgal cell numbers. From the 

no-light incubations in the flasks, there was no apparent growth in the number of 

bacterial cells (neither C.freundii13 nor E.coliK12). The fluctuations in the bacteria cell 

numbers were possibly caused by a release of nutrients from dying microorganisms that 
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are in turn used by the bacterial cells. Contact interaction between C.freundii sp. isolate 

13 and C.vulgaris was observed under the microscope, and presence of bacteria in the 

microalgal phycosphere has been frequently reported to be indicative of competition for 

nutrients between microalgae and bacteria [23, 24]. However, all the incubations in our 

studies were in the dark, thus excluding phototrophic growth of C.vulgaris and making 

the hypothesis of nutrient competition not plausible. The characteristic fluctuations in the 

number of cell counts indicative of any competition were also not detected, even after 

manual fitting of the data to the mathematical models describing similar interactions in 

bioreactor systems [25, 26].  

A noticeable drop in the number of microalgal cell counts when incubated 

together with C.freundii sp. isolate 13 clearly supports a negative effect of this bacterium 

on C.vulgaris. A potential explanation for such behavior include bacteria inhibiting 

microalgal growth or lysing the microalgal cells. Observed contact interaction 

(micrographs not shown) can mean either grazing of bacteria on the algal cells or lysis on 

contact (ex. exoenzymes secreted by C.freundii13). More tests need to be carried out to 

explore C.freundii sp. isolate 13 being attracted to the microalgal phycosphere and 

potential release of the harmful algicidal molecules. Future experiments would address 

adaptation of C.freundii sp. isolate 13 to the possibly grazing behavior on algae cells. In 

addition to this, screening for the algal polysaccharide degradation genes in the genome 

of C.freundii sp. isolate 13 would be useful to draw final conclusions on the nature of the 

negative effect of this bacterium on microalgal suspensions. 

Conclusions 

Anaerobic digestion of microalgal biomass represents an important branch of the 
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sustainable waste management and can simultaneously tackle the need for the 

development of the renewable energy resource and effective treatment of harmful algal 

biomass. Algalytic bacteria can be of great benefit to the anaerobic digestion of algal 

biomass if mixed with a robust anaerobic consortium of microorganisms producing high 

amounts of biogas. Shortening the time required for biomass hydrolysis will eventually 

reduce operation expenses and increase energy mining from the biomass. The approaches 

presented in this paper can be further developed and tested using naturally occurring 

algalytic bacteria, allowing for the engineering of robust fermentative consortia and 

facilitate sustainable treatment of microalgal biomass. Furthermore, a developed 

calibration method for the optical readings data can be applied in other areas of 

investigating microbial dynamics, where direct cell counts are difficult to conduct or time 

consuming.  
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CHAPTER V 

AUGMENTATION OF GRANULAR ANAEROBIC SLUDGE WITH ALGALYTIC 

BACTERIA ENHANCES METHANE PRODUCTION FROM MICROALGAL 

BIOMASS 4 

Abstract  

The efficiency of anaerobic digestion drastically relies upon activity of the 

inoculum converting organic substrate into the biogas mix. Often, metabolic capacity of 

the inoculum needs to be augmented with new capabilities to accommodate changes in 

the substrate feed composition. However, bioaugmentation is not a widely spread strategy 

possibly due to the lack of studies demonstrating successful applications. Current study 

describes a bioaugmentation of granular anaerobic sludge digesting mixed algal biomass 

in batch-scale reactors. Addition of a specialized algalytic bacterial mixture to the 

granular consortium increased methane yield by 11% and further enhancements are 

anticipated from running a lab scale continuous-flow reactors. The study also investigates 

changes in the microbial 16SrRNA composition of the augmented and non-augmented 

granular inoculum, demonstrating a significant change in the hydrolytic microbial 

community. Overall, the studies’ results aim to expand the expertise in the field and 

provide a feasible checklist to assess the success rates of bioaugmentation experiments.     

Introduction 

Bioaugmentation of anaerobic digestion is gaining popularity as a way to enhance 

methane production from a substrate of choice. For successful bioaugmentation, a 

microbial consortium with distinct metabolic features is introduced into the anaerobic 

                                                             
4 Co-authors: Ronald C. Sims, Charles D. Miller 
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system, typically comprising 1-15% of the total microbial inoculum dry weight [1, 2]. 

However, successful augmentation can only take place if the metabolic feature of interest 

is not already present in the indigenous microbial community. In this case precautions 

need to be made to ensure there is a distinct ecological niche that can be occupied by the 

augmenting consortia [3]. For example, ensuring there is a unique need for an electron 

acceptor/electron donor pair or that a metabolic feature to be augmented will complement 

the already existing chain of biochemical conversions [4].  

An important factor for successful bioaugmentation is the amount of additional 

inoculum that will be introduced into the anaerobic system. A good start is when 5% of 

the total inoculum is substituted with the bacterial mix with new capabilities [5]. Studies 

have reported an enhanced methane/biogas production by up to 70% when a proper 

amount of new inoculum was introduced, but it’s more common to see an increase of 5-

25% [6]. Sometimes, repeating bioaugmentation can further enhance methane production 

[7].   

Algal biomass is of high interest as a substrate for anaerobic digestion due to its’ 

abundance and high energy content [8]. However, anaerobic digestion of algal biomass is 

considered of low efficiency, due to the time it takes for digestion of cellulose-containing 

compounds in the algal cell walls. Thus, various pretreatments are common to speed-up 

the decomposition of this biomass [9]. The most common pre-treatments are thermo-

chemical or physical influences on the biomass, such as autoclaving, treating with 

cellulolytic enzymes, and sonication [10]. All of these pre-treatments are costly and there 

is a need for an economic solution. A potential solution lies in the bioaugmentation of a 

well-established anaerobic granular consortium with bacteria possessing algalytic 
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activity. An algalytic metabolic activity to be augmented will complement the well-

established reactor consortia’s ability to degrade compounds, such as amino acids, short 

chain fatty acids and simple sugars, and transform them into biogas. 

The current study aims to investigate the effect of augmenting granulated 

anaerobic sludge with an algalytic bacteria mix, using mixed algal biomass as a substrate 

for anaerobic digestion. By providing algal biomass as a sole carbon source for the 

anaerobic digestion, a unique metabolic niche is created to allow for a successful 

incorporation of the augmentation bacterial mixture. An increase in the methane 

production indicates a measure for a successful augmentation procedure.  

Material and Methods 

1. Source of inoculum and substrate 

Algal biomass, collected from the surface of the trickling filter in the Central 

Valley Wastewater Treatment Facility (Utah, USA) was used as a sole substrate for 

anaerobic digestion. The VS of the biomass was 46 g/g. The algal biofilm comprised of 

Stigeoclonium, Klebsormidium, Gloeotilopsis and Nitzschia species. Anaerobic 

granulated sludge from the Upflow Anaerobic Sludge blanket reactor (UASB) treating 

paper mill wastewater (Eerbeek, Netherlands) was used as a source of microbial 

inoculum. The granular inoculum had VS of 138 g/g. Inoculum was anaerobically stored 

at +4°C for a year prior to inoculations.  

2. Bacterial mix used for bioaugmentation 

An algalytic mixture of bacteria comprised of facultatively anaerobic 

microorganisms, isolated from Logan City Wastewater Lagoons [11] was used to 

augment granular sludge. The mixture comprised of Citrobacter spp., Alcaligenes spp., 
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and Pseudomonas spp. in equal amounts and was added at 0.146 gVSS/L, constituting 

1% of the total inoculum.   

3. Specific methanogenic activity (SMA) test 

SMA tests were used to determine effect of bioaugmentation on the methane 

generation potential of the algal biomass [12, 13]. Inoculum and substrate were mixed in 

60ml of anaerobic media in 120ml serum vials in N2-CO2 (4:1) atmosphere and placed 

into a shaking incubator (100rpm) for the duration of the experiment (74 days) at 

35±2°C. The anaerobic medium was prepared as previously described [14], except there 

was no carbon source added. The final pH of the medium was 7-7.5. Substrate (mixed 

algal biomass) loading was 9.6 gVSS/L and inoculum (granular mix) was 19 gVSS/L. 

Thus, the substrate to inoculum ratio was kept at 1:2. All combinations of granular 

sludge, algal biomass and augmentation mixtures were prepared in triplicates. Gas 

production was measured with syringe displacement method; and gas composition (with 

methane and carbon dioxide as main components) was monitored once every week using 

an Agilent 7890B gas chromatograph (GC) with a thermal conductivity detector (TCD), a 

packed column (Gas Pro, Agilent) 60 m x 320 μm at 25°C oven temperature and Helium 

as a carrier gas (constant pressure 20psi). 

4. Polymerase chain reaction (PCR) analysis 

At the end of the study (after 74 days), samples containing granular sludge were 

briefly centrifuged to collect the granular sludge and washed in phosphate buffered 

saline. The washing step was necessary to ensure subsequent analysis of only the granule-

associated DNA, without DNA from an easily detached surface layer of microorganisms. 

Such approach allowed for the investigation of the presence of newly incorporated 
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augmenting bacteria inside the granular consortia. The bacterial DNA from the washed 

granules was extracted with PowerSoil® DNA Isolation Kit (Carlsbad, USA) and stored 

at -80°C prior to PCR and sequencing analysis. The PCR analysis for the presence of 

augmented bacteria inside the granular sludge was conducted using specific primer set for 

Citrobacter freundii cfa gene [15], using the following protocol: initial denaturation for 1 

min at 94°C followed by 40 cycles comprising of 1) denaturation for 30s at 94°C , 2) 

annealing for 1 min at 59°C, 3) extension for 1 min at 72°C and final extension for 

another 1 min at 72°C. Number of cycles was reduced to 30 if quantification was the 

purpose of PCR. Amplicons were purified using GeneJET Gel Extraction Kit (Thermo 

Fisher Scientific, United States) and quantified using spectrophotometer (Eppendorf, 

United States). For the quantitative purposes, all starting DNA template for PCR with 

bacteria-specific primer set was diluted to the same concentration. DNA from a pure 

culture of C.freundii13 strain was used as a positive control for PCR and quantification 

purposes.   

5. 16SrRNA gene sequencing and analysis  

Total DNA isolated from all the test vials was subjected to the 16SrDNA 

sequencing on MiSeq Illumina platform (Illumina, San Diego, USA) by Macrogen (Rep. 

of Korea). Universal bacterial primers 519F-806R [16, 17] were used to amplify the V3 

and V4 16SrDNA region of the total DNA for sequencing library preparation, using 

Herculase II Fusion DNA Plymerase Nextera XT Index Kit. The final purified product 

was then quantified using qPCR according to the qPCR Quantification Protocol Guide 

(KAPA Library Quantificatoin kits for Illumina Sequecing platforms) and qualified using 

the LabChip GX HT DNA High Sensitivity Kit (PerkinElmer, Massachusetts, USA). The 
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paired-end (2×300 bp) sequencing was then performed.  

Raw data from sequencing was initially processed through Scythe and Sickle [18, 

19] to remove adapter sequences. The data was then imported to and analyzed with 

QIIME 2 (2018.6 release) according to the tutorials provided by the QIIME developers 

[20, 21]. The DADA2 pipeline [22] was used to filter low quality regions and 

identify/remove chimeras in the reads. Taxonomic analysis of the resulting reads was 

performed in the following steps: generate a multiple sequence alignment and remove 

highly variable positions; generate a phylogenetic tree of the sequences; use a pre-trained 

Naive Bayes classifier on the SILVA-132-99 16S rRNA database [23] to obtain 

taxonomical placement of the OTUs (97% similarity).    

Raw reads were subsequently deposited into the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under the 

SRA accession SUB4409767.  

6. Statistical and diversity analysis  

Statistical analysis of the biogas/methane generation data was conducted in SAS 

package (SAS 9.04, SAS Institute Inc., Cary, NC). Analysis of the diversity (Shannon 

index) was conducted using PAST software package [24].  

Results  

1. Enhanced methane production in augmented samples 

Batch fermentations of a mixed algal biomass were successfully augmented with 

an algalytic bacteria mixture. Due to the potential presence of a mixed and methane-

producing population of bacteria in the algal biofilm (substrate), an additional set of 

triplicates was tested, involving autoclaved algal biomass and its combination with 
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granular sludge and the algalytic augmentation mixture. Specific methanogenic activity 

(SMA) of bioaugmented and non-augmented anaerobic granular sludge digesting algal 

biomass was assessed in this study. Figure 5-1 contains the SMA datasets (in ml CH4/g 

VSS load) over the 74 days of anaerobic digestion in batch reactors. 

Overall, 1% augmentation of granular sludge (based on the VSS load) lead to an 

11% increase in methane production on the algal biomass (when compared to the self-

digestion of algae-bacteria native mix) and a 6% increase in the digestion of algae with 

granular sludge.  

Figure 5-1. Cumulative specific methanogenic activity of augmented and non-

augmented granular inoculum samples. Error bars represent standard deviations among 

triplicates. Datasets marked with asterisk (*) indicate statistically significant differences 

between the sets (p<0.0002).   

 

2. Augmenting bacteria mixture was incorporated into the granular sludge 

Total extracted DNA at the end of the experiment was subject to PCR reactions 
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with cfa gene-specific primers to check for the incorporation of the most prolific member 

of the augmentation bacterial mixture, Citrobacter spp.. The analysis shows presence of 

algalytic bacteria sequences in all of the four sample combinations, at the end of the 74 

days anaerobic digestion (Figure 5-2). Quantification of the cfa-gene product after 30 

cycles of PCR demonstrates an increased amount of Citrobacter spp. DNA in response to 

algae addition or augmentation, when compared to the initial native presence of 

Citrobacter spp. in the inoculum.   

 

Figure 5-2. Gel electrophoresis of PCR-amplified cfa 

gene fragment of Citrobacter spp. in all the tested 

anaerobic digestion samples. Labels: (ng) negative 

control, (1) C.freundii13 genomic DNA, (2) Granules 

control, (3) Granules+Bacteria, (4) Algae+Granules, 

(5) Algae+Granules+Bacteria.   

 

3. Addition of algalytic bacteria into the batch reactors caused changes in the 

microbial communities 

To understand if there were any changes on the microbial level due to the 

augmentation, DNA from samples “Granules control”, “Granules + Bacteria”, “Algae 

control” and “Algae + Granules + Bacteria” were subjected to sequencing at the end of 

the study. Results of operational taxonomic units (OTUs) assignments and changes in the 

numbers of OTUs called for each sample are depicted in Figure 5-3.  

