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ABSTRACT

REDUCING ROAD WEAR WHILE ENSURING COMFORT AND CHARGING

CONSTRAINTS FOR DYNAMICALLY CHARGED PASSENGER VEHICLES

THROUGH NOISE SHAPED CONTROL INPUTS

by

Clint Jay Ferrin, Master of Science

Utah State University, 2019

Major Professor: Randy Christensen, Ph.D.
Department: Electrical and Computer Engineering

Dynamically charged vehicles suffer from power-loss during wireless power transfer

due to receiver and transmitter coil misalignment while driving. Autonomous dynamically

charged vehicles can maximize wireless power transfer by following an optimal charging

path, but the repeated high-precision increases road wear. To avoid unnecessary road

wear and rutting, a noise shaping filter is proposed that adds acceleration, velocity, and

position variability to a vehicle’s trajectory that complies with passenger acceleration and

position constraints. However, introducing variability into an optimal charging path also

risks depleting battery life prior to destination arrival. Therefore, a path planner is proposed

that guarantees average charge within a specified probability and ensures rider comfort while

reducing road wear.

(140 pages)
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PUBLIC ABSTRACT

REDUCING ROAD WEAR WHILE ENSURING COMFORT AND CHARGING

CONSTRAINTS FOR DYNAMICALLY CHARGED PASSENGER VEHICLES

THROUGH NOISE SHAPED CONTROL INPUTS

Clint Jay Ferrin

Dynamically charged vehicles suffer from power-loss during wireless power transfer due

to vehicle coil misalignment while driving. Autonomous dynamically charged vehicles can

maximize wireless power transfer by following an optimal charging path, but the repeated

precision increases road wear. To avoid unnecessary road wear and rutting, a path planner

can intentionally inject variability into an autonomous vehicle’s path. However, introduc-

ing variability into an optimal charging path risks depleting battery life prior to destination

arrival, and it increases rider discomfort. Therefore, a path planner is proposed that guar-

antees average charging criteria and ensures rider comfort while reducing road wear.
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CHAPTER 1

INTRODUCTION

1.1 Background

Electric vehicles (EVs) account for more than 1% of yearly vehicle sales in the United

States, and they are rising in popularity world-wide [1]. Dynamic wireless charging EVs

are gaining attention because they decrease weight and cost for EV batteries and eliminate

inconvenient charging stops—especially in public transit routes. Lancaster City Park has

already produced a fleet of dynamically charging vehicles (DCVs) that recharge wirelessly

during stops [2], and four other pilot pilot programs are under development for dynamically

charging bus systems in the United States [3].

Dynamically charging vehicles (DCVs) that charge during transit are gaining popu-

larity in public transportation systems because they eliminate overhanging charging wires,

improve air quality, and promote quiet transportation. Additionally, charging coils can

be installed on public transportation routes to decrease the size, weight, and price of the

batteries installed on public transportation fleets.

One challenge for DCVs is the power-loss that occurs due to coil misalignment in wire-

less power transfer. Approaches to address coil misalignment include altering the material

and shapes [4, 5], or increasing the number and placement of WPT transmitter and re-

ceivers [6, 7]. As expressed in the review done by Zicheng, there exists a trade-off between

the misalignment tolerance and the size of the charging system with its corresponding ve-

hicle and infrastructure costs [8]. To reduce infrastructure costs, Autonomous Dynamic

Charging Vehicles (ADCVs) can be used to autonomously control a vehicle with sufficient

accuracy to reduce the allowable misalignment tolerance. However, using a vehicle control

law that maximizes power transfer with small lateral misalignment has the potential to

cause rapid road wear and ruts–especially around charging regions.
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To avoid unnecessary road damage, it is proposed that the ADCV’s path planner inject

white Gaussian noise passed through a noise shaping filter into the control inputs of the

vehicle. However, introducing variability into an optimal charging path risks depleting

battery life prior to destination arrival and increases rider discomfort.

As a result, the noise must be carefully shaped to guarantee average vehicle battery

charge within a desired probability interval while ensuring the vehicle stays within its trav-

eling lane, maintains acceleration comfort constraints, and maximizes variability.

To guarantee the vehicle receives a specified average charge, Monte Carlo simulations

are performed in Section 3.6.4 to model the nonlinear effect that the WPT equations have on

the injected variability. From the Monte Carlo simulations, an estimated standard deviation

is also computed and a corresponding average charge can be guaranteed within a specified

probability interval.

The proposed noise shaping filter is analyzed in Section 3.6.1, which addresses how to

statically bound the position and comfort path deviations introduced by the noise shaping

filter.

To address meeting passenger comfort constraints, this research proposes creating a

Continuous Curvature Path (CCPath) using Clothoids in Section 3.4. Clothoids allow the

acceleration of the vehicle to be bounded by the path planner, and they ensure the desired

path is drivable. Creating a drivable path prevents large controller errors that can result in

large control inputs that violate passenger comfort constraints.

To address the precise vehicle tracking required for WPT, this research proposes using

a Kalman Filter for vehicle navigation in Section 3.2, and a linear control law in Section 3.5.

Using the Kalman Filter, a full-state feedback infinite horizon Linear–Quadratic Regulator

(LQR) controller is proposed that can track the Clothoid CCPath with zero analytical

tracking error.

The results of system performance are then presented in Chapter 4, where the noise

shaping filter performance is validated.



CHAPTER 2

LITERATURE REVIEW

The following sections outline notable research that relates to ADCVs. Topics include

current accuracy of autonomous vehicles, wearing of vehicle roads, how passenger comfort

is measured, and current vehicle control algorithms.

2.1 Vehicle Estimation Accuracy

Autonomous vehicles can achieve a mean error of 3 cm estimation accuracy using

magnetic markers and odometry [9] and 4.3 cm estimation accuracy at highway speeds using

the Localizing Ground Penetrating Radar (LGPR) validated using RTK GPS [10]. Because

the necessary localization technology exists for ADCVs to locate their position within 4

cm at highway speeds, this paper assumes ADCVs can rely on autonomous navigation for

maximum power transfer. Therefore, if similar transit vehicles drive a path within ±4 cm,

road wear will increase as described in Section 2.2.

2.2 Road Wear

Ruts in the road are costly to repair and pose safety concerns due to their significant

effect on hydroplaning [11, 12]. Rutting is caused by densification and shear deformation

from repeated vehicle history and vehicle weight as seen in Figure 2.1 [13]. Accurate path

following ADCVs will contribute to the formation of ruts and road wear due to their exact

paths and low variance. Hjort reports that lateral wander with large variance extends

road life–especially with decreasing pavement thickness [14]. Because DCVs are primarily

implemented on heavier buses for public transportation, the ADCVs will cause more damage

to roads than commercial vehicles [14]. Therefore, it is desirable that a path planner inject

path variability to the vehicle’s trajectory to prevent unnecessary road wear.
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Fig. 2.1: Depiction of the formation of flow rutting based on repetitive vehicle travel.

2.3 Clothoid Smoothing

Fraichard rigorously defines how to use principles of minimum distance from the Reeds

and Shepp’s curves to form G2 continuous paths and that have a linearly increasing curva-

ture related to arc distance [15]. These paths are referred to as Clothoids—also known as the

Euler Spiral. Clothoids are intrinsically drivable paths because they utilize the kinematic

model of a vehicle to connect lines and arcs.

As described in [16], there are two basic approaches to forming continuous paths us-

ing the Clothoid. The first involves connecting way-points via lines, and smoothing the

connection of the lines using Clothoid arcs.

The second approach is to directly connect connect way-points using mu-tangent circles

connected with Clothoids, circular arcs, and lines [15]. Both approaches maintains G2

continuity between the line segments and creates an intrinsically drivable path.

Because the Clothoid does not have a closed form solution it must be computed numer-

ically. To avoid integration time, there are many approximation techniques for clothoids

that include using Bezier curves, circular interpolation [17], or rotating and translating

clothoid look-up tables [18]. Therefore, this research assumes Clothoids can be computed

in real time to plan a drivable path that complies with passenger comfort constraints.
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2.4 Passenger Comfort

Both acceleration and jerk affect passenger comfort in vehicles [19]. Intentionally

adding variability to a vehicle path has the potential to cause passenger discomfort due

to jerky motions and unnecessary accelerations. Acceleration discomfort levels are around

1.2m/s2 for passengers, and jerk constraints are near 0.7m/s3 [19, 20]. Villagra incorpo-

rates a global path planner that maintains curvature derivatives aimed at providing smooth

driving, and it incorporates a “closed-form speed profile” to maintain acceleration and jerk

constraints [21].

The frequency of acceleration also has an impact on motion sickness in passengers.

Acceleration changes of 0.2 Hz are reported by Golding to increase the likelihood of motion

sickness [22]. Therefore, a path planner that injects variability into a route must maintain

constraints on the acceleration maximum and the frequency of acceleration changes.

2.5 Control Algorithms

Kinematic models are adequate for many control algorithms, and Snider reports that

the pure pursuit controller method with an Ackermann bicycle steering model is well suited

for slower driving vehicles. Snider also reports that a combination of control methods may

be best depending on the speed and turn profile of the path [23].

Villagra shows that the pure kinematic bicycle model with an optimal path planner

can be used to stay within comfort constraints and cross-track error constraints at speeds

of 10m/s [21].



CHAPTER 3

MATERIALS AND METHODS

This chapter presents the analysis used to produce the results in Chapter 4. The

Sections contained in this chapter give the necessary background to both understand the

methods and validate the results. Figure 3.1 represents the system diagram and presents

topics that will be addressed.

w(t)
Variation

Controller Vehicle

Observer

Path Planner

Battery

+

+
x

x̂

q

qd

Traj.
Vehicle Input

Charging
Dynamic

Est.
Power
Loss

Fig. 3.1: High level block diagram of the control variation for a dynamically charged pas-
senger vehicle.

The overall system goal depicted in Figure 3.1 is to arrive at the desired state xd with a

desired battery state of charge while maximizing path variation and complying with comfort

and position constraints.
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As a result, the Path Planner Node from Figure 3.1 receives both position and battery

state of charge so that a driveable path and a desired average charge qd can be calculated.

Section 3.4 addresses the path planner and explores how the desired charge is calculated

with a corresponding probability interval.

The Controller Node in Figure 3.1 is responsible for tracking a desired trajectory from

the Path Planner. An infinite time horizon LQR controller is proposed in Section 3.5.

The Variation Node in Figure 3.1 is responsible for adding shaped noise to the vehicle

path while ensuring the system and comfort constraints are met. The analysis of the comfort

constraints and noise shaping filter to produce the variation are addressed in Section 3.6.

The Vehicle Node in Figure 3.1 simulates an Ackermann steering kinematic vehicle

which is derived in Section 3.1.

The Observer Node in Figure 3.1 represents an Extended Kalman Filter based on

continuous steering and velocity measurements with discrete position updates. The observer

is derived and verified in Section 3.2.

The Dynamic Charging Node in Figure 3.1 addresses how the vehicle’s battery charges

via wireless power transfer (WPT) based on the lateral misalignment of the receiver and

transmitters; the Dynamic Charging Node is analyzed in Section 3.3.

The Estimated Power Loss Node in Figure 3.1 is considered in Section 3.3, which

addresses how the battery’s state of charge is approximated based on the dynamics of the

system for simulation purposes. The battery Node symbolizes the current state of the

battery based on the sum of the estimated power loss and power gain through dynamic

charging.

3.1 System Model

A system model is necessary for the system observer, controller, and path path planner

of the autonomous vehicle. Depending on the speed and turn profile of a path, a combination

of dynamic models and controllers may be necessary for best performance, but this research

focuses on vehicles driving under 15m/s on urban paths.
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As a result, kinematic models are well suited, and Snider cites that several champions

of the DARPA Grand Challenge used simple kinematic vehicle models in their designs

[23]. In addition, Villagra successfully shows that comfort constraints can be met using

the ackermann’s simplified bicycle model driving nominally at 10m/s [21]. This model is

assumed because the algorithms included in this research are intended to be implemented

on hardware at slower speeds first. Future research could include extending the models and

algorithms to highway speed driving.

Therefore, the bicycle model is used for the system observer and controller commands

as described in Sections 3.2 and 3.5 respectively. Figure 3.2 shows the geometric model,

and its corresponding states can be seen in Equation 3.2. For completeness, the derivation

of the equations of motion are completed in this section and are listed in Equation 3.17.

Assuming the vehicle is a rigid body with no air resistance or friction, the Ackermann

Steering Model can be simplified to the bicycle model. The vehicle frame is referenced from

the center of the back axle for several reasons. First there exists a geometric relationship

between the steering angle φ and the curvature κ of the vehicle where

κ =
v

L
tanφ (3.1)

at the center of the back axle. Additionally, establishing the reference point on the back

axle allows the turning curvature to be smaller than on any other reference point of the

vehicle, and the heading is aligned with the tangent of the direction of the path [24].
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x

y

ψ
(x, y)

L

r

φ

(xf , yf )

Fig. 3.2: Geometric relationships for the simplified Ackermann Steering Model referenced
at the center of the back axle.

Assuming acceleration inputs, and by observation of Figure 3.2, the vehicle states can

be described as

x =



x

y

ψ

v

φ


, u =

 a

ξ

 , (3.2)

where ψ is heading, v is velocity, φ is steering angle. The inputs to the system are longitu-

dinal acceleration a and steering angle change ξ.
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The equations of motion are derived by first relating heading through small changes in

x and y where

tanψ =
∆y

∆x
sinψ

cosψ
=
ẏ

ẋ

ẋ sinψ − ẏ cosψ = 0. (3.3)

The point on the virtual front wheel can then be expressed as

ẋf sin (ψ + φ)− ẏf cos (ψ + φ) = 0. (3.4)

Any scalar multiple of Equations 3.3 and 3.4 is also a solution for each respective equation,

therefore

v · ẋ sinψ − v · ẏ cosψ = 0 (3.5)

v · ẋf sin (ψ + φ)− v · ẏf cos (ψ + φ) = 0. (3.6)

Because Equations 3.7 and 3.8 satisfy Equation 3.5, the equations of motion for x and y

can be written as

ẋ = v · cosψ and (3.7)

ẏ = v · sinψ. (3.8)

The derivation continues by solving for the vehicle’s change in heading ψ̇ using the position

of the front virtual wheel. The location of center of the virtual wheel in relation to the

reference point is

xf = x+ L cosψ (3.9)

yf = y + L sinψ. (3.10)
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To eliminate the dependence of xf and yf on equation 3.6, Equations 3.9 and 3.10 are

substituted into Equation 3.6 which results in

0 =
d

dt
(x+ L cosψ) sin (ψ + φ)− d

dt
(y + L sinψ) cos (ψ + φ)

0 =
(
ẋ− ψ̇L sinψ

)
sin (ψ + φ)−

(
ẏ + ψ̇L cosψ

)
cos (ψ + φ)

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)

− ψ̇L sinψ sin (ψ + φ)− ψ̇L cosψ cos (ψ + φ)

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)

− ψ̇L sinψ (sinψ cosφ+ cosψ sinφ)− ψ̇L cosψ (cosψ cosφ− sinψ sinφ)

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)− ψ̇L sin2 ψ cosφ

− ψ̇L cos2 ψ cosφ+ ψ̇L sinψ cosψ sinφ− ψ̇L cosψ sinψ sinφ

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)− ψ̇L
(
sin2+cos2 ψ

)
cosφ

+ ψ̇L cosψ sinψ sinφ− ψ̇L cosψ sinψ sinφ

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)− ψ̇L
(
sin2+cos2 ψ

)
cosφ

0 =ẋ sin (ψ + φ)− ẏ cos (ψ + φ)− ψ̇L cosφ. (3.11)

Solving for ψ̇ yields,

0 = ẋ sin (ψ + φ)− ẏ cos (ψ + φ)− ψ̇L cosφ

ψ̇L cosφ = ẋ sin (ψ + φ)− ẏ cos (ψ + φ)

ψ̇ =
ẋ sin (ψ + φ)− ẏ cos (ψ + φ)

L cosφ
. (3.12)
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Now substituting the definition of ẋ and ẏ produces

ψ̇ =
v · cosψ sin (ψ + φ)− v · sinψ cos (ψ + φ)

L cosφ

ψ̇ =
v · cosψ (sinψ cosφ+ cosψ sinφ)− v · sinψ (cosψ cosφ− sinψ sinφ)

L cosφ

ψ̇ =
v · cos2 ψ sinφ+ v · cosψ sinψ cosφ− v · sinψ cosψ cosφ+ v · sin2 ψ sinφ

L cosφ

ψ̇ =
v ·
(
cos2 ψ + sin2 ψ

)
sinφ+ v · sinψ cosψ cosφ− v · sinψ cosψ cosφ

L cosφ

ψ̇ =
v ·
(
cos2 ψ + sin2 ψ

)
sinφ

L cosφ

ψ̇ =
v · sinφ
L cosφ

ψ̇ =
v

L
tanφ. (3.13)

Writing the combined equations of motions yields

ẋ = v · cosψ

ẏ = v · sinψ

ψ̇ =
v

L
tanφ. (3.14)

By definition,

v̇ = a (3.15)

φ̇ = ξ, (3.16)
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Therefore the state space representation for the equations of motion is

ẋ =



ẋ

ẏ

ψ̇

v̇

φ̇


=



v · cosψ

v · sinψ
v
L tanφ

0

0


+



0 0

0 0

0 0

1 0

0 1



 a

ξ

 . (3.17)

Equation 3.17 defines the equations of motion for the kinematic vehicle which are used for

simulation propagation and vehicle control.

