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Description of Some Seal Vibration Problems at Hydraulic Gates on German Waterways 

G. Göbel, M. Gebhardt, M. Deutscher, W. Metz & C. Thorenz 

Federal Waterways Engineering and Research Institute (BAW), Karlsruhe, Germany 

E-mail: georg.goebel@baw.de 

Abstract: Flow induced vibrations are a common phenomenon in hydraulic engineering. They affect the operation of gates and 

weirs and can lead to fatigue or damage of the construction. In this contribution, different types of vibration incidents on hydraulic 

gates are distinguished. By measuring the vibration frequency, it is possible to distinguish between the vibration of rubber profiles 

in the shape of a musical note (J-seals), vibrations involving the complete weir body and vibrations of spring supported seal 

systems. J-seals tend to vibrate in various arrangements. A laboratory study shows the vibration mode and evaluates a critical 

opening width of gates with a J-seal as bottom seal. For future work, numerical fluid-structure-interaction (FSI) solvers may be a 

tool to identify flow-induced-vibrations in the design process of hydraulic gates. First results of this method are shown.  

Keywords: Flow-induced vibrations, hydraulic gates, seal-vibration, J-seals, on-site measuring, numerical simulation 

1. Introduction  

During the last years an increasing number of vibration incidents on German waterways were reported to the BAW. 

Generally, it can be distinguished between vibrations of whole gates, such as bending of wide-span gates or rotary 

vibrations of radial gates around their trunnion points. Next to that, vibrations of gate parts could be detected, such as 

filling valves or sealing systems. There has been remarkable research on flow-induced vibrations (FIV) at hydraulic 

structures. Vibrations induced by flow-instabilities like vortex shedding or impinging shear layer were subject to a 

number of studies (Müller 1937, Petrikat 1955, Naudascher 1964). For underflow gates, some authors proposed a 

redesign of the bottom part of the gates in order to provide a stable flow separation or to eliminate regular vortices. 

Other authors proposed operational measurements and recommended the avoidance of critical opening widths, for 

example Pulina and Voigt (1994) for the weir Kachlet. Petrikat (1980) suggested to replace wooden beams by rubber 

seals, but he also mentioned that there is still the tendency for vibrations, especially for bulbous shapes like J-seals 

(see Figure 1). Kolkman (1976) described flow-rate fluctuation as a source for self-excited vibrations, which is also 

known as press-shut mechanism (Naudascher and Rockwell 1994, Ishii and Knisely 1992b). According to Naudascher 

and Rockwell (1994) this mechanism plays a significant role in the vibration-excitation of elastic rubber seals and 

spring supported seal systems at small gap widths. Excellent overviews on the topic of flow-induced vibrations on 

hydraulic gates are given by Naudascher and Rockwell (1994) and Kolkman and Jongeling (2007). One might think 

there is a solid knowledge base on excitation mechanisms and forms of flow-induced vibrations. Despite this, the 

number of new constructions with vibration issues increased. Additionally, there is a remarkable number of old 

constructions with vibration problems after repair. In general, a loss of know-how can be noticed. Hydraulic steel 

construction became a niche business and specialists are nearly off the market. With an upcoming need for renewal 

of many weirs and locks, there are strong efforts for standardization and automation on German waterways. But 

automation means also that there is no longer operational staff on site and it is difficult to detect and handle vibrations 

by using remote control properties. Against this background, this paper gives an overview of existing vibration 

problems at German waterways and shows how the causes were detected. Vibration types were classified (chapter 2) 

and on-site measurements of actual vibration incidents carried out. The measuring approach and data analysis are 

presented in chapter 3. In order to understand the mechanism of seal vibrations, experiments were conducted in the 

hydraulic laboratory. Through the use of a high-speed camera the vibration motion of a J-seal (musical note seal) was 

visualized (chapter 4). Numerical simulations are currently used to investigate flow-induced vibrations on hydraulic 

gates. A short summary is given in chapter 5 showing a glimpse of future possibilities. 