 



81 
 

 
 
Figure 5-3. Distribution of classified OTUs from 16SrDNA sequencing. Sample notations 

stand for: (ag) “Algae + Granules”, (agb) “Algae + Granules + Bacteria”, (gb) “Granules 

+ Bacteria”, (gc) “Granules control”. 

 

The major distinguishing feature among sequenced 16SrRNA profiles is the 

reduction in the total number of OTUs in the “Granules + Bacteria” sample, when 

compared to “Granules control”; and an increase in the number of OTUs in the triple 

combo “Algae + Granules + Bacteria”, when compared to “Algae + Granules”. However, 

increase/decrease in the numbers of OTUs do not correlate with the increase/decrease in 

the diversity of the microbial community. The diversity values, calculated via Shannon 

index, have a reverse relationship to the total number of the identified OTUs in the four 

distinct communities. Sample “Algae + Granules + Bacteria” has the lowest diversity 

among all of the samples (1.85), and “Granules control” (the starting source of inoculum) 

has the highest diversity (2.0).  
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From the taxonomic composition of the four sequenced samples, calculated Bray-

Curtis index as a quantitative measure of community dissimilarity demonstrated 

significant differences in the composition of samples with/without algae 

(Algae+Granules, Algae+Bacteria+Granules VS GranulesControl and 

Granules+Bacteria), 83% difference. Presence of bacteria was a second differentiating 

factor (11% difference between algae-present and non-present groups) (Figure 5-4).  

Figure 5-4. Bray-Curtis distances, calculated 

as a quantitative measure of community 

dissimilarity for the four samples. Labels 

represent: (ag) Algae + Granules, (gc) 

GranulesControl, (agb)  Algae + Bacteria + 

Granules, (gb) Granules + Bacteria.  

A distinct difference in the OTU composition lies in the increased number of 

Firmicutes in the algae-containing samples and decreased numbers of Proteobacteria and 

Synergistetes. OTUs assigned to Aegiribacteria are twice more abundant in the algae-

containing samples. The biggest difference is a presence of Tenericutes-assigned OTUs 

in the sample, “Algae + Granules + Bacteria”. This taxonomic group is almost 

completely absent in other three samples.  

Discussion   

1. Bioaugmentation of granular sludge does not require a UASB-like system 

The aim of this study was to investigate the possibility of augmenting anaerobic 

granular sludge with an algalytic bacteria mixture in batch conditions of fermenting algal 
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biomass. Over the course of 74 days of anaerobic digestion, biogas production and 

composition were analyzed from small batch reactors, seeded with granular sludge, 

augmenting mixture and algal biomass as a source of carbon. The overall increase of 6-

11% in methane production was detected for the augmented mixtures. This supports the 

viability of the bioaugmentation approach for batch fermentations with granulated sludge 

as a source of inoculum. The results also support the incorporation of new microbial 

groups into an established granular consortium without need for an upflow supply of the 

feed (presence of PCR product and it’s amount in the Figure 5-2). Previous studies 

suggested that augmentation of granular consortia is only possible if there is a pressure 

from the upflow velocity of the feed coming into the Upflow Anaerobic Sludge Blanket 

(UASB) reactor [3, 25]. A UASB-like environment is essential for the initial formation of 

the granular structures, but subsequent modifications of the microbial consortia inside the 

granules can take place without upflow velocity of the feed supply. An explanation of the 

current study success can be due to the incorporation of hydrolytic bacteria. Utilized here 

algalytic bacteria start the anaerobic digestion by potentially disrupting the cell walls of 

algal biomass or facilitate the lysis by the indigenous microbial community. Thus, by 

their trophic nature, algalytic bacteria should be incorporated into the outer layers of the 

granular sludge structures, to have constant access to the algal substrate [26]. To address 

this assumption, a beneficial study will be to dissect the augmented granules and 

fluorescently label the trophic groups, investigating their location inside the granules 

[27].     
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2. Bioaugmenting granular sludge community leads to its specialization towards algae 

digestion 

The results of the 16SrRNA sequencing and diversity analysis in Figure 5-3 

demonstrate some significant changes in the microbial composition of an augmented 

granular sludge digesting algal biomass. First, a decreased diversity in “Algae + Granules 

+ Bacteria” sample (Shannon index), potentially due to the specialization of metabolic 

activity towards digesting algal substrate (Figure 5-4). Second, an increased number of 

microbial groups that play role in polysaccharide, cellulose and protein digestion. Those 

microbial groups are mostly representatives of Bacteroidetes (as are the bacteria from 

augmenting mix: Citrobacter spp., Alcaligenes spp. and Pseudomans spp.) and various 

members of Calditrichaeota and Actinobacteria phyla (Cellulomonas and 

Cellulosimicrobium). These bacteria have been shown to secrete cellulases, peptidases 

and fibrolytic enzymes [28-30]. Interestingly enough, the number of Clostridiales 

representatives was significantly decreased in the augmented sample and were substituted 

by a number of other, less common cellulolytic bacteria. This may be due to the ability of 

the augmenting bacteria mixture to facilitate disruption of the algal cell walls by other 

hydrolytic bacteria with specialized enzymes, not commonly expressed in the populations 

dominated by Clostridia. On the other hand, some genera of Clostridiales, like Lutispora 

and Hydrogenispora, were more numerous in augmented samples. Representatives of 

these genera do not possess cellulolytic enzymatic machineries, but are good at utilizing 

diverse amino acids [31] and sugars [32].  Very good sources of amino acids in the 

current algae-digesting system are cellular proteins, available after initial break-down of 

the algal biomass. Members of Calditrichaeota and Actinobacteria phyla can also be 
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acting as secondary fermenters, after the initial lysis of the algal biomass was already 

performed by the augmenting bacteria mixture. A follow up study will be to repeat the 

experiment but have granules withdrawn from the reactors at different time points 

throughout the digestion, to compare the microbial population at different stages of 

anaerobic digestion (hydrolysis, acidogenesis and methanogenesis) [11].    

The sample “Algae + Granules + Bacteria” had decreased amounts of 

Caldicoprobacter and Desulfovibrio, while “Granules + Bacteria” sample has them in 

increased numbers, compared to the “Granules control” (GC). Members of 

Caldicoprobacter can utilize various sugars and produce lactate, acetate, CO2 and H2 as 

the end products, while Desulfovibrio are perfect partners, consuming lactate and acetate 

[33, 34]. Increase in these partners’ numbers in GB sample can be due to the increased 

number of secondary metabolites in the system due to the addition of fermenting 

organisms in augmenting mixture. Consequently, a decrease in “Algae + Granules + 

Bacteria” sample can be attributed to the outcompeting numbers of the similarly 

functioning microbes, that are more efficient in the environment of increased amounts of 

secondary metabolites from algal biomass. For example, Lutispora and Syntrophobacter 

can perform similar metabolic functions as Caldicoprobacter and Desulfovibrio pair.          

 The most prominent change in the microbial community of the “Algae + 

Granules + Bacteria” sample is a presence in very high numbers of Tenericutes (1 OTU 

versus 2000 OTUs), compared to all the rest of the samples. Specifically, members of the 

Mollicutes class, with majority belonging to Haloplasmatales orders. Members of this 

order are reported to be common for the digestive tracts of mollusks feeding off algae 

[35] and various green algae phycospheres [36]. Thus, possible explanation can be: DNA 
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comes from the bacteria that were previously associated or parasitizing off the substrate 

algal biomass, or they contribute to the lysis of the algal cells, or both.   

Overall, the results of microbial community analysis strongly point out that 

augmenting bacteria lead to a re-routing of the carbon flow in the algae digestion, when 

comparing to the non-augmented digestion of the same substrate. For each group of 

anaerobic fermenters in “Algae + Granules” sample, there is an alternative in the “Algae 

+ Granules + Bacteria” sample: different exopeptidases producing bacteria, different 

sugar/amino acid degrading bacteria and alternative consumers of volatile fatty acids.  

Conclusions    

This study describes a strategy to enhance digestion and methane production from 

algal biomass, by augmenting granular sludge with algalytic bacteria. Methane yields can 

be potentially further enhanced by re-inoculation of the algalytic bacteria; increasing the 

amount of the initial inoculation of the algalytic mix, or by a close-up study on the 

microbial community structure throughout the digestion period. Presence of the distinctly 

different microbial groups performing similar functions in augmented and non-

augmented samples supports a potential re-routing of the carbon flow in the digestion of 

algal biomass. Change in the primary hydrolytic bacteria can lead to the change in the 

consecutive secondary fermenters.  
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CHAPTER VI 

MODELING DE NOVO GRANULATION OF ANAEROBIC SLUDGE 5 

Abstract  

A unique combination of mechanical, physiochemical and biological forces 

influences granulation during processes of anaerobic digestion. Understanding this 

process requires a systems biology approach due to the need to consider not just single-

cell metabolic processes, but also the multicellular organization and development of the 

granule. In this computational experiment, we address the role that physiochemical and 

biological processes play in granulation and provide a literature-validated working model 

of anaerobic granule de novo formation. The agent-based model developed in a 

cDynoMiCs simulation environment successfully demonstrated a de novo granulation in a 

glucose fed system, with the average specific methanogenic activity of 1.11 ml CH4/g 

biomass and formation of a 0.5 mm mature granule in 33 days. The simulated granules 

exhibit experimental observations of radial stratification: a central dead core surrounded 

by methanogens then encased in acidogens. Practical application of the granulation model 

was assessed on the anaerobic digestion of low-strength wastewater by measuring the 

changes in methane yield as experimental configuration parameters were systematically 

searched. In the model, the emergence of multicellular organization of anaerobic granules 

from randomly mixed population of methanogens and acidogens was observed and 

validated. The model of anaerobic de novo granulation can be used to predict the 

morphology of the anaerobic granules in alternative substrates of interest and to estimate 

                                                             
5 Doloman A., Varghese H., Miller C.D., Flann N.S.: Modeling de novo granulation of anaerobic sludge. 
BMC Systems Biology, Volume 11, 2017   
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methane potential of the resulting microbial consortia. The study demonstrates a 

successful integration of a systems biology approach to model multicellular systems with 

the engineering of an efficient anaerobic digestion system.  

Background 

An efficient anaerobic digestion (AD) of organic matter is a result of a complex 

microbial interaction inside a bioreactor. For the high-rate anaerobic digestion of a 

feedstock, an up-flow anaerobic sludge blanket reactor (UASB) is a common choice. The 

superior performance of this reactor is due to the particular organization of 

microorganisms into spherical granular structures. The process of granulation was first 

noticed and documented in the early 1980s [1, 2] and since then a number of anaerobic 

granulation theories have been presented. The main reasoning for the granulation per se is 

the up-flow velocity inside sludge bed of a UASB reactor. Microbial cells moving up 

with the flow of the feed tend to stick to the other microbial cells. Such sticking behavior 

prevents a washout of the microbial inoculum from a reactor since the outlet for the 

digested feed is located in the top of the reactor [3, 4]. The most widely accepted theory 

states that granulation starts with a formation of a future granule’s core, comprised of 

filamentous methanogenic bacteria Methanothrix, together with Methanosarcina, which 

secrete extracellular polymers (ECP) [5-7]. The surface charge of this core changes and 

become attractive for the oppositely charged anaerobic bacteria that are present in the 

dispersed inoculum of a UASB rector [8-10]. Chemo-attractance of other bacteria 

towards ECPs and substrate around the granule core may also play a major role in the 

further aggregation and formation of mature granules [11, 12]. Despite these possible 

explanations of the granulation process, there is still no agreement on which of the 
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possible theories correctly explain this most important and crucial role of granulation. 

The key factors of granulation are still to be determined, whether they are physical, 

biochemical or a combination of physicochemical properties of the cells and the way the 

organic matter transforms over space and time.  

An effective means to get a better understanding the granulation process is 

through the construction of a computational granulation model. This model must 

incorporate testing of different key granulation factors. There are already some 

granulation models available in the literature, but they do not describe a process of de 

novo granulation and only describe the kinetics of anaerobic digestion with an already 

mature granular consortium. For example, one of the earliest models [13] assumes a 

layered granule structure with a homogeneous distribution of microbial groups from the 

very beginning of the simulation. Authors describe the kinetics of substrate 

transformation in a mature granule that reached a steady state. Using the same 

assumption [14] they successfully predicted the substrate distribution inside a granule, 

based on diffusivity gradient inside a biomass. Authors of another study [15] took the 

substrate kinetics in the granule one step further, incorporating behavior of granular 

agglomerates into the operation predictions of the whole UASB reactor. The mass of 

granules in a reactor, rates of granule decline and general bacterial growth kinetics were 

used as a basis for the model. In another study [16], researchers have applied a cellular 

automata theory, developed by Wimpenny et al., [17], to model granulation during 

anaerobic digestion. However, authors assumed a homogeneous layered structure of a 

granule and obtained calculated values of substrate utilization rates that do not agree with 

the experimental data they used as a reference. 
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A commonly applied assumption of a homogenous layered structure of anaerobic 

granule does not conform with experimental data. In particular, data suggests a spatially 

organized granule containing a mixed composition of bacterial groups inside the granule. 

In models lacking this property, there is no strict compartmentalization of trophic groups, 

like methanogens and acidogens, in the core and outer layer, respectively. Strict 

anaerobes, like methanogens, can also be found in the outer layer of the granule, as 

visualized with fluorescent probing experiments and scanning electron microscopy [18-

21]. A non-homogeneous bacterial distribution is investigated in a model described in 

[22]. However, the study does not address the process of granulation itself, and an 

entirely formed granule is employed as an initial condition and seed of a model. The 

model, therefore, predicts a mature granule’s further development, growth, and formation 

of an inert core inside it. 