3.2 Extended Kalman Filter

A system observer is necessary to localize the autonomous vehicle and track the desired

path. Due to the required high levels of precision for dynamic charging, the position estimate

must be within ±10 cm. To achieve the high level of precision, an Extended Kalman

Filter (EKF) is a natural choice for the the observer due to the well defined kinematic

equations from Section 3.1 and for fusing both continuous and discrete sensor measurements.

Additionally, the EKF is used commonly for autonomous vehicles as seen in [25–27].

Possibilities for the discrete measurements vary widely, but two high accuracy position-

ing sensors include RTK GPS and magnetic markers. Byun shows that magnetic markers

can be used to produce an error that averages 3 cm accuracy, but there exist surveying

and installation costs for the magnets [28]. An RTK GPS system can produce up to 2 cm

accuracy with 5 hz updates. To avoid the infrastructure costs of the magnetic slugs, the

RTK GPS was selected for the discrete measurement for this project.

Possibilities for the continuous position and heading measurements are also varied, but

velocity sensors, gyroscopes, and accelerometers are utilized between discrete updates as

described in [25–27]. Interestingly, vehicle steering angle is not commonly used for position

propagation even though the well defined model equations utilize steering angle, and the

steering angle is often available on the CAN-bus. This research therefore proposes an EKF
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that uses steering angle and velocity sensors as continuous measurements when the vehicle

is in motion. It should be noted that the wheel speed sensor is likely to become less accurate

at low velocities due to the limitations of wheel encoders, and that the initial heading of

the vehicle can not be determined using only wheel speed and velocity sensors. The vehicle

must be in motion for the EKF to produce an acceptable estimates for heading.

3.2.1 Navigation Filter

The navigation filter is used to estimate the current state of the vehicle, and the states

for the navigation filter design model is

x =



x1

x2

ψ

bv

bψ


, (3.18)

where x1, x2, and ψ correspond to x-position, y-positions, and heading respectively. Two

new states bv and bψ, have been introduced to the driving model derived in Equation 3.17

to estimate the bias terms in the velocity and steering angle sensors respectively.

Velocity and steering angle are no longer states in the navigation filter because they are

sensor measurements with corresponding errors described in Section 3.2.1. The dynamics

of the navigation state vector are

ẋ =



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv − nv) cos(ψ)

(ṽ − bv − nv) sin(ψ)

ṽ−bv−nv
L tan(φ̃− bφ − nφ)

− 1
τv
b̂v + wv

− 1
τφ
b̂φ + wφ


, (3.19)
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and the measurement model is

ỹ =

ṽ
φ̃

 =

v + bv + nv

φ+ bφ + nφ

 (3.20)

where the variables ṽ and φ̃ are the velocity and wheel angle sensors respectively.

State Propagation

The truth state propagation equation is depicted by Equation 3.21, and the propagation

of the navigation filter is shown in Equation 3.22. The truth state propagation equation

is used primarily for simulation, and it is not generally needed for implementation of the

Kalman Filter.

A pictorial representation of the states can be seen in Figure 3.2 where x1 and x2 are

the reference point of the vehicle on the back axel, and L is the wheel base length. The

variable φ is the wheel angle and ψ is the vehicle orientation from the x1 axis. The input

variables are throttle a and the change in wheel angle ξ. The bias inherent in the velocity

and steer angle sensors are bv and bφ respectively.

ẋ =



ẋ1

ẋ2

ψ̇

v̇

φ̇

ḃv

ḃφ



=



v cos(ψ)

v sin(ψ)

v
L tan(φ)

a

ξ

− 1
τv
bv + wv

− 1
τφ
bv + wφ



(3.21)
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The navigation states are propagated similar to the navigation filter design model, but

without knowledge of the process noise where

˙̂x =



˙̂x1

˙̂x2

˙̂
ψ

˙̂
bv

˙̂
bφ


=



(ṽ − b̂v) cos(ψ̂)

(ṽ − b̂v) sin(ψ̂)

ṽ−b̂v
L tan(φ̃− b̂φ)

− 1
τv
b̂v

− 1
τφ
b̂φ


. (3.22)

Results that show the correct implementation of the state propagation using Monte

Carlo simulations are shown in Section 4.1.2.

3.2.2 Covariance Propagation

To propagate the covariance, the nonlinear navigation state matrix is linearized using

the small angle approximation and taylor series expansion in the section titled Navigation

Model Linearization. Then, the process noise in the Kalman filter is defined in the section

titled Process Noise.

Navigation Model Linearization

The EKF requires linear equations to propagate the covariance. The linearized form

of the navigation model can be expressed as a linear differential equation driven by white

noise as seen in Equation 3.23. The covariance is propagated using the F and G matrices in

the linearized form as shown in Equation 3.24, and values of matrices F and G are shown

in Equation 3.25.

δẋ = F (x, ỹ, t) δx +G (x, ỹ, t)w (3.23)

Ṗ = FP + PF T +GQGT (3.24)
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δẋ1

δẋ2

δψ̇

δḃv

δḃφ


=



0 0 − (ṽ − bv) sin ψ̂ − cos ψ̂ 0

0 0 (ṽ − bv) cos ψ̂ − sin ψ̂ 0

0 0 0 1
L

(
φ̃− bφ

)
− ṽ−bv

L

0 0 0 − 1
τv

0

0 0 0 0 − 1
τφ





δx1

δx2

δψ

δbv

δbφ



+



− cos ψ̂ 0 0 0

− sin ψ̂ 0 0 0

1
L(−φ̃+ bφ)

1
L(−ṽ + bv) 0 0

0 0 1 0

0 0 0 1





nv

nφ

wv

wφ


(3.25)

For detailed steps regarding the derivation of the linearized F and G matrices, see

Appendix A.1.

Process Noise

Process noise is defined in this section to propagate the covariance of the estimate. The

process noise vector is

w =



nv

nφ

wv

wφ


. (3.26)

The Power Spectral Density of w is

E
[
w (t)w

(
t′
)T ]

= Q̂wδ
(
t− t′

)
, (3.27)
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and Q̂w is equal to

Q̂w = diag
[
Qv Qφ Qbv Qbφ

]
, (3.28)

where

Qv = m2
desired/tdesired (3.29)

Qφ = rad2desired/tdesired · L2

v2nom
(3.30)

Qbv =
2σv,ss
τv

(3.31)

Qbφ =
2σφ,ss
τφ

. (3.32)

For verification that the process noise is accurately predicted by the Kalman Filter, see

Section 4.1.3.
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3.2.3 Position Measurement

Equation 3.33 is used to propagate the Kalman filter co-variance matrix P+, where

the Kalman Gain is defined in the a posteriori by Equation 3.34, and Rp can be calculated

using Equation 3.35.

P+ = P− −KHP− (3.33)

K = P−HT
(
HP−HT +Rp

)−1 (3.34)

Rpδ[n−m] = E
[
v[n]v[m]T

]
(3.35)

The matrix H must be in a linearized form for the Kalman Gain a posteriori Equation, and

it is computed by finding

δz[k] = H(x̂[k], k)δx[k] + ν[k], (3.36)

where the matrix H is

Hp =

 1 0 −Lref sin
(
ψ̂[k]

)
0 0

0 1 Lref cos
(
ψ̂[k]

)
0 0

 . (3.37)

For details regarding the measurement linearization, see Appendix A.1. For verification

of the correct implementation of the discrete measurement update, see Section 4.1.4.
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3.2.4 State and Covariance Update

The update portion of the Kalman Filter requires an apriori estimate from the prop-

agation equation shown in Section 3.2.1 and a discrete measurement as derived in Section

3.2.3.

Given an incoming discrete measurement z̃, the residual is computed by

δx̂+ [k] = K
(

z̃ [k]− ˆ̃z [k]
)

, (3.38)

where ˆ̃z [k] is the predicted measurement from the propagation equations.

The updated x̂ estimate is computed using the perturbation definitions of the error

from Appendix A.1 by

x̂+ = x̂− + δx̂+ [k] . (3.39)

The Kalman Gain is computed by

K = P−HT
(
HP−HT +R

)−1 , (3.40)

where P− is the apriori covariance matrix obtained through continuous propagation

from Section 3.2.1, H is the measurement matrix, and R is the measurement noise covariance

defined in Section 3.2.3.

The Kalman Gain is also used for the covariance update which is computed as

P+ = (I−KH)P− (I−KH)T +KRKT . (3.41)

For the results of simulations with the state and covariance updates, see Section 4.1.4.
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3.3 State of Charge Model

A battery state of charge (SOC) model is necessary to ensure to ensure sufficient Wire-

less Power Transfer (WPT) levels are obtained with a specified probability after introducing

path variability. The SOC model must estimate battery usage resulting from control in-

put and physical forces acting on the vehicle. Additionally, the SOC model must estimate

WPT based on the cross-track error between the receiver and transmitter coils. A model

for lateral charging error is necessary to compare how different control variation affects the

vehicle’s SOC. In addition, the battery usage is reported in kilowatt hours (kWh) so that the

battery power consumption can be verified using figures provided by vehicle manufactures.

The estimated SOC for battery usage is developed in Section 3.3.1 using Newtonian

equations and verified in Section 4.2 using a Ford Focus 2012 vehicle profile. Section 3.3.2

then develops the dynamic charging model.

3.3.1 Battery Usage

The basic Newtonian equations that describe the forces acting on a vehicle can be seen

in Figure 3.3.

θ

v

1
2
ρACdV

2

u

MgCr cos
θ

Mg sin θ

Mg cos θ
Mg

Fig. 3.3: Figure presenting the Newtonionan forces acting on a moving vehicle used to
approximate battery usage.
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The forces from Figure 3.3 can be expressed using the definition of force as

F =Ma (3.42)

u−
∑

Fr = fmMa, (3.43)

where u is the input force,
∑
Fr is the sum of all resistive forces, fm is the mass factor

which converts rotational forces into longitudinal forces, M is the mass, and a is the vehicle

acceleration [29].

The defined resistive forces are

Frolling =MgCr cos θ (3.44)

Fair =
1

2
ρACdv

2 (3.45)

Fgrade =Mg sin θ, (3.46)

where the coefficient of rolling resistance is

Cr = 0.005 +

(
1

p

)(
0.01 + 0.0095

( v

100

)2)
, (3.47)

p is tire pressure (bar), and v is velocity (km/h) [30]. Power can then be calculated by

u−
∑

Fr = fmMa

u = fmMa+
∑

Fr

u = fmMa+ Frolling + Fair + Fgrade

uv =
(
fmMa+ Frolling + Fair + Fgrade

)
v

P =
(
fmMa+ Frolling + Fair + Fgrade

)
v. (3.48)

In addition to the battery usage, regenerative breaking can also be estimated by

Pr =
(
fmMa− Frolling − Fair − Fgrade

)
v, (3.49)
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where a is now the deceleration of the vehicle. Note that a scale factor should be included to

reduce the regenerative braking power delivery due to the non-ideal transfer of power [29].

The proposed battery usage model can now be approximated for acceleration and nominal

driving speed profiles.

3.3.2 Dynamic Charging

A first order approximation of dynamic charging is necessary to test the noise shaping

filter’s ability to produce a desired average charge. The model is split into two charging

regions: the Full Charge Region and the Charge Transition Region as seen in Figure 3.4.

Charge Transition Region

Full Charge Region

Charge Transition Region

θ

Fig. 3.4: Geometric properties of the dynamic charging model. When the center of the
receiver coil is within the Full Charge Region, the WPT delivers a continuous 60 Watts.
When the center of the receiver coil is within The Charge Transition Region, the WPT
experinces a Sigmoid transition from 60 Watts to zeros Watts.

Figure 3.4 shows a rectangular Full Charge Region where the WPT transmitters de-

liver a continuous 60Watts. This is a reasonable approximation because the WPT power

regulator is able to compensate for misalignment between the receiver and the transmitters.

The Charge Transition Region is where the WPT power regulator is not able to compen-

sate for the amount of misalignment, and a sharp power roll-off occurs; the roll-off can be

approximated using a scaled Sigmoid function which creates a smooth transition between
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the maximum and minimum values.

The section Sigmoid Transition Charging analyzes how to smooth the Zero Charge

Region between the Full Charge Region. Then, the section Calculating Charge Based on

Distance δ analyzes how to implement the charging regions based on distance from the

center of the charging coil.

Sigmoid Transition Charging

The Charge Transition Region is approximated using a Sigmoid function to smooth the

Zero Charge Region with the Full Charge Region. The definition of the Sigmoid function is

s (x) =
1

1 + e−x
, (3.50)

and a visual representation of the basic Sigmoid can be seen in Figure 3.5.

−10.0−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.5: Plot showing the basic Sigmoid Function used to create a smooth connection
between zero charge and maximum charge.

Figure 3.5 shows that the Sigmoid is centered at 0 and makes an “s” shape. For the

modeled charging pad, the Sigmoid is modified in two ways. First it is mirrored so that
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an absolute value of the distance from the center of the charging pad δ will result in less

charge. Second the Sigmoid is generalized to include additional parameters for its center

and the scaling of its width transition. The altered Sigmoid function is

y =
1

1 + ew(x−c)
, (3.51)

where c is the new center and w is the width of the Sigmoid. For simulation purposes, c is

equal to

c = (full charge width) + 1

2
(transition width) , (3.52)

and the width of the transition band is

w = 12/ (transition charge width) . (3.53)

Calculating Charge Based on Distance δ

The absolute value of the longitudinal error from the center of the charging pad is

used to determine the input charge to the battery. Using the description of the WPT

charging model described in Section 3.3.2, the unscaled, nonlinear charging function relating

longitudinal error and total charge received can be seen in Figure 3.6.
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Fig. 3.6: Unscaled, nonlinear charging function relating distance from the center of the
charging coil to the received WPT charge. Full Charge Region width Rf = 0.4m and the
Charge Transition Region width Rt = 0.2m.

The piece-wise equations used for calculating charge based on longitudinal error δ is

f (δ) =


Qmax

1
1+ew(x−c)

0

|δ| ≤ Rf/2

Rf/2 < |δ| < Rt

|δ| ≥ Rf/2 +Rt

, (3.54)

where Qmax is the maximum WPT charge, Rf is the width of the Full Charge Region, Rt

is the width of the charge transition region, w = 12/Rt, and c = Rf/2 +Rt/2.