2. Classification of Vibration Incidents 

FIV is a well-known phenomenon in hydraulic engineering. There are many reported cases with FIV on hydraulic 

structures like the damage of the power unit housing of a roller gate near Stuttgart due to vortex induced vibration on 



 

 

a roller gate (Maschinenfabrik Augsburg-Nürnberg A.-G. 1912) or the complete distortion of a radial gate on Folsom 

Dam in the United States (Ishii et al. 2014). Naudascher and Rockwell (1980) collected and discussed a number of 

case studies of flow-induced vibrations on hydraulic structures. Those examples and results from measurements 

(further described in chapter 3) are analyzed to find indicators to identify the excitation mechanism on hydraulic 

structures without extensive on-site measurement or modal analysis. Indicators may be vibration frequency, amplitude 

or wave pattern in the headwater. In the following, the indicators of three different vibration types are described. This 

includes two types of seal vibration and vibration of the full gate to point out the main differences between seal and 

gate vibration. While the expert engineer in this field may understand the mechanism and source of vibration based 

on his experience, some may need these indicators to identify the source of vibration and decide further approach to 

the problem. 

2.1. J-seal Vibration 

Elastic rubber seals in the shape of a musical note are also called J-seals (Figure 1). J-seals have multiple advantages, 

if they are installed properly. The flexibility of the soft bulbous shapes makes the seal adaptive on varying sealing 

surfaces. Contrary to wooden beams, the surface has not to be shaped perfectly for sufficient tightness, because the 

seal can deform and compensate unevenness. On miter gates, which can deform or deflect in horizontal direction with 

varying water head, a soft seal keeps tight without bringing additional tension to the structure that was not considered 

in the design. If they are applied in a way that the upstream water head is pressing the seal in a tight position (Figure 

7 right), tightness can even be improved. But, as already explained by Naudascher and Rockwell (1994), this 

configuration can also be a source of flow-induced vibrations during small openings or leakage. 

 

Figure 1: Sketch of a J-seal.  

Krummet (1965) reported on the vibration susceptibility of J-seals. Petrikat (1980) continued the research on this topic 

(see also chapter 4). Today it is known, that J-seals of typical sizes tend to vibrate in a frequency between 35 and 50 

Hz (Naudascher and Rockwell 1994). Countermeasures and precautions for this type of vibration can be found for 

instance in Krummet (1965).  

2.2. Vibration of Spring Supported Seal Systems 

Underflow gates often have spring supported sealing systems, in particular if the sealing acts against the water 

pressure. In general, these systems tend to vibrate in closed or slightly opened position because they are elastically 

mounted. The construction is very diverse (Figure 2) and the resonance frequency may vary between the different 

systems. Experience shows that there is a relatively large frequency range between 15 and 40 Hz. During vibration, 

the upstream water surface tends to show small standing waves with wavelengths in the cm range (Figure 3 left).  

 

Figure 2: Sketches of different spring supported seal systems.  



 

 

2.3. Bending and Rotating Vibration 

Long span gates, such as roller gates or lifting gates, have in common that they are driven on one side or both sides 

by chains or hydraulic cylinders. The end points of the gates are mounted in the niches of the weir pillar by means of 

fixed bearing. Due to the relatively high elasticity of the gates, bending vibration might occur, if the gate is excited to 

vibrate by under- or overflow (Ishii and Knisely 1992a). Göbel (2017) describes a 42 m wide lifting gate that vibrates 

with 1.5 Hz in a bending motion. For comparison, a 30 m wide roller gate was vibrating with 9 Hz. Radial gates with 

shorter span width would vibrate in a rotary movement around the trunnion point. Reports (Ishii et al. 2014) and own 

experiences show, that the frequency of this vibration would not exceed 10 Hz. Thus, it can be concluded that 

vibrations of a whole gate will take on a single-digit frequency. However, size and shape of the construction can differ 

massively from one to another; the more or less small range of resonance frequencies is not surprising at all. Mass 

distribution and mass-to-stiffness ratio may be similar in all those constructions. If the amplitude is noteworthy, they 

are accompanied by large standing waves (Figure 3 right). Even if those constructions have sealing systems, which 

are susceptible for flow-induced vibrations, the occurrence of the described indicators show, that the sealing system 

is not the actual source of vibration. 

      

Figure 3: Left: standing waves in the headwater of a lifting gate with underflow. The waves are caused by the vibration of the 

spring-supported seal system. The vibration frequency is between 15 and 20 Hz. Right: standing waves in the headwater of a 

42 m wide vibrating lifting gate during underflow. The bending amplitude at the midpoint of the gate is 1.6 cm and the frequency 

is 1.5 Hz. In Both pictures the flow direction is marked with an arrow. 

