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ABSTRACT 

 

Using Tree-Ring Growth and Stable Isotopes to Explore Ponderosa Pine 

Ecophysiological Responses to Climate Variability and the  

2012-2015 California Drought 

by 

 

Rachel M. Keen, Master of Science 

 

Utah State University, 2019 

 

 

Major Professor: Steve L. Voelker 

Department: Plants, Soils and Climate 

 

 

 As the climate continues to warm, forests in the western United States are being 

subject to more frequent and severe drought events, making it increasingly important to 

understand how trees respond to drought stress. The 2012-2015 California drought, is a 

recent example of an extreme drought event coupled with an epidemic scale bark beetle 

outbreak that led to widespread mortality of ponderosa pine. In these studies, we utilized 

tree-ring growth and stable isotopes to better understand (1) whether drought stress 

affected local-scale variability in survival of ponderosa pines during an epidemic 

outbreak of western pine beetle and (2) to what extent important ecosystem carbon and 

water fluxes were recorded in ponderosa pine tree-rings during this severe drought event. 

In the first portion of this study, increment cores from pairs of surviving and dead 

ponderosa pines in the southern Sierra Nevadas were collected after the drought event to 

compare growth rates and tree-ring stable isotopes. Our goal was to determine whether 
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increased drought stress was associated with higher susceptibility to beetle attack and, 

consequently, mortality. Unexpectedly, we found no stable isotope evidence for more 

severe drought stress in trees that died. Instead, we found that surviving trees grew 

consistently faster from 1900-2016. Our results suggest that differences in growth rate 

had more influence on susceptibility to beetle attack than severity of drought stress. In the 

second portion of this study, we used intra-annual growth and stable isotope 

measurements to explore the relationship between tree-level and ecosystem-level carbon 

and water fluxes during the same drought event. Our results showed that tree-level water 

use efficiency had a strong negative relationship with ecosystem-scale water use 

efficiency measured at an on-site flux tower, likely due to the impact of soil and stream 

water evaporation on flux tower measurements of evapotranspiration. Additionally, tree-

ring growth rates had a strong positive relationship with ecosystem-scale gross primary 

productivity. Using tree-ring stable isotopes and growth rates as proxies for water use 

efficiency and gross primary productivity, respectively, we were able to accurately 

predict ecosystem-scale ET using tree-level measurements during the 2012-2015 drought 

event. 

(123 pages) 
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PUBLIC ABSTRACT 

 

Using Tree-Ring Growth and Stable Isotopes to Explore Ponderosa Pine 

Ecophysiological Responses to Climate Variability and the  

2012-2015 California Drought 

Rachel M. Keen  

 Climate warming in recent decades has resulted in more frequent and severe 

drought events in the western United States. These changes are projected to continue, 

making it exceedingly important to understand how forests respond to severe drought 

stress, and how we can manage these forests to reduce mortality during future events. The 

2012-2015 California drought is a recent example of a severe, multi-year drought that 

was coupled with an epidemic-scale outbreak of western pine beetle, killing nearly 90% 

of ponderosa pines in the central and southern Sierra Nevadas. In the first portion of this 

study, we compared pairs of surviving and dead ponderosa pines following this drought 

event to determine how the surviving trees were able to survive. We were also interested 

in how closely ponderosa pine tree-rings were recording ecosystem responses to this 

drought event. In the second portion of this study, we compared tree-ring growth rates 

and stable isotopes to data from an on-site flux tower to determine whether tree-rings 

were recording important information regarding ecosystem carbon and water fluxes 

during this severe drought event. Overall, we sought to better understand how the 2012-

2015 California drought event affected ponderosa pines to inform future management 

practices in forests of the western United States. 
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CHAPTER 1 

INTRODUCTION 

 

In recent decades, climate warming has had a significant impact on forest health 

in the western United States. Increasing temperatures and aridity have resulted in higher 

levels of drought stress and contributed to increased mortality across a broad range of 

forest types, fire regimes, tree species, and tree sizes (Allen et al. 2010). These changes 

are projected to continue and are expected to result in more severe and/or frequent large-

scale mortality events (Allen et al. 2010). Changes in mortality rates, including massive 

dieback events like those seen in California over the past five years, can have serious 

effects on the ecological structure of a forest, impacting species composition and 

diversity as well as ecosystem functions that are economically important to our society 

(van Mantgem 2009; Adams et al. 2010; Anderegg et al. 2013).  

Ponderosa pine (Pinus ponderosa Laws.) is one economically important species 

that is being impacted by increasing drought stress in the western United States (Waring 

and Law 2001). In addition to higher temperatures and increasing atmospheric and soil 

moisture stress, ponderosa pine is affected by subsequent increases in drought-related 

disturbances, including outbreaks of western pine beetle (Dendroctonus brevicomis Le 

Conte, Coleoptera: Scolytidae; WPB) and mountain pine beetle (Dendroctonus 

ponderosae Hopkins; MPB) (Bentz et al. 2010). Widespread tree mortality due to drought 

and bark beetle attacks has recently impacted many forests across the western United 
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States, but the relationship between drought stress and susceptibility to bark beetle 

attacks across tree species is not well understood.  

 

 

Drought and climate in California 

 

This study will focus on the 2012-2015 California drought event (hereafter 

referred to as the “CA Drought”); the severity of this multi-year drought is estimated to 

be a 1 in 1000 to 1 in ~10,000-year event (Griffin and Anchukaitis 2014; Robeson 2015). 

Although precipitation rates were very low during the CA Drought, levels were not 

outside the range of natural variability (Griffin and Anchukaitis 2014). However, in 

combination with record high temperatures, drought stress in California forests was 

severe. Multi-year drought events are common in central California, and are driven 

partially by ENSO, the El Niño-Southern Oscillation (Cayan et al. 1999). However, 

recent droughts and wet periods across California have not corresponded well with 

ENSO. The North American Winter Dipole, which has links to the Arctic Oscillation, has 

been shown to have significant influence on precipitation in California and much of the 

west coast since at least 1950 (Wang et al. 2015; Wang et al. 2017; Singh et al. 2019). 

The extreme drought conditions during the CA Drought were accompanied by a 

persistent, high-pressure ridge off the west coast of the United States and a low-pressure 

trough over the eastern United States. When the drought ended in the winter of 2016, this 

‘dipole’ flipped—a low-pressure trough formed off the west coast and a high-pressure 
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ridge formed in the east—resulting in abnormally high precipitation rates and even severe 

flooding in California (Wang et al. 2017). Climate warming and increasing atmospheric 

greenhouse gas concentrations are expected to make these dipole events more frequent 

and severe in the future (Wang et al. 2015; Yoon et al. 2015), making it exceedingly 

important to understand how forests react to drastic inter-annual climatic variability and 

severe multi-year drought events.  

 

 

Ponderosa pine and western pine beetle ecology 

 

Ponderosa pine is a member of the Pinaceae family with an expansive range 

encompassing much of the western United States, spanning from southwestern Canada to 

Central Mexico (Shinneman et al. 2016; Willyard et al. 2017). Genetically distinct 

populations of ponderosa pine are associated with a variety of climate conditions 

throughout the central and western United States (Shinneman et al. 2016; Willyard et al. 

2017) but two varieties are consistently recognized: P. ponderosa var. ponderosa Laws. 

(Pacific ponderosa pine) and P. ponderosa var. scopulorum Engelm. (Rocky Mountain 

ponderosa pine) (Potter et al. 2013; Shinneman et al. 2016; Willyard et al. 2017). The 

range of P. ponderosa (var. ponderosa Laws.) includes the southern Sierra Nevadas, CA, 

where this study takes place. Within P. ponderosa (var. ponderosa Laws), considerable 

genetic diversity associated with adaptations to differences in elevation and climate 
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conditions have been observed in the Sierra Nevada (Ager and Stettler 1983; Rehfeldt 

1991; Weber and Sorensen 1992; Kolb et al. 2016; Warwell and Shaw 2018). 

Ponderosa pine is one of many economically important timber species in the 

western United States (Oliver and Ryker 1990). Evolutionary traits of ponderosa pine, 

including thick protective bark, rapid growth of seedlings, and highly flammable litter, 

suggest adaptation to frequent low-intensity fires (Waring and Law 2001). These 

conditions were present in many regions of the western United States during the late 

Holocene and through the time of European settlement in the late 1800's (Guyette et al. 

2012), but fire suppression efforts for the past century have nearly tripled the historic 

fire-return interval in many areas (Covington and Moore 1994; Steel et al. 2015). The 

absence of frequent low-intensity fire has allowed shade-tolerant and fire-intolerant 

species to establish and fill gaps in what were historically patchy or low-density forests 

dominated by fire-resistant species like ponderosa pine (Parsons and DeBenedetti 1979; 

Hood et al. 2016).  

WPB is one of several bark beetle species that uses ponderosa pine as a host, but 

these beetles can also attack Coulter pines (Pinus coulteri), which inhabit the southern 

coastal mountains of California. WPB has a similar range to that of ponderosa pine, 

spanning much of western North America, and is typically found at elevations of 600-

1800m (DeMars and Roettgering 1982). This species can produce multiple generations 

per year depending on how long, and how favorable, the growing season is. When 

populations are relatively low, WPB tends to attack damaged or severely stressed trees. 

Severity of outbreaks is typically higher in dense, even-aged stands and during years in 
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which more generations than normal are produced (i.e. warmer, longer growing season) 

(DeMars and Roettgering 1982). During an attack, female beetles attempt to enter the 

phloem of a tree by boring a hole through the bark. Ponderosa pines can defend against 

these attacks by producing flows of resin through the bore holes, essentially flushing the 

beetle out and preventing it from feeding on the phloem and colonizing the tree (DeMars 

and Roettgering 1982). Without sufficient defense resources, the tree may be unable to 

remove the beetle and become colonized. As the beetles enter the tree, they carry multiple 

fungal species that also infect the host tree (DeMars and Roettgering 1982). Warmer 

temperatures due to climate warming, particularly during the winter and spring, allow 

WPB to fly earlier in the year and possibly produce an additional generation during the 

growing season (Bentz et al. 2010; Anderegg et al. 2015). 

 

 

Tree-ring growth and stable isotopes 

 

Climate conditions during tree growth are recorded in annual growth rings and 

can be used to investigate tree physiological responses to drought and climate variability. 

For most low- to mid-elevation locations across the western United States and elsewhere, 

annual ring widths provide an estimate of growth that occurs each year, with less growth 

typically occurring during years in which trees are damaged or significantly stressed by 

drought or other factors (Fritts 1976). Tree-ring carbon and oxygen stable isotopes in tree 

ring cellulose can yield additional insights into climate conditions and physiological 
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responses of the trees in the past. Substantial work has been done using stable isotopes in 

ponderosa pine throughout its range in North America to look at climate patterns, annual 

precipitation, and intrinsic water-use efficiency (iWUE) (McDowell et al. 2003; Roden 

and Ehleringer 2007; Szejner et al. 2016; Voelker et al. 2019). Understanding how tree-

ring measurements, including growth rates and stable isotopes, record and reflect climate 

conditions, ecosystem carbon and water fluxes, and physiological drought stress will 

improve our ability to predict forest responses to future climate conditions.  

 

 

Objectives and motivations  

 

In the first portion of this study (Chapter 2), the overarching goal was to better 

understand the relative roles of drought stress and forest density in tree mortality during 

the CA Drought and western pine beetle outbreak. Approximately 90% of mature 

ponderosa pines in the southern Sierra Nevadas died during this drought event (Fettig et 

al. 2019; Pile et al. 2019). In this study, trees that died during the drought were compared 

to nearby paired trees that survived to determine what physiological characteristics may 

have allowed for survival. Because projections of global climate change predict 

continually increasing temperatures as well as frequency and duration of drought 

conditions in the western United States (Asner et al. 2015), it is increasingly important to 

understand how forests will respond under these conditions. In the second portion of this 

study (Chapter 3), intra-annual tree-ring growth rates and stable carbon isotopes were 
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compared to ecosystem flux data during the CA Drought to determine the extent to which 

these tree-level measurements recorded ecosystem-scale carbon and water fluxes. This 

portion of the study also explored the ability to utilize tree-ring measurements as proxies 

for ecosystem-flux data. The ability to use tree-ring data in this way would be valuable in 

regions or localities where no flux towers exist (ex. steep terrain precludes the use of 

eddy covariance-based measurements of ecosystem gas fluxes), and/or when ecosystem 

flux data from the past could provide valuable context to modern flux tower 

measurements. This severe multi-year drought period and the availability of on-site flux 

data provide a unique opportunity to explore the relationship between tree- and 

ecosystem-scale carbon and water fluxes to better understand how trees respond to severe 

drought. 