An enormous amount of knowledge has been developed on predicting the rates of 

anaerobic digestion in UASB reactors with mature granules. However, these models are 

not complete and do not represent the actual input for large scale applications, 

specifically those of the widely accepted biochemical model of the anaerobic digestion 

process (ADM1) [23]. The most recent review of a current status of ADM1 clearly states 

the need to thoroughly address the application of ADM1 to various types of anaerobic 

reactors, UASB in particular. Thus, a complete and trustful model of anaerobic digestion 

in UASB must take into account both granulation in general and initial de novo 

granulation [24]. Knowledge of the critical parameters facilitating de novo granule 

formation will aid in robust UASB reactor operation and production of increased methane 

yields with high organic matter transformation rates. 
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To model de novo anaerobic granulation, a number of computational platforms 

has been reviewed to find the best fit. The cellular Potts model was a pioneer [25] in 

biofilm modeling and has been extensively implemented in modeling of biofilms of the 

eukaryotic origin [26, 27]. To effectively apply this approach to the microbial liquid-

based environment (thus without influence of attachment/detachment to the substratum), 

this model needs a lot of improvements, to prevent formation of artifacts [28, 29]. A 

simulator framework cDynoMics [30, 31], on the other hand, is more quantitative and is 

very flexible to adjust for modeling of bacterial aggregates. This framework has built-in 

functions to specify all the necessary substrate limiting kinetics for cell growth and 

biomass decay due to the starvation, which are absent in other previously described 

platforms. Absence of a solid substratum in the anaerobic digestion system excludes need 

for the use of attractive van der Waals force in the model, unlike in other reported biofilm 

developing tools [32]. 

A model of de novo granulation proposed in this paper addresses some of the key 

aspects that influence aggregation of microbial biomass into defined granular structures. 

Those key elements include: initial concentrations of the substrate used as a feedstock for 

anaerobic digestion; ratio of methanogenic and acidogenic cells at the start of the reactor; 

the role of chemotactic attractions and cell-to-cell adhesion properties. This study 

addresses all these factors. Additionally, an extensive computational search of the initial 

parameter values is made to determine an optimal initial combination that yields the 

highest start-up methane production rates.  
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Results and Discussion  

Simulation experiments were conducted on the computational granulation model 

to give insights into different stages in the development of granules in aerobic sludge 

reactors. Where available, literature supported model parameters were employed. Other 

parameters, such as those that influence particle aggregation and mechanical sorting, 

were fine tuned based on correspondence between observations made from simulations 

and comparisons with reported granule images. The resulting granule spatial organization 

and product production of model simulations are analyzed and compared with values 

from real biological systems. Another objective of the study was to employ a search 

engine to find the amount of initial glucose concentration and populations of 

methanogens and acidogens that lead to optimal methane production.  

Study I: reactor scale model 

In the reactor scale phase of modeling, randomly distributed acidogens and 

methanogens (illustrated in Fig. 6-1a) interact with each other in a simulated UASB 

reactor environment, where upflow velocity and agitation play key roles to promote 

granulation of sludge. In the simulated environment microbial cells move around the 

system due to agitation and cells are bound together due to biomechanical adhesive 

forces, allowing formation of cell agglomerates (illustrated in Fig. 6-1b). 
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Fig. 6-1. Reactor scale model. a) initial random distribution of two types of cells in a 

UASB-like environment; b) formation of cell aggregates due to the mechanical forces, 

mutual adhesion and random agitation in the UASB-like environment 

 

Study IIa: stages of granule formation 

To investigate the development of a mature granule and dynamic changes in the 

cell growth, consumption of glucose, a series of simulator output snapshots were 

performed (Fig. 6-2). At the initial stage (t=0 h), single cell aggregate appears as a small 

cluster of acidogens and methanogens (zoomed from Reactor scale model, Fig. 6-1). As 

time proceeds (t=300, t=480 and t=700 h) cells grow and corresponding solute gradients 

demonstrate accumulation of acetate and methane in the system. Methane, being a 

volatile compound, is slowly diffused out of the system and depicted values on the scale 

of gradient images are not the cumulative values, as in the case of the glucose and 

acetate. At 480 h of granule development, a black “dead” core of cells starts to emerge in 

the middle of the granule sphere. Appearance of a “dead” core is due to the diffusion 

boundaries of glucose or acetate inside granular cluster. Thus, cells of both types 
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(acidogens and methanogens) are not getting enough energy supply and are forced to 

transition into the inert biomass. This transition is set to be irreversible in the model, thus 

leading to a formation of a “dead core”. A similar core can be seen on the Fig. 6-4a of the 

laboratory-observed granule, which is used as evaluation criterion in current study and is 

descried later in detail. The final stage of granule development simulation (t=650 h) 

demonstrates a mature granule with 0.5 mm in diameter. 

 

Fig. 6-2. Simulation of 0.5 mm granule formation. Stages of simulated de novo 

granulation and associated dynamic changes in the solutes concentrations (glucose, 

acetate and methane). Only the critical time points of simulation are depicted through 

stages I-IV (t=0 h through t=650 h) 
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Study IIb: analysis of granule growth dynamics 

In addition to visual (qualitative) investigation of de novo granulation, a close up 

quantitative study was performed on dynamic changes in solute amounts and cell biomass 

accumulation (both in values of cell numbers and cell biomass numbers). Graphs for 

dynamic changes are provided in Fig. 6-3. Fig. 6-3a demonstrates changes in the total 

number of two types of cells (acidogens and methanogens) with regard to the simulation 

time. Simulation was initiated with 100 cells of each type. Due to the fast growth of the 

acidogens (see the Table 6-1 with growth kinetics parameters), we can see an exponential 

growth of acidogens from t=80 h to t=360. A similar dynamic is depicted in Fig. 6-3b. 

Due to the product inhibition by the produced acetate and lack of diffused glucose, 

acidogens decrease their relative growth rate and reach the stationary phase of growth at 

around t=600 h. Dynamics of methanogens growth is slightly different, mainly due to the 

lack of available acetate from the start-up of the system and a lower growth rate, contrary 

to acidogens (Table 6-1 with model parameters). Methanogen growth goes through a long 

lag phase (t=0 h until t=220 h), where biomass is accumulated at a very slow rate (Fig. 6-

3b). At this lag phase methanogen cells are waiting for the supply of acetate from 

acidogens. As soon as enough acetate is accumulated in the system (around t=220 h), 

methanogens start exponential growth and decrease their relative growth rate at about 

t=520 h. This decrease is in direct correspondence with the amount of available acetate in 

the system at the same time period (t=480–500 h), (Fig. 6-3c) when acidogens are 

inhibited by the produced acetate and are not provided with a high flow of glucose (due 

to the slow diffusion into the center of the granular biomass). Kinetics of acetate 
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accumulation/conversion and methane production are in a good correlation with 

experimental data reported by Kalyzhnyy et al. and others [20, 33-35].  

 

Table 6-1. Parameters used in model and their correspondent values 

Model parameter Symbol Value Unit References 
Solutes 

Diffusion of glucose in liquid 𝐷𝐷𝑔𝑔 5.8 × 10−6 m2/day [36] 
Diffusion of acetate in liquid 𝐷𝐷𝑎𝑎 1.05 × 10−4 m2/day [36] 
Diffusion of methane in 

liquid 𝐷𝐷𝑚𝑚 1.29 × 10−4 m2/day [37] 
Biofilm diffusivity γ 30 % [38] 

Acidogens 
Cell mass 𝐵𝐵𝑎𝑎 300 fg [39] 
Division radius  3 μm [40] 
Maximum growth rate 𝜇𝜇𝑎𝑎� 0.208 h-1 [39, 41, 42] 
Substrate saturation constant 𝐾𝐾𝑠𝑠 0.26 g/L [35, 42] 
Product inhibition constant 𝐾𝐾𝑖𝑖 0.1 g/L [41, 42] 

Biomass conversion rate 𝛼𝛼𝑏𝑏𝑔𝑔 0.3 
𝑔𝑔𝑏𝑏𝑖𝑖𝑏𝑏𝑚𝑚𝑎𝑎𝑠𝑠𝑠𝑠

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑠𝑠𝑔𝑔
 

[42, 43] 

Substrate conversion rate 𝛼𝛼𝑎𝑎𝑔𝑔 0.82 
𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑠𝑠𝑔𝑔

 
[41, 42] 

Death delay  48 h estimated 
Death threshold  0.02 g/L estimated 

Methanogens 
Cell mass 𝐵𝐵𝑚𝑚 1500 fg [40] 
Mass of EPS capsule  10 fg [44] 
Division radius  3 μm [40] 
Maximum growth rate 𝜇𝜇𝑚𝑚�  0.1 h-1 [33, 44] 
Substrate saturation constant 𝐾𝐾𝑠𝑠 0.005 g/L [44] 

Biomass conversion rate 𝛼𝛼𝑏𝑏𝑎𝑎 0.15 
𝑔𝑔𝑏𝑏𝑖𝑖𝑏𝑏𝑚𝑚𝑎𝑎𝑠𝑠𝑠𝑠

𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔
 [33, 35] 

Substrate conversion rate 𝛼𝛼𝑚𝑚𝑎𝑎 0.26 
𝑔𝑔𝑚𝑚𝑔𝑔𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑔𝑔

𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔
 [33] 

Death delay  48 h estimated 
Death threshold  0.00001 g/L estimated 
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Fig. 6-3. Simulation related changes in solute concentrations and cell biomass. a A close-

up of the dynamic changes in a cell number over simulation time, b cell biomass over 

simulation time and c solutes concentrations over simulation time. All the changes are 

graphed for each type of the cell (acidogens, methanogens, inert dead type) and each type 

of the solute (glucose, acetate, methane). Ten simulations with different random seeds 

were graphed to demonstrate standard deviation in the monitored values. 

Study III: formation of a mature granule 

Figure 6-4 shows images of a 1 mm in diameter granule, obtained from both a 

laboratory experiment reported by Sekiguchi et al. [19] (Fig. 6-4a) and an image from our 

simulated model (Fig. 6-4b). Simulation of 1 mm in diameter granule formation took 800 

h (around 33 days), which corresponds to the published studies observing granulation in 

UASB reactors [20, 45]. Figure 6-4c, d and e depict distribution of solutes (glucose, 
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acetate, and methane) at the final stage of simulated granule growth (t=800 h). One can 

note a sharp decrease in the glucose diffusion inside the granule, with regard to the 

biofilm diffusivity capacity. Since acetate is consumed by methanogens during their 

growth and converted to methane, there is a low concentration gradient of both chemicals 

on the final images (Fig. 6-4c, d, e). Overall, solute distributions for 1mm granule follow 

a similar pattern as for the 0.5 mm granule, described earlier. Key point in conducting 

simulation of a 1mm granule development is to demonstrate radial growth, without 

substantial changes in the overall morphology. Thus, initial stages of granule formation 

are the key factors for granulation per se. 

Validation of the model 

Validation of the model performance was conducted both qualitatively (Fig. 6-4a, 

b) and quantitatively (Fig. 6-5). Visual comparison of a published fluorescent-labeled 

image of granule with simulated granule image demonstrates a striking similarity in 

spatial distribution of main trophic groups of microorganisms: acidogens, methanogens 

and “dead” biomass. Irregularities and hollow parts (black color) in the published granule 

image (Fig. 4a) are possibly caused by the upflow velocity of the liquid and particulate 

matter in a UASB reactor, where the granule was developed [19], which might have 

damaged spherical shape of the immature granule, causing mature granule to change its 

shape and grow further with hollow compartments. Another possible explanation might 

be granule division. It is well documented [6, 9, 10] that due to the shear stress in a 

UASB reactor, granules cannot grow uncontrollably and will eventually split into 

“daughter” granules. Those “daughter” granules are susceptible to attachments of 

additional microbial cells, floating in UASB sludge bed. Those newly attached cells 
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might cause irregularities in future mature granules in forms of randomly distributed cell 

clusters in a presumably inert (“dead”) core (red labeled cell clusters on Fig. 6-4a). To 

validate our simulated model quantitatively, we conducted image processing of the 

published data and used an algorithm to count the number of distinctly colored 

pixels/cells at the different distances from the center of the granule image (Fig. 6-5). We 

used 4 quarters of a spherical granule in the analysis to provide standard deviations of 

spatial distribution of three distinct cell groups – acidogens, methanogens and inert 

(“dead”) biomass. Results of quantitative distribution of three main cell types in both 

simulated and real images are in a good correlation, accept for the radial section “3”. 

Such slight discrepancy is due to the possible “division to daughter granules” history of 

the laboratory granule.  
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Fig. 6-4. Validation of the de novo granulation model via qualitative analysis. a 

Laboratory image courtesy of Sekiguchi et al. [19], where green fluorescence label was 

used for Bacteria (represented by a single group of acidogens in current study), red 

fluorescence was emitted by Archaea (represented by a single group of methanogens in 

current study), yellow color correlates with overlapped red and green fluorescence and 

black color represents absence of fluorescence hybridization, and thus, absence of cell 

biomass (denoted as dead core here). b An image of granule simulated with current 

model. Same color labeling of the cell types is applied. c, d and e Distribution of the three 

solutes defining simulation of granulation (glucose, acetate, methane) at the final time 

point (t=800 h) of the simulation. 
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Fig. 6-5. Validation of the de novo granulation model via quantitative analysis. 

Validation was done via analysis of the three cell type radial distribution in the both 

laboratory (a) and simulated granules (b). Both granules were divided into four quarters 

and each quarter was analyzed for cell distribution. Differences in the cell numbers at the 

same radial distance in four quarters are depicted in a form of standard deviation. Red, 

green and black colors of the bars on bar chart represent acidogen, methanogen and dead 

cells respectively. 
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Parameter scan for optimized methane production  

Main objective of the parameter scan is to estimate a combination of cell ratio 

(acidogens:methanogens) and glucose supply needed to start anaerobic system to achieve 

a desired (maximum) methane yield. The corresponding protocol parameter for glucose 

value is “SBulk” in world section. The “init area number” for acidogens and 

methanogens in the species section is used to determine the initial cell ratio for the 

simulations. The minimum and maximum value of the interval in which the search should 

be performed is given as an input to the search engine. The methane productivity  

(calculated from the solute concentration file output from simulator) is given as fitness 

function for the engine. The search engine simulated granule formation for several 

combinations of parameter values within the input interval and calculated total methane 

produced. The result is produced as a heatmap in Fig. 6-6. 

Figure 6-6 depicts amount of methane produced (in milliliters) per gram of 

biomass with varying amount of glucose supplied initially into the system (0.1 to 0.4 g/l). 

