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Abstract: Accurate energy dissipation estimation and improved knowledge on stepped spillways and stepped revetments flow 

structure may allow safer design of hydraulic and coastal structures. In this study, an ADV Vectrino Profiler has been used to 

obtain dense observations of the three-dimensional flow structure occurring inside a cavity of 20 cm to 10 cm (length to height) 

for four flow cases. The obtained friction factors show a strong inverse dependence on the Reynolds number. The displacement 

length also shows a reduction with increasing Reynolds number, which may indicate that the flow “feels” the cavity more at 

smaller streamwise velocities. Streamwise and normalwise velocities reveal both a turbulent boundary layer type of flow (upper 

flow region) and a jet impact and recirculation inside of the cavity. Spanwise median velocities allowed insight on the 

uncertainty levels of the ADV Vectrino Profiler measurements. 

Keywords: ADV Vectrino profiler, stepped spillways, stepped revetments, shear velocity, skin friction coefficient, friction factor. 

1. Introduction 

Stepped geometries are one of the simplest macro-roughness configurations that can be found in hydraulic and 

coastal structures. Stepped spillways have been built for thousands of years (Chanson 2002) and an increase on the 

community’s interest has been experienced during these last decades with the use of Roller Compacted Concrete 

given the easiness of construction. Furthermore, the enhanced friction on the spillway allows safe conveyance of the 

water flow to the downstream end while yielding an earlier trigger of self-aeration when compared to classic smooth 

spillways. In coastal applications, stepped revetments ensure protection against wave overtopping while allowing 

accessibility to the structure (Kerpen and Schlurmann 2016, Kerpen et al. 2017). Despite the transient nature of the 

flow, energy dissipating properties of the revetment geometry are often related to the overtopping volumes. 

The main characteristics of stepped spillway flows have been extensively investigated (see Chanson et al. 2015), 

both by means of experimental modelling (Chamani and Rajaratnam 1999, Chanson and Toombes 2002, Boes and 

Hager 2003, Pfister and Hager 2011, Bung 2011, Meireles et al. 2012) and numerical modelling (Bombardelli et al. 

2011, Valero and Bung 2015, Lopes et al. 2017, Toro et al. 2017). Stepped spillway research can be considered a 

mature discipline, and its flows have been used for instrumentation and new experimental benchmarking techniques 

(Bung 2013, Felder and Chanson 2014, Shearin-Feimster et al. 2015, Bung and Valero 2016, Valero and Bung 2017, 

Felder and Pfister 2017). Nonetheless, when it comes to friction factor estimation, some concerns are still open for 

discussion. Recently, Felder and Chanson (2015) gathered experimental data from different studies and showed a 

scatter of the friction factor (𝑓) ranging from 0.02 to 0.70, with a certain data clustering in the range of 0.1 to 0.4. 

Moreover, the previous dataset review of Chanson et al. (2002) showed scatter reaching 𝑓 values up to 5. Thus, 

reducing this uncertainty becomes of paramount interest to allow safe design of future stepped energy dissipater 

structures. A better understanding of the flow structure may shed light on the energy dissipating mechanisms, 

allowing improved design of the cavity geometry. Only the previous study of Amador et al. (2006) thoroughly 

investigated the flow structure over a stepped cavity in the non-aerated region. Flow velocities over a stepped cavity 

(at least both over niches and edges) in the aerated region of stepped spillways can be found in the studies of Bung 

(2009), Bung (2011), Felder and Chanson (2011), Bung and Valero (2015), Bung and Valero (2016), Zhang and 

Chanson (2016a), and Zhang and Chanson (2018). 

In this study, a stepped geometry (of 20 cm and 10 cm length and height, 2V:1H for an equivalent stepped spillway, 

2H:1V for a coastal revetment) has been installed in a horizontal channel where comprehension on the flow structure 

is gained by means of an Acoustic Doppler Velocimetry (ADV) Vectrino Profiler (Nortek®). All studied flows 

correspond to subcritical flow conditions. Mean and fluctuating velocities were previously obtained by Nezu and 

Rodi (1986) for both subcritical and supercritical open channel flows not observing any difference. To the 



knowledge of the authors of this study, only the study of Amador et al. (2006), in a 1.25V:1H setup can be compared 

on the level of spatial detail in the non-aerated region flow description. The main advantage of the ADV Vectrino 

Profiler is the access to temporally detailed velocity data with also good spatial resolution. Data is properly filtered 

to allow accurate estimations of streamwise velocities, normalwise velocities, shear velocities, skin friction 

coefficients and friction factors. Spanwise velocities, which should null for such a symmetric configuration, resulted 

in values commonly below 1 cm/s. Discussion between the energy dissipating properties and other flow parameters 

is also presented. 