3.4 Path Planner

A path planner is necessary to ensure the vehicle is given a drivable path that complies
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with the comfort constraints outlined in Section 3.6, and that the vehicle arrives at its

desired location with a specified charge. To maintain comfort constraints the path planner

must solve for the necessary feed-forward terms to minimize vehicle tracking error. To arrive

with a specified charge, the path planner must predict the vehicle’s state of charge by the

end of the journey and size the noise shaping filter to ensure the desired charge.

Section 3.4.1 compares way-point following techniques, and proposes that Clothoid

way-point following is the best-suited solution for the system acceleration constraints.

Section 3.4.2 explores useful properties of the clothoid for solving feed-forward terms for

the vehicle controller, and Section 3.4.3 outlines how the curvature of the path is bounded

to ensure comfort constraints.

Finally, Section 3.4.4 proposes a method to size the noise shaping filter by calculating

a desired average based on the estimated power consumption and WPT charge availability.

3.4.1 Way-point Following

Dubins paths and Continuous Curvature Paths (CCPaths) are two path planning

schemes considered for creating a drivable path for a vehicle. Dubins paths connect way-

points using circular arcs and lines in the optimal length given a curvature constraint, but

they lack curvature continuity. The basic Dubins path implies that a vehicle can change

steering angle instantaneously—which is an unreasonable assumption in many cases. The

instantaneous change in curvature can result in wheel slip or violate jerk and acceleration

comfort constraints.

Several techniques exist to smooth the discontinuities of the Dubins paths via look-

ahead reference points [31], or Clothoid Smoothing [18]. However, such approaches make

analyzing the path acceleration properties more difficult, or may not ensure a drivable path

between way-points.

CCPaths are an extension to the Dubins driving model with an additional curvature

state. The linearly changing curvature creates a continuous curvature trajectory profile [15]

that matches a Clothoid. Villagra shows that CCPaths using Clothoids can be used to meet

comfort constraints while optimizing the length of a trajectory [21].
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Because the acceleration profile of a trajectory can be analyzed more accurately using

a CCPath, it is a natural selection for compliance with the comfort constraints in Section

3.6.

3.4.2 Defining the CCPath Using Clothoids

The Clothoid, also referred to as the Euler Spiral, is described by a path whose cur-

vature increases linearly with arc length. Because Clothoids maintain curvature continuity,

they approximate the kinematic curvature change limits imposed by physical actuators and

can be used to approximate a vehicle turn at a constant velocity.

Equation 3.55 shows the parametric equations to form a clothoid, where κ0 is the initial

turn radius, θ0 is the initial heading, and σ is the change in turn radius.

x = Cf = x0 +

∫ s

0
cos

(
1

2
σ(ξ2 + κ0ξ + θ0)

)
dξ (3.55)

y = Sf = y0 +

∫ s

0
sin

(
1

2
σ(ξ2 + κ0ξ + θ0)

)
dξ (3.56)

As seen in Equation 3.55, Clothoids do not have a closed form. As a result, Clothoids

are often precomputed and stored in a look-up table, or approximated in order to be used

in real-time.

Integrating the Fresnel integrals produces the spiral seen in Figure 3.7 (a), and the

corresponding linearly increasing curvature κ can be seen in Figure 3.7 (b).
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Fig. 3.7: (a) Fresnel Integral starting at 0 degrees and zero curvature moving in both the
positive and negative direction. (b) Comparison of arc length to curvature for Fresnel
integration.

An alternate form to produce the the Fresnel integral in Figure 3.7, is proposed by

Fraichard by extending Dubins model to include a curvature state [15].

The equations of motion for the extended Dubins model are

ẋ =



ẋ

ẏ

θ̇

κ̇


=



v · cos θ

v · sin θ

v · κ

0


+



0

0

0

1


σ, (3.57)

where x and y are position, θ is heading, and κ is curvature. Using Equation 3.57, A CCTurn

is created when the extended Dubins model reaches κmax, and the vehicle transitions from

driving a clothoid path to a circular arc. Therefore, a path can be computed by connecting

way-points via Clothoids, straight lines, and circular arcs as seen in Figure 3.8.



30

−10 0 10 20

0

5

10

15

20

25

30

x position (m)

y
po

sit
io

n
(m

)

A

B

Clothoid Arc
Circular Arc
Striaght Line

Fig. 3.8: Connecting directional way-points A and B using Clothoids, straight lines and
circular arcs.

Because the points connected in figure 3.8 utilize the kinematic equations of motion

from Equation 3.57, the acceleration comfort constraints of the vehicle can be analyzed

using the CCPath.

3.4.3 Implementing Maximum Curvature Constraints

In order to maintain the comfort constraints outlined in Section 3.6, the maximum

allowable curvature for a given velocity must be calculated. Assuming a vehicle is traveling

at a constant longitudinal velocity, the normal acceleration is

αn =
v2

r
= κv2, (3.58)

where r is the radius of the turn and κ is curvature. Therefore, the allowable maximum

curvature is

κmax =
αnmax
v2

. (3.59)
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Additionally, the maximum allowable curvature is bounded by the slipping constraints

of the wheel. Assuming the coefficient of friction between the wheels and the road is µ, the

maximum allowable normal acceleration before slipping is

αnmax = µg (3.60)

κv2 = µg (3.61)

κmax =
µg

v2
(3.62)

where g is gravity. Which implies that the allowable curvature for a vehicle is

κ ≤ min
(αnmax

v2
,
µg

v2

)
. (3.63)

To extend the curvature model from Section 3.57 to the bicycle model, a relationship

between steering angle and curvature must be defined. Using the kinematic system model

from Section 3.1, the steering angle of a vehicle relates to the curvature through

κ = r−1 =
tanφ

L
, (3.64)

where φ is the steering angle. Therefore, the maximum allowable steering angle to stay

within system constraints is

φ ≤ min
(

arctan
(
Lαnmax
v2

)
, arctan

(
Lµg

v2

))
. (3.65)

To comply with jerk constraints, it is assumed that the system is driving at a constant

velocity, and that the maximum allowable jerk is near j = 0.5m/s3 [19,20]. Consider again

the definition of normal acceleration. Taking the derivative yields that jerk is equal to

α̇n =
d

dt

(
κv2
)

(3.66)

j = 2vv̇κ+ v2κ̇. (3.67)
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Assuming longitudinal acceleration is zero, the maximum change in curvature can be com-

puted as

j = v2κ̇ (3.68)

κ̇max =
jmax
v2

. (3.69)

Therefore, the clothoid way-point path planner can be used to ensure the desired trajectory

is within specified comfort constraints using Equation 3.63 and 3.69.

3.4.4 Ensuring Destination State of Charge

A key role of the path planner is to calculate the desired average charge qd for the noise

shaping filter that ensures a desired battery charge at a vehicle’s destination.

One method to determine the estimated change of battery state of charge QwH in watt-

hours is to subtract the average expected power used re of the battery from the average

expected power gained qe over their respective time periods

QwH = qetq − retr, (3.70)

where tq is the amount of time the battery is receiving power, and tr is the amount of time

the battery is using power. It then follows that the desired average charge qd to achieve a

desired QwH given tr, tq and re is

qd =
QwH
tq

+ retr. (3.71)

Therefore, to ensure a final battery charge in watt-hours at a final destination, the variables

tr, tq, and re must be estimated.
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The time required to reach the destination can be computed as a function of the distance

d and velocity v. For this anlysis, it is assumed that v is constant, therefore

tr =
d

v
,

where d is the distance from the current position to the destination.

The amount of time the vehicle can charge is a function of the charging region’s length

dq and velocity

tq =
dq
v

,

where dq is the length of the sum of all charging regions between the current position and

the destination.

One approach for calculating re is to periodically use the average consumed power over

a recent time period. This approach accounts for unknown resistive forces by assuming that

future conditions will be similar to the conditions over a recent time period.

3.5 Feedback Controller Design

A controller that tracks a trajectory within ±10 cm is desirable due to the narrow

charging region of the WPT coils. Additionally, the controller must stay within the outlined

comfort constraints proposed in Section 3.6, and therefore an acceleration or jerk controller

is suited for comfortable driving.

Because both high tracking precision and low input controls are needed to comply

with system constraints, an emphasis is placed on developing a completely drivable path

in Section 3.4. The Path Planner also solves corresponding feed-forward terms to reduce

trajectory error. The controller, therefore should interface well with the path planner and

avoid violating the comfort constraints outlined in Section 3.6.

Model Predictive Control (MPC) is a natural control candidate that fits the system

constraints; using MPC, a cost function can be generated that weighs vehicle safety, cross-
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track error, acceleration input size, and battery consumption. However, due to the Monte

Carlo testing simulation platform, a less computational alternative using linear control

methods is utilized.

A linear point control method proposed by Olfati-Saber uses a diffeomorphism to trans-

form a mobile robot with non-holonomic constraints into a completely controllable point.

The new control point is a distance ε in front of the vehicle reference point, and it does not

share the non-holonomic constraints of the vehicle [32]. Olfati-Saber uses nonlinear analysis

to show that zero-tracking error can be achieved by allowing ε to go to zero as time goes to

infinity.

However, in implementation the sensor noise in real systems does not allow ε go to

zero, which introduces an analytical steady state error using the point control method.

Therefore, a modification of the ε-Tracking controller is proposed in Section 3.5.2.

Section 3.5.1 derives a linear ε-Tracking control to for the Ackermann Steering Model

proposed in Section 3.1 so that full-state linear feedback can be applied to the vehicle.

3.5.1 Feedback Linearization

The Kinematic Ackermann Steering Model derived in Section 3.1 has non-holonomic

constraints that restricts the system from being completely controllable. The non-holonomic

constraint exists because the vehicle reference point at the center of the rear axle can not

move orthogonal to the direction of the vehicle motion [33].

To make the system controllable, a diffeomorphism can be employed to control a new

reference point yε that is distance ε in front of the vehicle. Such a point does not share the

non-holonomic constraints of the Ackermann Steering Model, and the point is completely

controllable. A depiction of this approach as seen in Figure 3.9.
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Fig. 3.9: Figure depicting the proposed control reference point yε used to linearize the
Ackermann Steering Model.

Figure 3.9 shows that the new control point yε does not share the same non-holonomic

constraint as the rear axle reference point. The remainder of this section derives how to

control the reference point yε using the vehicle acceleration inputs.

The function for the new control point yε as seen in figure 3.9 is defined as

yε =

x
y

+ ε

cosψ
sinψ

 . (3.72)

Taking the first derivative of yε yields

ẏε =

ẋ
ẏ

+ ε

−ψ̇ sinψ

ψ̇ cosψ

 . (3.73)



36

Making the following substitutions

ẋ = v cosψ (3.74)

ẏ = v sinψ (3.75)

ψ̇ = ω (3.76)

where ω is angular rotation of the system, then

ẏε =

ẋ
ẏ

+ ε

−ψ̇ sinψ

ψ̇ cosψ


ẏε =

v cosψ
v sinψ

+ ε

−ω sinψ

ω cosψ


ẏε =

cosψ
sinψ

 v +
−ε sinψ
ε cosψ

ω
ẏε =

 cosψ −ε sinψ

sinψ ε cosψ


v
ω

 . (3.77)

Let, Rε =

 cosψ −ε sinψ

sinψ ε cosψ

 and v =

v
ω

. Therefore,

ẏε = Rεv. (3.78)
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The second derivative of yε is

ÿε =
d

dt


v cosψ
v sinψ

+ ε

−ω sinψ

ω cosψ




ÿε =

v̇ cosψ − ψ̇v sinψ

v̇ sinψ + ψ̇v cosψ

+ ε

−ω̇ sinψ − ωψ̇ cosψ

ω̇ cosψ − ωψ̇ sinψ


ÿε =

v̇ cosψ − ωv sinψ

v̇ sinψ + ωv cosψ

+ ε

−ω̇ sinψ − ω2 cosψ

ω̇ cosψ − ω2 sinψ

 . (3.79)

Let v̇ = a and ω̇ = σ. Then

ÿε =

a cosψ − ωv sinψ

a sinψ + ωv cosψ

+ ε

−σ sinψ − ω2 cosψ

σ cosψ − ω2 sinψ


ÿε =

a cosψ − ωv sinψ

a sinψ + ωv cosψ

+

−εσ sinψ − εω2 cosψ

εσ cosψ − εω2 sinψ


ÿε =

−ωv sinψ − εω2 cosψ

ωv cosψ − εω2 sinψ

+

a cosψ − εσ sinψ

a sinψ + εσ cosψ


ÿε =

−ωv sinψ − εω2 cosψ

ωv cosψ − εω2 sinψ

+

 cosψ −ε sinψ

sinψ ε cosψ


a
σ


ÿε =

 cosψ −ε sinψ

sinψ ε cosψ


 0 εω

ω/ε 0


v
ω

+

 cosψ −ε sinψ

sinψ ε cosψ


a
σ

 . (3.80)

ÿε = Rε

 0 εω

ω/ε 0

 v +Rε

a
σ

 . (3.81)

Now let ω̂ =

 0 εω

ω/ε 0

, and a =

a
σ

. Then

ÿε = Rεω̂v +Rεa. (3.82)
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The equations of motion for the point yε can now be written compactly as

yε =

x
y

+ ε

cosψ
sinψ

 , (3.83)

ẏε =

 cosψ −ε sinψ

sinψ ε cosψ


v
ω

 = Rεv, (3.84)

ÿε =

 cosψ −ε sinψ

sinψ ε cosψ


 0 εω

ω/ε 0


v
ω

+

 cosψ −ε sinψ

sinψ ε cosψ


a
σ

 = Rεω̂v +Rεa.

(3.85)

where

ψ̇ = ω =
v

L
tanφ (3.86)

a = longitudinal acceleration (3.87)

σ = angular acceleration. (3.88)

The control for the point yε can now be placed into a state Equation where uε is the input

required to control the point yε. The linear state space equations for controlling yε are

ẏε = Ayε +Buε (3.89) ẏε

ÿε

 =

 0 I

0 0


 yε

ẏε

+

 0

I

uε. (3.90)

The input u to the linear system in Equation 3.89 can be related to the original system

input by using the information from Equation 3.85 to solve for a, the input to the vehicle

(in terms of longitudinal velocity and rotational velocity). Therefore, the input from the
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vehicle to control the point yε is

ÿε = uε

Rεω̂v +Rεa = uε

Rεa = uε −Rεω̂v

a = R−1
ε (uε −Rεω̂v)

a = R−1
ε uε − ω̂v. (3.91)

Because the vehicle system input has been related to the yε, a traditional linear control law

can be used to control the yε system. Therefore, let yεd be a desired trajectory point, then

the zero steady state error can be represented as

z = yε − yεd (3.92)

ż = ẏε − ẏεd. (3.93)

Putting the system in terms of the new variable results in

ż = Ayε +Buε − ẏεd. (3.94)

Solving y from equation 3.92 produces

yε = z + yεd

ẏε = ż + ẏεd.