Figure 6-6a has a constant initial acidogen count of 100 cells, and heatmap demonstrates 

varying amounts of methane produced with different glucose concentrations and different 

numbers of initial methanogen cells (from 1 to 900 cells). Same scheme is followed on 

Figure 6-6b, but with varying initial numbers of acidogens (from 1 to 400) and constant 

initial methanogen count of 100 cells.  
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Fig. 6-6. Parameter scan for the methane production in simulated granule. Parameter scan 

for the methane production in simulated granule with a varying initial number of 

methanogen cells (constant initial acidogen cell count) and b varying initial number of 

acidogen cells (constant initial methanogen cell count). Red color of the heatmap section 

has the highest value of methane produced (in milliliters of methane per gram of 

biomass), while blue heatmap section has the lowest value of produced methane. 

Parameter scan was conducted for 0.5 mm granule size and for the period of 650 

simulation hours. 

 

One can note from both Figure 6-6a and b that increased amount of glucose 

correlates with increased amount of methane produced in the system. Also, in general 

increased number of starting cells of acidogens (Fig. 6-6b) let to the higher amounts of 

methane  produced. This correlates with the earlier explored kinetics of 

methanogen/acidogen growth, when methanogens are waiting for acetate supply until 

they start to grow and produce methane. Parameter scan also helped to identify an 

important observation that a ratio of methanogen cells to acidogens should not be in a 
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high favor of methanogens (100 acidogens and 900 methanogens on Fig. 6-6a), since this 

leads to a decreased amount of methane production. The reason for such correlation is 

lack of acetate in the system to support growth of such a big number of methanogenic 

cells, which are forced to starve and die off.  

Conclusions 

A model of anaerobic granulation from digestion of glucose to methane has been 

successfully implemented in an agent-based simulator framework, cDynoMiCs. 

Simulation studies incorporated modeling of both reactor and single agglomerate scale 

granule development. Utilized growth mechanisms for generalized glucose 

consuming/acetate-producing bacteria and acetate consuming/methane-producing 

bacteria resulted in a well-correlated kinetic patterns of substrate conversions and 

biomass growth (Fig. 6-3). We were able to successfully qualitatively and quantitatively 

validate the architecture of the developed simulated anaerobic granule with the granule 

images and cell distribution from experimental literature studies (Figs. 6-4 and 6-5). The 

described granulation model has direct applications for designs of experiments, to predict 

yields of methane gas from substrates of interest. One application of the model was 

successfully demonstrated in this paper via parameter scan algorithm, searching through 

different acidogens:methanogens cell ratios and glucose feed that is needed to start 

anaerobic system to achieve a desired (maximum) methane yield. By changing the 

parameters of microbial growth to fit bacteria of a specific interest (the bacteria one is 

targeting to explore in an AD experiment), researchers can apply this model to predict 

efficiencies of anaerobic digestion in a system. The tested parameter scan is directly 

applicable to the studies with low-strength feed streams to UASB reactors, such as AD of 



108 
 

brewery wastewater (COD=100-800 mg/L) [46], some municipal and industrial 

wastewaters (COD=100-400 mg/L) [47, 48] and effluents from petroleum refineries  

(COD from 68 mg/L) [49]. Further development of the model will include a parameter 

search to investigate methane production from medium and high strength wastewaters. 

The current model of anaerobic granulation and methane production from simple feed 

sources (glucose) can be expanded to accommodate microbial conversion of more 

substrates, such as a mixture and proteins and carbohydrates. This expansion will make it 

possible to study granulation and methane potential from a more realistic scenario of 

wastewater feed, such as dairy and municipal wastewaters. A granulation model from a 

complex feed should result in a less stratified granule, due to the differential diffusions of 

the main feed components and a more complex patterns of microbial growth kinetics 

[18]. 

In addition, a model framework (iDynoMiCs) can be further modified to simulate 

detachment of excessive biomass from granular surface (simulating sheer stress described 

in the UASB reactor environment [4, 38, 50, 51]) and breakage of a granule into daughter 

clusters, that subsequently give rise to mature granules with a more complex morphology 

[18, 21, 52]. Since current model assumes spherical types of cells, exploration of 

filamentous type of methanogenic bacteria influencing de novo granulation based on the 

“spaghetti theory” is something of future interest [32, 53]. Another possible realm to 

expand development and application of current granulation model is to explore the 

mechanisms of enhancing anaerobic granulation, such as addition of positively charged 

ions and particles of polymers into the UASB system [54, 55]. To converge granulation 

model with reactor-like environment, a Biocellion modelling environment can be used 
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[56, 57]. Possibility to parallelize computation load in Biocellion would eliminate the 

main bottleneck of the cDynoMics and allow development of a whole reactor model with 

simultaneous substrate conversion and anaerobic granule development. The current 

model of the de novo anaerobic granulation and its immediate applications will aid future 

discoveries in the field of anaerobic digestion, which is regaining its value and popularity 

in sustainable energy.  

Methods  

The process of granulation is modeled at two spatial scales in the simulation. At 

the macroscale, the reactor process is simulated where the cells are introduced into an 

agitated system (due to the upflow velocity in UASB reactor), cells interact and form 

multiple agglomerates (centers of granulation). At the mesoscale, simulations are 

performed that focus on the growth and development of one such agglomerate into a 

mature granule.  

In the macroscale, randomly distributed acidogenic (further referred to as 

“acidogens”) and methanogenic cells (further referred to as “methanogens”) are 

introduced into random positions within the reactor. The particles experience mechanical 

forces due to agitation in the system as well as biomechanical forces due to homogeneous 

and heterogeneous adhesion and formation of EPS-driven interactions. As a cumulative 

effect of these forces, cells come close to each other and form several agglomerates. 

To closely monitor the growth patterns in the formation of a granule, the 

mesoscale simulation is designed to focus on the development of a single granule (from 

the initial agglomerate of acidogens and methanogens formed during the macro studies). 

In UASB bioreactors, granules move freely in an agitated system, where the supplied 
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solutes are relatively mixed. To simulate such a mixed environment for the granule 

growth, we provide a continuous supply of one solute (glucose) from all the sides of the 

simulation domain with diffusivity as defined in Table 6-1. The model executes growth 

reactions that represent the consumption of the supplied glucose by the acidogens, the 

secretion of the acetate as a metabolite of acidogens and the consumption of acetate by 

methanogens, which is converted into the methane gas. 

An agent-based simulator framework, cDynoMiCs [31] is used in this experiment. 

cDynoMiCs is an extension of iDynoMiCs framework developed by the Kreft group at 

University of Birmingham [30] specifically for modeling biofilms. cDynoMiCs includes 

eukaryotic cell modeling processes with the addition of extracellular matrix and cellular 

mechanisms such as tight junctions and chemotaxis. Each cell is represented as a 

spherical particle, which has a particular biomass, and implements type and species-

specific mechanisms to reproduce cellular physiology. Biochemically, particles can 

secrete or uptake chemicals that are diffused through the domain by executing reactions. 

Biomechanically, particles exhibit homogeneous and heterogeneous adhesion, and the 

formation of tight junctions. Particles model growth by increasing their biomass 

according to metabolic reactions and split into two particles once a maximum radius 

threshold is reached. They can also switch from one type of particle to another based on 

specific microenvironmental conditions and internal states. The simulation process 

interleaves biomechanical stress relaxation where the particles are moved in response to 

individual forces, along with the resolution of biochemical processes such as secretion, 

uptake, and diffusion by a differential equation solver. We assume that the solute fields 

are in a pseudo steady-state with respect to biomass growth [30]. 
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Particle growth and division can cause particles to overlap, creating 

biomechanical stress. To resolve this problem a process called shoving is implemented.  

When the distance between two particles is less than a fixed threshold set by the particle 

size, a repulsive force is generated to push them apart, proportional to the overlap 

distance between the two particles. Then the relaxation process commences that 

iteratively moves each particle in response to its net force, then recalculates the forces 

due to the movement. The process terminates when only negligible forces remain, and the 

system has reached a pseudo steady state. 

cDynoMiCs adds new functionality to the Java code of iDynoMiCS and extends 

the XML protocol, used to specify many different types of simulations. iDynoMiCS 

writes plain-text XML files as output, and these may be processed using any number of 

software tools, such as Matlab and R. In addition to XML files, iDynoMiCS also writes 

files for POV-Ray that is used to render 3-D ray-traced images of the simulation. For the 

experiment to form the 1mm granule a 1.16 mm×1.16 mm domain size was used. For all 

other experiments, a 508 μm × 508 μm domain size (2D) is used. A summary of the 

protocol parameter values can be found in Table 6-1.  

Three solutes glucose (𝑆𝑆𝑔𝑔), acetate (𝑆𝑆𝑎𝑎) and methane (𝑆𝑆𝑚𝑚) exist within the reactor 

model. The distribution of these solutes is controlled by Eqs. 6-1, 6-2, and 6-3 

respectively. The diffusion coefficients and reaction rates take different forms for each 

region depending upon the spatial distribution of acidogen biomass (𝐵𝐵𝑎𝑎), methanogen 

biomass (𝐵𝐵𝑚𝑚) and dead biomass (𝐵𝐵𝑑𝑑) described in Eq. 6-4. The effective diffusion 

coefficient is decreased within the granule compared with the liquid value in order to 

account for the increased mass transfer resistance. The diffusivity values used for the 
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model (specified in Table 6-1) are taken from literature related to biofilm diffusivity 

studies [42, 52]. The growth rate of acidogens is 𝜇𝜇𝑎𝑎(𝑆𝑆𝑔𝑔, 𝑆𝑆𝑎𝑎), defined in Eq. 6-8, and the 

growth rate of methanogens is 𝜇𝜇𝑚𝑚(𝑆𝑆𝑎𝑎) defined in Eq. 6-9.  

𝜕𝜕𝑆𝑆𝑔𝑔
𝜕𝜕𝑎𝑎

= 𝐵𝐵(𝑥𝑥,𝑦𝑦) ∙ 𝐷𝐷𝑔𝑔 ∙
∇2 𝑆𝑆𝑔𝑔
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝜇𝜇𝑎𝑎(𝑆𝑆𝑔𝑔, 𝑆𝑆𝑎𝑎) ∙ 𝐵𝐵𝑎𝑎
𝛼𝛼𝑏𝑏𝑔𝑔

                                               (Eq. 6-1) 

𝜕𝜕𝑆𝑆𝑎𝑎
𝜕𝜕𝑎𝑎

= 𝐵𝐵(𝑥𝑥,𝑦𝑦) ∙ 𝐷𝐷𝑎𝑎 ∙
∇2 𝑆𝑆𝑎𝑎
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝑚𝑚(𝑆𝑆𝑔𝑔,𝑆𝑆𝑎𝑎) ∙ 𝛼𝛼𝑎𝑎𝑔𝑔𝐵𝐵𝑎𝑎
𝛼𝛼𝑏𝑏𝑔𝑔

                                           (Eq. 6-2) 

𝜕𝜕𝑆𝑆𝑚𝑚
𝜕𝜕𝑎𝑎

= 𝐵𝐵(𝑥𝑥,𝑦𝑦) ∙ 𝐷𝐷𝑚𝑚 ∙ ∇
2 𝑆𝑆𝑚𝑚
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝑚𝑚(𝑆𝑆𝑎𝑎) ∙ 𝐵𝐵𝑚𝑚
𝛼𝛼𝑏𝑏𝑎𝑎

                                                  (Eq. 6-3) 

where,  

𝐵𝐵(𝑥𝑥,𝑦𝑦) = �1.0
𝛾𝛾                                                                                 

 
 

Equations 6-5 and 6-6 describe acidogen and methanogen biomass changes as a 

function of local acetate and glucose concentration. Cell death due to lack of food is 

modeled using a discrete switching mechanism defined as the function 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑖𝑖) in the 

equations. Acidogen cells are converted to dead cells when the amount of glucose is 

below a threshold value (death threshold in Table 6-1) for a period of 48 h. Similarly, the 

methanogen cells are converted to dead cells when the amount of glucose is below a 

threshold value (death threshold in Table 6-1) for a period of 48 h. The rate of increase in 

dead cell mass is define in Eq. 6-7. The parameter values for controlling cell death are 

estimated due to the lack of studies quantifying the response of acidogen and methanogen 

cells to nutritional stress.                                                     

𝜕𝜕𝐵𝐵𝑎𝑎
𝜕𝜕𝑎𝑎

= 𝜇𝜇𝑎𝑎�𝑆𝑆𝑔𝑔, 𝑆𝑆𝑎𝑎�𝐵𝐵𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑎𝑎)                                                                   (Eq. 6-5) 

𝜕𝜕𝐵𝐵𝑚𝑚
𝜕𝜕𝑎𝑎

= 𝜇𝜇𝑎𝑎 ∙ 𝑆𝑆𝑎𝑎 ∙ 𝐵𝐵𝑚𝑚 − 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑚𝑚)                                                                    (Eq. 6-6) 

if location 𝑥𝑥, 𝑦𝑦 contains no biomass 
if location 𝑥𝑥, 𝑦𝑦 contains biomass                                                (Eq. 6-4) 
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𝜕𝜕𝐵𝐵𝑑𝑑
𝜕𝜕𝑎𝑎

= 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑎𝑎) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑚𝑚)                                                                          (Eq. 6-7) 

Acidogens grow by consuming glucose and producing acetate described by the 

Monod-kinetic Eq. 8, where 𝜇𝜇𝑎𝑎� is the maximum growth rate for acidogens. Similarly, 

methanogen growth by consuming acetate and producing methane described by Monod-

kinetic Eq. 9, where 𝜇𝜇𝑚𝑚�  is the maximum growth rate for mathanogens. Values for growth 

constants, such as biomass yield and substrate conversion rate, for both acidogens and 

methanogens were taken from literature and averaged. Thus, maximum growth rate for 

acidogens was twice as high as that that of methanogens, see [3, 35, 41-44, 58, 59]. 

Biomass decay rate is not taken into account for both cell types, since decay for anaerobic 

type of growth is usually less or equal to 1% of specific growth rate and thus can be 

ignored [41]. Noncompetitive product inhibition is considered for growth of acidogens 

[41], but not for the methanogens, assuming low inhibition of methanogenic growth by 

excess amount of acetate.  

