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Free-Surface Instabilities in High-Velocity Air-Water Flows down Stepped Chutes 

M. Kramer1, & H. Chanson1 
1The University of Queensland, School of Civil Engineering, Brisbane QLD 4072, Australia 

E-mail: m.kramer@uq.edu.au  

Abstract: Recent advances in technology have permitted the construction of large dams and spillways. One type, the stepped 

spillway, is designed to spill floods over the chute with substantial regular energy losses. This article presents an experimental 

investigation of free-surface instabilities within the non-aerated and aerated region of a gravity-type stepped spillway (θ = 45°). 

Intense splashing and ejection of water droplets are characteristics of the transition flow regime and typically follow the primary 

breakup of the liquid phase. These formation processes might be of particular interest concerning the dimensioning of stepped 

chute sidewalls. The current study determines velocities of evolving liquid ligaments by means of high-speed video analysis. The 

video sequences are recorded within the upper transition flow sub-regime. To minimise the influence of sidewall effects, the camera 

is focussed on a vertical plane inside the channel. Simultaneously, unsteady water surface elevations are measured with a series 

of acoustic displacement meters mounted alongside the flume, perpendicular to the pseudo bottom formed by the step edges. A 

correlation analysis is performed on the output of the acoustic sensors in order to determine characteristic time scales of surface 

fluctuations as well as celerities of liquid structures next to the free-surface. The turbulent fluctuations of the free-surface increase 

rapidly with further distance from the inception point of self-aeration. This is likely to be associated with enhanced air entrainment 

and equally increased amount of air-water ejections above the aerated flow region, showing the occurrence of strong hydrodynamic 

fluctuations within the transition flow regime. The present investigation emphasises the feasibility of using high-speed video 

analysis to provide relevant flow information next to the sidewall of spillway models.  

Keywords: Stepped spillway, free-surface instabilities, particle tracking velocimetry, acoustic displacement meters, transition flow 

regime.  

1. Introduction  

The flow down stepped chutes within the transition and the skimming flow regime is typically characterized by two 

distinct regions: a non-aerated, clear-water flow region in the upper section of the stepped spillway followed by an 

aerated downstream region. The smooth flow in the non-aerated region usually appears glassy (Chanson, 2002) and 

is characterized by turbulent boundary layer growth and a clear interface between air and water. A pronounced feature 

of this region is the presence of free-surface disturbances which emerge from the air-water interface and grow with 

increasing distance from the spillway crest (Chanson, 2013). The formation of these perturbations is believed to be 

caused by different mechanisms, depending on turbulence quantities as well as on the relative velocities between air 

and water. The disturbances can be characterized as vanishing waves, capillary waves, or Kelvin-Helmholtz 

instabilities (Valero and Bung, 2016). In this context, it is important to understand the concept of air being transported 

as bubbles (“entrained air”) and air transported with the flow in the roughness of the water surface (“entrapped air”) 

(Killen, 1968; Toombes and Chanson, 2007), as it implies that the mean air concentration in the non-aerated region 

of the spillway is increasing as a consequence of the growth of the disturbances, as shown by Meireles et. al. (2012) 

and Pfister and Boes (2014). 

 

The point separating the non-aerated and the aerated region of a spillway is broadly called the inception point of air 

entrainment and defines a very narrow range of flow conditions between first and continuous bubble 

entrapment/entrainment (Chanson, 2009). Different approaches for a phenomenological determination of the inception 

point location have been introduced in the past (Meireles et al., 2012), including:  (1) the visual detection of the cross 

section where a continuous presence of air bubbles is apparent (majority of the studies, e.g., Chanson and Toombes, 

2002; Relvas and Pinheiro, 2008), (2) the identification of the cross section where the mean air concentration equals 