3. Measuring Data 

With on-site vibration measuring, critical operation conditions can be identified. This includes combinations of 

opening width, flow rate and tailwater level at which flow-induced vibrations can be expected.  

To measure the vibration signal, acceleration sensors with different sensitivity are required. In our tests, magnets were 

used to fix the sensors on the construction. For underwater application, the sensors were packed in a waterproof can. 

Analog signals are converted to digital signals and captured on laptop. To convert the signal from time domain to 

frequency domain, Fast Fourier Transformation was used. A sketch of the setup is shown in Figure 4. 

 

Figure 4: Measurement setup. Acceleration sensors are fixed on the gate with magnets. Depending on the type of sensor, there is 

need for a measurement amplifier. Analog signals are converted to be processed digital.  



 

 

If there is an obvious single resonator system, such as bending or rotary vibrations (see 2.3), it is easy to find the right 

location for sensors in order to record the required magnitudes (see Göbel 2017). On complicated systems with 

multiple oscillators or degrees of freedom, it can be difficult to find the primary excitation source. A typical example 

is a miter gate (see 3.1), which can vibrate in various bending modes or around hinge points. Additionally, parts of 

the structure, for instance filling valves or sealing systems, might vibrate solely and other parts act as resonators. 

If extensive measurements are not possible, the sound track of video signals can be used in order to determine the 

vibration characteristics. However, the scope of application is limited. Sensors are connected directly to the 

construction. In contrast, sound signals will be emitted also from other vibrating parts of the construction. Some 

frequencies will be amplified acoustically, because they involve a strong acoustic resonator (e.g. box girders) and thus, 

dominate the acoustic signal. Ambient noise may overlay the signal. Finally, the microphone itself can induce 

measuring errors as well. Overall, good experiences were made with this method. Three examples of measured seal 

vibrations are described in the following. 

3.1. Filling Valve of a Lock Gate  

Figure 5 shows the filling valve in the bottom part of a miter gate. The valves are radial gates with J-seals at the top. 

During commissioning, heavy vibrations occurred when the filling valve was opened a few centimeters. The vibration 

was loud and clearly to feel even on top of the gate. To identify the source of vibration, sensors were applied on 

different positions of the gate. They all showed a matching dominant frequency of 40 Hz. By comparing the signals, 

it could be identified that vibration was induced at the skin plate above the top seal (see the red arrow in Figure 5). It 

was not possible to modify the top seal arrangement in order to avoid fluctuations in the gap. Therefore, the 

construction was stiffened by welding vertical beams onto the skin plate (Figure 5). Figure 6 shows the acceleration 

signal of the skin plate before and after stiffening. It can be seen, that the acceleration amplitude decreased to a 

hundredth. 

     

Figure 5: Miter gate of the lock Neckargmünd: Filling valves (left); 3D sketch of the radial gate and top seal arrangement 

(center); welded beams on the skin plate (right). Note the buckled skin plate is marked with an arrow.  

 

Figure 6: Acceleration amplitude of the skin plate vibration before (red) and after (blue) stiffening the plate. 



 

 

3.2. Bottom seal of a Radial Gate 

Recently, a double lift gate was replaced by a radial gate with a flap gate on top. The average water head is 3.75 m. 

The skin plate is in the shape of a segment of a circle. The midpoint of this circle is located higher than the trunnion 

points of the gate. Hence, the water head creates an additional opening torque on the gate. Figure 7 shows a sketch of 

the gate and the seal construction. It can be seen that the box girder is placed with a small vertical offset to the edge 

of the skin plate. During commissioning, loud humming vibrations were noticed at small opening widths. The J-seal 

is placed in a way, that the upstream water head increases tightness in closed position. However, Naudascher and 

Rockwell (1994) have already noted that this kind of construction can be susceptible to flow-induced vibration (see 

also chapter 2.1). 

  

Figure 7: Radial gate with flap gate on top: sketch of the full gate (left) and seal construction on the bottom side of the gate 

(right) 

In order to determine the resonance frequency of the vibrations, the sound track of a video was analyzed. The dominant 

frequency was 37 Hz, which fits quite well in the known frequency range of 35 to 50 Hz for vibrating J-seals. After 

removal of the J-seal, the buzzing vibration was gone. Unfortunately, the gate showed additional rotary vibrations at 

small openings. Those vibrations are still present after removal of the seal and will be investigated in future research.  

