Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2019

Methods for Meta—Analyses of Rare Events, Sparse Data, and
Heterogeneity

Brinley Zabriskie
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Mathematics Commons

Recommended Citation

Zabriskie, Brinley, "Methods for Meta—Analyses of Rare Events, Sparse Data, and Heterogeneity" (2019).
All Graduate Theses and Dissertations. 7491.

https://digitalcommons.usu.edu/etd/7491

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for

inclusion in All Graduate Theses and Dissertations by an /[x\

authorized administrator of DigitalCommons@USU. For /\

more information, please contact IQ‘ .()Al UtahStateUniversity
digitalcommons@usu.edu. ‘e~ MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F7491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7491?utm_source=digitalcommons.usu.edu%2Fetd%2F7491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

METHODS FOR META-ANALYSES OF RARE EVENTS,
SPARSE DATA, AND HETEROGENEITY
by
Brinley Zabriskie

A dissertation submitted in partial fulfillment

of the requirements for the degree
of
DOCTOR OF PHILOSOPHY
in

Mathematical Sciences

(Statistics Specialization)

Approved:

Chris Corcoran, Sc.D. Adele Cutler, Ph.D.

Major Professor Committee Member

John Stevens, Ph.D. David Brown, Ph.D.

Committee Member Committee Member

Tyler Brough, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

Copyright (©) Brinley Zabriskie 2019

All Rights Reserved

ii

iii

ABSTRACT

Methods for Meta—Analyses of Rare Events,

Sparse Data, and Heterogeneity

by

Brinley Zabriskie, Doctor of Philosophy

Utah State University, 2019

Major Professor: Dr. Chris Corcoran

Department: Mathematics and Statistics

The increasingly widespread use of meta—analysis has led to growing interest in
meta—analytic methods for rare events and sparse data. Conventional approaches tend to
perform very poorly in such settings. Recent work in this area has provided options for
sparse data, but these are still often hampered when heterogeneity across the available
studies differs based on treatment group. We propose several new exact methods that
accommodate this common contingency, providing more reliable statistical tests when
such patterns on heterogeneity are observed. First, we develop a permutation—based
approach that can also be used as a basis for computing exact confidence intervals when
estimating the effect size. Second, we extend the permutation—based approach to the
network meta—analysis setting. Third, we develop a new exact confidence distribution
approach for effect size estimation. We show these new methods perform markedly better

than traditional methods when events are rare, and heterogeneity is present.

(264 pages)

v

PUBLIC ABSTRACT

Methods for Meta—Analyses of Rare Events,
Sparse Data, and Heterogeneity

Brinley Zabriskie

The vast and complex wealth of information available to researchers often leads to a
systematic review, which involves a detailed and comprehensive plan and search strategy
with the goal of identifying, appraising, and synthesizing all relevant studies on a
particular topic. A meta—analysis, conducted ideally as part of a comprehensive
systematic review, statistically synthesizes evidence from multiple independent studies to
produce one overall conclusion. The increasingly widespread use of meta—analysis has led
to growing interest in meta—analytic methods for rare events and sparse data.
Conventional approaches tend to perform very poorly in such settings. Recent work in this
area has provided options for sparse data, but these are still often hampered when
heterogeneity across the available studies differs based on treatment group. Heterogeneity
arises when participants in a study are more correlated than participants across studies,
often stemming from differences in the administration of the treatment, study design, or
measurement of the outcome. We propose several new exact methods that accommodate
this common contingency, providing more reliable statistical tests when such patterns on
heterogeneity are observed. First, we develop a permutation—based approach that can also
be used as a basis for computing exact confidence intervals when estimating the effect size.
Second, we extend the permutation—based approach to the network meta—analysis setting.
Third, we develop a new exact confidence distribution approach for effect size estimation.
We show these new methods perform markedly better than traditional methods when

events are rare, and heterogeneity is present.

ACKNOWLEDGMENTS

I would like to first thank Dr. Chris Corcoran for providing me the opportunity to
pursue this degree and for his time, advice, and encouragement. I am also grateful for the
teaching opportunities he gave me throughout my time at Utah State University. Dr.
Corcoran has been very influential in my career development. I would also like to thank
my committee members, Drs. Adele Cutler, John Stevens, Dave Brown, and Tyler Brough
for their time, input, and assistance. Additionally, the faculty, staff, and students in the
Department of Mathematics and Statistics have made my time here enjoyable and

memorable.

I would also like to thank the co—founders of Cytel Inc., Drs. Cyrus Mehta and Nitin
Patel, whose pioneering advancements made this work possible. I greatly appreciate Dr.
Pralay Senchaudhuri, Senior Vice President for Research & Development at Cytel Inc.,
who has taken the time to provide invaluable advice throughout this process. I would also
like to thank software specialist Sumit Singh who provided technical support. This work
would also not have been possible without the Center for High Performance Computing at

the University of Utah. T am grateful for their resources and technical assistance.

Lastly, I am grateful for my family for their assistance, support, and encouragement.

Brinley Zabriskie

vi

CONTENTS

Page
ABSTRACT e iii
PUBLIC ABSTRACT e e e e e e e iv
ACKNOWLEDGMENTS e e e e e e v
LIST OF TABLES e e e e e e e e s ix
LIST OF FIGURES s e e be

1 INTRODUCTION TO META-ANALYSIS METHODS FOR RARE EVENTS AND
HETEROGENEITY s e e e e 1
1.1 Background 1

1.2 Common Statistical Methods for Meta—Analyses

1.3 Common Statistical Methods for Meta—Analyses of Rare Events 8
1.4 Novel Statistical Methods for Meta—Analyses of Rare Events 13
1.5 Summary of the Remaining Chapters 16
2 EXACT META-ANALYSIS FOR RARE EVENTS AND HETEROGENEITY . . 18

2.1 Backgroundo 18
2.2 Methodology L 19
2.2.1 Exact Conditional Logistic Regression 19
2.2.2 Exact Conditional Logistic Regression for Correlated Data 22
2.2.3 Exact Estimation Method 0oL 26
2.2.4 Network Algorithm 29
2.3 Innovation 34
2.3.1 Exact Test: Variation of Treatment Level Within Study 34
2.3.2 Exact Test: Variation of Correlation Structure Among Treatment Levels 36
2.3.3 Network Algorithm: Variation of Treatment Level Within Study . . 38
2.3.4 Network Algorithm: Variation of Correlation Structure Among Treat-
ment Levels L 40
2.4 Application e e 41

2.4.1 Simulation Study 42

vii

24.1.1 Typel Error 44

2412 Biaso 46

2.4.1.3 Confidence Interval Coverage 49

2.4.2 Tlustrative Examples o 0oL 51
2.4.2.1 Stomach Ulcers, 51

2.4.2.2 Antibiotics 54

2.4.3 Network Algorithm 57
2.4.3.1 Original Exact Test for Correlated Data 57

2.4.3.2 Variation of Treatment Level Within Study 68

2.4.3.3 Variation of Correlation Structure Among Treatment Levels 68

2.5 Conclusion e 72
EXACT NETWORK META-ANALYSIS. 76
3.1 Background Lo 76
3.1.1 Introduction and Terminology 76
3.1.2 Basic Methods 80
3.1.3 Assumptions and Validity Considerations 82

3.2 Methodology and Innovation 83
3.3 Application 87
3.4 Conclusion e 92

COMBINING CONFIDENCE DISTRIBUTIONS FOR RARE EVENT META-

ANALYSIS . . . 93

4.1 Background 93
4.2 Methodology 100
4.2.1 Confidence Distribution Definition 100
4.2.2 Combining Confidence Intervals as in Tian et al. (2009) 101
4.2.3 Combining p—value Functions as in Liu et al. (2014) 103
4.2.4 Combining p—values as in Fisher (1932) 105

4.3 Innovation 106

4.3.1 Modification 1: Use the Logit Function Under the General CD Frame-

work without Weights 107
4.3.2 Modification 2: Use the Logit Function Under the General CD Frame-

work with Weights Defined by Liu et al. (2014) 108

viii

4.3.3 Modification 3: Use the Tian et al. (2009) Framework with Weights

Defined by Liu et al. (2014) 109

4.3.4 Summary e e 109

4.4 Applicationo 109
4.4.1 Simulation Results oo 109

4.4.2 Example Data Set: Cerebral Microbleeds 114

4.5 Conclusion 120

5 CONCLUSION o s s e 121
REFERENCES e e e e e e e 122
APPENDICES o e 128

Appendix A: Information on the Confidence Interval Bounds of Section 2.2.3 . . 129
Appendix B: Adjustments to the Conditional Probability of Section 2.2.3 132

Appendix C: Code for Chapter 2 134
Appendix D: Code for Chapter 3 176
Appendix E: Code for Chapter 4 183

CURRICULUM VITAE e e 250

Table

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF TABLES

ix

Page

Typical 2 x 2 table structure for binary outcome data used in a meta—analysis. 10

Generic contingency table for a binary outcome with treatment constant per
study. . . .o

25

Generic contingency table for a binary outcome with two treatments per study. 35

Generic contingency table for a binary outcome with two treatments and two
correlation structures per study.o oo

Stomach ulcer data set. Source: Efron (1996)

Meta—analysis results for the stomach ulcer data set. Note: the p—values are
all two—sided. L

Antibiotics data set. Source: Spinks et al. (2013)

Meta—analysis results for the antibiotics data set. Note: the p—values are all
two—sided.

Example data set used to illustrate the original network algorithm as outlined
in Section 2.2.4. e e

Example data set used to illustrate the modified network algorithm as out-
lined in Sections 2.3.1 and 2.3.2. L.

Combination of values for the parameters used in eight simulation study
SCENATIOS. « v v v v v v e e e e e e e e e e e e e

Results from two hypothetical studies that will be used to illustrate the use
of CDs. o e

Summary of the six methods discussed in this chapter.
CMB data set. Source: Tsivgoulis et al. (2016)
Meta—analysis results from four traditional methods for the CMB data set.

Meta—analysis results from the three CD methods for the CMB data set. . .

Meta—analysis results from the new modifications of the CD methods for the
CMB dataset.

39

52

93

95

o6

o7

69

88

95

110

115

118

119

Figure

2.1

2.2

2.3

2.4
2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

3.1

3.2

LIST OF FIGURES

This figure compares the type I error rates of several existing methods to our
new exact method with varied values of 1 (baseline event rate) and 72. . . .

This figure compares bias of several existing methods to our new exact
method with varied values of u (baseline event rate), 72, and 6 (log odds
ratio).

This figure compares the confidence interval coverage of several existing meth-
ods to our new exact method with varied values of y (baseline event rate),
72 and 0 (log odds ratio).

Building the I'(s*) network: number of nodes in Stage 1..
Building the I'(s*) network: nodes in Stage 2 connected to node (1,0). . . .

The I'(s®) network with the nodes and edges representing the data in Table
28inred.

The I'(s,s%) network with the nodes and edges representing the data in
Table 2.8 inred. L

The T'(s%, s°) network with the rank lengths and probability lengths of the
connecting arcs in blue.

The I‘(sa,s‘;) network with the shortest and longest path lengths and the
total probability of the connecting arcs in orange for Stages 2 to 4.

The T'(s%, %) network with the shortest and longest path lengths and the
total probability of the connecting arcs in orange.

The T'(s) network with the nodes and edges representing the data in Table
29 i0nred. . ..o e

Building the I'(s%,s%,5%) network: the first part of the backward pass,
utilizing information from the treatment groups.

The T'(s%, 5%, 592) network with the nodes and edges in red representing the
data in Table 2.9.

Page

46

48

50

99

60

60

61

63

64

65

70

71

72

An example of a graphical network for six treatments: A, B, C, D, F, and F. 78

Small example network with three treatments, A, B, and D, all directly
compared to the control, C', but never directly compared to each other . . .

84

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Al

A2

The graphical network on which the simulation study is based.

This figure compares the bias of our exact permutation—based method and
the DerSimonian and Laird (DSL) method under the eight network meta—
analysis simulation scenarios.

This figure compares the confidence interval coverage of our exact permutation—
based method and the DerSimonian and Laird (DSL) method under the eight
network meta—analysis simulation scenarios.

This figure illustrates different ways to estimate the population parameter of
interest.o L

Individual p—value functions plotted as CDFs for the two studies shown in
Table 4.1. e e e

Individual p—value functions plotted as “confidence curves” for the two studies
shown in Table 4.1. e

The combined p—value function of the two studies shown in Table 4.1 plotted

Simulation results of four common methods under the rare event meta—
analysis setting. L L L

Simulation results of the three CD methods under the rare event meta—
analysis setting with the four traditional methods grayed out in the back-
ground for reference.

Simulation results of the three new modifications to the CD methods under
the rare event meta—analysis setting with the four traditional methods and
the three CD methods grayed out in the background for reference.

“Forest” plot of the nine CMB studies plotted as confidence curves.

This figure illustrates how to find the one-sided 95% confidence interval given
the corresponding one—sided hypothesis test.

This figure illustrates how to find the one-sided 95% confidence interval given
the corresponding one—sided hypothesis test.

xi

97

112

113

114

117

130

CHAPTER 1
INTRODUCTION TO META-ANALYSIS METHODS FOR RARE EVENTS AND
HETEROGENEITY

1.1 Background

A meta—analysis, conducted ideally as part of a comprehensive systematic review,
synthesizes evidence from multiple independent studies to produce one overall conclusion.
Meta—analyses provide a consolidated review of the vast and complex body of literature,
that may sometimes contain conflicting conclusions, by combining and comparing effect
sizes using metrics like the odds ratio, relative risk, risk difference, correlation coefficient,
and mean difference. Combining effect sizes yields an overall effect size estimate, which
can be used for significance testing and creating confidence intervals. Comparing effect
sizes is used to analyze the accuracy and reliability of the combined effect size estimate.
This includes analyzing the effects of heterogeneity, or differences in variability due to

treatment.

Meta—analyses are increasingly employed across many disciplines, including public
health, medicine, epidemiology, psychology, criminology, sociology, political science, and
genetics. One of the earliest uses of a meta—analysis can be traced back to the British
statistician Karl Pearson. In 1904, he combined observations from multiple clinical studies
assessing typhoid vaccine effectiveness (Sutton and Higgins, 2008). Over the ensuing
decades, this form of research synthesis was formalized and grew in popularity and
application. In 1976, Gene Glass coined the term “meta—analysis” to describe this pooling
of study results, but still relatively few of these analyses were conducted (O’Rourke, 2007).
Meanwhile, contemporaries of Glass began to more fully recognize a need for clear

guidelines on conducting literature reviews and sharing research findings. A significant

response to this need came in the form of the international Cochrane Collaboration, which
was established in the early 1990s. The mission of this organization is to “promote
evidence—informed health decision—making by producing high—quality, relevant, accessible
systematic reviews and other synthesized research evidence” (Cochrane, 2019). The
structure of this organization (and many others like it), the ability to store information
electronically, and the wide accessibility of the internet helped make meta—analyses much
more feasible and popular to conduct. As such, the use of meta—analyses has increased
dramatically over the years, with thousands of meta—analyses and systematic reviews now

published each year (Sutton and Higgins, 2008).

This growth has been especially prevalent in public health and medicine, particularly
in the context of treatment comparisons (Sutton and Higgins, 2008). Where expert
opinion once played a significant role in healthcare decision—making, a recent push toward
“evidence-based medicine” now has medical data driving health-related decisions
(Toannidis, 2006). Systematic reviews and meta—analyses are at the heart of this ideal, and

they are considered by some to be the highest form of evidence (Akobeng, 2005).

In spite of the widespread use of systematic reviews and meta—analysis, there are,
nonetheless, many obstacles researchers face when using these approaches. To begin,
conducting a literature search sufficient to obtain all studies conducted on a specific
treatment requires an extreme amount of effort and expertise. Study results may come
from different journals, countries, and languages. While it is relatively straightforward,
albeit time intensive, to collect published studies on a specific treatment, it is much more
difficult to gather information from unpublished studies. Including only published studies
leads to what is known as the “file drawer” problem, or publication bias, which occurs as
journals tend to publish only studies with significant results, leaving many studies that
show non—significant results in one person’s “file drawer.” If all the significant, published
studies happen to be results of a type I error, and all the non—significant, non—published

results actually reflect the truth, the results of a meta—analysis will be completely

inaccurate. Conducting an extensive systematic review is daunting, but critical, for

meta—analyses.

However, even when all relevant studies have been ascertained, the quality of each
study must be determined to avoid the “garbage in, garbage out” problem. If the
individual studies used in a meta—analysis are biased or have flawed study designs, the
combined estimate produced by a meta—analysis will likewise be biased and flawed. Each
individual study should be carefully reviewed by experts in the field of interest to ensure
the data for a meta—analysis are high quality and of sound methodology. Another
so—called “apples and oranges” problem arises when studies considered for a meta—analysis
are not actually comparable. Prior to conducting a systematic review, researchers should
develop clear criteria as to what characteristics a study needs in order to be included in
the analysis so that only similar studies are combined in a meta—analysis. For example, if
two studies are found that assess the effectiveness of aspirin in relieving a headache, but
one study included only female patients while the other included only male patients, it

may be unwise to pool both studies together depending on the research question.

After all the work required to ensure the comprehensive accumulation of relevant
data, and the additional critical evaluation of the available studies to ensure that they are
sufficiently comparable, the statistical analysis requires additional care. It is
computationally easy to conduct a meta—analysis with widely—available software, but
additional insight is required to understand how to choose and apply appropriate models
and how their characteristics and potential drawbacks in certain settings need to be

considered when interpreting and presenting the results.

With these considerations in mind, both with respect to systematic reviews and the
statistical methodology of meta—analysis, the potential benefits of meta—analyses have led
to a significant increase in their application. Advances in the scope and performance of

the internet have made the intensive literature search process much more efficient.

Virtually all journals and other research—focused publications are archived online, and
many other resources are available to ease the burden of conducting an extensive literature
search. A thoughtful and well-conducted meta—analysis can help leverage the increasingly
open availability of data from across many sources to address research questions that
cannot be fully understood within the limits of a single experiment. Meta—analysis can be
especially useful when results from small, independent experiments, such as randomized
controlled clinical trials, are individually under—powered to understand treatment effects
on their own. In these cases, a meta—analysis can produce an overall treatment effect
estimate with more precision and statistical power than estimates produced individually
from independent studies. The ideal meta—analysis provides a disciplined, statistically
defensible process to summarize research findings. Professionally accepted guidelines for
conducting a meta—analysis are helping to make research findings transparent and
reproducible and provide the opportunity for other researchers to verify or correct results.
Meta—analyses have become so ubiquitous across virtually all disciplines that rely on data.
In spite of the capabilities and widespread application of meta—analyses, gaps in the
statistical methodology nevertheless exist. This dissertation attempts to address some of
these gaps in the context of relatively rare outcomes. From this point, we will assume that
an extensive and complete literature review has been conducted, and the studies to be

pooled have been appropriately vetted and are sufficiently well-conducted and comparable.

1.2 Common Statistical Methods for Meta—Analyses

For binary outcome medical data, the odds ratio (OR), relative risk (RR), and risk
difference (RD) are the three most common effect size estimates to be pooled in a
meta—analysis. How to combine these effect size estimates stems from a relatively simple
concept. Suppose k studies are to be pooled in a meta—analysis. A weighted average of the

individual study’s effect size estimates éi, 1 =1,...,k is computed, yielding one combined

effect size estimate

with a corresponding standard error

1

SE (9) =5

A weighted average is used since some studies may have a relatively large, more
representative sample and should intuitively be given more weight than studies with a
relatively small sample size. Studies with larger sample sizes are considered to be more

precise and carry more weight in the analysis.

A straightforward way of accounting for study precision is to weight each study by

2

the inverse of its variance oy, as the variance is a direct reflection of a study’s precision.
Since the true variance for each study is unknown, o? is estimated by 2. Fittingly, this
framework, where studies with larger variability are given less weight, and studies with
less variability are given more weight, is known as the inverse variance method (INV).
Under the INV framework, the weights for each study are defined as

DINV =

>

The INV method is a fixed—effect method. Fixed—effect methods assume all studies’
effect sizes are homogeneous and estimate a common treatment effect . Any variation in
the treatment effect is assumed to be due to sampling error alone. These assumptions of
fixed-effect methods, however, are rarely met in practice. Often, a random—effects method
is more appropriate. Random—effects methods are less strict than fixed—effect methods in
that they allow the true treatment effect 6 to vary across studies. Random-effects methods

assume the effect sizes across studies are heterogeneous and sampled from a distribution of

population effects. These assumptions allow researchers to make conclusions that can be

generalized beyond the specific studies included in the meta—analysis.

Since the studies’ effect sizes are assumed to come from a distribution,
random—effects methods consider two sources of variability: variability due to sampling
error o2 and variability due to between—study differences 72, known as the heterogeneity
parameter. The heterogeneity parameter reflects the variance of the individual effect size
estimates 6; around the true treatment effect 6. As such, heterogeneity is present when
treatment event rates vary significantly across studies, indicating the studies are not
estimating a common treatment effect, but rather a distribution of treatment effects.
Heterogeneity often arises from differences in participants, administration of the
treatment, study design, and measurement of the outcome. It should also be noted that 72
is not estimated for each study; rather, one estimate of 72 is used to capture the

variability in the treatment effect across all studies.

While sampling error and some heterogeneity between studies is expected, if a
relatively large amount of between—study variability exists, the results of a fixed—effect
meta—analysis can be biased and unreliable. We refer to this difference in variability due
to treatment as heterogeneity. Hunter and Schmidt (2000) explain that using a
fixed—effect model in the presence of heterogeneity among studies leads to type I error
rates that highly exceed the nominal rate and to overly narrow confidence intervals that
mistakenly over—state the precision of the results. Thus, when there is variation in the
treatment effect that is not simply due to chance, a random—effects model should be used

over the fixed—effect model.

To determine if there is variation in the treatment effect not due to chance, the
non-parametric Cochran’s @ test is commonly used (Cochran, 1954). This test determines
if the proportion of events is the same in both treatment groups. The null hypothesis for

this test is that there is no meaningful heterogeneity among studies, indicated by both

treatment groups having similar event rates. Additionally, Q) follows a chi-square
distribution with k& — 1 degrees of freedom, and rejecting the null hypothesis is evidence
that a random—effects model should be used over a fixed—effect model. It is well known
that the @) test is under—-powered when k is relatively small and over—powered when k is
relatively large (Huedo-Medina et al., 2006), so the @ test should not be solely relied upon

to assess the presence of heterogeneity.

While the) test is known to have power—related issues, the () statistic is still
routinely used. The @) statistic is calculated by summing the squared deviations of each
study’s effect size estimate from the combined fixed—effect estimate and weighting those

deviations by the inverse of each study’s variance
k 2
Q=3 a™ (3,-0.)"
i=1

The I? statistic is one such statistic that relies on the @ statistic (Higgins and Thompson,
2002). While the @ statistic helps determine if heterogeneity is present, the I? statistic

aims to quantify the amount of heterogeneity present. I? is defined as

Q—(k—-1)

I? = max {0%, 0

X 100%}.

One main advantage of using the I? statistic lies in its interpretation. It can be directly
interpreted as the percentage of all variability that is due to true heterogeneity and not
due to sampling error. Thus, an I? of 0% means there is no between-study variability, an
I? of 100% means all variability in the studies is not due to chance, but to heterogeneity,
and an I? of 50% means that half the variability is due to heterogeneity (Higgins and

Thompson, 2002).

The DerSimonian and Laird random—effects method is another example of where the
@ statistic is utilized. The DerSimonian and Laird method (DSL) is similar in concept to

the INV method, and it is the most commonly used method in the medical field for

binomial outcomes (DerSimonian and Laird, 1986; Shuster and Walker, 2016). The DSL

method estimates 72 as

where c is defined as

k k ~INV\2

c=3 w - Zin (@)

- ! L)
i—1 D oiet wz‘INV

The weights for the DSL method are similar to the weights of the INV method, but the

DSL weights allow for between—study differences. Thus, the weights are defined as

It is easy to see that when 72 = 0, the fixed—effect and random—effects models will produce
the same results. As 72 increases, the weights for each study will be smaller than the
weights under the fixed—effect framework. This causes the random—effects model to be
more conservative than the fixed—effect model, which can be problematic if k is relatively
small or high precision is needed. Additionally, when 72 increases, the study weights will
be more similar to each other than in the fixed—effect model. Thus, less weight will be

given to larger studies, and more weight will be given to smaller studies.

1.3 Common Statistical Methods for Meta—Analyses of Rare Events

Both the INV and the DSL methods rely on large—sample approximations. These
assumptions may not hold for small or sparse samples. Such circumstances arise often in
health and medical research; for example, in epidemiology studies with rare outcomes or in

clinical trials evaluating uncommon adverse events. Vandermeer et al. (2009) conducted a

random sample of 500 Cochrane systematic reviews and found that over 50% of these

meta—analyses contained studies with rare events (an observed frequency of less than 5%).

For small or sparse samples, conventional meta-analysis methods, such as the INV
fixed-effect method and DSL random-effects method, often fail to produce reliable
estimates (or any estimates at all). If there are zero observed events in one or both
treatment arms, commonly used effect sizes, like the odds ratio and relative risk, compute
to either zero or infinity, and their standard errors are undefined, making it impossible to
pool these studies. Existing methods generally do not reasonably account for studies in
which there are zero observed events in both arms. By default, software packages typically
exclude such studies from a meta—analysis, with some arguing they are unable to provide
information on the direction and magnitude of the effect size (Whitehead and Whitehead,
1991; Sweeting et al., 2004; Bradburn et al., 2007; Higgins and Green, 2011, chap. 16.9.3).
Others recommend including information from these studies to avoid inflating the
magnitude of the overall effect size estimate and to ensure that the estimated treatment
effect is generalizable (Sankey et al., 1996; Bhaumik et al., 2012; Kuss, 2015). Studies in
which there are zero observed events in one treatment arm (but not both) are also often
simply implicitly excluded from a meta—analysis by software programs that assign them
zero weight. This practice is demonstrably biased, as these studies clearly contain

information about the treatment effect (Bohning et al., 2015).

A common alternative to study exclusion is a continuity correction where either all
cells or only those cells with zero counts are incremented by 0.5. Some have argued that
applying such a correction may lead to biased results and poor coverage (Sweeting et al.,
2004; Bradburn et al., 2007; Tian et al., 2009; Cai et al., 2010; and Kuss, 2015). Other
corrections have been proposed, with others suggesting a sensitivity analysis to determine
which correction method is most appropriate (Sweeting et al., 2004). Unfortunately, in
settings involving rare events, the relative performance of these options varies widely on a

case—specific basis (Sweeting et al., 2004; Liu et al., 2014).

10

The Cochrane Handbook for Systematic Reviews of Interventions notes that all these
commonly used approaches perform poorly when studying rare events, yielding biased
results, overly wide confidence intervals, and low statistical power, concluding that inverse
variance methods should be avoided with rare events, including the DerSimonian and
Laird random-effects method (Higgins and Green, 2011, chap. 16.9.5). In DerSimonian and
Laird (1986)’s defense, they actually comment that the assumptions made for their model
may not hold for small sample sizes. If these methods are known to produce unreliable
estimates for meta—analyses with rare events (even warned by the developers themselves),
how is it that the DerSimonian and Laird method is the most commonly used method for
meta-analyses in the medical field? Shuster and Walker (2016) attempt to answer this
question by noting that common meta—analysis software packages issue no warnings when
studies have rare events. They also point out that the DerSimonian and Laird method is
the most common random-effects method available in software. Much work is needed to
help researchers be aware of the danger of using inappropriate models for meta—analyses

with rare events and to provide alternative methods for researchers faced with such data.

One alternative to the common inverse variance methods that is available in most
software packages is the fixed—effect Mantel-Haenszel method (MH) for discrete data
(Mantel and Haenszel, 1959). While the DerSimonian and Laird random-effects method is
the most commonly used method for meta—analyses of binary outcomes, the MH method
is the most commonly used fixed—effect method in this scenario (Bhaumik et al., 2012).

Consider Table 1.1 as a way to summarize the data of the i*" study in a meta-analysis.

TABLE 1.1: Typical 2 x 2 table structure for binary outcome data used in a meta—
analysis.

Study (¢) | Event Non-Event | Total

Treatment a; Ci a; + ¢;
Control b; d; b; +d;
Total a; + b; ¢ +d; n;

11

The MH weights ﬁ)lM H for each study are defined differently for each effect size

GMH = Y g e OR,

)

ny
oM = bilai +) for the RR, and
T
prr — (@it e)bitdi) g g,

1

The standard error of the combined effect size estimate also depends on the effect size

k a;d; a;td; k bici ait+di | bite; aidy k bici bitei

l’
2\ 2 k ids ko (b e \2
2 (Zle “n—d) 23 i (aT) > i1 (TC> 2 (Zf:l bTC)

In (5}\2£/IH) -

Zk ((az‘-i-ci)(brf‘di)(ai"!‘bi)_(aibini))

=1 n2

SE \—um : and
In(RR a;(b;+d; bi(a;+c; ’
(RR) T\ o, (eltdd) yok | (blete)
k a;ci(bi+d;)2+bidi(a;+¢;)3
Zi:l < (ai+c;)(bi+d;)n?)
SEgpuit = s, (Ceta)
=1 n;

Bradburn et al. (2007) show that this method performs better than the inverse variance
method when events are rare. Additionally, they demonstrate that the MH method
actually performs better without the use of a continuity correction when events are rare,
but Sankey et al. (1996) show this appears to hold true only when there is almost no
study heterogeneity. If there are zero cells across all studies in one or more treatment arm,
a continuity correction must be used, and performance is weakened. In this case, the
results may be biased, the method may have low statistical power, and it may produce a
conservative estimate (Bradburn et al., 2007). The MH method also relies on a normal

approximation, which is generally not appropriate for discrete data and small samples.

12

Another alternative method for discrete data with rare events is the Peto method
(Yusuf et al., 1985). This method can be used to combine only odds ratios, and it does
not require a continuity correction unless both treatment arms have zero events. The OR
and standard error of the OR for the individual studies are computed differently than in

previous methods. They are defined as

— i — Ei
OR; :exp{ v } and
1
SEln(ORi) “Vw
where
Oi = a;,
B = (a; + b;)(a; + CZ')7 and
n;
v — (a; +b;)(c; + di)(a; + ¢;) (b + d;)
C n?(n; — 1) '
The weights for each study are
WP = V.

The combined effect size estimate and its associated standard error is

k k
——— Peto . P . El
OR." = exp{zl—lO Lz } and

¢ k ~ Peto
> ie W

SE 1 (ORper) = S _gPeto’

Bradburn et al. (2007) show the Peto method works well (often better than the MH
method) when these criteria are met: the treatment effects are small, the events are fairly
rare, and the studies have similar sample sizes in the treatment and control groups. If

these conditions are not met, the Peto method tends to underestimate the treatment effect

13

(Greenland and Salvan, 1990). Greenland and Salvan (1990), however, state that this bias
“is negligible in meta—analysis of randomized trials involving small effects and a reasonable
number of outcome events.” Furthermore, if these conditions are met, this method
performs well for rare event data, and Bradburn et al. (2007) found it to be one of the
least biased and most powerful methods they studied (including the inverse variance
methods and the MH method). However, like the MH method, this method relies on a
normal approximation, which can cause undesirable results when events are rare, and
studies are small. Kuss (2015) states that this method may not be the best for very sparse
data, even though it is recommended in the Cochrane Handbook (Higgins and Green,

2011, chap. 16.9.5).

1.4 Novel Statistical Methods for Meta—Analyses of Rare Events

While the MH and Peto methods may outperform the inverse variance methods, they
still leave much to be desired in methods for sparse data and rare events. The
large—sample assumptions of these common methods are ill-suited for discrete data with
rare events. Additionally, a common issue hampering both alternatives is non—negligible
heterogeneity. Several methods have been proposed to fill this gap, and recent interest in
meta—analysis for rare events has been growing (Cai et al., 2010; Bhaumik et al., 2012;

Moreno et al., 2012; Liu et al., 2014). We will review a few of these here.

A recent fixed—effect method by Liu et al. (2014), which builds on the work of Tian
et al. (2009) and Singh et al. (2005), involves combining p—value functions (as opposed to
combining effect size estimates) which are obtained from the mid—p adaption of Fisher’s
exact test to obtain one overall p—value function. p—value functions, often referred to as
significance functions, are a type of confidence distribution. Confidence distributions are

sample—dependent distributions that represent confidence intervals for all levels of the

14

effect size. A p—value function produces the one—sided p—value for the null hypothesis and
the one—sided p—values for every alternative to the null hypothesis for the effect size.
Providing information about both the size and precision of the effect size estimate, p—value
functions contain richer information than p—values alone. This method does not rely on
large—sample approximations, nor does it require any arbitrary continuity correction. This
method also allows a wide range of options for combining studies, including the choice of
weights, effect sizes, transformation functions (which is used in combining studies), exact
tests, and adjustments to individual study’s p—value functions. One drawback to this

method is that it does not attempt to address heterogeneity.

Another method for rare event data is a random—effects model based on generalized
linear mixed models proposed by Stijnen et al. (2015). They recognize the large—sample
assumptions of a traditional random—effects model do not hold when data is sparse, or
events are rare, so they replace these normality assumptions for the within—study
likelihood with exact likelihoods. They suggest that in traditional models, the effect size
estimate and the corresponding weights (due to the incorporation of the standard error)
are correlated, and failing to take this correlation into account can bias results. This
assessment is similar to arguments made by Shuster et al. (2012) and Bhaumik et al.
(2012). Their proposed methods avoid this bias, and there is also no need for a continuity
correction. However, they point out that their approach is not easily utilized when the
risk difference or the relative risk are the effect sizes to be pooled, as opposed to the odds
ratio. Additionally, this approach is not an “exact” approach, as it still relies on

asymptotic assumptions outside the within—study exact likelihood.

Another regression—based approach, developed by Moreno et al. (2012), gives larger
studies more weight than both the traditional fixed—effect and random—effects methods,
with the idea being that smaller studies are more prone to small-study effects and should
be heavily down—weighted. Additionally, this method adds study precision as a covariate

into the regression model. The regression line is then extrapolated to predict the effect

15

size of a hypothetical study with an infinite sample size. A study of infinite size reflects an
effect size that has an associated standard error of zero. The rationale behind this
approach is that large studies, especially one of infinite size, are less likely to reflect biases

caused by small-study effects.

Bhaumik et al. (2012) developed a random—effects simple average approach, along
with a new heterogeneity estimator, that works well with rare event data even where there
is heterogeneity among studies. They argue (as does Shuster et al. (2012) and Stijnen
et al. (2015)) that the study weights, in addition to the effect sizes themselves, are random
and that the weights are correlated with the effect sizes, which introduces bias. They
suggest this unweighted estimate can be viewed as a bias—corrected weighted estimate
with the bias proportional to the rarity of the event. In addition to the heterogeneity
estimator by Bhaumik et al. (2012), other estimators have recently been proposed (Paule
and Mandel, 1982; Sidik and Jonkman, 2005; Sidik and Jonkman, 2007). Unfortunately,
this simple—average method still relies on large-sample approximations and a continuity
correction. Additionally, the authors present a very interesting figure from their paper
showing a plot of type I error rates for several methods when there is a large amount of
heterogeneity present in the data (Bhaumik et al. (2012) Figure 2 (a)). Strikingly, the
type I error rates of the Mantel-Haenszel and inverse variance methods approach 80%
under their simulation conditions! This is further evidence that these commonly used

methods are inaccurate for meta-analyses with rare events and heterogeneity.

There are also Bayesian methods that could be used for meta—analyses with sparse
data (T. C. Smith, 1995; Cai et al., 2010; Kim et al., 2016). The distinction in Bayesian
meta—analyses is that Bayesian methods assign prior distributions to the parameters of
interest (e.g., the treatment effect or the heterogeneity parameter) and update these
distributions based on the data. Bayesian methods are becoming increasingly popular —
especially in the context of network meta—analysis. However, we will not discuss these

methods here in detail, as the focus is on frequentist methods. Additionally, Kuss (2015)

16

shows via simulation studies that the choice of a prior distribution, even if considered
noninformative, has a large impact on the results when data are sparse, suggesting that

these methods may not be desirable for rare events and sparse data.

1.5 Summary of the Remaining Chapters

With this recent emphasis on meta—analyses of rare events, it is crucial to develop
reliable methods that perform well with sparse data and in the presence of heterogeneity.
Many of the methods summarized here, though designed for rare event data, are severely

hampered when heterogeneity is present.

In Chapter 2, we propose an exact permutation—-based method for meta—analysis that
is adjusted for heterogeneity but does not involve estimating the extent of heterogeneity.
Our proposed exact method does not rely on large-sample approximations or continuity
corrections for rare event data. We assess our method via a simulation study and by
comparing our exact method to several existing methods that are readily available in

software.

Additionally, in Chapter 3, we apply our method to network meta—analysis, where
several treatments are independently compared to a common control, but never compared
to each other. Network meta-analysis inherits the same problems as traditional
meta-analysis, so network meta-analyses with adverse events are likely to be crippled by

heterogeneity. We consider the utility of our method with a simulation study.

In Chapter 4, we focus on the method of combining confidence distributions by Liu
et al. (2014). The use of confidence distributions is growing rapidly, and with several
different approaches in the literature, we conduct a simulation study to help determine

which method performs best for meta—analyses with heterogeneity and rare events.

17

Additionally, we extend current methods to create a confidence distribution approach that

works well when events are rare, and heterogeneity is present.

18

CHAPTER 2
EXACT META-ANALYSIS FOR RARE EVENTS AND HETEROGENEITY

2.1 Background

A method that has been used extensively for correlated categorical data is an exact
permutation—based approach developed by Corcoran et al. (2001). This method involves
conditioning on sufficient statistics in an exponential family model to eliminate the
nuisance parameter corresponding to within—study variability. This yields exact inference
for the treatment effect in the presence of within—study correlation. We can extend this
method to allow for variation of treatment level within study so that this method can be
applied in the setting of a meta-analysis. Recognizing that heterogeneity reflects the
difference in event rates between treatment groups, we make another extension by
conditioning relative to additional nuisance parameters to account for within—study
correlation by treatment: one parameter which captures the control group correlation

effects, the other parameter which captures the treatment group correlation effects.

We first summarize the permutation—based approach for correlated binary data, as
proposed by Corcoran et al. (2001), and then suggest the necessary modifications for a
meta—analysis. These modifications allow the treatment group to vary within studies and
the correlation structure to vary among treatment groups in order to adjust for
non-negligible heterogeneity in the data. For all three of these methods, we outline the
network algorithm used for computational purposes. We also use an exact estimation
procedure, as described by Mehta and Patel (1995), to obtain a point estimate and its
(1 —) level confidence interval, as opposed to just a p—value. We evaluate our method via
a simulation study and by comparing our exact method to other methods available in

software.

19

2.2 Methodology

As an initial framework, we will first present the exact conditional logistic regression
model, assuming independence. This assumption, however, is likely not valid for
meta—analysis data as participants within a study are more likely to be correlated with
each other than with participants from another study. As such, we will then introduce an
exact conditional logistic regression model for correlated data. This model is the basis for
our extensions and innovations. Finally, we present an exact estimation method used for

calculating point estimates and confidence intervals.

2.2.1 Exact Conditional Logistic Regression

When considering exact conditional logistic regression for independent data, suppose
a systematic review produces k independent studies with binary responses for a
meta-analysis. Let Y;; represent the binary response of the gt G=12,....n)
participant in the " (i = 1,2,...,k) study such that Y;; = 1 if participant j in study i
had an “event,” and Y;; = 0 if participant j in study ¢ did not have an “event.” Let
Pr(Y;; =1) = m; and Pr(Y;; =0) = 1 — m;, and let z; indicate the treatment group for all

participants in the i*" study. Then,

Y;; ~ Bernoulli(m;),

and

Pr(Yyj = yij) = w7 (1 —m;) 7%,

(]

20

The likelihood, or joint probability of the observed responses, is
n;
L(m) = [[=/ (1 —m)' v,
j=1
The log likelihood is then
I(m;) = log(L(m;))
n;
= log H T (1 —)i
j=1
n;
3 o (91 — 1)
j=1
n; U
= Z yijlog (m;) + Z(l — yij)log (1 — ;)

J=1 Jj=1

= Zyijlog (1 — m) + Zlog(l —).
7j=1 7j=1

Since we have a binary response, we can use logistic regression to model the dependency of

m; on x; through the relationship

log< T)za—i—ﬁxi,
1—7‘(’1'

where a and 3 are unknown parameters. Solving for m; yields

_exp{a+ B}
1+ exp{a+ B}

%

21

We can now reparameterize the log likelihood in terms of «, a nuisance parameter,

and 3, the treatment effect quantified as a log odds ratio,

l B n) @- ”il ~exp{a+ B} >
(a, B) j;yj(oﬁ-ﬁiv)-l-;og(l 1+ exp{a + Bz}

n; n; 1
Z;?/ij (OHFﬁxi)+;10g<1+exp{a+ﬁmi}>

= Z yij (o + Bx;) — Z log (1 4 exp{a + px;}) .
1

Jj= j=1
Exponentiating to get the reparameterized likelihood gives
n; U
L(c, B) = exp{ Y wij (o + Bai) — Y _log (1 + exp{a + Bz, })

j=1 j=1

= exp 2 yij (o + pz;) pexp § — i: log (1 4 exp{a + Bx;})

=1 =1
B exp {Z?Ll Yij (o + ,8551')}
exp {0 log (1 + expla + A} |
B exp {Z?Ll yij (a+ Bazi)}
exp {log [TJ%, (1 +expfa+ fa}) |
exp {Z?Ll yij (a + 5%)}

N T2, (1+exp{a+ fa})” (2.1)

Traditionally, we maximize the unconditional likelihood, Equation 2.1, with respect to «
and S to make inference about these parameters. An alternative approach is to make use
of the conditional likelihood function. If we are interested in making inferences about 3,
then, instead of estimating «, which we consider a nuisance parameter, we can condition

on the observed value of its sufficient statistic to eliminate this parameter from the model.

22

Thus, the conditional likelihood reduces to

Lo, flz) = eXP {2?121 Bymﬂvz} ' (2.2)
[Ty, (1 +exp{Ba})

From here, there are two ways to make inference about : asymptotic and exact. The
asymptotic method maximizes the conditional likelihood function, Equation 2.2, with
respect to 8. The exact method is based on the permutational distribution of 5’s sufficient

statistic.

2.2.2 Exact Conditional Logistic Regression for Correlated Data

With this background, we will now describe exact conditional logistic regression for
correlated data. This is an appropriate framework for meta—analysis data since
participants in the same study are likely to be more alike, or correlated, than participants
from a different study. When data are correlated, or clustered, the correlation among
observations within cluster causes overdispersion, or extra—binomial variation. This extra
variability must be accounted for in order to obtain an accurate p—value. Failing to

account for this extra variation usually results in an artificially small p—value.