Understanding the physiological responses of trees to extreme drought, as well as 

the relationship between drought stress and bark beetle outbreak events, can give us more 

insight into how to manage at-risk forests, including how to increase resistance to future 

droughts and resilience to future disturbance, including bark beetle attacks and wildfires. 

Since many forests of the western United States contain economically important tree 

species, including ponderosa pine, landscape-scale mortality events can have disastrous 

consequences for local and regional economies for decades while forests recover. 

Additionally, these forests provide many valuable ecosystem functions, including habitat 

for other plants and animals, large-scale carbon storage, timber production, and recreation 

(Christensen et al. 2016). A better understanding of how trees respond to and record 
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severe drought events will allow us to better predict, and hopefully mitigate, future large-

scale mortality events in the western United States. 
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CHAPTER 2 

STRONGER INFLUENCE OF GROWTH RATE THAN SEVERITY OF DROUGHT 

STRESS ON MORTALITY OF LARGE PONDEROSA PINES DURING THE  

2012-2015 CALIFORNIA DROUGHT 

 

Abstract 

 

As the climate continues to warm, forests in the western United States and 

elsewhere are being subject to more frequent and severe drought events. The 2012-2015 

California drought is a recent example where drought stress was exacerbated by an 

epidemic scale outbreak of western pine beetle (Dendroctonus brevicomis) and 

collectively resulted in widespread mortality of dominant canopy species like ponderosa 

pine (Pinus ponderosa Lawson & C. Lawson). Large-scale mortality events can have 

substantial and widespread effects on forest structure, species composition, and 

ecosystem function, but the physiological relationship between drought stress in 

ponderosa pine and susceptibility to western pine beetle attack is not well understood. In 

this study, we compare pairs of large surviving and beetle-killed ponderosa pines 

following the 2012-2015 California drought in the southern Sierra Nevadas (elevation 

1160 m) to evaluate physiological characteristics related to survival. Inter-annual growth 

rates (basal area increment, BAI) and tree-ring stable isotopes (∆13C and δ18O) were 

utilized to compare severity of drought stress and climate sensitivity in ponderosa pines 

that survived and those that were killed by western pine beetle leading up to, and during, 
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the 2012-2015 drought event. Compared to trees that were killed, surviving trees had 

higher growth rates and grew in plots with lower conspecific basal area. However, there 

were no detectable differences in ∆13C, δ18O, or stable isotope sensitivity to drought-

related meteorological variables between surviving and dead trees. These results indicate 

that differences in severity of drought stress had little influence on local, inter-tree 

differences in growth rate and survival of large ponderosa pines during the severe 2012-

2015 California drought and associated western pine beetle outbreak. Although many 

previous studies have shown that large trees are generally more susceptible to drought 

and bark beetle attacks than small trees, our data suggest that large ponderosa pines were 

more resistant to drought stress and bark beetle attacks when they were in the upper 

echelon of growth rates among trees within a stand and across the landscape.  

 

 

Introduction 

 

Between 2010 and 2017, over 100 million trees died in California (CA) due to 

drought and bark beetle outbreaks. A large portion of this mortality (~96%) occurred 

during the 2012-2015 drought period (hereafter referred to as the “CA Drought”) and 

these numbers were particularly severe for the central and southern portions of the Sierra 

Nevada, CA (Moore et al. 2017; Pile et al. 2019). A recent study quantifying mortality 

during this period found that ponderosa pine (Pinus ponderosa Lawson & C. Lawson), 

the dominant canopy tree species in many low- and mid-elevation forests in the Sierra 
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Nevada, experienced the highest rate of mortality relative to co-existing species like 

incense cedar (Calocedrus decurrens) (Fettig et al. 2019). At sites ranging from ~900-

2200 m elevation in four national forests in the Sierra Nevada, ponderosa pine had an 

89.6% mortality rate compared to only 23.2% for incense cedar. Mortality was especially 

severe at lower elevations (~1,100 m), with many sites experiencing 100% ponderosa 

pine mortality (Fettig et al. 2019). Large scale mortality of a dominant canopy tree 

species like ponderosa pine could have substantial and widespread effects on forest 

structure, species composition, biodiversity, and ecosystem function in California and 

across the western United States (van Mantgem 2009; Adams et al. 2010; Anderegg et al. 

2015). 

Increasing drought severity in the western United States is projected to continue 

and will likely result in more large-scale forest mortality events in the future, further 

threatening ecologically and economically important tree species like ponderosa pine 

(Allen et al. 2010). As the climate warms, ponderosa pines are also affected by increasing 

frequency and severity of disturbance, including outbreaks of western pine beetle 

(Dendroctonus brevicomis; WPB) (Kolb et al. 2016a) like the one seen during the CA 

Drought (Fettig et al. 2019). In California, WPB typically produces two and partial third 

generation per year depending on the length and temperature of the growing season 

(DeMars and Roettgering 1982). In other bark beetle species, higher winter temperatures 

can also result in less over-winter death (Bentz et al. 2010), and warm spring and summer 

temperatures can result in earlier WPB adult emergence, increasing the potential for a 
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successful third generation (Miller and Keen 1960). In these ways, climate warming can 

directly and positively influence WPB population sizes. 

Climate warming may also indirectly affect WPB success by influencing 

ponderosa pine vigor and defensive capacity. Based on the growth-differentiation-balance 

hypothesis (Herms and Mattson 1992), drought severity can either increase plant 

defensive capabilities or reduce them (Kolb et al. 2016a). While mild or moderate 

drought stress may increase the allocation of carbon resources to defense, severe drought 

stress often results in stomatal closure and reduced photosynthesis, and/or failures in the 

phloem system, all of which can lead to carbon starvation and insufficient resources for 

defense (Kolb et al. 2016a; McDowell et al. 2011; Sevanto et al. 2014). Severe drought 

stress in trees is thought to increase susceptibility to bark beetle attacks (Raffa et al. 2008; 

Kolb et al. 2016). Aspects of stand structure and competition that can affect a tree’s vigor 

and ability to mobilize carbon defenses are also known to impact survival during large 

beetle outbreaks (Waring and Pitmann 1985; Coops et al. 2009; Fettig et al. 2019). 

Nonetheless, the physiological relationship between drought stress in ponderosa pine and 

susceptibility to western pine beetle attack, particularly during severe drought events, is 

not well understood. A better understanding of these relationships could inform future 

management practices or provide more accurate predictions of forest mortality in a 

warmer and drier future.  

Here we explore ponderosa pine physiological response to drought using tree ring 

widths and stable isotope analyses of tree-ring cellulose. Both have been used extensively 

to gain insight into past climate conditions and ponderosa pine response to climate 
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variability (McDowell et al. 2003; Roden and Ehleringer, 2007; Williams et al. 2010a; 

Leavitt et al. 2011; Williams et al. 2012; Szejner et al. 2016; Voelker et al. 2019). Tree-

ring ∆13C (biological discrimination against 13C) is largely determined by the ratio of 

photosynthetic assimilation to stomatal conductance (Farquhar et al. 1989; McCarroll and 

Loader 2004; Ehleringer and Farquhar 1993). Thereby, tree-ring ∆13C can be used to 

infer severity of drought stress for individual trees where leaf gas exchange is primarily 

limited by stomatal conductance, as in the dry summer conditions prevalent in the 

Mediterranean climate of central California. In an effort to avoid severe drought stress, 

stomatal conductance in ponderosa pines typically decreases as severity of drought 

conditions increases, resulting in greater use of 13C and lower ∆13C values (McDowell et 

al. 2003; Voelker et al. 2019). Tree-ring δ18O can also be affected by stomatal 

conductance by way of the Peclet Effect (Barbour et al. 2004). When stomatal 

conductance is high, there is a larger flux of un-enriched xylem water into the leaf, 

resulting in lower δ18O values recorded in tree-ring cellulose. When stomatal 

conductance decreases, this flux of un-enriched xylem water also decreases, resulting in 

higher δ18O values recorded by photosynthetic signals transmitted to tree-ring cellulose 

(Edwards and Fritz 1986; Farquar and Lloyd 1993; Roden et al. 2000). 

In this study, we employed annually resolved ring widths and stable isotope data 

from individual trees to seek a stronger understanding of physiological responses to 

drought stress in surviving versus recently WPB-killed ponderosa pines. The specific 

objectives of this study were to determine (1) what climate factors were most highly 

correlated with tree ring Δ13C and δ18O, (2) whether stand density affected climate 
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sensitivity or growth rate in surviving or dead ponderosa pines, (3) whether surviving and 

dead trees differed in growth rates, and (4) whether dead trees exhibited signs of higher 

severity of drought stress than trees that survived, despite growing in the same climate 

conditions. Overall, this study sought to determine whether differences in ecophysiology 

over time could help explain the ability of certain ponderosa pines to survive severe 

drought conditions and a concurrent western pine beetle outbreak while a much larger 

proportion of ponderosa pines died in association with the CA Drought (Fettig et al. 

2019; Pile et al. 2019). 

 

 

Materials and methods 

 

Study Area  

Sampling for this project was conducted in the spring of 2017 at Soaproot Saddle, 

a Southern Sierra Critical Zone Observatory (SSCZO) site northeast of Fresno, CA 

(Figure 2-1). In this area, ponderosa pine-dominated mixed conifer forests occur between 

~900 and 2,000 m elevation. Other common species in this region include incense cedar 

(Calocedrus decurrens), California black oak (Quercus kelloggii), sugar pine (Pinus 

lambertiana), Douglas fir (Pseudotsuga menziesii), and manzanita (Arctostaphylos spp.). 

Soaproot Saddle is located at 1,160 m elevation and receives ~800mm of precipitation 

each year. Mean minimum temperature in this region is 5.5°C and mean maximum 

temperature is 18°C (Goulden et al. 2012). A large portion of annual precipitation occurs 
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in the winter and spring, followed by a summer drought period. Historically, this 

ecosystem experienced frequent, low-intensity fires every 10-20 years that kept 

ponderosa pine-dominated forests “open and parklike” (Parsons and DeBenedetti 1979; 

North et al. 2005; Van de Water and Safford 2011; Hood et al. 2016). Since widespread 

fire suppression efforts have been in place over the past century, most of the forests in 

this region have transitioned to dense, mixed-conifer forests with higher populations of 

fire-intolerant and shade-tolerant understory species (Stephens et al. 2015). Sampling 

took place on 12 plots at Soaproot Saddle (Figure 2-1). 

 

Field Data Collection 

Pairs of surviving and dead ponderosa pines were selected based on their similar 

stature, estimated age, and proximity to one another; average distance between paired 

trees was ~75 m. Individuals selected as focus trees were estimated to be 100-150 years 

old. In order to more accurately compare the physiology of surviving versus dead trees, 

pairs were also chosen for similarity of growing conditions (i.e. slope, geomorphic 

position, and density of understory vegetation). Six pairs of surviving and dead trees were 

sampled (12 total focus trees) and three 12 mm-diameter increment cores were extracted 

from each focus tree at breast height (between 1.0 and 1.5 m from ground level).  

A 15 m-radius fixed-area circular plot was established with each focus tree at the 

center (Figure 2-2). Information recorded for trees ≥ 20 cm DBH (diameter at breast 

height) within each plot included DBH, species, and status (surviving/dead, percent 
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needle retention, and evidence of WPB attack when applicable). Basal area was 

calculated for each fixed-area plot (15-m radius) using the following equation: 

     𝐵𝐴 =  
∑ 𝐷𝐵𝐻2∗ 0.00007854

𝐴𝑟𝑒𝑎
    (1) 

Total basal area, including all species present in the plot, was calculated as well as basal 

area of ponderosa pine at each plot.  

Additional increment cores from ponderosa pines sampled by Ferrell (2017) were 

also utilized in order to compare the focus trees in this study to a random sample of 

relatively old (100+ years) ponderosa pines that also grew at Soaproot Saddle. Locations 

of these randomly sampled trees relative to our focus trees are shown in Figure 2-1 and 

information regarding mean size and age of these trees can be found in table A-1.  