Cmean = 0.2 (Bung, 2011), and (3) the detection of the cross section where the void fraction at the pseudo-bottom of 

the spillway equals C = 0.01 (Boes and Hager, 2003). It is emphasized that the visual detection incorporates the highest 

degree of uncertainty and may be subjective but, at the same time, allows for a simple application under field 

conditions. A theoretical framework for the determination of the inception point was developed within the early work 

of Bauer (1954), Straub and Anderson (1958), and Keller and Rastogi (1975), proposing that the aeration is taking 

place at the intersection of the growing boundary layer and the free-surface. Boundary layer type equations have been 
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widely used in the prediction of the inception point, and several empirical equations were developed, compare Cain 

and Wood (1981), Wood et al. (1983), Chanson (1994, 2002), Meireles et al. (2012), and Hunt and Kadavy (2013). 

Alternative concepts incorporate a formulation where the onset of air entrainment occurs when the turbulent shear 

stress close to the free-surface is larger than the resisting surface tension force per unit area (Chanson, 2009).  

 

The flow next to the inception point is usually extremely turbulent, and sometimes the free-surface appears to be 

subjected to a flapping mechanism (Chamani, 2001; Chanson, 2002). Immediately downstream of the inception point, 

continuous entrainment of air, also called self-aeration, takes place and the flow parameters show a sudden change, 

e.g., an increase of void fraction and flow bulking. The flow at the inception point is usually characterized as a rapidly 

varied flow region (RVF) (Zhang and Chanson, 2017). Only few studies investigated the flow properties upstream 

and downstream of the inception point due to the fact that velocity measurements with intrusive phase-detection probes 

become difficult at low void fractions. Table 1 shows a summary of laboratory studies on free-surface 

roughness/instabilities in smooth and stepped spillway flows. Note that the study of Pfister and Hager (2011) is 

included as the transition from entrapment and entrainment of air is shown by means of phase-detection probe 

measurements.  

Table 1. Studies on free-surface roughness/entrapped air in smooth and stepped spillway flows; ADM: Acoustic displacement 

meter, CP: Conductivity probe; FO: Fiber-optical probe; VC: High-speed video camera 

Reference Chute 

type 
θ  [°] W  [m] q  [m2/s] dc/h  [-] Flow region Instrumentation 

Pfister and Hager (2011) Stepped 50 0.5 0.11 - 0.65 1.1 - 3.8 Non-aerated 

Aerated 

FO, VC (1,000 

fps, 512×512 pix) 

Meireles et al. (2012) Stepped 53 1.0 0.05 - 0.20 1.1 - 8.0 Non-aerated CP, Pitot-tube 

Bung (2013) Stepped 26.6 0.3 0.07 - 0.11 1.8 - 3.6 Aerated ADM, VC (1,220 

fps, 256×256 pix) 

Felder (2013)                       

Felder and Chanson (2014) 

(2014) 

      

Stepped 26.6 1.0 0.116 - 0.202 1.1 - 1.6 Non-aerated 

Aerated 
ADM, CP 

Hunt et al. (2014) Stepped 14 - 26.6 1.52 - 5.49 0.11 - 1.83 1.1 - 28.6 Non-aerated 

Aerated 
FO, Pitot tube 

Valero and Bung (2016) Smooth 26.6 0.5 0.05 - 0.230 - Non-aerated ADM, 

Anemometer 

Present study (2017) Stepped 45 0.99 0.067 0.8 Non-aerated 

Aerated 

ADM, VC (2,000 
fps, 1280×800 

pix)  

In order to improve the characterization of free-surface disturbances in stepped spillway flows, acoustic displacement 

meter measurements were conducted within the non-aerated and the aerated region at the centerline of the chute. 

Furthermore, the region immediately downstream of the inception point was examined by means of high-speed video 

analysis and acoustic displacement meter measurements. Herein, three acoustic sensors and a video camera were 

synchronized, and all measurement devices captured two-phase flow parameters at a fixed distance from the channels 

inner sidewall. The measurements included:    

1) Acoustic displacement meter measurements at the channels centerline (2z/W = 0.0) within the non-aerated 

and the aerated transition flow regime. 