To start, let Z; = 2?1:1 Y;; represent the total number of events among the n;
participants in the i** study, and let z; indicate the treatment group for all participants in
the it" study. The probability mass function of ¥; = (Y;1, Yia, . .. , Yin,) for correlated data

as derived by Molenberghs and Ryan (1999) is

PI"(YT,; = y,,,) = exp{@izi — 5z21(n1 — Zz) + Az(gl, 5z)}, (2.3)

where ¢; is the dispersion parameter, and A;(6;, ;) is the normalizing constant, summing

over all possible realizations of Y;. d; is used to reflect the extent of the correlation among

23

participants in the i** study. When there is no correlation among participants in each
study (6; = 0 for all 7), Equation 2.3 reduces to a product of independent binary
probabilities. Using the logit link for 6; = « + Bz;, where, again, z; is constant for all
participants in the i*" study, and assuming equal dispersion among clusters

(6; = 0 for all i), the probability mass function of Y; is expressed as
P(Y; = y;) = exp{(a + Br;)2 — 02i(ni — 2) + Ai(, B,0)}. (2.4)

Assuming exchangeability of the binary responses within a given study, the probability
mass function for each study depends on the individual responses Y; only through their
sum Z;. Any permutation of the binary responses within Y; yields the same probability.

The conditional distribution of Z; can, therefore, be expressed as

P(Z; = zi|x;) = <Z7’> exp{(a + Bxi)zi — dzi(ni — z;) + Ai(a, 8,9)},

ng

zl) is the number of distinct vectors y; that give the same value

where z; =0,...,n;, and (
of z; = Z;”:l y;j- Assuming study independence, the joint probability mass function for
Z = (Z1,Z,...,2Zy), a vector representing the total number of events among the n;

participants in each of the ¢ studies, given @ = (x1,z2,...,2%)’, a vector indicating the

24

treatment group for all participants for each of the i studies, is

Pr(Z = z|x) <nz) exp{(a + Bzi)zi — 0zi(ni — z;) + Ai(a, B,0)}

where z = (21, 22,. .. 2k

statistics are

)

|
|
>_
)] exp{ > (o4) -
|
|

k
Hexp{(a + Bxi)zi — 0zi(ni — zi) + Ai(a, 8,0) }

=1

k
exp{ Z [(a + Bxi)zi — dzi(ni — ;) + Ai(a, B, 5)} }
i i=1

exp{za%—ﬂxz Zézz s z ZAl 057675)}

k
(
1 i=1
k
+ ZAZ(Q71375)}
i=1

o

o

Zdzi(n
k k

exp{aZzz—i—Blezz—éZzz zi)+ZAi(a,B,5)}
i=1

k
exp{asa(z) + Bt(z) — 65°(2) + Z Ai(a, B, 5)}, (2.6)
i=1

As this density is also of the exponential family, the sufficient

k
>z

sY(z) = for «
i=1
s=41tz)= i Xi% for g
i=1
s0(z) = Zk: zi(n; — z;) for 4.

I
—

7

Since we are interested in testing Hy : § = 0 against H, : 8 > 0, we eliminate the nuisance

parameters « and J to obtain the exact permutational distribution of Z under Hy by

conditioning on s*(z) and s°(z). Define the conditional reference set I'(s®

that

(2),5°(2)) such

25

where z* is any generic table, like Table 2.1, of the form z* = (27,25,...,2;)’ that results
in the observed values of s%(z) and s°(z), with the study sizes n,, held constant. Then,
the conditional probability of Z, given the observed values of s%(z) and s°(2), is

Pr(Z = z|x)

> Pr(Z = z*|x)
z*el(s%(2),s%(z))

[1(2;’)]exp{6t(Z)}
- - . (2.7)
[(;ﬁz)] exp{Bt(=")}

Pr(Z = z]m;so‘(z),s(s(z)) =

.

- The
z*el(s%(2),85(z)) [=1

Under Hy, this reduces to

Pr(Z = z|x; s%(2), $°(2), Hy) = =1 : (2.8)
which is free of all unknown parameters.

TABLE 2.1: Generic contingency table for a binary outcome with treatment con-
stant per study.

Study (4) 1 2 . k
Sum

Treatment (x;) 1 9 . Tk

Zi z1 V) . 2k 8%
n; — 2; ny — 21 ng — 29 ng — 2k

N n1 n9 . ng N
X% 121 929 . T2k t
zi(ng — 2;) z1(ng — 2z1) ze(ng —22) ... zr(ng — z) $0

To conduct an exact test, we can order the tables in I'(s%(2), s°(z)) according to

26

their respective values of the trend statistic ¢(z) = Zle x;z;, the sufficient statistic for g,
conditional on the observed values of s%(z) and s°(z). From Equation 2.8, the probability
under Hy of observing a table zys = (21, 22, . .., 2x) with associated sufficient statistics

5%(z) and s°(2z) and a realization of ¢(z) denoted by t(zus) is

i

(%)

Pr(t(z) > t(zops)|; s%(2), $°(2), Hy) = Z =1 p . (29)
2*ET (5% (2),5(2)): m
t(2*)>t(Zobs) z*ep(saz(i) $9(2)) i 1;[()

A one-sided a-level test then rejects Hy when t(zops) > t(2a), Where t(z,) is defined as
the smallest value such that Pr(t(z) > t(za)|Ho,5%(2),5%(2)) < a. A two sided p-value

can be obtained by doubling Equation 2.9.

The difficulty of this process lies in enumerating all tables in the reference set
['(s%(2),s%(2)), which is needed to compute the denominator of Equation 2.9. Despite
conditioning on the two parameters, s%(z) and s%(z), enumerating T'(s%(z), s°(z))
explicitly is computationally infeasible for practical purposes, especially when the number
of observed events is large. Corcoran et al. (2001) propose a network approach to this
problem that builds on the network approach of Mehta et al. (1992) and which allows
I'(s*(z),s°(z)) to be implicitly enumerated. This method is an efficient and practical way

to obtain I'(s*(z), s°(z)) and will be discussed in Section 2.2.4.

2.2.3 Exact Estimation Method

While it is valuable to determine if an effect is present, in a meta—analysis it may be
even more important to know the magnitude of that effect. Here, we present an exact
estimation procedure, as outlined by Mehta and Patel (1995) based on Section 2.2, and

that readily applies to our new method outlined in Section 2.3.2. As described in the

27

previous sections, exact inference is made possible by conditioning on nuisance parameters
and working with the conditional likelihood. This exact conditioning approach can be
used for estimation when unconditional asymptotic methods yield unreliable estimates, as

is the case when sample sizes are small.

Recall the conditional probability, Equation 2.7, which is repeated here, modified

slightly

C(t(zobs> |Sa(z)’ Sé(z))exp{ﬂt(zobs)}
max(t(2))

>, C(uls*(2),5°(2))exp{Bu}

u=min(t(z))

F5(t(zos)|s%(2), 8°(2)) = : (2.10)

where t(zs) is the observed value of the sufficient statistic for 8 and C(-) is the
unnormalized probability. The conditional maximum likelihood estimate (CMLE) of 3 is

the value of $ which maximizes Equation 2.10.

However, if t(z.ps) is at either of the extremes of its distribution (i.e.
t(zops) = max(t(z)) or t(zeps) = min(t(z))), then it is not possible to maximize the
conditional probability with respect to 5. In these cases, the best we can do is to set B to
be —oo when t(zys) = min(t(z))), or oo, when t(zys) = max(t(z)). An alternative
approach that is not maximum likelihood—based (which is known to be unreliable when
data are sparse or the sample size is small) is a median unbiased estimate (MUE). Unlike
the CMLE, the MUE can be computed even when ¢(z,s) is at the minimum or maximum

of its distribution. The MUE of 3 satisfies the condition

fﬁ(t(zobs)|8a(z)a Sé(z)) = 0.5,

To obtain an exact confidence interval for 3, we define the left and right tails of the

distribution of the test statistic given s%(2z) and s°(2) to be

t(zobs)

Lo(t(zas)) = D> f(u'[s*(2),5°(2))
w*=min(t(z))
t(zobs)

_ C(u*|s*(2), s°(2))exp{Bu*}
- *_Z max(t(z))
w=min(t(z)) S O(us®(z), s9(2))exp{fu}

u=min(t(z))
S ey Ol 1%(2), 5 (2) Jexp{ Bur}

max(t(z))

>, Cluls*(z),s°(z))exp{Bu}

u=min(t(z))

9

and

max(t(z))

Ry(t(zops) = D fo(u'[s*(2),5°(2))
U*:t(zobs)
— ma§Z)) C(u*|s*(2), 5’ (2))exp{Bu*}
max(t(z))
u*=t(Zops) 3 C(uls*(z),s%(2))exp{Bu}
u=min(¢(z))
) Clur|se(2), 80 (2)exp{ Bu*}

u*:t(zobs)

>, C(uls*(2),5°(2))exp{Bu}

28

respectively. Let f_ and 4 be the lower and upper bounds, respectively, of a two—sided

(1 — @)% confidence interval for 8. Then S_ satisfies

R (t(z0ps)) = % if min(t(2)) < t(2ops) < max(t(z))

P = —00 if t(zohs) = min(t(z)).

29

Similarly, S5 satisfies

Lg, (H(Zops)) = % if min(t(z)) < t(zops) < max(t(2))

B+ =00 if t(zeps) = max(t(z)).

For more information on obtaining these bounds, see Appendix A (especially Figures
A.1 and A.2). When data sets are large, the normalized probabilities can be used in place
of the unnormalized probabilities, and the test statistics can be re—scaled by replacing

exp Bt(zops) wWith exp B(t(zops) — min(t(z))) in Equation 2.10 (see Appendix B).

Under the framework of Section 2.3.2, the conditional probability is in the same form
as Equation 2.10. The only differences are conditioning on the n;; instead of the n; and
conditioning on two correlation parameters instead of one. The methodology of computing
a point estimate and its confidence interval are analogous to the methods outlined in this

section.

2.2.4 Network Algorithm

As was mentioned in Section 2.2.3, enumerating all tables in the reference set
I'(s*(z),s%(2)) is difficult. Explicitly enumerating these tables is computationally
infeasible for practical purposes, but by implicitly enumerating the tables, the process
becomes feasible. Corcoran et al. (2001) propose a network approach, building on the
network approach of Mehta et al. (1992), which allows T'(s%(z), s°(z)) to be implicitly
enumerated. We begin by describing the graphical network algorithm approach used by

Corcoran et al. (2001) under the original framework of Section 2.2.

We start by building the I'(s*) network by moving forward through the network and

conditioning on only s®. We then move backward and prune the I'(s*) network by

30

imposing the additional s° constraint to create the I'(s®, s°) network. Each path in the
I'(s%, s°) network represents exactly one possible table, or meta-analysis data set, subject
to the sufficient statistics constraints. After the I'(s®, s%) network is built, we again make
a forward pass through the network gathering information on the distribution of the test

statistic and the corresponding probabilities.

First, we need to determine the number of nodes that will be in the network. Each
network is divided into k + 1 stages, indexed over 0, ..., k, where k represents the number
of studies in the meta—analysis. At each stage m, there is a set of nodes. For I'(s*), each
node is indexed by two elements, denoted by (m, s®™). The first element m represents the
mt" cluster, or study, of correlated binary observations. The second component
s®™M =3 y; is one possible value of the partial sum of responses from the first m
studies. For each network, there is a single initial node and a single terminal node. The

initial node is (0,0), and the terminal node is (k, s“). The set of successor nodes

R(m — 1,5%™71) to a given node (m — 1,s%™~1) can be enumerated explicitly as

k
R(m —1,s%™1) = {(m, w) : max (so"m_l, s% — Z nl> < u < min (so‘, gem=l 4 nm) },
l=m+1
form =1,...,k and where u represents the values for partial sums for the successor nodes.

We can now make the forward pass to build the I'(s*) network. Consider a node
(m,s*™) e T'(s%), for m =0,...,k— 1. For each (m + 1,u) € R(m, s*™), define the

length r9,, of the connecting arc as

a,m+1 am+1 + Sa,m)
b

Tom = (8 — M) (g1 — s

and calculate the arc length for each arc.

Once all arc lengths are computed, we proceed by calculating SPs(m, s*™) and

LPy(m, s*™), which respectively represent the shortest and longest path lengths for 0

31

over all partial paths that originate at node (0,0) and terminate at node (m, s*™). These
bounds can be calculated recursively. (Note: SP»(0,0) and LP5(0,0) are always 0.) Let

the set P(m, s*™) contain the predecessor nodes to (m, s*™), so that, for m =1,... k,
P(m,s*™) ={(m —1,u) : (m,s*™) € R(m — 1,u)}.
Then, we can calculate SPy(m, s*™) and LPs(m,s*™) as follows
SPy(m, s*™) = min)}{SPg(m —1,u) +rom}

{(m—1u)eP(m,s>m

LPy(m,s*™) = max LPy(m —1,u) + rom}.
2() {(mfl,u)E’P(m,saﬁm)}{ 2() 2 }

We have now constructed the I'(s*) network and can proceed by creating the
I'(s%, s%) network. First, we create the terminal node (k, s%,s°). We then proceed, stage

by stage in reverse, beginning at stage k and ending at Stage 1. At the m!" stage,

1. Choose a node (m,s®™, s%™).

2. For each node (m — 1,u) € P(m, s*™):

(a) Create the triple (m — 1, u,v), where

v =55 — o = 9 — (597 —) (ny, — O+ u).

(b) If SPy(m — 1,u) > v or LPs(m — 1,u) < v, then this node cannot be a member

of the network I'(s®, s°) and is dropped.

(c) If the triple (m — 1, u,v) passes the shortest path and longest path tests of the

previous step, then this node is feasible and is stored.

S,m)

Once we know the node (m — 1, u,v) is a feasible predecessor of (m, s*™, s>™), we need to

compute the rank length r1,, = ,,,(s*™ — u) and the probability length ¢y, of the arc

5,m)

connecting (m — 1, u,v) to (m, s*™, s as com = (gam)

32

Note that for any path that begins at the initial node (0,0,0) and ends at the
terminal node (k, s, 0), the value of the test statistic for that path can be obtained as
Zle r17, and the unnormalized probability under Hy of having observed the
corresponding table is Hle coi- We can, therefore, define SP;(m — 1,u,v) and
LP;(m — 1,u,v) respectively as the shortest and longest path lengths Zle r1; over all
paths that begin at (m — 1,u,v) and end at the terminal node (k, s*, s%). Likewise, we let
TP(m — 1,u,v) represent the sum of all unnormalized probability paths Hle cor over all
such partial paths. This implies that SP;(k, s*,s°) = LP;(k,s%,5°) =0, TP(k,s% %) = 1,

and TP(0,0,0) is the normalizing constant.

When storing the node (m — 1, u,v), note that

o If (m — 1,u,v) already exists (i.e., was found previously to be the predecessor of
another node at the m'" stage), then
o SP(m —1,u,v) = min{SP;(m — 1,u,v),71m + SPy(m, s¥™, s>™)}
o LPy(m —1,u,v) = max{LP;(m — 1,u,v), 71, + LP(m, s¥™, 5%}

o TP(m — 1,u,v) = TP(m — 1,u,v) + comTP(m, s¥™, s5™)
e If (m — 1, u,v) has not yet been stored, then

o SPy(m —1,u,v) = riy, + SP(m, s*™, s5™)
o LP(m —1,u,v) = 1,y + LP(m, s%™, s5™)

o TP(m —1,u,v) = comTP(m,s*™, s5™)

Now that we have created the I'(s®, s°) network, we will make one final pass through the
network. We proceed forward, stage by stage, beginning at the initial node (0,0,0) and
carry forward a set of records), at each stage for m =0,...,k — 1. Each record d € YV,
is of the form d = (m, s“™, s%™ t,,, hy,), where t,, = > m T1m is a possible partial rank

length of a path terminating at node (m, s*™, s%™), and h,, represents the unnormalized

33

sum of the probabilities of all partial paths with rank length r1,, that terminate at

(m, s®™, 557m).

Using shortest path/longest path logic with respect to the partial test statistic t,,,
one can navigate through the network breadth first, eliminating the nodes through which
no path contributes to the critical region. We begin with a single record (0,0,0,0, 1),
associated with the initial node (0,0,0), and proceed forward, stage by stage, for

m=1,..., k. At the m*" stage

1. Choose a record d = (m, s*™, s%™ ty, hm) € Vo
2. For each g = (m 41, s4™+L s0m+1l) € R(m, s*™, s%™), transfer d to V41 as follows

(a) If tyy + rimt1 + LPL(m + 1, 8™ sOmH+L) < ¢, then do not transfer the

record.

(b) Else if there exists a d’ = (m + 1, s%™+ %™+ ¢ 1 hpmi1) € Yyt such that
tm+1 = tm + T1,m+1, then merge d and d’ by letting

! _ 1 4 1 / / _ Nm
d = (m+1,s*mt oMt g 1, k) where b = hpy1 + hay (Sa,mﬂfsa,m).

c¢) Else create a new record d' €),,+1 such that
+

d = (m + 1, Sa7m+17 567m+17 tm + T1,m+1, hm(i)

Sa,m+1_5a,m

3. Continue until all d € Y,, are exhausted.

At stage k there remains a collection of records), such that for each
d = (k,s%, 85, tk, hi) € Vi we have guaranteed that ¢ > t,s. The exact p—value is

therefore given by

hy,

Pr(T > tops| Hoy5) = D TP(0,0,0)

deYy

34

2.3 Innovation

We will now present our innovations to the methodology as applied to meta—analysis.
We start by making two extensions to the exact test. The first extension is needed for the
exact test to work with meta—analysis data. The second extension is needed to address
non—negligible heterogeneity in a meta—analysis data set. We then show how these

modifications are implemented in the network algorithm.

2.3.1 Exact Test: Variation of Treatment Level Within Study

A major drawback of the method described in Section 2.2 is that all participants in
the i study must belong to the same treatment group, which is typically not the case for
studies used in a meta-analysis. To allow for the variation of treatment group within
study, we allow for extra conditioning with respect to the n;;, as opposed to the study
sizes n(;;) themselves. As such, the likelihood for this process remains the same as

Equation 2.5. Table 2.2 illustrates a generic table for this framework, where

0 when j=1
$¢j:

1 when j =2,
with 7 = 1 indicating the control group, and j = 2 indicating the treatment group.

With this modification, it would be feasible to apply this method to homogeneous
meta—analysis data. However, it is arguably unwise to assume homogeneity, with the
penalty for not accounting for heterogeneity being severe bias. It is safe to assume
heterogeneity is present to some extent, and the following modification will attempt to

account for this heterogeneity.

35

mw ANQN — mf&m«w ASN — SQVSN AmmN — mmﬁvmmw ASN — HNQVSN ANHN — NSSQN A:N — Sﬁv:N A.EN — DQV Loy
2 Tz T Tz ¥ té&2d4 12z 1Ty [4Av24%4 Tzl liyloge
N (& L7 Ty Ty I2u Ay s T Loy
Ty — Ty Ty — T3y Tty — TTy 12y — 1w 2y — Cly Ty — 1Ty Ly _ Loy
dm. Ty Ty Tty 1¢z cly Tiz Liy
wmg 1 0 1 0 T 0 (1) yuotayeory,

bl

4

(1) fpmig

‘Apn3s 10d s$)UOUIIBOI}) OM) [HM

WIODINO ATRUI(] € I0] d[(R) ADULSUIIUO0D

OLIOURY) :g'g ATAV],

36

2.3.2 Exact Test: Variation of Correlation Structure Among Treatment Levels

We now further extend the exact trend test to allow the correlation structure (9 in
Equation 2.6) to vary among treatment groups. While this modification can be applied to
any number of treatment groups, we will focus on only two treatment groups since that is
common for meta-analysis data. Thus, we have two correlation parameters given by d;

(j = 1,2). As such, Equation 2.6 is now written as

37

ko2
= zlz) = HH <n)eXp{ o+ Brij)zij — 62i5(nij — zi5) + Ai(, B, 01,02,) }

Z3
i=1j=1 K

k2 2
= [H H (nlj] H exp{(oz + Bx,-j)zij — (5jzij(nij — Zz‘j)

z
1=17=1 v i=1j=1

+ Ai(av 67617 52)”)}

=1 =1 \Fi i=1 j:l
k
+ ZAz(avﬁa(sl?éQ?)}
E 2 0 Zk;:l 2 B2
= [H I1 <;].>] eXP{ DO (aziy+ Baigzig) — Y Y 8izi(nig — 2ij)
i=1j=1 7Y i=1 j=1 i=1 j=1
k
+) Ai(a, B, 61,09,)}
) Z:kl 2 E o2
= [HH <z‘”')]exp{azz:zw JrﬁZZCCZ]ZU
i=1j=1 7Y i=1 j=1 i=1 j=1
k k
- (51 Z zi1(ni1 — zi1) + 02 Z Zia(Ni2 — Zz2)>
i=1 i=1

N =
+ ZAi(avﬂuéla(SQ)n)}

i=1

i [H II (;%)] {” #01z) = (3 (2) ¢ 0 (2)
i=1j=1 "

k
+ ZAi(awBa517627n)}7

i=1

38

where the sufficient statistics are

»
Q
—~
N
~—
Il
NgES
NS
N
S

for «
i=1j5=1
k2
t(z) = Z Z ﬂ:ijzij for B

v
I
=
[
A
<.
[
_

Vs
g
iy
—~
N
~
I
=

Zil (’I’Lil — Zil) fOI‘ (51

s
Il
—

v
S
]
—~
N
~—
Il
=

Zig(’nig — Zi2) fOI’ (52.

s
I
—

As before, we continue as outlined in Section 2.2 with the addition of conditioning on the
n;; from Section 2.3.1 and the new adjustment of conditioning on s% (2) and s%(z), as
opposed to conditioning on just s°(z). Another adjustment to the network algorithm can
be used to make this method computationally efficient, and this adjustment will be
described in Section 2.3.3. C code for this method is provided in Appendix C. Table 2.3

illustrates a generic table for this framework.

2.3.3 Network Algorithm: Variation of Treatment Level Within Study

The network algorithm described in Section 2.2.4 can be modified to allow for
treatment levels to vary within studies. As was mentioned in Section 2.3.1, the only
difference between this test and the basic test described in 2.2 involves extra conditioning
on the number of patients within each treatment group in each study n;;. Note that this
extra conditioning has no effect on the sufficient statistics s* and s°. So, we can adjust the
network algorithm to handle this extra conditioning by viewing the unit of analysis as
treatment and study, as opposed to just the study. Working under the framework of
Section 2.3.1, we adjust the network to consist of 2k 4 1 stages instead of k + 1 stages. We

can then proceed with the same logic outlined in Section 2.2.4.

39

ANNN — mm:v Ty

ANHN — NEV iy

ANNN — m.s:v (424

wa ASN — 35 (& 72
k2 k2 §2
Ew ASN — SSSN ASN — SSEN A:N — ::v:N ?‘N — H.:vﬁw
17 Tz T THz Ty Ttz Ty 12z 12y CclzTly TizT1lgx Lyl
N iy 34U [447) 12U iy Ty Loy
Cily — Ty Tz — Ty TCz — TTy 12z — 12y Clz — Ty Iz — TTu Ly _ Lgy
S 474 T3z ey 12z iz iz L1y
2
wmg 1 0 T 0 [0 (1) yusuryeasy,
b 4 (1) Apm3g

"Apngs 1od S8INIONIIS UOIIR[OILIOD OM] PUR

SIUOUIJLII} OM) [IIM

QUIODNO AIRUI(® 10 9[(R) ADULSUIIUO0D OLIBUSY) :¢°F dI1dV],

40

2.3.4 Network Algorithm: Variation of Correlation Structure Among Treatment Levels

We can now modify the network algorithm to let the correlation structure vary
among treatment levels. As in Section 2.3.3, we need to condition on the n;;. Additionally,

we need to condition on the extra correlation parameters as described in Section 2.3.2.

Accordingly, we will have 2k + 1 stages in the network to allow for the treatment
level varying within study. We proceed by following the steps outlined in Section 2.2.4
until we reach the backward pass where the s information is needed. We will then
arrange the data set by treatment level so that all information contributing to s°! is listed

first, and all information contributing to s°2 is listed second.

To create the I'(s®, $01, 352) network, we first create the terminal node
(N, 5%, 5%, 5%2), where N = 2k. Now, we proceed by working with the information
contributing to s%, stage by stage in reverse, beginning at stage N and ending at Stage

T + 1, where T is the number of studies contributing information to s°'. At the m!" stage,

1. Choose a node (m, s*™, som 352”").

2. For each node (m — 1,u) € P(m,s*™):

(a) Create the quadruple (m — 1,u, s%,v1), where

v) = 927 — g, = 927 — (s9 —) (nyy, — U +)

(b) If m =T + 1 and v; # 0, then this node cannot be a member of the network
I'(s®, 5%, 5%) and is dropped.

(¢) For any value of m other than T + 1, if v; > 5% or v; < 0, then this node

cannot be a member of the network I'(s®, 351,362) and is dropped.

(d) If the quadruple (k — 1,u,s% v;) passes the tests of the previous steps, then

this node is feasible and is stored.

41

When this process is finished, the nodes that remain at stage 1" are of the form
(T, s*T, 5%, 0) and are the terminal nodes for the next phase involving the information
contributing to s%. We continue by working with the information related to s, stage by

stage in reverse, beginning at stage T and ending at Stage 1. At the m!" stage,

1. Choose a node (m, s%™, s9,0).
2. For each node (m — 1,u) € P(m, s*™):
(a) Create the quadruple (m — 1, u,vg,0), where
vy = SOV — g = SOUT — (§UT —) (nyy, 4 SO — w)
(b) If m =1 and vy # 0, then this node cannot be a member of the network
['(s®, 5%, 5%) and is dropped.
(¢) For any value of m other than 1, if vy > s or vy < 0, then this node cannot be

a member of the network I'(s, 5%, s%) and is dropped.

(d) If the quadruple (m — 1,u, v, 0) passes the tests of the previous steps, then this

node is feasible and is stored.

We then continue as outlined in Section 2.2.4 starting with computing the rank

length and probability length, and ending by calculating the exact p—value.

2.4 Application

We begin this section by comparing our new exact permutation—based method to
several existing methods via a simulation study of rare event meta—analysis data. We then

apply our method to two real meta—analysis data sets.

42

2.4.1 Simulation Study

We compare our new exact permutation—based method (Exact—Perm) with the
following methods: inverse variance (INV), Mantel-Haenszel (MH), Peto, DerSimonian
and Laird (DSL), and the exact p—value function combination approach of Liu et al.
(2014) (Exact-pVal). These methods were chosen as they are readily available for use in
software. We compare type I error rates, bias, and confidence interval coverage of our
method to current methods under the following simulation study, similar to the simulation

study in Bhaumik et al. (2012).

Consider the random—effects model
Yi; ~ Bernoulli(m;;),
such that
logit(mij) = pi + Xi;0;, pi ~ N(p,0?), 0; ~ N(0,7°),

and

T — exp{m + ngez}
K 1 + eXp{/Ji + Xuaz} ’

where 1 is the underlying event rate for the i** studys; X;; is an indicator variable for
treatment group; 6 represents the true treatment effect (on the log odds ratio scale); and
72, the heterogeneity parameter, determines to what extent the treatment effects vary

across studies.

We generate data under this framework. We use the nominal significance level of
a = 0.05, and we let § =0, 0.5, 1, and 1.5 (corresponding odds ratios of 1, 1.6, 2.7, and

4.5); 72 =0, 0.2, 0.4 and 0.8; 4 = —4 and —3, with corresponding control group average

43

event rates of 1.8% and 4.7%; 0% = 0.5; and k = 10. Based on a rough scan of

meta—analysis data sets, the combination of the values used for the between—study variance

(72) and the within-study variance (02) seem to be realistic. For the it study, the sample
sizes in the treatment and control group were independently generated from rounding a

uniform distribution with a minimum sample size of 10 and a maximum sample size of 50.

We simulate 10,000 replications for each combination of y and 72 to ensure precise
estimations of statistical performance. Data sets are not included if they have zero events
across all studies for either the treatment group or the control group. We also exclude
data sets that generate test statistic distributions containing only one value of the test
statistic. Additionally, we exclude data sets where the observed test statistic is at either
extreme of the distribution. We exclude these data sets until we reach 10,000 non—trivial
simulated data sets. Additionally, we chose to work with rare to very rare events due to
the unrealistic computation time our exact permutation—based method requires when the
number of events is large. While it would be feasible to apply our method to one
meta—analysis with large underlying event rates, it was not feasible to use our method for

thousands of simulated data sets with large event rates in a reasonable amount of time.

For our exact permutation-based method, we primarily used C code for the
simulations, in addition to some R software (R Core Team, 2014) code (see Appendix C).
Due to the computational power needed for the simulations of our method, we used the
Center for High Performance Computing (CHPC) at the University of Utah. We utilized
the Ember cluster, which consists of 18 nodes, each with 32 cores and 256 GB of RAM,
that are designated for Utah State University researchers. Enumerating the reference set
for our method requires substantial computer memory, and some of our simulations
exceeded the 256 GB of memory provided by the 18 public nodes. Thankfully, two Utah
State University professors who owned private nodes were kind enough to let us use their
nodes, when needed. The support and resources from the CHPC at the University of Utah

are gratefully acknowledged.

44

For all other methods, we used the R software for the simulations. The metabin
function from the meta R package was used to obtain results from the four traditional
methods. For the inverse variance and DerSimonian and Laird methods, we applied a 0.5
continuity correction to studies with zero events and included studies with zero events in
both arms (method = “inverse”, incr = 0.5, allstudies = TRUE, method.tau = “DL”). We
applied the same adjustments for the Mantel-Haenszel method (method = “MH”, incr =
0.5, allstudies = TRUE). The Peto method had no continuity correction applied (method
= “Peto”, incr = 0). Finally, the gmeta function from the gmeta R package was used for

the exact p—value function combination method (method = “exzact1”).

2.4.1.1 Type I Error

Figure 2.1 shows the simulated type I error rates for each method for different values
of 11 (baseline event rate) and 72 and when § = 0. For larger values of 72, the type I error
rate becomes markedly larger than the nominal rate for the INV, MH, Peto, DSL and
Exact—pVal methods. While the type I error rates for all methods hover around the
nominal level when there is no heterogeneity, the presence of heterogeneity causes these
comparison methods to fail greatly. It is interesting to note that the INV and DSL
methods produce very similar type I error rates, even though the DSL method is
attempting to estimate 72, which would suggest the DSL would perform better than the
INV method. Their similar type I error rates are not surprising, though, in this case when
the number of studies to be pooled is relatively small, causing the DSL estimator of 72 to
be under-powered (Huedo-Medina et al., 2006). The DSL estimator of 72 is likely
estimating the heterogeneity to be 0, even when there really is substantial heterogeneity in

the data, thus producing results identical to the INV method.

The type I error rate, interestingly, also increases as the underlying event rate
increases from approximately 1.8% to 4.7% for all methods. While this trend may seem

counterintuitive, it is likely related to an issue of power. When 72 = 0.8 and = —3

45

(baseline event rate of 4.7%), the best of these comparison methods yields a type I error
rate of about 30%! It is very clear that these methods do not produce reliable results when
events are rare, and heterogeneity is present. Our new exact permutation-based approach
(Exact-Perm) does markedly better than the comparison methods. The type I error rate

hovers around the nominal rate, even when heterogeneity is present, and events are rare.

Overall, when there is heterogeneity between studies, the INV, MH, Peto, DSL, and
Exact—pVal methods have highly inflated type I error rates, regardless of the underlying
event rate, while the type I error rate of the Exact—Perm method stays closer to the
nominal level. We believe this marked improvement in performance boils down to treating
the correlation among the treatment and control groups separately. None of the methods,
except for the DSL method, attempts to account for heterogeneity, and the DSL method
suffers from insufficient power to detect heterogeneity. Additionally, as asymptotic
methods are known to be unreliable when events are rare, it is no surprise that an exact
approach outperforms the INV, MH, Peto, and DSL methods. The exact p—value function
combination method, Exact—pVal, interestingly, did not outperform these asymptotic
methods, which may be due to this method not incorporating a measure of heterogeneity.
Our exact approach outperforms all these methods when events are rare, and

heterogeneity is present among studies.

46

=0 1°=0.2
< <
o o
™ |
o o
N N o
o o A
/+
- — ./V
o © /
e, :
% ol (=m0 o
T T T T
il 18 4.7 18 4.7
i
= =04 . 1°=0.8
S o o /;
+
™ ™
3 2| o / v
A a
~ /+ - s
o -/v ol ¥
r-
e —
o o
O H o -
T T T T
1.8 4.7 1.8 4.7
Baseline Event Rate (%)
Exact-Perm == Exact-pVal =%~ DSL == INV —A~ MH —e— Peto

FIGURE 2.1: This figure compares the type I error rates of several existing methods
to our new exact method with varied values of y (baseline event rate) and 72. The
horizontal, grey line marks the nominal level of 0.05.

2.4.1.2 Bias

Figure 2.2 compares the estimated log odds ratios with the true log odds ratios for
each method and for different values of y (baseline event rate), 72, and @ (log odds ratio).
When the average baseline event rate is 4.7%, all methods perform similarly, including our
exact method. There is some bias in all methods, especially as the true log odds ratio
increases, which results in underestimation of the treatment effect. When the average

baseline event rate decreases to 1.8%, all methods become more biased.

Our exact method fares about the same as the commonly used methods, excluding

the Exact—pVal method, which has less bias overall than the other methods. Interestingly,

47

the presence of heterogeneity does not seem to affect the estimate of the log odds ratio as
much as we thought it may, although when heterogeneity increases, all methods

overestimate the treatment effect. The Exact—pVal method is less biased than the rest of
the methods, and this may be due to heterogeneity apparently not having a large impact

on estimation.

Baseline Event Rate
1.8% 4.7%

N\
AN
\

N\
A\
N\
N\

Re)

T -

o 0

x 10 /

'c -

3 /

)] © *

o T T T T T T T T
4

° w0 _

g - . :
£ /£ /"
= >

Llu.)l =] +/]

©?=04

[
€

\
AN

\
\

O .
T T T T T T T T
0 0.5 1 15 0 0.5 1 1.5
Log Odds Ratio
Exact-Perm—+— Exact-pVal =%~ DSL == INV &~ MH —— Peto

FIGURE 2.2: This figure compares bias of several existing methods to our new

exact method with varied values of p (baseline event rate), 72, and @ (log odds

ratio). The diagonal, grey line indicates no bias, with the estimated log odds ratio
equaling the true log odds ratio.

49

2.4.1.3 Confidence Interval Coverage

Figure 2.3 compares the confidence interval coverage for each method and for
different values of y (baseline event rate), 72, and 6 (log odds ratio). As heterogeneity
increases, the commonly used methods have very low coverage — as low as 50% with
substantial heterogeneity and a baseline event rate of 4.7%. The Peto and Exact—pval
methods are fairly consistent across all values of the true log odds ratio, in contrast to the
other commonly used methods which result in a decrease in coverage probability as the
true log odds ratio increases. Similarly to Figure 2.1, as the baseline event rate increases
from 1.8% to 4.7%, the commonly used methods and the Exact—pVal method generally
produce lower coverage. Interestingly, the commonly used methods perform extra poorly

when the true log odds ratio is 1.5, and the average baseline event rate is 1.8%.

In contrast, our exact method never falls below a 95% coverage. The discrete nature
of the data causes our method to be rather conservative because the method does not
guarantee a 95% coverage, but rather, it guarantees at least a 95% coverage. Thus, the
confidence intervals from our methods are generally much wider than the confidence
intervals produced from the commonly used methods. However, we believe a wide
confidence interval is preferred over the alternative of confidence intervals which do not

contain the true log odds ratio.

Baseline Event Rate

° 1.8% 4.7%
S =% I} B == —]
— ° —
o B~ t == —g
o 7 \. 1
o 4
1]
N'_' E ;. -
o | -
©
o | 4
o T T T T T T T T
o
8 o o o ol o o o o
o [F=—x
B =
S —o t——%
N o | A _,\"'\, +
T \ Ty
()
2 R !
c o | i
[} ©
2
() o -
o w T T T T T T T T
O
o) o | |
© g e o o o o o o o
g
3] 8 — .
© N o .:A: §:\+ .
= ‘ o \!
I AK I—F%
Q —0\ g +
N N~ \ \é °
" —y
o | 4
©
o | 4
o T T T T T T T T
8 — -
2 e o o o g—0——8—¢
o | 4
>
0 o
SR | d— .
TS \A\;\,',
e~ _'—_'&A) _;\!
iy
8 i \ _'\Z* ':'
Ta—%
o | -
N T T T T T T T T
0 0.5 1 15 0 0.5 1 1.5
Log Odds Ratio
—8— Exact-Perm—+— Exact-pVal =9~ DSL = INV =&~ MH —— Peto

FIGURE 2.3: This figure compares the confidence interval coverage of several ex-

isting methods to our new exact method with varied values of p (baseline event

rate), 72, and @ (log odds ratio). The horizontal, grey line marks the nominal 95%
coverage value.

ol

2.4.2 Illustrative Examples

We now apply the methods described in Section 2.3 to obtain p—values, point
estimates, and 95% confidence intervals for two real data sets. The first example
illustrates the statistical power of our method to detect likely underlying treatment effects
when other methods also detect an effect. The second example is one in which our method
disagrees with other methods in concluding there is not a significant treatment effect. This
is an indication that results from the other methods may be results of type I errors —

especially in light of the simulation study in Section 2.4.

2.4.2.1 Stomach Ulcers

As our first example, we will use the stomach ulcer data set provided and used by
Efron (1996) and used in Xie et al. (2011), shown in Table 2.4. A new surgical treatment
for stomach ulcers is compared with an older surgical treatment in 41 independent
randomized trials conducted between 1980 and 1989. The adverse event of recurrent
bleeding is the outcome of interest. The average event rate with the new surgery is 0.21,
and the average event rate with the old surgery is 0.46. Even though these average event
rates are quite large, nine studies (studies 5, 6, 11, 25, 28, 29, 34, 40 and 41) have zero

events in one or both treatment arms.

The DerSimonian and Laird estimate of 72 ranges from 0.45 when no continuity
correction is used (thereby excluding the nine zero event studies) to 0.98 when a 0.5
continuity correction is used for studies with zero events in one treatment arm (including
all studies except study 41, which has zero events in both treatment arms). Overall, this
data set has non—negligible heterogeneity, some studies with low event rates and zero cells,

a relatively large amount of studies, and a relatively large overall average event rate.

TABLE 2.4: Stomach ulcer data set. Source: Efron (1996)

New Surgery Old Surgery

Study
Event Non-Event Event Non-Event

1 7 8 11 2
2 8 11 8 8
3 5 29 4 35
4 7 29 4 27
5 3 0 12
6 4 4 0
7 4 13 13 11
8 1 15 13 3
9 3 11 7 15
10 2 36 12 20
11 6 8
12 2 7
13 9 12 7 17
14 7 14 5 20
15 3 22 11 21
16 4 6
17 2 8
18 1 30 4 23
19 4 24 15 16
20 7 36 16 27
21 6 34 13 8
22 4 14 5 34
23 14 54 13 61
24 6 15 8 13
25 0 0
26 1 10
27 5 12 5 10
28 0 10 12 2
29 0 22 8 16
30 2 16 10 11
31 1 14 7 6
32 8 16 15 12
33 6 6 2
34 0 20 5 18
35 4 13 2 14
36 10 30 12 8
37 3 13 2 14
38 4 30 5 14
39 7 31 15 22
40 0 34 34 0
41 0 9 0 16

93

For the stomach ulcer data, we compare results from our new exact
permutation—based approach (Exact—Perm) with the same methods used in the simulation
study: inverse variance (INV), DerSimonian and Laird (DSL), Mantel-Haenszel (MH),
Peto, and the exact p—value function combination method (Exact—pVal). We used the R
software and the same settings as used in the simulation study. This resulted in the Peto
method excluding study 41, which has zero events in both treatment arms, since no
continuity correction was used. Also note that the results from our exact method were
produced using the median unbiased estimate. The results from these six methods are

shown in Table 2.5.

TABLE 2.5: Meta—analysis results for the stomach ulcer data set. Note: the p-
values are all two—sided.

OR 95% CI p—value

<0.0001
INV 0.41 (0.32,0.53)
(significant)
<0.0001
MH 0.34 (0.28,0.42)
(significant)
<0.0001
Peto 0.32 (0.26,0.40)
(significant)
<0.001
DSL 0.33 (0.22,0.50)
(significant)
Exact pVal 0.29 (0.23,0.37))
(significant)
<0.0001
Exact—Perm 0.83 (0.80,0.86)
(significant)

From Table 2.5, we can see that all methods, including our new exact

permutation—based approach, yield the same substantive results. There is evidence that

o4

the new surgical treatment significantly reduces the risk of recurrent bleeding. It appears
the traditional methods and the p—value function combination method are not hampered
by the rather substantial heterogeneity in this data set. This is likely due to the number of
studies and average event rates both being large. Even with some studies having zero
events and low event rates, these other methods seem to be resilient to their effects and do
not seem to be results of a type I error. Our exact method agrees with these methods and
has enough statistical power to detect the likely underling treatment effect, with the exact

method even estimating a larger treatment effect than the other methods.

2.4.2.2 Antibiotics

We use the antibiotics data set provided by Spinks et al. (2013) and used in Friedrich
et al. (2007) as our second example. The data are shown in Table 2.6. Sixteen studies,
conducted from 1950 to 2000, compare the use of antibiotics to prevent acute rheumatic
fever, a sore throat resulting from inadequately treated strep throat or scarlet fever,
compared to a placebo. The event of interest is the occurrence of acute rheumatic fever.
The average event rate for the antibiotics group is 0.0042, and the average event rate for
the placebo group is 0.0111. These average event rates are relatively small, classifying
rheumatic fever as a rare event. Eleven of the sixteen studies (69%) have zero events in
one or both treatment arms (studies 1 through 9 having zero events in both arms, and

studies 10 and 13 having zero events in one arm).

The DerSimonian and Laird estimate of 72 varies greatly, depending on the included
studies. With no continuity correction, thus only including studies 11, 12, 14, 15 and 16,
72 is estimated to be 0.39. When using a 0.5 continuity correction to include studies 10
and 13, which have zero events in only one treatment arm, the estimate of 72 jumps to

2 is estimated to

0.43. When all studies are included, using a 0.5 continuity correction, 7
be zero. Accordingly, we consider this data set to have non—negligible heterogeneity,

despite the estimate of no heterogeneity when all studies are included in the analysis.

95

Continuity corrections are known to be less than ideal, and the DerSimonian and Laird
heterogeneity estimator is known to be under—powered, so we feel comfortable assuming
there is at least some non—negligible heterogeneity. As a summary, this data set has at
least some heterogeneity, a rare event, a relatively small amount of studies, and several

studies with zero cells.

TABLE 2.6: Antibiotics data set. Source: Spinks et al. (2013)

Antibiotics Placebo
Study
Event Non-Event Event Non-Event

1 0 121 0 118
2 0 59 0 58
3 0 358 0 164
4 0 454 0 216
5 0 238 0 268
6 0 62 0 59
7 0 186 0 97
8 0 87 0 94
9 0 369 0 386
10 0 257 2 109
11 2 798 17 804
12 5 978 35 996
13 0 605 2 608
14 2 277 5 198
15 2 157 1 50
16 26 650 12 220

For the antibiotics data, we compare results from our new exact permutation—based
approach (Exact—Perm) again with the four traditional methods and the exact p—value
function combination method (Exact—pVal), as used in the stomach ulcer analysis. The

results are shown in Table 2.7.

o6

TABLE 2.7: Meta—analysis results for the antibiotics data set. Note: the p—values
are all two—sided.