 

Increment Core Preparation and Measurement 

Each increment core was mounted on a wooden stave and sanded using 

increasingly higher-grit sand paper (120-400) to prepare cores for visual cross-dating and 

measurement of annual growth rings. Whole ring widths as well as separate early- and 

latewood widths were measured using MeasureJ2X software (Voortech Consulting). 

Visual cross-dating was then conducted to assign calendar years to the rings in each core 

(Stokes and Smiley 1968). Visual cross-dating between trees was confirmed using 

COFECHA, a statistical program that assesses cross-dating quality and accuracy (Holmes 

1983). Ring width chronologies for each focus tree were detrended separately using a 

negative exponential spline first to remove the biological growth signal, then with a 100-
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yr spline to isolate climate trends (Bunn 2008). All detrending was conducted in 

ARSTAN (Cook and Krusik 2014).  

 DBH and ring widths were used to calculate basal area increment (BAI) for focus 

trees and randomly sampled trees (Ferrell 2017) to determine annual growth rates. BAI 

was calculated from the outside-in, assuming circularity of the growing cambium and 

employed estimates of bark thickness (McDonald 1983; Larsen and Hann 1985) to adjust 

for differences in radial measurements inside and outside of the bark for each tree. To 

minimize the potential for bias in assessing growth rates for trees that differed among 

groups in DBH, the age-related trend in BAI for randomly sampled trees was calculated 

using equation (2) (R2 = 0.90, p < 0.01; data not shown). Thereafter, BAI deviations 

(BAID) were calculated for each tree using equation (3). 

 

                           𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐴𝐼 = 0.8751 ∗ 𝐴𝑔𝑒0.6304               (2) 

 

                         𝐵𝐴𝐼𝐷 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐵𝐴𝐼−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐴𝐼

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝐴𝐼
 ∗ 100    (3) 

 

 

Stable Isotope Analyses 

For each core from the 12 focus trees, latewood for the years 1950-2016 was 

separated using a scalpel under a dissecting microscope. Cores from each individual tree 

were combined, then each latewood sample was ground to a fine powder and sealed in a 

mesh filter bag (mesh size 25 µm; ANKOM Technology, Macedon, NY). Samples were 
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bleached using sodium chlorite and glacial acetic acid to remove extractives from the 

wood, leaving only holocellulose (Leavitt and Danzer 1993). Next, sodium hydroxide and 

glacial acetic acid were used to remove hemicellulose and yield α-cellulose, which 

faithfully records the δ18O signature recorded in the wood each year without exchanging 

with atmospheric water (Rinne et al. 2005). After isolating α -cellulose, each sample was 

homogenized in deionized water using an ultrasonic probe and subsequently freeze-dried 

(Laumer et al. 2009). Samples were then packed in tin (Δ13C) or silver (δ18O) capsules 

before being analyzed at the Center for Isotope Biogeochemistry (CSIB) at the University 

of California, Berkeley. The carbon isotope ratio of each sample was obtained using 

standard high temperature combustion in a vario-Pyrocube elemental analyzer interfaced 

with an IsoPrime/Elementar IsoPrime 100 gas phase isotope ratio mass spectrometer 

(IsoPrime Ltd., Manchester, UK). The oxygen isotope ratios were determined by 

pyrolyzing α-cellulose in an elemental analyzer (TC/EA, IsoPrime/Elementar vario-

Pyrocube) and analyzing the resulting gas with an isotope ratio mass spectrometer 

(IsoPrime 100). The long-term precision does not exceed ± 0.1 ‰ for δ13C and 0.2 ‰ for 

δ18O for the mass spectrometer employed at CSIB. 

All δ13C values were converted to carbon isotope discrimination values (Δ13C) 

following Farquhar et al. (1982): 

    𝛥13𝐶 =
𝛿13C 𝑎𝑖𝑟−𝛿13𝐶 𝑝𝑙𝑎𝑛𝑡

1+ 𝛿13𝐶 𝑝𝑙𝑎𝑛𝑡/1000
       (4) 

In this equation, δ 13Cair was estimated annually from the values given by McCarroll and 

Loader (2004) merged with more recent δ 13Cair records from Mauna Loa, Hawaii.  Δ13C 



24 

 

and δ 18O isotope series that were intended for comparison to climate variability were 

detrended with ARSTAN software (Cook and Krusik 2014) using a 100-yr spline to 

isolate inter-annual to decadal climate trends from low-frequency variation that could 

arise due to changes in competition, tree height, or rooting depth. Residual isotope series 

were then multiplied by the mean isotopic value for each core to obtain a pre-whitened 

isotope series without autocorrelation for each focus tree. Due to poor cross-dating of 

isotope series with the other trees, two focus trees were removed from subsequent 

statistical analyses, resulting in a sample size of 10 focus trees. 

 

Climate Data 

The climate data employed were obtained through PRISM 

(http://prism.oregonstate.edu/) and ClimateWNA (http://www.climatewna.com/). Palmer 

Drought Severity Index (PDSI) data for California’s 5th climate division was obtained 

through the National Oceanic and Atmospheric Association (NOAA). Climate variables, 

including PDSI, vapor pressure deficit (VPD), climatic moisture deficit (CMD), and 

precipitation were seasonally averaged for winter (previous December, current January 

and February), spring (March, April, May), summer (June, July, August), and fall 

(September, October, November). Seasonal climate data were pre-whitened to remove 

autocorrelation and long-term trends and to highlight inter-annual variation. 

 

 

http://prism.oregonstate.edu/
http://www.climatewna.com/
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Statistical Analyses 

Pre-whitened climate series were compared to similarly pre-whitened isotope 

chronologies for the years 1950-2016 and Pearson’s correlation coefficients were 

calculated. Correlations were calculated separately for surviving and dead focus trees. 20-

year moving window correlations were conducted for each climate variable with the Δ13C 

record using the tidyquant package in R (Dancho and Vaughan 2018). Repeated measures 

mixed effects modeling using the package nlme (Pinheiro et al. 2016) in R was 

performed to determine whether significant isotopic differences (Δ13C or δ 18O) exist 

between surviving and dead trees. Focus tree pair (1-6) was included as the random 

variable with year, status (surviving or dead), and their interaction as predictors. A 

repeated measures mixed effects model was conducted for BAID with the same random 

and predictor variables to assess differences in growth rate. Trees sampled by Ferrell 

(2017) were included in this model. Similarly, a linear mixed effects model was used to 

compare basal area and percent dead ponderosa pine between plots with surviving and 

dead focus trees. Focus tree pair was included as a random variable and focus tree status 

(surviving or dead) as the predictor variable. Additionally, F-tests were used on pre-

whitened isotope series to determine whether inter-annual variance in Δ13C or δ 18O 

differed among surviving and dead focus trees. 
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Results 

 

 All dead focus trees had evidence of WPB attack, including pitch tubes, entrance 

holes, and gallery excavations, but we found no evidence of WPB attack on any of the 

surviving focus trees. This indicates that WPB attacks and subsequent effects of 

inoculation of trees with blue stain fungi (Ceratocystis minor) on xylem and phloem 

functionality were the proximate causes of mortality even though essentially all trees 

underwent moderate to severe drought stress. DBH was significantly greater in surviving 

trees than in dead trees (p = 0.03), but tree age was not significantly different between the 

two groups (p = 0.20).  

 Across the entire 1900-2016 period, ponderosa pines that survived the CA 

Drought and WPB outbreak had significantly higher BAID than trees that died (p < 0.01) 

(Figure 2-3). Although both groups of trees show a steep decline in growth rates during 

the drought, surviving trees displayed a slight uptick in growth during 2016 after this 

region received substantial rainfall during the previous winter. Other notable periods of 

low growth rates include severe multi-year droughts during 1987-1992 and 1929-1934, 

the latter being associated with the dust bowl droughts that affected much of North 

America (Jones 2015). Compared to tree core data collected at random locations across 

the same watershed by Ferrell (2017), both live and dead focus trees sampled in this 

study grew consistently faster since 1900. These randomly sampled trees also 

experienced a steep decline in growth during the CA Drought (Figure 2-3). The randomly 
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sampled trees had a mean DBH of 47.2 cm (±16 SD) and mean age of 115.3 years (±38 

SD) (Table A-1). 

 Plot-scale basal area, calculated across all species, was compared between plots 

with a surviving focus tree and plots with a focus tree that was killed by WPB during the 

drought. There was no significant difference in total plot basal area between the two 

groups of plots when all tree species were included (p = 0.55). However, there was 

significantly greater ponderosa pine basal area at plots associated with a dead focus tree 

(p = 0.01). Additionally, there was significantly higher percent ponderosa pine mortality 

in plots with a dead focus tree (p < 0.01) (Figure 2-4). Plots with a dead focus tree had 

100% mortality of ponderosa pines > 30 cm DBH. 

 Interestingly, there were no significant differences in latewood Δ13C or latewood 

δ18O between trees that survived and trees that were killed by WPB during the drought (p 

= 0.99 and p = 0.16, respectively) (Figure 2-5a-b). Dead focus tree Δ13C showed elevated 

inter-annual variance compared to surviving focus trees (dead = 0.22 ‰; surviving = 0.17 

‰) but the difference was not significant (p = 0.33). Variance in dead focus tree δ 18O 

(1.52 ‰) was significantly higher than in surviving focus trees (0.65 ‰) (p < 0.01). 

When compared to spring and summer PDSI from 1950-2016, Δ13C values were near 

their lower extreme during the CA Drought, particularly during 2014 which had the 

lowest PDSI and Δ13C values for this time period (Figure 2-6). 

For the years 1950-2016, Pearson’s correlation coefficients were significant (p < 

0.05) when greater than 0.24 or less than -0.24. Of the four climate variables tested 

(PDSI, VPD, CMD, and precipitation), only PDSI had significant correlations with δ 18O, 



28 

 

and only with dead focus trees during the spring and summer (Table 2-2a). Overall, δ 18O 

was poorly correlated with drought-related climate variables during this time period. 

Δ13C was positively correlated with PDSI and precipitation and negatively correlated 

with VPD and CMD. The highest correlations between Δ13C and VPD, CMD, and 

precipitation were associated with the spring season, but Δ13C was more closely related to 

PDSI during the summer season (Table 2-2b). This trend was consistent in both surviving 

and dead ponderosa pines. Δ13C correlation strengths were similar for both groups of 

trees, although live focus trees had slightly stronger spring correlations for most climate 

variables. 

To assess the stability of correlations between Δ13C and drought-related climate 

variables, 20-year moving window correlations were calculated for the period 1900-2016. 

Because of the similarity in correlation strengths between Δ13C and climate for surviving 

and dead focus trees (Table 2-2a), all data were combined for these analyses to provide 

the most accurate assessment of how the influence of climate may have changed over 

time for ponderosa pines in this area. These moving correlations revealed that the 

relationships between Δ13C and spring season VPD, CMD, and precipitation have been 

increasing in strength since 1900 (Figure 2-7b-d). For PDSI, a similar increase in 

correlation occurs over time, but is associated with summer instead of spring conditions 

(Figure 2-6a), reflecting the same seasonal offset among climate variables observed in 

static correlations (Table 2-2a). The strength of this trend varies between climate 

variables but is strongest for the changing influence of spring precipitation (r2 = 0.74).  
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Discussion 

 

As the climate has continued to warm over the past several decades, the western 

United States has experienced increased aridity as well as more frequent and severe 

drought events (Allen et al. 2010). Warmer, drier conditions have resulted in longer 

growing seasons and earlier snowmelt in California (Gleick 1987; Stewart et al. 2004; 

Knowles and Cayan 2004; Mote et al. 2005). Moving correlation results from this study 

show that tree-ring Δ13C correlations with spring drought-related climate variables (VPD, 

CMD, and precipitation) have been getting stronger since 1900 (Figure 2-7) (all seasons 

shown in figures A-1 through A-4), indicating an earlier onset of summer drought stress 

in these trees. Correlations with PDSI show this same trend, but during the summer. This 

offset is likely due to the considerable memory in soil moisture responses to climate, 

which is reflected in how PDSI is calculated (Mishra and Singh 2010). PDSI and Δ13C 

values were both near their lower extremes during the CA Drought compared to the rest 

of the 1950-2016 period, particularly during 2014 (Figure 2-6), indicating severe drought 

stress in these ponderosa pines during the drought.  