Continuing the change of variables results in

ż = Ayε +Bu − ẏεd

ż = A (z + yεd) +Bu − ẏεd

ż = Az +Bu +Ayεd − ẏεd. (3.95)
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Solving for the steady state feed forward term uff is

ż = Az +Bu +Ayεd − ẏεd

0 = 0+Bu +Ayεd − ẏεd 0

0

 =

 0

I

uff +

 0 I

0 0


 yεd

ẏεd

−

 ẏεd

ÿεd


 0

0

 =

 0

uff

+

 ẏεd

0

−

 ẏεd

ÿεd


0 = uff − ÿεd

uff = ÿεd. (3.96)

Because the vehicle system input is not angular acceleration σ, but rather change in steering

angle ξ, the algebraic relationship between angular acceleration and change in steering angle

is

σ = ω̇

σ =
d

dt

( v
L
tanφ

)
σ =

v̇

L
tanφ+

v

L

d

dt
(tanφ)

σ =
a

L
· tanφ+

v

L
· ξ

cos2 φ

− v

L
· ξ

cos2 φ
=
a

L
· tanφ− σ

ξ = −L
v
cos2 φ

( a
L

· tanφ− σ
)

ξ =
1

v
cos2 φ (Lσ − a · tanφ) . (3.97)

The new control law can now be written asa
σ

 = R−1
ε

ÿεd −K


 yε

ẏε

−

 yεd

ẏεd



− ω̂v. (3.98)
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Where the system input is

a
ξ

 =

 a

1
v cos

2 φ (Lσ − a · tanφ)

 . (3.99)

3.5.2 Calculating an ε-Tracking Control Path

Using the ε-Tracking linearization approach introduced in Section 3.5.1 produces a

steady state error the length of ε. The error is introduced because most path planners

develop trajectories for the rear axle of the vehicle, not a point ε in front of the rear axle.

The center of the back axle is usually selected as the vehicle reference point for two reasons.

First, the back axle reference point corresponds to the minimum turning radius for the

maximum steering angle of an Ackermann Vehicle [34]. Second, the heading of the vehicle

is always aligned with the tangent direction of the path of the center of the back axle [24].

To eliminate the steady state error, the same transformation that was used to linearize

the steering model in Section 3.5.1 can be used on the desired trajectory. Figure 3.10

demonstrates visually how the ε-Tracking Control Path is created for the ε-Tracking Control

Point.
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Fig. 3.10: Demonstration of the generation of a control path for the point yε from a con-
tinuous curvature path built from Clothoids, lines, and circular arcs for the infinite time
horizon LQR controller. The distance of the control point yε from the back axle is ε = 5m.

Figure 3.10 depicts that the control path always leads the reference trajectory with

a distance ε in the direction of the CCPath heading. Generating the yε path makes the

infinite horizon LQR controller derived in the Section 3.5.1 have a zero error tracking law.

Additionally, because the control point yε is ε meters in front of the vehicle reference point,

it acts as a smoothing agent when errors are generated from sensor noise.

To calculate the ε-Tracking Control Path, the desired trajectory must have the variables

outlined in Table 3.1.
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Table 3.1: Necessary trajectory variables required to build an ε-Tracking Control Path.

State Description

x x-position

y y-position

ψ heading

v velocity

ω angular velocity

a acceleration

σ angular acceleration

The states listed Table 3.1 for the desired trajectory are then transformed using the

Equations 3.83 through 3.85 to produce a ε-Tracking Control Path. Because the continuous

curvature path planner presented in Section 3.4 calculates every variable outlined in Table

3.1, an ε-Tracking Control Path can be created to produce an analytical zero-error linear

control law.
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3.6 Control Variation

This section proposes a method to inject white Gaussian noise into a vehicle’s controller

to reduce road wear while driving over dynamic charging regions. The injected noise must

be carefully shaped to ensure the following criteria:

• Position Constraint: Position from the center of the lane δ must be less than or

equal to δmax meters.

• Acceleration Constraint: Vehicle acceleration inputs α must be less than or equal

to αmaxm/s
2.

• Acceleration Frequency Constraint: Acceleration changes must be less than or

equal to fαmax Hertz.

• Controller Constraint: Filter must produce variations in position, velocity, and

acceleration to interface with the vehicle’s controller.

• Average Charge Constraint: Average charge qd must be attained within a specified

probability interval p.

Section 3.6.1 begins by giving an overview of the shaping filter properties and introduces

challenges that arise from complying with the outlined constraints in Section 3.6.1.

Then, Section 3.6.2 outlines the numerical values calculated for δmax, αmax, and fαmax

by statistically bounding their occurrence. After numerical values are set for the constraints,

Section 3.6.3 characterizes relationships between δmax, αmax, and fαmax to solve for the noise

shaping filter parameters.

Next, Section 3.6.4 extends Section 3.6.3 by determining the scale factor K for the

injected noise based on nonlinear equations for wireless power transfer. Finally Section

3.6.5 outlines the the propagation equations for implementation and explains how to add

the noise shaping filter outputs to the vehicle’s control input.
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3.6.1 Noise Shaping Filter

The objective of this section is to determine the appropriate form of the noise shaping

filter. The block diagram for the proposed form can be seen in Figure 3.11, where α is the

variation in acceleration, v is the variation in velocity, and δ is the variation from a nominal

trajectory.

G(s) 1
s

α δw(t) 1
s

v

H(s)

K

Fig. 3.11: Block diagram for the noise shaping filter H(s), where ω(t), α, v, and δ are white
Gaussian noise, acceleration, velocity, and position respectively.

The objective of the noise shaping filter shown in Figure 3.11 is to bound a 1-dimensional

point δ driven by white Gaussian noise without violating the acceleration constraints out-

lined in Section 3.6. The random variable δ will be added to the control inputs to reduce

road rutting, while ensuring expected charging statistics. Additionally, because the system

controller accepts a trajectory with position, velocity, and acceleration (see Section 3.5),

the noise shaping filter must also produce position, velocity, and acceleration outputs. The

following discussion addresses why the form proposed in Figure 3.11 was proposed.

A natural approach to bound the random process δ that is not proposed in Figure 3.11

is to use a second order Markov driven by white Gaussian noise. The variance of δ becomes

σ2δ = Ψ(0) =
1

2π

∫ ∞

−∞
Ψ̄δ (ω) dω, (3.100)

where Ψ̄δ (ω) is the Power Spectral Density (PSD) defined by

Ψ̄δ (ω) = |Glp (ω)|2Ψnn (ω) . (3.101)
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Assuming white Gaussian noise with unity strength and a damping ratio of ζ = 1√
2
, the

Power Spectral Density of the point δ becomes

Ψ̄δ (ω) = |Glp (ω)|2Ψnn (ω) (3.102)

Ψ̄δ (ω) = |Glp (ω)|2 (1) (3.103)

|Glp (ω)|2 =
ω4
l

ω4 + ω4
l

. (3.104)

Figure 3.12 shows the power spectral density of a second order low-pass filter with a

cut-off frequency of ωl = 1 that could be used to bound δ.
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Fig. 3.12: Power spectral density for a second order low-pass filter in the frequency domain
with ωl = 1 that could be used to bound variation in distance from a nominal path.

Figure 3.12 has a −40dB/dec roll-off which will cause the acceleration constraint to

be violated when finding the second derivative of the system. When two derivatives of the

system are taken to find the the corresponding acceleration variation α, the resulting system
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magnitude squared is

Ψ̄ (ω)α = |Glp (ω)|2 =
ω4
l ω

4

ω4 + ω4
l

. (3.105)

The variance of Equation 3.105 is

σ2α =
1

2π

∫ ∞

−∞
Ψ̄α (ω) dω = ∞, (3.106)

which implies that the variance of acceleration can not be have a 3σα bound. Figure 3.13

displays graphically why the integral of Ψ̄α (ω) if infinite.
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Fig. 3.13: Plot displaying that integral for the power spectral density of the magnitude
squared of a second order low-pass filter differentiated two times in the frequency domain is
infinite. This plot shows that a second order low-pass filter used to bound δ can not compy
with acceleration constraints.

Notice in Figure 3.13 that |Glp (ω)|2 · ω4 does not attenuate as ω → ∞, which results

in σ2α → ∞. Therefore, using a low-pass filter to bound δ will not meet the necessary

acceleration criteria.

Instead, a feasible approach to ensure the constraints outlined in Section 3.6 is to shape
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the PSD for the acceleration with a band-pass filter, then integrate the noise to find the

corresponding bound for the distance σ2δ . Consider a band-pass filter composed of a second

order low-pass filter and a second order high-pass filter. The resulting system magnitude

squared is

|G(ω)|2 =
ω4
l ω

4(
ω4 + ω4

l

) (
ω4 + ω4

h

) . (3.107)

For details on how Equation 3.107 is derived see Appendix B.3. A representation of

the combined filters in the frequency domain is depicted in Figure 3.14.
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Fig. 3.14: Power spectral density of a band-pass second order filter |G(ω)|2 with ωl = 1 and
ωh = 0.9 in the frequency domain. The band-pass filter |G(ω)|2 is comprised of a low-pass
filter |Glp(jω)|2 multiplied by a high-pass filter |Ghp(ω)|2. The values for ωl and ωh can be
selected to comply with acceleration comfort constraints.

Figure 3.14 shows that the integral of |G(ω)|2 is finite which bounds σ2α, and the −3dB

cutoff can be set to ensure that acceleration changes are less than fαmax. Additionally, when

the system is integrated twice, the resulting integral of the PSD is also finite, which allows

bounds to be placed on position variance. This relationship can be seen in Figure 3.15.
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Fig. 3.15: Power spectral density (PSD) in the frequency domain of the band-pass filter
|G (ω)|2 used to produce acceleration variation and its second integral |H (ω)|2 used to
produce position variation. Both PSDs are finite, which implies the Noise Shaping Filter
can be designed to comply with acceleration and position comfort constraints.

In Figure 3.15, the PSD of |H(ω)|2 appears to be a scaled low-pass filter, which implies

that the variance of δ can be bounded. Therefore, the system can be shaped to comply with

all of the constraints outlined in Section 3.6 by carefully selecting values for ωl, ωh, and K.

Therefore, the architecture outlined in Figure 3.11 can be used to comply with position

and acceleration comfort constraints, and Equations 3.108, 3.109, and 3.110 characterize

the relationship of the comfort constraints to the frequency domain of the noise shaping

filter.

σ2α = Ψα (0) =
1

2π

∫ ∞

−∞
|G (ω)|2 dω (3.108)

σ2δ = Ψδ (0) =
1

2π

∫ ∞

−∞
|H (ω)|2 dω (3.109)

fαmax = |G (ω)|2−3dB (3.110)

Equation 3.108 is used to bound the acceleration of the system, and Equation 3.109 is used
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to bound the distance of the vehicle from the center of the trajectory. Both equations will

be solved for in Section 3.6.4. Equation 3.110 is the cut-off value that ensures that the

frequency changes of acceleration are not violated, and Section 3.6.3 analyses the system

parameters needed to set the cut-off frequency.

3.6.2 Constraint Sizing

Section 3.6.2 addresses how the constraints on lane error, acceleration, and acceleration

frequency are set. This section does not address selecting parameters for the noise shaping

filter, but rather sets the bounds that the noise shaping filter must comply with.

Lane Error Constraint

The allowable error from the center of the road depends on the width and length of the

vehicle, nominal heading error, and the width of the lane. For this analysis, it is assumed

that the vehicle stays inside the lane if the center of the back axle is within 1.76m of the

center of the lane. This is an estimate taken from the geometry of a Ford Focus 2012 vehicle,

and a 3m estimated lane width.

The maximum allowable distance of the vehicle reference point from the center of the

lane is

3/2m− 1.824/2m = 0.588m. (3.111)

Therefore, the the 3σ boundary can be set to

3σδmax = 0.588m, (3.112)

which implies, the maximum variance σ2δ for δ is

σδmax =
0.588

3

σ2δmax = 0.3457m. (3.113)
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In addition to the maximum variance σ2δ , additional precautions should be taken to eliminate

the possibility that the output of H(s) is outside 3σmax. This can be achieved by clamping

the output of G(s) to only accelerate towards the center of the lane when the vehicle is at

the 3σδmax.

Acceleration Constraint

Comfort constraints on acceleration α are bounded by the acceleration level that pas-

sengers feel discomfort. Eriksson shows that passengers feel discomfort around 1.2m/s2 [19].

Therefore, the acceleration can be bounded by a standard deviation of

3σαmax = 1.2

σαmax =
1.2

3

σαmax = .4m/s2, (3.114)

which implies that the maximum variance σ2α for α is

σ2αmax = .42

σ2αmax = .16m/s2. (3.115)

When controlling the vehicle, additional measures can be taken to clamp the output of G(s)

to ensure that G(s) does not produce system inputs that violate the 3σαmax constraint if

desired.
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Acceleration Frequency Constraint

It is shown by Kilinc that acceleration constraints should not happen more frequently

than .2Hz [20]. Therefore, the −3dB cut-off maximum of G(s) is

fαmax = .2Hz (3.116)

|G (ω)|2−3dBmax = .2Hz · 2π rad
Hz

(3.117)

|G (ω)|2−3dBmax = 1.2566 rad. (3.118)

For brevity, the −3dB cut-off maximum in radians is referred to as

ωc = 1.2566 rad. (3.119)

3.6.3 Solving for shaping filter parameters

Section 3.6.3 analyzes which parameters should be selected for the noise shaping filter

to comply with the criteria outlined in Section 3.6. The three constraint equations for α,

δ, |G (ω)|2−3dB are found in the section Relating Constraint Values, and the corresponding

variables ωl, ωh, and K are solved for in the section Selecting ωl and ωh, and the section

Calculating K from σ2δ Desired respectively.

Relating Constraint Values

Assuming that ζ = 1√
2
, the equations that relate the system parameters to the desired

constraints are

σ2α =
1

2π

∫ ∞

−∞

K2ω4
l ω

4(
ω4 + ω4

l

) (
ω4 + ω4

h

)dω (3.120)

σ2δ =
1

2π

∫ ∞

−∞

K2ω4
l(

ω4 + ω4
l

) (
ω4 + ω4

h

)dω (3.121)

1√
2
=

Kω2
l ω

2
c√(

ω4
c + ω4

l

) (
ω4
c + ω4

h

) , (3.122)
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where ωc is the cut-off frequency solved for in Section 3.6.2. For details regarding how each

equation is derived, see Appendix B.

There are three equations (3.120, 3.121, 3.122) and three variables (ωl, ωh, K), which

presents several approaches for selecting desired values for ωl, ωh, and K. One approach is to

solve the indefinite integrals for σ2α and σ2δ , then to solve for ωl, ωh, K. This approach proves

to be non-trivial because the denominator of the integrand is an 8th order polynomial.

Another approach is to estimate the integrals for both σ2α and σ2δ using rectangles with

corners positioned at the cutoff frequencies to simply the relationships between the three

equations. This approach also proves to be non-trivial because the equation for the band-

pass filter upper −3dB cutoff and the lower −3dB cutoff have an inverse relationship; this

results in solving equations that have fractional order polynomials. Though the equations

can be solved numerically, an additional approach is presented that yields a more exact

solution.

Because the constraints are inequalities, it is not required to find a unique solution.

Instead, the problem can be simplified by fixing the values of ωl and ωh to satisfy the

cutoff frequency fαmax, then scaling the incoming noise by K to meet the other system

constraints. The section Selecting ωl and ωh analyzes how to select ωl and ωh, and the

section Calculating K from σ2δ Desired analyzes how to change K to ensure that position

and acceleration constraints are not violated.

Selecting ωl and ωh

To begin the discussion on choosing values for ωl and ωh, a few properties of the band-

pass filter should be analyzed. The first property, is that different values of ωl, ωh, and K

can yield the same band-pass filter. Take for example the case when ωl =
ωh
10 . The band-

pass filter maximum cut-off frequency is located at ωl, and the band-pass filter minimum

cut-off frequency is located at ωh as seen in Figure 3.16 (a). In another case, if ωh = ωl
10 ,

the same scaled band-pass filter can be created as seen in Figure 3.16 (b).
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Fig. 3.16: Example plot showing that the band-pass filter does not have a unique represen-
tation when both figures are scaled by K to match highest peak magnitude. (a) Band-pass
filter with ζ = 1/

√
2, ωl = 1, and ωh = 0.1. (b) Band-pass filter with ζ = 1/

√
2, ωl = 0.1,

and ωh = 1.

Figure 3.16 shows that the band-pass filter |G (ω)|2 is not unique for values of ωl, ωh,

and K. Therefore, only the case when ωl = κωh such that κ ≥ 1 will be considered for the

remaining analysis.