—

OR 95% CI p-value
<0.0001

INV 0.37 (0.23,0.57)
(significant)
<0.0001

MH 0.31 (0.20,0.46)
(significant)
<0.0001

Peto 0.30 (0.20,0.45)
(significant)
<0.001

DSL 0.37 (0.23,0.57)
(significant)

Exact-pVal 0.30 (0.19,0.46)
(significant)

0.3136

Exact-Perm 057 (0.17,1.76)

(non-significant)

Table 2.7 shows that the traditional and p—value function combination methods all
indicate a significant effect of antibiotics in decreasing the occurrence of acute rheumatic
fever. Our new exact permutation—based approach, however, suggests the observed
treatment effect is not significant. This is due to the exact confidence interval covering the
null value and being much wider than the confidence intervals of the other methods.
Efthimiou (2018) states, “One additional issue with rare events is that, for the case of
random effects meta—analysis, the estimation of the variance of random effects
(heterogeneity) may be biased, which may lead to spuriously narrow confidence intervals.”
Given this, and our simulation study, it is very possible the results from the traditional
methods and the p—value function combination method are results of a type I error. It is
likely that our exact approach reflects the truth about the non—significance of the

treatment effect.

2.4.3 Network Algorithm

o7

We will now provide small example data sets to illustrate how the network algorithm

works. We will first use the network algorithm for the original exact trend test for

correlated data as outlined in Section 2.2.4. Next, we will show how the network

algorithm works under the modifications of Sections 2.3.3 and 2.3.4.

2.4.3.1 Original Ezact Test for Correlated Data

For this example, we will use the hypothetical data set shown in Table 2.8. Note that

each study consists of one treatment, and there is one correlation structure for the entire

data set.

TABLE 2.8: Example data set used to illustrate the original network algorithm as
outlined in Section 2.2.4.

Study 1 2 3 4
Sum

Treatment 0 0 1 1
Zi 2 1 1 2 6
n; — % 1 2 4 4 11
n; 3 3 5 6 17
TiZj 0 0 1 2 3
Z (nl — Zi) 2 2 4 8 16

o8

The sufficient statistics for the data set shown in Table 2.8 are

k
s*=>2=6 for a
i=1
k
s=9t=> wiz=3 for 8

We now build the I'(s*) network by moving forward through the network and conditioning
on s®. To start, there will be k + 1 =44 1 = 5 stages in the network, since there are 4
studies, starting at Stage 0 and ending at Stage 4. We begin building our network with
the initial node (0,0) and the terminal node (4,6) since there are 4 studies and s* = 6.

We can now determine how many nodes are at each stage. For Stage 1,
R(m —1,s%™ 1) =
nl) < u < min(6,0 + nl)}

{
{
{
{

so there are 4 nodes in Stage 1 (see Figure 2.4).

99

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.4: Building the I'(s®) network: number of nodes in Stage 1.

For the first node in Stage 2,

so there are 4 nodes in Stage 2 that are connected to the first node in Stage 1 (see Figure

2.5).

60

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.5: Building the I'(s*) network: nodes in Stage 2 connected to node
(1,0).

We repeat this process until we have the network shown in Figure 2.6. The data set
shown in Table 2.8 is represented by the nodes and edges highlighted in red. There are 63
unique paths which represent 63 unique data sets that fit the constraints of having the

same row and column totals and the total number of events equal to 6.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.6: The I'(s%) network with the nodes and edges representing the data
in Table 2.8 in red.

61

We now need to build the T'(s®, s%) network by moving backward and pruning the
network according to the additional s® constraint. We start by creating the terminal node
(4,6,16) and the initial node (0,0,0). We then proceed, stage by stage in reverse,
beginning at Stage 4 and ending at Stage 1. For each predecessor node of the terminal

node, we create new triple nodes.

For node (3,0), which is a predecessor node of (4, 6),

a,m

V=S

ém (S

—u) (N — s+ u)
=16 — (6 —0)(6 — 6+ 0)

— 16,

so, we create the triple node (3,0,16). We continue this process until we find all feasible
predecessors of (4,6,16). We do this for each stage until finishing Stage 1. In this
example, there are many paths that do not ultimately connect to the initial node (0,0, 0)
(like the (3,0,16) node we just created). We finish this network by removing all paths
that do not originate at (0,0,0). The final T'(s®, s%) network is shown in Figure 2.7.

Again, the red nodes and edges represent the path of the data in Table 2.8.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.7: The I'(s%, %) network with the nodes and edges representing the data
in Table 2.8 in red.

62

Each path in the I'(s®, 55) network represents a possible meta-analysis data set

subject to the sufficient statistics constraints. There are six such data sets.

Now, we move forward through the network to obtain information on the test
statistics and the corresponding probabilities. To start, we compute the rank length and
the probability length of the connecting arcs. From node (3,4,8) to node (4,6, 16), the

rank length is

Tim = Tm (™ — u)
=1(6—4)
= 2,

and the probability length is

We continue this process until we have the rank lengths and probability lengths for all
connecting arcs, shown in blue in Figure 2.8. To compute the test statistic for our data set,
we sum the rank lengths of all arcs in the path of our data set, so tops =0+ 0+ 1+ 2 = 3.
Similarly, the unnormalized probability of our data set is found by multiplying the

probability lengths of all arcs in the path of our data set, 3 x 3 x 5 x 15 = 675.

63

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.8: The I'(s?, s°) network with the rank lengths and probability lengths
of the connecting arcs in blue.

We now need to compute the shortest and longest paths for the test statistic and the
total probability for each connecting arc. We start with SP;(4,6,16) = LP;(4,6,16) = 0,
TP(4,6,16) = 1. Now, the shortest and longest path lengths and the total probability for

node (3,4, 8) are

SPi(3,4,8) = rim + SPi(4,6,16)
=240
=2
LP;(3,4,8) = r1,, + LPi(4,6,16)
=240
=2
TP(3,4,8) = comTP(4,6,16)
=15x 1

= 15.

We continue this process until we reach Stage 1 (see Figure 2.9).

64

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.9: The I'(s?, 35) network with the shortest and longest path lengths and
the total probability of the connecting arcs in orange for Stages 2 to 4.

Since the nodes in Stage 1 have multiple successor nodes, we need to incorporate
information from both successor nodes. For example, the shortest and longest path

lengths and the total probability for node (1,0, 0) are

SPi(1,0,0) = min{ry, + SP1(2,1,2), 11 + SP1(2,2,2)}
= min{0 + 5,0 + 4}
=4

LP(1,0,0) = max{rim + LP1(2,1,2),r1,m + LP1(2,2,2)}
= max{0+ 5,0+ 4}
=5

TP(1,0,0) = comTP(2,1,2) X comTP(2,2,2)
= (3 x 150) x (3 x 150)

= 900.

65

Figure 2.10 shows the completed shortest and longest paths and total probability for all

stages. The total probability for node (0,0,0) is the normalizing constant.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.10: The T'(s%,s%) network with the shortest and longest path lengths
and the total probability of the connecting arcs in orange.

We can now make the final pass through the network by moving forward, stage by
stage, beginning at the initial node (0,0,0). We carry forward a set of records)V, at each
stage for m =0, ...,k — 1 where each record d €), is of the form
d = (m,s*™, s5™ t,. hny). We begin with the record (0,0,0,0,1) associated with the

initial node (0,0,0). For (1,0,0), a successor node of (0,0,0), since

t1+r1141+ LPy (1 + 1, s®1HL 55»1“) =0404+5 &£ 3=tups,

66

we will keep this record and now must decide whether to merge this record or create a new

record. Since there are no other records in Y111 = Vs, we create a new record in)»

n 1
d = <m +1, so"mH, 86’m+1, tm + T1mr, hm< "t >>

gom+1 goum
’ ’ ’ ’ O - O

=(1,0,0,0, 1).
For (1,1,2), a successor node of (0,0,0), since
tw + P11 + LPy (m 41, sm 55’m+1) —04+045 £ 3=rtos,

we will keep this record. As there is a record currently in), we make the following

comparison
tme1 =0 = 04+0=1,+ T1,m-+1-

Since this comparison results in an equality, we will merge the record from node (1,1, 2)
with the record from the node (1,0,0), since both paths, so far, yield the same test

statistic. We will combine these records and add both paths’ probabilities as such

n
d, N <m T 17 Sa,m-i-l’ 56’m+17 tm+17 hm+1 + hm < i >>

sa,m—l—l sum
=11,1,2,0,1+1 x
e 1-0

=(1,1,2,0,4).
For the last node in Stage 1, (1,2,2), since

tm+r1,m+1+LP1(m+1,sa’m+1,s5’m+1)=0+0+4 £ 3 =tobs,

67

we keep this record. Since, for the previous combined record d' = (1,1,2,0,4),
tm+1 =0 = 0+0=¢,+ T1,m+1,

we merge this record from the node (1,2,2) with the combined record from nodes (1,0, 0)
and (1, 1,2) since all three paths, up to this point, yield the same test statistic. We

combine these records and add all three paths’ probabilities as such

d/ N <m T 17 8a,m+17 857m+17 tm+17 hm+1 + hm < ol))
S

a,m+1l _ gam
=1(1,2,2,0,4+1x 3
) 4y 45Uy 2 0

=(1,2,2,0,7).
We continue this process until the following records remain

d e Yy:(0,0,0,0,1),
de Y :(1,2,2,0,7),
deYs:(2,3,4,0,30),
deYs:(3,4,8,1,90),(3,4,8,2,60), and (3,4,8,3,60), and

d e Yy (4,6,16,3,1350), (4,6, 16,4,900), and (4,6,16,5,900).

The records in the last stage contain information about all data sets with test

statistics at least as large (values of ¢t = 3,4, and 5) as our observed test statistic

68

(tobs = 3). The exact p—value is therefore

I,
PH(T 2 tanslHo:9) = 3 750 5700
de)y o

1350 N 900 N 900
© 3150 3150 3150

= (0.4286 4 0.2857 + 0.2857

= 1.

A p-—value of 1 is consistent with all possible values of the test statistic being as large, or

larger, than the observed test statistic.

2.4.3.2 Variation of Treatment Level Within Study

As described in Section 2.3.3, allowing for variation of treatment level within study
boils down to extra conditioning on the n;;. This adjustment has no effect on the
sufficient statistics s* and s°. As such, the network algorithm works analogous to what
was shown in Section 2.4.3.1 with the distinction of having 2k + 1 stages instead of k + 1
stages. Since the network algorithm does not change drastically under this framework, we
will provide an application in the next section which illustrates both this adjustment and
the adjustment to allow the correlation structure to vary among treatment levels, which is

a non-trivial change to the network algorithm.

2.4.3.3 Variation of Correlation Structure Among Treatment Levels

For this example, we will use the hypothetical data set shown in Table 2.9. Note that
each study now consists of two treatments (treatment and control), and there are now two
correlation structures (one for each treatment group). Also, note that the data is sorted

by treatment group instead of by study.

69

TABLE 2.9: Example data set used to illustrate the modified network algorithm as
outlined in Sections 2.3.1 and 2.3.2.

Study 1 2 1 2
Treatment 0 0 1 1 Sum
2 2.0 1 1 4
Nij — Zij 3 3 1 3 10
nij 5 3 2 4 14
TijZi5 0 0 1 1 2
zi(nit —zi) 6 0

zio(ni2 — zi2) 1 3 4

The sufficient statistics for the data set shown in Table 2.9 are

k
Y=Y zj=4 for «
i=1j=1
2
t:Zinjzij:2 fOI“ﬁ
s = i=1j=1
k
851 = Z Zil (nil - Zil) =6 for 51
i=1
k
862 = Z Ziz(nn — ZZ'Q) =4 for (52.

—_

\ =

We now build the T'(s®) network as we did in Section 2.4.3.1, except we have
2k + 1 = 5 stages instead of k + 1 = 3 stages. The resulting network is shown in Figure
2.11. The data set shown in Table 2.9 is represented by the nodes and edges highlighted in
red. There are 30 unique paths, or data sets, that fit the constraints of having the same

row and column totals and the total number of events equal to four.

70

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

(Study 1, Treatment 0) (Study 1. Treatment 1) (Study 2, Treatment 0) (Study 2. Treatment 1)

FIGURE 2.11: The I'(s®) network with the nodes and edges representing the data
in Table 2.9 in red.

To build the I'(s%, s%1, 5°2) network, we begin creating the terminal node (4,4, 6, 4).
We now proceed by working with the information contributing to s°2, stage by stage in

reverse, and ending at stage T+ 1 =2+ 1 = 3, where T is the number of columns in the

data set where the treatment z = 0.

Starting with Stage 4, and for node (3,0), which is a predecessor of node (4,4),

vy = 2 — (s%™ —) (g — s*™ + u)
=4—-(4-0)4—4+0)

=4

Y

so, we create the triple node (3,0,6,4). Note that all nodes in this phase will have the
same third element equal to s%. We continue this process until we find all feasible
predecessors of (4,4,6,4). This results in the following nodes at Stage 3: (3,0,6,4),
(3,1,6,1), (3,2,6,0), (3,3,6,1), and (3,4,6,4). Note that many of these nodes will turn
out to be orphan nodes and will be dropped. We repeat this process for Stage 3, dropping
nodes if the partial sum of s% # 0. This process results in the following nodes at Stage 2:

(2,0,6,0) and (2,2,6,0). This completes the first part of the backward pass, where all

71

nodes at Stage 2 are in the form (7, s*7, s%,0). Figure 2.12 illustrates this first part of

the backward pass.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

FIGURE 2.12: Building the I'(s®, 5%, s%) network: the first part of the backward
pass, utilizing information from the treatment groups.

The two nodes at Stage 2 are the terminal nodes for the second part of the backward
pass. Again, we proceed, stage by stage in reverse, until we end at Stage 1. Starting at

Stage 2, and for node (1,0), which is a predecessor of node (2,0),

v = UM — (8% —) (g — $O™ + 1)
—6-(0—0)(3—0+0)

=6,

so, we create the triple node (1,0,6,0). Note that all nodes in this phase will have the
same fourth element equal to 0. We continue this process until we find all feasible
predecessors of (2,0,6,0) and all feasible predecessors of (2,2,6,0). This results in the
following nodes at Stage 1: (1,0,6,0), (1,0,4,0), (1,1,4,0), and (1,2,6,0). Again, many

of these nodes end up being orphan nodes and will be dropped. We repeat this process for

72

Stage 1, dropping nodes if the partial sum of s # 0. This process results in the following
nodes at Stage 1: (1,1,4,0) and (1,2,6,0). Both these nodes then connect to the initial
node (0,0,0,0). The final T'(s®, 5%, 592) is shown in Figure 2.13. The grey arrows and
linear divider are provided for understanding, and the red nodes and edges indicate the

path that reflects the data set in Table 2.9.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

2,2,6,0

FIGURE 2.13: The I'(s%, 01, 852) network with the nodes and edges in red repre-
senting the data in Table 2.9.

Now that we have the T'(s®, s%), we continue as shown in Section 2.4.3.1 to collect the

rank lengths, probability lengths, and, ultimately, the exact p—value.

2.5 Conclusion

Clearly, small or sparse samples cause problems for many commonly used methods.
An additional hindrance is non-negligible heterogeneity, which further encumbers these
methods. Many researchers have focused on creating methods for small or sparse data,

but few have tried to address these small sample issues coupled with heterogeneity. This,

73

in part, may be due to guidance from the Cochrane Handbook for Systematic Reviews of
Interventions: “We would suggest that incorporation of heterogeneity into an estimate of a
treatment effect should be a secondary consideration when attempting to produce
estimates of effects from sparse data — the primary concern is to discern whether there is
any signal of an effect in the data” (Higgins and Green, 2011, chap. 16.9.5). Considering
our simulation studies, we would strongly argue against this suggestion, as unaccounted
for heterogeneity in rare event data leads to highly inflated type I error rates and overly

narrow confidence intervals.

There are a few things of which to take note regarding our simulations. First, our
simulation study added a constant value of 0.5, when appropriate, to studies with zero cell
counts for the INV, MH, and DSL methods. This continuity correction of 0.5, while
commonly used, may not be the best correction. Alternative corrections have been
proposed, and some suggest performing sensitivity analyses to determine which correction
method is most appropriate (Sweeting et al., 2004). These methods may have lower type I

error rates if a different continuity correction factor is used.

Second, for the exact p—value function combination approach, we used the default
values in the gmeta package. The exact p—value function combination approach is a type
of confidence distribution, and confidence distributions are quite general and can be
modified to use different weights and linking functions. However, only two linking
functions are built into the gmeta package; the use of any other linking functions would
require additional coding. Nonetheless, this method could, perhaps, perform better if

these parameters were modified and tuned.

Third, while our method drastically outperformed the other methods in terms of type
I error and confidence interval coverage, there are some drawbacks to our method. Exact
methods, in general, are known to be rather conservative when a significance level is used,

and our method is no exception. This is illustrated by many of the type I error rates in

74

Figure 2.1 being below the nominal value and the confidence interval coverage percentages
in Figure 2.3 being well over 95%. However, we believe, as does Paul (2018), that, “Given
the various biases towards finding statistical significance prevalent in epidemiology today,
a strong focus on maintaining a pre—specified level of Type I Error would seem critical.” In
terms of estimation, our method performed similarly to the commonly used methods and
performed worse than the exact p—value function combination method. Despite the exact
p-value function combination method being less biased than our method, we believe our
method still outperforms this method due to the very poor confidence interval coverage
probabilities of the exact p—value function combination method. Again, we prefer wider

confidence intervals over confidence intervals that do not contain the true parameter value.

Additionally, in our simulation studies we had to remove data sets in which only one
element remained in the reference set after conditioning. With exact methods, over
conditioning yields this situation in which our method fails to produce an estimate.
Finally, our exact method takes markedly longer computationally than the commonly used
methods, and this would especially be true if the events were not rare. However, this
method is designed for rare events, and we believe extra computation time is worth the
benefit of much lower type I error rates. Additionally, our method is substantially faster

than the exact p—value function combination method.

The long computation time is due to the need to enumerate the reference set, as
outlined in the network algorithm. A sampling approach to the network algorithm, which
involves rejection sampling, or importance sampling (Mehta et al., 1988), has been shown
to produce results very similar to working with the entire network and would speed up
computation time. The drawback to this sampling technique occurs when the number of
paths in the T'(s(«), s(0)) network is small, which requires sampling a large amount of
paths. As such, this would not work well with data sets having rare events because the

sampling method would likely produce only samples from the non—event group, and it

75

would never sample from the event group. For these reasons, we did not attempt to speed

up the computations via sampling.

The use of meta—analysis in the medical field has increased dramatically in recent
years, and many of these analyses involve rare events. Non—negligible heterogeneity is also
common and requires methods that can incorporate a measure of this heterogeneity. As
such, it is vital for researchers to have methods that are reliable in these circumstances. In
this chapter, we showed, via simulations, that when events are rare and there is a
significant amount of heterogeneity present, the traditional methods for meta—analyses
have highly inflated type I errors, low confidence interval coverage, and bias. We proposed
a new exact method that allows all studies to be pooled without using any arbitrary
continuity corrections. Our exact method has much lower type I error rates and higher
coverage probabilities than traditional methods when heterogeneity is present. We
propose our method be used for meta—analysis data sets when events are rare, and

heterogeneity is present.

76

CHAPTER 3
EXACT NETWORK META-ANALYSIS

3.1 Background

In Chapter 2, we applied extensions to the exact trend test method for correlated
binary data to meta—analyses with rare events and heterogeneity. We now apply our
method to network meta—analysis. We begin by introducing network meta—analysis, along
with the associated assumptions and commonly used methods. We then discuss how our
method can be applied to network meta—analysis data, and we assess our method via a

simulation study.

3.1.1 Introduction and Terminology

In Chapter 2, we reviewed how meta—analyses have become the standard for
evidence—based healthcare decision making. However, there are several drawbacks to a
traditional meta—analysis — especially when used in the healthcare industry. A
conventional meta—analysis compares only two groups, but often there are more than just
two treatments available to treat an illness or disease. In this case, we want to determine,
by some means, which of all the possible treatments is most effective. While multiple
pairwise meta—analyses could be performed to include all possible treatments, quite often
studies directly comparing all combinations of possible treatments are not available.
Typically, direct comparisons of two treatments have not been compared head—to—head in
a randomized controlled trial. Rather, each treatment is compared with a placebo or
standard care in a separate study. This is often the case since, according to the guidelines

of the regualtory bodies of various nations, comparing a new treatment to a placebo is

77

usually sufficient to demonstrate efficacy (Jansen et al., 2011). In these settings, the
network meta—analysis approach allows indirect comparisons between treatments. A
network meta—analysis is a natural extension of traditional, pairwise meta—analysis,
incorporating clinical evidence from both direct and indirect treatment comparisons in a
network of trials to determine the effectiveness of multiple treatments. This makes it
possible to determine the most effective treatment through effect size estimates and
treatment rankings. Network meta—analysis is a relatively novel method, with growing
application over the past several years. In early 2017, Tonin et al. (2017) found over 360
published network meta—analyses from over 30 different countries, relating primarily to
biomedical studies of conditions, such as cardiovascular disease, oncological disorders,

mental health disorders, and infectious diseases.

The starting point for a network meta—analysis often involves a visualization that
displays the various studies using a graphical network. Figure 3.1 shows an example of
such a network. In this example, there are six different treatments or interventions: A, B,
C, D, FE, and F. Each included intervention is represented by a treatment node, where
the size of the node is determined by the relative sample size. Treatment C has the largest
node, indicating this treatment has had the largest number of participants use this
intervention; whereas, relatively few participants have ever been assigned to treatment A.
Two treatment nodes can be connected by an edge, indicating the two treatments have
been directly compared head—to—head in a clinical trial. The size of the edge is
proportional to the number of studies which compared the two interventions. In the
example shown in Figure 3.1, treatments C' and D are connected with the thickest edge,
indicating they are the most directly compared treatments. On the other hand,
treatments C' and F have never been compared directly in a trial. Treatments A and C

have been directly compared, but by only a relatively few number of studies.

78

F L

FIGURE 3.1: An example of a graphical network for six treatments: A, B, C, D,
E, and F. Each treatment is represented by a node, and edges connecting two
nodes indicate one or more studies directly compared the two treatments.

Well-connected networks, where most treatments are directly compared, produce
more reliable estimates than poorly connected networks where relatively few direct
comparisons have been made. Treatments that are not well connected, like treatment A in
this example, have associated estimates that should be interpreted with caution (Mills
et al., 2013). Additionally, if there is a severe imbalance in the amount of evidence
available for each treatment, the reliability and power of the analysis can suffer (Mills
et al., 2011; Thorlund and Mills, 2012). Graphical networks increase the transparency of
results and help researchers determine if specific comparisons are selected,
underrepresented, or avoided by trialists. This assists researchers in identifying if
additional studies are needed and which treatments should be included in those studies.
Alternatively, it also helps researchers avoid conducting unnecessary trials where the

treatments have already been compared a sufficient number of times.

While traditional meta—analysis involves only direct treatment comparisons, network
meta—analysis incorporates both direct and indirect treatment comparisons. This is
beneficial since many treatments have not been compared directly, but estimates of a
treatment effect can still be obtained indirectly. For example, in Figure 3.1, treatments A
and B have never been directly compared, but an indirect comparison can be made by
utilizing the studies comparing treatments A and C (AC studies) and the studies

comparing treatments B and C (BC studies). Here, the treatment C' is called the

79

“common comparator” or “linking treatment,” and the AB comparison is “anchored” or

“adjusted” on C.

It is critical to utilize the studies involving the common comparator to avoid
“breaking randomization,” which would occur if the total number of participants who
responded favorably to treatment A from the AC studies were compared with the total
number of participants who responded favorably to treatment B from the BC studies.
This can lead to the simplistic and possibly erroneous conclusion that whichever
treatment as the largest number of positive respondents is the one that is preferred or
deemed more effective. Such a conclusion is called a “naive indirect comparison” and
should be avoided as it can lead to biased results (Higgins and Green, 2011, chap. 16.6.2).
The trials of AC' and BC must be used to help avoid bias from differences in baseline

risks, placebo effects, administration of the treatments, etc.

While indirect comparisons can be included in a network meta—analysis, there are a
few practical concerns that need to be addressed. First, it is well known that indirect
estimates lend to less precision than direct estimates (Glenny et al., 2015). Second, if the
two direct treatment comparisons used to compute the indirect comparison are
underpowered, the resulting indirect treatment comparison will also be underpowered.
Third, indirect treatment comparisons are not randomized. They are considered
observational studies and can, therefore, be subject to bias and confounding (Higgins and
Green, 2011, chap. 16.6.2). Fourth, the studies involved in the indirect treatment
comparison must be similar in all factors that could influence the outcome (Higgins and
Green, 2011, chap. 16.6.2). Fifth, some believe indirect comparisons systematically

overestimate the treatment effects (Bucher et al., 1997).

Despite these concerns, many argue for the use of indirect comparisons. Jansen et al.
(2011) even suggest that indirect comparisons should be considered even when direct

comparisons are available. To be able to include an indirect estimate, along with a direct

80

estimate, a network must have a “closed loop.” This occurs when the pairwise comparison
has both direct and indirect evidence, causing part of the network to be a triangle, square,
or other closed shape, as in the closed triangle made by treatments B, C', and D in Figure
3.1. As an example, the BD comparison has direct study evidence, and it also has indirect
evidence from the BC and C'D studies. When a network has a closed loop, the method
that allows the combination of both direct and indirect evidence is called
“multiple-treatments meta—analysis.” Many also call this “mixed treatment meta—analysis”
or “network meta—analysis.” When both direct and indirect information are combined,
precision of the estimated treatment effect is improved, and inference to the population
sampled is broadened (Coleman et al., 2012). The Cochrane Handbook for Systematic
Reviews of Interventions recommends reporting two separate analyses when both direct
and indirect evidence is available: one with the results from the direct evidence only, the
other with results from the combination of the direct and indirect evidence (Higgins and

Green, 2011, chap. 16.6.2).

3.1.2 Basic Methods

Bucher et al. (1997) illustrate a way to obtain indirect treatment comparisons, which
is often called an “adjusted indirect comparison” or an “anchored indirect comparison.” If
we let d 4o be the comparative effect size estimate of treatment A versus treatment C', and
similarly for all treatment comparisons, then the indirect comparative effect size estimate

of treatment A versus treatment B is calculated as

dap = dac — dpc,

81

with associated variance

Var (dAB) = Var (dAC) + Var (dBC’) .

The trials are considered independent, eliminating the covariance and allowing inclusion of
studies with only two treatments. If there is no common comparator for two treatments, a
series can be created with multiple common comparators. However, these “multiple
adjusted indirect comparisons” suffer from significant uncertainty, which uncertainty is

correlated with the number of common comparators in the series (Kim et al., 2013).

One drawback of the method by Bucher et al. (1997) is that it can be used only with
two—arm trials and a total of three treatments. A slightly more sophisticated method by
Lumley (2002) accounts for both direct and indirect evidence simultaneously and allows
for three or more treatments in a network of closed loops. Lumley (2002) also was the one
to first use the term “network meta—analysis” to refer to the setting where an indirect
treatment comparison can be obtained through more than one common comparator. If the
indirect estimate is similar regardless of the common comparator used, Lumley (2002)
indicates this is strong evidence that the indirect estimate reflects the true relationship
between treatments. However, incoherence occurs if there is discrepancy in the results

between common comparators.

Lu and Ades (2004) propose an even more sophisticated model that accommodates
three or more treatments for a network of any shape. They call this method “multiple
treatment comparison” or “mixed treatment comparison”. The method uses a Bayesian
framework so that inference can be made simultaneously for all treatments, and
treatments can be ranked according to the probability of being the “best” using graphical

“rankograms.”

The framework of these three methods is often collectively grouped as “network

meta—analysis,” and throughout the rest of this chapter, we will use this label to refer to

82

the combination of both direct and indirect estimates used to determine the relative
effects of multiple treatments on the same health condition, as does Tonin et al. (2017).
Many other methods have been developed under both the frequentist and Bayesian
frameworks, but we will not consider these here. It is interesting, though, that the most
common software for network meta—analysis (WinBUGS, OpenBUGS, ADDIS, and
JAGS) all utilize Bayesian approaches (Tonin et al., 2017). Since intuitively appealing
probabilistic treatment rankings are available with the Bayesian framework, this

preference is not surprising.

Additionally, both fixed—effect and random—effects methods can be used for network
meta—analysis. Under the random—effects framework for traditional meta—analyses, a
distribution of treatment effects is assumed, and a measure of heterogeneity is
incorporated. Under the random—effects framework for network meta—analysis, another
assumption is that effect size estimates differ across comparisons, in addition to differing

across studies (Tonin et al., 2017).

3.1.3 Assumptions and Validity Considerations

A network meta-analysis (including the methods of Bucher et al. (1997), Lumley
(2002), and Lu and Ades (2004)) employs all the assumptions of a traditional
meta—analysis, along with others. These assumptions can be broadly classified relative to
homogeneity, similarity, and consistency/coherence. Homogeneity requires that there be
no relevant differences between studies that are to be pooled for pairwise comparisons.
Each pairwise comparison should be assessed both qualitatively, by reviewing the study
characteristics, and quantitatively, by using metrics like the I? statistic discussed in
Chapter 2. Additionally, the two groups of pairwise comparisons used for an indirect

comparison should be homogeneous.

83

Similarity relates to the validity of making indirect comparisons. This assumption
requires the studies used in an indirect comparison to be similar in terms of study
population, design, outcome measures, and effect modifiers (e.g. age, disease severity,
dosage, etc.). This assumption cannot be assessed quantitatively. Researchers should
determine, for example, if the treatment chosen as a common comparator is similar
enough to be considered a common comparator between the two pairwise comparisons
used in an indirect comparison. When this assumption is not met, bias is introduced, and

heterogeneity and inconsistency can result (Tonin et al. (2017)).

The consistency, or coherence, assumption requires there to be no relevant
discrepancy, or inconsistency, between direct and indirect evidence. Consistency can be
assessed both qualitatively and quantitatively. A closed loop is needed to check for
consistency as both direct and indirect evidence is needed. When this assumption is not
met, “transitivity” is broken, meaning that if studies show treatment C' is better than
treatment B, and other studies show treatment B is better than treatment A, one cannot
conclude treatment C' is better than treatment A. If there is evidence of inconsistency, the
Cochrane Handbook for Systematic Reviews of Interventions states that the direct
estimate should take precedence over the indirect estimate when forming conclusions

(Higgins and Green, 2011, chap. 16.6.2).

3.2 Methodology and Innovation

While the graphical networks for network meta—analyses range in complexity, we
have chosen to focus on the case where two or more treatments have all been compared to
a common treatment (i.e. a control or placebo), but none of the treatments has been

directly compared to each other. In this setting, no direct treatment comparisons exist.

84

Our goal is to obtain indirect treatment comparisons for each treatment comparison using

the information provided by the control group comparisons.

We propose applying the modified exact trend test, as described in Chapter 2, to this
network meta—analysis situation. Assuming independent trials, we can directly apply this
method to each of the direct study comparisons. Once we have an exact estimate of the
direct treatment effect for the direct treatment comparisons, we then repeatedly apply the

method of Bucher et al. (1997) to obtain the desired exact indirect treatment comparisons.

Without loss of generality, consider as an example Figure 3.2, which displays a
hypothetical network for a network meta—analysis including three different treatments, A,
B, and D all compared to a common control C' (as shown by the solid lines), but never
compared to each other (as indicated by the dotted lines). Here, there is direct evidence
from studies comparing A to C' (AC studies), direct evidence from studies comparing B to
C (BC studies), and direct evidence from studies comparing D to C' (DC studies), but
there are no studies directly comparing any pair of the three treatments A, B, and D. We
would like to use the direct AC, BC, and DC study information to obtain indirect

information about the following relationships: AB, AD, and BD.

C-2-D

) .
g 6)0 - : (ind)
AC /({\b i BBD
N
AR
S(ind)
AB

FIGURE 3.2: Small example network with three treatments, A, B, and D, all

directly compared to the control, C, but never directly compared to each other.

The solid lines indicate the direct comparison, and the dotted lines indicate no
direct comparison has been made.

85

By applying our exact method separately to the AC, BC', and DC studies, the exact
estimates of Bac, Bpc, and Bpc can be obtained. We can then apply the method of

Bucher et al. (1997) to obtain the indirect exact estimates of S4p, Bap, and Spp, as

A d ~ ~

B = Bac — Bre,

Afa d A A

%y) = Bac — Bpc, and

A(a d ~ ~

BE’Z—,) = BBc — Bpe-
To obtain an interval estimates of AB, AD, and BD, we utilize the conditional probability
for both direct comparisons used in creating the indirect exact point estimates. We will

illustrate how this is done for the indirect AB comparison using the direct AC and BC

comparisons.

From Chapter 2 Equation 2.10, recall that the conditional probability is given by

C(t(zabs)|5" (2), 5 (2))exp{ Bt(2obs) }
max(t(z))

>, Cl(uls*(2),5°(2))exp{Bu}

u=min(t(z))

fﬁ<t(zobs)’3a(z)7 Sa(z)) =

We use both the conditional probability for the AC' comparison, fg‘c(t(zobsﬂsa(z), s°(2)),
and the conditional probability for the BC' comparison, fégc(t(zobsﬂso‘(z), 5°(2)).
Additionally, for both treatment comparisons we define the left and right tails of the
distribution of the test statistic given s%(2z) and s°(2), as defined in Chapter 2, to be,

respectively,

S ey C15%(2), 5° () Jexp{ Bu”)
max(t(z)) ’

> C(uls*(2),5°(2))exp{Bu}

u=min(t(z))

Ls(t(zobs)) =

86

and

), Ot (2), 0 (2))exp{Bu*)
Rﬂ(t(zObS)) - max(t(z)) ’

C(uls*(z),s°(z))exp{pu}

u=min(t(z))

giving us Lgc(t(zobs)), R‘gc(t(zobs)), Lgc(t(ngs)) and Rgc(t(ngs)). From here, to find
the lower bound of a two-sided (1 — a)% confidence interval for 8 for the AB comparison,
we combine R‘gc (t (zops)) and REC (t (zops)) using the p—value combination method of

Fisher (1932)

Rg‘B (t (zops)) = Pr {ng > -2 (log (Réc (t (zobs))) + log (Rgo (t (zobs))))} ,

where k = 2, the number of p—values to combine. Similarly, for the upper bound of a
two-sided (1 — a)% confidence interval for 8 for the AB comparison, we combine

szlc (t (Zobs)) and Lgo (t (Zobs)) as

LQB (t (zops)) = Pr {X%k > -2 (log (L?C (t (Zobs))) + log (Lgc (t (zobs))))} .

Letting 842 be the lower bound of the confidence interval for § for the AB comparison

and [33‘:3 be the upper bound, then S48 satisfies
e
RﬁéB (t(zobs)) = E,
and Bj_‘B satisfies
ot

LﬂﬁB (t(zobs)) = 2

Thus, we can find an indirect confidence interval for the AB comparison using information

from the AC and BC comparisons.

87

3.3 Application

In this section, we analyze our method via a simulation study, which is based on a
simulation study conducted by Mills et al. (2011). We generate networks with two
treatments, A and B, compared to a common control, C, but not directly compared to
each other, as illustrated in Figure 3.3. We define k4¢ as the number of studies comparing
treatments A and C; ko as the number of studies comparing treatments B and C; nmyin
as the minimum number of participants in a study; nmax as the maximum number of
participants in a study; p,c the proportion of participants in the control group C; w¢ as
the true average event rate in the common comparator group C'; OR4¢ as the true
relative effect of AC, quantified as an odds ratio; ORpgc as the true relative effect of BC,
quantified as an odds ratio; and 72 as the between-study variance (assumed constant
across the AC' and BC' comparisons). We generate data sets under the following model
(written for the BC' comparisons, with the AC' comparison written similarly), where i

indexes study.

Yei ~ Binomial (ng;, m¢i) ,
Ypi ~ Binomial (np;, 75;) ,

n; ~ Uniform (Nmin, Mmax) s
nci = ni (Pnc)

nci = Ny — Ney,

mci ~ Uniform (770 — W?C, o + %) ,
TCi eXp In (ORBC,Z‘)
TR , and

- 1 —7mo; + mosexpln (ORBC’Z.)
In (ORpc,;) ~ Normal (ln (ORpc) 77_2) ‘

88

A i B
AB

Ficure 3.3: The graphical network on which the simulation study is based.

All data sets were generated under the null, ORsc = 1 and ORpc = 1, with
Nmin = 10 and ny. = 50. We vary ka¢ while holding constant ko = 5. We let
mc = 0.10, and we use the nominal significance level of & = 0.05. Table 3.1 shows the
eight scenarios, each with varying values of kac, pnc, and 72, that we use for our

simulation study.

TABLE 3.1: Combination of values for the parameters used in eight simulation
study scenarios.

Scenario kac pnc T

1 5 050 O
2 5 050 04
3 5 025 0
4 5 025 04
) 10 050 O
6 10 050 04
7 10 025 O
8 10 025 04

Using the formula from Bucher et al. (1997),

ORap = exp{log (ORac) — log (ORpc)}, knowing ORsc = 1 and ORpc = 1 determines

89

ORap = 1. We can also determine the true average event rates for treatment A, w4, and

for treatment B, wp, just by knowing m¢ = 0.10 using these formulas

_ ORacT=S; and
1+ ORA(;%
ORBC 1?20

- 1+ ORpcZe’

xel

TA

T™B

resulting in m4 = 0.10 and 7 = 0.10. Thus, all treatments have the same true average

event rate of 0.10, and the true odds ratios between each pair of treatments is 1.

For each scenario, we simulate 2,500 data sets. As with the simulation study in
Chapter 2, we remove data sets having zero events across all studies for either the
treatment group or the control group, and we exclude data sets that generate test statistic
distributions containing only one value of the test statistic or where the observed test

statistic is at either extreme of the distribution.

We then apply our exact permutation—based approach to these simulated data sets,
as outlined in Section 3.2. We compare our method with the random—effects DerSimonian
and Laird (DSL) method. The DSL method was used to estimate log(ORa¢) and
log(ORpc) with their associated standard errors. Bucher’s method was then used to
obtain an adjusted indirect comparison for AB. We use the same C code for our
simulations as used in Chapter 2 (see Appendix C), along with utilizing the computational
power of the CHPC at the University of Utah. We use R code to process the results of our

method and to compute the results from the DSL method (see Appendix D).

Figure 3.4 compares the bias of our exact permutation—-based method and the DSL
method under the eight simulation settings. For Scenarios 1 and 2, our method performs
similarly to the DSL method, with both methods having very little bias. Scenarios 3 and 4
indicate that both methods are biased, with our method yielding slightly more bias.

Scenarios 7 and 8 show similar results, except the magnitude of the difference in bias

90

between the two methods is even greater. Scenarios 5 and 6 indicate our method is very
biased when compared with the DSL method which has minimal bias. Across the board, it
appears that the presence of heterogeneity did not substantially influence the results of
these two methods. The DSL method seems to perform best when the proportion of
participants in the control group versus the treatment group is 0.50. When this proportion
shrinks to 0.25, the DSL method’s performance weakens. The imbalance in the number of
studies in the AC and BC' treatment comparison groups (Scenarios 5 through 8) also may
have slightly increased the bias in the DSL method. We cannot determine any noticeable

patterns that cause our exact permutation—based method to have substantial bias.

e DSL o Exact-Perm

1.1
1.0 ° °
0.9
0.8
0.7

0.5 ° ° o o

0.4 °)

0.3

0.2

0.1

0.0{—¢
-0.1

Estimated Log Odds Ratio

®0

1 2 3 4 5 6 7 8
Scenario

FIGURE 3.4: This figure compares the bias of our exact permutation—based method

and the DerSimonian and Laird (DSL) method under the eight network meta—

analysis simulation scenarios. The horizontal, grey line at an odds ratio equal to
one indicates no bias.

Figure 3.5 compares the confidence interval coverage of our exact permutation—based

91

method and the DSL method under the eight simulation settings. For Scenarios 1 through
5 and Scenario 7, both methods have average confidence interval coverages that do not
exceed the nominal coverage value of 95%. The exact permutation—-based method
produces low coverage in Scenarios 6 and 8, indicating that the presence of heterogeneity,
combined with an imbalance in the number of studies between the AC' and BC' treatment
comparison groups, cause this method to underperform. The DSL method only slightly

drops below the nominal level in Scenario 8.

e DSL o Exact-Perm

100 ° °

95

90

Coverage Percentage

85

80

1 2 3 4 5 6 7 8
Scenario

FIGURE 3.5: This figure compares the confidence interval coverage of our exact

permutation-based method and the DerSimonian and Laird (DSL) method under

the eight network meta—analysis simulation scenarios. The horizontal, grey line
marks the nominal 95% coverage value.

92

3.4 Conclusion

In this chapter, we focused on a relatively simple network for network meta—analysis
where treatments are directly compared to a common control but not to each other. We
applied our exact permutation—based test and modified exact interval estimation
procedure to such data and compared these approaches to the standard DerSimonian and
Laird method through simulation. Although the DerSimonian and Laird method appears
to have outperformed the exact method, for computational reasons we were unfortunately
constrained in our simulation to use baseline response rates in the neighborhood of 10%.
It was only at this setting that we were able to generate a sufficiently informative number
of samples to yield reliable results. As permutation—based procedures generally provide
greater advantages for relatively sparse samples, additional study under small-sample

settings would provide more useful insights between these two approaches.

Consistent with results from other published work, as well as with our findings within
Chapter 2 (particularly within Section 2.4.1), there is appreciable bias in certain settings.
The permutation—based methods for network meta—analysis yielded comparatively lower
confidence coverage in some scenarios, relative to the good confidence coverage of our
method in Chapter 2. However, as noted above, for practical reasons, our simulations for
this chapter were carried out with an average 10% response rate, whereas our simulations
in Chapter 2 used much smaller event rates of 1.8% and 4.7%. Nevertheless, our
simulation study provides some direction with regard to how we can further improve our
method. We plan to investigate alternative methods to Bucher et al. (1997)’s method for
computing indirect estimates. We also plan to apply Monte Carlo sampling to the exact

test, which should allow us to use smaller event rates in our simulations.

93

CHAPTER 4
COMBINING CONFIDENCE DISTRIBUTIONS FOR RARE EVENT
META-ANALYSIS

4.1 Background

When considering statistical inference, a common approach is to compute a single
point estimate of the parameter of interest. Interval estimates are also used, providing a
probable range of values for the parameter of interest. A step further would be to not only
estimate an interval based on some level of confidence, but to estimate the whole
distribution of the parameter of interest. Distribution estimators come in a variety of
familiar forms, including the bootstrap distribution, the Bayesian posterior distribution,
the empirical likelihood, and the p—value function (also called "significance functions,” see
Fraser (1991)). A distribution estimator can alternatively be called a confidence
distribution (CD) since all levels of confidence can be represented in this distribution. A
CD yields richer information about the parameter of interest than point estimates, interval
estimates, or single p—values since this information, and more, is contained within CDs
(see Figure 4.1). The shape of the distribution can provide information about the size of
the study and precision of the point estimate — a narrow distribution indicates a large
study with high precision; whereas, a wide distribution indicates a small study with low
precision. Succinctly, a confidence distribution is a sample-dependent distribution function

on the parameter space that represents all possible confidence intervals for the parameter.

