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Abstract 

This paper discusses the development of a portable suite of benchmarking pro ­
grams for parallel computers. Comparative measurement of the performance of paral­
lel computing systems has been limited because of the great diversity of architectures 
and of processor interconnection schemes. One solution is to translate benchmark 
codes into a consistent and portable parallel language. This paper reports on progress 
in developing such a portable suite of benchmarks. An extensive introduction to par­
allel computing is included as an appendix, to provide a thorough understanding of 
the factors complicating development of the performance suite. Key to the develop­
ment was the use of p4, a library of tools developed at Argonne National Laboratory. 
The benchmark codes were translated successfully using p4 and were run on a variety 
of parallel machines. Conclusions and suggestions for future work are given. 
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1 Introduction 

Parallel computers have enabled researchers to attack larger and increasingly 

more complex problems. At the same time, the diversity of parallel architectures has 

made it important to know which computer is best suited for a particular problem 

class. Unfortunately, no standard benchmarks exist to compare the performance of 

parallel computers. 

1.1 Project Goals 

The objective of this performance evaluation project at Argonne National Lab­

oratory is to create a suitable benchmark for parallel computers. The goal is to 

standardize existing programs, thus allowing identical source code to be compiled 

and run on different parallel machines. 

1.2 Approach 

Several programs exist that could serve as a suitable benchmark across architec­

tural boundaries-if the programs were made portable. At Argonne, the focus was 

on the Perfect-Seismic codes, a subset of the Perfect-II codes that performs seismic 

processing. The goal of the original developers of Perfect-II was to provide support 

for three models of parallel processing: Loop-level parallelism, Fortran 90, and mes­

sage passing. To date, however, only sequential programs written in Fortran 77 have 

been completed. My task was to translate these programs into a consistent parallel 

language based on message passing. 

The word translate is important here. The intent of this project was not to create 

new codes but to parallelize and standardize existing software. 

Key to this work was the use of p4, a library of macros and subroutines developed 

at Argonne for programming parallel machines. With p4, I prepared parallel versions 
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of the codes on a network of workstations and then ported the codes to several parallel 

machines. 

1.3 Scope 

Perfect-II comprises three applications: SEIS (pre-stack seismic processing), FD­

MOD (3D finite-difference modeling), and FKMIG (3D Fourier domain migration). 

Because FKMIG is already being parallelized by other researchers, the project at 

Argonne focused on SEIS and FDMOD. 

The target machines used for the parallel work were as follows: 

Intel iPSC/860 A local-memory, 8 node hypercube at Argonne. A 64 node iPSC/860 

at Caltech is also available over the Internet. 

Intel DELTA, with 512, nodes at Caltech. The DELTA is connected in a mesh and 

capable of scaling to 2048 nodes. 

Sequent Symmetry shared-memory multiprocessor at Argonne, with 26 nodes. 

BBN TC-2000 shared-memory multiprocessor, with 45 nodes, at Argonne. Memory 

is local to individual nodes but is treated as shared. Remote access to memory 

can be accomplished via a butterfly switch. 

Alliant FX/2800 shared-memory, 28-node multiprocessor at Argonne. Their Fortran 

77 compiler is instructed to parallelize standard code, automatically looking for 

loop parallelizations. 

). 

Kendall Square KSR-1, 64-node multiprocessor at Oak Ridge National Labora-

tory. Memory is physically distributed but treated as shared. The nodes are 

connected in stacked 32-node rings. 
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Thinking Machines CM-5, with 512 nodes, at University of Illinois Urbana-Champaign. 

In this local memory machine, nodes are connected by a fat-tree topology where 

the bandwidth is the greatest at the root of the tree. 

nCube 6400, with 192 nodes, at MIT. This is a local memory machine in a hypercube 

topology. 

IBM SP-1 with 32 nodes at Argonne. This machine is a local memory architecture, 

with each node containing the same processor as their RS6000 workstations and 

128MB of RAM. 

This list comprises the major participants in parallel supercomputing. The ar­

chitectures include shared-memory machines, local-memory machines, and hybrids 

(such as the KSR-1, which physically has a distributed memory but acts as a shared­

memory machine) . The interconnection scheme describes how nodes, memory, and 

I/O modules are connected. In this group are found shared buses, hypercubes , mesh 

topologies, and butterfly switches. Given the fundamental differences in architecture, 

running the same program on each platform represented a major challenge. 