Another notable property of the band-pass filter, is that the width of |G (ω)|2 changes

the cut-off frequency for |H (ω)|2. For example, the smaller ωh is, the lower the cut-off

frequency will be for |H (ω)|2, as seen in Figure 3.17.



55

−30

−20

−10

0

10

20

30

40
M

ag
ni

tu
de

(2
0
·l

og
1
0

)

10−2 10−1 100 101 102

Frequency (radians)

|G (ω)|2

|H (ω)|2

(a)

|G (ω)|2

|H (ω)|2

−30

−20

−10

0

10

20

30

40

10−2 10−1 100 101 102

Frequency (radians)

(b)

Fig. 3.17: Plot demonstrating that the cut-off frequency for |H (ω)|2 is determined by the
low cut-off frequency of |G (ω)|2. (a) |H (ω)|2 cut-off frequency with ωh = 0.1. (b) |H (ω)|2
cut-off frequency with ωh = 0.5

In Figure 3.17 (a), the lower cut-off frequency of |G (ω)|2 is at 0.1 radians, and the

cut-off frequency of |H (ω)|2 is correspondingly at 0.1 radians. In Figure 3.17 (b), the

cut-off frequency of |H (ω)|2 is also determined by the lower cut-off frequency of |G (ω)|2.

Figure 3.17 shows that the larger the width of the band-pass filter |G (ω)|2, the slower the

frequency changes of |H (ω)|2.

Therefore, with a fixed ωl the maximum cut-off frequency of |H (ω)|2 is obtained when

ωh = ωl. However, there exists a trade-off for minimizing the pass-band filter. A narrower

pass-band results in a noise pattern that tends towards oscillatory accelerations with a

frequency at ωl, which may be an undesirable side-effect. Because the noise filter variation

is both within project constraints and maximizes cut-off frequency of |H (ω)|2, the testing

and results assumes ωl = ωh. With the bass-band width set, the selection of ωl will now be

analyzed.

The parameter ωl should be selected such that the −3dB upper cut-off frequency of

|G (ω)|2 occurs at ωc—the cut-off frequency solved for in Section 3.6.2. Give a desired ωc,
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the equation to solve for ωl when ωh = κωl is

ωl =

(
−
√
−ω

8
c

κ4
+

1

4
Ω2 − 1

2
Ω

)1/4

, (3.123)

where

Ω = ω4
c

(
1 +

1

κ4
−
(
α2 + 1

)2
κ4ρ2

)
, (3.124)

and ρ is the desired attenuation at ωc. For details regarding the derivation of the −3dB

cutoff, see Appendix B.3.

Calculating K from σ2δ Desired

As was discussed in Section 3.6.3, the integral values for σ2δ and σ2α are difficult to relate

when trying to solve for K, ωl, and ωh. However, with ωl and ωh fixed, the relationship

between σ2δ and σ2α can be easily computed using K. By numerically computing σ2δ and σ2α

, there exists a quadratic relationship that for both σ2δ and σ2α based on K. Figure 3.18

shows the relationship between σ2δ and σ2α as a function of K when ωl = ωh = 0.81 rad,

σ2δmax = 0.34, and σ2αmax = 0.16



57

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
σ2α = 1

2π

∫∞
−∞ |G (ω)|2 dω

σ2δ =
1
2π

∫∞
−∞ |H (ω)|2 dω

Max allowable K for α constraint
Max allowable K for δ constraint

Va
ria

nc
e

1.6
K (Magnitude)

σ2δmax

σ2αmax

Fig. 3.18: Plot relating the maximum allowable K when ωl = ωh = 0.81 radians based
on the maximum computed values for σ2δmax = 0.34 and σ2αmax = 0.16. The maximum
allowable K value is K = 0.83 because that is the first value of K that violates a system
constraint.

Figure 3.18 shows that the value σ2δmax calculated in Section 3.6.2 occurs at a lower

value of K than σ2αmax. Therefore, the maximum value of K is bounded by σ2δmax.

The quadratic equations in Figure 3.18 that are fit to σ2δ and σ2α are

σ2δ = 0.5012K2 (3.125)

σ2α = 0.0715K2, (3.126)

and the maximum value of K for the configuration of ωl and ωh is,

Kmax =
√
σ2δmax/0.5012 = 0.83. (3.127)

With the selection that ωl = ωh = 0.81 rad, any desired σ2δ can be selected within σ2δmax.

If however, the allowable σ2δmax is limited by σ2αmax, then the pass-band width must be

increased to allow larger values of σ2δ at the cost of reducing the cutoff frequency for |H (ω)|2.
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This analysis shows that a desired scale factor K can be selected that complies with

all comfort comfort constraints outlined in Section 3.6.

3.6.4 Calculating Noise Scaling Size K Based on a Desired Charge qd and a

Probability Interval p

Section 3.6.3 shows that a quadratic relationship exists which relates the variation from

the center of the lane δ to the scaling coefficient K. However, to comply with the charging

constraints outlined in Section 3.6, a relationship must be found between the average charge

of the vehicle’s battery q as a function of K with an associated standard deviation.

If the battery charging profile were linear, the relationship between q and K could be

found as a function of δ, and the analysis from Section 3.6.3 could be utilized for charg-

ing. Because the charging profile is a two-sided Sigmoid function as proposed in Section

3.3.2, sample-based statistical methods must be employed to handle the nonlinear charging

profile..

The nonlinear function that relates charge q to K is addressed in Section 3.6.4, and

Section 3.6.4 analyzes how to achieve a desired charge within a specified probability interval.

Finding the Nonlinear Charging Profile

To find a nonlinear function that relates average desired charge qd and the noise scaling

coefficient K, a Monte Carlo simulation of 250 runs was performed for incremental values

of K on a straight charging path of 200 meters. The Full Charge Region width was set to

.4m and the Transition Charge Region width was set to .2m. The results for the average

expected charge and standard deviation can be seen in Figure 3.19 (a) and (b) respectively.
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Fig. 3.19: Nonlinear approximation of charge and standard deviation fitted with second
order polynomials taken from a Monte Carlo Simulation of 250 runs on a straight charging
path of 200 meters. (a) Nonlinear approximation for the expected value of charge fitted
with a second order polynomial. (b) Nonlinear approximation for the standard deviation
of expected charge fitted with a second order polynomial.

As seen in Figure 3.19 the average expected charge based on K and its standard

deviation can both be approximated by second order polynomials. The polynomial equation

for the average expected charge qe is

qe = aµK
2 + bµK + cµ (3.128)

qe = 10796.0K2 − 55177.8K + 70945.6, (3.129)

and the polynomial equation for the standard deviation of the expected charge average σqe

is

σqe = aσK
2 + bσK + cσ (3.130)

σqe = −24195.9K2 + 36538.7K − 5055.5. (3.131)

Equation 3.130 can be extended to be the equation of any desired z-score (standard deviation

from the mean) by multiplying the equation by the desired z-score
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zσqe = z
(
aσK

2 + bσK + cσ
)

(3.132)

Calculating K from the Nonlinear Charging Profile and Probability Interval

This section uses nonlinear charging equations to find the average expected charge as a

function of K with an associated standard deviation. The standard deviation can be used

to specify the likelihood of achieving a desired average expected charge qd with probability

p, where p is the upper tail integral of the z-score. The function for the z-score boundary

that returns the desired charge with a desired probability qdp is

qdp = (aµ − zaσ)K
2 + (bµ − zbσ)K + (cµ − zcσ) , (3.133)

where the variables for Equation 3.133 are specified in the previous section. The cor-

responding K value can be solved for by completing the square. The desired K value

is

K = −

√
qdp − (cµ − zcσ)

(aµ − zaσ)
+

1

4

(bµ − zbσ)
2

(aµ − zaσ)
2 − 1

2

(bµ − zbσ)

(aµ − zaσ)
. (3.134)

For example, if a vehicle desires to receive an average charge of qd = 40kW with

97% probability, a z-score of 1.88 can be selected, which corresponds to a .97 upper tail

integral amount of the Cumulative Distribution Function. To relate the z-score to the actual

problem, the equation for the z-score line can be plotted with the average expected charge,

as seen in Figure 3.20.
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Fig. 3.20: Example plot for finding a K value that yeilds an expected charge qd = 40kW
with a probability of p = 0.97. The red-dotted line represents 1.88 standard deviations from
average charge, which cooresponds to a 97% upper tail probility interval.

As seen in Figure 3.20, to obtain an average expected charge of 40kW, a value of

K ≈ 4.0 should be selected.

3.6.5 Implementing Noise Shaping Filter

For the noise shaping filter to be implemented in real time, the state space equations

are developed in the section Propagation Equations for the Noise Shaping Filter. Next, the

section Adding Variation from the Noise Shaping Filter to a Desired Trajectory explores

how the states from the shaping filter are incorporated into the vehicle’s trajectory.
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Propagation Equations for the Noise Shaping Filter

The noise shaping filter can be put into standard canonical form by first grouping s

terms in the Laplace domain. The system G (s) becomes

G(s) =
Kω2

l s
2

s4 + (2ωhζ + 2ωlζ) s3 +
(
ω2
h + 4ωhωlζ2 + ω2

l

)
s2 +

(
2ω2

hωl + 2ωhω
2
l

)
s+ ω2

hω
2
l

.

(3.135)

Making the following substitutions

a1 = 2ωhζ + 2ωlζ (3.136)

a2 = ω2
h + 4ωhωlζ

2 + ω2
l (3.137)

a3 = 2ω2
hωl + 2ωhω

2
l (3.138)

a4 = ω2
hω

2
l (3.139)

b = ω2
l , (3.140)

allows Equation 3.135 to be put into Controllable Canonical Form where

A =



0 1 0 0

0 0 1 0

0 0 0 1

−a4 −a3 −a2 −a1


(3.141)

B =



0

0

0

1


(3.142)

Cα =

[
0 0 Kb 0

]
(3.143)

D = 0. (3.144)
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Equations 3.141 through 3.144 form the state space matrices to return acceleration variation

α from the noise shaping filter. To find velocity variations v from the noise shaping filter,

make the following substitution for C,

Cv =

[
0 Kb 0 0

]
. (3.145)

To find position variations α from the noise shaping filter, make the following substitution

to C,

Cδ =

[
Kb 0 0 0

]
. (3.146)

Adding Variation from the Noise Shaping Filter to a Desired Trajectory

When a trajectory is built in compliance with the path planner analyzed in Section

3.4 and the linear feedback controller in Section 3.5, every time step in the trajectory has

a valid position, velocity, and acceleration input for a 2-dimensional point. The variation

from the noise shaping filter must have corresponding states that are added to the desired

trajectory as seen in Figure 3.21.
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Fig. 3.21: Block diagram depicting how the noise shaping filter output is incorporated into
the vehicle control input.

In Figure 3.21 it can be seen how the output of the noise shaping filter is to be added

to the controller trajectory. However, the output of noise shaping filter is 1-dimensional

for each states, where-as the input to the controller requires a 2-dimensinoal trajectory.

Therefore, the noise shaping filter outputs must be transformed into the trajectory reference

frame.

The heading at each point on the desired trajectory can be used as the x-axis of the

reference frame, and the states from the noise shaping filter can be added in the y-axis

direction.

Therefore, given a 1-dimensional position error xerror, the orthogonal position to the

reference frame point pr can be calculated by rotating the vector
[
xerror 0

]T
by θref +

π
2 .
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The new point with added variation pv is

pv = pr +R
(
θref +

π

2

) xerror

0

 (3.147)

 xv

yv

 = pr +

 cos θref − sin θref

sin θref cos θref


 xerror

0

 (3.148)

 xv

yv

 = pr +

 xerror cos θref

xerror sin θref

 (3.149)

 xv

yv

 = pr + xerror

 cos θref

sin θref

 . (3.150)

The same approach can be used to transform α and v into the reference frame, and the

variation from the noise shaping filter can be added to the desired trajectory as seen in

Figure 3.21.



CHAPTER 4

RESULTS AND ANALYSIS

The contribution of this Chapter 4 is to validate the proposed theory in Chapter 3

through simulations. The end of each section addresses any unexpected results and presents

a corresponding anlysis.

4.1 Extended Kalman Filter Results

The purpose of this section is to ensure that the EKF designed in Section 3.2 was

implemented correctly. Section 4.1.1 outlines the parameters used for all simulation results,

and the remaining sections verify the corresponding analysis outlined in Section 3.2.

4.1.1 Simulation Parameters

The purpose of this section is to outline simulation parameters utilized for testing

purposes. Any deviations from the parameter tables listed below, will be specified in the

corresponding section.

Process noise parameters are presented in Table 4.1.
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Table 4.1: Process noise covariance parameters used for the state propagation results for
the Extended Kalman Filter.

Parameter Value

Qv 0.025m2/s

Qφ 6.85e−8 rad2 · s

Qbv 0.0002m2/s

Qbφ 0.00002 rad2 · s

σv,ss .1m/s

σφ,ss 0.0349 rad/s

Noise Scaling
√
Q/dt

Discrete measurement parameters are specified in Table tab:covUpdateMeasuremen-

tUpdate. The reason the noise variance for the discrete x and y position updates is within

centimeters is because the use of an RTK GPS is assumed.

Table 4.2: Measurement noise covariance parameters used for state and covariance update
verification.

Parameter Value

Rgps_x1 0.032m2

Rgps_x2 0.032m2

Initial covariance conditions are seen in Table 4.3.
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Table 4.3: Initial covariance conditions for GPS sensor, steering angle sensor, and velocity
sensor for the Extended Kalman Filter Verifications

Parameter Value

x1σ Rgps_x1

x2σ Rgps_x2

ψσ 0.0175 rad

bvσ σv,ss

bφσ σφ,ss

Applicable simulation run-time parameters are in Table 4.4.

Table 4.4: Run-time paramaters for the Extended Kalman Filter Monte Carlo simulation
verifications.

Parameter Value

Integrator Runge-Kutta45

Start Time 0

End Time 10

Time Step (dt) 0.01

Monte Carlo Runs 100

Discrete GPS Update 5 Hz

Initial vehicle conditions are seen in Table 4.5.
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Table 4.5: Vehicle’s initial parameters and conditions for the Extended Kalman Filter
verifications.

Parameter Value

Steering Angle (θ) Limit 0.5236 rad

θ̇ Limit 1.5708 rad/sec

Wheel Base L 3m

GPS Lever Arm Length Lref 1.5m

Position x 0m

Position y 0m

Initial heading ψ 0 rad

Initial steering angle φ .2 rad

Initial velocity v 5m/s

Initial velocity sensor time const τv 100 s

Initial angle sensor time const τφ 100 s

4.1.2 State Propagation Results

This section verifies the correct state propagation of the EKF (Extended Kalman Fil-

ter). All noise values were set to zero, and the error of each state was plotted in time.

Figure 4.1 shows the error of each state between the navigation model and truth model.
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Fig. 4.1: Plot verifying the accurate state propagation between the Estimated Kalman Filter
and the truth model with zero noise. Plot returns zero error for all states which verifies the
correct state propagation of the Navigation Filter.

Figure 4.1 verifies that each state between the EKF and the truth state has zero error,

which indicates the accurate propagation of the estimated navigation filter with to the truth

model.