94

Population Parameter

Point estimate

— -0 — =

Interval estimate E . |

Distribution estimate

3
|

—

FIGURE 4.1: This figure illustrates different ways to estimate the population pa-
rameter of interest. Point estimates, such as the log odds ratio or the sample av-
erage, and interval estimates, like a 95% confidence interval, are commonly used in
statistical inference. An estimate of the distribution of the population parameter,
such as a confidence distribution, can also be obtained. Distribution estimators
are appealing since they contain information about both the point estimate and
the confidence interval, as shown in the bottom curve, in addition to much more
information.

The idea of CDs can be traced back to Ronald Fisher (Fisher, 1973); however, until
recently, CDs have received little attention. It wasn’t until the 1990s that more attention
and development was placed on CDs (Efron, 1993), and, in 2005, Singh et al. (2005)
introduced the idea of combining CDs. This approach is especially applicable when
combining information from multiple studies, as in a meta—analysis. Since CDs provide
more information than point estimates, confidence intervals, or p—values alone, it seems
smart to apply them to a meta—analysis with rare events or small sample sizes where it is
important to utilize and accurately summarize the available data. Under the CD
framework, each study is summarized using a CD, which can be based on an exact test,
and the individual studies’ CDs are then pooled into one combined CD. If an exact test is
used, the CD preserves the possible asymmetry of the distribution. Another appealing

trait of a CD is that it is always obtainable even if a study has zero events.

CDs have become the generalized linear model for combining information from

different sources. Xie et al. (2011) refer to CDs as “a unifying framework for

95

meta—analysis,” and they show how most existing methods for meta—analysis fit nicely
under this framework as special types of CDs. The classical p—value combination
approaches (Fisher’s method, Stouffer’s method, etc.) and the common model-based

approaches (fixed—effect, random—effects, etc.) all fit in this unifying framework of CDs.

To illustrate how CDs are used to combine information, consider the results shown in
Table 4.1 from two hypothetical studies. We will use these studies to illustrate how CDs
can be used to both summarize and combine the two studies. The plots shown throughout
this example were created using code from the gmeta R package (Yang et al., 2016a), and
we will focus on combining p—value functions, which are a type of CD and will be

discussed more later.

TABLE 4.1: Results from two hypothetical studies that will be used to illustrate
the use of CDs.

Study 1 Event Non-Event Total Study 2 Event Non-Event Total
Trt 3 1 4 Trt 2 3 5
Ctrl 1 3 4 Ctrl 2 4 6

Total 4 4 8 Total 4 7 11

The p—values for the two tables based on Fisher’s exact test with the mid—p
correction are 0.13 and 0.43, respectively. These were computed under the hypotheses
Hj :log(OR) =0 and H4 : log(OR) > 0. To create a p—value function, we obtain p—values
for many different null values (not just 0). The resulting p—value functions for our
example, p1(+) and pa(-), are shown in Figure 4.2 as cumulative distribution functions
(CDFs). For this example, the null value for the log odds ratio was varied from —4 to 8.
The dashed magenta line marks the p—value under the null value of 0, and the dotted teal

line indicates the median log odds ratio of the p—value function. The median of the it

96

p—value function is defined as pi_l (0.5). The median of a CD is often used as the point

estimate for the parameter of interest.

p1(0 - CDF po(0) - CDF
o O]
© o |
o o
23
g
a3

3 2 0 4§ 8 3 2 %3 4 6 8
log(OR) log(OR)

FIGURE 4.2: Individual p—value functions plotted as CDFs for the two studies
shown in Table 4.1. The dashed magenta lines indicate the p—value under the null
value of 0, and the dotted teal lines indicate the median of the p—value function.

An alternative way to plot a p—value function is to plot the “confidence curve” (CV)
which shows both the p-value and all levels of confidence (see Figure 4.3). Here, the
median is at the peak of the distribution, indicated by the dotted teal line. A 95%
confidence interval is shown by the dashed gold lines. A (1 —)% confidence interval for
the i*" p-value function is given by (p;1 (%) ,p;1 (1 — %)) With this representation, it is
easy to see all levels of confidence and gain a rich view of the distribution, which, for
Study 1, has preserved the inherent asymmetry. Additionally, since Study 2 has a
narrower curve, it is more precise than Study 1, due to its larger sample size. Study 2 also
indicates stronger evidence of no treatment effect than Study 1; however, since 0,

emphasized by the dashed black line, is contained in both confidence intervals, both

studies suggest a non—significant effect.

97

py(D-CV
— | Lo
|
@ | : 2
- I E | T
| Q | ()
o © | lo - | -
S O))
ol | o | o
> | S | S
L < I lo I
s | © % : %
o o
o~ o © | O
o] : K=S) :
|
o i S l S
! ! 71.17! 1.83 / N 573 / - T -243] !oAzs 17297 | ‘ - <
-4 =270 2 4 6 8 -4 "=2 0 2 4 6 8
log(OR) log(OR)

FIGURE 4.3: Individual p—value functions plotted as “confidence curves” for the

two studies shown in Table 4.1. The dotted teal line indicates the median of the

p—value function, and the dashed gold lines show the 95% confidence interval. The

dashed black line indicates the null value of 0, which both confidence intervals cover,
indicating no significant effect.

Now that we have p—value functions for the individual studies, we can combine them
into one p-value function H(®(.). For this example, we will use the combination method
described later in Section 4.2.3. Figure 4.4 shows the combined CDF with the CDF's of the
two individual studies overlaid in gray. Again, the median is marked in a dotted teal line
and is used as the point estimate for the combined effect. The p—value under the null

value of 0 is marked in the dashed magenta line.

98

H®(D) - cDF
o | P —
i
2 p2(D
ERh
S
&3
p1(D
N
Og _____
3l —7|
4 2 03 i & 8
log(OR)

FIGURE 4.4: The combined p—value function of the two studies shown in Table

4.1 plotted as a CDF. The dotted teal line indicates the median of the combined

p—value function. The dashed magenta line shows the p—value under the null value
of 0.

The combined p—value function can also be displayed as a CV, as shown in Figure
4.5. From this plot, it is easy to see the combined estimate of 0.90 (the median marked
with the dotted teal line) with a 95% confidence interval of (—1.06,3.04) (marked in the
dashed gold lines). This curve is also narrower than the two individual study CVs, which
is indicative of pooling studies together, providing a more precise estimate than the
individual studies. Additionally, since the black dashed line, indicating the null value of 0,
is contained in the interval, these two studies, pooled together, provide no evidence of a

significant effect.

99

- o
2 <
e T
>
Q
o9 o -
>0 ¥
2 5
| < o o
o Fo 2
© c
o
N o ©
o [oe}
o
O | FO
‘4 ‘2—1.06(‘) 0.90 ‘2 3.0421 é é =
log(OR)

FIGURE 4.5: The combined p—value function of the two studies shown in Table

4.1 plotted as a CV. The dotted teal line indicates the median of the combined

p—value function, and the dashed gold lines show the 95% confidence interval for

the combined function. The dashed black line indicates the null value of 0, which
is contained in the confidence interval, indicating no significant effect.

The simple example just illustrated outlines the basic approach of combining CDs.
The methodology and the mathematics on how to combine these CDs is the focus of this
chapter. We are interested in discovering a combination approach that works well in the
rare event meta—analysis setting. We believe CDs have the potential to perform better in
the rare event setting than the traditional methods used for meta—analyses, which were
shown in Chapter 2 to perform poorly. As such, we will utilize two articles that have
applied CDs for meta—analyses with rare events. Tian et al. (2009) developed an exact
method of combining confidence intervals which has been shown to fall under the CD
framework (Yang et al., 2016b). Liu et al. (2014) combined p-value functions using
Fisher’s exact test, which are a type of CD, and which we reviewed briefly in Chapter 1.
Additionally, the well-known Fisher’s p—value combination method (Fisher, 1932) is a

type of CD and can be used in this setting.

While several confidence distribution methods exist, no comparisons have been made

100

to determine which method is best suited for meta-analyses with rare events and
non—negligible heterogeneity. This chapter compares the performance of these three CD
approaches. We also propose and compare modifications of these CD methods to better
handle situations with rare events or heterogeneity. We begin by providing a formal
definition of a CD. We then summarize each of the three CD methods. Next, we outline
some modifications to these procedures, and we end by comparing these methods and
recommending one to be used for meta—analyses with rare events and significant

heterogeneity.

4.2 Methodology

In this section, we start by providing a formal definition of a CD, as well as a general
formula to combine CDs for a meta—analysis. Next, we briefly outline each of the three
CD approaches we are considering: the exact method of combining confidence intervals as
in Tian et al. (2009), the exact method of combining p—value functions as in Liu et al.
(2014), and the method of combining p—values as in Fisher (1932). We show how these

methods fall under the unifying CD framework.

4.2.1 Confidence Distribution Definition

The following is a formal definition of a CD, as given in Singh et al. (2005). Let © be
the parameter space of the unknown parameter 6, and let X be the sample space
corresponding to the sample z = {z1,...,z,}. A function H,(-) = H,(x,-) on

X x©O —0,1] is a CD for 0 if

1. for each given z € X', H,(-) is a continuous cumulative distribution function on ©

101

2. when 6 = 6y (the true parameter value), H,(0y) = H,(x,6y) ~ U0, 1], thus

providing confidence intervals for all levels for 6.

In the meta—analysis setting, suppose there are k independent studies that estimate a
common parameter of interest 6. Let x; represent the data of the i** study. We first
construct a CD for each of the ¢ studies H;(-) = H;(z;,-) for §. The combined CD, which
contains information from all k studies, as defined by Singh et al. (2005) and Xie et al.

(2011), is

H(C)(Q) = Pr {gc (Ula) Uk) < gc (Hl (9) R 4 (0))}) (4'1)

where g.(u1, ..., ux) is a monotonic function on [0,1] — IR, and Uy, ..., Uy are independent

UJ0,1] random variables. In the meta—analysis framework, an appealing choice for g, is

ge(ut, ..., ug) = wiag(uy) + - - - + wrap(ug), (4.2)

where ag(+) is any monotonically increasing function (transformation function), and w; are
the weights for each study given w; > 0. Throughout the rest of this chapter, we will refer

to Equations 4.1 and 4.2 as the “general CD framework.”

4.2.2 Combining Confidence Intervals as in Tian et al. (2009)

In their paper, Tian et al. (2009) present an exact meta—analysis approach that
combines confidence intervals with the risk difference as the effect size estimator. They do
not present their method under the general CD framework, but Yang et al. (2016b)
illustrate how this method does fit nicely within the general CD framework. Here, for
consistency, we will present the method of Tian et al. (2009) in the context of the general

CD framework using Equations 4.1 and 4.2 as demonstrated by Yang et al. (2016b).

102

Letting ag(-) = logit(-), the method of Tian et al. (2009) under the general CD framework

is written as

H(C)(S) =Pr {gc (Ula sy Uk) < ge (Hl(s)a R Hk(s))}

=Pr {fwlao(ul) + - Fwgag(ug) < wrap(Hi(s)) + -+ wkao(Hk(s))}

= Pr{wllog <1 ulu) + - 4+ wilog (1 uku)
— Ul — Ug

{}:ng< > }:wmg<1_(z)>} (4.3)

George and Mudholkar (1977) state that the sum of k logits will follow the ¢-distribution

k(5k+2)
3(5k+4)

2
combination method also follows a ¢-distribution —my/ ¥ Ele %t,\ with degrees of

freedom

t) with degrees of freedom A = 5k + 4. The weighted version of this

A=4+ >

k w})
i1 (i w})?

So, given this distribution and continuing from Equation 4.3,

o)< S (255

HO(s) = {E)m%<

k
1 i
:Pr{)\ - - E wﬂog(luz)
Zz 172 i=1
1 b H;(s
> E wﬂog(!)}
— w? 1—H18
™ ¥Z§:1?12:1 (s)
k
1 H;(s)
=Pr{— E 1 <t
T wog<1 HZ(S))_ A)

103

where

5
A=4+ :

DAL
=T, w?)?

7

and the weight for each study, as defined by Tian et al. (2009), is based solely on the

sample size of the study.

This is the method of Tian et al. (2009) under the general CD framework. The
original method of Tian et al. (2009) is programmed in the exactmeta package, and a
slightly modified version of their original method is programmed in the gmeta package in

order to be contained with the other CD approaches.

4.2.3 Combining p—value Functions as in Liu et al. (2014)

Liu et al. (2014) propose the combination of p—value functions, which are a special
type of CD, for an exact meta—analysis. We start by providing the definition of a p—value
function, and we then show how this combination method can be written in the general
CD framework. We provided additional details of this method in Chapter 1, and we only

reproduce the relevant details here.

Let z,y denote the sample, then p = p(s;z,y) denotes a p—value computed based on
a given exact test (Liu et al. (2014) use the mid-p correction of Fisher’s exact test) for
testing Hg : 0 = s versus H4 : 6 > s where s is some fixed value in the parameter space.
Here, we see the p—value depends on both the sample x,y and the value of s, just like a
CD does. Given the sample z,y, as the value of s varies, p(s) = p(s; z,y) is a p—value
function on the parameter space of 6, and it is a CD (Singh et al., 2005; Xie et al., 2011).
To combine these p—value functions under the general CD framework, Liu et al. (2014) use

ao(-) = ®71(-), where ®~1(-) represents the inverse cumulative distribution function of the

104

standard normal distribution. The weights used for the general CD framework are given by

1 1
w; X + ,
’ \/nﬂu(l —mi) nimoi(1 — mo;)

where 71; and mg;, the probabilities of an event in the treatment and control group,
respectively, are estimated empirically by borrowing information from both the it" study
itself, as well as other studies by utilizing the “average level” of the event rates in the other

studies. For details on how m1; and my; are computed, refer to the Appendix in Liu et al.

(2014).

Thus, under the general CD framework, the overall combined p—value function, or

CD, is

HO(s) =Pr{ge (Uy,...,Us) < ge(Hi(s),...,Hp(s))}
= Pr {w1ao(u1) + -+ wkao(uk) < wlao(p1(5)) + -+ wkao(pk(s))}

=Pr {w1<1>_1 (up) + -+ wkq)_l(uk) <w @ H(pi(s)) +- + wk@_l(pk(s))}

{Zw, (u) gZi: } (4.4)

From here, we can use a well-known theorem which states

If Xy, Xo,..., X, are mutually independent normal random variables with means

W1, 12, - .« ., by and variances O‘%, 0‘%, - then the linear combination ¥ = Zl 16X

) n7

follows the normal distribution N (Y7 cipi, Yoy c2o?).

i=1"~1"1%

We know ®~1(u;) ~ N(0,1), so let X; = & L(u;) and Y = Zle w; X;, then, by the
theorem above, Y ~ N(37 w; x 0,30 w? x 1) =Y ~ N(0, Y1, w?).

Now, by the same theorem, if we multiply Y by the square root of the inverse of its

variance, then that product is normally distributed with mean 0 and variance

105

2
(iw2> x Y wi=1.So, Z = \/ﬁ Sk w;® 1 (u;) follows a standard

i=1 "4

normal distribution.

Given these results and continuing from Equation 4.4,

k k
H(s) = Pr {Z wi® (u;) < Zwi‘l’_l(pi(s))}
i=1 i=1

el Y e) <

_p) T wi® (pils)

This is the method of Liu et al. (2014) under the general CD framework. This
method provides effect size estimates on the log odds ratio scale and is programmed in the

gmeta R package (Yang et al., 2016a) under the general CD framework.

4.2.4 Combining p—values as in Fisher (1932)

Given the hypotheses Hy : 0 < sg vs Hy : 0 > sg for some fixed sg, Fisher (1932)

proposes the following p—value combination method

k
plo) = Pr{X%k =z —2210g(p¢)}, (4.5)

i=1
where p; is the one-sided p—value from the " study.

If p;(s) is the p—value function for the i** study, then p; = p;(sg) is the p—value of the

of the hypotheses for Fisher’s p—value combination method. We can think of combining

106

p—values as a special case of combining p—value functions. Now, if we combine these
individual p-value functions under the general CD framework with ag(-) = log(-) and

w; = 1, we obtain the following combined CD

H(s) = Pr{ge (Uy,...,Us) < ge (Hi(5),...,Hp(s))}
= Pr{wjao(ui) + -+ + wgao(ur) < wiap(pi(s)) + -+ - + wrao(pr(s))}

— Pr{log(u) + -+ + log(uy) < log(p1(s)) + --- + log(px(s))}
k k
- Pr{ ~23 log(u) > —zzlogm(s))}
=1 =1

k
= Pr{X%k > —2Zlog(p¢(8))}, (4.6)

i=1

since U7,..., U % U0,1] = —23%_ log(u;) ~ X35~ This is in the same form as Fisher’s

p—value combination method, with the alteration of letting s vary instead of being held
fixed. Thus, the p© in Equation 4.5 equals H (C)(So) in Equation 4.6 for the fixed value sg.
As such, we can consider this method to be under the general CD framework of combining
p—value functions. Fisher’s p—value combination method is also incorporated in the gmeta
R package. Throughout this chapter, we obtain the individual p—values via asymptotics

using a 0.5 continuity correction when needed.

4.3 Innovation

We now consider three alternative approaches to the methods described above. These
modifications are aimed to improve these methods when conducting a meta—analysis with
rare events and heterogeneity. When applying these three methods, we noticed the
method of Tian et al. (2009) (as implemented in the ezactmeta package) was extremely
slow computationally, with the method of Liu et al. (2014) (as implemented in the gmeta

package) faster by about an order of magnitude, and the method of Fisher (1932) (as

107

implemented in the gmeta package) was very fast. Additionally, we believe the method of
Tian et al. (2009) to be more reasonable in the rare event setting since they use the logit
function, as opposed to the normal distribution as used in Liu et al. (2014). Accordingly,

we make the following modifications.

4.3.1 Modification 1: Use the Logit Function Under the General CD Framework without

Weights

Our first modification is to use the logit function under the general CD framework
without weighting the studies. We begin by excluding weights based on the argument
described in Chapter 1 of Bhaumik et al. (2012), Shuster et al. (2012), and Stijnen et al.
(2015) that weights introduce bias when events are rare. This proposed method is akin to
the method outlined in Section 4.2.2 (with the exception of not using weights for the
studies), but this method is not currently programmed under the general CD framework
with the logit transformation function. For this modification, we utilize the gmeta code for
the method of Liu et al. (2014), which is programmed under the general CD framework,
but we use the logit function and no weights. Since the method of Liu et al. (2014) runs
remarkably faster than the method of Tian et al. (2009), we would like to use the logit

function under this much faster general CD framework to decrease computation time.

108

Thus, this method under the general CD framework is written as

H)(s) =Pr{ge (Ur,...,Uk) < ge (Hi(s), ..., Hi(5))}

= Pr{wiag(u1) + - -+ + wgao(ux) < wiag(pi(s)) + -+ + wrao(pk(s))}

IPr{10g<1 Ulu >+,..+log<1w§u>
—u1 - Uk
H

k
1 w; 1 H;(s)
= — > —
Pr o [EEk+2 Zlog <1 — uz> - k(5k+2) Z log (1 - Hi(s)>

3(5k+4) =1

—

Z

k
frnd e -~ 7 <
Pr k(5k+2) Zlog (1 — Hi(s)> - tA} ’
T\ 3(5k+4) =1

based on the results from George and Mudholkar (1977), and where A = 5k + 4.

4.3.2 Modification 2: Use the Logit Function Under the General CD Framework with

Weights Defined by Liu et al. (2014)

Our second modification is to use the logit function under the general CD framework,
as described in Section 4.3.1, but this time we include weights as defined by Liu et al.
(2014). This model, under the general CD framework, is written exactly as in Section
4.2.2 where the weights are defined differently. Our innovation involves coding this

method under the general CD framework of the gmeta package.

4.3.3 Modification 3: Use the Tian et al. (2009) Framework with Weights Defined by

109

Liu et al. (2014)

Our third modification is to use the Tian et al. (2009) method with the weights
presented by Liu et al. (2014). This method uses the logit function, which we believe is
desirable, while also utilizing more sophisticated weights, as opposed to weighting based on
the sample size of the study as in the method of Tian et al. (2009). We modified the gmeta
code for this modification instead of using the ezactmeta code because the gmeta code was
already programmed under the general CD framework. This method, under the general

CD framework, is written as in Section 4.2.2 with the w; defined as in Section 4.2.3.

4.3.4 Summary

As a summary, Table 4.2 presents the six methods discussed above and their

characteristics under the general CD framework.

4.4 Application

The six methods discussed will first be compared via a simulation study. Then, they
will be applied to a real data set involving cerebral microbleeds. See Appendix E for the

relevant code.

4.4.1 Simulation Results

For our simulation study, we used the same framework of the simulation study

described in Chapter 2 Section 2.4.1. We use an a = 0.05 significance level, and we let 6,

110

SOJRI JUOAD UO POSeq SOJRI JUIAD UO Paseq auou auou SOJRI JUOAD UO poseq oazls o[dwes UO poseq m
113801 1301 1301 301 AdD [RULION 9SIoAUL 11301 (-)om
(d—prur) (d—prur) (d—prur)
poyjewr 30exe : : sorjoydusse : poyjewr j0exs

1599} 10€Xd S I9YSL]

1597 10€Xd S I9YSL]

1599 10€Xd S I9YSL]

ue SUISTL S[RAIS)UL dursn paure)qo ue JUISTL S[RAIS)UL ()
’ : Suisn suorjouny 3ursn suorjouny : : 3ursn suorjouny ’)
90ULPYUO0D POUI(UIOD senes—d pouIquIod Q0UOPYUO0D PAUIUIOD
anpea—d pauIquIod anfea—d pauIquIod anfea—d pauIquIod
QOUBILIP YSLI o1yel sppo 30[o1jel Sppo 30[o1jpel sppo 30[o1jel Sppo 30[QOULDISJIP YSLI s

€ UOIYeOYIPOIN

G UonesyIpoN
UOIYRAOUU]

T UOIRIYIPOIN

(ze61) 0UsLy

(¥102) B %0 Iy

(6002) Te 30 weL,

-1o3derd

ST} Ul PISSNISIP SPOYJoW XIS oY} Jo Arewrwuing :g'f @1dv],

111

the true treatment effect, equal 0. We let 72 =0, 0.2, 0.4 and 0.8, and we set ;1 = —5.
This will simulate a situation with very rare events, with the baseline probability of an
event of 0.7%. Choosing a small event rate is partly due to computational reasons as these
methods take very long to compute — especially as the number of events increase. We
generated 10 studies for simulation, with the sample sizes for the 10 studies independently
generated to be between 50 and 200. We simulated 2,000 replications for each value of 72,
where data sets were not included if they had zero events across all studies for either the

treatment group or the control group for the same reasons mentioned in Chapter 2.

As a baseline, Figure 4.6 shows how four traditional methods (inverse variance,
DerSimonian and Laird, Mantel-Haenszel, and Peto, all described in Chapter 1) perform
under these settings. These results are analogous to the results in Chapter 2, but are
provided here for ease of comparison. Each of these methods has very high type I error
rates — especially as the amount of heterogeneity increases. Figure 4.7 shows how the
three CD methods perform relative to the traditional methods. The CD methods perform
similarly to the inverse variance and DerSimonian and Laird methods, but the CD method
of Tian et al. (2009) does have a slightly lower type I error rate. The method of Liu et al.
(2014) does not perform any better than the traditional methods, which is presumably

due to them using the Normal distribution as the transformation function.

112

T T T
0.0 0.2 0.4 0.6 0.8

_[2

&
o |2 Peto
Mantel-Haenszel
g |—=— Inverse Variance a
DerSimonian and Laird

n

('\! |

o
S o | “
o
—
L =]
o -
> o s

|

o o

8 /

i | A'/E

o a

T T

FIGURE 4.6: Simulation results of four common methods under the rare event
meta—analysis setting. The grey horizontal line indicates the nominal significance
level of 0.05.

113

Te}
8 b Traditional Methods
Liu (Normal CDF)
| Fisher (Log)
© |=« Tian (Logit)
Lo
N
o
S «
m S |
—
L w
o I
> o o
o) X
o
2 /
/x
o — x
T T T T T
0.0 0.2 0.4 0.6 0.8

FIGURE 4.7: Simulation results of the three CD methods under the rare event

meta—analysis setting with the four traditional methods grayed out in the back-

ground for reference. The grey horizontal line indicates the nominal significance
level of 0.05.

We then applied our three modifications to this setting, and the results are shown in
Figure 4.8. The first two of our modifications perform similarly to the existing CD
methods. These two methods were programmed under the general CD framework, and
both use the logit as the transformation function. Our third modification, however, has
the lowest type I error rate out of all the methods. This modification is under the
framework of Tian et al. (2009) using the more sophisticated weights of Liu et al. (2014).
The logit transformation function is used, which is fitting for binary outcomes. This
modification brings down the type I error rate to acceptable levels when 72 = 0, 0.2, and

0.4, and is under 10% when 72 = 0.8.

114

n
8 b Traditional Methods
CD Methods
™ | Modification 1
e Modification 2
v |—=% Modification 3
[o\
o
S «
o S |
—
L
o I
2 o
N X
0 /
o 4
° /x
o - ></><

FIGURE 4.8: Simulation results of the three new modifications to the CD meth-

ods under the rare event meta—analysis setting with the four traditional methods

and the three CD methods grayed out in the background for reference. The grey
horizontal line indicates the nominal significance level of 0.05.

4.4.2 Example Data Set: Cerebral Microbleeds

This example uses the cerebral microbleed (CMB) data set, which was analyzed using
a meta—analysis in Tsivgoulis et al. (2016). CMBs, as visualized on an MRI, are indicators
of future bleeding cerebral vessels. Previous researchers have found that the presence of
CMBs are associated with hemorrhagic stroke and hemorrhagic complications following
antithrombotic medications, which reduce the formation of blood clots (Kim and Lee,
2013). Given that association, Tsivgoulis et al. (2016) were interested in the association
between CMBs and the risk of symptomatic intracerebral hemorrhage (sICH) in patients
with acute ischemic stroke treated with intravenous thrombolysis. Patients with AIS
experience a sudden loss of blood circulation to part of the brain and are often treated

with intravenous thrombolysis. sICH is “the most feared complication” of intravenous

115

thrombolysis treatment and has a mortality rate of almost 50% (Yaghi et al., 2014).
Tsivgoulis et al. (2016) conducted a meta—analysis to determine the risk of SICH when
CMBs are present in patients using intravenous thrombolysis to treat AIS. The nine
studies in this data set are shown in Table 4.3. The average sICH rate in patients with
CMBs present is 9.3%, and the average sICH rate in patients without CMBs present is

3.5%, so sICH is a fairly rare event in these studies.

TABLE 4.3: CMB data set. Source: Tsivgoulis et al. (2016)

CMB Present CMB Absent

Study Event Total Event Total
1 Dannenberg et al. 7 81 3 245
2 Derex et al. 1 8 2 36
3 Fiehler et al. 5 86 13 484
4 Goyal et al. 1 3 0 18
5 Gratz et al. 2 38 4 136
6 Kakuda et al. 0 11 5 59
7 Kimura et al. 4 72 2 152
8 Turc et al. 12 150 52 067
9 Yan et al. 6 132 2 201

Figure 4.9 shows a “forest” plot for the nine studies plotted as confidence curves.
Study 1 is the only study suggesting a significant effect of CMBs on sICH risk, while all
other studies indicate no significant effect of CMBs on sICH risk at the 0.05 significance
level. The 9th study also may suggest a detrimental effect of the presence of CMBs on
sICH, although the effect is not quite statistically significant. Since Studies 4 and 6 have a
zero event, the confidence curves do not look like the confidence curves of the other

studies; for more information on this see Liu et al. (2014). Additionally, from Figure 4.9,

116

we see that Studies 3 and 8 are the most precise out of the nine studies.

117

o
o
n
o
o
—
T F O
|
! L
L O
| [Te]
| L
! o
| - O
T —
4 , S
{Study 3 ! L
0 | I o)
o | o
| L
o
o | o
T —
T o
I -
|
| | ©
| n
| L
o —
! -5 9
T ro O
o ! -
S ®
E: 7 5
| o3
-OO
O
L O
n
-O
o
—
o
o
n
o
o
—
9 A
{Study 8 L
n o
o | O
1 -O
o A o
—
— T F O
{Study 9 ! L
0 | I Ne)
o | wn
| L
| o
O = r . - S
-4 -2 0 2 4 6
0 (log(OR))

FIGURE 4.9: “Forest” plot of the nine CMB studies plotted as confidence curves.

The solid grey vertical lines on each plot indicate the point estimate (median), and

the other solid grey lines mark the 95% confidence interval for each study. The
black vertical dashed line marks the null value of 0.

118

Table 4.4 shows the results after combining the nine CMB studies using the four
traditional methods. Since there were two studies with zero events (studies 4 and 6), a 0.5
continuity correction was added to all cells in those studies for the inverse variance and
DerSimonian and Laird methods in order to include all nine studies in the analysis. All
nine methods are unanimous, and one would conclude the risk of SICH may be greater
when CMBs are present. This is what Tsivgoulis et al. (2016) concluded, as well. Note
that the DerSimonian and Laird and inverse variance approaches produce different results.
This is because the between—study heterogeneity was estimated to be non—zero

(12 = 0.45).

TABLE 4.4: Meta—analysis results from four traditional methods for the CMB data

set.
0 95% CI p—value
Inverse Variance Odds Ratio 0.009
, (1.16,2.80)
(0.5 Correction) 1.80 (significant)
Odds Ratio 0.010
Mantel-Haenszel (1.14,2.57)
1.71 (significant)
Odds Ratio 0.008
Peto (1.17,2.87)
1.83 (significant)
DerSimonian and Laird Odds Ratio 0.012
) (1.22,4.97)
(0.5 Correction) 2.46 (significant)

Table 4.5 shows the results from the three CD methods. The Tian et al. (2009)
results came from the exactmeta R package using the “inverse—variance” weighting
method. The methods from Liu et al. (2014) and Fisher (1932) both agree with the
traditional methods, indicating the presence of CMBs may increase the risk of sSICH. The

method of Tian et al. (2009), however, disagrees with these methods and suggests the risk

119

of sICH may not increase with the presence of CMBs. The CD approaches provide

conflicting results as to the effect of the presence of CMBs.

TABLE 4.5: Meta—analysis results from the three CD methods for the CMB data

set.
0 95% CI p-value
Risk Difference 0.054
Tian et al. (2009) (—0.0002,0.0576)
0.03 (non-significant)
Odds Ratio 0.014
Liu et al. (2014) (1.12,2.62)
1.73 (significant)
0.0002
Fisher (1932) - -
(significant)

We now apply our three new modifications to the CMB data set, and the results are
shown in Table 4.6. Modifications 1 and 2, which were shown to have type I error rates
similar to the three CD methods from our simulations, suggest the presence of CMBs may
increase the risk of sSICH. However, Modification 3, which had the lowest type I error rate
of all the methods considered in our simulations, suggests the risk of sSICH does not
increase when CMBs are present. Due to the results shown in Figure 4.8, it is possible
that the results of the traditional methods and the two CD methods of Liu et al. (2014)
and Fisher (1932) could be type I errors, and our new CD method, Modification 3, more

accurately reflects the true effect of the presence of CMBs on sICH.

120

TABLE 4.6: Meta—analysis results from the new modifications of the CD methods
for the CMB data set.

0 95% CI p—value
Odds Ratio 0.010
Modification 1 (1.16,2.33)
1.69 (significant)
Odds Ratio 0.001
Modification 2 (1.37,3.07)
2.11 (significant)
Risk Difference -
Modification 3 (—0.008,0.054)
0.01 (non-significant)

4.5 Conclusion

CDs are a rich, unifying tool that have recently been used in the meta—analysis
setting. They provide information on the distribution of the effect size, and they have
been shown to work well in most settings. However, in the rare event meta—analysis
setting when heterogeneity is present, the common CD methods perform rather poorly,
with unacceptably large type I error rates. This chapter focused on improving those
existing methods to perform better when events are rare and there is a non—negligible
amount of heterogeneity. We showed that our Modification 3 outperforms the existing CD
methods in terms of lowering the type I error to a more acceptable rate. Given that more
than half of the reviews from a random sample in 2009 contained rare events (Vandermeer
et al., 2009), it is critical to develop methods that can analyze these data properly. The
cerebral microbleeds example of Section 4.4.2 suggests a troublesome thought that many
of the analyses conducted and resulting conclusions could be results of type I errors, if
heterogeneity is present, and patients could be receiving non—beneficial treatments. We
hope our modification will be considered and more methods will continue to evolve to

better analyze meta—analyses with rare events in the presence of heterogeneity.

121

CHAPTER 5
CONCLUSION

Meta-analyses have become increasingly popular to conduct, especially in public
health and medicine, where they are the ideal form of “evidence—based medicine.” Often,
medical data consists of rare outcomes or small sample sizes where conventional methods,
which rely on large-sample approximations, fail. Recently, methods have been developed
that provided options for sparse data, but many of these methods are hampered when

heterogeneity across the available studies differs according to the treatment group.

We have developed an exact permutation—-based method that performs well when
events are rare, and non—negligible heterogeneity is present. Our exact method produces
much lower type I errors and has better confidence interval coverage probabilities than
commonly used methods. In the future, we would like to extend our simulation studies to
cover broader values of each parameter and to include some newer methods in our
comparisons. Additionally, we are considering implementing a sensitivity analysis to our

method to identify influential studies.

We have also extended this approach to the novel method of network meta—analysis.
While our method did not perform better than the DerSimonian and Laird method with a
simulated average event rate of 10%, we plan to apply Monte Carlo sampling, which would
make a smaller event rate feasible. Exact tests generally provide the greatest advantage
when samples are small or sparse, so further simulation studies with smaller event rates
would better compare these two methods. Additionally, we plan to investigate alternative
indirect estimation methods. We also plan to extend this method to work with more
complex network meta—analysis structures by incorporating multiple correlation structures

in our exact method.

122

We also utilized confidence distributions, which have received increasing attention
lately in their application to meta—analysis. Currently, several different confidence
distributions are available, and it is important to identify which method is best suited for
rare events and heterogeneity. We compared the performance of these methods under the
rare event and heterogeneity setting, and we found that these methods produce inflated
type I error rates with non—negligible heterogeneity. Accordingly, we made several
modifications to these methods to better handle situations with rare events or

heterogeneity.

Upon further investigation, we discovered that our method, which produced the
lowest type I error of all considered methods, actually performed very similarly to the
method of Tian et al. (2009) as implemented in the gmeta R package, as opposed to the
exactmeta R package on which our simulations were based. It is very interesting that Tian
et al. (2009)’s method produces lower type I error rates when using an R package not
developed by them. Further study is needed to determine why the gmeta package
systematically produces lower type I error rates, especially since the developers of the
gmeta package show their implementation to be identical to the implementation
programmed in the ezactmeta package (Yang et al., 2016b). In the future, we plan to
create a confidence distribution using our exact permutation—based method, which we

think may rival all confidence distribution methods considered.

With the plethora of data in the world today, meta—analyses are often employed to
pool the wealth of information available to facilitate decision making. We have witnessed
a troubling trend that suggests many of the commonly used methods for meta—analyses of
rare event data with heterogeneity produce results that are likely type I errors. In these
cases, treatments may be provided to patients, perhaps at great cost, that are not actually
beneficial. In this light, we greatly hope our developments will assist researchers in better

analyzing meta—analyses with rare events in the presence of non—negligible heterogeneity.

123

REFERENCES

Akobeng, A. (2005), “Understanding randomised controlled trials,” Archives of Disease in
Childhood, 90, 840-844.

Bhaumik, D. K., Amatya, A., Normand, S., Greenhouse, J., Kaizar, E., Neelon, B., and
Gibbons, R. D. (2012), “Meta—Analysis of Rare Binary Adverse Event Data,” Journal of
the American Statistical Association, 107, 498, 555-567.

Bohning, D., Mylona, K., and Kimber, A. (2015), “Meta—analysis of clinical trials with
rare events,” Biometrical Journal, 57, 4, 633—648.

Bradburn, M. J., Deeks, J. J., Berlin, J. A., and Localio, A. R. (2007), “Much ado about
nothing: a comparison of the performance of meta—analytical methods with rare
events,” Statistics in Medicine, 26, 53-77.

Bucher, H. C., Guyatt, G. H., Griffith, L. E., and Walter, S. D. (1997), “The Results of
Direct and Indirect Treatment Comparisons in Meta—Analysis of Randomized
Controlled Trials,” Journal of Clinical Epidemiology, 50, 6, 683—691.

Cai, T., Parast, L., and Ryan, L. (2010), “Meta—analysis for rare events,” Statistics in
Medicine, 29, 2078-2089.

Cochran, W. G. (1954), “The Combination of Estimates from Different Experiments,”
Biometrics, 10, 1, 101-129.

Cochrane (2019), “Our vision, mission, and principles,” Available at
http://www.cochrane.org/about-us/our-vision-mission-and-principles.

Coleman, C. 1., Phung, O. J., Cappelleri, J. C., Baker, W. L., Kluger, J., White, C. M.,
and Sobieraj, D. M. (2012), “Use of Mixed Treatment Comparisons in Systematic
Reviews,” US Agency for Healthcare Research and Quality.

Corcoran, C., Ryan, L., Senchaudhuri, P., Mehta, C., Patel, N., and Molenberghs, G.
(2001), “An Exact Trend Test for Correlated Binary Data,” Biometrics, 57, 941-948.

DerSimonian, R. and Laird, N. (1986), “Meta—Analysis in Clinical Trials,” Controlled
Clinical Trials, 7, 177-188.

Efron, B. (1993), “Bayes and likelihood calculations from confidence intervals,”
Biometrika, 80, 3—26.

(1996), “Empirical Bayes Methods for Combining Likelihoods,” Journal of the
American Statistical Association, 91, 434, 538-550.

Efthimiou, O. (2018), “Practical guide to the meta—analysis of rare events,” Fvid Based
Mental Health, 21, 2, 72-76.

http://www.cochrane.org/about-us/our-vision-mission-and-principles

124

Fisher, R. A. (1932), Statistical Methods for Research Workers, 4 ed.

(1973), Statistical Methods and Scientific Inference, 3 ed.

Fraser, D. A. S. (1991), “Statistical Inference: Likelihood to Significance,” Journal of the
American Statistical Association, 86, 414, 258-265.

Friedrich, J. O., Adhikari, N. K. J., and Beyene, J. (2007), “Inclusion of zero total event
trials in meta—analyses maintains analytic consistency and incorporates all available
data,” BMC' Medical Research Methodology, 7, 5.

George, E. O. and Mudholkar, G. S. (1977), “The logit method for combining independent
tests,” Institute of Mathematical Statistics Bulletin, 6, 212.

Glenny, A., Altman, D. G., Song, F., Sakarovitch, C., Deeks, J., D’Amico, R., Bradburn,
M., and Eastwood, A. (2015), “Indirect comparisons of competing interventions,” Health
Technology Assessment, 9, 26.

Greenland, S. and Salvan, A. (1990), “Bias in the one—step method for pooling study
results,” Statistics in Medicine, 9, 3, 247-252.

Higgins, J. and Green, S. (2011), Wiley Publication, Chichester, UK.

Higgins, J. P. T. and Thompson, S. G. (2002), “Quantifying heterogeneity in a
meta—analysis,” Statistics in Medicine, 21, 1539-1558.

Huedo-Medina, T., Sanchez-Meca, J., Marin-Martinez, F., and Botella, J. (2006),
“Assessing heterogeneity in meta—analysis: Q statistic or 12 index?” CHIP Documents,
19.

Hunter, J. E. and Schmidt, F. L. (2000), “Fixed Effects vs. Random Effects Meta—Analysis
Models: Implications for Cumulative Research Knowledge,” International Journal of
Selection and Assessment, 8, 4, 275-292.

Ioannidis, J. P. (2006), “Meta—analysis in public health: potentials and problems,” Italian
Journal of Public Health, 3, 2, 9-14.

Jansen, J. P., Fleurence, R., Devine, B., Ttzler, R., Barrett, A., Hawkins, N., Lee, K.,
Boersma, C., Annemans, L., and Cappelleri, J. C. (2011), “Interpreting Indirect
Treatment Comparisons and Network Meta—Analysis for Health—Care Decision Making:
Report for the ISPOR Task Force on Indirect Treatment Comparisons Good Research
Practices: Part 1,” Value in Health, 14, 417-428.

Kim, B. J. and Lee, S. H. (2013), “Cerebral microbleeds: their associated factors,
radiologic findings, and clinical implications,” J Stroke, 15, 3, 153-163.

Kim, H., Gurrin, L., and Ademi, Z. (2013), “Overview of methods for comparing the
efficacies of drugs in the absence of head—to—head clinical trial data,” British Journal of

125

Clinical Pharmacology, 77, 1, 116-121.

Kim, M., Wang, X., Liu, C., Dorris, K., Fouladi, M., and Song, S. (2016),
“Random—effects meta—analysis for systematic reviews of phase I clinical trials: Rare
events and missing data,” Research Synthesis Methods.

Kuss, O. (2015), “Statistical methods for meta—analyses including information from
studies without any events — add nothing to nothing and succeed nevertheless,”
Statistics in Medicine, 34, 1097-1116.

Liu, D., Liu, R. Y., and Xie, M. (2014), “Exact Meta—Analysis Approach for Discrete Data
and its Application to 2 x 2 Tables With Rare Events,” Journal of the American
Statistical Association, 109, 508, 1450-1465.

Lu, G. and Ades, A. E. (2004), “Combination of direct and indirect evidence in mixed
treatment comparisons,” Statistics in Medicine, 23, 3105-3124.

Lumley, T. (2002), “Network meta—analysis for indirect treatment comparisons,” Statistics
in Medicine, 21, 2313-2324.

Mantel, N. and Haenszel, W. (1959), “Statistical Aspects of the Analysis of Data From
Retrospective Studies of Disease,” J Natl Cancer Inst, 22, 4, 719-748.

Mehta, C. R., Patel, N., and Senchaudhuri, P. (1992), “Exact Stratified Linear Rank Tests
for Ordered Categorical and Binary Data,” Journal of Computational and Graphical
Statistics, 1, 1, 21-40.

Mehta, C. R. and Patel, N. R. (1995), “Exact Logistic Regression: Theory and Examples,”
Statistics in Medicine, 14, 2143-2160.

Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1988), “Importance Sampling for
Estimating Exact Probabilities in Permutational Inference,” Journal of the American
Statistical Association, 83, 404, 999-1005.

Mills, E. J., Ghement, 1., O'Regan, C., and Thorlund, K. (2011), “Estimating the Power of
Indirect Comparisons: A Simulation Study,” PLoS One, 6:€16237.

Mills, E. J., Thorlund, K., and Ioannidis, J. P. A. (2013), “Demystifying trial networks
and network meta—analysis,” BMJ, 346:f2914.

Molenberghs, G. and Ryan, L. M. (1999), “An Exponential Family Model for Clustered
Multivariate Binary Data,” Environmentrics, 10, 279-300.

Moreno, S. G., Sutton, A. J., Thompson, J. R., Ades, A. E., Abrams, K. R., and Cooper,
N. J. (2012), “A generalized weighting regression—derived meta-analysis estimator robust
to small-study effects and heterogeneity,” Statistics in Medicine, 31, 1407-1417.

126

O’Rourke, K. (2007), “An historical perspective on meta—analysis: dealing quantitatively
with varying study results,” Journal of the Royal Society of Medicine, 100, 579-582.

Paul, L. M. (2018), “Cannons and sparrows: an exact maximum likelihood non—parametric
test for meta—analysis of k 2x2 tables,” Emerging Themes in Epidemiology, 15, 9.