1.4 Plan 

This report is organized as follows. Section 2 gives a brief review of parallel 

processing. Section 3 discusses p4 and the visualization tools that facilitated parallel 

program development. Section 4 presents a brief look at benchmarking in general 

and the Perfect benchmark suite in particular. Section 5 details the work on the two 

codes FDMOD and SEIS performed at Argonne; included are some of the problems 

encountered and results obtained. Also discussed is future work needed before this 

parallel benchmark is fully usable. Finally, Section 6 draws conclusions about the 

project and the benchmarking of parallel computers. Appendix A provides a much 
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more lengthy review of parallel processing, to illustrate the great diversity of parallel 

architectures, network configuration, and program models and, thus, underscore the 

challenges to developing a standard, portable benchmark suite. Appendix B contains 

the Argonne Technical Report written by the author which will be distributed with 

the actual benchmarking codes. 

2 Parallel Computers 

While all urnprocessors function under the von Neumann architecture (fetch, 

decode, execute) there exists no underlying standard for parallel machines. As man­

ufacturers have taken different hardware approaches to parallel processing, the fun­

damental workings of varying multiprocessors can be quite different. A very brief 

overview of parallel processing will be given here. 

Of today's multiprocessers, most fit into one of two broad classes depending on 

the mode of communication between processors. Shared memory machines consist of 

processors and a single common memory. Communication occurs via shared variables, 

with each processor accessing the shared variable when information is needed from 

another processor. While programming shared memory multiprocessors is relatively 

straight foreward and syncronization and communication costs are relatively low, 

problems arise when more than one processor tries to access a shared variable. 

Local memory multiprocessors have no shared memory, but rather a private local 

memory attached to each processor. Communication then takes place through explicit 

message passing. This requires carefull programming and is very slow. However local 

memory machines are much more economical and scale more easily, hence most new 

machines are of the local memory architecture. 

Because of the low overhead of communication, shared memory machines tend 

to exploit fine-grain parallelism. This would be represented by sending independent 
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statements in a function to different processors. The time required to send messages 

in a local memory machine encourages coarse-grain parallelism. Commonly whole 

programs are run in parallel, with each processor having its own copy of the program 

and communicating only rarely with another processor . 

Many different methods have been used to physically connect processors, I/0 

processors, and memory. Among these are the Shared Bus, which uses a single com­

munication path between nodes , Crossbar-Switch Matrix, in which each node is con­

nected to every other, and the Hypercube, where large numbers of processors are 

connected relativ ely cheaply. 

Since very different programming models are used for different multiprocessors, 

no single programs have been run on different classes of parallel computers. Bench­

marking has been difficult and inaccurate, and no guidelines have been available on 

which to base conclusions as to the merit of one system over another . 

3 p4 

The diversit y of machines and of parallel programming models motivated the 

developme r:t of the p4 system at Argonne National Laboratory in the 1980's. The p4 

system is a library of macros and subroutines for programming parallel machines. It 

grew out of the effort described in the book Portable Programs for Parallel Proces­

sors [4], from which p4 takes its name. One may think of p4 as an extension to C 

or Fortran, since it consists primarily of C functions that achieve process communi­

cation and ynchronization. Because a Fortran interface is provided, C and Fortran 

programm ers need not learn a completely new language. 

3.1 Po rtability 

An im portant virtue of p4 is portability. It started out as simple macros used 

to change parameters in function calls, depending upon the machine for which the 
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program was being compiled. Since many message-passing primitives work in a similar 

fashion and all that might be required is the inversion of some function parameters, 

this worked well. Now, however, this has grown into what must be deemed as a new 

language. The authors determined what philosophy should be used in programming 

parallel machines and then wrote the abstract p4 function calls required to accomplish 

it. Because portability was an original motivating factor, support for many new 

architectures were included; currently, 24 platforms are supported. 