The primary difference between surviving and WPB-killed ponderosa pines found 

in this study was in growth rate. Relatively old and large trees that managed to survive 

the CA Drought and concurrent western pine beetle outbreak in this area were growing 

significantly faster than the trees that were killed (Figure 2-3). This difference in growth 

rate was observed across the entire 1900-2016 period, not just for a few decades prior to 

the drought. Given our paired sampling design that aimed to minimize plot-level 
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differences that could influence tree fitness, this result suggests that surviving trees were 

inherently different in some way than the trees that were killed by WPB during the 

drought.  

The influence of growth rate on susceptibility to attack by a variety of bark beetle 

species is a common question, and results appear to vary based on elevation, climate 

conditions, and stand age (Cooper et al. 2018). The few studies that have specifically 

investigated how growth rates of ponderosa pine may influence attacks and/or mortality 

by WPB have shown that large, slower-growing trees are preferentially attacked under 

endemic beetle conditions, and at the beginning of an epidemic scale outbreak like the 

one seen during the CA Drought (Craighead 1925; Person 1928; Miller and Keen 1960). 

Mountain pine beetle (Dendroctonus ponderosae; MPB), another bark beetle species that 

attacks ponderosa pine in the western United States, has been studied more extensively, 

but the relationship between growth rate and mountain pine beetle attack success is still 

not clear. Multiple studies have shown that MPB preferentially attacks faster growing 

trees (Yanchuk et al. 2008; Margoles 2011; de la Mata et al. 2017) while others have 

shown the opposite trend (Waring and Pittman 1985; Coops et al. 2009; Knapp et al. 

2013; Cooper et al. 2018). 

 A more extensive sampling of tree cores from this watershed was undertaken by 

Ferrell (2017) in 2015 before most trees had died. BAI data was calculated for a sub-set 

of these trees exceeding 100 years of age so that the results would be comparable to the 

trees sampled in this study. These randomly sampled trees had substantially lower BAI 

compared to both surviving and dead focus trees, despite being of similar age. Hence, our 
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dead focus trees exhibited growth rates that were faster than average for trees of a 

comparable age distribution, and our surviving trees grew faster yet than both of the 

previous groups. Since dead focus trees were growing in close proximity to surviving 

focus trees, it is clear that soil and stand conditions that promoted higher productivity 

also tended to favor the survival of faster growing trees on such plots. Therefore, the CA 

Drought and concurrent WPB outbreak was so severe across our study area that only the 

fastest of the fast-growing large, overstory ponderosa pines survived. Note that many 

more small ponderosa pines (i.e. < 30 cm DBH) survived compared to large ponderosa 

pines, but only in plots with a surviving focus tree (Fig. 2-4). However, this is likely not a 

consequence of tree size per se, but of the success of beetle brood production in trees 

with greater phloem thickness (Amman 1972; Graf et al. 2012), a trait which is strongly 

correlated with tree size as small trees tend to grow slower due to their subordinate status 

in closed canopy stands. Indeed, our findings from intensive growth and stable isotope 

measurements on a small number of trees are supported by more extensive forest 

inventory efforts that overlap with our Soaproot Saddle sampling location. Pile et al. 

(2019) also found that larger size in ponderosa pines was consistently associated with 

increased survival following the CA Drought and WPB outbreak. 

During a less severe drought and/or bark beetle outbreak, it is possible that the 

growth rate threshold for survival would have been lower due to lower levels of drought 

stress and associated beetle pressure (Craighead 1925; Person 1928; Miller and Keen 

1960). Although the randomly sampled trees (Ferrell 2017) were alive during sampling in 

2015 and we do not have data on their post-drought status, ~50% of these trees had 
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missing rings in 2014 and 2015, suggesting that growth had slowed substantially or even 

stopped for half of all large ponderosa pines during the drought. Fettig et al. (2019) 

showed that ~89% of ponderosa pines (> 30 cm DBH) died during the drought. 

Therefore, it is likely that the majority of the trees that were alive and sampled randomly 

during the summer of 2015 died shortly thereafter. More light was shed on this particular 

sequence of mortality by Pile et al. (2019), who showed that the probability of a 

ponderosa pine surviving the drought through 2015 varied between ~60% to 90% 

depending on DBH, whereas the same trees sampled in 2017 varied in survival between 

~10% to 30% depending on DBH.  

There are several possible explanations for the faster growth rate observed in 

surviving large trees including 1) lower severity of drought stress relative to trees that 

were killed by WPB, 2) allocation of resources to aboveground growth at the expense of 

defense or belowground structures, or 3) earlier budbreak phenology resulting in a longer 

growing season. We expected to see evidence of more severe drought stress in trees that 

died compared to surviving trees. Among tree pairs, with comparable soil and plot 

conditions due to proximity, more severe drought stress likely would have resulted in 

slower growth and fewer resources for defense, making those trees more susceptible to 

western pine beetle attack. Additionally, previous studies comparing growth and tree-ring 

stable isotopes in surviving and dead trees determined that faster growing trees often 

exhibited lower water use efficiency (WUE), allowing them to grow quickly but risk 

hydraulic failure under drought conditions (reviewed in Gessler et al. 2018). As Gessler 

et al. (2018) notes, differences in water use efficiency would require differences in 
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stomatal conductance, which should show up in Δ13C and δ18O records where 

biologically and ecologically significant differences in leaf gas exchange exist.  

In contrast with our predictions, we found no evidence of differences in absolute 

Δ13C and δ18O values or in the sensitivity to drought-related climate variables that may 

have suggested that stomatal constraints on leaf gas exchange differed between surviving 

and dead focus trees. According to theory underlying stable carbon isotopes (Farquhar et 

al. 1989; Dawson et al. 2002; McCarroll and Loader 2004), and stable oxygen isotopes 

(Edward and Fritz 1986; Farquhar and Lloyd 1993; Roden et al. 2000; Barbour et al. 

2004), higher sensitivity to drought stress would have presented as lower Δ13C values, 

higher δ18O values, and stronger climate correlations in the dead focus trees relative to 

surviving focus trees. Instead, our results show that both groups of trees have had very 

similar Δ13C and δ 18O records for the past ~65 years (Figure 2-5) and appear to be 

responding to climate in a similar way based on static correlations (Table 2-2). The lack 

of climate correlations with δ18O is likely due to the fact that winter precipitation is 

typically the primary water source for many tree species, and increasingly so in dry 

habitats (Allen et al. 2019). This water-use strategy could result in a tree-ring δ18O record 

that primarily reflects the values of winter precipitation δ18O instead of evaporative 

enrichment during the growing season. As recent hydroclimatic variability in California 

has shown, dominant storm tracks can change greatly from year to year, and this can 

induce changes in precipitation δ18O of individual storms on the order of 5 ‰ (Smith et 

al. 1979).  
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Due to the unprecedented severity of the CA Drought, it is likely that all 

ponderosa pines were stressed and therefore generally more susceptible to WPB attack 

(Raffa and Berryman 1983; Safranyik and Carrol 2006; Anderegg et al. 2015). If 

essentially all overstory trees – except for the fastest growing individuals on the most 

productive plots – were stressed past a certain threshold that allowed for successful WPB 

attack and population growth, it would explain why severity of drought stress among our 

large, relatively fast-growing focus trees did not influence survival. 

Another possible explanation for the observed discrepancy in growth rates 

between surviving and dead focus trees is different growth-defense strategies. Higher 

allocation of resources to growth has been hypothesized to be associated with lower 

allocation of resources to defense and higher risk of mortality (Lorio 1986; Stamp 2003). 

However, McDowell et al. (2007) showed that BAI has a strong positive relationship 

with resin flow in ponderosa pine (r2 = 0.84), which would suggest that faster growing 

ponderosa pines would have had greater capacity for defense against WPB attack 

compared to slower growing ponderosa pines. Similarly, Kane and Kolb (2010) found a 

positive relationship between BAI and resin duct production in ponderosa pines. The 

evidence we provide here, when combined with evidence from multiple previous studies 

showing that slower growing ponderosa pines are generally killed by bark beetles at a 

higher rate, supports a more general pattern whereby faster growing trees are more 

capable of defending themselves against attack. Although we did not directly measure 

defense traits, it is unlikely that faster growth in surviving ponderosa pines in this study 

was a result of lower allocation of resources to defense. However, at least one previous 
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study (Hood et al. 2015) found no relationship between ponderosa pine growth rates and 

resin duct production, indicating that growth rates may not always be a reliable measure 

of defensive capabilities (Bentz et al. 2016).  

A third potential explanation for higher growth rates in surviving trees is earlier 

budbreak phenology that would have allowed some trees to take advantage of warming 

temperatures over the past 100+ years and gain more carbon earlier in the growing season 

before the onset of summer drought stress. In a large-scale review of plant resistance to 

herbivory by Carmona et al. (2011), plant susceptibility was better predicted by life 

history traits, including shoot elongation and budbreak, than by secondary metabolite 

production, including resin. Budbreak timing in ponderosa pines can differ by 20-40 days 

as a result of genetic differences between individuals, and a large-scale study by Rehfeldt 

(1991) showed that populations differing by only ~400 m can contain genetic differences 

in phenology that are influenced by length of the frost-free season and moisture stress. 

This distance is well within the range of pollen dispersal in open conifer forests (Di-

Giovanni 1996; Williams 2010b; Eckert et al. 2015). Additional studies have shown this 

same influence of parent tree growing conditions on seedling productivity – in several 

studies, seedlings with parent trees from drier, lower elevation sites were more successful 

than others when grown or germinated under drought conditions (Ager and Stettler 1983; 

Weber and Sorensen 1992; Kolb et al. 2016b; Warwell and Shaw 2018). A common 

garden experiment conducted by Warwell and Shaw (2018) evaluated timing of 

ponderosa pine emergence and early development under drought conditions using seed 

sources from different elevations and climate conditions. Their results showed that 
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phenotypes with early emergence dates and high early-season shoot elongation were the 

most successful under drought conditions. Environmental benefits to early emergence 

include earlier access to limited resources and additional time for carbon fixation and 

growth before the onset of summer drought (Warwell and Shaw 2018).  

A longer spring/early summer growing season would have been captured by 

early-budbreak trees during recent decades of warming and would have provided more 

time for leaf development and total photosynthetic carbon gain. In turn, this would lead to 

greater radial growth and sensitivity to spring climate conditions, both of which were 

observed in surviving trees in this study. In particular, surviving trees had greater 

earlywood BAI than trees that were killed by WPB (p < 0.01) and proportionally greater 

earlywood BAI compared to latewood BAI, indicating that more growth was produced in 

the spring and early summer. It is therefore possible that surviving trees in our study were 

pollinated by sources at lower elevations or coastal regions (i.e. from trees locally 

adapted to historically warmer climate conditions), resulting in earlier phenology, longer 

growing seasons, and more growth production in the spring and early summer. Overall, 

we suggest that more attention should be paid to investigating how the affects of 

population genetics on phenology may impact drought survival of conifers in a warming 

world. 

In addition to having faster growth rates, surviving trees in this study also grew in 

plots that contained significantly less ponderosa pine basal area compared to plots with a 

dead focus tree (p = 0.01). Again, wider forest inventory efforts support our findings that 

the probability of survival for ponderosa pines was weakly tied to the amount of 
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ponderosa pine at a given plot in 2015, and strongly related in 2017 (Pile et al. 2019). In 

contrast, Pile et al. (2019) showed that ponderosa pine survival was bolstered by higher 

overall forest basal area. Together, their results suggest that total competition was not a 

strong factor in mortality of ponderosa pine, but that host availability and/or the degree of 

local clustering of conspecifics did impact survival during, and following, CA Drought 

and WPB outbreak. Broadly speaking, availability of susceptible host trees has been 

shown to affect the likelihood of bark beetle infestation and mortality in numerous 

studies (McCambridge et al. 1982; Olsen et al. 1996; Negron and Popp 2004; Fettig et al. 