Paule, R. C. and Mandel, J. (1982), “Consensus Values and Weighting Factors,” Journal of
Research of the National Bureau of Standards, 87, 5, 377-385.

R Core Team (2014), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria.

Sankey, S. S., Weissfeld, L. A., Fine, M. J., and Kapoor, W. (1996), “An assessment of the
use of the continuity correction for sparse data in meta—analysis,” Communications in
Statistics — Simulation and Computation, 25, 1031-1056.

Shuster, J. J., Guo, J. D., and Skyler, J. S. (2012), “Meta—analysis of safety for low
event—rate binomial trials,” Research Synthesis Methods, 3, 30—50.

Shuster, J. J. and Walker, M. A. (2016), “Low—event-rate meta—analyses of clinical trials:
implementing good practices,” Statistics in Medicine, 35, 2467-2478.

Sidik, K. and Jonkman, J. N. (2005), “Simple heterogeneity variance estimation for
meta—analysis,” Journal of Royal Statistical Society (Series C), 54, 367-384.

(2007), “A comparison of heterogeneity variance estimators in combining results of
studies,” Statistics in Medicine, 26, 1964-1981.

Singh, K., Xie, M., and Strawderman, W. E. (2005), “Combining Information from
Independent Sources through Confidence Distributions,” The Annals of Statistics, 33, 1,
159-183.

Spinks, A., Glasziou, P., and Del Mar, C. B. (2013), “Antibiotics for sore throat
(Review),” Cochrane Database of Systematic Reviews, 11.

Stijnen, T., Hamza, T. H., and Ozdemir, P. (2015), “Random effects meta—analysis of
event outcome in the framework of the generalized linear mixed model with applications
in sparse data,” Statistics in Medicine, 34, 1097-1116.

Sutton, A. J. and Higgins, J. P. T. (2008), “Recent developments in meta—analysis,”
Statistics in Medicine, 27, 625-650.

Sweeting, M. J., Sutton, A. J., and Lambert, P. C. (2004), “What to add to nothing? Use
and avoidance of continuity corrections in meta-analysis of sparse data,” Statistics in
Medicine, 23, 1351-1357.

T. C. Smith, A. T., D. J. Spiegelhalter (1995), “Bayesian approaches to random—effects
meta—analysis: a comparative study,” Statistics in Medicine, 14, 2685-2699.

127

Thorlund, K. and Mills, E. J. (2012), “Sample size and power considerations in network
meta—analysis,” Systematic Reviews, 1:41.

Tian, L., Cai, T., Pfeffer, M. A., Piankov, N., Cremieux, P.-y., and Wei, L. J. (2009),
“Exact and efficient inference procedure for meta—analysis and its application to the
analysis of independent 2 x 2 tables with all available data but without artificial
continuity correction,” Biostatistics, 10, 2, 275-281.

Tonin, F. S., Rotta, I., Mendes, A. M., and Pontarolo, R. (2017), “Network meta—analysis:
a technique to gather evidence from direct and indirect comparisons,” Pharmacy
Practice, 15, 1, 943.

Tsivgoulis, G., Zand, R., Katsanos, A. H., Turc, G., Nolte, C. H., Jung, S., Cordonnier,
C., Fiebach, J. B., Scheitz, J. F., Klinger-Gratz, P. P., Oppenheim, C., Goyal, N.,
Safouris, A., Mattle, H. P., Alexandrov, A. W., Schellinger, P. D., and Alexandrov,
A. V. (2016), “Risk of Symptomatic Intracerebral Hemorrhage After Intravenous
Thrombolysis in Patients With Acute Ischemic Stroke and High Cerebral Microbleed
Burden: A Meta—analysis,” JAMA Neurol, 73, 6, 675-683.

Vandermeer, B., Bialy, L., Hooton, N., Hartling, L., Klassen, T. P., Johnston, B. C., and
Wiebe, N. (2009), “Meta—analysis of safety data: a comparison of exact versus
asymptotic methods,” Statistical Methods in Medical Research, 18, 421-432.

Whitehead, A. and Whitehead, J. (1991), “A general parametric approach to the
meta—analysis of sparse data,” Statistics in Medicine, 10, 1665-1677.

Xie, M., Singh, K., and Strawderman, W. E. (2011), “Confidence Distributions and a
Unifying Framework for Meta—Analysis,” Journal of American Statistical Association,
106, 493, 320-333.

Yaghi, S., Eisenberger, A., and Willey, J. Z. (2014), “Symptomatic Intracerebral
Hemorrhage in Acute Ischemic Stroke After Thrombolysis With Intravenous
Recombinant Tissue Plasminogen Activator: A Review of Natural History and
Treatment,” JAMA Neurol, 71, 9, 1181-1185.

Yang, G., Cheng, J. Q., and Xie, M. (2016a), gmeta: Meta-Analysis via a Unified
Framework of Confidence Distribution, r package version 2.2-6.

Yang, G., Liu, D., Wang, J., and Xie, M. (2016b), “Meta—Analysis Framework for Exact
Inferences with Application to the Analysis of Rare Events,” Biometrics, 72, 1378-1386.

Yusuf, S., Peto, R., Lewis, J., Collins, R., and Sleight, P. (1985), “Beta Blockade During
and After Myocardial Infarction: An Overview of the Randomized Trials,” Progress in
Cardiovascular Diseases, 27, 5, 335-371.

128

APPENDICES

129

Appendix A: Information on the Confidence Interval Bounds of Section 2.2.3

There are several different methods of finding confidence intervals. For our exact
estimation method (described in Section 2.2.3), we utilize the method known as “inverting
a test statistic.” This method capitalizes on the strong relationship between hypothesis
testing and interval estimation. Hypothesis tests hold the parameter fixed and determine
what sample values are consistent with that fixed parameter. Confidence intervals hold
the sample value fixed and determine what values of the parameter makes that sample
value most likely. To obtain a (1 — «) confidence interval, a hypothesis test can be
inverted, which effectively inverts the acceptance region of the « level hypothesis test.
This process could be repeated for each possible value of the parameter in the parameter
space. However, to avoid unnecessarily testing each possible value of the parameter in the
parameter space, we can start at one end of a distribution and carry out these tests until
the probability exceeds some threshold. At that point, we know subsequent values would

fall in the acceptance region, and no further testing is needed.

As an example, consider, the one—sided hypothesis test Hy : 0 = 09 and H, : 6 > 6.
In this case, to create a (1 — «) one—sided confidence interval we use the lower tail of the
distribution to find the upper bound of the confidence interval. To avoid unnecessarily
testing each possible value of the parameter in the parameter space, we work from the left
of the distribution to the right, stopping when we reach the point at which
P(0 < 6p) > 1 — a. Figure A.1 shows what this would look like for a one-sided 95%

confidence interval for normally distributed data.

Similarly, for the one—sided hypothesis test Hy : 8§ = 6y and H, : 8 < 0y, we use the
upper tail of the distribution to find the lower bound of the confidence interval. For a
(1 —) one-sided confidence interval, we work from the right of the distribution to the
left, stopping when we reach the point at which P(0 > 6y) > 1 — a.. Figure A.2 shows what

this would look like for a one-sided 95% confidence interval for normally distributed data.

130

6

FIGURE A.1: This figure illustrates how to find the one-sided 95% confidence
interval given the corresponding one—sided hypothesis test.

6

FIGURE A.2: This figure illustrates how to find the one-sided 95% confidence
interval given the corresponding one—sided hypothesis test.

We utilize this method when creating our exact confidence intervals. Note that for

131

two sided intervals, the two one-sided calculations (using §) are essentially combined to

produce lower and upper limits.

132

Appendix B: Adjustments to the Conditional Probability of Section 2.2.3

The conditional probability shown in Equation 2.10 is used to compute exact
estimates and exact confidence intervals. Often, the distribution of test statistics is scaled
to start at zero since large values of the test statistic quickly produce values that are too
large to be stored in computer memory. Accordingly, the following adjustment can be

made to Equation 2.10.

C(t(zobs) ‘Sa(z)> SJ(Z))eXp{/Bt(Zobs)}
max(t(z))
Cluls*(z),s°(z))exp{Bu}
u=min(¢(z))
|

C(t(2ops)|5%(2), 5% (2))exp{ Bt (zops) } o exp{—/Smin(t(z))}
: exp{—Bmin(t(z
2 Cllse(z), ' ()exp{fu) p{~pmin(t(2))}

C(t(2obs) |5 (2), 5°(2))exp{B (t(2ohs) — min(t(2)))}
max(t(z))

2))C(UIS“(Z)»S‘S(Z))GXP{B (u —min(#(2)))}
C(t(zobs) |5 (2), 8°(2))exp{Bt(z552'") }
max(t(zscalcd))

2. C(uls*(2), s°(2))exp{Buscaied}

yscaled :min(t(zscaled))

fﬁ(t(zobs)|5a('z)’ 56(Z)) =

max(t(z)

I

The unnormalized probabilities C'(+) are also often replaced by the normalized probabilities

N(-) by dividing the numerator and denominator by the normalizing constant (NC)

Zobs (2 86 ex scaled
Fa(t(zabs)|5%(2), 8% (2)) = maiféscalidz)' &), ez) . %g
2. C(uls*(2), s°(2))exp{Busled}

uscaled:min(t(zscaled))

z s%(2),89 (2 scale
C(t(ObS)‘]\[C‘()) ())eXp{Bt(z ld)}

obs

max(t(zscaled)) N 5(x
C(uls]S[zgvs ())exp{ﬁuscaled}

uscaled:min(t(zscaled))

N (t(zobs) |5 (2), 8° (2))exp{ Bt (255" }

max(t(zscaled)) :
N(uls*(z), s°(2))exp{Buscated}

yscaled :min(t(zscaled))

133

Working with the log of the conditional probability also decreases computational issues

that arise with large data sets. Accordingly,

N (t(zobs) |5 (2), ° (2))exp{ Bt (255" }

max(t(zscaled))

log (f3(-)) = log
N (u|s*(2), s°(2))exp{Suscaled }
uscaled:min(t(zscaled))
= log (N (¢(zans)|5% (2), 57 (2)Jexp{ Bt(2352) }
max(t(zscaled))
— log N (uls*(z),s° (2))exp{Bu**!}

wscaled —min t(zscalcd))

= log (N (#(z33,)|5°(2), 5" ())) + Be(z52")

max(t zscaled))

—log > N (uls*(2), 8° (z) Jexp{ fu*!}

uscaled:mln(t(zscaled))

A common formula for rewriting the log of a summation is

log(z +y) = log(x) + log(1 + exp{log(y) — log(z)}).

We can iteratively apply this formula to obtain an exact estimate.

134

Appendix C: Code for Chapter 2

This appendix contains selected code for Chapter 2, and includes the following:

clustexamp.c

trend.c

e numrout.c

nrutil.h

ExactEstimation.R

CMLE.R

e ma.sim.dat.R

Generate_Data.R

The files clustexamp.c, trend.c, numrout.c, and nrutil.h are used to compute the exact

distribution. Once the distribution is computed, an exact estimate and exact confidence
interval can be computed with ExactEstimation.R and CMLE.R. For the simulations in
Chapter 2, ma.sim.dat.R and Generate_Data.R were used to simulate the meta—analysis
data sets. These data sets were then run through the exact distribution C code and the

exact estimation R code to obtain exact estimates, confidence intervals, and p—values.

135

Exact Distribution C Code - clustexamp.c:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <limits.h>

#include "nrutil.h"

//
//
//
//
//
/ %
10

1
*/

Note: treatment groups must be labeled with 1s (treatment) and Os (control)
The meta-analysis data set should be a .txt file.

The number of studies * 2 is on the first line, with the

indicator for treatment, the number of events, and the sample size following

Example data set with NUMCLUST = 10:

#define NUMCLUST 10 // number of studies * 2

int main (int argc, char *argv[]) {

int dose [NUMCLUST], litter [NUMCLUST], i, rowm;
int obscorr_0, obscorr_1, obsstat;

int sampsz, ncol, numclust;

int x, y, n, num, yij[NUMCLUST];

int switchtrt = O0;

int m_trt_switch;

double pval;

rowm = 0;

obscorr_0 = 0;

136

obscorr_1 = 0;
obsstat = 0;
sampsz = 0;
pval = 0;

ncol = NUMCLUST;

FILE *fin;
char ifile[250];

fin = fopen(ifile, "r");

if (fin != NULL) {
fscanf (fin, "%d", &numclust);
for (i = 0; i < numclust; i++) {
num = fscanf (fin, "%d %d %d4d", &x, &y, &n);
dose[i] = x;
yijlil = y;

obsstat += xx*y;

if (x == 0) {
obscorr_0 += y*(n - y);
}
else if (x == 1) {
obscorr_1 += y*x(n - y);
if (switchtrt == 0) {
m_trt_switch = ij;
switchtrt = 1;
}
}

sampsz += n;

rowm += y;

litter[i] = n;
}

fclose(fin);
trstat (&ncol, litter, dose, &sampsz, &rownm,
&m_trt_switch, &obsstat, &obscorr_O,

&obscorr_1, &pval);

return O;

137

Exact Distribution C Code - trend.c:

// TREND.C: BUILDS NETWORK USING ALLOCATED VECTORS OF SUBNODES

#include <stdio.h>

#include <math.h>

typedef struct arc_tag ARC;
typedef struct snd_tag SUBND;

typedef struct rec_tag REC;

struct rec_tag {
int pastr; // past record
double pastp; // past probability

REC *nextrec;

struct arc_tag {
int arc;
double pr; // probability length
ARC *nextarc;
SUBND *child;

};

struct snd_tag {

]
o

int parcorr_0; // partial sum for the quadratic term when x

[
-

int parcorr_1; // partial sum for the quadratic term when x
int spl; // shortest path length (for the test statistic)
int 1pl; // longest path length (for the test statistic)
double tp; // total probability

int numpred; // number of predecessor nodes created

ARC *arc;

REC *rec;

typedef struct node_tag {
int splcorr; // shortest path length for quadratic term
int lplcorr; // longest path length for quadratic term
int upper;

int lower;

138

int numsucc; // number of successor nodes
SUBND *subnodes;

}NODE;

// trstat = trend statistic
void trstat(int #*ncol, int table[], int uwt[], int *sampsz,
int *rowm, int *m_trt_switch, int *obsstat,

int *obscorr_0, int *obscorr_1, double *pval);

// ncol = number of columns in data = numclusters
// uwt = u weight = scores
// sampsz = total sample size
// rowm = number successes across all clusters - first sufficient stat (sum yi)
// obstat = observed linear rank test statistic
// obscorr_0O = observed correlation suff. statistic (quadratic term) when x = 0
// obscorr_1 = observed correlation suff. statistic (quadratic term) when x = 1
void trstat(int *ncol, int table[], int uwt[], int *sampsz,
int *rowm, int *m_trt_switch, int *obsstat,
int *obscorr_0, int *obscorr_1, double *pval) {
// lowval = test statistic value (for p-value calculation, add up
// everything with test stats larger than this value)
int i, nnodes, high, lowval;
// colm = num responses in ith cluster
// wt = score for that dose (x-value)
// stpos = starting position at each stage
// table2 = sample size for each cluster, stored backwards (ex: for 3
// clusters, if colm = [0,2,3,3], then sample size for cluster 1 = 3,
// cluster 2 = 3, cluster 3 = 2)
// minvl = min number of responses at that stage. For terminal node
// (last stage), it should be equal to the first sufficient
// statistic and it should be zero for all other stages)
int *colm, *cumcol, *wt, *stpos, *minvl, *table2;
// normcon = normalizeng constant - total probability for initial node

double *xfact, normcon;
REC *currec;
SUBND *cursnode;

NODE *nodes;

139

FILE *fout, *distout;

// factorial log for total probability
void faclog(int sampsz, double *fact);
// calculate nodes
void calnds (int ncol, int *table, int rowm, int *nnodes, int *colm,
int *cumcol, int *stpos, int *minvl);
// NDvector = create a vector of nodes
NODE *NDvector (long nl, long nh);
// forind = forward induction/pass - create network based on sum yi
void forind(int ncol, int rowm, int nnodes, int sampsz, int *colm,
int *cumcol, double *fact, int *stpos, int *minvl, NODE #*nodes);
// backind = backward induction/pass - create network based on quadratic
// term (prune results from forward pass to only include nodes that
// satisfy the quadratic condition)
void backind(int ncol, int rowm, int nnodes, int sampsz, int m_trt_switch,
int obscorr_0O, int obscorr_1, int *colm, int *cumcol, int *wt,
double *fact, int *stpos, int *minvl, NODE #*nodes);
void printnd(int nnodes, int obscorr_0, int obscorr_1, NODE *nodes);
// finalpass = final pass - calculate the p-value as the final forward
// pass through the network
void finalpass(int nnodes, int ncol, int *minvl, int *stpos,
int obsstat, int lowval, int obscorr_0O, int obscorr_1,
NODE *nodes, double *rtail);
void free_NDvector (NODE *v, long nl, long nh);
void free_SNvector (SUBND *v, long nl, long nh);
void free_arc (ARC *arc);

void freerec (REC *rec);

if (*rowm == 0 || *rowm == *sampsz) {
*pval = 1.0;

return;

table2 = ivector (0, *ncol - 1);
colm = ivector (1, *ncol + 1);
cumcol = ivector (1, *ncol + 1);
wt = ivector(l, *ncol + 1);

stpos = ivector (1, *mncol + 1);

140

minvl = ivector (1, *ncol + 1);

fact = dvector (1, #*sampsz + 1);

faclog(*sampsz, fact);
wt[1] = 0;
for (i = 2; i <= %*ncol + 1; i++) {
table2[i - 2] = table[*ncol - i + 1]; \

wt[i] = uwt[i - 2];

calnds (*¥ncol, table2, *rowm, &nnodes, colm, cumcol, stpos, minvl);
//printf ("\nnnodes = J%d", nnodes);

nodes = NDvector (1, nnodes);

forind (*ncol, *rowm, nnodes, *sampsz, colm, cumcol,

fact, stpos, minvl, nodes);

for (i = 1; i <= nnodes; i++) {
nodes [i].upper = nodes[nnodes - i + 1].1lplcorr;
nodes[i].lower = nodes[nnodes - i + 1].splcorr;
}

// calculate nodes
calnds (*ncol, table, *rowm, &nnodes, colm, cumcol, stpos, minvl);
forind (*ncol, *rowm, nnodes, *sampsz, colm, cumcol,

fact, stpos, minvl, nodes);

//printf ("\nFinished forward induction...\n\n");

backind (¥ncol, *rowm, nnodes, *sampsz, *m_trt_switch,
*obscorr_0, *obscorr_1, colm, cumcol, wt, fact,
stpos, minvl, nodes);

//printf ("\nFinished backward induction...\n\n");

lowval=nodes [stpos[1]]. subnodes [*obscorr_0 + *obscorr_1].spl;
// if you want the whole distribution of the test stat, then

// uncomment the following line (smallest value of test stat)
//lowval = *obsstat;

normcon = nodes[stpos[1]].subnodes[*obscorr_0 + *obscorr_1].tp;

//printf ("\nNormalizing Constant = %f", normcon);

*pval = (double)0.0;

// this is where the final p-value is calculated:

141

finalpass (nnodes, #*ncol, minvl, stpos, *obsstat, lowval,

*obscorr_0, *obscorr_1, nodes, pval);

// cursnode = current subnode

cursnode = &(nodes[stpos[*ncol + 1]].subnodes[0]);

// currec = current record - last record that is processed
currec = cursnode->rec;

// if lowval is uncommented above, then uncomment the following lines to

// get the entire distribution of the test statistic

/ *

printf ("\n\nPERMUTATION DISTRIBUTION");

printf ("\n\nt (x) Pr(T=t) \n");
printf (W \n");

fprintf (distout ,"\n\nPERMUTATION DISTRIBUTION");

fprintf (distout,"\n\nt (x) Pr(T=t) \n");
fprintf (distout, e b \n");

*/

while (currec != NULL) {

fprintf (distout, "%6d %18.5f %18.5f\n", currec->pastr,
(currec->pastp), exp(currec->pastp - normcon));

if (currec->pastr >= *obsstat)

xpval = *pval + exp(currec->pastp - normcon);

currec = currec->nextrec;
}
fclose(distout);
cursnode = &(nodes[stpos[*ncol + 1]].subnodes[0]);
currec = cursnode->rec;
freerec(currec);
high = imin(nodes[stpos[*ncol + 1]].upper, *obscorr_0O + *obscorr_1);

free_SNvector (nodes[stpos[*ncol + 1]].subnodes,
nodes [stpos [*ncol + 1]].lower, high);

free_NDvector (nodes, 1, nnodes);

free_ivector (table2, 0, *ncol - 1);

free_ivector (colm, 1, *ncol + 1);

free_ivector (cumcol, 1, *ncol + 1);

free_ivector(wt, 1, *ncol + 1);

free_ivector(stpos, 1, *ncol + 1);

free_ivector (minvl, 1, *ncol + 1);

free_dvector (fact, 1, *sampsz + 1);

142

return;

void finalpass(int nnodes, int ncol, int *minvl, int *stpos, int obsstat,

int lowval, int obscorr_O, int obscorr_1, NODE #*nodes, double *rtail) {

int pos, hlim, 1llim, r, stage, high, k, j;
double npr;

SUBND *cursnode, *succ;

ARC *carc;

REC *newrec, *crec, *curr, *nxt;

// FILE x*fout;

REC *crerec(int r, double pr); // create record
double addlog(double numil, double num2);

void freerec (REC *rec);

void free_SNvector (SUBND #*v, long nl, long nh);

void free_arc(ARC *arc);

// fout=fopen("finalpass.log","w");

newrec = crerec (0, (double)0.0);
nodes [stpos [1]]. subnodes [obscorr_0 + obscorr_1].rec = newrec;
for (stage = 1; stage <= ncol; stage++) {

1lim = minvl [stage];

if (stage == 1) hlim = 1lim;

else hlim = 1lim + stpos[stage - 1] - stpos[stagel - 1;

/* fprintf (fout,"\n\nstage=%d, 1llim=%d, hlim=%d\n",stage,
1lim,hlim); */

for (pos = stpos[stagel]; pos <= stpos[stage] + hlim - 1lim;

pos++) {

//fprintf (fout,"\n pos (node)=%d",pos);

if (nodes[pos].subnodes == NULL) continue;

high = imin(nodes[pos].upper, /*obscorr*/obscorr_0 + obscorr_1);

// fprintf (fout,", low=J%d, high=%d",nodes[pos].lower ,high);

for (k = nodes[pos].lower; k <= high; k++) {

cursnode = &(nodes[pos].subnodes[k]);

if (cursnode->parcorr_0 < O || cursnode->parcorr_1 < 0) {

continue;

}

143

// fprintf (fout,"\n cursnode=%d %d %d %7.3f",

// cursnode->parcorr ,cursnode->spl,cursnode->1pl,cursnode->tp);

carc = cursnode->arc; //carc = current subnode arc
while (carc !'= NULL) {

succ = carc->child;

// fprintf (fout,"\n curchild=¥%d %d %4 %7.3f",

// succ->parcorr,succ->spl,succ->1pl,succ->tp);
crec = cursnode->rec;

while (crec != NULL) {

// from Formula: t_k + r_(1,k+1) (part 2, part a)
r = crec->pastr + carc->arc;

// from Formula: t_k + r_(1,k+1) +

// LP_1(k+1, s_(1,k+1), s_(2,k+1)) < t_obs

// (part 2, part a - in reverse (if NOT part a,
// then move on))

if (r + succ->1pl >= lowval) {

if (crec->pastp < 0.0000001)

npr = carc->pr;

else npr = crec->pastp + carc->pr;

newrec = crerec(r, npr);

if (succ->rec == NULL)

succ->rec = newrec;

else if (newrec->pastr < succ->rec->pastr) {

newrec->nextrec = succ->rec;

succ->rec = newrec;

}

else {

curr = succ->rec;

nxt = curr->nextrec;

while (nxt != NULL) {

if (r == curr->pastr ||

(nxt != NULL && (r < nxt->pastr))) {
break;

}

curr = nxt;

nxt = curr->nextrec;

}

if (r == curr->pastr) {

curr->pastp = addlog(curr->pastp,

144

newrec->pastp);

free(newrec);

}

else {

newrec->nextrec = nxt;

curr->nextrec = newrec;

}

}

}

// move on to the next record and don’t transfer this

// record (if part 2, part a is true)

crec = crec->nextrec;

}

carc = carc->nextarc;

}

if (cursnode->rec != NULL)

freerec (cursnode->rec);
}
if (nodes[pos].subnodes != NULL) {
for (j = nodes[pos].lower; j <= high; j++) {
if (nodes[pos].subnodes[j]l.arc != NULL)
free_arc(nodes[pos].subnodes[j].arc);
}
}
free_SNvector (nodes [pos].subnodes, nodes[pos].lower, high);
}
}

//fclose (fout);

REC * crerec(int r, double pr) { // create record

REC *record;

record = (REC *)malloc(sizeof (REC));

record->pastr = r; // t_k = partial rank length

// h_k = unnormalized sum of probabilites of all partial paths
// with rank length r_1k

record->pastp = pr;

record->nextrec = NULL;

return(record);

void freerec(REC *rec) {

void freerec (REC *rec);

if (rec->nextrec != NULL)

freerec(rec->nextrec);

free(rec);

return;

void free_arc (ARC *arc) {

void free_arc(ARC x*arc);

if (arc->nextarc != NULL)

free_arc(arc->nextarc);

free(arc);

return;

void backind(int ncol, int rowm, int nnodes, int sampsz, int m_trt_switch,

int obscorr_0, int obscorr_1, int *colm, int *cumcol,

double *fact, int *stpos, int *minvl, NODE *nodes) {

// parm = partial sum of yi

int 11im, hlim, k, j, npos, parm, 1llm, hlm, ill, ihh,

int num, ipl, remcorr_O, remcorr_1, ipll, nodind, ref,

double prarc, newprob; // prarc = probability length

SUBND *cursnode;
ARC *newarc, *carc, *narc;
SUBND *SNvector (long nl, long nh);

void init(int lower, int upper, SUBND #*subnodes);

SUBND #*crenode (/*int remcorr ,*/ int remcorr_O, int remcorr_1,

int sp, int ipl, double prarc);

double prbarO(int coltot, int numsucc, double *fact);

int *wt,

count;

high,

up;

int 1p,

145

146

// add all of the log-combinatorics terms
double addlog(double numl, double num2);

void dropnd (SUBND *cursnode);

npos = stpos[ncol + 1];

nodes [npos].subnodes = SNvector (0, 0);

nodes [npos].subnodes [0].parcorr_0 = obscorr_0;
nodes [npos]. subnodes [0] . parcorr_1 = obscorr_1;

nodes [npos].subnodes [0].1pl = 0;

nodes [npos].subnodes [0].spl = 0;

// number of predecessor nodes created
nodes [npos].subnodes [0].numpred = 0;

nodes [npos].subnodes [0].tp = 0.0;

nodes [npos].subnodes [0]. arc NULL;

nodes [npos]. subnodes [0] . rec NULL;
// in for loop, j is decreasing -> going backwards through the network
for (j = ncol + 1; j >= m_trt_switch + 2; j--) {

/* printf ("\nAt the beginning of stage = %d with wt = 4",

j, wtljl); =/

1lim = minv1[j];

hlim = 1lim + stpos[j - 1] - stpos[j]l - 1;

// go through the number of nodes (in the gammal network)
// at Stage j-1

for (parm = 1llim; parm <= hlim; parm++, npos++) {
//printf ("\nAt node = %d, %d", j, parm);

// at the beginning, we create the terminal node,

// so nodes[npos].subnodes.parcorr = s2,
// nodes[npos].subnodes.parcorr_0 = s271, and
// nodes[npos].subnodes.parcorr_1 = s272.

// hit "continue" if there are no quadruples to be created
// from the Gamma(s_1) network for the node (j-1, parm)

if (nodes[npos].subnodes == NULL) continue;

int ref_1;

// Grab the Successor Node:

// from formula ((k-1,u) in P(k, s_1k)): u

// (the minimum value u can take on for the k-1 stage)

1lm = imax (0, parm - colm[jl);

// from formula ((k-1,u) in P(k, s_1k)): u

147

// (the maximum value u can take on for the k-1 stage)
hlm = imin(parm, cumcol[j - 11);

ill

stpos[j - 1] + 1lm - minvl[j - 1];
ihh = ill + hlm - 1lm;
count = parm - 1llm; // from Formula: s_1k - u

up = imin(nodes[npos].upper, obscorr_O + obscorr_1);

for (nodind = nodes[npos].lower; nodind <= up; nodind++) {
cursnode = &(nodes[npos].subnodes[nodind]);

// for terminal node, this will always be equivalent to

// s271 > 0 or s272 > 0

if ((cursnode->parcorr_1) < 0) continue;

num = count; // s_1k - u

// Create the Predecessor Nodes:

// k represents node position

for (k = ill; k <= ihh; k++, num--) {

// last term of v in the Formula (part (a)):

// (s_1k - u)(nk - s_1k + u)

ipl = num * (colm[j] - num);

remcorr_0 = obscorr_0; // v in the Formula (part (a))
remcorr_1 = cursnode->parcorr_1 - ipl;

if (j == m_trt_switch + 2 && remcorr_1 != 0) continue;
if (j !'= m_trt_switch + 2 &&

(remcorr_1 > obscorr_1 || remcorr_1 < 0)) continue;

// number of predecessor nodes created

(cursnode ->numpred) ++;

// initialize subnode

if (nodes[k].subnodes == NULL) {

high = imin(nodes[k].upper, obscorr_O + obscorr_1);
nodes [k] . subnodes = SNvector (nodes[k].lower, high);
init (nodes[k].lower, high, nodes[k].subnodes);

}

newarc = (ARC *)malloc(sizeof (ARC));

// from Formula: x_k(s_1k - u) = RANK/ARC LENGTH
ipll = wt[j] * num;

// colm[j] = column total (n_k),

// num = (s_1k - u),

// from Formula: choose(n_k,(s_1k - u)) PROBABILITY LENGTH

// OF CONNECTING ARC

148

prarc = prbarO(colm[j], num, fact);

newarc->child = cursnode;

newarc->arc = ipll; // RANK/ARC LENGTH

// PROBABILITY LENGTH OF CONNECTING ARC

newarc ->pr = prarc;

newarc->nextarc = NULL;

ref_1 = (obscorr_O0 + obscorr_1) - (remcorr_0 + remcorr_1);
// If (k-1,u,v) has not yet been stored, then:

if ((nodes[k].subnodes[ref_1].1pl) < 0) {

nodes [k] . subnodes [ref_1].parcorr_0 = remcorr_O0;

nodes [k] . subnodes[ref_1].parcorr_1 = remcorr_1;

// from Formula: LP_1(k-1,u,v)=r_1k + LP_1(k,s_1k,s_2k)
nodes [k].subnodes [ref_1].1pl = (cursnode->1pl) + ipli;
// from Formala: SP_1(k-1,u,v)=r_1k + SP_1(k,s_1k,s_2k)
nodes [k] . subnodes[ref_1].spl = (cursnode->spl) + iplil;
// from Formula: TP(k-1,u,v)=c_ok * TP(k,s_1k,s_2k)

// (we add instead of multiply because we are working

// with the LOG probabilities)

nodes [k] . subnodes[ref_1].tp = (cursnode->tp) + prarc;
nodes [k] . subnodes [ref_1].arc = newarc;

}

// Else, (k-1,u,v) already exists (i.e., was found

// previously to be the predecessor of another node at the
// kth stage) and then:

else {

// from Formula (order switched):

// max{LP_1(k-1,u,v), r_1k + LP_1(k,s_1k,s_2k)}
if ((cursnode->1pl) + ipll >

nodes [k].subnodes [ref_1].1pl) {

// from Formula: LP_1(k-1,u,v)=max{LP_1(k-1,u,v),
// r_1k + LP_1(k,s_1k,s_2k)}

nodes [k] . subnodes [ref_1].1pl =

cursnode->1pl + iplil;

}

// from Formula (order switched):

// min{SP_1(k-1,u,v), r_1k + SP_1(k,s_1k,s_2k)}
if ((cursnode->spl) + ipll <

nodes [k] . subnodes [ref_1].spl) {

// from Formula: SP_1(k-1,u,v)=min{SP_1(k-1,u,v),

149

// r_1k + SP_1(k,s_1k,s_2k)}

nodes [k] . subnodes [ref_1].spl =
cursnode->spl + iplil;

}

// from Formula: c_ok * TP(k,s_1k,s_2k)
newprob = prarc + cursnode->tp;

// from Formula : TP(k-1,u,v)=TP(k-1,u,v) +
// c_ok * TP(k,s_1k,s_2k)

nodes [k] . subnodes [ref_1].tp =

addlog (nodes [k].subnodes[ref_1].tp, newprob);

if (nodes[k].subnodes[ref_1].arc == NULL)
nodes [k].subnodes[ref_1].arc = newarc;
else {

carc = nodes[k].subnodes[ref_1].arc;
narc = carc->nextarc;

while (narc != NULL) {

carc = carc->nextarc;

narc = carc->nextarc;

}

carc->nextarc = newarc;

}

}

}

// if node has no predeccesors then drop the node
if ((cursnode->numpred) == 0)
dropnd (cursnode);
//printnd (nnodes, obscorr, remcorr_0, remcorr_1, nodes);
}
}
}
// same for loop as previous for loop, except now we are working with
// the other treatment group
// j is decreasing --> going backwards through the network
for (j = m_trt_switch + 1; j >= 2; j--) {
/* printf ("\nAt the beginning of stage = %d with wt = 4",
jo wtl3jld; =/

1lim = minvl[j];

hlim = 11lim + stpos[j - 1] - stpos[j]l - 1;

for (parm = 1lim; parm <= hlim; parm++, npos++) {

150

if (nodes[npos].subnodes == NULL) continue;
int ref_1;

1llm = imax (0, parm - colm[jl);

hlm = imin(parm, cumcol[j - 11);

ill = stpos[j - 1] + 1lm - minvl[j - 1];

ihh = ill + hlm - 1lm;

count = parm - 1llm;

up = imin(nodes[npos].upper, obscorr_0 + obscorr_1);

for (nodind = nodes[npos].lower; nodind <= up; nodind++) {
cursnode = &(nodes[npos].subnodes[nodind]);

if ((cursnode->parcorr_0) < 0) continue;
num = count;
for (k = ill; k <= ihh; k++, num--) {

ipl = num * (colm[j] - num);

remcorr _0 = cursnode->parcorr_0 - ipl;

remcorr_1 = 0;

if (j == 2 && remcorr_0O != 0) continue;

if (j '= 2 && (remcorr_0 > obscorr_0 || remcorr_0 < 0)) {
continue;

}

(cursnode ->numpred) ++;

if (nodes[k].subnodes == NULL) {

high = imin(nodes[k].upper, obscorr_0O + obscorr_1);
nodes [k].subnodes = SNvector (nodes[k].lower, high);
init (nodes[k].lower, high, nodes[k].subnodes);

}

newarc = (ARC *)malloc(sizeof (ARC));

prarc = prbarO(colm[j], num, fact);

newarc->child = cursnode;

newarc->arc = iplil;

newarc->pr = prarc;

newarc->nextarc = NULL;

ref_1 = (obscorr_0 + obscorr_1) - (remcorr_0 + remcorr_1);
if ((nodes[k].subnodes[ref_1].1pl) < 0) {

nodes [k] . subnodes [ref_1].parcorr_0 = remcorr_O0;

nodes [k].subnodes [ref_1].parcorr_1 = remcorr_1;

nodes [k].subnodes [ref_1].1pl = (cursnode->1pl) + ipli;

nodes [k] . subnodes [ref_1].spl = (cursnode->spl) + ipli;

151

nodes [k].subnodes[ref_1].tp = (cursnode->tp) + prarc;
nodes [k] .subnodes[ref_1].arc = newarc;

}

else {

if ((cursnode->1pl) + ipll >
nodes [k].subnodes [ref_1].1pl) {
nodes [k] . subnodes[ref_1].1lpl =
cursnode->1pl + iplil;

}

if ((cursnode->spl) + ipll <
nodes [k] . subnodes [ref_1].spl) {
nodes [k] . subnodes [ref_1].spl =
cursnode->spl + iplil;

}

newprob = prarc + cursnode->tp;
nodes [k] . subnodes [ref_1].tp =

addlog(nodes [k].subnodes[ref_1].tp, newprob);

if (nodes[k].subnodes[ref_1].arc == NULL)
nodes [k].subnodes[ref_1].arc = newarc;
else {

carc = nodes[k].subnodes[ref_1].arc;
narc = carc->nextarc;

while (narc != NULL) {

carc = carc->nextarc;

narc = carc->nextarc;

}

carc->nextarc = newarc;

}

}

}

if ((cursnode->numpred) == 0)

dropnd (cursnode) ;

//printnd (nnodes, obscorr, remcorr_O, remcorr_1, nodes);
}

}

void dropnd (SUBND #*cursnode) {

SUBND *cnode;

ARC *carc, *narc;

cursnode->1pl = -1;
cursnode->spl = -1;
cursnode->tp = -1;
cursnode ->parcorr_0 = -1;
cursnode ->parcorr_1 = -1;
carc = cursnode->arc;
while (carc != NULL) {

cnode = carc->child;

(cnode ->numpred) --;

if ((cnode->numpred) == 0)

dropnd (cnode) ;

narc = carc->nextarc;

free(carc);

carc = narc;
cursnode->arc = NULL;
return;

void init(int lower, int upper,

int k;

for (k = lower; k <=

subnodes [k]
subnodes [k]
subnodes [k]
subnodes [k]

subnodes [k]

subnodes [k]
subnodes [k]
subnodes [k]
}
return;

SUBND #*subnodes) {

upper; k++) {

.parcorr_0 = -1;
.parcorr_1 = -1;
.1pl = -1;

.spl = -1;

.tp = -1;
.numpred = 0;
.arc = NULL;
.rec = NULL;

152

153

SUBND *crenode(int remcorr_O, int remcorr_1, int 1lp, int sp,

int ipl, double prarc) {

SUBND *newnode;

newnode = (SUBND *)malloc(sizeof (SUBND));
newnode ->parcorr_0 = remcorr_O0;
newnode ->parcorr_1 = remcorr_1;

newnode->1pl = 1lp + ipl;

newnode->spl = sp + ipl;
newnode->tp = prarc;
newnode ->numpred = 0;

return (newnode);

void forind(int ncol, int rowm, int nnodes, int sampsz, int *colm,

int *cumcol, double *fact, int *stpos, int *minvl, NODE #*nodes) {

int 11im, hlim, k, j, npos, spl, 1lpl;

// shortest path and longest path for the correlation

// sufficient statistic

void corrlpsp(int sampsz, int parm, int stage, int ncol, int rownm,
int nnodes, int *colm, int *cumcol, int *stpos, int *minvl,

NODE *nodes, int *spl, int *1pl);

npos = stpos[1]; // last node

nodes [npos].splcorr = 0; // last node’s splcorr 0
nodes [npos].1lplcorr = 0; // last node’s lplcorr = 0
nodes [npos]. subnodes = NULL; // last node’s subnodes = NULL

for (j = 2; j <= mncol + 1; j++) { // go through each stage

npos stpos[j];
11lim = minvl[jl; // min value of sl_k at stage j
// max value of sl_k at stage j:
hlim = 1lim + stpos[j - 1] - stpos[j]l - 1;
// go through each value of sl_k at each stage j
for (k = 1lim; k <= hlim; k++) {
corrlpsp(sampsz, k, j, ncol, rowm, nnodes, colm,

cumcol, stpos, minvl, nodes, &spl, &lpl);

nodes [npos].splcorr = spl;

nodes [npos].1lplcorr = 1lpl;
nodes [npos].numsucc = 0;
nodes [npos].subnodes = NULL;

npos++;

void corrlpsp(int sampsz, int parm, int stage, int ncol, int rowm,

int nnodes, int *colm, int *cumcol, int *stpos, int *minvl,

NODE *nodes, int *spl, int *1pl) {

// isp = ith shortest path
// ilp = ith longest path

int 11lm, hlm, ill, ihh, isp, ilp, ipl, isp2, ilp2, count,

1lm = imax (0, parm - colm[stagel);

hlm = imin(parm, cumcol[stage - 1]1);

// use arc lengths from nodes at this position to nodes
// at ihh position

ill = stpos[stage - 1] + 1lm - minvl[stage - 1];

ihh = ill + hlm - 11lm;

// parm = value of k (sl_k at stage j);
// this part of r_2k formula: s_(1,k+1) - s_1k
count = parm - 1llm;
// r_2k = (s_(1,k+1)-s_1k)(n_(k+1)-s_(1,k+1)+s_1k)
ipl = count * (colm[stage] - count);
// ith shortest path - starting with arc from ill then
// will go to arc ihh in the below for loop
isp = nodes[ill].splcorr + ipl;
ilp = nodes[ill].lplcorr + ipl;
if (ill < ihh) {
for (pos = ill + 1; pos <= ihh; pos++) {
count --;

ipl = count * (colm[stage] - count);

isp2 = nodes[pos].splcorr + ipl;

ilp2 = nodes[pos].lplcorr + ipl;

pos;

154

155

if (isp2 < isp) isp = isp2;
if (ilp2 > ilp) ilp = ilp2;
}
}
*spl = isp;
*1pl = ilp;
return;
}
// calculates nodes - builds network before the first pass

void calnds(int ncol, int *table, int rowm, int *nnodes, int *colm,

int *cumcol, int #*stpos, int *minvl) {

// Formula: R(k-1, s_(1,k-1)) = {(k,u):max(s_(1,k-1),
// s_1 - sum”"N_(l=k)nl) <= u <= min(s_1, s_(1,k-1) + n_k)}
// where rowm = s_1, cumcol[ncol + 1] = sum”"N_(1l=k)nl

// colm = sample size for each cluster, stored backwards

int i, stage, iconst, 1lim, hlim, npos;
colm[1] = O0;

cumcol [1] = 0;

// build colm and cumcol (cummulative sum of colm) vectors

for (i = 2; i <= ncol + 1; i++) {
// column total - sample size in each treatment/study
colm[i] = tablel[i - 2];
// cumulative column totals - 7 is the total sample size
cumcol[i] = cumcol[i - 1] + colm[i];

}

// this part of Formula: s_1 - sum”"N_(l=k)nl

// FOR THE INITIAL NODE - at the initial node, this number

// will be the most negative it can be, then it decreases.