𝜇𝜇𝑎𝑎�𝑆𝑆𝑔𝑔, 𝑆𝑆𝑎𝑎� = 𝜇𝜇𝑎𝑎� ∙ 𝑆𝑆𝑔𝑔
(𝐾𝐾𝑠𝑠𝑔𝑔+𝑆𝑆𝑔𝑔)

∙ 𝐾𝐾𝑖𝑖
(𝐾𝐾𝑖𝑖+𝑆𝑆𝑎𝑎)

                                                              (Eq. 6-8) 

𝜇𝜇𝑚𝑚(𝑆𝑆𝑎𝑎) = 𝜇𝜇𝑚𝑚� ∙ 𝑆𝑆𝑎𝑎
𝐾𝐾𝑠𝑠𝑎𝑎+𝑆𝑆𝑎𝑎)

                                                                                 (Eq. 6-9) 

Availability of data and materials 

The working code of experiments can be found on GitHub repository 

https://github.com/Honeyvarghese/cDynoMiCs-. 
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CHAPTER VII 

A MODEL FOR BIOAUGMENTED ANAEROBIC GRANULATION 6 

Abstract  

Anaerobic granular sludge comprises of tightly organized microorganisms with a 

sophisticated metabolic network. Such aggregates can withstand storage, temperature 

fluctuations and changes in the substrate supplied for anaerobic digestion. However, 

substrate change leads to long adaptation of granular consortia, creating lags in the 

reactor operations. To speed up the adaptation and increase digestion efficiency 

bioaugmentation with a robust consortium can be involved. 

A study described here aims to shed light to the mechanisms of bioaugmenting 

the anaerobic granules, utilizing a current body of knowledge on metabolic and 

biochemical interactions between bacteria in such aggregates.  In a presented 

computational experiment, bioaugmentation is explored for adaptation of cellobiose-

degrading granular consortium to the lipid-rich feed. Lipolytic bacteria were successfully 

incorporated in silico to the stable granular consortia after 40 days of simulation. Ratio of 

cellobiose and lipid-derivative, oleate, in the feed played key role to ensure 

augmentation. At 0.5 g/L of both cellobiose and oleate in the feed, a homogeneous stable 

augmented consortium was formed and converted the given amount of substrate to 10.86 

mg/L of methane, as a final product of anaerobic digestion.  

Demonstrated model can be used as a planning tool for anaerobic digestion 

facilities considering transition of the inoculum to a new type of feed.  

 

                                                             
6 Co-authors: Amitesh Mahajan, Yehor Pererva, Charles D. Miller, Nicholas S. Flann  
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Background 

Bioaugmentation is a common strategy in the field of wastewater treatment that is 

used to introduce a new metabolic capability to either aerobic or anaerobic microbial 

consortia [1-3]. A recent review [4] pointed out applications of both yeast and bacterial 

bioaugmentations to treat various pollutants in wastewater: from azo-dyes to quinolines 

and polycyclic aromatic hydrocarbons. Success of the bioaugmentation is only possible if 

there is a substrate-specific niche available for the microbe to be incorporated into the 

already established consortia [5-7]. Bioaugmentation shares the need for the substrate-

specific niche with the concept of bioremediation, which often fails due to the lack of the 

unique metabolic niche [8].  

A number of studies have shown both successful and unsuccessful 

bioaugmentation when either substrate niche or pH favoring conditions were the limiting 

factors [9, 10]. For example, if during anaerobic digestion a compound is produced that is 

toxic or inhibitory to the intrinsic microbial community, incorporation of a novel 

microorganism that can remove the toxic/inhibitory compound would be beneficial [11, 

12]. Some research also suggests a need for tight biochemical interaction to take place 

between the bioaugmented bacterium and the intact community [13, 14]. Such 

biochemical interactions, together with substrate niche availability, will lead to a 

stratification or compartmentalization of the bioaugmented bacterium in a densely packed 

microbial consortium. The best example of such densely packed microbial consortium is 

an anaerobic granule [15]. Anaerobic granules are formed in upflow anaerobic sludge 

blanket (UASB) reactors, where due to the constant upflow velocity of the bottom-fed 



120 

 

substrate and attraction towards some microbially-secreted polysaccharides (EPS), 

bacteria come together to form granules [16].  

The study described here aims to shed light to the mechanisms of bioaugmenting 

anaerobic granules, utilizing the current body of knowledge on metabolic and 

biochemical interactions between bacteria in such aggregates. The end result of this 

study is a computational model that can visually demonstrate varying stratifications of 

different trophic microbial groups prior to and after bioaugmentation. This computer 

model can be of help for both researchers and engineers, who are operating or studying 

either laboratory or industrial-scale anaerobic digesters and wish to enhance rates of 

anaerobic decomposition and methane production via bioaugmentation.  

In previous studies by our group, a model of de novo anaerobic granulation was 

successfully designed and a search engine was used to find the optimum ratio of 

methanogenic and acidogenic bacteria, producing methane from the glucose-rich feed 

[17]. The new model reported here builds upon the basic principles of de novo anaerobic 

granulation reported earlier and introduces a more complex model of a granule with 

higher number of trophic groups. Described granule formation is based on the anaerobic 

decomposition of cellulose (in the form of a cellobiose) and is based on a larger microbial 

network of 5-6 different bacteria. Cellulose, being the main carbohydrate component of 

all plant and algal biomass, was chosen as a main model substrate due to its relevant 

biotechnological potential [18-20] and its relatively complex anaerobic digestion scheme, 

allowing multiple trophic groups to occupy the same layer in the granule.  

To mathematically simulate the bioaugmentation process in UASB-like anaerobic 

digesters, new bacterial species are introduced to the mature cellobiose-fed granule, 
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together with a new substrate that can only be decomposed by the new introduced 

bacterium. A lipid derivative, oleate, was chosen as the alternative substrate that is 

degraded by the simulated bioaugmented granular consortium. Oleate is usually produced 

as an intermediate during anaerobic degradation of lipids by glycerol-fermenting 

acidogenic bacteria [21]. Oleate is introduced into the model together with an arbitrary 

oleate degrading bacterium, providing a metabolic contrast to the decomposition of the 

cellobiose. As a result, the model depicts bioaugmentation of the granule with new or 

additional metabolic capability. The chosen cellulose-lipid combination of microbial 

substrates is a common anaerobically supplied feed in industries with mixed digestion 

profiles [22, 23]. Initial microbial populations typically only possess digestive abilities 

towards only one part of the feed, but not to the other (either cellulose or lipid). Thus, it 

usually takes months for the proper adaptation of the microbial consortia to decompose a 

mixed feed [24-26].  

The current study explores different scenarios of bioaugmenting anaerobic 

granules with additional microbial species: with and without pressure of the specific 

substrate. The general aim of the study is to expand the knowledge on both successful 

bioaugmentation experiments and to inspire industrial-scale modifications in the 

anaerobic digestion processes. 

Results and Discussion 

In this study we successfully designed and tested a model for bioaugmented 

anaerobic granules. Discussion of the results is divided into three main parts: 1) model of 

a granule grown on cellobiose; 2) model of a granule grown on cellobiose without 

ethanol-degrading bacteria, needed to fully digest cellobiose, with augmentation at the 
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later stages of granule development; 3) model of a bioaugmented granule grown on oleate 

or a mix of oleate and cellobiose. A general metabolic scheme for all simulation 

scenarios can be found in Figure 7-1.  

1. Formation of a granule on cellobiose 

A granule with five types of bacteria (clostridium1, clostridium2, desulfovibrio 

and two types of methanogens) was formed on constantly supplied cellobiose (1.5g/L or 

1 g/L), substrate for clostridium1 cells. At 1.5g/L concentration of cellobiose all five 

types of bacterial cells were grown on the products of cellobiose conversion into lactate, 

acetate and ethanol (Figure 7-1). On the contrary, 1g/L of cellobiose was not sufficient to 

sustain growth of all four types of cells, leading to the decay of clostridium2, lactate-

fermenters. There was 56% less of lactate produced from 1 g/L of cellobiose compared to 

1.5 g/L of cellobiose, prior to the clostridium2 decay at 144 hrs.   

A 0.5mm granule was formed after 700 hrs of computer simulation with both 

scenarios of cellobiose concentrations (corresponding to the 29 days in the lab-scale 

reactor). Steps of granule formation can be found on Supplemental Figure 7-1. After 29 

days, the granule continued growth by radial expansion and peripheral cells were 

sloughed away. No particular stratification of different cell groups was observed (Figure 

7-2, a), except for the stratification of desulfovibrio cells, converting ethanol to acetate 

and hydrogen. This cell types formed “pockets” inside the granule. The “pockets” map 

well to the ethanol distribution in the granule, as secreted by clostridium1 cell types 

(Figure 7-2, b). Absence of stratification for other cell types is different from the previous 

simulation of a glucose-fed granule [17] and published laboratory studies [27]. Smooth 

diffusion gradient of the formed/consumed solutes can explain such cells distribution 
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(Figure 7-2, b). Such structure looks similar to the reported laboratory-studied granules 

fed with complex brewery, cellulose or protein-rich substrate [28-30]. Since all three 

initial cellobiose-derivatives (acetate, ethanol and lactate) were produced simultaneously, 

all three corresponding bacterial consumers (clostridium2, desulfovibrio and 

methanogen1) are present in the outer core of the granule, and are equally distributed 

throughout the granule depth.  

 

 

 

 

 

 

 

 

 

Legend:  
 

 

 

 

 

Figure 7-1.  Schematic of the metabolic conversions in the studied anaerobic granules. (a) 

A pathway to convert cellobiose to the methane and hydrogen; (b) a pathway to convert 

oleate to methane.  

 

 

 

 

 

Conversion pathway Type of microbe responsible 

 Clostridium I 

 Clostridium II 

 Methanogen I 

 Methanogen II 

 Desulfovibrio 

 OleateDegrader 

a) b) 
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Figure 7-2. Images of (a) the spatial distribution of the microbial cell types in the 

granules grown on 1.5 g/L and 1 g/L of cellobiose and (b) the correspondent spatial 

localizations of the 1.5 g/L cellobiose fermentation products (lactate, ethanol, acetate, 

hydrogen and methane) on day 42 of simulation. Legend for (a): green is clostridium1, 

blue is methanogen1 and methanogen2, and yellow is desulfovibrio. Legend for (b) 

corresponds to the colored scale of the concentration gradient next to each tile.  

 

2. Model of a granule augmented with ethanol-degrading bacteria 

As previously stated, a key to bioaugmentation is availability of a substrate niche 

for a bacterium to be incorporated. To explore this statement in silico, ethanol-degrading 

desulfovibrio was excluded from the simulation and was re-introduced to the simulation 

environment (after 16 days). Accumulated ethanol (Figure 7-3) was readily available for 

the re-introduced desulfovibrio and a successful augmentation was observed. It is 

important to note that ethanol was not inhibitory to any of the cell types in the current 

model, except to the ethanol-degraders. Thus, absence of a crucial mid-chain fermenter in 

the initial simulation for 16 days did not negatively affect all the cell types. The only cell 

a) b) 
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type group that was negatively impacted by the absence of desulfovibrio was 

methanogens2: bacteria that consume H2 from ethanol conversion. Consequently, the 

methane-producing potential of the granular consortia was decreased (Table 7-1). The 

next test scenario explored co-incorporation of both ethanol-degrading desulfovibrio and 

hydrogenotrophic methanogens2, to revive methane-generating potential of the granule. 

However, as can be seen from both Figure 7-3 and Table 7-1, re-introduction of 

methanogens2 only slightly increased methane producing capacity of the granule, but for 

significant effects longer simulation will be needed. 

 

Table 7-1. Final concentrations of methane and hydrogen at the end of all simulation 

scenarios.  

Simulation scenarios (42 days) 

Final methane 

concentration, 

mg/L 

Final hydrogen 

concentration, 

mg/L 

1.5 g/L of cellobiose 4.5 

(4.4 at 60 days) 

0.35 

(0.2 at 60 days) 

1 g/L of cellobiose 1.77 0.167 

Without desulfovibrio 1 2.5 0 

With re-introduced desulfovibrio after day 161 3.3 0.33 

With re-introduced desulfovibrio and 

methanogen2 after day 161 

3.4 0.32 

With oleateDegrader, 1.5 g/L oleate and 1.5 

g/L of cellobiose 

4.34 1.0 

With oleateDegrader, 1.5 g/L oleate, 1.5 g/L 

of cellobiose and 1mm boundary granule 

growth 

1.22 0.735 

With oleateDegrader, 1 g/L oleate and 1 g/L 

of cellobiose 

2.6 0.2 

With oleateDegrader, 0.5 g/L oleate and 0.5 

g/L of cellobiose 

1.47 

(10.86 at 60 days) 

0.04 

(0.087 at 60 days) 

With oleateDegrader and 1.5 g/L oleate 0.1  

(11.2 at 60days) 

0 

1 cellobiose concentration in the feed was 1.5 g/L. 
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Figure 7-3. Spatial distribution of the bacterial cell types and three fermentation 

products at the end of the 42 days simulation for each ethanol-related scenario: (a) 

granule grown on 1.5g/L of cellobiose, without ethanol-degraders; (b) granule with re-

introduced ethanol-degraders after 16 days; (c) granule with re-introduced ethanol-

degraders and hydrogenotrophic methanogens after 16 days. The three visible colors on 

the spatial distribution of the bacterial cell types are green (clostridium1), blue 

(methanogen1 and methanogen2) and yellow (desulfovibrio). 

 

 

 

a) 

b) 

c) 
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3. Model of a bioaugmented granule grown on oleate or a mix of oleate and 

cellobiose 

To investigate the possibility of incorporating a new bacterium type into the 

cellobiose-fed granule, a lipid-degrading bacterium was chosen. Both scenarios with or 

without substrate pressure were investigated. 

3.1 Augmentation with both oleate and cellobiose (1.5 g/L, 1 g/L and 0.5 g/L 

scenarios) present in the environment 

Augmentation of oleateDegraders with both oleate and cellobiose substrates was 

differently influenced by the varying concentrations of oleate and cellobiose (Figure 7-4). 

With 1.5 g/L of both substrates oleateDegraders were incorporated into the granule only 

during the first 12 days of simulation, until the growth limit of 0.5 mm was reached. 

After that all the newly-incorporated oleateDegraders were steadily pushed to the outer 

layers of the granule and sloughed off the granule surface (Figure 7-4, a). Similar results 

from bioaugmenting anaerobic consortia with lipolytic bacteria were reported by Cirne 

and colleagues [31]. In the described study bioaugmented bacterium did not stay for the 

whole duration of the anaerobic digestion, and was detected by the T-RFLP only at the 

beginning of the experiment. This might have been due to the similar washout as reported 

here.  