2007). Although greater density of host trees in a plot would influence the likelihood of 

the focus tree being attacked by WPB, growth rates were not influenced by total basal 

area of all species in a plot. Regression analyses showed no significant relationship 

between surviving or dead average BAI with total plot basal area (surviving, p = 0.65; 

dead, p = 0.66) or ponderosa pine basal area (surviving, p = 0.64; dead, p = 0.98). These 

results, along with Δ13C and δ 18O isotope records and climate correlations, suggest that 

severity of summer drought stress had little influence on local, inter-tree differences in 

growth rate and survival of large ponderosa pines during the CA Drought and WPB 

outbreak.  
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Conclusion 

 

In this study, located near the epicenter of drought severity during the CA 

Drought, we compared inter-annual variation in growth rates and tree-ring Δ13C and δ18O 

between ponderosa pines that survived and those that were killed by WPB. We did not 

find evidence for differences in severity of drought stress between surviving and dead 

trees for ~65 years preceding the drought, indicating that other factors had a stronger 

influence on tree survival. Surviving trees had higher growth rates and grew in plots with 

lower ponderosa pine basal area than trees that were killed by WPB, and these findings 

are supported by wider forest monitoring efforts in the southern Sierra Nevadas (Pile et 

al. 2019). Our results support the explanation that ponderosa pine survival was driven by 

1) greater growth rates, potentially due to earlier phenology that provided relatively 

greater carbon resources during a period of climate warming, and 2) relative isolation 

from conspecific host species that could provide some buffer from intensity of beetle 

attacks. Although the benefits of isolation to the likelihood of conifer survival during 

bark beetle outbreaks are well understood, the hypothesis that an earlier phenology may 

promote greater fitness in the face of combined pressures by drought and bark beetles 

deserves more in-depth testing across other regions and additional tree and bark beetle 

species. 
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Tables and Figures 

 

Table 2-1   Status, DBH, height, and age of the focus tree at each plot, grouped by pair. 

Additionally, number of trees, total basal area (Total BA) with all species included, basal 

area of ponderosa pine only (PIPO BA), and percent dead ponderosa pine basal area (% 

Dead PIPO) at each plot. 

 

Tree 
Pair 

Status 
DBH 
(cm) 

Height 
(m) 

Age 
# of 

Trees 
Total BAI 
(m2 / ha) 

PIPO BA 
(m2 / ha) 

% Dead 
PIPO BA 

1 
Live 93 40 187 11 34.17 14.32 53.9 

Dead 63 36.5 150 8 22.55 19.69 87.3 

2 
Live 74.9 39.2 119 23 42.39 16.34 11.3 

Dead 62.5 36.7 119 17 26.71 20.91 96.7 

3 
Live 119.5 42.7 247 15 28.49 9.47 48.3 

Dead 95.2 42.8 167 35 52.17 39.17 91.0 

4 
Live 77.7 31.7 178 15 22.85 15.66 46.3 

Dead 64.1 35.1 174 18 38.12 23.74 74.0 

5 
Live 100 43 133 20 37.6 29.97 41.6 

Dead 62.9 48 101 22 41.8 36.11 86.4 

6 
Live 96.6 34.5 169 12 24.21 8.62 7.4 

Dead 112.8 55.5 201 21 28.96 14.86 70.5 
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Table 2-2   Pearson’s correlation coefficients for Δ13C (A) and δ18O (B) records 

compared to multiple climate variables. Data used for correlations include pre-whitened 

isotope data and residual climate data (detrended to remove long-term directional trends). 

Monthly climate data was averaged by season (Winter – DJF, Spring – MAM, Summer – 

JJA, Fall – SON) and compared to long-term isotope data for the same years (1950-

2016). Significant correlations with p-values < 0.05 (≥ 0.24 or ≤ -0.24) and are denoted 

by (**). Correlations with p-values < 0.1 (≥ 0.20 or ≤ -0.20) are denoted by (•). P-vales 

for all correlations are shown in Table A-2). 
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Fig. 2-1   Location of the Soaproot Saddle field site (black star) in central California 

(37.03N, 119.25W) (left panel). Plot locations at Soaproot Saddle (right panel). Blue 

triangles represent plots with surviving focus trees, red triangles represent plots with dead 

focus trees. Surviving and dead focus tree plots in close proximity are paired trees. White 

crosses represent trees randomly sampled in 2015 by Ferrell (2017). 
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Fig. 2-2   Example of the fixed-area plot design for this study. Green filled circle 

represents the focus ponderosa pine and plot center. A 15m-radius fixed-area plot was 

established around each focus tree. Triangles represent trees in the plot with DBH ≥ 

20cm, and blue filled triangles represent the six trees closest to the focus tree. Distance to 

focus tree (small dashed lines) and height were measured for these six trees at each plot. 
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Fig. 2-3   BAI deviations (BAID) (%) for surviving (blue), dead (red), and randomly 

sampled (green) ponderosa pines from 1900-2016.  
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Fig. 2-4   Percentage of ponderosa pine basal area that died during the recent drought and 

beetle outbreak in surviving and dead focus tree plots based on DBH size class. For each 

DBH size class, all trees of that size from dead (red) and surviving (blue) focus tree plots 

were included, and percentage of dead basal area was calculated. Focus tree basal area is 

not included in this figure.  
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Fig. 2-5   Pre-whitened latewood Δ13C (A) and δ18O (B) data for the years 1950-2016 

separated by focus tree status (dead or surviving). Error ribbons for each record represent 

standard error. 
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Fig. 2-6   Pre-whitened spring (A) and summer (B) PDSI compared to latewood Δ13C 

values from 1950-2015. Drought years are represented by triangles (2013 in yellow, 2014 

in orange, 2015 in red). All other years (1950-2012) are represented by blue circles. 
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Fig. 2-7   20-year moving window correlations for Δ13C with (A) summer PDSI, (B) 

spring precipitation, (C) spring VPD, and (D) spring CMD. Pre-whitened isotope data 

(including surviving and dead focus trees) was compared to residual climate data for the 

years 1900-2016. Linear trendlines were fit to each plot and r2 values are included in each 

panel. Yellow dashed lines represent the correlation significance cutoff – significant 

correlations are ≥ 0.19 or ≤ -0.19. 
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CHAPTER 3 

OPPOSING RESPONSES OF TREE-LEVEL AND ECOSYSTEM-LEVEL WATER 

USE EFFICIENCY TO VAPOR PRESSURE DEFICIT DURING THE 2012-2015 

CALIFORNIA DROUGHT 

 

Abstract 

 

Over the past several decades, increasing temperatures and aridity due to climate 

warming have resulted in more frequent and severe droughts in the western United States. 

These changes are also affecting the timing and magnitude of snowpack and spring snow-

melt, which in turn has increased hydrological extremes in California. As atmospheric 

CO2 continues to rise, understanding ecosystem carbon and water fluxes, and the 

potential to mediate climate warming via carbon sequestration in forests, has remained an 

active area of research. However, the relationships between tree- and ecosystem-level 

carbon and water fluxes are not well understood, and scaling between these levels can be 

tricky. In this study, we compared ponderosa pine tree-ring measurements (growth rates 

and stable carbon isotopes; ∆13C) to flux tower measurements of evapotranspiration, 

gross primary productivity, and water use efficiency in the southern Sierra Nevadas 

during the unprecedented 2012-2015 California drought. The goal of this study was to 

determine the extent to which tree-rings recorded ecosystem-scale carbon and water 

fluxes, and whether tree-level growth rates and stable isotopes can be used to estimate 

ecosystem-scale evapotranspiration. We found that tree- and ecosystem-scale water use 
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efficiency had opposite relationships with vapor pressure deficit during this drought event 

and, therefore, had a strong negative relationship with each other. Tree-ring ∆13C 

recorded the opposite signal of ecosystem-scale water use efficiency in this ecosystem, 

likely due to the contrasting responses of transpiration (via stomatal closure) and 

soil/surface water evaporation to increasingly severe drought conditions. Nonetheless, 

due to the strong positive relationship between growth rates and ecosystem-scale gross 

primary productivity and the strong negative relationship between tree- and ecosystem-

level water use efficiency, the annually resolved ratios of tree-ring growth to tree-level 

water use efficiency were able to accurately predict ecosystem-scale evapotranspiration at 

this site for the years 2011-2015.  

 

 

Introduction 

 

Over the past several decades, increasing temperatures and aridity due to climate 

warming have resulted in more frequent and severe droughts in the western United States 

(Allen et al 2010) and worldwide (Zhou et al 2019). These changes, caused 

predominantly by rising levels of atmospheric CO2, are also affecting the timing and 

magnitude of snowpack and spring snow-melt (Gleick 1987, Stewart et al 2004, Knowles 

and Cayan 2004, Mote et al 2005), which in turn has increased hydrological extremes in 

California (Yoon et al 2015a). Another consequence of great concern is the increased 

length of the snow-free season which, combined with greater climate variability, 
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promotes a greater likelihood of wildfires (Westerling et al 2006, Yoon et al 2015a). A 

substantial number of people are potentially impacted by changes to hydrologic regimes, 

since over 50% of California’s annual water supply comes from gradual melting of 

winter snowpack in the spring (Schwartz and Hall 2017), creating surface runoff and 

recharging soil moisture before the summer drought period (Barnett et al 2005). As 

atmospheric CO2 continues to rise and the climate continues to warm, understanding the 

potential to mediate both effects through carbon sequestration in forests has been an 

active area of research for decades (Friedlingstein et al 1995, Norby and Luo 2004, 

Voelker et al 2006, Pan et al 2011, Reichstein et al 2013). Hence, the relationship 

between carbon and water fluxes in forests, or their water use efficiency (WUE), is also 

of great interest, as shifts in WUE due to rising CO2 and drought will have implications 

for both carbon sequestration and hydrologic regimes (De Kauwe et al 2013, Keenan et 

al 2013, Voelker et al 2016, Keeling et al 2017, Medlyn et al 2017).  

Ecosystem fluxes across the world can be observed and analyzed using tower-

based eddy covariance flux measurements (Keenan et al 2013, Knauer et al 2017, 

Mastrotheodoros et al 2017). However, these flux towers often have a relatively small 

footprint, and many do not record flux data over long periods of time (Belmecheri et al 

2014). As a result, our understanding of ecosystem fluxes is often limited both spatially 

and temporally. Remote sensing can allow flux measurements to be scaled up for large-

scale assessments (Schimel et al 2014). However, tree-ring growth and stable isotope 

measurements have the potential to provide more mechanistic insights on how climatic 

controls over WUE may change across landscapes and forest structures, and through time 
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(Thomas et al 2013, Voelker et al 2014, Saurer et al 2014, Voelker et al 2018, Giguere-

Croteau et al 2019). These tree-ring characteristics also give insight into tree-level carbon 

fixation and transpiration, and their relationships to ecosystem-level flux measurements. 

Moreover, tree-rings can be efficiently collected across forested landscapes and extend 

far back in time across a much greater range of past climate and atmospheric CO2 

variability. 

 Tree-ring growth and stable isotopes can provide valuable and complementary 

information to flux measurements. Tree-rings may also potentially serve as powerful 

proxies for both carbon and water ecosystem flux measurements. Hence, in combination, 

tree-ring and flux measurements could yield novel insights into historical flux variability 

and important spatial information across landscapes. Several studies have compared 

ecosystem carbon production to tree-ring basal area increment (BAI) (Babst et al 2014a, 

Rocha et al 2006, Barford et al 2001) and ring width index (RWI) (Babst et al 2014b, 

Dye et al 2016, Klesse et al 2016, Teets et al 2018, Tei et al 2019), but only a handful of 

studies have explored the relationship between tree-ring stable isotopes and ecosystem 

flux measurements (Belmecheri et al 2014, Michelot et al 2011, Yi et al 2018, Tei et al 

2019). In this study, we hope to improve our understanding of how tree-level 

measurements can record ecosystem carbon and water fluxes in a dry, mixed-conifer 

forest in the southern Sierra Nevada Mountains during the unprecedented “California 

drought” (2012-2015). 

Flux tower data from Soaproot Saddle, a Southern Sierra Critical Zone 

Observatory (SSCZO) site in the southern Sierra Nevadas, CA (figure 3-1), provided 
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ecosystem flux data for the years 2011-2015. In this study, we compare that flux data to 

intra-annual Δ13C (carbon isotope discrimination) and growth rates (basal area increment; 

BAI) during the same time period. This time span encompasses the 2012-2015 California 

drought (hereafter referred to as the “CA Drought”), a multi-year period of low 

precipitation and unusually high temperatures that resulted in severe drought conditions 

(Griffin and Anchukaitis 2014) and widespread forest mortality (Fettig et al 2019, Pile et 

al 2019). High winter temperatures (particularly in water year 2014) and low winter 

precipitation greatly reduced snowpack and spring snow-melt, resulting in very little soil-

water recharge for several years in a row (Shukla et al 2015).  