2) Simultaneous high-speed video and acoustic displacement meter measurements immediately downstream of 

the inception point of air entrainment; the measurements were conducted at a distance of 11.5 cm (2z/W = 

0.77) from the inner sidewall. 

Auto- and cross-correlation analyses were performed on the acoustic displacement meter data, and characteristic time-

scales of the free-surface as well as celerities of the surface-disturbances were obtained. The recorded image sequences 

of the high-speed video camera were processed by means of particle tracking velocimetry (PTV). To the knowledge 

of the authors, the PTV method has not been applied to aerated spillway flow so far. Herein, a modified version of the 

toolbox PTVlab was used, and the next section presents a short introduction of this approach.  

2. Methodology – Particle Tracking Velocimetry 

Particle tracking velocimetry is a non-intrusive image based technique used to determine instantaneous velocities in a 

moving fluid. The method works in a Lagrangian frame of reference, and single particles are detected and tracked 



 

within a series of consecutive images. The detection of the particles occurs at random locations in a defined region of 

interest (ROI). The velocity of these particles is derived by dividing their displacement by a known time interval, 

typically corresponding to the time delay of two consecutive images of the given image series.  

 

Particle tracking velocimetry has two advantages over the standard cross-correlation particle image velocimetry (PIV), 

including the location of the measured velocity within the limit of the traceability of particles and the possibility of 

full three-dimensional measurements (Ohmi and Li, 2000).  In contrast, PTV usually uses lower seeding densities and 

is often referred to the low-image-density mode of PIV (Adrian, 1991). A simple justification for the low-density-

mode is that particle detection and tracking becomes difficult for higher densities. However, current algorithms for 

particle detection combined with developed algorithms to solve for the temporal matching problem have provided a 

good performance for images with a moderately high particle density (Brevis et al., 2011).  Fundamental reviews on 

the methodology of particle tracking velocimetry are introduced by Maas et al. (1993) and Malik et al. (1993). The 

chain of data processing can be subdivided into the following steps: a) image pre-processing, b) particle detection, c) 

movement tracking, and d) post-processing.  

Image pre-processing: It is well known that image pre-processing is beneficial to improve the results of PIV or PTV 

algorithms. Within the present work, a background image is calculated from the complete sequence and then 

subtracted from the processed image.   

Particle detection: The single-value threshold (SVT) binarization was the standard approach for a long time in particle 

tracking velocimetry. More recent methods for identifying particle centres, e.g., the dynamic threshold-binarization 

method (DTB) or the particle mask correlation method (PMC) have improved the performance of PTV and shifted the 

application to images with higher particle densities (Ohmi and Li, 2000). The Particle mask correlation proposed by 

Takehara end Etoh (1999) was used in this study. Herein, a brightness pattern of a particle image is referred to as a 

particle mask and scanned over the entire image plane. This brightness pattern is approximated as a centred peak with 

concentrically decreasing brightness, defined in terms of a two-dimensional Gaussian distribution: 

( ) ( )
2 2

C C

2

x x y y
I(x, y) M exp

2

 − + −
=  − 

  

         (1)     

where I(x,y) is the brightness value, M is the peak brightness, xC and yC are the coordinates of the particles image 

centre, and σ is the standard deviation, referring to the radius of the particle image. Small subareas with high 

correlation coefficients are indicated as particle centroids by calculating cross-correlation coefficients on each pixel 

location. To increase the accuracy of the particle tracking, a subpixel estimator using a Gaussian 3-point fit (Nobach 

and Honkanen, 2005) was implemented by the authors.                                               

Movement tracking and post-processing: The first approaches for tracking the movement of detected particles in 

consecutive image planes are the multi frame tracking method (Hassan and Canaan, 1991) and the binary-image cross-

correlation method (Uemura et al., 1989; Hassan et al., 1992).  In the present study, a modified cross-correlation 

algorithm developed by Brevis et al. (2011) was applied. The algorithm makes use of the particle distributions patterns, 

and the velocity associated with a particle is found by using the highest cross-correlation coefficient obtained after 

comparing the reference distribution in the first frame and a set of sub-matrices in the second frame (Brevis et al., 

2011). The obtained data were post-processed by using a two-frame forward search algorithm, which discards particles 

that are not detected over three consecutive frames.  