// That’s why we add a positive number to this negative

// number down in the for loop:

iconst = rowm - cumcol[ncol + 1];

npos = 2;

minvl [ncol + 1] rowm; // this part of Formula: s_1
stpos[ncol + 1] = 1;

// goes through stages O to ncol - 1 and finds the minimum partial

156

// sum (1lim) and maximum parital sum (hlim) for that stage

// if 1lim = 0 and hlim = 2, then at that stage (say, stage k),

// there are 3 successor nodes ([k,0], [k,1], and [k,2])

// npos is a cumulative sum of the number of nodes at each stage

for (stage = ncol - 1; stage >= 0; stage--) {
// lower limit for u -> this part of Formula: max(s_(1,k-1),
// s_1 - sum”"N_(1=k)nl) - see comment above iconst declaration
// essentially taking iconst + cummulative sample size
// at each stage
1lim = imax (0, iconst + cumcol[stage + 1]);
// upper limit for u

hlim = imin(rowm, cumcol[stage + 1]);

stpos[stage + 1] = npos;

minvl [stage + 1] = 1llim;

npos = npos + (hlim - 1lim + 1);
}
*nnodes = npos - 1;

return;

double prbarO(int coltot, int numsucc, double *fact) {

double logprob;

if (coltot == numsucc || numsucc == 0)
logprob = 0.0;
else
logprob = fact[coltot + 1] - fact[numsucc + 1] -
fact [coltot - numsucc + 1];

return(logprob);

double testmax(double x, double y);

double testmax(double x, double y) {
if (x > y) return(x);

else return(y);

157

double addlog(double numl, double num2) {

double total2, t12, t22, tmax2;

double q, x, s;

tmax2 = testmax (numl, num2);

t12 = testmax (numl - tmax2, -80.0);
t22 = testmax(num2 - tmax2, -80.0);
q = exp(t12);

x = exp(t22);

s q t+ x;
total2 = tmax2 + log(exp(tl2) + exp(t22));

return(total2);

void faclog(int sampsz, double *fact) {

int 1i;

fact[1] = 0.0;

for (i = 1; i <= sampsz; i++) {

fact[i + 1] = fact[i]l + log((double)i);

return;

void printnd(int nnodes, int obscorr_0, int obscorr_1, NODE *nodes) {

int i, k, high;
SUBND *cursnode;
ARC *carc;

FILE *fout;

fout = fopen("clust.out", "a");

fprintf (fout, "\n\n nnodes=%d\n\nNode SPL LPL LOW UPP\n", nnodes,

for (i = 1; i <= nnodes; i++) {

fprintf (fout, "\n’%d %d %d %d %d", i, nodes[i].splcorr,

nodes [i].1lplcorr, nodes[i].lower, nodes[i].upper);
if (nodes[i].subnodes != NULL) {

high = imin(nodes[i].upper, obscorr_0 + obscorr_1);
for (k = nodes[i].lower; k <= high; k++) {

if (nodes[i].subnodes[k].parcorr_0 < 0 ||

nodes [i] . subnodes [k].parcorr_1 < 0) continue;
cursnode = &(nodes[i].subnodes[k]);

fprintf (fout, "\n %ha %a %a %a %5.3f",

cursnode ->parcorr_0, cursnode->parcorr_1, cursnode->spl,

cursnode->1pl, cursnode->tp);

carc = cursnode->arc;
while (carc !'= NULL) {
fprintf (fout, "\n arc: %d %5.3f",

carc->arc, carc->pr);

fprintf (fout, "\n child: %d %d %d %d %5.3f",

carc->child->parcorr_0, carc->child->parcorr_1,
carc->child->spl, carc->child->1pl, carc->child->tp);
carc = carc->nextarc;
}
}
}

}

fprintf (fout, "\n\n\n");

fclose (fout);

#define NR_END 1

#define FREE_ARG charx

// allocate a NODE vector with subscript range v([nl..nh]
NODE *NDvector (long nl, long nh) {

NODE =*v;

v = (NODE #*)malloc((size_t)((nh - nl + 1 + NR_END) * sizeof (NODE)));

if (!v) nrerror("allocation failure in NDvector ()");

return v - nl + NR_END;

// allocate a NODE vector with subscript range v[nl..nh]

SUBND *SNvector (long nl, long nh) {

SUBND *v;

v = (SUBND *)malloc((size_t)((nh - nl + 1 + NR_END) x*

sizeof (SUBND)));
if (!'v) nrerror("allocation failure in SNvector ()");

return v - nl + NR_END;

// free a float vector allocated with vector ()
void free_NDvector (NODE *v, long nl, long nh) {

free ((FREE_ARG)(v + nl - NR_END));

// free a float vector allocated with vector ()
void free_SNvector (SUBND *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

159

160

Exact Distribution C Code - numrout.c:

#include "nrutil.h"

#include <stdio.h>

int imax(int x, int y);
int imin(int x, int y);
double dmax (double x, double y);

float fmax(float x, float y);

/* CAUTION: This is the ANSI C (only) version of the Numerical Recipes
utility file nrutil.c. Do not confuse this file with the same-named
file nrutil.c that is supplied in the same subdirectory or archive

as the header file nrutil.h. *That* file contains both ANSI and
traditional K&R versions, along with #ifdef macros to select the

correct version. *This* file contains only ANSI C. */

#define NR_END 1

#define FREE_ARG charx

// Numerical Recipes standard error handler

void nrerror (char error_text[]) {

fprintf (stderr, "Numerical Recipes run-time error...\n");
fprintf (stderr, "%s\n", error_text);

fprintf (stderr, "...now exiting to system...\n");

exit (1);

// allocate a float vector with subscript range v[nl..nhl]
float *vector(long nl, long nh) {

float =*v;

v = (float *)malloc((size_t)((nh - nl + 1 + NR_END) =
sizeof (float)));
if (!v) nrerror("allocation failure in vector ()");

return v - nl + NR_END;

// allocate an int vector with subscript range v[nl..nh]

int *ivector (long nl, long nh) {

161

int *v;

v = (int *)malloc((size_t)((nh - nl + 1 + NR_END) * sizeof (int)));
if (!v) nrerror("allocation failure in ivector()");

return v - nl + NR_END;

// allocate an unsigned char vector with subscript range v[nl..nh]
unsigned char #*cvector (long nl, long nh) {

unsigned char *v;

v = (unsigned char *)malloc((size_t)((nh - nl + 1 + NR_END) =
sizeof (unsigned char)));
if (!v) nrerror("allocation failure in cvector ()");

return v - nl + NR_END;

// allocate an unsigned long vector with subscript range v[nl..nh]
unsigned long *1lvector (long nl, long nh) {

unsigned long *v;

v = (unsigned long *)malloc((size_t)((nh - nl + 1 + NR_END) x*
sizeof (long)));
if (!v) nrerror("allocation failure in 1lvector()");

return v - nl + NR_END;

// allocate a double vector with subscript range v[nl..nh]
double *dvector(long nl, long nh) {

double *xv;

v = (double *)malloc((size_t)((nh - nl + 1 + NR_END) *
sizeof (double)));
if (!v) nrerror("allocation failure in dvector ()");

return v - nl + NR_END;

// allocate a float matrix with subscript range m[nrl..nrh][ncl..nchl]

float #**matrix(long nrl, long nrh, long ncl, long nch) {

162

long i, nrow = nrh - nrl + 1, ncol = nch - ncl + 1;

float **m;

// allocate pointers to rows

m = (float **)malloc((size_t)((nrow + NR_END) #* sizeof (floatx)));
if (!m) nrerror("allocation failure 1 in matrix()");

m += NR_END;

m -= nrl;

// allocate rows and set pointers to them

m[nrl] = (float *)malloc((size_t)((nrow*ncol + NR_END) *
sizeof (float)));

if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += NR_END;

m[nrl] -= ncl;

for (i = nrl + 1; i <= nrh; i++) m[i] = m[i - 1] + ncol;

// return pointer to array of pointers to rows

return m;

// allocate a double matrix with subscript range m[nrl..nrh][ncl..nch]
double *#*dmatrix(long nrl, long nrh, long ncl, long nch) {
long i, nrow = nrh - nrl + 1, ncol = nch - ncl + 1;

double **m;

/* allocate pointers to rows x*/

m = (double **)malloc((size_t)((nrow + NR_END) * sizeof (doublex*)));
if (!m) nrerror("allocation failure 1 in matrix()");

m += NR_END;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl] = (double *)malloc((size_t) ((nrow*ncol + NR_END) x
sizeof (double)));

if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += NR_END;

m[nrl] -= ncl;

163

for (i = nrl + 1; i <= nrh; i++) m[i] = m[i - 1] + ncol;

/* return pointer to array of pointers to rows */

return m;

// allocate a int matrix with subscript range m[nrl..nrh][ncl..nchl]
int **imatrix(long nrl, long nrh, long ncl, long nch) {
long i, nrow = nrh - nrl + 1, ncol = nch - ncl + 1;

int **m;

/* allocate pointers to rows */

m = (int **)malloc((size_t) ((nrow + NR_END) * sizeof (int*)));
if (!'m) nrerror("allocation failure 1 in matrix()");

m += NR_END;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl] = (int *)malloc((size_t)((nrow*ncol + NR_END) * sizeof (int)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += NR_END;

m[nrl] -= ncl;

for (i = nrl + 1; i <= nrh; i++) m[i] = m[i - 1] + ncol;

/* return pointer to array of pointers to rows */

return m;

// point a submatrix [newrl..][mnewcl..] to aloldrl..oldrh][oldcl..oldch]
float #**submatrix(float #**a, long oldrl, long oldrh, long oldcl, long oldch,
long newrl, long newcl) {
long i, j, nrow = oldrh - oldrl + 1, ncol = oldcl - newcl;

float **m;

/* allocate array of pointers to rows */
m = (float **)malloc((size_t)((nrow + NR_END) * sizeof (float*)));

if (!m) nrerror("allocation failure in submatrix()");

164

m += NR_END;

m -= newrl;

/* set pointers to rows */

for (i = oldrl, j = newrl; i <= oldrh; i++, j++) m[j] = al[i] + ncol;

/* return pointer to array of pointers to rows */

return m;

/* allocate a float matrix m[nrl..nrh]l[ncl..nch]l that points to the matrix

declared in the standard C manner as al[nrow][ncoll], where nrow=nrh-nrl+1

and ncol=nch-ncl+1l. The routine should be called with the address

&a[0][0] as the first argument. */

float **convert_matrix(float *a, long nrl, long nrh, long ncl, long nch) {
long i, j, nrow = nrh - nrl + 1, ncol = nch - ncl + 1;

float **m;

/* allocate pointers to rows */

m = (float **)malloc((size_t)((nrow + NR_END) * sizeof (floatx)));
if (!'m) nrerror("allocation failure in convert_matrix()");

m += NR_END;

m -= nrl;

/* set pointers to rows */

m[nrl] = a - ncl;

for (i = 1, j = nrl + 1; i<nrow; i++, j++) m[j]l] = m[j - 1] + ncol;
/* return pointer to array of pointers to rows */

return m;

// allocate a float 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]

float ***xf3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh) {
long i, j, nrow = nrh - nrl + 1, ncol = nch - ncl + 1;
long ndep = ndh - ndl + 1;

float **xt;

/* allocate pointers to pointers to rows */

t = (float **x)malloc((size_t)((nrow + NR_END) * sizeof (float*x*)));

165

if (!t) nrerror("allocation failure 1 in f3temsor ()");
t += NR_END;

t -= nrl;

/* allocate pointers to rows and set pointers to them */

t[nrl] = (float **)malloc((size_t)((nrow*ncol + NR_END) x*
sizeof (float*)));

if (!'t[nrl]) nrerror("allocation failure 2 in f3temnsor()");

t[nrl] += NR_END;

t[nrl] -= ncl;

/* allocate rows and set pointers to them */

t[nrl][ncl] = (float *)malloc((size_t)((nrow*ncol*ndep + NR_END) x*
sizeof (float)));

if (!t[nrl]l[ncl]) nrerror("allocation failure 3 in f3tensor()");

t[nrl][ncl] += NR_END;

t[nrl][ncl] -= ndl;

for (j = ncl + 1; j <= nch; j++) tlnrll[j]l = tlnrll[j - 1] + ndep;
for (i = nrl + 1; i <= nrh; i++) {

t[i] = t[i - 1] + ncol;

t[il[ncl] = t[i - 1]1[ncl] + ncol*ndep;

for (j = ncl + 1; j <= nch; j++) t[il[j] = t[il[j - 1] + ndep;

/* return pointer to array of pointers to rows */

return t;

// free a float vector allocated with vector ()
void free_vector (float *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

// free an int vector allocated with ivector ()
void free_ivector (int *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

// free an unsigned char vector allocated with cvector ()
void free_cvector(unsigned char *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

// free an unsigned long vector allocated with 1lvector ()
void free_lvector (unsigned long *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

// free a double vector allocated with dvector ()
void free_dvector (double *v, long nl, long nh) {

free ((FREE_ARG) (v + nl - NR_END));

// free a float matrix allocated by matrix()
void free_matrix(float **m, long nrl, long nrh, long ncl,
free ((FREE_ARG) (m[nrl] + ncl - NR_END));

free ((FREE_ARG) (m + nrl - NR_END));

// free a double matrix allocated by dmatrix ()

long nch) {

void free_dmatrix(double *#*m, long nrl, long nrh, long ncl, long nch) {

free ((FREE_ARG) (m[nrl] + ncl - NR_END));

free ((FREE_ARG) (m + nrl - NR_END));

// free an int matrix allocated by imatrix()
void free_imatrix(int **m, long nrl, long nrh, long ncl,
free ((FREE_ARG) (m[nrl] + ncl - NR_END));

free ((FREE_ARG) (m + nrl - NR_END));

// free a submatrix allocated by submatrix()

void free_submatrix(float **b, long nrl, long nrh, long ncl,

free ((FREE_ARG) (b + nrl - NR_END));

// free a matrix allocated by convert_matrix()

long nch) {

long nch) {

166

void free_convert_matrix(float **b, long nrl, long nrh, long ncl, long nch)

free ((FREE_ARG) (b + nrl - NR_END));

// free a float f3tensor allocated by f3tensor ()
void free_f3tensor (float #***t, long nrl, long nrh, long ncl, long nch,
long ndl, long ndh) {
free ((FREE_ARG) (t[nrl][ncl] + ndl - NR_END));
free ((FREE_ARG) (t[nrl] + ncl - NR_END));
free ((FREE_ARG) (t + nrl - NR_END));
}

/* (C) Copr. 1986-92 Numerical Recipes Software #(k3#12#1i.. */

int imax(int x, int y) {

if (x>y) return(x);

else return(y);

int imin(int x, int y) {

if (x<y) return(x);

else return(y);

double dmax (double x, double y) {

if (x > y) return(x);

else return(y);

float fmax(float x, float y) {

if (x>y) return(x);

else return(y);

167

168

Exact Distribution C Code - nrutil.h:

#ifndef _NR_UTILS_H_

#define _NR_UTILS_H_

static float sqrarg;

#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)

static double dsqrarg;

#define DSQR(a) ((dsqrarg=(a)) == 0.0 ? 0.0 : dsqrarg*dsqrarg)

static double dmaxargl, dmaxarg?2;
#define DMAX(a,b) (dmaxargl=(a),dmaxarg2=(b),(dmaxargl) > (dmaxarg2) 7\

(dmaxargl) : (dmaxarg2))

static double dminargl, dminarg2;
#define DMIN(a,b) (dminargl=(a),dminarg2=(b),(dminargl) < (dminarg2) ?\

(dminargl) : (dminarg2))

static float maxargl, maxarg2;
#define FMAX(a,b) (maxargl=(a),maxarg2=(b),(maxargl) > (maxarg2) 7?7\

(maxargl) : (maxarg2))

static float minargl, minarg2;
#define FMIN(a,b) (minargl=(a),minarg2=(b),(minargl) < (minarg2) ?\

(minargl) : (minarg2))

static long lmaxargl, lmaxarg2;
#define LMAX(a,b) (lmaxargl=(a),lmaxarg2=(b),(lmaxargl) > (lmaxarg2) 7?7\

(lmaxargl) : (lmaxarg2))

static long lminargl, lminarg2;
#define LMIN(a,b) (lminargl=(a),lminarg2=(b),(lminargl) < (lminarg2) ?\

(lminargl) : (lminarg2))
static int imaxargl, imaxarg2;
#define IMAX(a,b) (imaxargl=(a),imaxarg2=(b),(imaxargl) > (imaxarg2) 7?7\

(imaxargl) : (imaxarg2))

static int iminargl, iminarg2;

#define IMIN(a,b) (iminargil=(a),iminarg2=(b),(iminargl)

(iminargl) (iminarg2))

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a)

void nrerror (char error_text[]);
float *vector(long nl, long nh);
int *ivector (long nl, long nh);
unsigned char #*cvector (long nl,
unsigned long *1lvector (long nl,
double *dvector (long nl, long nh);
float #**matrix(long nrl, long nrh,
double *#*dmatrix(long nrl, long nrh,

int **imatrix(long nrl, long nrh,

long nh);

long nh);

long ncl,
long ncl,

long ncl,

-fabs(a))

long nch);

long nch);

< (iminarg2)

long nch);

169

7\

float **submatrix(float #**a, long oldrl, long oldrh, long oldcl, long oldch,
long newrl, long newcl);

float #**convert_matrix(float *a, long nrl, long nrh, long ncl, long nch);

float ***f3tensor (long nrl, long nrh, long ncl, long nch, long ndl, long ndh);

void free_vector (float *v, long nl, long nh);

void free_ivector (int *v, long nl, long nh);

void free_cvector (unsigned char *v, long nl, long nh);

void free_lvector(unsigned long *v, long nl, long nh);

void free_dvector (double *v, long nl, long nh);

void free_matrix(float *#*m, long nrl, long nrh, long ncl, long nch);

void free_dmatrix(double #**m, long nrl, long nrh, long ncl, long nch);

void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch);

void free_submatrix(float **b, long nrl, long nrh, long ncl, long nch);

void free_convert_matrix(float **b, long nrl, long nrh, long ncl, long nch);

void free_f3tensor (float #***t, long nrl, long nrh, long ncl, long nch,

long ndl, long ndh);

#endif /* _NR_UTILS_H_ */

170

Exact Estimation Method R Code - ExactEstimation.R:

Load the Condttional Mazimum Likelihood Estimate Function

source ("CMLE.R")

Example Meta-Analysis Data Set with 10 Studies
x <- c(rep(0, 10), rep(1, 10)) # 0 = Control Group, 1 = Treatment Group
y <- c(2, 1, 3, 4, 2, 1, 1, 3, 3, 4, 1, 1, 3, 2, 2, 0, 2, 1, 0) # Events
n <- c(42, 36, 26, 18, 39, 41, 45, 46, 47, 34, 29, 25, 17, 26,

36, 31, 16, 31, 44, 29) # Total

t_obs <- as.numeric(x %x*% y) # Observed Test Statistic

Ezact Distribution (Found Using C Code)
test_statistics <- 14:19
normalized_probabilities <- ¢(0.00076, 0.05204, 0.38865,
0.47705, 0.08142, 0.00009)
normalized_probabilities <- ifelse(normalized_probabilities == 0,
1.0e-16,

normalized_probabilities)

Throw out Data Sets where t_obs is at Etther Exztreme of the Distribution
if (t_obs == max(test_statistics) ||
t_obs == min(test_statistics) ||
sum(normalized_probabilities[test_statistics > t_obs]) < 1.0e-15 ||

sum(normalized_probabilities[test_statistics < t_obs]) < 1.0e-15) {

logOR_hat <- NA
CI_lower <- NA

CI_upper <- NA

} else {

Scale Down Test Statistics to Start at 0
t_obs_scaled <- t_obs - min(test_statistics)

test_statistics_scaled <- test_statistics - min(test_statistics)

use CMLE since t_obs not at extremes of distribution (instead of MUE)
logOR_hat <- CMLE(prob = normalized_probabilities,
u = test_statistics_scaled,

t_obs = t_obs_scaled,

171

t_or_alpha = t_obs_scaled,
ci = FALSE)

CI_lower <- CMLE(prob = normalized_probabilities,
u = test_statistics_scaled,
t_obs = t_obs_scaled,
t_or_alpha = 0.025,
ci = TRUE,
dir = "lower")

CI_upper <- CMLE(prob = normalized_probabilities,
u = test_statistics_scaled,
t_obs = t_obs_scaled,
t_or_alpha = 0.025,
ci = TRUE,

dir = "upper")

172

Exact Estimation Method R Code - CMLE.R:

Conditional Mazimum Likelihood Estimation

CMLE <- function(prob, u, t_obs, t_or_alpha, ci = FALSE,

dir = "upper", lower_bound = -15, upper_bound = 15) {

prob <- log(prob) # Normalized Probabilities on the Log Scale

Objective Function for Log Odds Ratio Estimate and CI Estimate
beta_objective_fun <- function(betal, prob, u, t_obs, t_or_alpha,

ci = FALSE, dir = "upper") {

add_log_probs <- prob[1] + ul[l] * betal

for (q in 2:1length(u)) { # add log probabilities
log_p <- max(add_log_probs, prob[q]l + ulql * beta0)
add_log_probs <- log_p + log(exp(add_log_probs - log_p) +

exp(prob[q]l + ulql] * beta0 - log_p))

num <- prob + (u * betal)

num2 <- exp(num - add_log_probs)

if (ci) {
final <- ifelse(dir == "lower",
sum (num2 [u >= t_obs]),
sum (num2 [u <= t_obs]))
} else {

final <- sum(u * num2) / sum(num2)
}

abs(t_or_alpha - final)

est_res <- optimize(beta_objective_fun, c(lower_bound, upper_bound),
prob, u, t_obs, t_or_alpha, ci, dir,
tol = 0.00000001, maximum = FALSE)

result <- est_res$minimum

result

173

Simulations R Code - ma.sim.dat.R:

Code to simulate meta-analysis data

ma.sim.data <- function(theta, k = 20, mu, var_mu = 0.5, tau2,

min_unif = 50, max_unif = 100) {

Generate sample size for trt group
n_it <- round(runif(k, min = min_unif, max = max_unif))
Generate sample size for ctrl group

n_ic <- round(runif(k, min = min_unif, max = max_unif))

Generate error terms for ctrl and trt groups
el <- rnorm(length(mu), O, sqrt(var_mu))

e2 <- rnorm(length(mu), O, sqrt(tau2))

Generate response/event rate for ctrl group
p_ic <- exp(mu + el) / (1 + exp(mu + el))
Generate number of responses/events for ctrl group

x_ic <- sapply(1:k, function(x) {rbinom(1, n_ic[x], p_ic)})

Generate response/event rate for trt group
p_it <- exp(mu + el + theta + e2) / (1 + exp(mu + el + theta + e2))
Generage number of responses/events for trt group

x_it <- sapply(1l:k, function(x) {rbinom(1l, n_it[x], p_it)})

data_set <- 1list("CTRL_n" = n_ic, "TRT_n" = n_it,
"CTRL_event" = x_ic, "TRT_event" = x_it)

return(data_set)

Simulations R Code - Generate_Data.R:

source ("ma.sim.data.R")

num_reps <- 10000
theta_sim <- 0
k_sim <- 10

mu_sim <- -4
var_mu_sim <- 0.5
tau2_sim <- 0.4
min_unif_sim <- 10

max_unif_sim <- 50

generate.dat <- function(theta, k, mu, var_mu, tau2, min_unif, max_unif) {

sdata <- ma.sim.data(theta, k, mu, var_mu, tau2, min_unif, max_unif)
Convert sdata to matrixz form for exact test
colNamesTRTGrp <- c(rep(0, length(sdata$CTRL_n)),
rep(1l, length(sdata$CTRL_n)))
(4 * num studies) for the desired number of cells in the matriz
sdata_formatted <- rep(0, 4 * length(sdata$CTRL_n))
put ctrl event in every other spot in the first half of sdata_formatted
(starting with the first element)

sdata_formatted[seq(l, length(sdata_formatted) / 2, 2)] <- sdata$CTRL_event

put ctrl nonevent in every other spot in the first half of sdata_formatted

(starting with the second element)
sdata_formatted[seq(2, length(sdata_formatted) / 2,

2)] <- sdata$CTRL_n - sdata$CTRL_event
put trt event in every other spot in the second half of sdata_formatted
(starting with the first element of the second half of sdata_formatted)
sdata_formatted[seq((length(sdata_formatted) / 2) + 1,

length(sdata_formatted), 2)] <- sdata$TRT_event

put trt nonmevent in every other spot in the second half of sdata_formatted

(starting with the second element of the second half of sdata_formatted)
sdata_formatted[seq((length(sdata_formatted) / 2) + 2,
length(sdata_formatted),
2)] <- sdata$TRT_n - sdata$TRT_event
finaldat <- matrix(sdata_formatted, nrow = 2, byrow = FALSE,
dimnames = list(Out = c(1, 0), TRT = colNamesTRTGrp))

return(list(finaldat))

174

175

set.seed (1993)

all_dat_full <- replicate(num_reps, generate.dat(theta =0,

k = k_sim,

mu = mu_sim,

var_mu = var_mu_sim,

tau2 = tau2_sim,

min_unif = min_unif_sim,
max_unif = max_unif_sim))

If all studies have no events in the treatment group, flag with a "1"

zero_trt_events <- sapply(all_dat_full,

function(x) ifelse(all(x[1, colnames(x) == 1] == 0),
1, 0))
sum(zero_trt_events)
all_dat <- all_dat_full[which(zero_trt_events != 1)] # remove such studies

If all studies have no events 1in the control group, flag with a "1"

zero_ctrl_events <- sapply(all_dat,

function(x) ifelse(all(x[1, colnames(x) == 0] == 0),
1, 0))
sum(zero_ctrl_events)
all_dat <- all_dat[which(zero_ctrl_events != 1)] # remove such studies

rm(list=1s () [! 1s() %in% c("all_dat", "tau2_sim", "mu_sim")])

save.image (pasteO("Theta=0,Tau2=", tau2_sim, ",Mu=", mu_sim, ".RData"))

176

Appendix D: Code for Chapter 3

This appendix contains selected code for Chapter 3, and includes the following:

e nma.sim.dat.R

e Generate_NMA_Data.R

For the simulations in Chapter 3, nma.sim.dat.R and Generate_ZNMA_Data.R were used to
simulate the network meta—analysis data sets. These data sets were then run through the
exact distribution C code and the exact estimation R code (both in Appendix C) to

obtain exact estimates.

177

Simulations R Code - nma.sim.dat.R:

#

#
#
#
#
#
#

L S T T S S S 3

**

Function for generating binary network meta-analysis data

Two treatments A and B have been compared head-to-head against another
treatment C, but mnot against each other. The goal is to obtain an indirect
estimate of the BC comparison.

The simulation structure is based off:

"Estimating the Power of Indirect Comparisons: A Simulation Study"

by E. J. Mills, I. Ghement, C. O’Regan, and K. Thorlund

k_bc is the number of trials for the BC comparison

k_ac is the number of trials for the CA comparison

min_n 1s the minimum number of participants in a study

maz_n 1s the mazimum number of participants in a study

prop_n_in_ctrl 4is the proportion of participants in the control group (versus
the treatment group)

pi_c is the true average event rate in the common comparator group C

OR_bc ts the true relative effect of BC, quantified as an odds ratio

OR_ac is the true relative effect of CA, quantified as an odds ratio

tau2 7s the between-study vartance, assumed constant across the BC and AC

comparisons

Note: knowing OR_bc and OR_ac allows the determination of OR_ab, wia the

formula: OR_ab = exzp(log(OR_ac) - log(OR_bc))

set.seed (1993)

nma.sim.data <- function(k_bc = 5, k_ac = 5, min_n = 10, max_n = 50,

prop_n_in_ctrl = 1 / 2, pi_c = 0.10,

OR_bc = 1.4, OR_ac = 1.4, tau2 = 0.2) {

- BC comparison —————-------------—-—-———————————————
Generate sample size (round to nearest even integer)

n_i <- 2 * round(runif(n = k_bc, min = min_n, max = max_n) / 2)

sample size in arm C for BC comparison

n_ic <- floor(m_i * prop_n_in_ctrl)

sample size in arm B for BC comparison

n_ib <- n_i - n_ic

Generate number of events for arm C

178

pi_ic <- runif(n = k_bc, min = pi_c - (pi_c / 2), max = pi_c + (pi_c / 2))

e_ic <- sapply(l:k_bc, function(x) {rbinom(1l, n_icl[x], pi_icl[x])})

Generate number of ewents for arm B
In_OR_ibc <- rnorm(n = k_bc, mean = OR_bc, sd = sqrt(tau2))
pi_ib <- (pi_ic * exp(ln_OR_ibc)) / (1 - pi_ic + pi_ic * exp(ln_OR_ibc))

e_ib <- sapply(1:k_bc, function(x) {rbinom(1, n_ib[x], pi_ib[x1)})

Generate sample size

n_i2 <- 2 * round(runif(n = k_ac, min = min_n, max = max_n) / 2)
sample size in arm C for BC comparison

n_ic2 <- n_i2 / 2

sample size in arm B for AC comparison

n_ia <- n_i2 / 2

Generate number of events for arm A
pi_ic2 <- runif(n = k_ac, min = pi_c - (pi_c / 2), max = pi_c + (pi_c / 2))

e_ic2 <- sapply(l:k_ac, function(x) {rbinom(1, n_ic2[x], pi_ic2[x]1)})

Generate number of events for arm C
ln_OR_iac <- rnorm(n = k_ac, mean = OR_ac, sd = sqrt(tau2))
pi_ia <- (pi_ic2 * exp(ln_OR_iac)) / (1 - pi_ic2 + pi_ic2 * exp(ln_OR_iac))

e_ia <- sapply(l:k_ac, function(x) {rbinom(1l, n_ialx], pi_ialx])})

B o Data —=———=——=—-=----------—————— - -
bc_dat <- cbind("c_event" = e_ic, "c_n" = n_ic,

"other_event" = e_ib, "other_n" = n_ib)
ac_dat <- cbind("c_event" = e_ic2, "c_n" = n_ic2,

"other_event" = e_ia, "other_n" = n_ia)

comp <- c(rep("bc", k_bc), rep("ac", k_ac))
final_dat <- as.data.frame(cbind(comp, rbind(bc_dat, ac_dat)))

return(final_dat)

Simulations R Code - Generate_NMA_Data.R:

source ("nma.sim.data.R")

179

generate.dat <- function(k_bc, k_ac, min_n, max_n, prop_n_in_ctrl, pi_c,

OR_bc, OR_ac, tau2) {

sdata <- nma.sim.data(k_bc, k_ac, min_n, max_n, prop_n_in_ctrl, pi_c,

OR_bc, OR_ac, tau2)
bc_dat <- sdatalsdata$comp == "bc",]
ac_dat <- sdatal[sdata$comp == "ac",]
bc_dat$c_event <- as.numeric(as.character(bc_dat$c_event))
bc_dat$c_n <- as.numeric(as.character(bc_dat$c_n))
bc_dat$other_event <- as.numeric(as.character(bc_dat$other_event))
bc_dat$other_n <- as.numeric(as.character(bc_dat$other_mn))
ac_dat$c_event <- as.numeric(as.character (ac_dat$c_event))
ac_dat$c_n <- as.numeric(as.character(ac_dat$c_n))
ac_dat$other_event <- as.numeric(as.character (ac_dat$other_event))
ac_dat$other_n <- as.numeric(as.character (ac_dat$other_n))
create column names for control group and treatment group (2 * num_studies)
bc_colNamesTRTGrp <- c(rep(0, length(bc_dat$comp)),

rep(1, length(bc_dat$comp)))
ac_colNamesTRTGrp <- c(rep(0, length(ac_dat$comp)),

rep(1, length(ac_dat$comp)))
4 * num studies for how many cells in matriz we want
bc_cells <- rep(0, 4 * length(bc_dat$comp))
ac_cells <- rep(0, 4 * length(ac_dat$comp))
put ctrl event in every other spot in the first half of test
(starting with the first element)
bc_cells[seq(1l, length(bc_cells) / 2, 2)] <- bc_dat$c_event
ac_cells[seq(1, length(ac_cells) / 2, 2)] <- ac_dat$c_event
put ctrl nonevent in every other spot in the first half of test
(starting with the second element)
bc_cells[seq(2, length(bc_cells) / 2, 2)] <- bc_dat$c_n - bc_dat$c_event
ac_cells[seq(2, length(ac_cells) / 2, 2)] <- ac_dat$c_n - ac_dat$c_event
put trt event in every other spot in the second half of test
(starting with the first element of the second half of test)
bc_cells[seq((length(bc_cells) / 2) + 1,

length(bc_cells), 2)] <- bc_dat$other_event
ac_cells[seq((length(ac_cells) / 2) + 1,
length(ac_cells), 2)] <- ac_dat$other_event

put trt nonevent in every other spot in the second half of test

num_reps <-

if (scenario_num

(starting with the second element of the second half

bc_cells[seq((length(bc_cells) / 2) + 2,
length(bc_cells), 2)] <-

ac_cells[seq((length(ac_cells) / 2) + 2,

length(ac_cells), 2)] <-
bc_matrix <- matrix(bc_cells, nrow = 2,
dimnames = list (Out
ac_matrix <- matrix(ac_cells, nrow = 2,
dimnames = list (Out
return(list("bc" = bc_matrix, "ac" = ac

scenario_num <- 1

10000

k_bc_sim <- 5

min_n_sim <- 10
max_n_sim <- 50
pi_c_sim <- 0.10

OR_bc_sim <- 1

OR_ac_sim <- 1

== 1) {

k_ac_sim <- b

tau2_sim <- 0

prop_n_in_ctrl_sim <- 1 / 2
else if (scenario_num == 2) {
k_ac_sim <- b5

tau2_sim <- 0.4
prop_n_in_ctrl_sim <- 1 / 2
else if (scenario_num == 3) {
k_ac_sim <- b5

tau2_sim <- 0
prop_n_in_ctrl_sim <- 1 / 4
else if (scenario_num == 4) {
k_ac_sim <- b5

tau2_sim <- 0.4
prop_n_in_ctrl_sim <- 1 / 4
else if (scenario_num == 5) {

bc_dat$other_n -

ac_dat$other_n -

byrow = FALSE,
= c(1, 0), TRT
byrow = FALSE,
= c(1, 0), TRT

_matrix))

180

of test)

bc_dat$other_event

ac_dat$other_event

= bc_colNamesTRTGrp))

= ac_colNamesTRTGrp))

k_ac_sim <- 10

tau2_sim <- 0

prop_n_in_ctrl_sim <- 1 / 2

} else if (scemnario_num == 6) {

k_ac_sim <- 10

tau2_sim <- 0.4

prop_n_in_ctrl_sim <- 1 / 2

} else if (scemario_num == 7) {

k_ac_sim <- 10

tau2_sim <- 0

prop_n_in_ctrl_sim <- 1 / 4

} else if (scemnario_num == 8) {

k_ac_sim <- 10

tau2_sim <- 0.4

prop_n_in_ctrl_sim <- 1 / 4

set.seed (1993)

all_dat_full <- replicate(num_reps,

For BC comparison:
flag with a "1"

bc_zero_trt_events <-

generate.dat (k_bc =
k_ac =
min_n

max_n

k_bc_sim,

k_ac_sim,

min_n_sim,

max_n_sim,

prop_n_in_ctrl

pi_c =
OR_bc
OR_ac

tau2 =

= prop_n_in_ctrl_sim,

pi_c_sim,

OR_bc_sim,

OR_ac_sim,

tau2_sim))

©f all studies have no events 1in treatment group,

sapply(all_dat_full[1,

] s

function(x) ifelse(all(x[1,

sum (bc_zero_trt_events)

remove such studies

all_dat <- all_dat_fulll[,

For BC comparison:

1,

which(bc_zero_trt_events

0))

colnames (x)

1]

tf all studies have no events in control group,

181

182

flag with a "1"
bc_zero_ctrl_events <- sapply(all_dat[1l,],

function(x) ifelse(all(x[1,

colnames (x) == 0] == 0),
1, 0))
sum(bc_zero_ctrl_events)
remove such studies
all_dat <- all_dat[, which(bc_zero_ctrl_events != 1)]

For AC comparison: tf all studies have no events 1in treatment group,
flag with a "1"
ac_zero_trt_events <- sapply(all_dat[2, 1,
function(x) ifelse(all(xI[1,
colnames(x) == 1] == 0),
1, 0))
sum(ac_zero_trt_events)
remove such studies
all_dat <- all_dat[, which(ac_zero_trt_events != 1)]
For AC comparison: tf all studies have no events in control group,
flag with a "1"
ac_zero_ctrl_events <- sapply(all_dat([2, 1],

function(x) ifelse(all(x[1,

colnames (x) == 0] == 0),
1, 0))
sum(ac_zero_ctrl_events)
remove such studies
all_dat <- all_dat[, which(ac_zero_ctrl_events != 1)]

rm(list = 1s(O[! 1s() %in% c("all_dat", "scenario_num")])

save.image (pasteO("Scenario", scenario_num, ".RData"))

Appendix E: Code for Chapter 4

This appendix contains selected code for Chapter 4, and includes the following:

e gmeta_functions.R

e Modificationl.R

e Modification2.R

e Modification3.R

e Simulation_Modificationl.R

¢ Simulation_Modification2.R

e Simulation_Modification3.R
For the simulations in Chapter 4, the data was generated using the ma.sim.dat.R and
Generate_Data.R code in Appendix C. The file gmeta_functions.R contains selected
functions taken directly from the gmeta R package. The files Modificationl.R,
Modification2.R, and Modification3.R contain modified code taken from the gmeta R

package, and they are used in the files Simulation_Modification1.R,

Simulation_Modification2.R, and Simulation_Modification3.R.

183

Simulations R Code - gmeta_functions.R:

gmeta.exact.indiv <-

number of study

function(data_matrix,

gmo .xgrid,

ci.level) {

K =
input -

gmeta.theta =

gmeta.sigma =

index =
output -
indiv.cds =
indiv.cis =
indiv.medians
indiv.means =

indiv.stddevs

matrix (NA, K,

nrow (data_matrix)

log((data_matrix[, 1] =*
(data_matrix[,
(data_matrix[, 2]
(data_matrix[,

sqrt (1 / data_matrix[,

1 / (data_matrix

(data_matrix[, 4]

individual study CDs

matrix (NA, K, 2)

= rep(NA, K)
rep(NA, K)

= rep(NA, K)

construct individual CDs

alpha <- 1 -

pfunc <- funct

ci.level

ion(theta) {

4] -

individual study mean and standard deviation

*

data_matrix[, 2]1)) /
3] - data_matrix[, 11)))
1] + 1 / data_matrix[, 2] +
data_matrix[, 1]) + 1 /

[, 31 -
21))

- data_matrix/[,

is.finite(gmeta.theta) & is.finite(gmeta.sigma)

length (gmo.xgrid))

return(l - pFNCHypergeo.wrap(data_matrix[i, 1],

}
for (i in 1:K) {
indiv.cds[i,

}

data_matrix[i,
data_matrix[i,

data_matrix[i,

theta) + dFNCHypergeo(data_matrix[i, 1],

otherwise gnorm() will resolve Inf.

indiv.cds <-
individual study

for (i in 1:K) {

ifelse(indiv.cds < 1 -

0.1

- CI median

] <- sapply(exp(gmo.xgrid),

pfunc)

12, indiv.cds,

data_matrix[i, 3],
data_matrix[i, 4],
data_matrix[i, 5],

theta) / 2)

1 - 0.1 " 12)

184

185

indiv.cis[i,] <- log(c(.quantileCD(pfunc, alpha / 2),

.quantileCD(pfunc, 1 - alpha / 2)))

indiv.medians[i] <- log(.quantileCD(pfunc, 0.5))

}

individual study - mean and standard deviation

na.moment <- is.na(gmeta.

for (i in c(1:K)[!'na.mome

theta * 0)

nt]) {

indiv.means [i] <- gmeta.cd.mean(gmo.xgrid, indiv.cds[i,])

indiv.stddevs[i] <- gmeta.cd.stddev(gmo.xgrid, indiv.cds[i,])

}

indiv.means [na.moment] <- gmeta.theta[na.moment]

indiv.stddevs [na.moment] <- gmeta.sigma[na.moment]

return

gmeta.data <- list(data_matrix = data_matrix,
individual CDs
indiv.cds = indiv.cds,
indiv.cis = indiv.cis,
indiv.medians = indiv.medians,
indiv.means = indiv.means,
indiv.stddevs = indiv.stddevs,

output gridding points

x.grid

return(gmeta.data)

s = gmo.xgrid)

overall test size error for exactl method

test.size.error <- function

number of study

K = length(n.vec)

(s,

n.vec,

pl.vec,

m.vec,

pO.vec,

weight .vec,
result.1lminus$S

mc.iteration =

= FALSE,

1000000) {

psi = (pl.vec[1] / (1 - pl.vec([1])) / (pO.vec[1] / (1 - pO.vec[1]))

generate p.i(\psi), =1

each column is for an 1

,2,...K.

186

mid.p.sample = matrix(NA, nrow = mc.iteration, ncol = K)
each column is for an <
mid.p.sample.adj = matrix(NA, nrow = mc.iteration, ncol = K)

for (i in 1:K) {

x = rbinom(mc.iteration, n.vec[i], pl.vec[il])
y = rbinom(mc.iteration, m.vec[i], pO.vec[il])
mid.p.sample[, i] = midp.oddsratio(x, n.vec[i], m.vec[i], x + y, or = psi)

mid.p.sample.adj[, i] = adjust.beta(mid.p.sample[, il,
n = n.vecl[i],
pt = pl.veclil,
m = m.vec[i],

pc = pO.vecl[il)

}
uniform sample
uniform.sample = matrix (runif (mc.iteration * K, 0, 1),
nrow = mc.iteration,
ncol = K)
quantile
qnorm.mid.p.sample = qnorm(mid.p.sample)
qnorm.mid.p.sample.adj = qnorm(mid.p.sample.adj)
qnorm.uniform.sample = gnorm(uniform.sample)
#

bbl = sapply(1:K, function(i) {
ww <- weight.vec / weight.vec[i]
ww[l:K <= i] <- 0
ww

b

bb2 = sapply(1:K, function(i) {
ww <- weight.vec / weight.vec[i]
ww[1:K >= i] <- 0
WwW

b

#

xoffset = sqrt(sum(weight.vec 2)) / weight.vec * qnorm(s)

#

main qnorm.mid.p.sample %*% bbl + qnorm.uniform.sample %*7% bb2

main.adj = qnorm.mid.p.sample.adj %*) bbl + qgnorm.uniform.sample %*J bb2

aa = t(xoffset - t(main))

aa.adj = t(xoffset - t(main.adj))

#

pnorm.aa pnorm (aa)

pnorm.aa.adj = pnorm(aa.adj)
#
dd = sapply(1:K, FUN = function(i) {
findInterval (pnorm.aal, il,
sort (mid.p.sample[, i])) / mc.iteration - pnorm.aal, il]
b
dd.adj = sapply(1:K, FUN = function(i) {
findInterval (pnorm.aa.adj[, il,
sort (mid.p.sample.adjl, il1)) /
mc.iteration - pnorm.aa.adj[, il
b
calculate test.size.error
test.size.error = sum(colMeans (dd))
test.size.error.adj = sum(colMeans(dd.adj))
calculate test.size.error.IminusS
test.size.error.1lminusS = ’Not requested’
test.size.error.adj.1lminusS = ’Not requested’

if (result.iminusS) {

use 1 - s instead of s

xoffset = sqrt(sum(weight.vec ~ 2)) / weight.vec * qnorm(l - s)
#

aa = t(xoffset - t(main))

aa.adj = t(xoffset - t(main.adj))

#

pnorm.aa pnorm (aa)
pnorm.aa.adj = pnorm(aa.adj)
#
dd = sapply(1:K, FUN = function(i) {
findInterval (pnorm.aal, i],
sort (mid.p.samplel[, il)) / mc.iteration - pnorm.aal,
b
dd.adj = sapply(1:K, FUN = function(i) {
findInterval (pnorm.aa.adj[, il,
sort (mid.p.sample.adjl[, i1)) /

mc.iteration - pnorm.aa.adj[, il

b

i]

187

188

calculate test.size.error.lminusS

test.size.error.lminus$S = sum(colMeans (dd))
test.size.error.adj.1lminusS = sum(colMeans(dd.adj))
}
return
return(list (Test.Size.Error = test.size.error,
Test.Size.Error.Adjusted = test.size.error.adj,
Test.Size.Error.1minusS = test.size.error.1lminusS,
Test.Size.Error.Adjusted.lminusS = test.size.error.adj.lminusS))
}
meta-analysis - combine evidence from 2z2 tables/[done]
unified meta-analysis[donel]

postprocessing

3k >k 5k ok %k >k 5k 5k %k %k 3k 5k %k >k 5k 5k %k >k 5k ok %k %k 3k 5k 3k >k %k 5k %k %k %k 5k %k %k >k 5k 3k >k % >k %k %k %k 5k 3k %k %k > 3k %k %k > 5k %k %k 5%k >k %k %k > %k %k %k > >k %k %k % >k %k %k % %k k *k *k *k

postprocessing - print, summary, plot, etc..