The severity of the CA Drought, and the availability of flux data from the 

SSCZO, provided a unique opportunity to observe seasonality of canopy-scale 

evapotranspiration (ET), gross primary productivity (GPP), and water use efficiency 

(WUE), and to compare that flux data to intra-annual tree-ring characteristics including 

growth rates and ∆13C of alpha-cellulose. At the tree-level, linkages between water and 

carbon cycling are typically controlled by stomatal conductance, as it is the primary plant 

response to drought stress and largely constrains transpiration and photosynthetic carbon 

assimilation across tree canopies (Farquhar et al 1989, McCarroll and Loader 2004, 

Ehleringer and Farquhar 1993). Water use efficiency at the ecosystem level is defined by 

the ratio of GPP to ET, or the ratio of carbon gained to water lost, and is described by the 

following equation: 

(1)          𝑊𝑈𝐸 =  
𝐺𝑃𝑃

𝐸𝑇
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Two additional measures of ecosystem-scale water use efficiency, inherent WUE 

(IWUE) (Beer et al 2009) and underlying WUE (uWUE) (Zhou et al 2014), include 

vapor pressure deficit (VPD) to account for its influence on stomatal conductance (Oren 

et al 1999). These relationships are described by the following equations: 

(2)    𝑢𝑊𝑈𝐸 =  𝐺𝑃𝑃 ∗ 
𝑉𝑃𝐷0.5

𝐸𝑇
 

(3)    𝐼𝑊𝑈𝐸 =  𝐺𝑃𝑃 ∗  
𝑉𝑃𝐷

𝐸𝑇
 

These different measures of water use efficiency are typically used when assessing 

carbon and water fluxes on different time scales – WUE is consistent at monthly time 

scales (Yang et al 2013), but VPD has been shown to have a large effect on water use 

efficiency at shorter time scales (Abbate et al 2004, Zhao et al 2005, Hu et al 2008). 

IWUE is typically more accurate at daily timescales, and uWUE is more accurate at 

hourly or half-hourly timescales (Zhou et al 2014, Zhou et al 2015). Only two studies 

that we are aware of have used ecosystem flux data to compare water use efficiency 

variables to tree-ring stable carbon isotopes (Michelot et al 2011, Yi et al 2018), and both 

were conducted in temperate climates as opposed to the strong Mediterranean climate in 

the southern Sierra Nevadas. In this study, we compare ecosystem-scale WUE, uWUE, 

and IWUE measurements to intra-annual tree-ring growth (BAI) and carbon isotope 

discrimination (∆13C) to evaluate whether these tree-level measurements can be utilized 

to predict ecosystem-scale fluxes 

Carbon isotope discrimination (∆13C), like water use efficiency, is largely 

controlled by stomatal conductance and photosynthetic rate (Farquhar et al 1982, 
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Ehleringer et al 1993, McCarroll and Loader 2004). In ponderosa pines, stomatal 

conductance typically decreases when drought stress increases, resulting in less 

discrimination against the heavier isotope (13C) during carbon fixation (Roden and 

Ehleringer 2007, Voelker et al 2018).  ∆13C is also linearly related to the ratio of intra-

cellular and atmospheric CO2 concentrations (ci and ca, respectively) (Farquhar et al 

1982, McCarroll and Loader 2004). This relationship is described in the following 

equation (Farquhar et al 1982): 

(4)     ∆13𝐶 = 𝑎 + (𝑏 − 𝑎)(𝑐𝑖 𝑐𝑎⁄ ) 

where a represents discrimination against 13C during diffusion through the stomata (-4.4 

‰), and b represents discrimination against 13C during carboxylation (-27 ‰) (McCarroll 

and Loader 2004). This relationship between ∆13C and ci/ca can be used to calculate 

intrinsic water use efficiency (iWUE), which is the ratio of photosynthetic carbon 

assimilation (A) to stomatal conductance (gs) (McCarroll and Loader 2004): 

(5)    𝑖𝑊𝑈𝐸 =  𝐴 𝑔𝑠⁄ =  𝑐𝑎[1 − (𝑐𝑖 𝑐𝑎⁄ )] ∗ 0.625 

Comparing iWUE to measures of ecosystem-scale water use efficiency derived from flux 

tower measurements (WUE, uWUE, and IWUE) will allow us to determine to what 

extent, if any, ∆13C and associated iWUE matches ecosystem-scale carbon and water 

cycling during seasonal and inter-annual drying events. 

In this study, intra-annual tree-ring growth and ∆13C were compared to ecosystem 

flux data from Soaproot Saddle, an SSCZO site in the central Sierras with a strong 

Mediterranean climate. Data from 2011-2015, encompassing the 2012-2015 California 
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drought, was analyzed and compared to tree-ring characteristics of ponderosa pines 

within the flux tower footprint. The main objectives of this study were to determine (1) 

how ET, GPP, and water use efficiency changed over the course of the drought, (2) the 

extent to which tree-ring ∆13C recorded ecosystem carbon and water fluxes at this site, 

and (3) whether ecosystem-scale ET could be reconstructed using tree-ring growth and 

∆13C data. 

 

 

Methods 

 

Study area and field data collection 

Sampling for this study took place at Soaproot Saddle, a Southern Sierra Critical 

Zone Observatory (SSCZO) site in the central Sierra Nevadas (figure 3-1). The same 

paired plots and focus tree cores described in chapter 2 were used in this study for higher-

temporal resolution sampling for the years 1997-2016. For more information on plot 

locations and structure, see Chapter 2 methods (pages 20-21) and figure 2-2. Samples 

were collected within the footprint of the on-site flux tower at Soaproot Saddle. A portion 

of Big Creek, a perennial stream, runs through the flux tower footprint and was flowing 

when sampling was conducted in March of 2017. 
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Increment core preparation and measurement 

Cores from each focus tree were prepared as described in Chapter 2 methods 

(pages 21-22) – whole ring as well as separate latewood and earlywood ring widths were 

measured using MeasureJ2X software (Coortech Consulting) and visual crossdating was 

validated with COFECHA (Holmes 1983). Ring width chronologies were each detrended 

using a 100-year spline in ARSTAN (Bunn 2008) to isolate climate trends. Ring widths 

were measured from the most current year of growth back to 1997. DBH and ring widths 

were used to calculate whole ring, earlywood, and latewood basal area increment (BAI) 

for each focus tree to determine annual growth rates. BAI was calculated from the 

outside-in, assuming circularity of the growing cambium and employed estimates of bark 

thickness (McDonald 1983, Larsen and Hann 1985) to adjust for differences in radial 

measurements inside and outside of the bark for each tree. BAI values were multiplied by 

estimated wood specific density for early- and latewood (Bouffier et al 2003; earlywood 

= 0.385, latewood = 0.56), then summed for each year to obtain annual BAI-Index values 

(BAIx). These values should be proportional to forest-wide tree carbon fixation among 

seasons by accounting for wood density as well as across years by assuming any potential 

changes in forest density, tree height, and allometry are inconsequential when assessed 

over the five years in which tree-rings and flux data are compared for this study (2011-

2015). 
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Stable isotope analyses 

For this portion of the study, only the years 1997-2016 were used for isotope 

analysis in order to conduct higher temporal resolution sampling of annual rings. Each 

ring was divided into early-, middle-, and latewood with a scalpel under a dissecting 

microscope. Each of these ring portions were ground into a fine powder and sealed in a 

mesh filter bag before being bleached to isolate α-cellulose (bleaching and 

homogenization methods described in Chapter 2; page 22-24). Samples were then dried 

and packed into tin (Δ13C) capsules before being analyzed on a mass spectrometer at the 

Center for Isotope Biogeochemistry (CSIB) at the University of California, Berkeley (for 

details regarding equipment and precision, see Chapter 2 methods section; page 24). All 

reported δ13C values were converted to carbon isotope discrimination values (Δ13C) 

following Farquhar et al (1982) using δ13Cair records from Moana Loa, Hawaii (see 

Chapter 2 methods; page 24).  

 Raw Δ13C isotope series were detrended in ARSTAN (Cook and Krusik 2014) 

using a 100-year spline to isolate inter-annual climate trends and remove low-frequency 

variation that could be due to rooting depth, tree height, or competition. Pre-whitened 

series were then multiplied by the mean Δ13C value for each core, resulting in detrended 

isotope series with autocorrelation removed for each focus tree for the years 1997-2016. 

A repeated measures mixed effects model (nlme package in R; Pinheiro et al 2016) was 

used to determine whether ring portions (early-, middle-, and latewood) were 

significantly different from one another. In this model, Δ13C was the response variable, 

ring portion was the predictor, and focus tree pair was included as a random variable. 
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Intra-annual Δ13C was also used to calculate intrinsic water use efficiency (iWUE) using 

equation (4).   

 

Climate data analysis 

Vapor pressure deficit (VPD) data for Soaproot Saddle (37.031° -119.256°) were 

obtained through PRISM (http://prism.oregonstate.edu/) for the years 2011-2015. Eddy 

covariance measurements from the Soaproot Saddle flux tower, including incoming solar 

radiation (K), and net ecosystem exchanges of water (evapotranspiration; ET) and CO2 

(net ecosystem exchange; NEE), were provided by the SSCZO (Goulden et al 2006). 

Respiration was calculated at 10-day intervals and added to NEE to produce monthly 

gross primary productivity (GPP) data for the years 2011-2015 (Goulden et al 2006, 

Goulden et al 2012). To obtain continuous datasets for each of the monthly ET, VPD, and 

GPP variables, Gaussian curves were fit to the data after months had been converted to 

day of year. The relationships used the following form:  

(6)                                              𝑦 =  𝑦𝑜 + 𝑎𝑒[−0.5(
𝑥−𝑥0

𝑏
)

2
]
  

Where y is the predictand, x is day of year, y0 is the lowest estimated baseline value of y, 

x0 is the timing of the estimated peak during the year, and a and b are parameters 

controlling curvature of the peaking relationship.  

Daily estimates of ET, VPD, and GPP data were used to calculate daily water use 

efficiency (WUE), underlying water use efficiency (uWUE), and inherent water use 

efficiency (IWUE) for the years 2011-2015 (equations (1), (2), and (3) respectively). 

http://prism.oregonstate.edu/
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iWUE derived from early-, middle-, and latewood Δ13C was then compared to seasonal 

VPD, WUE, uWUE, and IWUE. Pearson’s correlation coefficients were calculated, and 

regression analyses were performed for each combination to determine strength of 

relationship. 

 Climate variables (ET, VPD, GPP, and ecosystem-scale WUE variables) were 

averaged by season for comparison to intra-annual iWUE data, which were derived from 

early-, middle-, and latewood Δ13C. Earlywood values were compared to spring climate 

data (March, April, May), latewood values were compared to summer climate data (June, 

July, August), and middlewood values were compared to an average of the spring and 

summer climate conditions as defined above. 

 

Evapotranspiration estimate 

By rearranging equation (1), it can be determined that ET should be a function of 

GPP/WUE and be predictable based on the relationship between tree-ring growth and 

GPP, as well as the relationship between iWUE and WUE. Toward this end, for the years 

2011-2015, we determined whether growth rate was related to GPP on an interannual 

basis by comparing early- and latewood BAIx values to seasonal GPP using a linear 

regression analysis. We used the same approach for comparing iWUE and WUE. ET was 

then estimated using BAIx and iWUE (derived from Δ13C values) as proxies for 

ecosystem-scale GPP and WUE, respectively, using the following equation: 

(7)    𝐸𝑇 =  𝐵𝐴𝐼 𝐼𝑛𝑑𝑒𝑥 𝑖𝑊𝑈𝐸⁄   
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Estimated ET was compared to flux tower measurements of ET for the years 2011-2015 

using a regression analysis. 

 

 

Results 

 

During the years 1997-2016, early-, middle-, and latewood Δ13C showed a distinct 

intra-annual pattern, whereby earlywood consistently had the highest Δ13C values, 

followed by middlewood, then latewood (figure 3-2). Comparisons among intra-annual 

components showed significantly different (p < 0.001) Δ13C values for all combinations. 