2. Experimental Setup 

The experiments were carried out at the Hydraulics Laboratory of FH Aachen. A stepped setup was installed in a 12 

m long and 0.58 m wide horizontal flume. The macro-roughness geometry was placed close to the downstream end 

of the flume to avoid any perturbation advection from the flume inlet. Water was recirculated from a downstream 

basin to a small inlet basin. The inlet basin was filled with stones, a fine polymer grid, and a 5 cm metal grid to 

reduce the inlet influence on the main stream. The flow rate was controlled with a frequency regulator connected to 

the pump and measured by means of a magnetic flow meter. 

 
 

Figure 1. Left: cavity flow structure and main flow variables (free stream velocity 𝑢𝑓𝑠, streamwise velocity expected value 𝑢̅, 

flow depth 𝐻 and boundary layer thickness 𝛿). In red, pseudo-bottom and edge of the boundary layer. Right: experimental setup. 

Flow from left to right. 

The stepped geometry was 2.70 m long and composed of 12 equal steps. The steps were intentionally sloped to 

simulate an equivalent stepped spillway with 2V:1H slope or a coastal protection revetment of 2H:1V, i.e.: 20 cm 

and 10 cm step faces (Fig. 1). The corresponding roughness height (𝑘𝑣) is 8.9 cm. The herein studied model 

permitted observations of subcritical flows—with considerably larger flow depths than common stepped spillways 

laboratory models—altogether with clear water conditions. This allowed the use of ADV techniques which would 

fail to provide accurate results in the counterpart aerated spillway/wave runup flow. An ADV Vectrino Profiler 

(ADV Vectrino Profiler, Nortek®) was used to map the three-dimensional flow. The ADV Vectrino Profiler 

measuring range was set to 30 mm, with cells of 1 mm. The sampling rate was set to 100 Hz and the sampling time 

was chosen to be 300 s after a time sensitivity analysis. The ping algorithm was set to “maximum interval”, as 

recommended by Thomas et al. (2017), and the velocity range was fixed higher than the expected velocities (above 

mean value plus three standard deviations). Seeding was added on demand to keep mean SNR values above 15 dB 

and mean correlation above 70 %, despite instantaneous values may fall below. Two different types of seeding 

particles were used; the first consisted of fine clay particles and the second one was the seeding particle provided by 

Nortek® (Table 1). For both types of particles, the seeding was performed in the channel inlet ensuring 

homogeneous mixing with the flow. 

Four different specific discharges (𝑞), with Reynolds numbers (R) ranging from 3.45×104 to 1.21×105 and 

subcritical Froude (F) numbers, were studied (Table 1) to allow overview of different flow conditions. The 

measurements were carried out following a densely spaced 20 mm by 20 mm measuring grid in both 𝑥 and 𝑧 

directions, which resulted in some overlapping of vertical velocity profiles. Accurate probe positioning was 

accomplished using a bidirectional, computer controlled motor system (isel®). All velocities were measured at the 

sixth step cavity. 



 

 

Table 1. Description of the conducted experiments. 

𝑞 (m2/s) 𝐻 (m) 𝐻/𝑘𝑣  (-) F (-) R (-) Seeding 

0.035 0.15 1.68 0.19 34,500 Nortek® 

0.052 0.15 1.68 0.28 51,700 Nortek® 

0.086 0.13 1.47 0.59 86,200 Fine clay 

0.121 0.16 1.79 0.60 120,700 Fine clay 

3. ADV Data Filtering 

Velocities were measured with an ADV Vectrino Profiler (Nortek®) and the data was subsequently processed using 

MATLAB® in-house implemented codes as follows: 

1. Velocity was temporally filtered using Goring and Nikora (2002) approach as modified by Wahl (2003).  

2. Instantaneous velocity data with SNR values below 5 dB were rejected. 

3. Instantaneous velocity data with correlation values below 60 % were rejected. 

4. The expected value of the velocity (𝑢̅) was obtained by applying the median operator to the remaining 

temporal data series. 

5. Finally, spatial filtering based on the mean velocity gradient equation is applied, following Valero and 

Bung (2018). 