3. Experimental Setup and Instrumentation 

3.1. Stepped Spillway Facility 

Experimental investigations were conducted on a relatively large-size model of a steep (θ = 45°) stepped spillway 

(Fig. 1). The physical model of the stepped spillway consisted of broad-crested weir inlet followed by a 12.4 m long 

and 0.985 m wide channel. The channel ended with a free overfall into a recirculation sump and the model had an 

independent open water circuit. The water recirculation was adjusted by three centrifugal pumps, operating at variable 

rotational speed. The spillway consisted of 12 steps with a step length of l = 0.1 m and a step height of h = 0.1 m. The 

width of the steps corresponded to the channel width of W = 0.985 m, and the steps were made of water-sealed 

plywood. The step edges were increasingly numbered, where step edge 0 corresponds to the rounded downstream 



 

edge of the broad crested weir, see Fig. 1. For further information concerning, e.g., the inlet basin or the broad crested 

weir, see Zhang and Chanson (2016) and Kramer and Chanson (2018). 

 

Figure 1. Definition sketch of the stepped spillway and the broad crested weir; sketch according to Kramer and Chanson (2018) 

3.2. Instrumentation 

The clear-water flow depths at the middle of the weir crest and in the upstream section of the spillway were measured 

with point gauges located at the channel centreline. The longitudinal locations of the point gauges were at x1/Lcrest = -

0.92 and x1/Lcrest = 0.5; the accuracy of the point gauges was within ±1 mm in the clear-water region. Unsteady water 

surface elevations were recorded with a series of three acoustic displacement meters mounted along the channel and 

perpendicular to the pseudo bottom formed by the step edges. The sensors of the type Microsonic™ Mic+25/IU/TC 

were attached to a trolley (centreline measurements, setup not shown) and to a slide rail of the channel, see Fig. 2B. 

The sensors were equipped with cylindrical extensions of 4 cm length (see Appendix). The purpose of these extensions 

was to avoid splashing onto the sensors and to narrow the detection area. The extensions also minimized the 

interference of adjacent sensor signals due to the exceedance of recommended assembly distances. The measurement 

distance of the implemented Microsonic™ Mic+25/IU/TC sensors ranged from 30 mm to 350 mm with ±1 % accuracy 

and 32 m/s response time.  

 

     
 

Figure 2.  Photographs of the experimental setup 

(A, left): Orientation of the high-speed video camera in front of the stepped spillway; dc/h = 0.8; Re = 2.7×105 

(B, right): Mounting of the acoustic displacement sensors alongside the spillway channel; 2z/W = 0.77; flow direction from left 

to right 

The acoustic sensors were synchronised with the high-speed video camera, and the sensor signals were scanned at 

frequencies of 100 Hz for durations up to 300 s. Note that the sample rate of the acoustic displacement sensors was 

limited by their response time. Erroneous spikes in the sensor signals were removed by threshold techniques and 

replaced by linear interpolation (compare Appendix).  