The portability of a p4 program is easily achieved. Specifically, any p4 program 

that runs on one architecture requires only a recompilation on a new architecture to 

run in the new environment. Of course, various machine-specific flags must be set at 

compile time; but the source code can be used without modification. 

The p4 library frees programmers from the specific details of parallel program­

ming. By using abstracted function calls, the details of the interface to the machine 

may be ignored . 

3.2 Models Supported 

The p4 system supports three programming models: Shared memory, message 

passing, and cluster programs. To develop programs in a shared-memory environ­

ment, p4 had to develop a scheme to protect shared variables. This is done by use of 

monitors. A monitor protects shared modifiable data by allowing only one processor 

at a time access to that data. A look at the specific monitors provided by p4 will 

evidence the success of abstracting communication constructs from the hardware re­

quirements to a logical level. A simple LOCK monitor may be used to protect a critical 

section of code containing a shared modifiable variable. The BARRIER monitor forces 

some number of processors to wait until all of them have reached a certain point. 

This represents a simple way to achieve process synchronization. The GETSUB mon­

itor is used to obtain the next value of a shared counter (the next subscript for an 
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index variable). The ASKFOR monitor functions like a general dispatcher of work. It 

requests a new "problem" to work on from the problem pool. With this flexible array 

of functions to manage shared variables, efficient shared memory programs may be 

written in p4. 

The p4 system supports a set of send/receive procedures to accomplish message 

passing. These procedures are "generic" in the sense that they do not know whether 

a message must travel across a network or through shared memory or via some other 

mechanism. When a processor requires a reference to a variable not located in its 

own memory, it sends a message to the owning process. That processor will fetch the 

data and then send a message back with the requested data. Also, p4 provides several 

mechanisms for dealing with all processes at once, such as a broadcast of information 

that goes to all processors. 

Special cluster management functions are included in p4. Once a cluster is orga­

nized, regular monitors are used for the processes within that cluster. One process 

per cluster will be designated the cluster master and will be responsible for all inter­

cluster communication. Normal p4 message-passing routines are used for this message 

passing, with the restriction being that only cluster masters may send or receive mes­

sages. 

3.3 Alog 

Distributed with p4 is a set of routines for creating logfiles, called Alog. The 

created logfiles consist of time-stamped events. The timestamps are obtained from 

various microsecond-level resolution timers, depending on the specific machine. 

To use Alog, users simply need to call the Alog initialization functions before any 

event is logged and then define the type of event to be logged. The only step left is 

to place a logging call at important areas of execution. 
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On networks of workstations and some distributed memory machines, the mi­

crosecond timers on the various processors are synchronized. To produce a usable 

merged logfile, a program has been included to adjust the timestamps for offset and 

drift before they are merged. 

3.4 Upshot 

While not included with the distribution of p4, Upshot may be freely obtained for 

use with p4. Upshot was designed to examine Alog produced logfiles and to produce a 

visual representation of parallel program behavior. To increase the usefulness of such 

data, the user may define certain events to mark entrance and exit into states. With 

the combination of Alog and Upshot, programs may be more easily understood; and 

new insight may be gained as to the workings of a particular program. Figure 1 shows 

a typical view of upshot, with the states clearly discernible by different patterns. 

4 Benchmarking 

The discussion of parallel machines in Section 2 raises several questions: Which 

machine gives the best performance? Does performance depend on the class of appli­

cation? What types of problems scale easily? The answers to these questions depend 

on the availability of accurate benchmarks. 

Benchmarks are programs that measure the performance of computers. When 

performance is measured, judgments as to the effectiveness of various architectures 

and configurations may be made. Kuck and Sameh [1] identify three basic purposes 

for using benchmarks to evaluate existing machines: 

1. Selecting a new machine, 

2. Tuning of an existing system, and 
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3. Determining which strengths to incorporate and which weaknesses to avoid in 

the design of a new machine. 

Benchmarks can be divided into two categories: Kernel and application. Kernel 

benchmarks, by far the older and more widely used, employ a small set of compu­

tationally expensive loops to compare machines. Application benchmarks compare 

machines by running whole applications, not just fragments of code. Since application 

benchmarks run complete programs, they give more reliable performance estimates. 