3.3. Spring Supported Seal Construction of a Roller Gate 

The spring supported seal construction was renewed at a submersible roller gate. The system is sketched in Figure 2 

left. In the original configuration a spring like it is shown in Figure 8 was used. After replacing by coil springs heavy 

vibrations occurred. Measurements were carried out and several acceleration sensors were applied: one on the pole of 

a spring (Figure 8, center) and one at the roller itself (Figure 8, right) near its midpoint.          

       

Figure 8: Submersible roller gate: replaced spring (left); renewed spring supply with applied acceleration sensors (center); 

acceleration sensor near the midpoint of the gate (right). 

 



 

 

 

Figure 9: Acceleration signal (left) and frequency analysis (right) of the vibration measured on the seal system (red) and midspan 

(blue) of the roller gate. 

Figure 9 shows the measured vibrations of the gate. In the frequency domain, it can be seen that the dominating 

frequency of roller gate and seal system are identical, on average 16 Hz. The amplitude of the signal is considerably 

higher at the seal system than at the roller gate itself. This indicates a main vibration of the seal system. The 

significantly lower amplitude of the roller is also an effect of resonance. The vibrating seal system forces the roller to 

vibrate, but the large difference in mass damps the amplitude.  

Since there were no vibrations before renewing the construction, it is obvious, that at least one of the influencing 

factors changed through renewal. From visual inspection, it seems that the new springs are less stiff and have less 

pretension than the old ones. Lower pretension would lead to lower contact pressure on the sealing surface whereas 

lower stiffness would generate lower resonance frequency of the system. Incorrect assembly of the system could be 

also a source of malfunction. This case is a typical example for the loss in knowledge about operating old gates. Many 

gates from the first half of the 20th century are still operating well, so there is no need to replace them. With losing 

knowledge about the operation and adjustment of those gates, problems like this will arise more and more. 

4. Video Analysis of Vibrating J-seal 

J-seals are used as side and bottom seals on miter gates, but they are also applied as bottom seals of radial gates (see 

3.2) or top seals for filling valves (see 3.1). Petrikat (1980) investigated pressure fluctuations on solid gate edges and 

found varying frequencies, depending on the opening width of the gate. The vibration of the seal will be strongly 

coupled with the pressure fluctuation in the surrounding flow field. Naudascher (1991) described this phenomenon as 

‘movement induced excitation’ (MIE), which involves strong feedback from the vibrating structure to the flow. As 

mentioned in chapter 3.1., J-seals tend to vibrate with a frequency of 35 to 50 Hz. Petrikat (1980) described the 

vibration during small openings as an ovalling deformation of the note head, caused by the upstream water head, until 

the seal hits the opposite sealing surface (Figure 10). Elastic restoring forces bends the seal back and the process 

repeats. 



 

 

 

Figure 10: Sketch of a deforming J-seal. Reproduced from Petrikat (1980). 

Experiences show that even J-seals with a bigger head diameter d (see Figure 1) tend to vibrate. There are J-seals with 

no hole inside and even those can show vibrations. In this case, a deformation of the note head like illustrated in Figure 

10 does not seem likely. A laboratory experiment was conducted to gain more knowledge about the excitation 

mechanism. The goal was to identify the vibration mode of a J-seal and to get an idea on the critical opening widths. 

Therefore, a vertical plate with thickness t = 3cm was placed in a 0.6 m wide and 18 m long glass flume. Two 

variations of seal arrangements were tested. Figure 11a) shows a configuration, where the seal was fixed on the 

downstream side of the bottom edge of the gate. Figure 11 b) shows a second configuration, where a horizontal plate 

was added at the bottom edge of the gate on which a J-seal was mounted. The length L of the bottom side of the gate 

was 0.13 m and the seals head center was placed in the middle. J-seals of two different sizes were tested. In all test 

series, the tailwater level was raised to reach fully submerged conditions. The water head ∆𝐻 was held constant at 

around 0.2 m throughout the experiment. The experiment was filmed with a frame rate of 1000 fps. 

 

Figure 11: Sketch of the laboratory model. 