4.1.3 Process Noise Results

This section verifies that the process noise of the EKF is propagated correctly. To

verify the process noise, a Monte Carlo run of 100 iterations was performed with the discrete

update turned off. The results can be seen for each state in Figures 4.2—4.6. Because the

estimated covariance matches the simulated covariance for every state, the EKF is updating

the process noise covariance correctly.
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Fig. 4.2: Error plot for the x position state verifying the 3σ Extended Kalman Filter
propagation compares to the true Monte Carlo 3σ boundary. The plot verifies the correct
propagation covariance update for the Extended Kalman Filter.
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Fig. 4.3: Error plot for the y position state verifying the 3σ Extended Kalman Filter
propagation compares to the true Monte Carlo 3σ boundary. The plot verifies the correct
propagation covariance update for the Extended Kalman Filter.
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Fig. 4.4: Error plot for the heading ψ state verifying the 3σ Extended Kalman Filter
propagation compares to the true Monte Carlo 3σ boundary. The plot verifies the correct
propagation covariance update for the Extended Kalman Filter.
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Fig. 4.5: Error plot verifying that the velocity angle sensor bias bv 3σ Extended Kalman
Filter propagation compares to the true Monte Carlo 3σ boundary. The plot verifies the
correct propagation covariance update for the Extended Kalman Filter.
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Fig. 4.6: Error plot for verifying that the steering angle sensor bias bφ 3σ Extended Kalman
Filter propagation compares to the true Monte Carlo 3σ boundary. The plot verifies the
correct propagation covariance update for the Extended Kalman Filter.

4.1.4 State and Covariance Update Verification

The purpose of this section is to verify that the state and covariance update steps were

implemented properly. To verify the update step, a Monte Carlo run with 100 simulations

was performed for 10 seconds, and the Kalman Filter covariance limits were verified.

Figures 4.7—4.11 show that all of the estimated states are near the 3σ boundaries of the

Kalman Filter’s Covariance prediction. The red dotted line is the calculated 3σ prediction

from the Kalman Filter, and the red filled region is the true 3σ value for each ensemble.

Because all states are within the Kalman Filter 3σ prediction, the state and covariance

update steps are valid.
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Fig. 4.7: Error plot for the vehicle x position verifying the 3σ Extended Kalman Filter
covariance 3σ propagation compares to the true Monte Carlo 3σ boundary. The plot verifies
the correct covariance update for the Extended Kalman Filter.
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Fig. 4.8: Error plot for the vehicle y position verifying the 3σ Extended Kalman Filter
covariance 3σ propagation compares to the true Monte Carlo 3σ boundary. The plot verifies
the correct covariance update for the Extended Kalman Filter.
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Fig. 4.9: Error plot for the vehicle heading state verifying the 3σ Extended Kalman Filter
covariance 3σ propagation compares to the true Monte Carlo 3σ boundary. The plot verifies
the correct covariance update for the Extended Kalman Filter.
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Fig. 4.10: Error plot for the velocity sensor bias state verifying the 3σ Extended Kalman
Filter covariance 3σ propagation compares to the true Monte Carlo 3σ boundary. The plot
verifies the correct covariance update for the Extended Kalman Filter.
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Fig. 4.11: Error plot for the steering angle sensor bias state verifying the 3σ Extended
Kalman Filter covariance 3σ propagation compares to the true Monte Carlo 3σ boundary.
The plot verifies the correct covariance update for the Extended Kalman Filter.

4.1.5 Residual Verification

This section validates the residual of the incoming discrete measurements. The resid-

ual is the difference between the expected measurement and actual measurement. It is

calculated by

(
z̃ [k]− ˆ̃z [k]

)
. (4.1)

The covariance of the residual is equal to

HPHT +R. (4.2)

To verify if the residual values are correct, a hair plot of the residuals during the discrete

updates can be seen in Figure 4.12, where the red dotted line is the 3σ value of the residual

calculated by the Kalman Filter using Equation 4.2. Note that the 3σ value captures an
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expected number of incoming measurements.
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Fig. 4.12: Residual plots for the discrete GPS measurements on both x and y position. The
plot verifies that the residuals are within the Extended Kalman Filter’s 3σ prediction.

The mean of the residual at each ensemble can be seen in Figure 4.13. The residual

should near zero mean as the number of simulations is increased, and Figure 4.13 shows

that the expected value of the GPS measurement residual is tending towards zero.
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Fig. 4.13: Plot verifying that the ensemble expected value of the residual. The plot verifies
the the residual property that the mean of the residual tends tends towards zero as the
number of simulations is increased.

Because Figure 4.12 shows a valid number of residuals captured inside the 3σ boundary,

and because the residual mean is zero, the implementation of the discrete update is correct.

4.2 State of Charge Results

The purpose of this section is compare the proposed state of charge model developed

in Section 3.3 to known results. To test the results, an aggressive acceleration profile and a

long distance highway driving profile were used as benchmarks. Section 4.2.1 addresses the

aggressive acceleration profile of driving 0 to 60 miles per hour in 10 seconds, and Section

4.2.2 tests how many kilometers a vehicle can drive on a full charge.

4.2.1 Simulated Aggressive Acceleration Results

To verify the state of charge estimates during an acceleration period, the vehicle profile

from Chapter 2 of Young’s book was utilized [29] to calculate the average charge required
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to accelerate a vehicle from 0 to 60 miles per hour in 10 seconds.

Using the derived model for force from Section 3.3, the average required power to

accelerate from zero to 60 miles per hour was 55.7kW. Chapter 2 of Young’s book reported

an average of 60.8kW for the acceleration profile. The discrepancy is due to a difference in

the fixed rolling coefficient and drag used from Section 3.3 as apposed to the rolling and

drag coefficient proposed in Chapter 2 of Young’s book [29].

Figure 4.14 shows the results of the power consumption required to accelerate from 0

to 60 miles per hour in 10 seconds.
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Fig. 4.14: Results of the power consumption due to acceleration from 0 to 60 miles per hour
in 10 seconds.

Because the average of Figure 4.14 is within 8.5 percent error of the aggressive accelera-

tion profile proposed in [29], the acceleration estimates will give an adequate approximation

of the current state of charge.
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4.2.2 Simulated Highway Driving Results

To verify the state of charge estimate for long distances, the vehicle profile for the Ford

Focus 2012 was utilized with the parameters outlined in Table 4.6.

Table 4.6: Parameter list to simulate average watt-hours per kilometer for the Ford Focus
2012 Electric Vehicle driving at highway speeds.

Parameter Value

Front Area (m) 2.24546551

Mass (kg) 1643.819

Tire Pressure (PSI) 35

Mass Factor 1.05

Drag Coefficient 0.274

Air Density (kg/m2) 1.225

Driving Incline (degrees) 0

Tire Friction Coefficient 0.5

Regenerative Charging Coefficient .85

According to the United States Environmental Protection Agency, the Ford Focus

2012 travels 122km using a 23kWh battery [35]. The number of watt hours per kilometer

is estimated as

(
122 · km

23kWh
· kWh
1000Wh

)−1

≈ 188.5
wh
km

Performing a simulation of the vehicle driving with one passenger at a constant 65

miles-per-hour for 5 minutes resulted in an estimated 155.1wh
km . Because the estimate does

not include critical electronic usage, and acceleration, it is an adequate estimate for vehicle

battery usage based on motor demands.
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4.3 Noise Shaping Filter Results without Sensor Noise

This Section verifies all system constraints outlined in Section 3.6 and gives a brief

analysis of the results.

Section 4.3.1 establishes the simulation parameters for the result validation, Section

4.3.2 demonstrates the filter’s ability to keep variations within distance constraints, Section

4.3.3 validates all acceleration constraints, and Section 4.3.4 confirms the desired average

charge of the system.

4.3.1 Simulation Parameters

For all the results in Section 4.3, the parameters in Table 4.7 are utilized unless other-

wise specified.
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Table 4.7: Parameter list for simulation verification of the noise shaping filter without
control sensor noise.

Parameter Value

ωl (rad) 0.809

ωh (rad) 0.809

K 0.38

Time (s) 40

Analysis Start Time (s) 10

Simulations 250

Desired Charge (Watts) 40000

Desired Probability Interval 0.97

Maximum δ (m) 1.76

Maximum α (m/s2) 1.2

Maximum alpha frequency (Hz) 0.2

Trajectory Length (m) 200

Trajectory Velocity (m/s) 10

Control Sensor Noise False

4.3.2 Noise Position Constraint Results

This section tests the position constraint of the noise shaping filter outlined in Section

3.6. The position constraint is position variation δ must be less than or equal to δmax =

1.76m. The results of the vehicle’s trajectory after 250 simulations can be seen in Figure

4.15.
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Fig. 4.15: Plot verifying that the position maximum constraint δmax is not violated for the
noise variation. This Figure Demonstrates that all Monte Carlo simulations are successfully
within the δmax of 1.76m for the case that K = 0.38

Figure 4.15 shows the trajectories of the 250 simulations and plots the standard devi-

ation at each ensemble. None of the trajectories are beyond the σmax boundary, therefore

the system complies with the position constraints.

4.3.3 Acceleration Comfort Constraint Results

This section tests the acceleration constraints of the noise shaping filter outlined in Sec-

tion 3.6. The acceleration constraints outlined in Section 3.6 are that acceleration inputs α

must be less than or equal to αmax = 1.2m/s2, and that the −3dB cut-off of the acceleration

filter should be at fmax = .2Hz. Figure 4.16 verifies that the acceleration variation does not

extend past 1.2m/s2.
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Fig. 4.16: Plot verifying that the acceleration maximum constraint αmax is not violated
for the noise variation. This Figure Demonstrates that all Monte Carlo simulations are
successfully within the δmax of 1.2m/s2 for the case that K = 0.38.

Because Figure 4.16 shows that the maximum acceleration threshold is not violated,

the value of K = 3.99 is within the system specifications.

To comply with the cut-off frequency constraint, the −3dB cut-off frequency is set to

fmax = .2Hz = 1.2566 rad when the the band-pass filter’s maximum value is at 1. Figure

4.17 shows the verification of the cut-off frequency constraint.
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Fig. 4.17: Plot verifying that the maximum cut-off frequency of acceleration noise variation
is less than or equal to 1.2566 rad

Figure 4.17 shows that the maximum acceleration frequency constraint is met.

4.3.4 Delivering a Desired Charge within a Probability Interval

The purpose of this section is to test charging constraints of the noise shaping filter

outlined in Section 3.6. The charging constraint outlined in Section 3.6 is that average

charge qd should be attained within a specified probability interval p. The specified average

charge was 40000 Watts with a confidence interval of 0.97. Figure 4.18 shows the results of

the 250 simulations.
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Fig. 4.18: Histogram plot testing that 97% of simulations had an expected charge above
40000Watts without sensor noise. This figure demonstrates that of the 250 simulations,
96.8% of the simulations were above 40000Watts.

Figure 4.18 shows that the probability of receiving an expected charge of 40000Watts

or more is 96.8% as expected.

4.4 Noise Shaping Filter Results with Sensor Noise

This section shows that the added noise of the vehicle sensors effects the analysis of

the noise shaping filter, and it can not be neglected.

When sensor noise is added to the EKF observer on the GPS, steering angle sensor,

and velocity sensor, new noise is added to the control input beyond what is analyzed for the

noise shaping filter in Section 3.6.4. To verify the added system noise, the test from Section

4.3.4 is repeated with the sensor noise profile from Section 4.1.1. The results show that

only 91.6% of the simulations successfully received 40kW or more when 97% were expected

to receive at least 40kW. A histogram of the results can be seen in Figure 4.19.
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Fig. 4.19: Histogram plot testing that 97% of simulations had an expected charge above
40000Watts with sensor noise introduced. This figure demonstrates that of the 250 simu-
lations, 91.6% of the simulations were above 40000Watts.

Figure 4.19 verifies that an additional analysis of the noise shaping filter with the

presence of sensor noise is warranted. Therefore, Section 4.4.1 will define new equations for

calculating K.

4.4.1 Nonlinear Charging Profile and Probability Interval with Sensor Noise

This section shows how a nonlinear charging profile for calculating K can be obtained

for the noise shaping filter with vehicle sensor noise is included. Using the same procedure

outlined in Section 3.6.4, a new equation for calculating K based on a desired charge with a

probability interval was developed by running 250 Monte Carlo Simulation with sensor noise

turned on for incremental values of K ranging from 0.1 to one. The new fit data is plotted

next to the noise shaping results from Section 4.3.4 to compare the results. Figure 4.20

compares the required K value to obtain an average expected charge within a probability

interval of 0.97 with and without sensor noise.
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Fig. 4.20: (a) Plot of calculating the required noise shaping filter gain K without added
sensor noise to ensure 40kW average charge within 97% probability, which cooresponds to
1.88 standard deviations from the average expected charge. (b) Plot of calculating the
required noise shaping filter gain K including sensor noise to ensure 40kW average charge
within 97% probability.

As seen in Figure 4.20, the magnitude of K must is smaller when sensor noise is included

to account for the additional control noise. To verify the results of the expected average

charge with sensor noise,the test from Section 4.3.4 was reproduced using the new value of

K. The resulting histogram of average charge can be seen in Figure 4.21.
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Fig. 4.21: Histogram plot testing that 97% of simulations had an expected charge above
40000Watts with sensor noise introduced. This figure demonstrates that of the 250 simu-
lations, 98.6% of the simulations were above 40000Watts.

when the sensor noise was accounted for Figure 4.21 shows that with sensor noise on

the EKF enabled, the expected average charge of a dynamic charging region can still be

achieved.

To further characterize the effect of the sensor noise sources, each noise source was

isolated for 250 Monte Carlo simulations. The variance of the steering angle error was

sized using the steering angle sensor data-sheet from Methode Electronics [36] assuming a

±30° maximum curvature vehicle limit, which corresponds to a sensor three sigma value of

about 0.03°. The velocity sensor was set to have a variance of 0.1m/s. The RTK GPS was

set to have a variance of 0.03m with an update every of 1 Hz.

The effect of each sensor noise source on the standard deviation of the vehicle position

error from the center of the trajectory can be seen in Figure 4.22.
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Fig. 4.22: Bar chart displaying the isolated effect of the sensor noise on each of the variance
of the error δ from the center of the vehcile path. The sizing for the noise can be seen in
Table 4.1 and Table 4.2.

Figure 4.22 shows that the sensor noise on the steering angle is the driving noise factor.

Therefore, a more accurate steering angle sensor should be utilized to improve results.

4.5 Destination Arrival with a Desired State of Charge

This section tests that the path planner adequately sizes the output of the noise shaping

filter based on a desired end charge QwH in watt-hours as discussed in Section 3.4.4.

Assuming the vehicle profile from Table 4.6 with an initial battery charge of 15kwH

and a desired end charge of 15.3kwH, the simulated vehicle traveled a 1900 meter track with

two 400-meters charging regions. The WPT charging regions were centered at 500 meters

and 1300 meters of the path respectively, and the grade of the path changed from 3% to

2% at 900 meters as depicted in Figure 4.23.
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Fig. 4.23: Significant elements of the vehicle simulation path to show that the sizing of the
noise shaping filter results in the desired end state of charge. The orange dots indicate when
the vehicle re-calculates desired average charge for the noise shaping filter, and the red dots
indicate when the shaping filter is set to maximum control variation.
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Fig. 4.24: Monte Carlo plot displaying the cross track error versus path length of the
simulated vehicle to its destination at 1900 meters. The variance of the vehicle cross-track
error changes as a function of the gain of the noise shaping filer which is recalculated at
200 meters and 1000 meters. The maximum control noise variation is set at the end of the
charging pads, which occurs at 700 meters and 1500 meters.
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Figure 4.23 shows that there is a change in path grade between the two charging

regions. This change is used to test the ability of the path planner to adequately decrease

the noise sizing to accommodate the reduction of average expected power consumption.

The orange dots in Figure 4.23 symbolize when the path planner calculates a new control

variation sizing based on the average power usage of the previous 10 seconds, and the red

dots symbolize when a maximum path variation is set after a charging region is complete.

A Monte Carlo simulation of 250 runs was completed, and the results can be seen in

Figure 4.24. Figure 4.24 visually shows how the path planner achieved the desired end state

of charge without a prior knowledge of the path grade. At 200 meters, the first calculation

for the desired average charge was set based on the 3% grade assumed from averaging

the previous 10 seconds of power consumption. The calculation was intentionally made 10

seconds prior to the beginning of the charging station to allow the variance of the control

variation to tighten before the beginning of the charging region. At 900 meters, the road

grade was reduced to 2%, which resulted in less power drawn from the battery. Therefore,

when the desired charge was again computed at 700 meters, the path planner determined

that less charge was needed to arrive at the destination than previously solved for, so the

noise sizing was increase.