Unfortunately, while standard benchmarks exist for sequential processors, such 

as the LINPACK [3] libraries developed at Argonne National Laboratory and used 

for measuring :floating-point performance, no comparable standard has emerged for 

parallel processors. This situation makes performance comparisons very difficult, 

because different parallel architectures are believed to be suited for different problems. 

A suite of parallel programs that is easily portable to a wide selection of architectures 

is needed. These machines may then be compared, using the same standard. 

4.1 Perfect-I 

Motivated by this need and guided by a proposal of Kuck and Sameh [1] to create 

a benchmarking suite, academic and industrial collaborators initiated, in 1987, the 

Perfect (Performance Evaluation for Cost-Effective Transformations) benchmarking 

group. The goal was to produce a large number of applications that could be used in 

performance evaluation and could be ported to a large number of high-performance 

computing machines [2]. 

This effort culminated in 13 programs representing a variety of scientific and 

engineering problems. The codes were successfully ported to over 30 machines. This 

effort proved to be the first systematic solution to the problem of benchmarking 

parallel machines. 
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4.2 Perfect-II 

Supercomputers have matured tremendously in the years since 1987, when the 

Perfect-I benchmark was being developed. The relatively smallness of the datasets 

and other problems made it less useful for benchmarking high-end parallel machines. 

The Perfect-II was introduced to provide a better benchmarking suite. Perfect­

Seismic, a subset of Perfect-II with all codes relating to seismic processing, was the 

first to actually be included in Perfect-II. 

The Perfect-II suite contains three applications. The first, SEIS, performs 

prestack seismic processing . An originating process reads seismic traces, which are 

then piped through a chain of data processing routines. A final process writes the 

processed traces out to disk or tape. The initial release of SEIS includes the following 

processes [3]: 

DCON - seismic trace deconvolution 
DGEN - synthetic data generation 
DMOC - dip moveout correction 
FANF - 2D spatial filtering by Fourier transform 
GEOM - seismic geometry specification 
NMOC - normal moveout correction 
READ - read seismic benchmark file 
RTMG - reverse time finite difference migration 
STAK - stack seismic traces 
WRIT - write seismic benchmark file 

A processing flow would include process "READ" to input the initial parameters, one 

or more of the processing routines, and then process "WRIT" to capture the output. 

The second program, FDMOD, performs 3D finite difference modeling. This 

forward modeling is accomplished with the acoustic (scalar) wave equation. 

The final program, FKMIG, accomplishes 3D Fourier domain migration. Multi­

dimensional Fourier transforms are used to obtain images of geologic structure from 

recordings of pressure on the surface of the earth. 
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As noted in Section 1.2, the initial release of Perfect-II was supposed to support 

three models of parallel processing: Loop-level parallelism, Fortran 90, and message 

passing. However, only sequential programs written in Fortran 77, suitable for auto­

matic loop parallelization by the specific compilers, were included. Neither Fortran 

90 array syntax nor message passing was supplied. 

Two institutions have recently undertaken an effort to complete the work on 

Perfect -Seismic. A group at Dartmouth College is translating FKMIG, and Argonne 

is translating FDMOD and SEIS. 

5 The Argonne Project 

The project involved several steps: 

1. Learn how to use p4 for translating from standard Fortran 77. 

2. Master the Alog and Upshot visualization tools provided by p4 for displaying 

the parallel behavior of codes. 

3. Translate FDMOD and SEIS into p4. 

4. Port each program to eight parallel machines. 

5. Document the results. 

The first two steps required writing simple programs in C (since p4 is written in 

C with a Fortran 77 interface), experimenting with the various logging features of p4, 

and studying the users manuals for the Perfect-Seismic benchmarks. The remaining 

steps were done separately for the two codes, FDMOD and SEIS. 
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5.1 FDMOD 

FDMOD was selected to be first because the author had already written a 

parallel version that used the message-passing functions specific to the Intel machine. 

Initial attempts to run the parallel code on the Argonne iPSC/860, however, 

uncovered the fact that the code had many bugs. These ranged from simple errors, 

such as the wrong number of parameters passed to a subroutine, to very subtle errors, 

such as having two similar variables transposed in a formula. Over a week passed 

before the (supposedly) correct code was running. The rough structure, coupled with 

the many errors, made this version seem to be an unfortunate basis for creating a 

new message-passing version in p4. 