In configuration a) the seal showed slight ovalling vibrations with negligible amplitudes. In configuration b) the seal 

showed vibrations during openings between 𝑠 = 1,5 𝑑 and 𝑠 = 2.5 𝑑 (Table 1 and 2). The dominating deformation 

was a bending mode (Figure 12). Although the vibration amplitude was between 1 and 2 mm, which corresponds to 

1 10⁄  of the seal diameter, the vibrations were clearly to hear and to feel on the upper part of the gate. Overall, the 

vibrations described in chapter 3.2 could be reproduced. It is unclear if this effects the gates steel construction, but an 

elastic fatigue of the seal is probable. It can be concluded, that J-seals should only be used at hydraulic gates where 

no gap flow occurs, such as flood barriers or lock gates that open and close only when the water levels are equalized. 

Leakage should be omitted in any case. At weirs, valves or gates with underflow, flat rubber profiles are preferable as 

mentioned in many recommendations (Petrikat 1980, Naudascher and Rockwell 1994, U.S. Army Corps of Engineers 

2000, Lewin 2008).  

 



 

 

       

Figure 12: Highest (left) and lowest point (right) of the vibration cycle of a J-seal. The diameter of the note head is 12 mm. 

 

Table 1: Vibration occurrence of a J-seal with head diameter d = 17 mm at different opening width. 

s [mm] 16 21 26 31 36 41 46 51 

s / d 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

Vibration y / n n n y y y y n n 

Table 2: Vibration occurrence of a J-seal with head diameter d = 12 mm at different opening width. 

s [mm] 10 15 20 25 30 35 40 

s / d 0.8 1.3 1.7 2.1 2.5 2.9 3.3 

Vibration y / n n n y y y n n 

5. Numerical Simulation of Elastic Seals 

For the numerical solving of FSI problems, it is possible to use two standalone solvers for the fluid and for the solid 

region. On the interface of the two regions, there has to be an information exchange between the solvers. In every time 

step, the pressure and velocity field in the fluid region is solved. The pressure and viscous forces on the interface are 

set as external forces on the solid region and the deflection of solid region is solved. The mesh is moved to fit according 

to the solid deformation and the loop starts again. This is repeated until the fluid velocity and the solid deflection rate 

on the surface are equal. Then the next time step starts. This method is called partitioned approach and is used in the 

solver package fsiFoam that can be included in OpenFOAM, a widely used open source software for computational 

fluid dynamics. OpenFOAM applies the Finite Volume Method (FVM) to both the fluid and solid solver. Since the 

coupling tends to be unstable for various conditions (e.g. small ratios of solid and fluid density) (Banks et al. 2014) 

and the coupling is very expensive, FSI is seldom used in real-world application and more a topic of research and 

development. 

Numerical simulations can be useful to understand the mechanisms of flow-induced vibrations, as shown by Göbel et 

al. (2017) for the interaction of free surface flow with an elastically supported rigid body. By means of the interaction 

of flow with soft deformable structures like rubber seals, first simulations were carried out on a reduced model. The 

model consists of a semicircular cross section in a flow field, a simplified shape of a J-seal with a leakage gap. Figure 

13 shows the deformation of the cross section.  



 

 

 

 Figure 13: Deformation of an elastic semi-circle in a flow field.  

The numerical experiment shows, that small scale application of FSI is possible. In general, FSI is a promising method 

for the future not only for academic interest, but also for practical purposes. Such applications can be the gap flow 

around J-seals or through small openings of underflow gates. Future goals will be the transfer on large scale models 

including free surface flow, such as the elastic deformation of hydraulic gates with over- and underflow. This would 

be not only beneficial for the hydraulic design, but also for the structural design of the gates. Additional dynamic loads 

are influencing the fatigue life and can be predicted using numerical models. 

6. Conclusion 

Despite of remarkable research in the last decades, flow-induced vibrations still cause problems in hydraulic 

engineering. In particular, seal vibrations are a wide spread phenomenon at existing but also at new hydraulic 

structures. In this contribution, examples of seal and gate vibration are described and the excitation sources detected. 

The difference between gate and seal vibrations is decisive for the remedy procedure. 

 

The vibration mode of a J-seal was studied in a laboratory experiment. While other authors assumed an ovalling mode 

of the J-seal head, it could be observed that the J-seal moves more in a bending mode. The understanding of this 

phenomenon is helpful to design seal constructions which fulfill tightness, adaptability and vibrations safety. It is also 

shown, that FSI Simulation can be a tool to investigate FIV.  

Against the background of increasing vibration incidents on German waterways, a research and development project 

was initiated at the BAW, in order to analyze the different vibration causes by measurements on site and by the use of 

numerical models. The aim is also to improve the current construction standards. 
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