If the sloughing function is turned off in our model and the granule diameter is 

allowed to increase by 40%, OleateDegraders are incorporated into the outer layers and 

into some scattered locations inside the granule (Figure 7-4, a, 33 days). This observation 

can support the need for a reduced flow rate in a UASB reactor during the 

bioaugmentation period, allowing bigger granule growth with less turbulent sloughing of 
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the outside granular layers and slower washout of the non-incorporated bacteria. In 

addition, allowing peripheral granular growth may be critical if the bioaugmented species 

are of importance for the primary hydrolysis of a supplied substrate.  

Decreasing concentration of both substrates to 1 g/L slowed down the sloughing 

of the oleateDegraders, but after 42 days of simulation only a few cells of that type can be 

observed in the very outer layers (Figure 7-4, b). Further decrease in the substrate 

concentration down to 0.5 g/L finally lead to the complete incorporation of the 

oleateDegraders into the granular consortia and produced a very homogeneous structure 

(Figure 7-4, c). Methane production in such augmented granule was significantly 

increased to 10.86 mg/L on day 60.   

3.2 Augmentation with only 1.5 g/L oleate present in the environment 

When lipid derivative, oleate, was used as a sole feed for the established granule 

on cellobiose, oleateDegraders were successfully incorporated into the granule, but all 

other cell types were decayed, due to the lack of cellobiose fermentation products (Figure 

7-4, d). The only other cell type that survived was acetoclastic methanogen1, feeding off 

acetate produced from oleate by oleateDegrader. Methanogen1 cell types exhibited 

"pocketing" behavior, growing at the places where acetate was previously supplied to 

them by clostridium1 and ethanol-degrading desulfovibrio. Similar behavior for 

acetoclastic methanogenic bacteria in anaerobic granules was already reported [32, 33]. 

Methanogens benefitted from the change in the microbial composition of the augmented 

granule: despite the initial drop in methane production after 42 days, there was a drastic 

increase after 60 days: 11.2 mg/L of methane (Table 7-1). Such amount of methane is far 

higher than that of a granule grown on cellobiose alone for 60 days (4.4 mg/L) where 



129 

 

methanogens are the terminal acceptors of acetate and hydrogen after a multiple step 

conversion of cellobiose.   

Another peculiarity is the black biomass in the augmented granule, which is a 

decayed cell mass due to the substrate shift. Such a high amount of decayed biomass can 

lead to the breakdown of the granule in UASB reactors and formation of smaller 

“daughter” granules, only with two cell types: oleateDegraders and methanogens1 [34]. 

However, this division can only occur under a sheer stress of the upflow velocity in the 

UASB reactors, when the flow is high enough to physically break the granule with dead 

particles in it [35]. Otherwise, newly augmented granule will continue to grow with so-

called cavities, just like predicted in our model (Figure 7-4, d) and as described in 

laboratory studies [32, 33, 36]. 

Summary of all cell types distribution at the end of all simulation scenarios can be 

found in Figure 7-5.  
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Figure 7-4. Spatial distribution of the bacterial cell types and fermentation products 

throughout the incorporation experiment with oleateDegraders. (a) granule grown on 

1.5g/L of cellobiose and oleate; (b) granule grown on 1g/L of cellobiose and oleate; (c) 

granule grown on 0.5g/L of cellobiose and oleate; (d) granule grown on 1.5 g/L of oleate, 

cellobiose supply is halted at the time of incorporation on day 17. The color legend: green 

(clostridium1), blue (methanogen1 and methanogen2), yellow (desulfovibrio) and red 

(oleateDegraders).  

a) 

b) 

c) 

d) 
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Figure 7-5. Cell type composition of each granule in different simulation scenarios. (a) 

1.5 g/L cellobiose, (b) 1 g/L cellobiose, (c) 1.5 g/L cellobiose without ethanol-degrading 

desulfovibrio, (d) 1.5 g/L cellobiose with re-introduced desulfovibrio on day 16, (e) 1.5 

g/L cellobiose with re-introduced desulfovibrio and methnagen2 on day 16, (f) 1.5 g/L 

oleate and 1.5 g/L of cellobiose with oleateDegraders, (g) 1.5 g/L oleate and 1.5 g/L of 

cellobiose with oleateDegraders and 1mm boundary granule growth, (h) 1 g/L oleate and 

1 g/L of cellobiose with oleateDegraders, (i) 0.5 g/L oleate and 0.5 g/L of cellobiose with 

oleateDegraders, (j) 1.5 g/L oleate with oleateDegraders.  

 

Conclusions 

The model for a bioaugmented granule presented here was successfully developed 

on the agent-based simulator framework, iDynoMiCs. Demonstrated results support 

substrate-niche necessity for the successful bioaugmentation. In addition to this, results 

demonstrate importance of considering the type of feed that is used during 

bioaugmentation. A unique combination of new and old substrates is needed, to support 
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growth of all bacterial species: already existing in the granular consortia and the ones to 

be incorporated into the granule. More research is needed to find the exact ratio of 

augmenting substrate to the previously used one, and search functions can help to screen 

the area of parameters in silico [17]. Also, more investigation needs to be done on the 

importance of the granular sloughing diameter, strength of the feed in the simulated 

UASB reactors and correspondent washout speeds.  

The described model can be further extended and applied to test various 

combinations of microorganisms and changing substrate feeds. Based on the reported 

results above, the model produces reliable, predictable and literature-valid observations. 

The model still needs improvements on both framework and biological side. Potential 

additions to the simulator code will include algorithm to simulate division of a mature 

complex granule into two daughter granules, exploring a scenario of a complete substrate 

switch and sudden biomass decay. In addition to this, model needs improvements from 

the biological and reactor operations stand points. For example, adding complexity into 

the microbial interactions via flow of electron-donors and electron-acceptors between 

separate cells. Main electron carriers and acceptors will be sulfates, ammonia and 

oxygen. Simulation of how anaerobic system can adapt to the trace amounts of oxygen 

present during the start-up of the reactors and resulting microbial fluctuations can bring 

some useful insights into operation of the anaerobic reactors under varying feed 

conditions. 

Potential future application of the framework demonstrated here will be in 

modeling granulation with addition of the granulating agents, such as Calcium and 

Magnesium ions, or even activated carbon. Of particular interest is development of a 
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model that can describe mechanisms of saline wastewater anaerobic digestion. As 

reported in the recent studies [37, 38], Sodium ions can replace Calcium ions inside the 

granule but not necessarily lead to the disruption of the aggregates. Since the mechanisms 

of the described process are not exactly clear, a computer model might shed some light in 

that area. 

Overall, modeling of anaerobic granulation during bioaugmentation process 

proved useful in visually demonstrating the importance of the substrate niche and impact 

of washout on the outcome of the digestion enhancement. The current model can be a 

great planning tool to researchers assessing the potential of bioaugmentation strategies 

for the known consortia in their anaerobic reactors, thus eliminating the risk to crush the 

whole reactor due to the improper planning. 

Methods 

Models were developed in the cDynoMiCs agent-based simulator framework [39]. 

Initial predecessor of this framework, iDynoMiCs, was used to model biofilms. Both c-

and i-versions of this framework assume cells as spherical particles, with given 

diameters. Each particle has it's own unique amount of associated biomass, cell growth 

and division characteristics, chemotactic species-specific instructions and an ability to 

form homogeneous/heterogeneous adhesion and associated tight junctions. A differential 

equation solver is implemented to compute the diffusion of supplied solutes (substrates 

and products), position of each particle with respect to the biochemical and 

biomechanical processes (such as secretion and uptake, adhesion and repulsion with the 

other particles in the system). All the solutes are assumed to be in a pseudo steady-state 

with respect to biomass growth. The model framework used in current study is almost 
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identical to the one used in the previous de novo granulation model [17] with some 

modifications. All the simulation details were specified in the XML protocol, providing 

with the instructions to be executed by the iDynoMiCS framework. iDynoMiCS writes 

plain-text XML files as output, and these may be processed using any number of software 

tools, such as Matlab and R. In addition to XML files, iDynoMiCS also writes files for 

POV-Ray that is used to render 3-D ray-traced images of the simulation. A domain size 

of 508 μm x 508 μm (2D) was used to run all the simulations.  

Seven solutes: cellobiose (𝑆𝐶), oleate (𝑆𝑂), lactate (𝑆𝐿), acetate (𝑆𝐴), ethanol 

(𝑆𝐸), hydrogen (𝑆𝐻), and methane (𝑆𝑀) exist within the reactor model. The distribution of 

these solutes is controlled by Equations 7-1, 7-2, 7-3, 7- 4, 7-5, 7-6, and 7-7, respectively. 

The diffusion coefficients and reaction rates take different forms for each region 

depending upon the spatial distribution of six types of biomass: clostridium1 (generic 

bacterium degrading cellobiose) (𝐵𝑐1), clostridium2 (generic bacterium degrading lactate) 

(𝐵𝑐2), oleateDegrader (𝐵𝑜), desulfovibrio (generic bacterium degrading ethanol) (𝐵𝑑), 

and two types of methanogens (𝐵𝑚2), (𝐵𝑚1), degrading acetate and hydrogen 

respectively. These relationships are described in the Equation 7-8. The effective 

diffusion coefficient is decreased within the granule compared with the liquid value in 

order to account for the increased mass transfer resistance. The diffusivity values used for 

the model (specified in Supplementary Table 7-1) are taken from literature related to 

biofilm diffusivity studies [40, 41]. 

𝜕𝑆𝐶

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝐶 ∙

∇2 𝑆𝐶

𝜕𝑥𝜕𝑦
− 𝜇𝑐1(𝑆𝐶 , 𝑆𝐴) ∙

𝐵𝑐1

𝛼𝑏𝑐1
                                              (Eq. 7-1) 

𝜕𝑆𝑂

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝑂 ∙

∇2 𝑆𝑂

𝜕𝑥𝜕𝑦
+ 𝜇𝑜(𝑆𝑂, 𝑆𝐴) ∙

𝐵𝑜

𝛼𝑏𝑜
                                               (Eq. 7-2) 
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𝜕𝑆𝐿

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝐿 ∙

∇2 𝑆𝐿

𝜕𝑥𝜕𝑦
+ 𝜇𝑐1(𝑆𝐶) ∙

𝐵𝑐1

𝛼𝑏𝑐1
                                                    (Eq. 7-3) 

𝜕𝑆𝐴

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝐴 ∙

∇2 𝑆𝐴

𝜕𝑥𝜕𝑦
+ 𝜇𝑑(𝑆𝐸 , 𝑆𝐴) ∙

𝐵𝑑

𝛼𝑏𝑑
+ 𝜇𝑐2(𝑆𝐿) ∙

𝐵𝑐2

𝛼𝑏𝑐2
                      (Eq. 7-4) 

𝜕𝑆𝐸

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝐸 ∙

∇2 𝑆𝐸

𝜕𝑥𝜕𝑦
+ 𝜇𝑐1(𝑆𝐶) ∙

𝐵𝑐1

𝛼𝑏𝑐1
                                                   (Eq. 7-5) 

𝜕𝑆𝐻

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝐻 ∙

∇2 𝑆𝐻

𝜕𝑥𝜕𝑦
+ 𝜇𝑑(𝑆𝐸 , 𝑆𝐴) ∙

𝐵𝑑

𝛼𝑏𝑑
                                               (Eq. 7-6) 

𝜕𝑆𝑀

𝜕𝑡
= 𝐵(𝑥, 𝑦) ∙ 𝐷𝑀 ∙

∇2 𝑆𝑀

𝜕𝑥𝜕𝑦
+ 𝜇𝑚1(𝑆𝐴) ∙

𝐵𝑚1

𝛼𝑏𝑚1
+ 𝜇𝑚2(𝑆𝐻) ∙

𝐵𝑚2

𝛼𝑏𝑚2
                  (Eq. 7-7) 

where,  

𝐵(𝑥, 𝑦) = {
1.0
𝛾  

                                                                               

 

Equations 7-9, 7-10, 7-11, 7-12, 7-13 and 7-14 describe changes in the biomass of 

all growing 6 bacterial cell types (clostridium1, clostridium2, oleateDegraders, 

desulfovibrio and two types of methanogens) as a function of local cellobiose, acetate, 

lactate, ethanol, methane and hydrogen concentrations. A discrete switching mechanism 

is used to model cell death due to a lack of food. The switching mechanism is defined as 

the function 𝑑𝑖𝑒(𝐵𝑖) in the equations. For example, Clostridium1 cells are converted to 

dead cells when the amount of cellobiose is below a threshold value (death threshold in 

Supplementary Table 7-1) for a period of 48 hours. Similarly, the Methanogen1 cells are 

converted to dead cells when the amount of acetate is below a threshold value (death 

threshold in Supplementary Table 7-1) for a period of 48 hours. The rate of increase in 

dead cell mass is defined in Equation 7-15. The parameter values for controlling cell 

death are estimated due to the lack of studies quantifying the response of described cell 

types to nutritional stress. 

𝜕𝐵𝑐1

𝜕𝑡
= 𝜇𝑐1(𝑆𝐶)𝐵𝑐1 − 𝑑𝑖𝑒(𝐵𝑐1)                                                                   (Eq. 7-9) 

if location 𝑥, 𝑦 contains no biomass 

if location 𝑥, 𝑦 contains biomass                                                 (Eq. 7-8) 
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𝜕𝐵𝑐2

𝜕𝑡
= 𝜇𝑐2(𝑆𝐿)𝐵𝑐2 − 𝑑𝑖𝑒(𝐵𝑐2)                                                                  (Eq. 7-10) 

𝜕𝐵𝑜

𝜕𝑡
= 𝜇𝑜(𝑆𝑂, 𝑆𝐴)𝐵𝑜 − 𝑑𝑖𝑒(𝐵𝑜)                                                                  (Eq. 7-11) 

𝜕𝐵𝑑

𝜕𝑡
= 𝜇𝑑(𝑆𝐸 , 𝑆𝐴)𝐵𝑑 − 𝑑𝑖𝑒(𝐵𝑑)                                                                 (Eq. 7-12) 

𝜕𝐵𝑑

𝜕𝑡
= 𝜇𝑑(𝑆𝐸 , 𝑆𝐴)𝐵𝑑 − 𝑑𝑖𝑒(𝐵𝑑)                                                                 (Eq. 7-13) 

𝜕𝐵𝑚1

𝜕𝑡
= 𝜇𝑚1(𝑆𝐴)𝐵𝑚1 − 𝑑𝑖𝑒(𝐵𝑚1)                                                             (Eq. 7-14) 

𝜕𝐵𝑑𝑒𝑎𝑑

𝜕𝑡
= 𝑑𝑖𝑒(𝐵𝑐1) +  𝑑𝑖𝑒(𝐵𝑐2) + 𝑑𝑖𝑒(𝐵𝑜) + 𝑑𝑖𝑒(𝐵𝑑) + 𝑑𝑖𝑒(𝐵𝑚1) + 𝑑𝑖𝑒(𝐵𝑚2)                                                                   

(Eq. 7-15) 

The growth rates: of clostridium1 is 𝜇𝑐1(𝑆𝐶), defined in Equation 7-16, the 

growth rate of clostrodium2 is 𝜇𝑐2(𝑆𝐿), defined in Equation 7-17, the growth rate of 

oleateDegraders is 𝜇𝑜(𝑆𝑂, 𝑆𝐴), defined in Equation 7-18, the growth rate of desulfovibrio 

is 𝜇𝑑(𝑆𝐸 , 𝑆𝐴), defined in Equation 7-19, the methanogens1 is 𝜇𝑚1(𝑆𝐴) defined in 

Equation 7-20 and the growth rate of methanogen2 is 𝜇𝑚2(𝑆𝐻), defined in Equation 7-21. 