Fortunately, Argonne was able to obtain a message-passing version being devel­

oped at MIT for the nCUBE machine, with the message passing being organized 

either through nCUBE calls or what were called p4 wrappers. These wrappers were 

actually functions that used p4 to accomplish nCUBE calls. This version was, of 

course, not portable; but it was closer to what could be set up as a message-passing 

standard, and the code was much cleaner. 

Translating the MIT code to p4 proved to be much easier than working on the 

author's parallel version for two reasons. First, the code was written in a much more 

modular fashion, with the program flowing more naturally. Second, p4 had been used 

in the code already. Again, a complication did arise: p4 had been used to rewrite the 

nCUBE calls, contrary to its intended purpose; nevertheless, the effort now focused 

on fixing misused p4 calls rather than porting to a totally new language. 
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With the code successfully running on a network of workstations, the port to dif­

ferent architectures began. Specifically, this involved (1) taking an exact copy of all 

files from the network to the target architecture, (2) setting the machine-specific com­

pile and linking flags correctly and (3) learning the procedure for running programs 

on each machine. 

The work on FD MOD proceeded relatively smoothly. The same source code was 

used successfully on the Intel DELTA , the Intel iPSC/860, the Sequent Symmetry, the 

BBN TC-2000, the Alliant FX/2800, the nCUBE 6400, Kendall Square Research's 

KSR-1, IBM's SP-1, and IBM 's RS6000 and Sun's Spare workstations. The CM-5 

has proven difficult and has not yet been run. 

Even without a successful run on the CM-5, however, this work shows the remark ­

able portability of p4. To provide a consistent measuring stick, the same benchmark 

program can be run on widely varying architectures. Although the focus has been 

to provide the basis and method for parallel benchmarking, actual timed runs have 

been made; and the results are summarized in Table 1. The row headings are the 

different architectures timing runs were attempted on. When a machine might use 

either shared memory or message passing ( unix sockets) the specific memory access 

methods is specified. The column headings give the number of processors and the 

size of the problem. For example, the second column tested two processors with a 

problem size of 70 test points per side for a cube. The times are in seconds. 

5.2 SEIS 

SEIS performs many processes, which may be run in varying order, on a stream 

of seismic traces. The code is far more complex than FDMOD, with many more 

subroutines used and a separate directory of utility functions. 

The author of this code, Charles Moser, had constructed a message-passing paral ­

lel version that is specific to the Intel machines. To help manage such a large project, 
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T bl 1 FDMOD .. a e timmg resu ts 
Machine 1 (50) 2 (70) 4 (80) 8 (110) 16 (130) 
Sun 3.08019 7.63494 7.20896 30.8019 
nCUBE 4.25984 5.76716 4.32537 8.65075 6.02931 
iPSC/860 1.83700 2.30100 1. 75500 2.36000 
DELTA 1.64100 2.21900 1.69300 2.35100 2.23900 
KSR- SM 2.73999 3.96000 3.31999 4.29999 4.01999 
TC-2000 - SM 28.785 75.536 86.546 104.41 103.019 
TC-2000 - Sock 28.785 97.297 115.75 392.09 1050.85 
FX/2800 - SM 4.56 5.68 4.95 8.51 8.07 
FX/2800 - Sock 4.56 6.98 8.97 
Symmetry - Sock 42.86 116.050 
CM-5 
RS6000 3.96799 7.03999 12.2880 34.1759 
SP-1 .639999 1.15199 2.55999 31.2320 42.3680 

he put the separate processes into two library archives: One for routines specific to 

SEIS and one for more general seismic-processing subroutines. The rules to compile 

and link SEIS are very general but include a separate file for incorporating machine­

specific options. This approach simplifies the code by keeping all machine-specific 

variables in one place. 

Nevertheless, even with this careful management, SEIS proved difficult to trans­

late to p4. Not only was the code very large, but several C functions had been 

included. These provided C functionality but introduced many non-standard For­

tran 77 programming practices. The first task, then, required eliminating these C 

functions from the code. This was done, with the exception of one C function. 