Similarly, earlywood BAI was significantly greater than latewood BAI (p < 0.01) for the 

years 1997-2016. Earlywood, latewood, and whole ring BAI declined at the onset of the 

2012-2015 California Drought (figure 3-3), but rebounded to some extent, particularly in 

latewood, following the end of the drought in 2015.  

Data from the SSCZO flux tower for the years 2011-2015 showed that peak ET 

and GPP shifted earlier in the growing season as the drought progressed, while the timing 

of VPD peaks stayed relatively constant (figure 3-4(a)-(c)). Peak ET values also 

decreased in magnitude each year as the drought progressed, most notably between 2012 

and 2013 (figure 3-4(a)). WUE, uWUE, and IWUE over the course of the drought are 

shown in figure 3-4(d)-(f).  

Δ13C data was used to calculate intrinsic water use efficiency (iWUE) (equation 

(4)), and iWUE values were compared to VPD for the years 2011-2015. iWUE had a 
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strong positive relationship with VPD (correlation = 0.93, R2 = 0.86), while ecosystem-

scale WUE had a strong negative relationship with VPD (correlation = -0.94, R2 = 0.89) 

(figure 3-5; figure B-1). iWUE was also compared to ecosystem WUE, uWUE and 

IWUE. iWUE was negatively related to WUE (correlation = -0.94, R2 = 0.88) and uWUE 

(correlation = -0.82, R2 = 0.67). In contrast to the negative relationships between iWUE 

and each of WUE and uWUE, iWUE had a positive relationship with IWUE. However, 

the correlation was weak (0.48) and the relationship was not significant (p = 0.07) (figure 

3-6).   

Seasonal GPP was also compared to annual growth rates using BAIx values (i.e., 

intra-annual BAI corrected for wood density fluctuations between early- and latewood). 

The strongest relationships were achieved when earlywood BAIx values were compared 

to the sum of spring/summer GPP (Mar-Aug) and latewood BAIx values were compared 

to the sum of summer/fall GPP (July-Oct). Regression analyses for earlywood BAIx and 

spring/summer GPP (correlation = 0.94; R2 = 0.88) and for latewood BAIx and 

summer/fall GPP (correlation = 0.93; R2 = 0.87) were both significant (p = 0.02 in both 

cases). The sum of early- and latewood BAIx was then calculated for each year. 

Similarly, the sum of growing season (Mar-Oct) GPP was calculated for each year. 

Regression analysis showed a strong positive relationship between BAIx annual sums and 

GPP growing season sums for the years 2011-2015 (correlation = 0.87; R2 = 0.90; p = 

0.01) (Figure 3-7(a)). 

Following equation (5), the ratio of BAIx to iWUE was then compared to 

measured ecosystem-scale ET from the SSCZO flux tower. Regression analysis showed 
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that these two variables had a strong positive relationship (R2 = 0.99, p < 0.01). In turn, 

the resulting predictions of ET from BAIx /iWUE were strongly related to ecosystem-

scale ET, yielding an R2 value of 0.99 and a slope of 0.99 (figure 3-7(b)). 

 

 

Discussion 

 

As the CA Drought progressed, peak ET and GPP shifted earlier in the year, 

indicating an earlier start to the growing season and earlier onset of summer drought 

stress (figure 3-4(a)-(b)). Peak ET also decreased during the drought, likely due to 

progressively severe drought stress, increasing stomatal closure, lower soil evaporation 

and, eventually, canopy tree mortality within the flux tower footprint. Across much of 

California, Asner et al (2015) showed that canopy drought stress became increasingly 

severe over the course of the drought, resulting in widespread mortality. Due to 

increasing stomatal constraints on leaf gas exchange and the high ponderosa pine 

mortality rate in this part of California, particularly in later part of the drought (i.e., ~89% 

of overstory ponderosa pines; Fettig et al 2019, Pile et al 2019), the impact on both ET 

and GPP were prodigious. Our primary interest in this study was to determine the extent 

to which intra-annual tree-ring growth and Δ13C measurements recorded ecosystem-scale 

carbon and water flux dynamics and their combined estimates of ET leading up to this 

mortality event that occurred near the end of the CA Drought. 
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iWUE, derived from tree-ring Δ13C, had a strong positive relationship with VPD 

while ecosystem-scale WUE had the opposite response during the drought. In seasonally 

dry climates like that of southern California, higher iWUE (associated with lower Δ13C) 

during warmer, drier growing conditions is expected due to decreased stomatal 

conductance and transpiration relative to photosynthetic carbon assimilation (McCarroll 

and Loader 2004, Roden and Ehleringer 2007, Voelker et al 2019). However, these leaf-

level and canopy-integrated physiological processes do not always reflect ecosystem-

scale carbon and water fluxes (Jarvis and McNaughton 1986), as was the case in this 

study. Although iWUE had the expected relationship with VPD, the opposite trend was 

seen at the ecosystem scale – higher ecosystem WUE during periods of lower VPD. This 

counter-intuitive relationship has been observed in other studies (Reichstein et al 2007, 

Beer et al 2009, Reichstein et al 2002, Jiang et al 2019 in review) and is likely a result of 

other important processes (aside from canopy gas exchange) occurring within the flux 

tower footprint, including evaporation of soil moisture and stream water (Jarvis and 

McNaughton 1986, Law et al 2000).  

Currently, partitioning ET into evaporation (E) and transpiration (T) is difficult at 

the ecosystem scale (Stoy et al 2019). In many cases, ecosystem ET is assumed to be 

nearly 100% T (T/ET = 1), with little input from evaporation of other water sources, but 

this is not the case in all ecosystems (Stoy et al 2019). Stoy et al (2019) notes that studies 

in Mediterranean ecosystems have found non-zero E/ET values even during dry summer 

months, suggesting that evaporation of soil and/or surface water could be contributing to 

ecosystem ET throughout the growing season. Specifically, Perez-Preigo et al (2018) 
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found that soil E/ET ranged from 0.3 to 0.8 in a Mediterranean savannah ecosystem, 

indicating that soil evaporation can remain a substantial component of ecosystem ET 

even under dry conditions. In a ponderosa pine-dominated forest in Oregon, Law et al 

(2000) modeled soil moisture evaporation to range from about 0.5 to 1.25 mm per day. At 

Soaproot Saddle, soil evaporation rates would be expected to be greater due to higher 

temperatures (by ~5 °C) and 40 cm greater precipitation compared to the Law et al 

(2000) flux site in Oregon. Moreover, a portion of Big Creek is located only 35 m from 

the flux tower and flows across much of the tower footprint at Soaproot Saddle, which 

also would have bolstered ecosystem evaporation, particularly during the summer. 

Indeed, the effect of soil drying on GPP, which is tied directly to stomatal conductance 

through Fick’s law (Farquhar et al 1989), started earlier and was comparatively greater 

compared to the effect of soil drying on ET, which indicates that soil evaporation was an 

increasingly large component of ET during progressively drier conditions at this flux site 

(Figure B-1). Taken together, these patterns in flux responses help explain the strong 

negative relationship between tree-level iWUE and ecosystem-scale WUE at this site. 

The relationship between iWUE and uWUE was not as strong, and the 

relationship between iWUE and IWUE was particularly weak. Both IWUE and uWUE 

are assessed at the ecosystem-level and have previously been employed at finer time 

scales (daily, hourly, half-hourly) at which VPD has strong effects on variation in fluxes 

due to the responsiveness of stomata to atmospheric evaporative demand (Abbate et al 

2004, Zhao et al 2005, Hu et al 2008, Zhou et al 2015). However, iWUE derived from 

intra-annual Δ13C data is at a much coarser time scale that spans months rather than 
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minutes to hours. At the ecosystem level, WUE has been used more often when 

summarizing carbon and water fluxes on monthly time-scales (Yang et al 2013, Zhou et 

al 2015), which agrees with our results that ecosystem-level WUE is more closely tied to 

tree-level iWUE when considering time scales of months to full growing seasons.  

        Another potential contributor to the observed discordance between responses of 

iWUE and WUE to VPD is cloud cover and its effect on carbon and water fluxes, 

particularly when ecosystem scale fluxes include substantial soil and/or stream water 

evaporation. In the Mediterranean climate at Soaproot Saddle, higher cloud cover and 

lower VPD typically occur during cool and wet spring seasons while lower cloud cover 

and higher VPD typically occur during warmer, drier summer seasons. Higher cloud 

cover has been shown to increase photosynthetic carbon assimilation due to the 

prominence of diffuse radiation, which is used more efficiently by plant canopies (Gu et 

al 2002, Still et al 2009, Zhang et al 2011). However, at the ecosystem scale, cloud cover 

not only affects transpiration from vegetation, but also evaporation from soil moisture 

and surface waters, such as Big Creek. As a result, ecosystem ET would increase 

markedly during sunny conditions due to soil and stream water evaporation, despite a 

decrease in stomatal conductance in canopy trees. In this way, ecosystem-scale WUE at 

Soaproot Saddle would tend to be higher during cloudy conditions (high photosynthetic 

carbon assimilation, relatively low ET) and lower during sunny conditions (lower carbon 

assimilation due to stomatal constraints, high ET due to soil and stream water 

evaporation). Indeed, a recent study by Jiang et al (in review) also found that ecosystem-

scale WUE was higher during periods of higher cloud cover in an old growth coniferous 
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forest occurring in a Mediterranean climate in southern Washington. Conversely, tree-

level iWUE would not be affected by soil and stream water evaporation because it is 

primarily controlled by stomatal conductance (Farquhar et al 1982, Ehleringer et al 1993, 

McCarroll and Loader 2004). In general, stomatal conductance is higher during cool, wet 

conditions and lower during warm, dry conditions (Oren et al 1999, McCarroll and 

Loader 2004). During warm, dry conditions, stomata close to reduce water lost via 

transpiration, which increases WUE relative to cooler, wetter conditions. Together, these 

factors help explain the opposite relationships of iWUE and WUE with VPD shown in 

Figure 3-4.  

It is likely that the negative relationship found between ecosystem-scale WUE 

and VPD is a result of the strong Mediterranean climate at Soaproot Saddle, where 

summer precipitation is very low, and temperatures are high. In more temperate climates, 

precipitation is more evenly distributed throughout the year and summer droughts are 

much less pronounced. A study by Yi et al (2018), which took place in a temperate 

deciduous forest in Indiana, found a positive relationship between ecosystem-scale WUE 

and VPD, while we found the opposite relationship at Soaproot Saddle (Figure 3-5(b)). It 

appears that the presence of strong summer drought conditions at Soaproot Saddle may 

result in the negative relationships of ecosystem-scale WUE with both VPD and iWUE. 

Our results, and those of Jiang et al (in review) suggest that opposing responses of iWUE 

and WUE to VPD may be a commonality in Mediterranean climates, with the strength of 

this discordance among tree- and ecosystem-level water use efficiency being related to 

the local soil and geomorphic conditions. Given the contrasting results among studies 
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located in summer-wet versus summer-dry environments, we suspect that there is a 

transition of iWUE vs. WUE that depends on the growing season water balance of the 

ecosystem. However, there is not yet enough data to test this hypothesis. 