The test desired to achieve a final battery state of 15.3kWh with 97% probability, and

the test resulted in 96%, as seen in the histogram of Figure 4.25.
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Fig. 4.25: Histogram plot showing the final battery state of charge when the vehicle arrived
at its destination. Of the 250 simulations, 96% were expected to be above 15300 watt-hours,
and the simulation resulted in 95.6% above 15300 watt-hours.

Because the test verifies an expected number of simulations with a desired end state of

charge, the path planner correctly sizes the output of the noise shaping filter for a destination

desired state of charge.



CHAPTER 5

CONCLUSION

5.1 Conclusion

A noise shaping filter that reduces road wear by injecting noise into a vehicle’s control

inputs has been presented. Using the analyzed properties of the noise shaping filter, the

control input variation can be shaped to ensure position and acceleration constraints, and

ensure that a vehicle arrives at a destination with a desired battery charge qd within a

probability interval p. The constraints that were met and verified by the noise shaping

filter include:

• Position Constraint: Position from the center of the lane δ must be less than or

equal to δmax meters.

• Acceleration Constraint: Vehicle acceleration inputs α must be less than or equal

to αmaxm/s
2.

• Acceleration Frequency Constraint: Acceleration changes must be less than or

equal to fαmax Hertz.

• Controller Constraint: Filter must produce variations in position, velocity, and

acceleration to interface with the vehicle’s controller.

• Average Charge Constraint: Average charge qd must be attained within a specified

probability interval p.

Because the results from Section 4.3.3 verify the simulated compliance with the outlined

criteria, the noise shaping filter can be utilized to add an analytical amount of variation to

a vehicle’s trajectory. This research will aid in extending the road life of heavily trafficked

dynamic charging WPT regions as the number of autonomous dynamically charging vehicles
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increases. Current applications of this research also extends to reducing the road wear

caused by heavy autonomous mining equipment and autonomous farming equipment.

This research contributes to the field of controls by presenting a zero-analytical tracking

error controller for a Continuous Curvature Path (CCPath). To ensure tracking, the CCPath

takes into account the curvature and steering rate limits imposed by a vehicle’s velocity.

The zero tracking error controller is achieved by creating an ε-Tracking path for a reference

control point on a vehicle. This contribution offers a linear feedback control law that can

track a vehicle trajectory and add a desired variation from the noise shaping filter.

This research contributes to the navigation field by developing an Extended Kalman

Filter (EKF) that uses RTK GPS, a steering sensor, and a velocity sensor for state estima-

tion. The EKF was developed to analyze how sensor noise effects the noise shaping filter

properties.

To verify the accuracy of the noise shaping filter analysis, Monte Carlo simulations

were performed on the noise shaping filter with and without simulated vehicle sensor noise.

It was determined that the sensor noise can not be neglected when sizing parameters for the

noise shaping filter due to the added path variation caused by the sensor noise. Therefore,

the noise shaping filter analysis was repeated including the additional sensor noise, and

consistent expected charging results were achieved.

The next natural stage for this research is to bound the variance of jerk added to the

control inputs produced by the noise shaping filter. One proposed method to bound jerk,

is to use a band-pass filter with a 60db/decade roll-off that can be integrated three times

to produce jerk, acceleration, velocity, and position variation. Additionally, the vehicle

controller should be extended to satisfy jerk constraints, and a modified path planner could

be extend to produce a path of G3 continuity.

Future work also includes characterizing which shaping filter parameters will minimize

road wear. This research assumes that the control variation with a maximum position

cut-off frequency minimizes road wear while decreasing the standard deviation of expected

charge, but a formal analysis could be performed.
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For safe integration on a vehicle, future work also include hardware implementation

and verification for the sections outlined in Chapter 4.
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APPENDIX A

Appendix

A.1 Navigation Model Linearization

The following derivation is for Section 3.2.2, which defines the navigation filter lin-

earized states for covariance propagation.

Given the nonlinear differential equation:

ẋ = f (x, ỹ,w, t) (A.1)

The goal for linearization is to convert the differential equation to the form of Equation

A.2, to be able to propagate the covariance using Equation A.3.

δẋ = F (x, ỹ, t) δx +G (x, ỹ, t)w (A.2)

Ṗ = FP + PF T +GQGT (A.3)

To linearize the nonlinear differential equations for covariance propagation, Equations

A.6 through A.15 define variation equations for each state in the system, Equation A.5

establishes a nominal differential equation, Equation A.23 substitutes the variation equa-

tions into the system, and Equation A.24 uses a Taylor series approximation to eliminate

nonlinearities. Finally, A.27 reduces the equations to a linear form with F and G matrices.
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Define the navigation filter design model



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv − nv) cos (ψ)

(ṽ − bv − nv) sin (ψ)

ṽ−bv−nv
L tan

(
φ̃− bφ − nφ

)
− 1
τv
bv + wv

− 1
τφ
bψ + wφ


(A.4)

Define the nominal differential equation



˙̂x1

˙̂x2

˙̂
ψ

˙̂
bv

˙̂
bφ


=



(
ṽ − b̂v

)
cos
(
ψ̂
)

(
ṽ − b̂v

)
sin
(
ψ̂
)

ṽ−b̂v
L tan

(
φ̃− b̂φ

)
− 1
τv
b̂v

− 1
τφ
b̂φ


(A.5)

Define the error states

x1 = x̂1 + δx1 (A.6)

x2 = x̂2 + δx2 (A.7)

ψ = ψ̂ + δψ (A.8)

bv = b̂v + δbv (A.9)

bφ = b̂φ + δbφ (A.10)

ẋ1 = ˙̂x1 + δẋ1 (A.11)

ẋ2 = ˙̂x2 + δẋ2 (A.12)

ψ̇ =
˙̂
ψ + δψ̇ (A.13)

ḃv =
˙̂
bv + δḃv (A.14)

ḃφ =
˙̂
bφ + δḃφ (A.15)
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Redefine the design model with small angle approximation to separate the state terms

from the noise terms that are inside the tangent operator.



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv − nv) cos (ψ)

(ṽ − bv − nv) sin (ψ)

ṽ−bv−nv
L

(
φ̃− bφ − nφ

)
− 1
τv
bv + wv

− 1
τφ
bφ + wφ


(A.16)

Group system terms by state and noise variables



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)− cos (ψ)nv

(ṽ − bv) sin (ψ)− sin (ψ)nv

ṽ−bv−nv
L

(
φ̃− bφ

)
+ 1

L (−ṽnφ + bvnφ + nvnφ)

− 1
τv
bv + wv

− 1
τφ
bφ + wφ


(A.17)

Discard second order noise term



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)− cos (ψ)nv

(ṽ − bv) sin (ψ)− sin (ψ)nv

ṽ−bv−nv
L

(
φ̃− bφ

)
+ 1

L (−ṽnφ + bvnφ)

− 1
τv
bv + wv

− 1
τφ
bφ + wφ


(A.18)
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Continue grouping like terms



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)− cos (ψ)nv

(ṽ − bv) sin (ψ)− sin (ψ)nv

ṽ−bv
L

(
φ̃− bφ

)
+ 1

L (−ṽnφ + bvnφ)− 1
Lnv

(
φ̃− bφ

)
− 1
τv
bv + wv

− 1
τφ
bφ + wφ


(A.19)



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)− cos (ψ)nv

(ṽ − bv) sin (ψ)− sin (ψ)nv

ṽ−bv
L

(
φ̃− bφ

)
+ 1

L

(
(−ṽ + bv)nφ − (φ̃− bφ)nv

)
− 1
τv
bv + wv

− 1
τφ
bφ + wφ


(A.20)

Place in form of state variables and noise variables



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)

(ṽ − bv) sin (ψ)

ṽ−bv
L

(
φ̃− bφ

)
− 1
τv
bv

− 1
τφ
bφ


+



− cos (ψ)nv

− sin (ψ)nv

− 1
L(φ̃− bφ)nv +

1
L(−ṽ + bv)nφ

wv

wφ


(A.21)



ẋ1

ẋ2

ψ̇

ḃv

ḃφ


=



(ṽ − bv) cos (ψ)

(ṽ − bv) sin (ψ)

ṽ−bv
L

(
φ̃− bφ

)
− 1
τv
bv

− 1
τφ
bφ


+



− cosψ 0 0 0

− sinψ 0 0 0

1
L(bφ − φ̃) 1

L(bv − ṽ) 0 0

0 0 1 0

0 0 0 1





nv

nφ

wv

wφ


(A.22)

Substitute variations into equations

˙̂x + δẋ = f (x̂ + δx, ỹ, t) +G(x, ỹ, t)w (A.23)
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Use Taylor series approximation

˙̂x + δẋ = f (x̂, ỹ, t) + ∂f

∂x

∣∣∣∣
x̂

δx +G(x, ỹ, t)w +H.O.T (A.24)

Substitute definition of nominal path, and simply

˙̂x + δẋ = ˙̂x +
∂f

∂x

∣∣∣∣
x̂

δx +G(x, ỹ, t)w +H.O.T (A.25)

δẋ =
∂f

∂x

∣∣∣∣
x̂

δx +G(x, ỹ, t)w (A.26)

Place in linear form



δẋ1

δẋ2

δψ̇

δḃv

δḃφ


=



0 0 − (ṽ − bv) sin ψ̂ − cos ψ̂ 0

0 0 (ṽ − bv) cos ψ̂ − sin ψ̂ 0

0 0 0 1
L

(
φ̃− bφ

)
− ṽ−bv

L

0 0 0 − 1
τv

0

0 0 0 0 − 1
τφ





δx1

δx2

δψ

δbv

δbφ



+



− cos ψ̂ 0 0 0

− sin ψ̂ 0 0 0

1
L(−φ̃+ bφ)

1
L(−ṽ + bv) 0 0

0 0 1 0

0 0 0 1





nv

nφ

wv

wφ


(A.27)

Equation A.27 is now in the desired linearized form of Equation A.2 with an F and G

matrix.
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A.1 Measurement Linearization

Equation A.28 is used to propagate the Kalman filter co-variance matrix P+, where

the Kalman Gain is defined in the a posteriori by Equation A.29, and Rp can be calculated

using Equation A.30.

P+ = P− −KHP− (A.28)

K = P−HT
(
HP−HT +Rp

)−1 (A.29)

Rpδ[n−m] = E
[
v[n]v[m]T

]
(A.30)

The H matrix must be in a linearized form for the Kalman Gain a posteriori Equation, and

it is computed by finding Equation A.31.

δz[k] = H(x̂[k], k)δx[k] + ν[k] (A.31)

The nonlinear form is written as

z̃[k] = h(x[k], k) + ν[k] (A.32)

where the function h(x[k], k) maps the vehicle location [x, y]T into the measurement frame.

The GPS location may not be positioned directly above the rear axle, so the measurement

model includes a lever-arm transformation where Lref is the distance from the back axle to
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the GPS antenna.

z̃[k] = h(x[k], k) + ν[k]

z̃[k] =

 x[k]

y[k]

+

 cos (ψ[k]) − sin (ψ[k])

sin (ψ[k]) cos (ψ[k])


 Lref

0

+ ν[k]

z̃[k] =

 x[k]

y[k]

+

 Lref cos (ψ[k])

Lref sin (ψ[k])

+ ν[k]

z̃[k] =

 x[k] + Lref cos (ψ[k])

y[k] + Lref sin (ψ[k])

+ ν[k] (A.33)

The perturbations are defined as

x[k] =x̂[k] + δx[k] (A.34)

z̃[k] =ẑ[k] + δz[k] (A.35)

so, let nominal measurement is defined by

ẑ ≡ h (x̂[k], k) (A.36)

Combining Equations A.35, A.36, and A.32 yields

ẑ[k] + δz[k] = z̃[k] (A.37)

h (x̂[k], k) + δz[k] = h (x[k], k) + ν[k] (A.38)

h (x̂[k], k) + δz[k] = h (x̂[k] + δx[k], k) + ν[k] (A.39)

h (x̂[k], k) + δz[k] = h (x̂[k], k) + ∂h

∂x

∣∣∣∣
x̂
δx + ν[k] (A.40)

δz[k] =
∂h

∂x

∣∣∣∣
x̂
δx + ν[k] (A.41)
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Because the measurements must be in the form of Equation A.31, the measurement sensi-

tivity matrix is found by taking the partial derivative of h(x[k], k).

∂h

∂x

∣∣∣∣x̂ =

 ∂h1
∂x

∂h1
∂y

∂h1
∂ψ

∂h1
∂bv

∂h1
∂bφ

∂h2
∂x

∂h2
∂y

∂h2
∂ψ

∂h2
∂bv

∂h2
∂bφ


∣∣∣∣∣∣∣x̂

(A.42)

=

 1 0 −Lref sin (ψ[k]) 0 0

0 1 Lref cos (ψ[k]) 0 0


∣∣∣∣∣∣∣x̂

(A.43)

Ĥp =

 1 0 −Lref sin
(
ψ̂[k]

)
0 0

0 1 Lref cos
(
ψ̂[k]

)
0 0

 (A.44)
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APPENDIX B

Appendix

B.1 Second Order Low-pass System Properties

Laplace Representation

Gl(s) =
Kω2

l

s2 + 2ζωls+ ω2
l

System Magnitude

Let α = ω2
l and β = 2ζωl

Gl(s) =
Kα

s2 + βs+ α

Substitute s = jω,

Gl(jω) =
Kα

(jω)2 + (jω)β + α

Gl(jω) =
Kα

−ω2 + jβω + α

The equation for finding the magnitude is:

|x+ jy| =
√
x2 + y2

Now, find the magnitude by taking the magnitude of the top and bottom separately.
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|Gl(jω)| =
|Kα|

|−ω2 + jβω + α|

=
Kα√

(α− ω2)2 + (βω)2

=
Kα√

(α− ω2) (α− ω2) + β2ω2

=
Kα√

ω4 − 2αω2 + α2 + β2ω2

=
Kα√

ω4 + (β2 − 2α)ω2 + α2

substitute α and β back into equations

|Gl(jω)| =
Kω2

l√
ω4 +

(
(2ζωl)

2 − 2ω2
l

)
ω2 +

(
ω2
l

)2
|Gl(jω)| =

Kω2
l√

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

Finding the magnitude squared

|Gl(jω)|2 =
K2ω4

l

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

If ζ = 1√
2
,

|Gl(jω)|2 =
K2ω4

l

ω4 + ω4
l
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Cut-off Frequency

To find the cut-off frequency at the value ρ, let γ = 2ω2
l

(
2ζ2 − 1

)
for convenience.