 

 

Air-water flow properties were recorded with a Phantom v2011 high-speed video camera. The camera was equipped 

with an AF Nikkor 50 mm f/1.4 lens, capable of generating images with a relatively small degree of distortion. Figure 

2A shows a typical camera arrangement in front of the physical model. The camera was inclined at an angle of 45° 

and aligned with the pseudo bottom of the stepped spillway. The distance between camera lens and sidewall was 1.0 

m. The camera was focused on a vertical plane parallel to the sidewall and cutting the beams of the acoustic 

displacement meters. Images were recorded at a frame rate of 2,000 fps with a resolution of 1280×800 pixels. In order 

to achieve a shallow depth of field, the aperture opening of the camera was set to f/1.4. The flow was illuminated with 

a 4×6 high intensity LED matrix attached to the sidewall of the channel. To enhance the contrast and to mask abundant 

information in the transversal dimension, the backside of the channel was covered with cloth and a black sprayed 

wooden board was mounted within the channel at a location of 2z/W = 0.7, next to the free-surface of the flow. Checks 

ensured that the mounted board was not disturbing the flow. The synchronisation of the camera was done by hardware 

triggering. 

3.3. Investigated Flow Conditions 

The experiments were conducted for a discharge of dc/h = 0.8 within the upper transition flow regime TRA2, as defined 

in Chanson and Toombes (2004). Table 2 summarises the experimental flow conditions. Herein, Li indicates the 

longitudinal position of the inception point of air entrainment, identified by visual detection, measured from step edge 

0 (Fig. 1).  

 

Table 2. Experimental flow conditions of the present study 

dc/h q [m2/s] θ [°] W [m] Regime Li /Lcav Re 

0.8 0.068 45 0.985 TRA2 2.0 2.7×105 

4. Experimental Results (1): Acoustic Displacement Meter Measurements 

4.1. Free-Surface Elevation and Turbulent Fluctuations 

Visual observations of the free-surface upstream of the inception point showed an undulating surface with a wave 

length of approximately twice the cavity length at dc/h = 0.8. The largest amplitude of the free-surface waves was 

found above the first step, decreasing towards the free-surface inception point. In this context, it is emphasizsed that 

the wave length of the surface undulations in the non-aerated region is dependent on the flow rate. A wave length in 

the order of a single cavity length is expected at lower discharges. This pattern was observed by Chanson (2002) and 

can simply be justified by the fact that step edges act as flow singularities, introducing disturbances at a length scale 

equivalent to the cavity length.  

 

Fig. 3 shows the time averaged depth profiles as combined results of the acoustic displacement meter experiments, 

including the location of the inception point (vertical dashed line) and characteristic flow depths of intrusive phase-

detection probe measurements (centreline) from an earlier study by Kramer and Chanson (2018). Herein, d is the 

equivalent clear water depth defined as: 
90Y

y = 0

d = (1 C) dy−                                                                                                       (2) 

where C is the void fraction and Y90 is the characteristic air-water depth where the void fraction equals C = 0.9. The 

recorded mean surface profiles at the centreline and next to the sidewall were in good agreement and showed a rapidly 

varied flow region and flow bulking immediately downstream of the inception point of air entrainment. Flow bulking 

is a common feature in stepped spillway flows (Chanson, 1995, 2002; Matos, 2000; Meireles et al., 2014) and spanned 

in the current investigation over approximately 4 step cavity lengths downstream of the self-aeration point. This was 

in accordance with earlier observations by Zhang and Chanson (2017).  



 

 

Figure 3. Dimensionless free-surface characteristics – comparison with intrusive phase-detection probe measurements of the 

characteristic air-water depth Y90 and equivalent clear water depth d (Eq. 2); dc/h = 0.8; θ = 45° 

The measured free-surface elevation data were subject to rapid fluctuations at the different positions along the stepped 

chute. These fluctuations were quantified in terms of the standard deviations d'adm. Fig. 4A shows the dimensionless 

standard deviations d'adm/dc normalised by the inception point location including data from Felder (2013). The 

fluctuations of the free-surface were within 0.06 < d'adm/dc < 0.39, increasing rapidly with further distance from the 

inception point. This was associated with enhanced air entrainment and an increased amount of air-water ejections 

above the aerated flow region. Visual observations showed rapidly growing surface disturbances and increased droplet 

ejections immediately downstream of the inception point. The present findings are consistent with previous 