In addition to the strong negative relationship between iWUE and WUE at 

Soaproot Saddle, intra-annual growth rates (BAIx) had a strong positive relationship with 

ecosystem-scale GPP. This indicates that higher carbon uptake in this ecosystem is 

associated with higher rates of growth in large canopy trees. This relationship has been 

observed in several other studies looking at ecosystem CO2 flux compared to BAI (Babst 

et al 2014a, Rocha et al 2006, Barford et al 2001) and ring width index (RWI) (Babst et 

al 2014b, Dye et al 2016, Klesse et al 2016, Teets et al 2018, Tei et al 2019). Given the 

strength of this relationship, and our ability to calculate iWUE from tree-ring Δ13C, we 

also explored the potential to use tree-ring growth and iWUE to estimate ecosystem-scale 

ET. Results showed that ET estimated using the ratio of BAIx /iWUE was highly 

correlated with ecosystem-scale ET measured at the SSCZO flux tower when summed 

across each year (Figure 3-7(b)). In other regions or sites where iWUE is not as strongly 

related to ecosystem-scale WUE it will not be possible to reconstruct ET from tree-ring 

growth and ∆13C. Alternatively, in summer-wet locations where iWUE and ecosystem-

scale WUE are positively related, it may be possible to use this approach even though the 

sign of the relationship is the opposite to that observed at Soaproot Saddle. Therefore, 

further research into the ability to estimate ET using this approach is needed to determine 

feasibility under various combinations of climates and geomorphological conditions. 
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Conclusion 

 

The ability to utilize tree-ring measurements to estimate ecosystem carbon and 

water fluxes back in time would be extremely valuable, particularly in areas where flux 

towers are absent, or where flux data is only available for a short period of time. Recent 

studies have also found strong links between tree growth and/or stable isotopes and other 

ecosystem-scale variables, including GPP (Babst et al 2014a, Belmecheri et al 2014) and 

NPP (Voelker 2011, Levesque et al 2019), further suggesting the potential for combining 

tree-ring growth and stable isotopes to reconstruct and predict ecosystem carbon and 

water fluxes across diverse ecosystems. The CA Drought provided a unique opportunity 

to compare tree- and ecosystem-level carbon and water fluxes during a period of extreme 

drought, and thereby has provided valuable insight into this relationship for mid-elevation 

forests of the southern Sierra Nevadas. Further research of this kind across diverse 

ecosystems will be necessary to determine the widespread utility of tree-ring 

measurements for reconstructing past ecosystem-scale carbon and water fluxes. 
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Tables and Figures 

 

Figure 3-1. Location of the Soaproot Saddle field site (black star) in central California 

(37.03N, 119.25W) (left panel). Plot and flux tower locations at Soaproot Saddle (right 

panel). Blue triangles represent plots with surviving focus trees, red triangles represent 

plots with dead focus trees. Surviving and dead focus tree plots in close proximity are 

paired trees. The yellow star represents the location of the Soaproot Saddle SSCZO flux 

tower. 
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Figure 3-2. Pre-whitened earlywood (red), middlewood (blue), and latewood (green) 

Δ13C for the years 1997-2016. 
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Figure 3-3. Whole-ring (green), earlywood (red), and latewood (blue) BAI for the years 

1997-2016. 
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Figure 3-4. Interpolated estimates for evapotranspiration (ET; A), gross primary 

productivity (GPP; B) and vapor pressure deficit (VPD; C) and associated calculations of 

WUE (D), uWUE (E), and IWUE (F) by day of year for each year from 2011-2015. 

Curves for ET, CO2 flux and VPD were estimated based on Gaussian curves fit to 

monthly-resolution data. 
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Figure 3-5. Regression analysis for VPD and iWUE (A) and ecosystem-scale WUE (B) 

for the years 2011-2015. iWUE derived from earlywood was compared to spring VPD 

(Mar, Apr, May), iWUE derived from latewood was compared to summer (Jun, Jul, 

Aug), and iWUE derived from middlewood was compared to the average of spring and 

summer VPD. Both regression analyses were significant (p < 0.01 in both cases). 
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Figure 3-6. Regression analysis for iWUE and WUE (A), uWUE (B), and IWUE (C) for 

the years 2011-2015. Colors represent seasonal windows corresponding to early-, middle-

and latewood formation. Regression analyses including WUE (A) and uWUE (B) were 

significant (p < 0.01 in both cases), but the regression analysis for iWUE and IWUE was 

not (p = 0.07). 
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Figure 3-7. Regression analysis for BAIx values and growing season (March – October) 

ecosystem GPP (p < 0.001) (A) and the final relationship between measured and 

predicted ET (p < 0.01) (B). ET was estimated by dividing BAIx values by iWUE, 

performing a regression analysis of measured ET versus this ratio of BAIx/iWUE that can 

be described by the equation ET = 2043.6 (BAIx/iWUE) – 6.119. This equation was used 

to predict ecosystem-scale ET, shown in panel B. Dashed grey line in panel B represents 

a 1:1 relationship. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

Climate warming in recent decades has resulted in more frequent and severe 

drought events, intensified drought-associated disturbances, and increased hydrological 

extremes in California. All of these changes provide challenges for forests in California 

and across the western United States. The 2012-2015 California drought (hereafter 

referred to as the “CA Drought”) was particularly severe and led to an epidemic-scale 

outbreak of western pine beetle in the central and southern portions of the Sierra 

Nevadas. The result was widespread mortality of dominant canopy tree species, including 

ponderosa pine, across much of this region. The likelihood of such events is projected to 

increase, making unprecedented events associated with the CA Drought and beetle 

outbreak more likely. The importance of these forests to local economies and ecosystem 

services critical to California makes it important for us to gain a better understanding of 

how these situations may be avoided in the future. A more basic and essential question 

that can inform management decisions for this region in the future is: Why do trees die 

during these events, and which trees have the best chance of survival? This question 

encompasses stand-scale aspects, including stand density, competition, and host tree 

abundance, as well as individual-scale aspects, including tree physiology and strategies 

for resources allocation. In this study, we were interested in both the stand-scale and 

individual-scale influences on ponderosa pine responses to the CA Drought. 
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In chapter 2, we compared surviving and dead ponderosa pines following the CA 

Drought to determine whether differences existed between the two groups that could 

explain why some of these trees managed to survive. We expected to see evidence of 

greater drought stress in trees that died, which would have indicated that drought stress 

increased susceptibility to bark beetle attacks. However, there was no evidence of 

differences in severity of drought stress in the absolute values or climate sensitivity of 

tree-ring stable isotope records. Our results suggest that survival was strongly associated 

with greater growth, likely due to genetic differences in phenological timing, as well as 

relative isolation from conspecific host trees that could have provided a buffer from 

intensity of bark beetle attack. 

In chapter 3, we investigated how tree-level responses to severe drought 

(particularly iWUE and growth rates) compared to ecosystem-level responses (WUE, 

GPP, and ET). Comparisons of these types of data have been rare and fraught with 

difficulties because tree-ring isotopes record individual overstory tree responses to 

climate, whereas flux towers record fluxes from all vegetation, as well as soil and surface 

water, within the tower footprint. In the case of Soaproot Saddle, flux measurements 

include evaporation of soil moisture and stream water from a portion of Big Creek. We 

found that iWUE and WUE had opposite relationships with vapor pressure deficit, clearly 

indicating that there were stark differences in measures of water use efficiency that were 

being recorded at these two scales. Nonetheless, a strong negative relationship between 

iWUE and WUE, as well as a strong positive relationship between growth rates and 

ecosystem-scale GPP, allowed us to retrodict ecosystem-scale ET at Soaproot Saddle 
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during the CA Drought event using tree-ring measurements. Our results showed that, 

although tree- and ecosystem-scale water use efficiency had diverging responses to VPD 

and to each other, tree-level measurements were still successful proxies for ecosystem-

scale carbon and water fluxes at this site. The combined use of tree-ring growth and 

carbon isotope measurements have great potential to improve our ability to estimate 

ecosystem-scale carbon and water fluxes in areas where flux towers are not present, and 

to reconstruct those fluxes back in time.  

Overall, these studies allowed us to explore ponderosa pine responses to severe 

drought stress during the CA Drought and associated western pine beetle outbreak. We 

found that, for the large ponderosa pines sampled in this study, growth rates had the most 

influence on survival as opposed to severity of drought stress. We also found that 

ponderosa pine tree-ring stable isotopes and growth rates recorded important ecosystem 

carbon and water flux signals during this drought event. Understanding the physiological 

responses of trees to extreme drought, as well as the relationship between drought stress 

and susceptibility to disturbance events, can give us more insight for managing at-risk 

forests in California and across the western United States. Since many of these forests 

include economically and ecologically important tree species (including ponderosa pine), 

future mortality events of this scale could have major consequences for California's 

tourism economy, timber production, forest biodiversity, and water quality. A better 

understanding of how trees respond to and record severe drought events will allow us to 

better predict, and hopefully mitigate, future forest mortality events in California and 

across the western United States. 
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APPENDIX A 

CHAPTER 2 SUPPLEMENTARY FIGURES AND TABLES 

 

Table A-1 DBH measurements and ages of the randomly sampled trees collected by 

Ferrell (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean SD N 

DBH (cm) 47.27 16.18 43 

Age 117.84 41.61 43 
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Table A-2 P-values corresponding with Pearson’s correlation coefficients in Table 2-2. 

P-values < 0.05 are denoted by (**) and p-values < 0.1 are denoted by (•). 
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Figure A-1 20-year moving window correlations for Δ13C and (A) winter PDSI 

(December-February), (B) spring PDSI (March-May), (C) summer PDSI (June-August), 

and (D) fall PDSI (September-November). Pre-whitened isotope data (including 

surviving and dead focus trees) was compared to residual climate data for the years 1900-

2016. Linear trendlines were fit to each plot and r2 values are included in each panel. 

Yellow dashed lines represent the correlation significance cutoff – significant correlations 

are ≥ 0.19 or ≤ -0.19.  
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Figure A-2 20-year moving window correlations for Δ13C and (A) winter VPD 

(December-February), (B) spring VPD (March-May), (C) summer VPD (June-August), 

and (D) fall VPD (September-November). Pre-whitened isotope data (including surviving 

and dead focus trees) was compared to residual climate data for the years 1900-2016. 

Linear trendlines were fit to each plot and r2 values are included in each panel. Yellow 

dashed lines represent the correlation significance cutoff – significant correlations are ≥ 

0.19 or ≤ -0.19. 
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Figure A-3 20-year moving window correlations for Δ13C and (A) winter CMD 

(December-February), (B) spring CMD (March-May), (C) summer CMD (June-August), 

and (D) fall CMD (September-November). Pre-whitened isotope data (including 

surviving and dead focus trees) was compared to residual climate data for the years 1900-

2016. Linear trendlines were fit to each plot and r2 values are included in each panel. 

Yellow dashed lines represent the correlation significance cutoff – significant correlations 

are ≥ 0.19 or ≤ -0.19. 
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Figure A-4 20-year moving window correlations for Δ13C and (A) winter precipitation 

(December-February), (B) spring precipitation (March-May), (C) summer precipitation 

(June-August), and (D) fall precipitation (September-November). Pre-whitened isotope 

data (including surviving and dead focus trees) was compared to residual climate data for 

the years 1900-2016. Linear trendlines were fit to each plot and r2 values are included in 

each panel. Yellow dashed lines represent the correlation significance cutoff – significant 

correlations are ≥ 0.19 or ≤ -0.19. 
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APPENDIX B 

CHAPTER 3 SUPPLEMENTARY FIGURES AND TABLES 

 

Table B-1 Supporting data for figure 3-5, including year and ring portion or season. 

Earlywood iWUE values correspond with spring WUE and VPD (March-May), latewood 

iWUE values correspond with summer WUE and VPD (June-August), and middlewood 

iWUE values correspond with the average of spring and summer WUE and VPD values 

(March-August). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 
iWUE  

(μmol C/μmol H2O) 
  

WUE 
(kg C/kg H2O) 

VPD 
(kPa) 

 
2011 92.09 0.95 9.14  
2012 96.78 0.88 10.55 

Earlywood 2013 99.88 0.74 12.65 
 

2014 107.62 0.73 13.63  
2015 105.89 0.69 12.34      

 
2011 103.4 0.68 16.63  
2012 106.92 0.63 21.12 

Middlewood 2013 102.24 0.59 22.8 
 

2014 119.8 0.52 23.48  
2015 114.31 0.51 21.64      

 
2011 115.52 0.41 24.12  
2012 125.15 0.37 31.69 

Latewood 2013 126.67 0.44 32.94 
 

2014 129.16 0.31 33.33  
2015 125.75 0.33 30.94 
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Figure B-1 Ratios of ET/VPD and GPP/VPD compared to (A) soil moisture content 

measured using a cosmic ray soil moisture sensor near the Soaproot Saddle flux tower 

and (B) soil effective depth for the years 2011-2015. Flux tower measurements of 

monthly (April-September) ET and GPP for these years were divided by VPD to remove 

the effect of monthly variations in VPD. Ratios of ET/VPD (closed circles, solid line) and 

GPP/VPD (open circles, dashed line) were compared to soil moisture content (%) and 

effective soil depth (cm), then scaled to be proportional to the predicted maximum value 

at the highest soil moisture content or effective soil depth for each month. Proportional 

ET/VPD and GPP/VPD values were then plotted against soil moisture content and 

effective soil depth for each month during the years 2011-2015 to observe the different 

responses of ET and GPP to progressive soil drying at Soaproot Saddle.  

 