3k 3k %k 5k 5k 5k %k %k %k %k %k %k >k %k %k %k 3k 5k 5k 5%k %k %k %k %k >k >k >k %k %k 3k 3k 3 > > 5% %k %k >k > > >k %k 3k 3k 3% > > 5% 5% % %k %k %k %k >k >k % % % % 5k 5% 5% % % %k %k >k >k >k %k % % % % % %

print, summary, plot, etc.

print&summary [gmeta.e]

###print

print.gmeta.e <- function(x, ...) {

Title

cat (’\t\tExact Meta-Analysis Approach through CD-Framework\n’)
Call

cat (’\nCall:\n’)

print (x$call) #[*$calll: type of language

Results

cat (’\nSummary of Combined CD:\n’)

cmbd.cd.summary = data.frame(
mean = format (round(x$combined.mean, 4), nsmall = 4),
median = format(round(x$combined.median, 4), nsmall = 4),
standard.deviation = format (round(x$combined.sd, 4), nsmall = 4)
)

row.names (cmbd.cd.summary) <- ’Combined CD’

print (cmbd.cd. summary)

189

Details
cat (’\nCombined Confidence Distribution:\n’)
construct combined CD
cmbd.cd <- data.frame(x = x$x.grids,
density = x$combined.density,
probability = x$combined.cd)
set lower/upper bound
xl <- min(x$x.grids)
xu <- max(x$x.grids)
count
n.grids <- sum(cmbd.cd$x >= x1 & cmbd.cd$x <= xu)
print head/tail
if (n.grids <= 10) {
print (cmbd.cd) # simple print all z-cd-points
} else {
cmbd.cdhead <- cmbd.cd[1:5,]
cmbd.cdtail <- cmbd.cd[(n.grids - 5):n.grids,]
names (cmbd.cdtail) <- c(’ ?, ? >, > ?) # avoid duplicate titles
print head/tail 5 z-cd-points
output
print (cmbd. cdhead)
cat (’\t...\n\t...\n’)

print (cmbd.cdtail)

#cat (’\n \n)
}
}
###summary
summary .gmeta.e <- function(object, ...) {
set

object.sry <- 1list()
set Call
object.sry$call <- object$call

set combined CD

object.sry$cmbd <- data.frame(mean object$combined.mean,

median = object$combined.median,
stddev = object$combined.sd,
ci.lower = object$combined.cil[1],

ci.upper = object$combined.cil[2])

row.names (object.sry$cmbd) <- ’Combined CD’

}

set individual CDs

190

object.sry$idiv <- data.frame(mean = object$individual .means,
median = object$individual .medians,
stddev = object$individual.stddevs,
ci.lower = object$individual.cis[, 1],
ci.upper = object$individual.cis[, 2])

set individual study names

row.names (object.sry$idiv) <- object$study.names
set ci.level

object.sry$ci.level <- object$ci.level

set number of study

object.sry$n.study <- dim(object.sry$idiv) [1]

set class

class(object.sry) <- ’summary.gmeta.e’

return

return(object.sry)

###print of summary

print.summary.gmeta.e <- function(x, ...) {

Title

cat (’\t\tExact Meta-Analysis Approach through CD-Framework\n’)
Call

cat(’\nCall:\n’)

print (x$call) #[*$calll: type of language

Results

cat (’\nSummary of Combined CD:\n’)

print (x$cmbd)

cat (’\nConfidence level =’, x$ci.level, ’\n’)
Details

cat (’\nSummary of Individual CDs:\n’)

print (x$idiv)

cat (’\nConfidence level =’, x$ci.level, ’\n’)

plot functions

plot.gmeta <- function(gmo,

studies = NULL,
plot.option = c(’confidence-density’,

’confidence-curve’,

191

‘ev?,

confidence-distribution’,

’cdf’),
type = ’17,
xlab = ’x’7,
ylab = ’density’,
xlim = NULL,
ylim = NULL,
DA
UseMethod ("plot", gmo)
}
###plot functions - combine evidence from 2z2 tables
plot.gmeta.e <- function(x,
studies = NULL,
plot.option = c(’confidence-density’,

confidence-curve’,
’CV’,

’confidence-distribution’,

’cdf’),
type = ’1°7,
xlab = ’x7,
ylab = ’confidence density’,
xlim = NULL,
ylim = NULL,
) A
match plot.option
mfplot <- match.call()
plot.option = match.arg(plot.option)
plot.individual.studies
if (is.null(studies)) {
take all studies
gmt <- z$input
nnl <- ifelse(is.list (gmi), length(gmi), dim(gmi)[1])
studies <- c(1:mnn1)
#
take only non-zero/zero-event studies

idx <- studies[is.na(x$individual .mean) [studies]]

studies <- studies[!is.na(x$individual .mean) [studies]]

if (length(idx) != 0) {

}

for (i imn idx) {

cat (’The confidence distribution of study’, i,

’cannot be plot because it contains zero-zero events.’,

’\n’)

plot wvia plot.option

if (plot.option == ’confidence-density’) {

gmeta.plot.cdd(x, studies, type, xlab, ylab, xlim, ylim,

else if (plot.option == ’cv’ ||
plot.option == ’confidence-curve’) {
if (ylab == ’confidence density’) {
ylab = ’confidence curve’
}
gmeta.plot.cvs(x, studies, type, xlab, ylab, xlim, ylim,
else if (plot.optiomn == ’cdf’ ||
plot.option == ’confidence-distribution’) {
if (ylab == ’confidence density’) {
ylab = ’confidence distribution’
}
gmeta.plot.cdf (x, studies, type, xlab, ylab, xlim, ylim,
else {

stop(’plot.option not recognize’)

###plot functions - shared by model based and exzact methods on 2z2 tables
I 2434
gmeta.plot.cdd <-

function(x, studies, type, xlab, ylab, xlim, ylim, ...) {

#e <- studies

number of layers

nn <- length(studies) + 1 # individual studies + combined CD

extract study mnames
enames <- c(x$study.names[studies], ’combined.density’)

x.grids

192

193

x.grids <- x$x.grids
individual CDs
ecds <- x$individual.cds[studies,]
wndividual densities
edns <- NULL
for (i in studies) {
edns <- rbind(edns, F2f(x.grids, x$individual.cds[i, 1))
}
individual and combined density
edns <- rbind(edns, x$combined.density)
unified y-range on all layers for wisual comparison
if (!is.null(studies)) {
if (max(edns, na.rm = T) > 1) {

edns <- edns / max(edns, na.rm = T)

}
individual and combined medians
mdn <- c(x$individual .medians[studies], x$combined.median)
individual and combined confidence interwals
emdncis <- rbind(x$individual.cis[studies,], x$combined.ci)
set lower/upper bound
if (!is.null(xlim)) {
x1 <- min(xlim)
xu <- max(xlim)
} else {
x1 <- min(x.grids)
xu <- max(x.grids)
}
set study.names position
xnames <- x1
plot
if (!is.null(studies)) {
plot(
0,
type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(xl, xu),

ylim = c(0, nn),

194

yaxt = ’n’

)

} else {

plot (
0,
type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(xl, xu),
ylim = c(0, ceiling(max(edns))),
yaxt = ’n’

)

}
for (i in 1:mn) {
supporting line
abline(h = i - 1, 1ty = 2)
plot of demsity
lines(x.grids, edns[i, 1 + i - 1, 1lty = 1)
mark median, ci.lower, ci.upper
points(mdn[i], i - 1, cex = 1, col = ’dark red’)

points(emdncis[i, 1],

i-1,
pch = [,
cex = 1,

col = ’dark red’)

points (emdncis[i, 2],

i- 1,
pch = 1,

cex = 1,

col = ’dark red’)

legend study.names

legend (xnames,

i - 0.5,
legend = paste(’#’, enames[i], sep = ’’),
bty = ’n’)

}
overall median

abline (v = x$combined.median, 1lty = 2)

195

HARAH
gmeta.plot.cvs <-
function (gmo,
studies,
type,
xlab,
ylab,
x1lim,
ylim,
o A{
number of layers
nn <- length(studies) + 1 # individual studies + combined CD
extract study mnames
enames <- c(gmo$study.names[studies], ’combined.cv’)
x.grids

x.grids <- gmo$x.grids

construct individual and combined CVs

combined.cv <- 1 - 2 * abs(gmo$combined.cd - 0.5)
individual.cvs <- 1 - 2 * abs(gmo$individual.cds - 0.5)
set cwus

ecvs <- rbind(individual.cvs[studies,], combined.cv)

individual and combined medians
mdn <- c(gmo$individual .medians[studies], gmo$combined.median)
individual and combined confidence interwals
emdncis <- rbind(gmo$individual.cis[studies,], gmo$combined.ci)
set lower/upper bound
if (!is.null(xlim)) A{
x1 <- min(xlim)
xu <- max(xlim)
} else {
x1 <- min(x.grids)
xu <- max(x.grids)
}
set study.names position
xnames <- x1
plot

if (!is.null(studies)) {

196

plot(

type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(x1l, xu),

ylim = c(0, nn),

yaxt = ’n’

)

} else {

plot (
0,
type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(xl, xu),
ylim = c(0, ceiling(max(ecvs))),
yaxt = ’n’

)

}
for (i in 1:nn) {
supporting line
abline(h = i - 1, 1ty = 2)
plot of density
lines(x.grids, ecvs[i,] + i - 1, 1ty = 1)
mark median, ci.lower, ci.upper
points(mdn[i], i - 1, cex = 1, col = ’dark red’)

points(emdncis[i, 1],

i-1,
pch = [,
cex = 1,

col = ’dark red’)

points (emdncis[i, 2],

i- 1,
pch = °1°,
cex = 1,

col = ’dark red’)
legend study.names

legend (xnames ,

i - 0.5,
legend = paste(’#’, enames[i], sep =
bty = ’n’)
}
overall median
abline(v = gmo$combined.median, 1ty = 2)
}
HARRH

gmeta.plot.cdf <-
function (gmo,
studies,
type,
xlab,
ylab,
x1lim,
ylim,
DR
#e <- studies

number of layers

nn <- length(studies) + 1 # individual studies + combined CD

extract study mnames

enames <- c(gmo$study.names[studies], ’combined.cdf’)

x.grids

x.grids <- gmo$x.grids

individual CDs

ecds <- gmo$individual.cds[studies,]
2ndividual and combined CDs

ecds <- rbind(ecds, gmo$combined.cd)

unified y-range on all layers for wisual comparison

if (!is.null(studies)) {
if (max(ecds, na.rm = T) > 1) {

ecds <- ecds / max(ecds, na.rm = T)

}

individual and combined medians

mdn <- c(gmo$individual .medians[studies], gmo$combined.median)

individual and combined confidence interwvals
emdncis <- rbind(gmo$individual.cis[studies,],

set lower/upper bound

",

gmo$combined.ci)

197

if (!is.null(xlim)) {

}

x1 <- min(xlim)

xu <- max(xlim)
else {

x1 <- min(x.grids)

xu <- max(x.grids)

set study.names position

xnames <- x1

plot

if (!is.null(studies)) {

}

}

plot (
0,
type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(x1, xu),

ylim = c(0, nn),

yaxt = ’n’
)
else {
plot(
0,
type = ’n’,
xlab = xlab,
ylab = ylab,
xlim = c(x1, xu),
ylim = c(0, ceiling(max(ecds))),
yaxt = ’n’
)

for (i in 1:nn) {

supporting line

abline(h = i - 1, 1ty = 2)

plot of CDs

lines(x.grids, ecds[i,] + i - 1, 1ty = 1)
mark median, ci.lower, ci.upper
points(mdn[i]l, i - 1, cex = 1, col = ’dark

points (emdncis[i, 1],

red’)

198

i-1,
pch = [,
cex = 1,

col = ’dark red’)

points(emdncis[i, 2],

i-1,
pch = °1°,
cex = 1,

col = ’dark red’)
legend study.names

legend (xnames,

i - 0.5,
legend = paste(’#’, enames[i], sep = ’’),
bty = ’n’)

}
overall median

abline(v = gmo$combined.median, 1lty = 2)
postprocessing [done]

B koo ok sk ok ok sk ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok o ok ok ok ok ok ok ok ok ok ok
other functions wused in this package

B kok ok ok ok ok ok ok ok ok okok ok ok ok ok ok ok ook ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok ok ok ok ok ok ok ok ok ko ok ok ok K ok ok o ok ok R ok ok ok ok ok ok ok ok ok K
#

other functions wused in this package

using CD to make inference
get mean, median, sd, ci, given cd, used everywhere
get mean from cd
gmeta.cd.mean <- function(x, cd) {
x = x['is.na(cd)]

cd = cd[!is.na(cd)]

if (length(unique(cd)) == 1) {
mn <- NA
} else if (length(x) == length(cd)) {

dn <- F2f(x, cd) # density
mn <- sum(x * dn, na.rm = T) / sum(dn, na.rm = T) # mean

} else {

199

stop(’length of x is not the same as length of cd.

}
return (mn)

}
get median from cd

gmeta.cd.median <- function(x, cd) {

x x['is.na(cd)]
cd = cd[!is.na(cd)]
if (length(unique(cd)) == 1) {
mdn <- NA
} else {
same as approzx 1in
gmeta.cd.mdncis ()
x1 <- rev(x[ecd < 0.5]1)[1]
x2 <- x[cd > 0.5][1]
y1 <- rev(cdl[cd < 0.5]1)[1]
y2 <- cdlecd > 0.5][1]
linear interpolation
mdn <- x1 + (x2 - x1) / (y2 - y1) * (0.5 - y1)
}
return (mdn)
}
get stddev from cd
gmeta.cd.stddev <- function(x, cd) {
x = x[!is.na(cd)]
cd = cd[!is.na(cd)]
if (length(unique(cd)) == 1) {
sdv <- NA
} else {
sdv <-
diff (approx(
x = cd,
y = x,
xout = c(0.25, 0.75),
ties = ’mean’
)$y) / (qnorm(0.75) - qnorm(0.25))
}

return (sdv)

?)

200

201

get ci&median from cd
gmeta.cd.mdncis <- function(x, cd, alpha) {
x = x['is.na(cd)]
cd = cd[!is.na(cd)]
if (length(unique(cd)) == 1) {
mdncis <- c(NA, NA, NA)
} else {

mdncis <-

approx (
X = cd,
y = x,

xout = c(alpha / 2, 0.5 , 1 - alpha / 2),
ties = ’mean’
)8y
}

return (mdncis)

computing density(pdf) from distribution(cdf), used everywhere
mainly used for getting CD density from CD distribution,
NA on two end to avoid sudden jump
F2f <- function (x, Fx) {

fx = diff(Fx, lag = 2) / diff(x, lag = 2)

fx = c(NA, fx, NA) # match the length of z-fz-cdf

n.zgrids

n = length(fx)

liner extrapolation

fx[1] = max(0, (£fx[2] - £x[3]1) / (x[2] - x[3]) =* (x[1] - x[2]) + £x[2])

fx[n] = max (0,

(fx[n - 11 - fx[n - 21) /
(x[n - 11 - x[n - 2]1) * (x[n] -
x[n - 1]1) + fx[n - 11)

return

return (fx)

#[update in v2.0: previously #return(c(NA, fz, NA))

NA so that the edge of the plot of density is right.]

202

[exact methods tools]

compute quantile given cd function, used in exzact method
.quantileCD <- function(CDF, prbblty) {
ff <- function(theta) {
CDF (theta) - prbblty
}
for (power.l im 0:15) {
if (££(10 ~ (-power.1)) < 0) {

break

}

for (power.u in 0:15) {

if (£f£f(10 -~ (power.u)) > 0) {

break
}
}
if (power.l == 15) {
qntl = 0
} else if (power.u == 15) {
qntl = Inf
} else {
gqntl = uniroot(
f = function(theta) {
CDF (theta) - prbblty
},
interval = c(10 ~ (-power.l), 10 ~ (power.u)),
tol = 0.001
)$root
}

return(qntl)

compute cd function (based on p-value functions) using exzact method
midp.oddsratio <- function(x, N, M, t, or) {

© and t can be wectors

mid.p = rep(NA, length(x))

for (i in min(t):max(t)) {

index = which(t == i)

if (!identical(index, integer (0))) {

for (idx in index) {

mid.p[idx] = 1 - pFNCHypergeo.wrap(x[idx], N, M,

dFNCHypergeo (x[idx], N, M, i, or) / 2

}
} else {

#cat (’\nindez null, mid.p all NA\n’)

}

return(mid.p)

conditional MLE, used in excat method
.conditionalMLE <- function(data_matrix) {
number of study
K = dim(data_matrix) [1]
or.hat.CMLE
if (sum(data_matrix[, 1]) == 0) {
or.hat.CMLE = 0
} else if (sum(data_matrix[, 2]) == 0) {
or.hat.CMLE = Inf

} else {

.estimatingFunctionCMLE <- function(theta) {

summation = 0
for (j in 1:K) {

expectation = 0

i,

for (x in max(0, data_matrix[j, 1] + data_matrix[j,

data_matrix[j, 4]):min(data_matrix[j,

expectation = expectation + x * dFNCHypergeo (x,

summation = summation + expectation - data_matrix[j,

data_matrix[j,

data_matrix[j,

or) +

210 {

data_matrix[j,
data_matrix[j,
data_matrix[j,

data_matrix[j,

theta)

1]

203

204

return (summation)
}
or.hat.CMLE = uniroot(.estimatingFunctionCMLE, c(0.0001, 10000),
tol = 0.001)$root
}

return (or.hat.CMLE)

calculate estimates of event rates and weights wusing empirical

Bayes approach please refer to Efron 1996 JASA for detatls,

functions are used in exact method

.Integrate <-

function (f) {

input a function with range between 0O and 1

ssi seq(0.0001, 0.1, 0.0001)

ss2 = seq(0.101, 0.999, 0.001)
return(sum(f(ss1)) * 0.0001 + sum(f(ss2)) * 0.001)

}

HARRH

.Estimates <- function(data_matrix) {

K = dim(data_matrix) [1]

x = data_matrix[, 1]

y = data_matrix[, 2]

n = data_matrix[, 3]
m = data_matrix[, 4]
if (sum(x) + sum(y) == 0) {

in the case of all zeros in two arms
pO.hat = NA
pl.hat = NA
psi.hat = NA
weight.hat = rep(1l, K)
} else if (sum(y) == 0) {
in the case of all zeros in the control arm

pO.hat = NA

pl.hat rep (sum(x) / sum(n), K)
psi.hat = Inf

weight.hat = sqrt(m * pl.hat / (1 - pl.hat))

205

} else if (sum(x) == 0) {
in the case of all zeros in the treatment arm
pO.hat = .Estimates.larm(y, m)
pl.hat = NA
psi.hat = 0
weight.hat = sqrt(n * pO.hat / (1 - pO.hat))
} else {

use moment estimates as initial wvalues

mu = mean(y / m)

v.square = var(y / m)

betal.initial = mu * (mu * (1 - mu) / v.square - 1)
beta2.initial = betal.initial * (1 - mu) / mu
psi.initial = .conditionalMLE (data_matrix)

use optim() to obtain parameters estimates
parameter.initials = c(log(betal.initial),
log(beta2.initial),
log(psi.initial))
.marginallLikelihood <- function(parameters) {
betal = exp(parameters[1])

beta2 = exp(parameters[2])

psi = exp(parameters[3])
ff = 0
for (i in 1:K) {
.individualLikelihood <- function(p0) {
pl = psi * p0 / (1 - pO0 + psi * pO0)
return (dbinom(x[i]l, n[il, p1l) * dbinom(y[il, m[i]l, pO) =*

dbeta(p0, betal, beta2))

}
ff = ff + log(.Integrate(.individualLikelihood))
}
return (-£ff)
}
parameter.estimates = optim(

parameter.initials,

.marginallLikelihood,

method = ’Nelder-Mead’,
lower = -Inf,
upper = Inf

) $par

206

resolve parameters estimates

betal.hat = exp(parameter.estimates[1])
beta2.hat = exp(parameter.estimates[2])
psi.hat = exp(parameter.estimates [3])
update

pO.hat = rep(NA, K)
for (i in 1:K) {
.individuallLikelihoodEmpirical <- function(p0) {
pl = psi.hat * p0 / (1 - pO + psi.hat * pO0)
return(dbinom(x[i], n[i], p1l) * dbinom(y[il, m[i]l, pO) =*

dbeta(p0, betal.hat, beta2.hat))

}
denominator <- .Integrate(.individuallikelihoodEmpirical)
nominator <-
.Integrate(
f = function(p0) {
pO * .individualLikelihoodEmpirical (p0)
}
)
pO.hat [i] <- nominator / denominator

}
pl.hat = psi.hat * pO.hat / (1 - pO.hat + psi.hat * pO.hat)
weight.hat = 1 / sqrt((n * pl.hat * (1 - pil.hat)) ~ (-1) +
(m * pO.hat =*
(1 - pO0.hat)) =~ (-1))
}
return
return(list (

or.hat = psi.hat,

pt.hat pl.hat,
pc.hat = pO.hat,
weight.hat = weight.hat
)
}
HARAH
.Estimates.larm <- function(y, m) {
K = length(m)
initial

mu = mean(y / m)

207

v.square = var(y / m)

betal.initial = mu * (mu * (1 - mu) / v.square - 1)
beta2.initial = betal.initial * (1 - mu) / mu

optim()

parameter.initials = c(log(betal.initial), log(beta2.initial))

.marginallLikelihood <- function(parameters) {

betal = exp(parameters[1])
beta2 = exp(parameters[2])
ff =0

for (i imn 1:K) {

ff = ff + 1lbeta(y[i] + betal, m[i] - y[i] + beta2) - lbeta(betal, beta2)

}
return (-£ff)
}
parameter.estimates = optim(parameter.initials, .marginallikelihood)$par
update
betal.hat = exp(parameter.estimates[1])

beta2.hat = exp(parameter.estimates [2])

<

hat = (y + betal.hat) / (m + betal.hat + beta2.hat)

return

return(p.hat)

#AH#

mized beta adjustment, used in exzact method

adjust.beta <- function(x, n, pt, m, pc) {

ifelse(x < 1 / 2, pbeta(x,

###

#A#

#AH#

#HH

###

1 +1/ (2 *m* pc x (1 - pc)),
1+ 1/ (2 *xm* pc * (1 - pc))),
pbeta(x, 1 + 1 / (2 * n * pt * (1 - pt)),

1+ 1/ (2 *mn* pt *x (1 - pt))))

update on 2012.11.26

pFNCHypergeo gives NalN when odds extremely large which results a
probadbility very close to O or 1 and pFNCHypergeo can not handle it.
wrap pFNCHypergeo in pFNCHypergeo.wrap to recursively adjust odds

when %t results NalN

pFNCHypergeo.wrap <-

function(x,

208

ml,

m2,

n,

odds,

precision = 1E-7,
lower.tail = TRUE) {

prbblty = pFNCHypergeo (

X = x,
ml = ml,
m2 = m2,
n = n,

odds = odds,
precision = precision,
lower.tail = lower.tail
)
while (is.na(prbblty)) {
odds = odds / 10

prbblty = pFNCHypergeo (

X = x,
ml = mil,
m2 = m2,
n =n,

odds = odds,
precision = precision,

lower.tail = lower.tail

}
return (prbblty)
}
[ezact methods tools - donel]

other functions used in this package [donel]

209

Simulations R Code - Modificationl.R:

HARRBARBRARBARRBRRRBRRARRRRBRBARBRRRRRRRBRRRBRRARRRRRBRRRBRRRBRRRRRBRRRARRBHARH

#

#

#

Use Logit instead of Normal CDF in Ezact 1 Method - without weights

HABRBABRARRRARRBRRRBRRRBRBRBRARRRRRBRRRRBRRRBRRRBRBRBRRRRBRRBRRRRBRRRBRRRBRAHRRH

library(binom)

library(BiasedUrn)

source ("gmeta_code_functions_to_load.R")

#

input matriz of 2z2 tables im format c(rz-event_treatment_group,
nr-number_observation_treatment_group, rTy-event_control_group,
ny-number_observation_treatment_group) for each row of the matriz

edata = as.data.frame(matriz(c(3, 2, 4, 5, 1, 2, 4, 6), nrow = 2, ncol = 4))

colnames (edata) = c("z", "n", "y", "m")

sk ok ok ok ok ok ok ok oK K K K K K K K K ok ok ok ok ok ok ok ok oK K K K K K K K K Kk ok ok ok ok ok ok ok ok oK K K K K K K K Kk ok ok ok ok ok ok ok ok ok oK K K K K K K K K kR ok ok
matn

3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k 3k 3k 3k 3k 3k 3k 3 3 % % %k %k %k >k >k %k 3k 3k 3k 3k > > % % %k %k %k %k %k %k 3k 3k 3k >k 5 3% 3% % %k %k %k %k %k %k %k % % 3 3 5 3% % % %k %k %k %k %k % % % % % % %

main function

gmeta <- function(gmi,

gmi.type = c(’pivot’, ’cd’, ’pvalue’, ’2x2°’),
method = c(
’fixed-mle’,
’fixed-robustl’,
’fixed-robust2’,
>fixed-robust2(sqrti12)’,
’random-mm’ ,
’random-reml’,
’random-tau2’,
’random-robustl’,
’random-robust2’,
’random-robust2(sqrti12)’,
’fisher’,
’normal’,
’stouffer’,

‘min’,

’tippett’,

‘max’,

’sum’,

’MH’ ,

’Mantel ~Haenszel’,
’Peto’,

’exactl’,

‘exact2’),

linkfunc = c(’inverse-normal-cdf’,

weight = NULL,
study.names = NULL,
gmo .xgrid = NULL,
ci.level = 0.95,

tau2 = NULL,
mc.iteration = 10000,
eta = ’Inf’,

verbose = FALSE,

report.error = FALSE) {

UseMethod (’gmeta’)

main function

gmeta.default <- function(gmi,

gmi.type = c(’pivot’,

red?,

’pvalue’,

’2x27),
method = c(
’fixed-mle’,
’fixed-robustl’,

’fixed-robust2’,

>fixed-robust2(sqrti2)’,

random-mm’ ,
’random-reml’,
’random-tau2’,
random-robustl’,

’random-robust2’,

’random-robust2(sqrti12)’,

>fisher’,

’inverse-laplace-cdf’),

210

211

’normal’,
’stouffer’,
‘min’,
’tippett’,
‘max’,
’sum’,
’MH’,

’Mantel ~Haenszel’,

’Peto’,
’exactl’,
’exact2’
),
linkfunc = c(’inverse-normal-cdf’,
’inverse-laplace-cdf’),
weight = NULL,

study.names = NULL,
gmo .xgrid = NULL,

ci.level = 0.95,

tau2 = NULL,
mc.iteration = 10000,
eta = 2Inf’,
verbose = FALSE,

report.error = FALSE) {
#check
mf <- match.call()
ci.level <-
ifelse(is.numeric(ci.level) &&
(ci.level >= 0) && (ci.level <= 1),
ci.level,
0.95)
mc.iteration <-
round (ifelse(
is.numeric(mc.iteration) && (mc.iteration > 1),
mc.iteration,
10000))
meta-analysis
if (gmi.type == ’pvalue’) {
gmo <- gmeta.p(gmi, method)

} else if (gmi.type == ’cd’ || gmi.type == ’pivot’) {

212

gmo <-
gmeta.m(gmi,
gmi.type,
method,
linkfunc,
weight ,
gmo .xgrid,
ci.level,
tau?2,
verbose)
} else if (gmi.type == ’2x2°) {
combine 2z2 tables
gmo <-
gmeta.e(gnmi,
method,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error)
} else {
stop("gmi.type must be ’cd’, ’pivot’, ’pvalue’ or ’2x2°.")
}
post processing
gmo$call <- match.call()
gmo$input <- gmi
gmo$alpha <- 1 - ci.level
gmo$study.names <- study.names
registr S3 class
if (gmi.type == ’pvalue’) {
class(gmo) <- c(’gmeta.p’, ’gmeta’)
} else if (gmi.type == ’cd’ || gmi.type == ’pivot’) {
class(gmo) <- c(’gmeta.m’, ’gmeta’)
} else if (gmi.type == ’2x2’) {
class(gmo) <- c(’gmeta.e’, ’gmeta’)
} else {

stop("gmi.type must be ’cd’, ’pivot’, ’pvalue’ or ’2x2°.")

213

}
return

return (gmo)

meta-analysis - combine evidence from 2z2 tables
ook ok ok ok ok ok ok K oK oK K oK oK K KK oK K K oK K o oK K oK oK K oK oK K oK oK K oK K K oK K o oK K K oK K ok oK K ok ok K oK oK K oK oK K KK o oK K K oK K o oK K K ok K oK oK K K K
gmeta.e() - combine evidence from 2z2 tables (exact methods)
#okook ok sk ok ok sk ok ok ok ok o ok ok o ok ok o ok ok ok ok K ok ok K ok ok o ok ok o ok ok o ok oK o oK K o ok K ok ok K ok ok K ok ok K ok ok o ok ok o ok oK o ok K oK ok K ok ok K ok ok K ok ok K ok K
main[gmeta.e]
gmeta.e <-
function(gnmi,
method,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error) {
data_matrix = as.matrix(cbind(gmil, 1], gmil, 3], gmil, 2], gmil[, 4],
gmil, 11 + gmil, 31))

colnames (data_matrix) = c("x" "

y", "N", "M", "x+y")
if (method == ’exactl’) {
gmeta.data <- gmeta.exact.indiv(data_matrix, gmo.xgrid, ci.level)
gmeta.cmbd <-
gmeta.exact.combine (gmeta.data,
weight,
gmo .xgrid,
ci.level,
mc.iteration,
report.error)
} else if (method == ’exact2’) {
gmeta.cmbd <-
gmeta.exact.LT(
data_matrix,
weight ,
gmo .xgrid,

ci.level,

mc.iteration,
eta,
verbose,

report.error)

} else if (method == ’MH’ || method == ’Mantel-Haenszel’) {

gmeta.cmbd <- gmeta.MH(data_matrix, weight,

} else if (method == ’Peto’) {

gmeta.cmbd <- gmeta.peto(data_matrix, weight,

} else {
stop(’gmi.type 2x2 only match methods MH,
exactl, exact2.’)
}

return(gmeta.cmbd)

2z2 with ezactl (LLX)
data processing
combine: exzactl method
gmeta.exact.combine <-
function(gmeta.data,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
report.error) {
#gmeta.cmbd <- gmeta.data
#z.grids <- gmeta.data$z.grids
data_matric
data_matrix = gmeta.data$data_matrix
number of study
K = nrow(data_matrix)
combine individual CDs
alpha = 1 - ci.level
xstmts <- .Estimates(data_matrix[, 1:4])
obtain weight
if (is.null(weight)) {
weight <- xstmts$weight.hat
} else {

warning (’combine 2x2 with method="exactl",

gmo . xgrid,

Mantel -Haenszel,

default

gmo .xgrid,

weight=NULL

ci.level)

ci.level)

Peto,

is

214

215

strongly recommended.’)

}
indiv.cds <- gmeta.data$indiv.cds
BOBBBBH kokoorkkokoorkkokkokkkokkok R [0 g T kokkkokokokokkokok ook ok ok ok Rk ok BR#
degreesfree <- 5 x K + 4
scaler <-

-1 / sqrt((K * pi =~ 2 x (6 x K + 2)) / (3 *x (56 x K + 4)))
combined.cd <-

colSums (log(indiv.cds / (1 - indiv.cds))) * scaler
combined.cd <-

pt(combined.cd, df = degreesfree, lower.tail = FALSE)

combined CD function
combinedCDF <-
function (theta) {
combined CD function, used when searching for quantiles
ff = sapply(
1:K,
FUN = function(j) {
midp.oddsratio(data_matrix[j, 1],
data_matrix[j, 3],
data_matrix[j, 41,
data_matrix[j, 5],

theta)

ff = ifelse(ff < 1 0.1 -~ 12, ff, 1 - 0.1 ~ 12)

ff

pt(sum(log(ff / (1 - £f£f))) * scaler, df = degreesfree,
lower.tail = FALSE)

return (f£f)

}
inference derived from combined CD function
mn.xstmt = log(.quantileCD(combinedCDF, 1 / 2)) # mean
lower.ci = log(.quantileCD(combinedCDF, alpha / 2)) # ci.lower
upper.ci = log(.quantileCD(combinedCDF, 1 - alpha / 2)) # ci.upper

null hypothesis: odd-ratio==
o.pvalue = 2 * min(combinedCDF (1), 1 - combinedCDF (1))
adjust individual CDs and combined CD function to reduce test.size.error

if (is.na(xstmts$or.hat) == TRUE ||

216

xstmts$or.hat == 0 || xstmts$or.hat == Inf) {
mn.xstmt.adj = xstmts$or.hat
lower.ci.adj = NA

upper.ci.adj = NA
o.pvalue.adj = NA
coverage .prbblty.error = NA

coverage .prbblty.error.adj = NA

else {
indiv.cds.adj <-
t (sapply (
1:K,

FUN = function(j) {
adjust.beta(
gmeta.data$indiv.cds[j, 1],
data_matrix[j, 3],
xstmts$pt.hat[j],
data_matrix[j, 4],
xstmts$pc.hat[j])

)

combined CD function - adjusted
combined.cd.adj <-
colSums (log(indiv.cds.adj / (1 - indiv.cds.adj))) * scaler
combined.cd.adj <-
pt(combined.cd.adj, df = degreesfree, lower.tail = FALSE)
combinedCDF.adj <-
function(theta) {
combined CD function, used when searching for quantiles
ff = sapply(
1:K,
FUN = function(j) {
midp.oddsratio(data_matrix[j, 1],
data_matrix[j, 3],
data_matrix[j, 4],
data_matrix[j, 5],
theta)
B

ff = sapply(

FUN function(j) {
adjust.beta(£f£f[j],

data_matrix

217

[ij, 31,

xstmts$pt.hat[j],

data_matrix

[j, 41,

xstmts$pc.hat[j])

B
ff = ifelse(ff < 1 - 0.1 -~ 12, ff, 1 - 0.1 =~ 12)
ff = pt(sum(log(ff / (1 - £f£f))) * scaler, df = degreesfree,
lower.tail = FALSE)
return (£f)
}

inference derived from combined CD function - adjusted
mn.xstmt.adj = log(.quantileCD(combinedCDF.adj, 1 / 2)) # mean

lower.ci.adj log (.quantileCD (

ci.upper

upper.ci.adj log(.quantileCD(

null hypothestis: odd-ratio==1

o.pvalue.adj
calculate coverage probabilit
coverage .prbblty.error <-
coverage.prbblty.error.adj <- ’
if (report.error) {

ee test.size.error(
alpha / 2,
data_matrix[, 3],
xstmts$pt.hat,
data_matrix[, 4],
xstmts$pc.hat,
weight,

result.lminusS TRUE,

mc.iteration)

coverage .prbblty.error

ee$Test.Size.Error

coverage .prbblty.error.adj

ee$Test.Size.Error.Adjusted

return

2 * min(combinedCDF.adj (1),

combinedCDF.adj, alpha / 2)) # cti.lower

combinedCDF.adj, 1 - alpha / 2))

1 - combinedCDF.adj (1))
y error

Not Requested’

Not Requested’

ee$Test.Size.Error.1minusS

ee$Test.Size.Error.Adjusted.1lminusS -

218

gmeta.cmbd <- list(
input
data_matrix = gmeta.data$data_matrix[, 1:4],

individual CDs

individual.cds = gmeta.data$indiv.cds,
individual.cis = gmeta.data$indiv.cis,
individual .medians = gmeta.data$indiv.medians,
individual .means = gmeta.data$indiv.means,
individual.stddevs = gmeta.data$indiv.stddevs,

combined CD function

combined.cd = combined.cd,

combined.density = F2f (gmo.xgrid, combined.cd),
combined.mean = mn.xstmt,

combined.median = gmeta.cd.median(gmo.xgrid, combined.cd),
combined.sd = gmeta.cd.stddev(gmo.xgrid, combined.cd),
combined.ci = c(lower.ci, upper.ci),

p-value for null hypothesis: odd-ratio==1
pvalue = o.pvalue,

combined CD function - adjusted

combined.cd.adjusted = combined.cd.adj,

combined.density.adjusted = F2f(gmo.xgrid, combined.cd.adj),
combined.mean.adjusted = mn.xstmt.adj,

combined.median.adjusted = gmeta.cd.median(gmo.xgrid, combined.cd.adj),
combined.sd.adjusted = gmeta.cd.stddev(gmo.xgrid, combined.cd.adj),
combined.ci.adjusted = c(lower.ci.adj, upper.ci.adj),

p-value for null hypothesis: odd-ratio==1 - adjusted

pvalue.adj = o.pvalue.adj,

coverage probability error - check liu2012ezact
coverage .prbblty.error = coverage.prbblty.error,
coverage .prbblty.error.adj = coverage.prbblty.error.adj,

other information
method = ’exactl’,
linkfunc = ’inverse-fisher-exact-test-function’,

#[? adjusted]

weight = weight,

tau2 = NULL,
ci.level = ci.level,
verbose = report.error,

mc.iteration = mc.iteration,

219

report.error = report.error,
output gridding points
x.grids = gmo.xgrid)

return (gmeta.cmbd)

220

Simulations R Code - Modification2.R:

HABRBARBARRRARRBRRRBRRRRRRRBRRARRBRBRARRBRRRBRRRBRBRBRRRRBRRBRARRBRRRBRRRBRAHRRH

#

#

#

Use Logit instead of Normal CDF in Ezact 1 Method - with weights

HABRBABRARRRARRBRRRBRRRBRBRBRARRRRRBRRRRBRRRBRRRBRBRBRRRRBRRBRRRRBRRRBRRRBRAHRRH

library(binom)

library(BiasedUrn)

source ("gmeta_code_functions_to_load.R")

#

input matriz of 2z2 tables im format c(rz-event_treatment_group,
nr-number_observation_treatment_group, rTy-event_control_group,
ny-number_observation_treatment_group) for each row of the matriz

edata = as.data.frame(matriz(c(3, 2, 4, 5, 1, 2, 4, 6), nrow = 2, ncol = 4))

colnames (edata) = c("z", "n", "y", "m")
ok 3 K ok ok ok ok ok 3k K ok sk ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok ok 3 ok ok ok ok ok ok K ok ok ok ok ok K K
main

3k >k 3k 5k %k >k 5k 5k %k >k 3k 5k %k %k 3k 5k %k >k 5k k %k %k 3k 5k 3k %k %k 5k %k %k %k 5k 3k %k %k 5k 3k >k % > %k %k %k > %k %k % % 3k %k %k > %k %k %k 5% % %k %k > 5k %k %k % %k %k %k % >k % %k % % %k *k *k %k

main function

gmeta <- function(gmi,

gmi.type = c(’pivot’, ’cd’, ’pvalue’, ’2x2°),
method = c(
’fixed-mle’,
’fixed-robustl’,
’fixed-robust2’,
>fixed-robust2(sqrti2)’,
’random-mm’ ,
’random-reml’,
’random-tau2’,
’random-robustl’,
’random-robust2’,
’random-robust2(sqrt12)’,
>fisher’,
’normal’,
’stouffer’,
’min’,

’tippett’,

‘max’,

’sum’,

’MH’,

’Mantel ~Haenszel’,

’Peto’,

’exactl’,

’exact2’),
linkfunc = c(’inverse-normal-cdf’,
weight = NULL,
study.names = NULL,
gmo.xgrid = NULL,
ci.level = 0.95,
tau2 = NULL,
mc.iteration = 10000,
eta = ’Inf’,
verbose = FALSE,
report.error = FALSE) {

UseMethod (’gmeta’)

main function
gmeta.default <- function(gmi,
gmi.type = c(’pivot’,
’cd’,
’pvalue’,
’2x27),
method = c(
’fixed-mle’,
>fixed-robustl’,
’fixed-robust2’,
’fixed-robust2(sqrti2)’,
’random-mm’ ,
’random-reml’,
’random-tau2’,
’random-robustl’,

random-robust2’,

’random-robust2(sqrti12)’,

’fisher’,

’normal’,

’inverse-laplace-cdf’),

221

’stouffer’,

‘min’,

’tippett’,

‘max’,

’sum’,

’MH” ,

’Mantel ~Haenszel’,
’Peto’,

’exactl’,

’exact2’

),

linkfunc = c(’inverse-

’inverse -

weight = NULL,
study.names = NULL,
gmo .xgrid = NULL,

ci.level = 0.95,

tau?2 = NULL,
mc.iteration = 10000,
eta = 2Inf’,
verbose = FALSE,
report.error = FALSE)
#check
mf <- match.call()

ci.level <-
ifelse(is.numeric(ci.level) && (ci.level >=
ci.level,
0.95)
mc.iteration <-

round (ifelse (

normal -cdf’,

laplace-cdf’),

0) && (ci.level <=

is.numeric(mc.iteration) && (mc.iteration > 1),
mc.iteration,
10000))
meta-analysts
if (gmi.type == ’pvalue’) {
gmo <- gmeta.p(gmi, method)
} else if (gmi.type == ’cd’ || gmi.type == ’pivot’) {

gmo <- gmeta.m(gmi,

gmi.type,

1,

222

method,
linkfunc,
weight,
gmo .xgrid,

ci.level,

tau2,
verbose)
} else if (gmi.type == ’2x2’) {

combine 2z2 tables
gmo <-
gmeta.e(gnmi,

method,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error)

} else {

stop("gmi.type must be ’cd’, ’pivot’,

}

post processing

gmo$call <- match.call()
gmo$input <- gmi

gmo$alpha <- 1 - ci.level
gmo$study.names <- study.names
registr S3 class

if (gmi.type == ’pvalue’) {

class(gmo) <- c(’gmeta.p’, ’gmeta’)

} else if (gmi.type == ’cd’ || gmi.type

class(gmo) <- c(’gmeta.m’, ’gmeta’)
} else if (gmi.type == ’2x2°’) {
class(gmo) <- c(’gmeta.e’, ’gmeta’)

} else {

stop("gmi.type must be ’cd’, ’pivot’,

}

return (gmo)

’pvalue’ or ’2x2°.")
== ’pivot’) {
’pvalue’ or ’2x2°.")