experiments by Felder (2013), undertaken within the skimming flow region on a non-uniform stepped spillway with 

a slope of θ = 26.6°. Felder (2013) measured surface fluctuations at the centreline for three different discharges in a 

range of about 0.025 < d'adm/dc < 0.075 (non-aerated region) and 0.06 < d'adm/dc < 0.23 (aerated region). The data of 

the present study show a good agreement in terms of the fluctuations in the non-aerated region and at the inception 

point. With further distance to the inception point location, the current measurements indicated a higher magnitude of 

fluctuations. Possible reasons include the nature of the investigated transition flow regime, characterised by strong 

hydrodynamic fluctuations. The integral auto-correlation integral time scales provided a description of the longitudinal 

flow structure and were calculated as: 
xxτ=τ(R = 0)

xx xx

τ = 0

T = R (τ)×dτ                                                                                                     (3) 

where Txx is the auto-correlation integral time scale, τ is the time lag, and Rxx is the normalised auto-correlation 

function. Note that filtered data of the acoustic sensors were divided into sub-segments of 30 s duration, and the 

integration of the auto-correlation functions was performed until the first crossing of the abscissa. Further details 

concerning the used filtering technique are given in the Appendix.  

Figure 4B shows a comparison of the longitudinal auto-correlation time scales of free surface fluctuations. The time 

scales herein were in a range between 0.014 s < Txx < 0.51 s, showing a decrease with further distance from the weir 

crest. This characteristic is believed to be related to the accelerating flow and the growth of surface disturbances. Due 

to strong surface fluctuations at the inception point, a larger data scattering is observed around this location (e.g., 

flapping mechanism). In this context, measurement instrumentation with a higher sampling frequency and a smaller 

detection area would be beneficial for future investigations of free-surface fluctuations and integral time scales. The 

auto-correlation time scales observed by Felder (2013) were in a range between 0.05 s < Txx < 0.9 s and are in good 

agreement within the non-aerated region. The deviations in the aerated region remained unclear. 
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Figure 4. Longitudinal free surface characteristics obtained with acoustic displacement meters 

(A, left) Dimensionless free-surface fluctuations d'adm/dc normalised by the inception point location 

(B, right) Auto-correlation time scales of free-surface fluctuations in transition and skimming flows 

4.2. Auto- and Cross-Correlation Analyses 

The acoustic sensors detected the free-surface elevation at adjacent longitudinal positions, and the signals were 

processed by means of auto- and cross-correlation analyses. Figure 5 shows representative correlation functions for 

the acoustic sensors next to the sidewall at longitudinal positions of x/Lcav = 2.5, 3.0, and 3.5 (Fig. 5A) and x/Lcav = 

4.0 and 4.5 (Fig. 5B). For clarity, the time lag of maximum cross-correlation coefficient is indicated in both figures. 

The shape of the cross-correlation functions exhibits a clear broadening when compared to the auto-correlation 

functions, and the correlation coefficients diminish noteworthy in longitudinal direction, reflecting the loss of 

information with increasing longitudinal distance. Further conclusions can be drawn by comparing the time lags of 

the cross-correlation functions at different locations. The time lag of the cross-correlation function between x/Lcav = 

4.0 and 4.5 was slightly smaller than the time lag of the function between x/Lcav = 2.5 and 3.0, representing an 

acceleration of free-surface structures within the investigated flow region. 

 

  
Figure 5.  Representative auto- and cross-correlation functions between different acoustic sensors above the aerated transition 

flow region; 2z/W = 0.77; dc/h = 0.8; θ = 45° 

(A, left) x/Lcav = 2.5, 3.0 and 3.5 

(B, right) x/Lcav = 4.0 and 4.5 
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Furthermore, the maximum correlation coefficient of the function between x/Lcav = 4.0 and 4.5 was lower than the 

coefficient of the function between x/Lcav = 2.5 and 3.0. This was interpreted as an increase of randomness in the 

longitudinal direction of the aerated flow region. The correlation analysis allowed for a determination of the celerity 

of liquid surface instabilities by involving the time lag and the longitudinal separation of the sensors. The celerity was 

calculated with 
admC x / T=  , where Cadm is the celerity, x is the longitudinal distance between two adjacent acoustic 

displacement meters and T is the time lag for which the cross-correlation function reached a maximum (see Fig. 5). 