 

 

Figure 2. Ellipsoid (black mesh) resulting from application of Goring and Nikora (2002) as modified by Wahl (2003) to data 

gathered at 𝑞 = 0.121 m2/s, 𝑥 = 14 cm and 𝑧 = 5 cm. Black markers for accepted data and red markers for rejected data. 

Percentage of total rejected data: 8.7 %. 

Goring and Nikora (2002) proposed a filtering technique based on the observation that “good data” tends to cluster 

inside an ellipsoid defined in the coordinate system built using the velocity data and its finite differences up to 

second-order (𝑢, Δ𝑢 and Δ2𝑢, respectively). Wahl (2003) proposed some modifications to Goring and Nikora 

(2002), for instance, use of robust estimators to obtain the expected velocity value and variance and rejection of all 

the velocity components when an outlier is detected in any of the velocity components. Exemplary velocity filtering 

is shown in Fig. 2. Thresholds considered for SNR and correlation values were based on the study of Leng and 

Chanson (2015) on the unsteady estimation of turbulence in undular and breaking bores. Other studies have 

suggested higher thresholding values of SNR and correlation, but lower instantaneous values are not necessarily 

associated to erroneous data and application of Goring and Nikora (2002) and Wahl (2003) may reject a relevant 

part of the outliers. Thomas et al. (2017) also discussed the commonly used SNR and correlation’s thresholds and its 

validity for the Vectrino Profiler data. 



4. Results 

4.1. General Remarks 

Data files gathered with the ADV Vectrino Profiler were converted to MATLAB® format for postprocessing, as 

discussed in the previous section. The Vectrino Profiler was moved vertically up to the point where the free surface 

disturbed the measurement significantly (i.e., air entrainment after large free surface curvatures). Hence, the 

maximum velocity measured by the instrumentation may not correspond to the maximum velocity of the profile and 

further analysis becomes necessary. 

In this study, the mean gradient equation was used to approximate the velocity gradients and extend the velocity 

profiles further from the measured range. The mean velocity gradient can be written as (Nikora et al. 2002, Monin 

and Yaglom 2007): 

d 𝑢̅(𝑧)

d 𝑧
=

𝑢∗

𝜅(𝑧 + 𝑑𝑟)
 (1) 

with 𝑢̅ the expected value of the velocity (usually, the temporally averaged value), 𝑧 the vertical coordinate normal 

to the pseudo-bottom (line connecting the edges of the steps, Fig. 1), 𝜅 the von Kármán constant, 𝑢∗ the shear 

velocity (which represents a stress in the dimensions of velocity) and 𝑑𝑟 the displacement length (Nikora et al. 

2002). It must be noted that integration of Eq. (1) can lead to the well-known log law velocity profile. Further 

discussion on the validity and limitations of Eq. (1) and its parameters can be found in Valero and Bung (2018). 

The shear velocity 𝑢∗ and the displacement length 𝑑𝑟 were estimated for each flow rate at the first section (over the 

edge) with data corresponding to 𝑧 > 0.1 𝐻 and the von Kármán constant was taken as 0.40, as recommended by 

Monin and Yaglom (2007) or Davidson (2015). This, together with Eq. (1), allowed direct extrapolation of the 

velocity profiles. On the question of where velocity stops increasing and meets the free stream flow region, another 

condition becomes necessary. Continuity condition can be used to locate the boundary layer thickness. Therefore, 

the velocity profile was integrated to obtain the specific flow rate. The relation between the velocity and the specific 

flow rate can be written as: 

𝑞𝑖𝑛𝑡 =  ∫ 𝑢̅(𝑧) d 𝑧 
𝐻

0

= ∫ 𝑢̅(𝑧) d 𝑧
𝛿

0

+ (𝐻 −  𝛿) 𝑢𝑓𝑠 (2) 

being 𝛿 the boundary layer thickness and 𝑢𝑓𝑠 the free stream velocity. As the flow rate is known, 𝑞𝑖𝑛𝑡 can be 

increased by increasing 𝛿 and adjusting the new velocities using Eq. (1) up to matching the measured specific flow 

rate (𝑞). Integral of Eq. (2) was approximated by means of trapezoidal numerical integration. Obtained values of 𝑢𝑓𝑠, 

𝛿 and the ratio 𝑞𝑖𝑛𝑡/𝑞 (as an indicator related to flow continuity) are presented in Table 2 below. The ratio 𝑞𝑖𝑛𝑡/𝑞 

remains below 1 for the cases where the boundary layer cannot grow farther as it intersects the free surface. 