From the equations can be seen that growth of Clostridium1, Clostridium2 and 

Methanogen2 follows Monod growth kinetic, while growth of OleateDegraders has 

also product inhibition involved and both equations 7-19 and 7-20 for Desulfovibrios and 

Methanogen1 demonstrate Haldane growth kinetic, substrate and product inhibition. The 

Java code in cDynoMiCs was manipulated to add functionality of describing bacterial 

growth via Haldane kinetic. 

𝜇𝑐1(𝑆𝐶) = 𝜇𝑐1̂ ∙
𝑆𝐶

𝐾𝑠𝐶+𝑆𝐶
                                                                               (Eq. 7-16) 

𝜇𝑐2(𝑆𝐿) = 𝜇𝑐2̂ ∙
𝑆𝐿

𝐾𝑠𝐿+𝑆𝐿
                                                                               (Eq. 7-17) 

𝜇𝑜(𝑆𝑂, 𝑆𝐴) = 𝜇�̂� ∙
𝑆𝑂

(𝐾𝑠𝑂+𝑆𝑂)
∙

𝐾𝑖𝐴𝑝

(𝐾𝑖𝐴𝑝+𝑆𝐴)
                                                        (Eq. 7-18) 
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𝜇𝑑(𝑆𝐸 , 𝑆𝐴) = 𝜇�̂� ∙
𝑆𝐸

(𝐾𝑠𝐸+𝑆𝐸+
𝑆𝐸

2

𝐾𝑖𝑒
)

∙
𝐾𝑖𝐴

(𝐾𝑖𝐴+𝑆𝐴)
                                                    (Eq. 7-19) 

𝜇𝑚1(𝑆𝐴) = 𝜇𝑚1̂ ∙
𝑆𝐴

(𝐾𝑠𝐴𝑐+𝑆𝐴+
𝑆𝐴

2

𝐾𝑖𝐴𝑐
)

                                                                 (Eq. 7-20) 

𝜇𝑚2(𝑆𝐻) = 𝜇𝑚2̂ ∙
𝑆𝐻

𝐾𝑠𝐻+𝑆𝐻
                                                                           (Eq. 7-21) 

The source code of cDynoMiCs was also modified to introduce a new sloughing 

function, which destroys all the granular biomass that grows above the set granule 

diameter. Sloughing is needed to simulate a UASB-like environment in the model. 

Granules in a UASB reactor are constantly under the sheer stress from the continuously 

owing feed in the upflow mode. Thus, published works report a certain diameter 

threshold, above which granule do not grow in the UASB-type reactor. Current study 

uses a diameter of 500 μm (this number was mostly picked to decrease computational 

powers required to compute a bigger granule). The value of the maximum granular 

diameter is specified in the XML instructions. The sloughing function runs for every grid 

position in the simulation and determines whether a grid location should be slaughtered 

or not, based on the XML-specified maximum diameter. 

Instructions in the XML also include locations of the new species to be introduced 

to the already formed granule. When needed, new particles were supplied in the four 

corners of the square around core particle consortia. Current study reports incorporation 

of additional bacterial species into the already formed granule. Instructions for additional 

supply of the species that will be incorporated are provided in the XML file, which can 

be found for each simulation part in the Github source code page provided below. 

Briefly, new species are introduced to the simulation environment by specifying their 

correspondent x, y and z coordinates. In all the simulations with incorporation of new 
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species, those species were initially supplied in the four corners around the formed 

granule in the 508 μm x 508 μm (2D) domain. 

Additional information regarding the model and videos for each simulation 

scenario can be found here: https://github.com/adoloman/Granular-augmentation-model 
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CHAPTER VIII 

SUMMARY AND ENGINEERING SIGNIFICANCE 

The aim of this work was to develop and test an approach for optimization of 

biogas production by engineering microbial consortia. In six research chapters, specific 

stages of the approach were tested and described. Optimization of biogas production 

heavily relies on the activity of the microbial inoculum that is used to seed the anaerobic 

digesters. Even though inoculum in a granular state is the most active one, dispersed 

sludge inoculum that has not specialized towards one type of substrate represents a fine 

mold to be shaped for the needs of the researcher and engineer. This statement proved 

itself in the studies of the described dissertation, where sediments from Logan City, Utah, 

Wastewater Treatment Lagoons were successfully used to seed reactors digesting 

microalgal biomass and provided unique algalytic metabolic activity. Harnessing of the 

microbial diversity for engineering purposes is an overarching theme of this research. 

The experiment set-up was designed with the hypothesis of metabolic pre-disposition of 

the LCWL sediments towards hydrolysis of microalgal biomass; a systems approach was 

applied on preliminary analysis of the inoculum microbial composition during anaerobic 

digestion of algal biomass and leading to the targeted isolation of the microorganisms of 

interest. Laboratory batch tests on the augmentation of the granular anaerobic sludge with 

the algalytic isolates were valuable experimental resources to initiate and check the 

mathematical models for de novo granulation and augmentation mechanisms. By 

modeling the granule development and adaptation, new insights and clues emerged, 

pointing to the current gaps in anaerobic digestion knowledge and directing towards 
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future studies. The words highlighted in bold here represent the core engineering 

concepts, required for a delivery of a holistic study, such as this is.  

The engineering significance of the described work is in the advancements made 

for the UASB technology for waste and wastewater treatment. (a) Identified preservation 

capacity of the active anaerobic sludge, allowing for a convenient storage at any of the 

tested temperature regimes (from room temperature to freezing and lyophilizing) without 

significant loss of the activity for a period of up to 6 months. Storage for longer period 

significantly decreased the methane producing capacity regardless of the storage 

temperature. (b) Characterized some of the potentially algalytic bacteria from the 

sediments of the wastewater treatment lagoons that can increase digestibility of algal 

biomass once added to the UASB inoculum. (c) Augmented anaerobic sludge with the 

algalytic bacteria to digest algal biomass, allowing for 11% increase in the resulting 

methane yields. All of those advancements can significantly improve design and 

operation of UASB reactors not only in the laboratory, but also on industrial scales.  

Future work 

Design of anaerobic digesters and microbiology of the reactor insides should not 

be separated between two remote research groups and, what’s more important, between 

science and engineering fields. Current pace of technological innovation requires 

comprehensive analyses and solutions. In the era of increased cross-discipline 

collaborations, lack of such comprehensive studies sets serious constraints on the speed 

of innovation. There is no “believe” in engineering a priori, but, for some reason, there is 

a lot of it in science these days. The knowledge and concepts delivered by science are the 

bases of any engineering inventions. No steam engine would have been invented without 
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prior availability of some rudimentary knowledge of mathematics and basic laws of 

physics. Thus, it makes it even more disturbing that these days those two disciplines, 

science and engineering, are separated. What’s worse, one of them is hardly “believed” 

in, contrary to being directly applied for engineering break-throughs. 

As stated earlier, this dissertation brings together a combination of science and 

engineering concepts, as well as people, who helped with designing mathematical and 

computer-based models of algalytic activity and anaerobic granulation. This collaboration 

was done in necessity to broaden the knowledge of anerobic digestion processes, bridge 

together multiple disciplines and demonstrate a potential of such approach.    

Below will be listed some major directions for future explorations. 

1. Syntrophic partnerships between microorganisms can play a key role in a stable and 

active inoculum after preservation. As demonstrated from the Chapter 3 results on 

preservation, sludge can be more prone towards decreasing methane-generating 

potential depending on the number of methanogenic bacteria in the mix. Further 

investigation of this matter will need to account for the differential activity of 

methanogenic versus facultative anerobic bacteria in preserved sludges. Presence of 

the most common syntrophic partners of methanogenic bacteria can also provide an 

interesting insight into the stability of such consortia (Syntrophomonas spp., 

Desulfovibrio spp., etc.). In addition to thermodynamically balanced flow of 

metabolites among the syntrophic partners, such aggregates can also provide a stable 

environment with protection against reactive oxygen species (through extracellular 

polymeric coating and other biofilm components).   
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2. Sediments from Logan City, Utah, Wastewater Treatment Lagoons possess more 

algalytic bacteria than measured in the present study. A common saccharolytic 

Clostridium genus was abundant in the sequencing data but was somewhat difficult to 

isolate due to its strict requirements of low oxygen (not more than 40μM in the 

growth media). Thus, there is additional potential in the LCWL sediments, and not 

only for the hydrolysis of microalgal biomass, judging by the abundance of 

phototrophic purple non-sulfur bacteria and other hydrocarbon-degrading 

microorganisms.  

3. Augmentation of granular consortia can be constrained if the substrate to be digested 

contains high concentrations of suspended and non-dissolved particulate. In this case, 

the rate of augmentation will be defined by the surface area contact between a granule 

and a substrate particulate. The lower the contact, the lower the digestion rate and 

thus, lower possibility of any augmentation. Therefore, if a bacterium to be 

incorporated is important for the initial hydrolysis of such substrate, it might as well 

form colonies on the surface of the particulate, avoiding the need to be attached to the 

granular biomass to not be washed out of the reactor. However, further investigation 

of digesting high-solids substrate needs to be done. 

4. In addition to solids content in the substrate to be digested, microbial contamination 

of the substrate should be heavily explored prior to use in the augmentation 

experiments. For example, self-digestion of mixed algal biomass harvested from the 

surface of a Rotating Algal Biofilm reactors (RABR) installed at the dairy farm in 

Cache Valley, was very efficient on its own (Figure 8-1) and when a complex 

microbial community from sediments of LCWL was added to the algal mixture, the 
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rates of methane production significantly dropped, as well as the overall yield. An 

even bigger effect had addition of algalytic bacteria mix (“bacteria” on Figure 8-1) to 

the sediments and algae mixture: reduction to 337 mlCH4/g VS versus initial 399 

mlCH4/g VS from self-digested algal mixture. Possible explanation is while algal 

biofilm was developing on the surface RABR it already accommodated a unique set 

of bacteria that were feeding of the dead algal biomass as the biofilm grew thicker 

and became heterotrophic. Sediments already had algalytic activity (where the 

algalytic bacteria mix was initially isolated) and additional bacteria had an adverse 

effect on the methane-generating activity. There have not been any measurements 

done on the amounts of volatile fatty acids throughout the digestion, which at high 

amounts can inhibit methanogens.   

    

 

   Figure 8-1. Cumulative methane production from dairy wastewater grown algal 

biomass under self-digestion conditions and with addition of LCWL sediments and 

algalytic bacteria mix. Digestion conducted in triplicates for each condition, in constantly 
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mixed 60ml reactors at 35±2℃. Error bars represent standard deviations among the 

triplicates.  

 

5. Modeling of de novo granulation and augmented granules has numerous potential 

future tasks. Some of them were already addressed in the conclusion sections of the 

correspondent Chapters 6 and 7. Other tasks might require setting up a laboratory 

UASB to test the insights from modeling in parallel, ensuring a proper alignment of 

tested versus predicted observations. For example, time of adding the augmenting 

bacteria to the established consortia can play a major role for the success of 

augmentation. Substrate flow rates should be taken into account when planning 

augmentation of the primary fermenters into the mature granular consortia: decreasing 

flow rate of the substrate should be considered to prevent washout of the bacterial 

mixture to be incorporated. A feed with multiple components (proteins, carbohydrates, 

lipids) can be also tested in the proposed here model. Such testing will require an 

intensive computing power and a thoroughly-thought microbial mixture with all 

metabolic pathways included. A model like this will benefit industries dealing with the 

mixed feed to their wastewater treatment systems; industries that want to tackle the 

problem of reactor instability and eliminate crashes due to pH and sulphate jumps. In 

addition to this, different scenarios can be tested in the model to see the effect of 

augmenting/excluding bacteria crucial for different stages of AD, such as primary 

fermenters, acetogens and even methanogens. Of particular interest is to observe 

granule behavior if methanogens are incorporated in the later stages of the AD: are 

they going to be washed out? Are they going to initiate separate granules, outside the 
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already existing ones?  Or are they simply going to float around, since all the 

supplementary syntrophs and fermenters will be already in the “granular cities”? A 

very important question here is if methanogens are considered for augmentation, 

whether they should be only augmented together with their syntrophic partners, such 

as hydrogen producing Syntrophomonas spp. In general, the question of co-

augmentation and co-aggregation poses an interesting discussion. Numerous research 

studies have demonstrated an enhanced methane generation of symbiotic and 

syntrophic co-cultures. What is more, behavior of a stable syntrophic consortia can be 

completely altered with addition of another bacterial player, which is not known for 

any influence. This knowledge gap opens an exciting frontier for further investigations 

of the anaerobic microbiology and anaerobic matter transformation. 

Despite the fact there can be some new developments in the AD reactor-design 

field, possibilities to engineer microbial consortia with highly harmonized relationship 

between each of the player will certainly boost the field of energy recovery from various 

types of waste and organic matter. Altering microbial consortia versus altering a reactor 

design for a specific type of waste can be economically shifted towards the benefits of the 

first, if the microbial ecology inside the reactor is thoroughly investigated. A need to alter 

only the microbial inoculum and not the reactor design definitely requires fewer capital 

costs. However, it can be time consuming at the beginning to engineer a particular 

consortium for a certain type of waste. The time requirements will be severely lowered 

once the organic matter-specific microbial consortia have already been investigated.  
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APPENDIX B 

SUPPLEMENTARY DATA 

Supplemental Table 2-1. Primers used in the reported study. 