The time lag corresponded to the travel time of the surface instabilities between two sensor positions and the 

longitudinal distance between the sensors was x 2 / 2 0.1 =  m. The celerities of the free-surface disturbances were 

in a range between Cadm = 2.36 m/s and 2.98 m/s and are presented in the next section, together with the particle 

tracking velocimetry results. 

5. Experimental Results (2): Particle Tracking Velocimetry 

Velocities of disturbances evolving from the air-water interface were determined based on the particle tracking 

velocimetry method described in Section 2. It is believed that the PTV method has advantages in estimating velocities 

next to the free-surface due to its Lagrangian approach when compared to other image based velocimetry methods. It 

is well documented that, e.g., the bubble image velocimetry (BIV) or the optical flow method (OF) tend to 

underestimate flow velocities in regions with high void fractions (Bung, 2011; Valero and Bung, 2016). Within the 

current investigation, a video sequence with a sample duration of 8.3 s and a sampling rate of 2,000 Hz was examined. 

Two regions of interest next to the free-surface were defined, covering a longitudinal distance from x/Lcav = 2.5 to 3.5. 

Fig. 6B shows a representative image of the defined regions and an evolving free-surface disturbance next to the 

inception point of air entrainment at Li/Lcav = 2.0. Detected particles are marked as dark circles and instantaneous 

velocities are plotted as vectors. It is pointed out that the detected particles corresponded to textures and brightness 

spots on the surface disturbance rather than to particles in a stricter sense. A time- and spatial-averaged velocity was 

subsequently calculated for both regions in order to compare the performance of the PTV algorithm with the 

measurements of the acoustic sensors and the phase-detection probe. Fig. 6A presents a comparison of the calculated 

streamwise velocities as function of x/Lcav.  

                                                                                                                               
Figure 6.  Particle tracking within the upper region of the transition flow regime downstream of the inception point; dc/h = 0.8;  

(A, left) Streamwise velocities of free-surface disturbances in the aerated region of the transition flow regime;  

(B, right) Regions of interest (ROI), detected particles and instantaneous velocities (plotted as vectors); flow direction from left to 

right; camera focused on a vertical plane at 2z/W = 0.77 

 

Herein, Cadm is the celerity determined by the cross-correlation analysis of the acoustic displacement meters, VPTV is 

the velocity obtained by the particle tracking velocimetry method, V90 is the velocity measured with an intrusive 

phase-detection probe at a location where C = 0.9 (Kramer and Chanson, 2018), Vc is the critical velocity defined as 

c cV g d=  , and Videal is the ideal fluid velocity, deducted from the one-dimensional steady flow energy equation: 

ideal 1V 2g(H z d cos )= − −                                                                                                                                       (4) 
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where Videal is the ideal velocity, H1 is the upstream total head, θ is the channel slope, d is the flow depth, and z is the 

bed elevation. In line with the theory, the dimensionless velocities increased with increasing distance from the 

downstream edge of the broad crested weir. Overall, a good agreement of the velocity data was observed and all three 

measurement methods were found to be suitable for determining velocities within the upper region of the aerated 

transition flow. It is worthwhile to mention that the particle tracking velocimetry allowed for a correct velocity 

determination even in regions with high void fractions. A comparison of interfacial velocities V90 with the ideal fluid 

theory shows that the velocities were in a range of 0.8 to 0.95 of the ideal velocity. This is physically correct as the 

ideal velocities are not accounting for friction losses.  