The values of 𝑢∗ and 𝑑𝑟 shown in Table 2 correspond to the data at any 𝑥 coordinate and 𝑧 > 0.1 𝐻 and incorporates 

data from all the step cavity sections, thus representing a “cavity-averaged” result. Backward finite differences were 

obtained and linear fitting to the inverse of Eq. (1) was used to approximate 𝑢∗ and 𝑑𝑟 (likewise Nikora et al. 2002 

or Valero and Bung 2018). 

It can be observed that the displacement length, which is the depth that the flow eddies “feel” (Goring et al. 2002), 

reduces with increasing R. The displacement length in stepped spillway flows was previously numerically studied by 

Cheng et al. (2014) which found that 𝑑𝑟/𝑘𝑣 was in the order of 0.22 to 0.27. Only the highest flow discharge case 

herein studied falls within this range. The shear velocity increases but, nonetheless, the free stream velocity 

increased further thus yielding a reduction of the friction factor with increasing R. Cheng et al. (2014) also noted an 

increase of the shear velocity with increasing discharge (i.e., with increasing R) and with increasing roughness 

height. 

4.2. Energy Dissipation 

Given that the free stream velocity and the shear velocity have been computed, the skin friction coefficient can be 

obtained as (Pope 2000): 



𝑐𝑓 = 2(𝑢∗/𝑢𝑓𝑠)
2
 (3) 

The friction factor can be computed as (Pope 2000): 

 

𝑓 = 8 (
𝑢∗

 𝑈̅
)

2

 (4) 

where the mean velocity 𝑈 can be computed as 𝑞/𝐻. Results from use of Eqs. (3) and (4) are included in Table 2. 

Obtained values fall above the data clustering range suggested by Felder and Chanson (2015): 0.1 ≤ 𝑓 ≤ 0.4 but 

within the scatter observed by Chanson et al. (2002). For completeness, comparison with the value obtained from 

the simplified theoretical model of Chanson et al. (2002) is also considered: 

𝑓𝐶 =
2

𝐾√𝜋
 (5) 

with 𝐾 ≈ 6, related to the rate of expansion of the air-water shear layer of a plunging jet (Brattberg and Chanson 

1998). This yields 𝑓𝐶 = 0.188. However, Chanson (2002) argued that 𝐾 ≈ 12 for monophase flows, which would 

result in 𝑓𝐶 = 0.094, despite previously Brattberg and Chanson (1998) suggested 𝐾 ≈ 11 which would yield 

similarly 𝑓𝐶 = 0.103. 

Analogy with a shear layer flow seems clear. Nonetheless, the intensity of the shear layer or its expansion rate may 

depend upon other parameters as the macro-roughness geometry, described by the cavity length and cavity height 

(or alternatively, by the slope and the step height). With intermediate slopes, the cavity will comparatively have a 

larger area/volume than for very steep or mild slopes. In the limiting case of extremely flat slopes, it should be 

expected to converge to the smooth spillway friction value. Additionally, flow interaction with the cavity, and 

ultimately the energy dissipation in macro-roughness flows, can be affected by the submergence, i.e.: the ratio 

between flow depth (or boundary layer thickness) and the macro-roughness length scale (Cheng 2017).  

The skin friction coefficients obtained in this study show a decay with increasing R, similar to 𝑑𝑟. Both 𝑑𝑟 and 𝑐𝑓 

hold a Pearson correlation coefficient, as defined by Zwillinger and Kokoska (2000), of 0.9998 (however, note the 

small number of samples), which may imply that the lesser the flow “feels” the cavity, the smaller is the energy 

dissipation. At the same time, with increasing R, the flow “rolls” over the step, intruding less into the cavity. This 

reasoning might be useful in the design of more efficient energy dissipating surfaces in hydraulic structures, as 

investigated by Zhang (2017) and Zhang and Chanson (2017). 

Table 2. Main characteristics of the studied cavity flow cases. Free stream velocity (𝑢𝑓𝑠) and boundary layer thickness (𝛿) 

estimated at the first edge of the studied cavity. Shear velocity (𝑢∗) and displacement length (𝑑𝑟) obtained with all the cavity data 

at 𝑧 > 0.10 𝐻, skin friction coefficient (𝑐𝑓) and friction factor (𝑓). 