Then,

ρ =
Kω2

l√
ω4
c + γω2

c + ω4
l√

ω4
c + γω2

c + ω4
l =

1

ρ
Kω2

l

ω4
c + γω2

c + ω4
l =

(
1

ρ
Kω2

l

)2

ω4
c + γω2

c + ω4
l =

1

ρ2
K2ω4

l

Let κ = 1
ρ2
K2

Completing the square to solve for ωc:

ω4
c + γω2

c + ω4
l =

1

ρ2
K2ω4

l

ω4
c + γω2

c =
1

ρ2
K2ω4

l − ω4
l

ω4
c + γω2

c +
1

4
γ2 =

1

ρ2
K2ω4

l − ω4
l +

1

4
γ2(

ω2
c +

1

2
γ

)2

=
1

ρ2
K2ω4

l − ω4
l +

1

4
γ2

ω2
c +

1

2
γ2 = ±

√
1

ρ2
K2ω4

l − ω4
l +

1

4
γ2

ω2
c = −1

2
γ2 ±

√
1

ρ2
K2ω4

l − ω4
l +

1

4
γ2

ωc =

√
1

2
γ2 ±

√
1

ρ2
K2ω4

l − ω4
l +

1

4
γ2
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Make substitutions back in for γ,

ωc =

√
1

2

(
2ω2

l (2ζ
2 − 1)

)2
+

√
1

ρ2
K2ω4

l − ω4
l +

1

4

(
2ω2

l (2ζ
2 − 1)

)2
ωc =

√√
1

ρ2
K2ω4

l − ω4
l

ωc =

(
1

ρ2
K2ω4

l − ω4
l

)1/4

B.2 Second Order High-pass System Properties

Laplace Representation

Gh(s) =
Ks2

s2 + 2ζωhs+ ω2
h

System Magnitude

Let α = ω2
h and β = 2ζωh,

Gh(s) =
Ks2

s2 + βs+ α

Substitute s = jω,

Gh(jω) =
K (jω)2

(jω)2 + (jω)β + α

Gh(jω) =
−ω2

−ω2 + jβω + α
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Now, find the magnitude by taking the magnitude of the top and bottom separately

|Gl(jω)| =
∣∣−Kω2

∣∣
|−ω2 + jβω + α|

=
Kω2√

(α− ω2)2 + (βω)2

=
ω2√

(α− ω2) (α− ω2) + β2ω2

=
ω2√

ω4 − 2αω2 + α2 + β2ω2

=
ω2√

ω4 + (β2 − 2α)ω2 + α2

Substitute α and β back into equations

|Gh(jω)| =
Kω2√

ω4 +
(
(2ζωh)

2 − 2
(
ω2
h

))
ω2 +

(
ω2
h

)2
|Gh(jω)| =

Kω2√
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

Finding the magnitude squared yields

|Gh(jω)|2 =
K2ω4

ω4 + 2ω2
h (2ζ

2 − 1)ω2 + ω4
h

If ζ = 1√
2
,

|Gl(jω)|2 =
K2ω4

ω4 + ω4
h
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Cutoff Frequency

To find the cut-off frequency at the value ρ, let γ = 2ω2
l

(
2ζ2 − 1

)
for convenience.

Then,

ρ =
Kω2

c√
ω4
c + γω2

c + ω4
h√

ω4
c + γω2

c + ω4
h =

1

ρ
Kω2

c

ω4
c + γω2

c + ω4
h =

(
1

ρ
Kω2

c

)2

ω4
c + γω2

c + ω4
h =

1

ρ2
K2ω4

c

Let κ = 1
ρ2
K2

ω4
c + γω2

c + ω4
h = κω4

c

ω4
c − κω4

c + γω2
c + ω4

h = 0

ω4
c (1− κ) + γω2

c + ω4
h = 0

ω4
c +

γω2
c

(1− κ)
+

ω4
h

(1− κ)
= 0

Let ζ =
ω4
h

(1−κ) , and Ω = γ
(1−κ)

ω4
c +Ωω2

c + ζ = 0

ω4
c +Ωω2

c +
1

4
Ω2 =

1

4
Ω2 − ζ(

ω2
c +

1

2
Ω

)2

=
1

4
Ω2 − ζ

ω2
c +

1

2
Ω =

√
1

4
Ω2 − ζ

ω2
c =

√
1

4
Ω2 − ζ − 1

2
Ω

ωc =

√√
1

4
Ω2 − ζ − 1

2
Ω
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Now substitute back in all variables

ωc =

√√
ζ +

1

4
Ω2 − 1

2
Ω

ωc =

√√√√√ ω4
h

(1− κ)
+

1

4

(
2ω2

h (2ζ
2 − 1)

(1− κ)

)2

− 1

2

(
2ω2

h (2ζ
2 − 1)

(1− κ)

)

ωc =

(
ω4
h

(1− κ)

)1/4

ωc =

 ω4
h(

1− 1
ρ2
K2
)
1/4

ωc = ωh

(
1− 1

ρ2
K2

)−1/4

B.3 Band-pass Filter Properties

Laplace Representation

Using the following property of magnitudes

G(s) = K ·Gl(s) ·Gh(s)

= K
ω2
l

s2 + 2ζωls+ ω2
l

s2

s2 + 2ζωhs+ ω2
h

=
Kω2

l s
2(

s2 + 2ζωls+ ω2
l

) (
s2 + 2ζωhs+ ω2

h

)
=

Kω2
l s

2

s4 + 2ωhζs3 + 2ωlζs3 + ω2
hs

2 + 4ωhωlζ2s2 + ω2
l s

2 + 2ω2
hωls+ 2ωhω

2
l s+ ω2

hω
2
l

=
Kω2

l s
2

s4 + (2ωhζ + 2ωlζ) s3 +
(
ω2
h + 4ωhωlζ2 + ω2

l

)
s2 +

(
2ω2

hωl + 2ωhω
2
l

)
s+ ω2

hω
2
l
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Make the following substitutions

a1 = 2ωhζ + 2ωlζ

a2 = ω2
h + 4ωhωlζ

2 + ω2
l

a3 = 2ω2
hωl + 2ωhω

2
l

a4 = ω2
hω

2
l

b2 = ω2
l

Then,

G(s) =
Kb2s2

s4 + a1s3 + a2s2 + a3s+ a4

System Magnitude

|G(s)| = |K ·Gl(s) ·Gh(s)| = |K| · |Gl(s)| · |Gh(s)|

Substituting s = jω

|G(jω)| = |K ·Gl(jω) ·Gh(jω)| = |K| · |Gl(jω)| · |Gh(jω)|

Substituting solutions from Section B.1 and B.2

|G(jω)| = K
ω2
l√

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

ω2√
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

=
Kω2

l ω
2√(

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

) (
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

)
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Let ζ = 1√
2

|G(jω)| =
Kω2

l ω
2√(

ω4 + ω4
l

) (
ω4 + ω4

h

)
Which yields a magnitude squared of

|G(jω)|2 =
K2ω4

l ω
4(

ω4 + ω4
l

) (
ω4 + ω4

h

)
Peak of Band-pass Filter

The peak of the band-pass filter is at the intersection of the low-pass filter and high

pass filter. Let γl = 2ω2
l

(
2ζ2 − 1

)
fintersect =

Kω2
l√

ω4
c + γlω2

c + ω4
l

High pass filter. Let γh = 2ω2
h

(
2ζ2 − 1

)
fintersect =

Kω2
c√

ω4
c + γhω2

c + ω4
h

Calculate intersection point

Kω2
l√

ω4
c + γlω2

c + ω4
l

=
Kω2

c√
ω4
c + γhω2

c + ω4
h(

ω2
l

)2
ω4
c + γlω2

c + ω4
l

=

(
ω2
c

)2
ω4
c + γhω2

c + ω4
h
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Let αl = ω4
l , and α2 = ω4

h

αl
ω4
c + γlω2

c + ω4
l

=
ω4
c

ω4
c + γhω2

c + α2

αl
(
ω4
c + γhω

2
c + α2

)
= ω4

c

(
ω4
c + γlω

2
c + α2

)
αlω

4
c + αlγhω

2
c + αlα2 = ω8

c + γlω
6
c + α2ω

4
c

ω8
c + γlω

6
c + α2ω

4
c − αlω

4
c − αlγhω

2
c = αlα2

ω8
c + γlω

6
c + (α2 − αl)ω

4
c − αlγhω

2
c = αlα2

let ξ = (a2 − a1), κ = αlγh, and φ = α1α2

ω8
c + γlω

6
c + (α2 − αl)ω

4
c − αlγhω

2
c = αlα2

ω8
c + γlω

6
c + ξω4

c − κω2
c = φ

The solution to ωc is an eighth order polynomial with a numeric solution, but it does not

appear to have a trivial algebraic solution. An alternative method to find the intersecting

frequency of the low-pass filter and high-pass filter is to leverage the symmetry of the system.

The intersection of the two filters in the logarithmic domain is the logarithmic midpoint of

the two cut-off frequencies of the bode plot as seen in Figure B.1.
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Fig. B.1: Depiction that the logrithmic midpoint between ωl and ωh is the ineterection
frequency.

The graphical midpoint of a bode-plot can be calculated as

midpoint = 10
log10(a)+log10(b)

2

= 10
1
2
log10(a) · 10

1
2
log10(b)

= 10
log10

(
a
1
2

)
· 10log10

(
b
1
2

)

= a
1
2 · b

1
2

=
√
ab

where a is the high-pass filter cut-off frequency and b is the low-pass filter cut-off

frequency. Therefore the intersecting frequency is located at

ωintersect =
√
ωlωh
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and the maximum value of the band-pass filter with ζ = 1√
2

is

|G(jω)|2max = |G(ωintersect)|2

=
K2ω4

l

(
(ωlωh)

1/2
)4((

(ωlωh)
1/2
)4

+ ω4
l

)((
(ωlωh)

1/2
)4

+ ω4
h

)
=

K2
(
ω2
l ω

2
h

)
ω4
l(

ω2
l ω

2
h + ω4

l

) (
ω2
l ω

2
h + ω4

h

)
=

K2
(
ω2
l ω

2
h

)
ω4
l

ω4
l ω

4
h + ω2

l ω
2
hω

4
h + ω2

l ω
2
hω

4
l + ω4

l ω
4
h

=
K2
(
ω2
l ω

2
h

)
ω4
l

ω2
l ω

2
h

(
ω2
l ω

2
h + ω4

h + ω4
l + ω2

l ω
2
h

)
=

K2ω4
l

ω4
h + 2ω2

l ω
2
h + ω4

l

=
K2ω4

l(
ω2
h + ω2

l

)2
System Cut-off frequency

To find the cut-off frequency at the value ρ, let ζ = 1√
2
. Then,



121

|G(jω)| =
Kω2

l ω
2√(

ω4 + ω4
l

) (
ω4 + ω4

h

)
ρ =

Kω2
l ω

2
c√(

ω4
c + ω4

l

) (
ω4
c + ω4

h

)
ρ2 =

(
Kω2

l ω
2
c

)2(
ω4
c + ω4

l

) (
ω4
c + ω4

h

)
ρ2 =

K2ω4
l ω

4
c

ω8
c + ω4

hω
4
c + ω4

l ω
4
c + ω4

l ω
4
h

ρ2 =
K2ω4

l ω
4
c

ω8
c +

(
ω4
h + ω4

l

)
ω4
c + ω4

l ω
4
h

ω8
c +

(
ω4
h + ω4

l

)
ω4
c + ω4

l ω
4
h =

1

ρ2
K2ω4

l ω
4
c

ω8
c +

(
ω4
h + ω4

l

)
ω4
c −

1

ρ2
K2ω4

l ω
4
c =− ω4

l ω
4
h

ω8
c +

(
ω4
h + ω4

l −
1

ρ2
K2ω4

l

)
ω4
c =− ω4

l ω
4
h

Let α = ω4
h + ω4

l −
1
ρK

2ω4
l , and β = ω4

l ω
4
h

ω8
c + αω4

c + β = 0

Completing the square

ω8
c + αω4

c = −β

ω8
c + αω4

c +
1

4
α2 =

1

4
α2 − β(

ω4
c +

1

2
α

)2

=
1

4
α2 − β

ω4
c =

√
1

4
α2 − β − 1

2
α

ωc =

(√
1

4
α2 − β − 1

2
α

)1/4
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Note that K =
(
ω2
h+ω

2
l

)
ω2
l

in order to scale the band-pass filter to 0dB before finding the

cut-off frequency.

Solving for ωl and ωh given a −3dB cut-off frequency

With a given ωh = κωl and K =
(
ω2
h+ω

2
l

)
ω2
l

. K is set to scale the system up to 0dB

|G(jω)| =
Kω2

l ω
2√(

ω4 + ω4
l

) (
ω4 + ω4

h

)
ρ =

(
ω2
h+ω

2
l

)
ω2
l

ω2
l ω

2
c√(

ω4
c + ω4

l

) (
ω4
c + ω4

h

)
ρ2 =
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ω2
h + ω2

l

)
ω2
c

)2(
ω4
c + ω4

l

) (
ω4
c + ω4

h

)
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κ2ω2

l + ω2
l

)
ω2
c

)2(
ω4
c + ω4

l

) (
ω4
c + ω4

h

)
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(
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c

(
κ2 + 1

)
ω2
l
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ω4
c + ω4

l
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c + ω4
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4
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4
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4ω4
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4
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4
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4ω4

l

)
= ω4

c

(
κ2 + 1

)2
ω4
l

ω8
c + κ4ω4

l ω
4
c + ω4

l ω
4
c + ω4

l κ
4ω4

l =
ω4
c

(
κ2 + 1

)2
ρ2

ω4
l

ω8
c +

(
κ4ω4

c

)
ω4
l +

(
ω4
c

)
ω4
l + κ4ω8

l =
ω4
c

(
κ2 + 1

)2
ρ2

ω4
l(

κ4ω4
c + ω4

c −
ω4
c

(
κ2 + 1

)2
ρ2

)
ω4
l + κ4ω8

l = −ω8
c

κ4ω8
l + ω4

c

(
κ4 + 1−

(
κ2 + 1

)2
ρ2

)
ω4
l = −ω8

c

ω8
l + ω4

c

(
1 +

1

κ4
−
(
κ2 + 1

)2
κ4ρ2

)
ω4
l = −ω

8
c

κ4



123

Let Ω = ω4
c

(
1 + 1

κ4
−

(
κ2+1

)2
κ4ρ2

)
, then

ω8
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B.4 Double Integrated Band-pass Filter

Laplace Representation

Using the following property of magnitudes

G(s) = K ·Gl(s) ·Gh(s) ·Gi(s)

= K
ω2
l

s2 + 2ζωls+ ω2
l

s2

s2 + 2ζωhs+ ω2
h

· 1

s2

=
Kω2

l(
s2 + 2ζωls+ ω2

l

) (
s2 + 2ζωhs+ ω2

h

)
=

Kω2
l

s4 + 2ωhζs3 + 2ωlζs3 + ω2
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2 + 4ωhωlζ2s2 + ω2
l s

2 + 2ω2
hωls+ 2ωhω

2
l s+ ω2

hω
2
l

=
Kω2

l

s4 + (2ωhζ + 2ωlζ) s3 +
(
ω2
h + 4ωhωlζ2 + ω2

l

)
s2 +

(
2ω2

hωl + 2ωhω
2
l

)
s+ ω2

hω
2
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Make the following substitutions

a1 = 2ωhζ + 2ωlζ

a2 = ω2
h + 4ωhωlζ

2 + ω2
l

a3 = 2ω2
hωl + 2ωhω

2
l

a4 = ω2
hω

2
l

b = ω2
l

Then,

G(s) =
Kb

s4 + a1s3 + a2s2 + a3s+ a4

System Magnitude

First identifying the magnitude of the integrator

∣∣∣∣ 1s2
∣∣∣∣ = 1

ω2

Using the following property of magnitudes

|H(jω)| = |G(jω)|
∣∣∣∣ 1

(jω)

∣∣∣∣
= |G(jω)| 1

ω2

Substituting G (jω) magnitude from Section B.3

|H(jω)| =
Kω2

l ω
2√(

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

) (
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

) 1

ω2

|H(jω)| =
Kω2

l√(
ω4 + 2ω2

l (2ζ
2 − 1)ω2 + ω4

l

) (
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

)
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Which yields a magnitude squared of

|H(jω)|2 =
(
Kω2

l

)2(
ω4 + 2ω2

l (2ζ
2 − 1)ω2 + ω4

l

) (
ω4 + 2ω2

h (2ζ
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h

)
|H(jω)|2 =

K2ω4
l(

ω4 + 2ω2
l (2ζ

2 − 1)ω2 + ω4
l

) (
ω4 + 2ω2

h (2ζ
2 − 1)ω2 + ω4

h

)
Recall that ζ = 1√

2
, so

|H(jω)|2 =
K2ω4

l(
ω4 + ω4

l

) (
ω4 + ω4

h

)
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