Primer Primer sequence (5’–3’) 

MLf GGTGGTGTMGGATTCACACARTAYGCWACAGC 

MLr TTCATTGCRTAGTTWGGRTAGTT 

785R TACNVGGGTATCTAATCC 

338F ACTCCTACGGGAGGCAGC 
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Supplemental Figure 2-1. Heatmap, calculated with jclass algorithm in MOTHUR, 

representing beta-diversity (internal compositional heterogeneity) of samples taken at the 

same time point from two reactors. Labels “Uni” represent 16S rRNA universal primer 

set used in the study. Red-colored scale from 0.0 to 1.0 should be interpreted as the 1.0 

bright color correspond to the closely related samples. Opposite is true for the 0.0 

marking and dark red color.   

 

  



153 

 

Supplementary Figure 2-2. A. General workflow anaerobic digestion of microalgal 

biomass and analysis of eubacterial and methanogenic communities. B. Workflow for the 

sequence analysis and identification of microorganisms (via MOTHUR MiSeq_SOP). 

 

 

 

 

A. 

B. 



154 

 

Supplemental Figure 3-1. Biogas production from bottom port sludge, preserved at (a) 

room temperature (23±2℃), (b) refrigeration (+4℃), (c) freezer storage (-20℃) and (d) 

lyophilization.   
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Supplemental Figure 3-2. Changes in the VSS/TSS ratio of the preserved sludge over 

time: (a)  

upper port samples, (b) bottom port samples.  

 

Supplemental Figure 3-3. Specific methanogenic activity (SMA) measured throughout 

the storage of (a) upper and (b) bottom port samples for the period of 12 months. Error 

bars represent standard deviation between triplicates.  
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Supplementary Figure 4-1. Changes in the bacterial (Citrobacter freundii sp. isolate 13 

(A), Escherichia coli K12 (B) and microalgal (Chlorella vulgaris) cell counts over time, 

during incubation at 35±2 ˚C in the dark.  
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Supplementary Figure 4-2. From the SAS PROC GLM procedure, algal cell counts were 

compared among those under the influence of either C.freundii sp. isolate 13 or E.coli 

K12 bacteria and to the control. The results of the Ryan-Einot-Gabriel-Welsch Multiple 

Range Test are also provided. The plot of the means and the correspondent F values is 

provided.   

Supplementary Figure 4-3. Pairwise comparisons of two microalgal populations (with 

C.freundii sp. isolate 13 or E.coli K12 bacteria) versus control microalgal population of 

C.vulgaris.  
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Supplementary Figure 7-1. Stages of granule formation on 1.5 g/L of cellobiose. Color 

legend for cell types: green (cellobiose-degrading clostridium1), red (lactate-degrading 

clostridium2), yellow (ethanol-degrading desulfovibrio), blue (acetoclastic and 

hydrogenotrophic methanogens).    
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Supplementary Table 7-1. Parameters used to run the simulation models in iDynoMiCs.  

Model parameter Symbol Value Unit References 

Diffusion of cellobiose in liquid 𝐷𝐶  5.72 × 10−5 m2/day [1] 

Diffusion of oleate in liquid 𝐷𝑂 3.1 × 10−3 m2/day [2] 

Diffusion of lactate in liquid 𝐷𝐿 6.22 × 10−5 m2/day [3] 

Diffusion of acetate in liquid 𝐷𝐴 1.34 × 10−4 m2/day [4] 

Diffusion of ethanol in liquid 𝐷𝐸  9.3 × 10−5 m2/day [5] 

Diffusion of hydrogen in liquid 𝐷𝐻 4.98 × 10−4 m2/day [5] 

Diffusion of methane in liquid 𝐷𝑀 1.65 × 10−4 m2/day [6] 

Biofilm diffusivity γ 30 % [7] 

Clostridium 1 

Cell mass 𝐵𝑐1 500 fg [8] 

Division radius  2 μm estimated 

Maximum growth rate 𝜇𝑐1̂ 0.15 h-1 [9, 10] 

Substrate saturation constant 𝐾𝑠𝐶 2.5 g/L [9, 10] 

Biomass conversion rate 𝛼𝑏𝑐1 0.203 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔𝑐𝑒𝑙𝑙𝑜𝑏𝑖𝑜𝑠𝑒
 

[9, 10] 

Substrate conversion rate 𝛼𝑎𝑐1 0.45 

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑔𝑐𝑒𝑙𝑙𝑜𝑏𝑖𝑜𝑠𝑒

 
[9, 10] 

Substrate conversion rate 𝛼𝑙𝑐1 0.0096 

𝑔𝑙𝑎𝑐𝑡𝑎𝑡𝑒
𝑔𝑐𝑒𝑙𝑙𝑜𝑏𝑖𝑜𝑠𝑒

 
[9, 10] 

Substrate conversion rate 𝛼𝑒𝑐1 0.28 

𝑔𝑒𝑡ℎ𝑎𝑛𝑜𝑙
𝑔𝑐𝑒𝑙𝑙𝑜𝑏𝑖𝑜𝑠𝑒

 
[9, 10] 

Death delay  96 h estimated 

Death threshold  0.02 g/L estimated 

OleateDegrader 

Cell mass 𝐵𝑜 500 fg [8] 

Division radius  2 μm estimated 

Maximum growth rate 𝜇�̂� 0.1 h-1 [11] 

Substrate saturation constant 𝐾𝑠𝑂 0.02 g/L [11] 

Product inhibition constant 𝐾𝑖𝐴𝑝 5 g/L [11] 

Biomass conversion rate 𝛼𝑏𝑜 0.1 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔𝑜𝑙𝑒𝑎𝑡𝑒
 

[11] 

Substrate conversion rate 𝛼𝑎𝑜 1.85 

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑔𝑜𝑙𝑒𝑎𝑡𝑒

 
[11] 

Death delay  96 h estimated 

Death threshold  0.00002 g/L estimated 

Clostridium 2 

Cell mass 𝐵𝑐2 500 fg [8] 

Division radius  2 μm estimated 

Maximum growth rate 𝜇𝑐2̂ 0.144 h-1 [12] 
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Substrate saturation constant 𝐾𝑠𝐿 0.03 g/L [12] 

Biomass conversion rate 𝛼𝑏𝑐2 0.06 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔𝑙𝑎𝑐𝑡𝑎𝑡𝑒
 

[12] 

Substrate conversion rate 𝛼𝑎𝑙 0.98 

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑔𝑙𝑎𝑐𝑡𝑎𝑡𝑒

 
[12] 

Death delay  144 h estimated 

Death threshold  0.00001 g/L estimated 

Desulfovibrio 

Cell mass 𝐵𝑑 500 fg [8] 

Mass of EPS capsule  10 fg estimated 

Division radius  2 μm [13, 14] 

Maximum growth rate 𝜇�̂� 0.125 h-1 [13, 15] 

Substrate saturation constant 𝐾𝑠𝐸 0.00045 g/L [16] 

Product inhibition constant 𝐾𝑖𝐴 7.2 g/L [14, 15] 

Substrate inhibition constant 𝐾𝑖𝑒 80.5 g/L [13, 15] 

Biomass conversion rate 𝛼𝑏𝑑 0.22 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔𝑒𝑡ℎ𝑎𝑛𝑜𝑙
 

[13, 15, 

16] 

Substrate conversion rate 𝛼𝑎𝑐 1.3 

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
𝑔𝑒𝑡ℎ𝑎𝑛𝑜𝑙

 
[13, 15, 

16] 

Substrate conversion rate 𝛼ℎ𝑐 0.17 

𝑔ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛

𝑔𝑒𝑡ℎ𝑎𝑛𝑜𝑙
 

[13, 15, 

16] 

Death delay  120 h estimated 

Death threshold  0.000001 g/L estimated 

Methanogen 1 

Cell mass 𝐵𝑚1 1000 fg [17] 

Mass of EPS capsule  10 fg [18] 

Division radius  2 μm [17] 

Maximum growth rate 𝜇𝑚1̂ 0.1 h-1 [19] 

Substrate saturation constant 𝐾𝑠𝐴𝑐 0.005 g/L [18] 

Substrate inhibition constant 𝐾𝑖𝐴𝑐 0.24 g/L [20, 21] 

Biomass conversion rate 𝛼𝑏𝑎 0.15 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
 

 [19, 22]  

Substrate conversion rate 𝛼𝑚𝑎 0.26 

𝑔𝑚𝑒𝑡ℎ𝑎𝑛𝑒

𝑔𝑎𝑐𝑒𝑡𝑎𝑡𝑒
 

[19] 

Death delay  144 h estimated 

Death threshold  0.00001 g/L estimated 

Methanogen 2 

Cell mass 𝐵𝑚2 1000 fg [17] 

Mass of EPS capsule  10 fg [18] 

Division radius  3 μm [17] 

Maximum growth rate 𝜇𝑚2̂ 0.02 h-1 [23] 

Substrate saturation constant 𝐾𝑠𝐻 0.000018 g/L [23] 
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Biomass conversion rate 𝛼𝑏ℎ 0.1 

𝑔𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛
 

[23] 

Substrate conversion rate 𝛼𝑚ℎ 2 

𝑔𝑚𝑒𝑡ℎ𝑎𝑛𝑒

𝑔ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛
 

[23] 

Death delay  144 h estimated 

Death threshold  0.000001 g/L estimated 
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APPENDIX C 

JAVA CODE  

Sample code for the bioaugmentation model in iDynoMiCs, described in Chapters 6, 7.  

Detailed code can be found at https://github.com/adoloman/Modified-iDynoMICs-for-

augmentation-model 

1. Defining the simulation domain 

<computationDomain name="Granule"> 

      <grid nDim="2" nI="127" nJ="127" nK="1"/> 

      <param name="resolution" unit="um">4</param> 

      <param name="boundaryLayer" unit="um">0</param> 

      <param name="biofilmDiffusivity">0.3</param> 

      <param name="specificArea" unit="m2.m-3">80</param> 

2. Defining the feed flow of the substrate 

<bulk name="MyTank"> 

      <param name="isConstant">false</param> 

      <solute name="Cellobiose"> 

        <param name="isConstant">false</param> 

        <param name="Sbulk" unit="g.L-1">1.5</param> 

      </solute> 

 </bulk> 

3. Specifying metabolic reactions  

<reaction catalyzedBy="biomass" class="ReactionFactor" 

name="CellobioseDegradation"> 

    <param name="muMax" unit="h-1">0.15</param> 

    <kineticFactor class="MonodKinetic" solute="Cellobiose"> 

      <param name="Ks" unit="g.L-1">2.5</param> 

    </kineticFactor> 

    <yield> 

      <param name="Cellobiose" unit="g.g-1">-1</param> 

      <param name="biomass" unit="g.g-1">0.203</param> 

      <param name="Lactate" unit="g.g-1">0.0096</param> 

      <param name="Acetate" unit="g.g-1">0.45</param> 

      <param name="Ethanol" unit="g.g-1">0.28</param> 

    </yield> 

  </reaction> 



164 

 

 

4. Specifying agent grid and parameters for biofilm (granule) growth and 

development 

 

<agentGrid> 

    <param name="computationDomain">Granule</param> 

    <param name="resolution" unit="um">4</param> 

    <detachment class="DS_Quadratic"> 

      <param name="kDet" unit="um-1.hour-1.">4e-5</param> 

      <param name="maxTh" unit="um">500</param> 

   </detachment> 

   <param name="MaximumGranuleRadius">150</param> 

     <param name="sloughDetachedBiomass">false</param> 

    <param name="shovingMaxNodes">2e6</param> 

    <param name="shovingFraction">1</param> 

    <param name="shovingMaxIter">50</param> 

    <param name="shovingMutual">true</param> 

  </agentGrid> 

 

5. Defining clostridium1 agent cell type 

 

<species class="Yeast" name="Clostridium1"> 

    <particle name="biomass"> 

      <param name="mass" unit="fg">500</param> 

    </particle> 

    <particle name="inert"> 

      <param name="mass" unit="fg">0</param> 

    </particle> 

    <param name="color">green</param> 

    <param name="computationDomain">Granule</param> 

    <param name="divRadius" unit="um">2</param> 

    <param name="deathRadius" unit="um">0</param> 

    <param name="shoveFactor" unit="um">1</param> 

    <param name="shoveLimit" unit="um">0.0</param> 

    <param name="shovingMutual">true</param> 

    <reaction name="CellobioseDegradation" status="active"/> 

    <adhesions> 

        <adhesion strength="1" withSpecies="Clostridium1"/> 

        <adhesion strength="0" withSpecies="GdyingC1"/> 

        <adhesion strength="1" withSpecies="Clostridium2"/> 

        <adhesion strength="2" withSpecies="Methanogen1"/> 

        <adhesion strength="2" withSpecies="Methanogen2"/> 

     </adhesions> 

    <switchingLags> 

      <switchingLag toSpecies="GDyingC1" unit="hour" value="96"/>  
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    </switchingLags>   

    <initArea number="150"> 

      <param name="birthday" unit="hour">0</param> 

      <coordinates x="248" y="248" z="0"/> 

      <coordinates x="250" y="250" z="0"/> 

    </initArea> 

</species> 

6. Defining decaying opponent for the clostridium1 agent cell type (switch due 

to the low substrate in the surrounding of the cell) 

species class="Yeast" name="GDyingC1"> 

    <particle name="biomass"> 

        <param name="mass" unit="fg">300</param> 

    </particle> 

    <particle name="inert"> 

        <param name="mass" unit="fg">10</param> 

    </particle> 

    <param name="color">black</param> 

    <param name="computationDomain">Granule</param> 

    <param name="divRadius" unit="um">10000</param> 

    <param name="deathRadius" unit="um">0</param> 

    <param name="shoveFactor" unit="um">1</param> 

    <param name="shoveLimit" unit="um">0</param> 

    <param name="shovingMutual">true</param> 

    <entryConditions> 

        <entryCondition name="Cellobiose" type="solute"> 

            <param name="fromSpecies">Clostridium1</param> 

            <param name="switch">lessThan</param> 

            <param name="concentration" unit="g.L-1">0.02</param> 

        </entryCondition> 

    </entryConditions> 

</species> 
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