𝑞 (m2/s) 𝑢∗ 

(m/s) 

𝑑𝑟 (m) 𝑑𝑟/𝑘𝑣 

(-) 

𝑢𝑓𝑠 

(m/s) 

𝛿 (m) 𝛿/𝑘𝑣 (-) 𝑞𝑖𝑛𝑡/𝑞 (-) 𝑐𝑓 (-) 𝑓 (-) 

0.0345 0.1014 0.091 1.01 0.3455 0.15 1.68 0.934 0.172 1.555 

0.0517 0.1490 0.077 0.86 0.5354 0.15 1.68 0.976 0.155 1.495 

0.0862 0.2238 0.046 0.52 0.9293 0.13 1.47 0.979 0.116 0.932 

0.1207 0.2009 0.023 0.26 0.9472 0.09 1.01 1.000 0.090 0.553 

4.3. Streamwise Velocity 

The streamwise velocity (𝑢̅) is the main component of the flow under study. It contains the larger part of momentum 

and energy and thus, its accurate determination becomes of higher interest. In the recent studies of Brand et al. 

(2016), Thomas et al. (2017) and Koca et al. (2017), it was noticed that the accuracy of the ADV Vectrino Profiler is 

not constant for all the bins of the profile. Koca et al. (2017) recommended use of data of the Sweet-Spot (SS) +/−8 

bins to ensure velocity estimations remained below a 10 % error. Consequently, it is often suggested to use a 

reduced measuring range to avoid the increasing error in the ending measuring bins. The methodology proposed by 



Valero and Bung (2018) aims to detect the lowest performing streamwise velocity estimations and reject them. 

Thus, all the 30 bins (of 1 mm size) of the ADV Vectrino Profiler were used in this study and Valero and Bung 

(2018) filtering approach was used. 

Figure 3 shows the streamwise velocity for all four contemplated cases. The free stream flow can only be clearly 

observed in Fig. 3d; all other flow cases had the boundary layer thickness closer to the free surface and out of the 

measuring range of the ADV Vectrino Profiler (Table 2). The minimum velocities measured inside the cavity are on 

average −12.5 % of the free stream velocity 𝑢𝑓𝑠, with all four minimum velocity measurements falling between 

+/−2 % of −12.0 % of 𝑢𝑓𝑠. Closer inspection into the data of Amador et al. (2006) shows that the minimum 

velocity corresponded to −15 %, −13 %, −16 % and −17 % of 𝑢𝑓𝑠. These values are close to the herein reported 

but are slightly greater, which could be given by the different cavity geometry of the previous study (1.25V:1H), 

which may ease the flow recirculation. Also, data scatter in Amador et al. (2006) is similar to the scatter herein 

reported. 

  

  

Figure 3. Streamwise velocity for a) 𝑞 = 0.035 m2/s, b) 𝑞 = 0.052 m2/s, c) 𝑞 = 0.086 m2/s, d) 𝑞 = 0.121 m2/s. 

4.4. Spanwise Velocity 

Mean velocity transverse to the stream flow direction (𝑣̅) can be expected to vanish given the two-dimensional 

nature of the flow. However, some ADV misalignment could take place yielding small transverse components. 

Moreover, Zedel and Hay (2011) found that ADV Profiler often yields non-null lateral velocities which, moreover, 

do not overlap. A measure of the misalignment can be obtained through the angle 𝜃: 

𝜃(𝑧) = atan (
𝑣̅(𝑧)

𝑢̅(𝑧)
)  (6) 



The median misalignment 𝜃 obtained using the data of all the bins for each of the studied flow rates is (from smaller 

flow rate to higher flow rate): −0.19º, −0.31º, 1.3º and 0.70º, which indicates a proper positioning of the Vectrino 

Profiler for all the analysed flow conditions. When using only the data from the SS, these angles generally were 2 to 

20 % smaller in magnitude. This misalignment has been corrected for all the flow velocity distributions and, 

consequently, the streamwise velocity component shown in Fig 3 already incorporated the small transverse velocity 

contribution. 

Nonetheless, some additional transverse mean flux is still estimated by the Vectrino Profiler, which should be 

acknowledged as erroneous (Zedel and Hay 2011). Using data of all 30 bins, the median of the absolute deviation of 

𝑣̅ for all four considered flow cases always remained below 1 cm/s. This magnitude can be understood as a measure 

of the random transverse velocity artificially introduced by the Vectrino Profiler, as discussed by Zedel and Hay 

(2011). Hence, compared to the expected velocities shown in Table 2, it is rather a relative small source of error. 

It must be noted that transverse velocity fluctuations are non-zero, as it can be expected for any boundary layer type 

of flow (Jiménez and Hoyas 2008, Pope 2000). 