223

224

meta-analysis - combine evidence from 2z2 tables
B ko sk ok ok ok sk sk ok sk ok ok ok ok sk ok sk sk K ok ok sk ok sk sk sk ok ok ok ok ok sk sk K ok ok sk ok ok sk K K ok sk ok ok sk kK ok sk sk ok sk kK ok ok sk ok sk sk K ok ok ok ok sk ok K K oK ok ok ok ok
gmeta.e() - combine evidence from 2z2 tables (exact methods)
F ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk K ok sk K ok ok o ok ok o ok ok o ok ok sk ok ok sk K ok sk K ok ok ok ok ok ok ok ok o ok ok ok ok ok sk ok ok ok K ok sk K ok ok K ok ok o ok ok o oK ok ok ok ok ok K
main[gmeta.e]
gmeta.e <-
function(gmi,
method,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error) {
data_matrix = as.matrix(cbind(gmil, 1], gmil, 3], gmil, 2], gmil[, 4],
gmil, 1] + gmil, 31))
colnames (data_matrix) = c("x", "y", "N", "M", "x+y")
if (method == ’exactl’) {
gmeta.data <- gmeta.exact.indiv(data_matrix, gmo.xgrid, ci.level)
gmeta.cmbd <-
gmeta.exact.combine (gmeta.data,
weight,
gmo .xgrid,
ci.level,
mc.iteration,
report.error)
} else if (method == ’exact2’) {
gmeta.cmbd <-
gmeta.exact.LT(
data_matrix,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,

report.error

)

} else if (method == ’MH’ || method == ’Mantel-Haenszel’) {

gmeta.cmbd <- gmeta.MH(data_matrix, weight, gmo.xgrid,

} else if (method == ’Peto’) {

gmeta.cmbd <- gmeta.peto(data_matrix, weight, gmo.xgrid,

} else {

stop(’gmi.type 2x2 only match methods MH, Mantel-Haenszel,

exactl, exact2.’)
}

return(gmeta.cmbd)

2z2 with ezactl (LLX)
data processing
combine: exactl method
gmeta.exact.combine <-
function(gmeta.data,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
report.error) {
#gmeta.cmbd <- gmeta.data
#z.grids <- gmeta.data$z.grids
data_matric
data_matrix = gmeta.data$data_matrix
number of study
K = nrow(data_matrix)
combine individual CDs
alpha = 1 - ci.level
xstmts <- .Estimates(data_matrix[, 1:4])
obtain weight
if (is.null(weight)) {
weight <- xstmts$weight.hat
} else {

warning(’combine 2x2 with method="exactl",

default weight=NULL is strongly recommended.

}

indiv.cds <- gmeta.data$indiv.cds

)

226

#ORARBH roxoxoxxkkskskskokokokokokokokokokk Lo g Tt kkckokokokokokokokokokkkkkkkkok ok FHH

degreesfree <- 4 + (5 / (sum(weight 4 / sum(weight ~ 2) ~ 2)))

scaler <--1 / sqrt (((pi 2 * (degreesfree - 2)) / degreesfree) x*
sum(weight =~ 2 / 3))
combined.cd <-
colSums (weight ¥%*% log(indiv.cds / (1 - indiv.cds))) * scaler

combined.cd <-

pt (combined.cd, df = degreesfree, lower.tail = FALSE)

combined CD function
combinedCDF <-
function(theta) {
combined CD function, used when searching for quantiles
ff = sapply(
1:K,
FUN = function(j) {
midp.oddsratio(data_matrix[j, 1],
data_matrix[j, 3],
data_matrix[j, 4],
data_matrix[j, 51,

theta)

ff = ifelse(ff < 1 - 0.1 ~ 12, ff, 1 - 0.1 ~ 12)

ff pt (sum(weight %*% log(ff / (1 - £f£f))) x scaler,
df = degreesfree,
lower.tail = FALSE)

return (f£f)

}
inference derived from combined CD function
mn.xstmt = log(.quantileCD(combinedCDF, 1 / 2)) # mean
lower.ci = log(.quantileCD(combinedCDF, alpha / 2)) # ci.lower
upper.ci = log(.quantileCD(combinedCDF, 1 - alpha / 2)) # ci.upper

null hypothesis: odd-ratio==
o.pvalue = 2 * min(combinedCDF (1), 1 - combinedCDF (1))
adjust individual CDs and combined CD function to reduce test.size.error

if (is.na(xstmts$or.hat) == TRUE ||

227

xstmts$or.hat == 0 || xstmts$or.hat == Inf) {
mn.xstmt.adj = xstmts$or.hat
lower.ci.adj = NA

upper.ci.adj = NA
o.pvalue.adj = NA
coverage .prbblty.error = NA
coverage .prbblty.error.adj = NA
else {
indiv.cds.adj <-
t (sapply (
1:K,
FUN = function(j) {
adjust.beta(
gmeta.data$indiv.cds[j, 1],
data_matrix[j, 3],
xstmts$pt.hat[j],
data_matrix[j, 4],

xstmts$pc.hat [j]

))
combined.cd.adj <-
colSums (weight %*% log(indiv.cds.adj / (1 - indiv.cds.adj))) * scaler
combined.cd.adj <-
pt(combined.cd.adj, df = degreesfree, lower.tail = FALSE)
combinedCDF.adj <-
function(theta) {
combined CD function, used when searching for quantiles
ff = sapply(
1:K,
FUN = function(j) {
midp.oddsratio(data_matrix[j, 1],
data_matrix[j, 3],
data_matrix[j, 4],
data_matrix[j, 5],

theta)

ff = sapply(

1:K,
FUN = function(j) {
adjust.beta(f£f[j],
data_matrix[j, 3],
xstmts$pt.hat[j],
data_matrix[j, 4],

xstmts$pc.hat[j])

}

)

ff = ifelse(ff <1 - 0.1 ~ 12, ff, 1 - 0.1 ~

ff = pt(sum(weight %*% log(ff / (1 - ff))) =*
df = degreesfree,
lower.tail = FALSE)

return (ff)

}
inference derived from combined CD function - a

mn.xstmt.adj = log(.quantileCD(combinedCDF.adj, 1
lower.ci.adj = log(.quantileCD(combinedCDF.adj, a
ci.upper
upper.ci.adj = log(.quantileCD(combinedCDF.adj, 1
null hypothestis: odd-ratio==1
o.pvalue.adj = 2 * min(combinedCDF.adj (1),
calculate coverage probability error
coverage .prbblty.error <- ’Not Requested’
coverage.prbblty.error.adj <- ’Not Requested’
if (report.error) {
ee = test.size.error(

alpha / 2,

data_matrix[, 3],

xstmts$pt.hat,

data_matrix[, 4],

xstmts$pc.hat,

weight ,

result.lminusS = TRUE,

mc.iteration

)

coverage .prbblty.error ee$Test.Size.Error
ee$Test.Size.Error

coverage .prbblty.error.adj = ee$Test.Size.Error

12)

scaler,

djusted
/ 2))
lpha / 2))

- alpha / 2))

1 - combinedCDF.adj (1))

.1minusS -

.Adjusted.1lminusS

mean

ci.lower

228

229

ee$Test.Size.Error.Adjusted

combined

CD function

}

}

return

gmeta.cmbd <- list(
input
data_matrix = gmeta.data$data_matrix[, 1:4],
individual CDs
individual.cds = gmeta.data$indiv.cds,
individual.cis = gmeta.data$indiv.cis,
individual .medians = gmeta.data$indiv.medians,
individual.means = gmeta.data$indiv.means,
individual.stddevs = gmeta.data$indiv.stddevs,

combined.cd = combined.cd,

combined.density = F2f (gmo.xgrid, combined.cd),
combined.mean = mn.xstmt,

combined.median = gmeta.cd.median(gmo.xgrid, combined.cd),
combined.sd = gmeta.cd.stddev(gmo.xgrid, combined.cd),
combined.ci = c(lower.ci, upper.ci),

p-value for null hypothesis: odd-ratio==

pvalue = o.pvalue,

combined CD function - adjusted

combined.cd.adjusted = combined.cd.adj,

combined.density.adjusted = F2f(gmo.xgrid, combined.cd.adj),

combined.mean.adjusted = mn.xstmt.adj,

combined.median.adjusted = gmeta.cd.median(gmo.xgrid, combined.cd.adj),

combined.sd.adjusted = gmeta.cd.stddev(gmo.xgrid, combined.cd.adj),

combined.ci.adjusted = c(lower.ci.adj, upper.ci.adj),

p-value for null hypothesis: odd-ratio==1 - adjusted

pvalue.adj = o.pvalue.adj,
coverage probability error - check liu2012ezact

coverage .prbblty.error = coverage.prbblty.error,

coverage.prbblty.error.adj = coverage.prbblty.error.adj,
other information

method = ’exactl’,
linkfunc = ’inverse-fisher-exact-test-function’,
#[? adjusted]

weight = weight,

230

tau?2 = NULL,
ci.level = ci.level,
verbose = report.error,
mc.iteration = mc.iteration,
report.error = report.error,

output gridding points
x.grids = gmo.xgrid
)
return

return(gmeta.cmbd)

231

Simulations R Code - Modification3.R:

HARRBARBRARBARRBRRRBRRARRRRBRBARBRRRRRRRBRRRBRRARRRRRBRRRBRRRBRRRRRBRRRARRBHARH

#

#

#

Use Tian Exzact 2 Method with Liu Weights

HABRBABRARRRARRBRRRBRRRBRBRBRARRRRRBRRRRBRRRBRRRBRBRBRRRRBRRBRRRRBRRRBRRRBRAHRRH

library(binom)

library(BiasedUrn)

source ("gmeta_code_functions_to_load.R")

#

input matriz of 2z2 tables im format c(rz-event_treatment_group,
nr-number_observation_treatment_group, rTy-event_control_group,
ny-number_observation_treatment_group) for each row of the matriz

edata = as.data.frame(matriz(c(3, 2, 4, 5, 1, 2, 4, 6), nrow = 2, ncol = 4))

colnames (edata) = c("z", "n", "y", "m")
ok 3 K ok ok ok ok ok 3k K ok sk ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok ok 3 ok ok ok ok ok ok K ok ok ok ok ok K K
main

3k >k 3k 5k %k >k 5k 5k %k >k 3k 5k %k %k 3k 5k %k >k 5k k %k %k 3k 5k 3k %k %k 5k %k %k %k 5k 3k %k %k 5k 3k >k % > %k %k %k > %k %k % % 3k %k %k > %k %k %k 5% % %k %k > 5k %k %k % %k %k %k % >k % %k % % %k *k *k %k

main function

gmeta <- function(gmi,

gmi.type = c(’pivot’, ’cd’, ’pvalue’, ’2x2°),
method = c(
’fixed-mle’,
’fixed-robustl’,
’fixed-robust2’,
>fixed-robust2(sqrti2)’,
’random-mm’ ,
’random-reml’,
’random-tau2’,
’random-robustl’,
’random-robust2’,
’random-robust2(sqrt12)’,
>fisher’,
’normal’,
’stouffer’,
’min’,

’tippett’,

‘max’,

’sum’,

’MH’,

’Mantel ~Haenszel’,

’Peto’,

’exactl’,

’exact2’),
linkfunc = c(’inverse-normal-cdf’,
weight = NULL,
study.names = NULL,
gmo.xgrid = NULL,
ci.level = 0.95,
tau2 = NULL,
mc.iteration = 10000,
eta = ’Inf’,
verbose = FALSE,
report.error = FALSE) {

UseMethod (’gmeta’)

main function
gmeta.default <- function(gmi,
gmi.type = c(’pivot’,
’cd’,
’pvalue’,
’2x27),
method = c(
’fixed-mle’,
>fixed-robustl’,
’fixed-robust2’,
’fixed-robust2(sqrti2)’,
’random-mm’ ,
’random-reml’,
’random-tau2’,
’random-robustl’,

random-robust2’,

’random-robust2(sqrti12)’,

’fisher’,

’normal’,

’inverse-laplace-cdf’),

232

233

’stouffer’,
‘min’,
’tippett’,
‘max’,
’sum’,
’MH’,

’Mantel ~Haenszel’,

’Peto’,
’exactl’,
’exact2’
),
linkfunc = c(’inverse-normal-cdf’,
’inverse-laplace-cdf’),
weight = NULL,

study.names = NULL,
gmo .xgrid = NULL,
ci.level = 0.95,

tau?2 = NULL,
mc.iteration = 10000,

eta = 2Inf’,

verbose = FALSE,
report.error = FALSE) {
#check
mf <- match.call()
ci.level <-
ifelse(is.numeric(ci.level) &&
(ci.level >= 0) && (ci.level <= 1),
ci.level,
0.95)
mc.iteration <-
round (ifelse(
is.numeric(mc.iteration) && (mc.iteration > 1),
mc.iteration,
10000))
meta-analysts
if (gmi.type == ’pvalue’) {

gmo <- gmeta.p(gmi, method)

} else if (gmi.type == ’cd’ || gmi.type == ’pivot’) {

gmo <-

234

gmeta.m(gni,
gmi.type,
method,
linkfunc,
weight ,
gmo .xgrid,
ci.level,
tau2,
verbose)
} else if (gmi.type == ’2x2°’) {
combine 2z2 tables
gmo <-
gmeta.e(gni,
method,
weight,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error)
} else {
stop("gmi.type must be ’cd’, ’pivot’, ’pvalue’ or ’2x2°.")
}
post processing
gmo$call <- match.call()
gmo$input <- gmi
gmo$alpha <- 1 - ci.level
gmo$study.names <- study.names
registr S3 class
if (gmi.type == ’pvalue’) {
class(gmo) <- c(’gmeta.p’, ’gmeta’)
} else if (gmi.type == ’cd’ || gmi.type == ’pivot’) {
class(gmo) <- c(’gmeta.m’, ’gmeta’)
} else if (gmi.type == ’2x2°) {
class(gmo) <- c(’gmeta.e’, ’gmeta’)
} else {

stop("gmi.type must be ’cd’, ’pivot’, ’pvalue’ or ’2x2°.")

235

return

return (gmo)

meta-analysis - combine evidence from 2z2 tables
Bk ok sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk o ok ok s ok sk ok ok sk ok ok ok sk ok sk sk ok sk sk ok ok sk o ok sk o ok sk o ok sk sk ok sk sk ok sk ok ok sk sk ok ok K ok ok o ok ok ok oK sk ok ok ok ok ok
gmeta.e() - combine evidence from 2x2 tables (ezact methods)
Aok o ok ok ok ok ok sk ok ok sk K ok ok ok ok ok K ok ok K ok ok o ok ok o ok ok o ok ok ok ok ok ok K ok ok ok ok ok o oK ok o oK ok ok ok ok kK
main[gmeta.e]
gmeta.e <-
function(gmi,
method,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error) {
data_matrix = as.matrix(cbind(gmi[, 1], gmil[, 3], gmil, 2], gmil[, 4],
gmil[, 1] + gmil, 3]))
colnames (data_matrix) = c("x", "y", "N", "M", "x+y")
if (method == ’exactl’) {
gmeta.data <- gmeta.exact.indiv(data_matrix, gmo.xgrid, ci.level)
gmeta.cmbd <-
gmeta.exact.combine (gmeta.data,
weight,
gmo .xgrid,
ci.level,
mc.iteration,
report.error)
} else if (method == ’exact2’) {
gmeta.cmbd <-
gmeta.exact.LT(
data_matrix,
weight ,
gmo .xgrid,
ci.level,

mc.iteration,

eta,
verbose,
report.error)
} else if (method == ’MH’ || method == ’Mantel-Haenszel’) {
gmeta.cmbd <- gmeta.MH(data_matrix, weight, gmo.xgrid, ci.level)
} else if (method == ’Peto’) {
gmeta.cmbd <- gmeta.peto(data_matrix, weight, gmo.xgrid, ci.level)
} else {
stop(’gmi.type 2x2 only match methods MH, Mantel-Haenszel, Peto,
exactl, exact2.’)
}

return (gmeta.cmbd)

2z2 with exzact2(LT’s method) - risk difference[delta = pl1 - p2]
gmeta.exact.LT <-
function(data_matrix,
weight ,
gmo .xgrid,
ci.level,
mc.iteration,
eta,
verbose,
report.error) {
[update in v2.0, target pl-p2, following program %s on p2-pl,
so change case-ctrl order]

data.mi = data_matrix[, c(2, 1, 4, 3)]

number of trial

nstudy = dim(data.mi) [1]

delta - wndividual studies

nl = data.mil[, 3]

n2 = data.mil[, 4]

pl = data.mi[, 1] / data.mil[, 3]
p2 = data.mi[, 2] / data.mil[, 4]

deltap = p2 - pl

id = (1:nstudy)[pl * p2 == 0]

236

237

ni[id] = data.mil[id, 3] + 1

n2[id] = data.mil[id, 4] + 1

p1lid] = (data.milid, 1] + 0.5) / (data.milid, 3] + 1)
p2[id] = (data.mi[id, 2] + 0.5) / (data.milid, 4] + 1)
varp = pl * (1 - p1) / n1l + p2 * (1 - p2) / n2

wght = (n1 * n2 / (n1 + n2)) / sum(nl * n2 / (nl + n2))

Mantel ~Haenszel ’s method

mu.MH = sum(deltap * wght)

sd.MH = sqrt(sum(wght ~ 2 * varp))

ci.MH

c(mu.MH - 1.96 * sd.MH, mu.MH + 1.96 * sd.MH)

p-MHE =1 - pchisq(mu.MH =~ 2 / sd.MH ~ 2, 1)

gridding detla

d0 = max(abs(ci.MH))

delta.grd = sort(c(0, seq(
from = max(-1, -d0 * 15),
to = min(1, dO * 15),

length = length(gmo.xgrid) - 1)))

exact p-values [for observed datal] given true delta [risk differencel
diff.exact = function(x1l,
x2,
nl,
n2,
delta.grd,
n.grd = 15,
midp = TRUE) {
fit
fit = binom.confint(xl, nl, 0.9995, methods = ’exact’)
l,u

1

fit$lower

u = fit$upper
grd
pl.grd = seq(l, u, length = n.grd)
pnulll.tot = matrix(0, nl + 1, n.grd)
for (b in 1:n.grd) {

pl = pl.grdl[b]

pnulll.tot[, b] = dbinom(c(0:n1), nl, pl)

}

238

df & sd

dfnull = matrix(0, nl + 1, n2 + 1)

sdnull = matrix(0, nl + 1, n2 + 1)

for (i in 0:n1) {

}

pl = (i + 0.5) / (n1 + 1)
p2 = (c(0:n2) + 0.5) / (n2 + 1)

dfnull[i + 1,] c(0:n2) / n2 - i / ni1

sdnull[i + 1,] sqrt(pl * (1 - p1) / nl + p2 * (1 - p2) / n2)

pvl & pv2

pvl = numeric (0)

pv2 = numeric (0)

for (theta in delta.grd) {

pl = (x1 + 0.5) / (n1 + 1)

p2 = (x2 + 0.5) / (n2 + 1)

tt = (x2 / n2 - x1 / nl - theta) / sqrt(pl * (1 - pl) / nl + p2 *
(1 - p2) / n2)

null hypothesis detla==theta

tnull = (dfnull - theta) / sdnull

pvaluel = rep(0, n.grd)

pvalue2 = rep(0, n.grd)

error = le-6

for (b in 1:mn.grd) {

pi pl.grdl[bl

p2 pl + theta
if (p2 >= 0 && p2 <= 1) {
pnulll = pnulll.tot[, bl
pnull2 = dbinom(c(0:n2), n2, p2)
nl.adj = n1 + 1 - max(c(1, (1:(n1l + 1))[cumsum(sort(pnulll)) <
error]))
n2.adj = n2 + 1 - max(c(1l, (1:(n2 + 1)) [cumsum(sort(pnull2)) <
error]))
idl = order(pnulll)
id2 = order (pnull2)
idl = (id1[(n1 + 1):1]1)[1:nl.adj]
id2 = (id2[(n2 + 1):1])[1:n2.adj]

pnull = pnulli[id1] %=*% t(pnull2[id2])

239

pvaluel [b] = sum(pnull[tnull([idl, id2] > tt]) +
sum (pnull [tnull [idl, id2] == tt]) * 0.5

pvalue2[b] = sum(pnull[tnull[idl, id2] < tt]l) +
sum (pnull [tnull [id1, id2] == tt]) * 0.5

} else {

pvaluel [b] = sum(pnull[tnull[id1l, id2] > tt]) +
sum(pnull [tnull [id1, id2] == tt])

pvalue2[b] = sum(pnull[tnull([idl, id2] < tt]) +

sum (pnull [tnull [idl, id2] == tt])

}

pvl = c(pvl, max(pvaluel) + (1 - 0.9995))

pv2 = c(pv2, max(pvalue2) + (1 - 0.9995))
}

return(list(pvl = pvl, pv2 = pv2))

pvl.pool&pv2.pool are the CDs of individual studies.
pvl.pool = numeric (0)
pv2.pool = numeric (0)
for (kk in 1:nstudy) {
wverbose
if (verbose) {
use report.error as a surrogate as verbose [use parameter
verbose - update v2.0]
cat(’2x2 exact2 processing trial:’, kk, ’\n’)
} # update status - due to slow speed of diff.exact ().
resolve
x1 = data.mil[kk, 1]
x2 = data.mil[kk, 2]
nl = data.mi[kk, 3]
n2 = data.mil[kk, 4]
fit
fit = diff.exact(xl, x2, nl, n2, delta.grd, n.grd = 15, midp = TRUE)
pvl.pool = rbind(pvl.pool, fit$pvl)
pv2.pool = rbind(pv2.pool, fit$pv2)
}

n = length(gmo.xgrid)

240

for (i in 1:mnstudy) {
for (j in 1:length(gmo.xgrid)) {
pvl.pool[i, (n - j + 1)1 = max(pvl.pool[i, 1:(n - j + 1)1)

pv2.pooll[i, jl = max(pv2.pooll[i, j:nl)

}

pvl.pool&pv2.pool are the CDs of individual studies.

F ok ko ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk sk ok ok sk ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok sk sk ok ok ok sk ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok
weight for individual study
xstmts <- .Estimates(data.mi)
if (is.null(weight)) {
weight <- xstmts$weight.hat
} else {
if (verbose) {
use report.error as a surrogate as verbose [use parameter
verbose - update v2.0]
cat (
’\nwarning: use user specified weights, instead of the default

weight determined by study size.\n’)

}

F ok ok ok ok ok ok ok ok ok ok ok ok %k ok ok ok ok ok ok ok ok ok ok ok ok %k ok ok ok sk ok ok ok ok ok sk %k ok %k ok 3k ok sk ok ok 5k ok ok ok k >k k dk >k >k sk >k sk 5k >k >k >k %k %k %k >k k %k k %k k k %

combine individual CDs
if (is.numeric(eta)) {
eta in [0,1]
if (!(min(eta) >= 0 && max(eta) <= 1)) {
eta = seq(0.05, 0.95, length = 20)
}
FO~{-1}()
FOinv <- function(ui) {
sum (((ui > (1 - eta)) - eta) / (eta * (1 - eta)))
}
} else {
eta = ’Inf’
for the case K\to\inf:
pvl.pool&pv2.pool - adjust to make sense In(ui/ (1-ui))

pvl.pool[pvl.pool <= 0] = 1le-6

241

pvl.pool[pvl.pool >= 1] = 1 - le-6
pv2.pool[pv2.pool <= 0] = 1le-6
pv2.pool[pv2.pool >= 1] = 1 - 1le-6

puv2.pool = 1+(1-0.9995)%2 - puv2.pool
FO~{-1}()

FOinv <- function(ui) {

log(ui / (1 - ui))

combine recipe g_c()
gc <- function(u) {
sum (sapply(u, FOinv) * weight)
}
simulation for G_c()
T = numeric(mc.iteration)
for (b in 1l:mc.iteration) {
u = runif (nstudy)
T[b]l = gc(u)
}

Gc = ecdf (T)

combined CDs

Hcl

Gc (apply(pvl.pool, 2, gc)) # HC1 non-decreasing
Hc2 = Gc(apply(pv2.pool, 2, gc)) # HC2 non-increasing

combined.ci = c(max(delta.grd[Hcl < 0.025]), min(delta.grd[Hc2 < 0.025]))

post processing
integrated2CDs <- function(cdl, cd2, delta.grd) {
mdnpt = delta.grd[round(median(which(abs(cdl - cd2) == min(abs(
cdl - ¢d2)))))]
1+(1-0.9995)*2-cd2
intgrtdcd = ifelse(delta.grd < mdnpt, cdl, 1 + (1 - 0.9995) *x 2 - cd2)
for (j in 1:n) {
intgrtdcd[j] = max(intgrtdcd[1:j])
}
intgrtdcd[intgrtdcd <= 0] = 1le-6

intgrtdcd [intgrtded >= 1] = 1 - 1le-6

242

return(intgrtdcd)

individual CDs
indiv.cds <- NULL
for (i in 1:mnstudy) {
indiv.cds = rbind(indiv.cds,
integrated2CDs (pvl.pooll[i, 1,
pv2.pool[i,], delta.grd))
}

indiv.means numeric (0)

indiv.stddevs = numeric (0)

indiv.ci numeric (0)
for (i in 1:mnstudy) {

indiv.means [i] = gmeta.cd.mean(delta.grd, indiv.cds[i, 1)

indiv.stddevs[i] = gmeta.cd.stddev(delta.grd, indiv.cds[i,])

indiv.ci rbind(indiv.ci,

gmeta.cd.mdncis (delta.grd,

indiv.cds[i, 1, 1 - ci.level))
}
combined CD
cmbdF = integrated2CDs (Hcl, Hc2, delta.grd)
cmbdf = F2f (delta.grd, cmbdF)
cmbdmn = gmeta.cd.mean(delta.grd, cmbdF)

cmbdmdn = gmeta.cd.median(delta.grd, cmbdF)
cmbdsdv = gmeta.cd.stddev(delta.grd, cmbdF)
report.error
if (min(gmo.xgrid) < -1 || max(gmo.xgrid) > 1) {

#gmo.zgrid = seq(from=-1, to=1, length=length(gmo.zgrid))

gmo .xgrid = delta.grd

if (report.error) {

warning (’\nuse exact2method combine 2x2 tables, parameter is

risk-difference, only evaluate gmo.xgrid within [-1,1]\n’)

}
return
gmeta.cmbd <- list(

input

data_matrix =

data.mi,

individual CDs

individual. cds = indiv.cds,
individual.cis = indiv.cil[, c(1,
individual .medians = indiv.cil[, 2],
individual .means = indiv.means,
individual.stddevs = indiv.stddevs,
combined CD

combined. cd = cmbdF,
combined.density = cmbdf ,
combined.mean = cmbdmn,
combined.median = cmbdmdn,
combined. sd = cmbdsdv,

combined.ci

= combined.ci,

other information

method
linkfunc
weight

tau2
ci.level
mc.iteration
eta

verbose

report.error

’exact2’,
’log(u/(1-u)
weight ,
NULL ,
ci.level,
mc.iteration
eta,
verbose,

report.error

output gridding points

x.grids

delta.grd)

return (gmeta.cmbd)

),

>

>

)1,

243

244

Simulations R Code - Simulation_Modificationl.R:

source ("Modificationl.R")

inv_logit_liu_exactl <- function(sdata) {

mdata <- cbind(sdatal[l, colnames(sdata) == 1], # TRT_event
colSums (sdatal[, colnames(sdata) == 1]), # TRT_n
sdata[l, colnames(sdata) == 0], # CTRL_event
colSums (sdatal[, colnames(sdata) == 0])) # CTRL_n

m_inv_logit_liu <- gmeta(mdata,
gmi.type = "2x2",
method = "exactl",
gmo .xgrid = seq(-1, 1, by = 0.001),
report.error = TRUE)
sig0l <- NA
if (m_inv_logit_liu$combined.ci[1] < 0 &&
m_inv_logit_liu$combined.ci[2] > 0) {
sig0l <- 0
} else if (m_inv_logit_liu$combined.ci[1] < 0 &&
m_inv_logit_liu$combined.ci[2] < 0) {
sig0l <- 1
} else if (m_inv_logit_liu$combined.ci[1] > 0 &&
m_inv_logit_liu$combined.ci[2] > 0) {
sig0l <- 1
} else if (m_inv_logit_liu$combined.cil[1] == 0 &&
m_inv_logit_liu$combined.cil[2] > 0) {
sig0l <- 0

} else if (m_inv_logit_liu$combined.ci[1] < 0 &&

m_inv_logit_liu$combined.cil[2] == 0) {
sigdl <- 0
}
return(sig01)
}
tau2 <- 0
mu <- -5

reps <- 1000

workspace generated from ma.sim.dat.R and Generate_Data.R code in Appendiz C

load (paste0("Tau2=", tau2, ",Mu=", mu, ".RData"))

all_dat_small <- all_dat[l:reps]

Inverse Fisher Exzact Test Function - Exzact 1 Method

set.seed (1993)

start_time <- Sys.time ()
results_inv_logit <- sapply(all_dat_small, function(x)
inv_logit_liu_exactl(x))

Sys.time() - start_time # Time difference

typelerror <- sum(results_inv_logit) / length(results_inv_logit)

typelerror

245

246

Simulations R Code - Simulation_Modification2.R:

source ("Modification2.R")
inv_logit_liu_exactl <- function(sdata) {

mdata <- cbind(sdata[l, colnames (sdata)

colSums (sdatal,

colnames (sdata)

1], # TRT_event

11,

TRT_n

sdata[l, colnames(sdata) == 0], # CTRL_event
colSums (sdata[, colnames(sdata) == 0])) # CTRL_n
m_inv_logit_liu <- gmeta(mdata,
gmi.type = "2x2",
method = "exactl",
gmo .xgrid = seq(-1, 1, by = 0.001),
report.error = TRUE)
sig0l <- NA
if (m_inv_logit_liu$combined.ci[1] < 0 &&
m_inv_logit_liu$combined.ci[2] > 0) {
sig0l <- 0
} else if (m_inv_logit_liu$combined.ci[1] < 0 &&
m_inv_logit_liu$combined.ci[2] < 0) {
sig0l <- 1
} else if (m_inv_logit_liu$combined.ci[1] > 0 &&
m_inv_logit_liu$combined.ci[2] > 0) {
sig0l <- 1
} else if (m_inv_logit_liu$combined.cil[1] == 0 &&
m_inv_logit_liu$combined.cil[2] > 0) {
sig0l <- 0
} else if (m_inv_logit_liu$combined.ci[1] < 0 &&
m_inv_logit_liu$combined.cil[2] == 0) {
sigdl <- 0
}
return(sig01)
}
tau2 <- 0
mu <- -5
reps <- 1000

workspace generated from ma.sim.dat.R and Generate_Data.R code in Appendiz C

load (pasteO("Tau2=", tau2, ",Mu=", mu,

".RData"))

all_dat_small <- all_dat[l:reps]

Inverse Fisher Exzact Test Function - Exzact 1 Method

set.seed (1993)

start_time <- Sys.time ()
results_inv_logit <- sapply(all_dat_small, function(x)
inv_logit_liu_exactl(x))

Sys.time() - start_time # Time difference

typelerror <- sum(results_inv_logit) / length(results_inv_logit)

typelerror

247

Simulations R Code - Simulation_Modification3.R:

source ("Modification3.R")

tian_liu_weight_exact2 <- function(sdata) {

248

mdata <- cbind(sdatal[l, colnames(sdata) == 1], # TRT_event
colSums (sdatal[, colnames(sdata) == 1]), # TRT_n
sdata[l, colnames(sdata) == 0], # CTRL_event
colSums (sdatal[, colnames(sdata) == 0])) # CTRL_n
m_tian_liu_weight_res <- gmeta(mdata,
gmi.type = "2x2",
method = "exact2",
gmo .xgrid = seq(-1, 1, by = 0.001),
report.error = TRUE)
sig01l <- NA
if (m_tian_liu_weight_res$combined.ci[1] < 0 &&
m_tian_liu_weight_res$combined.ci[2] > 0) {
sig0l <- 0
} else if (m_tian_liu_weight_res$combined.ci[1] < 0 &&
m_tian_liu_weight_res$combined.ci[2] < 0) {
sig0l <- 1
} else if (m_tian_liu_weight_res$combined.ci[1] > 0 &&
m_tian_liu_weight_res$combined.ci[2] > 0) {
sig0l <- 1
} else if (m_tian_liu_weight_res$combined.ci[1] == 0 &&
m_tian_liu_weight_res$combined.cil[2] > 0) {
sig0l <- 0
} else if (m_tian_liu_weight_res$combined.ci[1] < 0 &&
m_tian_liu_weight_res$combined.cil[2] == 0) {
sigdl <- 0
}
return(sig01)
}
tau2 <- 0
mu <- -5
reps <- 1000

workspace generated from ma.sim.dat.R and Generate_Data.R code in Appendiz C

load (paste0("Tau2=", tau2, ",Mu=", mu, ".RData"))

249

all_dat_small <- all_dat[l:reps]

Tian Ezact 2 Method with Liu Weights

set.seed (1993)

start_time <- Sys.time ()
results_tian_liu_weights <- sapply(all_dat_small, function(x)
tian_liu_weight_exact2(x))

Sys.time () - start_time # Time difference

typelerror <- sum(results_tian_liu_weights) / length(results_tian_liu_weights)

typelerror

250

CURRICULUM VITAE

Brinley Zabriskie
brinley.zabriskie@gmail.com

EDUCATION

PhD in Statistics, Utah State University (USU), Logan, UT 05/2019

GPA: 4.00

Presidential Doctoral Research Fellowship

Dissertation Title: Meta—Analysis with Small or Sparse Samples

Committee: Chris Corcoran (major professor), Tyler Brough,
David Brown, Adele Cutler, John Stevens

Research Interests: Techniques for small samples sizes, exact analysis, categorical
data analysis, meta-analysis, network meta-analysis,
biostatistics, and machine learning techniques for classification
and prediction

BSc in Mathematics and Statistics, USU, Logan, UT 05/2014

GPA: 3.93
magna cum laude, Presidential Scholarship, Dean’s List Fall 2011 and Spring 2014

PUBLICATIONS

IN PREPARATION
Zabriskie, B., Corcoran, C., Senchaudhuri, P. “Exact Meta—Analysis Using a
Permutation-Based Approach.”

Zabriskie, B., Corcoran, C., Senchaudhuri, P. “Combining Confidence
Distributions for Rare Event Meta—Analysis.”

PRESENTATIONS

Zabriskie, B., Corcoran, C., Senchaudhuri, P. (2018), “Exact Meta—Analysis Using
a Permutation-Based Approach,” Oral and Poster Presentation at the Women in
Statistics and Data Science (WSDS) Conference, Cincinnati, OH.

Zabriskie, B., Corcoran, C., Senchaudhuri, P. (2018), “Combining Confidence
Distributions for Rare Event Meta—Analysis,” Oral Presentation at the Joint
Statistical Meetings (JSM), Vancouver, British Columbia, Canada.

Corcoran, C., Zabriskie, B., Senchaudhuri, P. (2018), “Exact Meta—Analysis Using
a Permutation-Based Approach,” Oral Presentation at the International Society of
Non-Parametric Statistics (ISNPS) Conference, Salerno, Southern Italy.

Zabriskie, B., Corcoran, C., Senchaudhuri, P. (2018), “Combining Confidence
Distributions for Rare Event Meta—Analysis,” Oral Presentation at USU’s Research
Symposium, Logan, UT. (Received an award for this presentation)

Zabriskie, B., Corcoran, C., Senchaudhuri, P. (2016), “An Overview of
Meta—Analysis Software Features,” Oral Presentation to managers at Cytel, a large
statistical software company, Cambridge, MA.

251

TEACHING EXPERIENCE

Business Statistics Course Instructor, USU, Logan, UT 08/2018-05/2019
e Energetically teach a 4-credit business statistics course of over 160 students

e Create new course material and continue to improve and update existing material

e Collaborate with two teaching assistants to create a cohesive, enriching environment
for students
Business Statistics Teaching Assistant, USU, Logan, UT 01/2018-05/2018
e Designed and updated course material, which included creating online Excel
assignments

e Taught two courses, each with more than 30 students
Business Statistics Teaching Assistant, USU, Logan, UT 08/2017-12/2017
e Collaborated with colleagues in the Jon M. Huntsman School of Business and the
Mathematics and Statistics Department to create an updated version of this course
to better prepare business students for their future courses and careers

e Effectively taught one course of 17 students, focusing on the students’ individual
needs
Statistics Course Instructor, USU, Logan, UT 06/2016—08/2016
e Dynamically taught a 5—credit introductory statistics class of 45 students, which
included broadcast students from around the state of Utah

e Engaged students during two—hour class lectures for five days a week over a
seven-week period by creating interactive classes and using a wide variety of
teaching methods

e Provided ample help outside of class for both traditional and broadcast students
Statistics Teaching Assistant, USU, Logan, UT 01/2016-04/2016
e Taught introductory statistics to three classes of more than 30 science and
engineering students

e Fostered a positive learning environment where students felt comfortable, asked
questions, and were encouraged to meet one—on—one for additional help

e Collaborated with the other teaching assistant to create effective teaching strategies
and materials, which helped students more fully understand topics covered in the
main lecture

Business Statistics Teaching Assistant, USU, Logan, UT 01/2014-05/2014

e Enthusiastically taught business statistics to two classes of more than 30 students

each

e Communicated complex subjects in clear, understandable ways to help struggling
students achieve success

Math Refresher Course Teachering Assistant, USU, Logan, UT 01/2014
e Helped prepare students to succeed in their upcoming math classes
College Algebra Teaching Assistant, USU, Logan, UT 08/2013—-12/2013

e (learly taught college algebra in two classes of about 30 students each

e Responsibly proctored exams and quizzes

252

PROFESSIONAL EXPERIENCE
Graduate Research Assistant, USU, Logan, UT 05/2018-08/2018

e Compared existing confidence distribution methods and created new confidence
distribution methods for meta—analysis to determine which is best suited for
meta—analyses with rare events and heterogeneity

e Presented these findings at USU’s Together We Teach Conference
Statistical Consultant, USU, Logan, UT 01/2018-02/2018

e Analyzed complex survey and web application data for a student finishing his PhD
at Purdue University

e Provided the results and discussion sections of the student’s dissertation in an
approachable and clear manner

English Consultant, USU, Logan, UT 04/2016-11/2016

e Edited professional papers and applications for a statistics faculty member who
speaks English as her second language

Statistician, Intermountain Healthcare, Salt Lake City, UT 05/2015-08/2015

e Efficiently extracted data from large databases to conduct complex analyses, which
uncovered ways Intermountain Healthcare could be more efficient, more consistent,
and more aware of patient needs

e Analyzed sensitive company data and presented results in a user—friendly form,
facilitating decision making for managers and medical professionals

Business Analyst, Journal Technologies, Logan, UT 05/2014-12/2014

e Extracted data from a database to produce complex, interactive reports per
customer requirements that communicated data clearly and concisely

e Quickly learned to create personalized, automated documents with the company’s
proprietary software

e Communicated clearly and effectively with remote customers via verbal and written
correspondences

PROFESSIONAL MEMBERSHIPS

e American Statistical Association 2014—present

PROFESSIONAL DEVELOPMENT
e Attend the Graduate Training Series by USU, 05/2014—present

e Attended a two—day teacher training workshop by USU’s Mathematics and Statistics
department, 08/2018

e Participated in weekly teacher training seminars by USU’s Mathematics and
Statistics department, 01/2018-04/2018

253

COMPUTER SKILLS

Programming Languages: R, SAS, Python, C++, and C

Skills: Data Cleaning, Web Data Extraction,
Regular Expressions, and HPC Clusters
Database Tools: MS SQL & SQL Server Reporting Services and
Oracle SQL Developer & PL/SQL
Operating Systems: Linux and Windows
Markup Languages: BTEX, HTML, and XML
AWARDS

Graduate PhD Researcher of the Year Award, 2019
Excellence in Teaching Award, 2019

USU Student Research Symposium Outstanding Graduate Oral Presentation Award,
2018

Academic Excellence Award, 2016
USU Presidential Doctoral Research Fellowship for graduate degree, 2014
Academic Excellence Award, 2014

Data Ninja Award for being the top student in a management information systems
course, 2014

USU Presidential Scholarship for undergraduate degree, 2011
Regents’ Scholarship for Exemplary Academic Achievement, 2011

SERVICE AND VOLUNTEER WORK

Volunteer as a mathematics and statistics tutor for undergraduates, 2011—present
Served as a USU ambassador to potential graduate students, 2014-2018

Reviewed USU Undergraduate Research and Creative Opportunity grants,
2017-2018

Served as a judge for undergraduate research presentations during USU’s Student
Research Symposium, 2017-2018

Freely consulted with a Biological Engineering PhD student to help her with the
statistics in her dissertation, 2017

	Methods for Meta–Analyses of Rare Events, Sparse Data, and Heterogeneity
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION TO META–ANALYSIS METHODS FOR RARE EVENTS AND HETEROGENEITY
	1.1 Background
	1.2 Common Statistical Methods for Meta–Analyses
	1.3 Common Statistical Methods for Meta–Analyses of Rare Events
	1.4 Novel Statistical Methods for Meta–Analyses of Rare Events
	1.5 Summary of the Remaining Chapters

	2 EXACT META–ANALYSIS FOR RARE EVENTS AND HETEROGENEITY
	2.1 Background
	2.2 Methodology
	2.2.1 Exact Conditional Logistic Regression
	2.2.2 Exact Conditional Logistic Regression for Correlated Data
	2.2.3 Exact Estimation Method
	2.2.4 Network Algorithm

	2.3 Innovation
	2.3.1 Exact Test: Variation of Treatment Level Within Study
	2.3.2 Exact Test: Variation of Correlation Structure Among Treatment Levels
	2.3.3 Network Algorithm: Variation of Treatment Level Within Study
	2.3.4 Network Algorithm: Variation of Correlation Structure Among Treatment Levels

	2.4 Application
	2.4.1 Simulation Study
	2.4.1.1 Type I Error
	2.4.1.2 Bias
	2.4.1.3 Confidence Interval Coverage

	2.4.2 Illustrative Examples
	2.4.2.1 Stomach Ulcers
	2.4.2.2 Antibiotics

	2.4.3 Network Algorithm
	2.4.3.1 Original Exact Test for Correlated Data
	2.4.3.2 Variation of Treatment Level Within Study
	2.4.3.3 Variation of Correlation Structure Among Treatment Levels

	2.5 Conclusion

	3 EXACT NETWORK META–ANALYSIS
	3.1 Background
	3.1.1 Introduction and Terminology
	3.1.2 Basic Methods
	3.1.3 Assumptions and Validity Considerations

	3.2 Methodology and Innovation
	3.3 Application
	3.4 Conclusion

	4 COMBINING CONFIDENCE DISTRIBUTIONS FOR RARE EVENT META–ANALYSIS
	4.1 Background
	4.2 Methodology
	4.2.1 Confidence Distribution Definition
	4.2.2 Combining Confidence Intervals as in LuTian
	4.2.3 Combining p–value Functions as in DungangLiu
	4.2.4 Combining p–values as in Fisher1932

	4.3 Innovation
	4.3.1 Modification 1: Use the Logit Function Under the General CD Framework without Weights
	4.3.2 Modification 2: Use the Logit Function Under the General CD Framework with Weights Defined by DungangLiu
	4.3.3 Modification 3: Use the LuTian Framework with Weights Defined by DungangLiu
	4.3.4 Summary

	4.4 Application
	4.4.1 Simulation Results
	4.4.2 Example Data Set: Cerebral Microbleeds

	4.5 Conclusion

	5 CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A: Information on the Confidence Interval Bounds of Section 2.2.3
	Appendix B: Adjustments to the Conditional Probability of Section 2.2.3
	Appendix C: Code for Chapter 2
	Appendix D: Code for Chapter 3
	Appendix E: Code for Chapter 4

	CURRICULUM VITAE