6. Conclusion 

The present study investigated free-surface instabilities within the upper transition flow regime of a steep (θ = 45°) 

stepped spillway. Free-surface elevations and fluctuations were recorded in the aerated and the non-aerated flow 

region by means of acoustic displacement meter measurements. The free-surface profile indicated flow bulking and a 

rapidly varied flow region next to the inception point of self-aeration. The fluctuations compared well with earlier 

skimming flow data and the surface-instabilities showed a growth in longitudinal direction of the chute. Visual 

observations highlighted droplet ejection and intense splashing associated with growing instabilities downstream of 

the inception point.  

 

Velocities within the upper flow region where determined by means of cross-correlation analysis (acoustic signals) 

and particle tracking velocimetry. The video camera was synchronized with the acoustic displacement meters and was 

focused on a vertical plane parallel to the sidewall of the channel. The focal plane was cutting the beams of the acoustic 

sensors at a distance of 11.5 cm from the inner sidewall, allowing for a direct data comparison between the different 

flow measurement systems. It was found that the velocities of the tracked particles were in good agreement with the 

results of the cross-correlation analysis and earlier phase-detection probe measurements. This is remarkable as other 

image-based velocimetry approaches tend to underestimate velocities in regions with high void fractions close to the 

free-surface. Overall, the current investigation improves the characterisation of high-velocity air-water flows down 

stepped chutes and emphasises the feasibility of using particle tracking methods to provide relevant flow information 

next to the sidewall of hydraulic models.    
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8. Appendix - Calibration of Acoustic Displacement Sensors 

The acoustic displacement sensors were calibrated on-site by placing wooden boards with different thicknesses 

parallel to the pseudo bottom of the spillway. During calibration, the sensors were sampled at 100 Hz for duration of 

30 s and a linear relationship between the voltage output and the distance from the sensor head was obtained for each 

sensor. Fig. 7A shows calibration curves for the three sensors and standard calibration, represented by the black dashed 

line. At standard calibration, sensor signals of 0 V and 10 V correspond to distances between sensor head and surface 

of 30 mm and 350 mm. 

 

To determine whether the cylindrical extensions had an influence on the functionality of the acoustic surface detection, 

an acoustic sensor (with and without extension) was mounted on a horizontal bar, facing a flat and white surface. The 

sensor signals were recorded for both configurations at a sample rate of 100 Hz for a duration 30 s. Fig. 7B shows the 

raw signals of the conducted measurements. These signals included some erroneous spikes, appearing for both 

configurations. The probability mass functions, mean values and standard deviations of the signals are given in Fig. 

7C. The statistical parameters of the signals were in good agreement for both sensor configurations. It was concluded 

that the cylindrical extensions had a negligible influence on the free surface measurements with the acoustic 

displacement meters. During operation of the spillway model, the raw outputs of acoustic displacement meter 

sometimes included errors. These errors can have various causes, including the following (Wang and Chanson, 2013):  



 

a) Acoustic beam fails to be captured by the sensor because of some angle of the water surface,  

b) Acoustic beam is reflected by a splashing droplet or a water drop stuck at the sensor head, and 

c) Interference by adjacent sensors. 

The errors resulting from interference of adjacent sensors and from water drops stuck at the sensor heads were reduced 

by the implemented circular extensions. However, due to the mentioned causes, erroneous spikes departing from the 

major signal distribution were still observed in the sensor output. These erroneous spikes were removed by a threshold 

corresponding to the mean value 3 times the standard deviation of the raw signal (compare Bung, 2013). The affected 

points were replaced by linear interpolation and signals with more than 20% of filtered data were excluded from the 

post-processing. The statistical data analyses were conducted on the signals after removal of erroneous data.  

 

    
 

Figure 7. Calibration curves and signal comparison for both sensor configurations 

(A, left) Calibration curves for the acoustic displacement meters  

(B, middle) Raw signals of the acoustic displacement sensor – both configurations 

(C, right) Probability mass functions, mean values and standard deviations  
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