4.5. Normalwise Velocity 

Flows with gradients in the flow depth or the channel bed can present non-null vertical velocities (Castro-Orgaz and 

Hager 2017 pp. 102). In the case under consideration, the cavity produces a clockwise recirculation (Fig. 3), which 

must be necessarily accompanied of significant vertical velocities. Data shown in Fig. 4 corresponds to the median 

normalwise velocity (𝑤̅). This velocity component cannot be filtered with the mean velocity gradient method 

proposed by Valero and Bung (2018). However, a simple median filter with the same window size suggested by 

Valero and Bung (2018) is used. 

  

  

Figure 4. Normalwise velocity for a) 𝑞 = 0.035 m2/s, b) 𝑞 = 0.052 m2/s, c) 𝑞 = 0.086 m2/s, d) 𝑞 = 0.121 m2/s. 



Minimum and maximum normalwise velocities take place inside the cavity and occur close to the wall, as a jet type 

flow after the streamwise flow impacts on the opposing cavity face. Use of the data of a large number of bins around 

the SS is of interest to access the velocities closer to the wall. However, the farther from the SS, the lower the 

quality (Thomas et al. 2017, Koca et al. 2017, Brand et al. 2016, MacVicar et al. 2014). Moving median is not 

applied (differently to Fig. 4) to this data to avoid smoothing of the extreme values. However, the choice of these 

values is made based upon the histogram of 𝑤̅—with data from SS +/− 8 bins, as recommended by Koca et al. 

(2017) for velocity estimations—with 100 histogram bins, which allow visual detection of outliers. This estimation 

may depend upon the number of histogram bins but is more robust than direct (and blind) estimation of the 

minimum or maximum value of 𝑤̅. Values obtained for the minimum 𝑤̅ correspond to −11.3 % of 𝑢𝑓𝑠 and 

maximum values group around 9.8 % of 𝑢𝑓𝑠. It seems reasonable that the magnitude of the minimum value is larger 

than that of the maximum values given that the minimum values are closer to the jet impact on the cavity and follow 

a more inclined plane (thus the vertical projection is larger). After the impact of the jet against the cavity face, flow 

acceleration can be observed which might be accompanied by a local rise of the pressure (previously observed by 

Amador et al 2009 and Zhang and Chanson 2016b). Jet velocity decay can be also observed inside the cavity (Figs. 

3 and 4), which can be typically found in turbulent jets (Rajaratnam 1976), while vertical velocity acceleration is 

found close to the step edge, where maximum flow shearing occurs. 

5. Conclusions 

Literature on the estimation of friction factors on stepped spillways shows a considerably large scatter (Chanson et 

al. 2002, Felder and Chanson 2015) when compared to literature on macro-roughness (Cheng 2017). Furthermore, 

there are still many unresolved issues related to the key parameters affecting the energy dissipation (Hunt et al. 

2017). Accurate friction factor estimation and better knowledge on stepped spillways and stepped revetments flow 

structure may allow safer design of hydraulic and coastal structures. 

In this study, a stepped geometry has been setup in a 12 m long and 0.58 m wide horizontal channel at the 

Hydraulics Laboratory of the FH Aachen. An ADV Vectrino Profiler has been used to obtain dense observations of 

the three-dimensional flow structure occurring inside a cavity of 20 cm to 10 cm (length to height) for four flow 

cases, with F ranging between 0.19 to 0.60, R between 3.45×104 to 1.21×105 and 𝑘𝑣/𝐻 around 0.57. Velocity time 

series were filtered using Goring and Nikora (2002) method as modified by Wahl (2003). Low SNR and correlation 

velocity estimations were also removed and spatial filtering based on Valero and Bung (2018) was applied to filter 

physically inconsistent velocity estimations. 

The obtained skin friction factors show a strong (inverse) dependence on the Reynolds number. The displacement 

length also shows a reduction with increasing Reynolds number, which may indicate that the flow “feels” the cavity 

more at smaller streamwise velocities. Streamwise and normalwise velocities reveal the interaction between both a 

turbulent boundary layer type of flow (main flow region) and a jet impact and recirculation region inside of the 

cavity. Obtained values of the friction factor fall above the clustering values obtained by Felder and Chanson (2015) 

but within the scatter of Chanson et al. (2002). Spanwise median velocities allowed insight on the uncertainty levels 

of the ADV Vectrino Profiler measurements. 
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