SEIS requires many machine-specific capabilities, such as archiving and retriev­

ing libraries. Because of the extra time required to complete each move to a new 

architecture, ports were carried out only to a select subset of parallel machines. In 

particular, since Sequent, BBN, and Alliant are all out of the scientific computing 

arena (BBN and Alliant are out of business, and Sequent now works only with com­

mercial parallel computing), ports to those platforms were not attempted. 
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a e 1mm T bl 2 SEIS t' . lt , resu s 
Machine 1 (Sl) 1 (S2) 2 (Sl) 2 (S2) 4 (Sl) 4 (S2) 8 (Sl) 8 (S2) 
Sun 1.20.1 41.47.1 57.9 43.02.8 0.47.8 18.47.0 0.47.9 10.01.1 
iPSC/860 1.36.9 5.12.5 1.31.9 10.45.5 2.41.9 8.12.1 
DELTA 1.29.5 4.14.0 1.29.8 3.40.8 0.46.0 4.42.8 1.02.2 4.45.0 
RS6000 2.42.0 2.14.4 1.20.8 1.11.9 1.15.1 1.26.6 0.55.5 1.40.2 
SP-1 0.26.6 0.20.9 0.20.1 0.19.4 0.27.8 0.24.0 0.32.8 0.43. 7 

To date, SEIS is running on networks of both Spare and RS6000 workstations, 

the Intel iPSC/860, the Intel DELTA, and IBM's SP-1. Efforts are being made to 

test the newest version of p4 to use in the port to the nCUBE, KSR-1, and FX/2800 . 

Th ese timing results may be examined in Table 2. The column headings give the 

number of processors and which of the two example data sets was used (Sl or S2). 

Tim es are reported in seconds . 

5.3 Future Plans 

With some careful work on SEIS, it may be possible to remove the final C 

function. This would standardize the code considerably by removing a function that 

accomplished a non-Fortran 77 operation. A script to run on each architecture would 

prove helpful to anyone using the code. 

Documentation is also essential. Currently, a document is being prepared that 

explains the methods used in the new p4 versions of the code. It contains brief 

explanations of both SEIS and FDMOD, the directory structure required, and notes 

for running on each of the architectures used. This document is targeted at someone 

unfamiliar with the Perfect-II codes who wishes to run the message-passing suite. 

Finally, the work on FKMIG being done at Dartmouth must be incorporated 

into the Argonne work; and the message-passing versions will then be standardized 

and portable. 
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6 Conclusions 

The work at Argonne marks an important step in the development of effective 

portable benchmarks for parallel systems. This work was aided considerably by the 

use of p4. 

Nevertheless, the Perfect-II benchmark effort is just a first step. If parallel com­

puters are to reach the processing speeds predicted, much more work needs to be done 

in the area of performance evaluation. Without a way to judge relative performance 

by different architectures, it is difficult to suggest realistic design improvements or 

to guide application programmers in the use of specific machines for specific problem 

classes. Only through careful notice of the merits of differing hardware and soft­

ware models can systems designers and programmers learn to exploit more powerful 

systems. 
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A Parallel Computers 

Parallel processing requires two or more processors, each capable of completing 

tasks independently and concurrently. Many advantages spur this revolution onward. 

First, parallel processing is a more natural way of solving some problems than is 

traditional sequential processing. In order to achieve very high processing speeds, 

it may be cheaper to link together several relatively slow processors than to invest 

in ultra-high speed uniprocessors. Fault tolerance is increased. ARPA (Advanced 

Research Projects Agency) has funded the development of several parallel machines 

and languages through the Strategic Computing Initiative (SCI). 

Operating systems are important examples of concurrent systems. Air traffic 

control systems, mission critical systems, and real -time process control systems (such 

as those that control gasoline refineries, chemical manufacturing plants, and food 

processing plants) are other examples of processes that require parallel processing to 

achieve sufficient speed of execution. 

Parallel processing does, however, bring about unique difficulties. Program logic 

is harder to follow for people trained to think in a linear fashion. It is difficult and 

time consuming to determine what activities can and cannot be performed in parallel. 

Parallel programs are much more difficult to debug than sequential programs. After 

a bug is supposedly fixed, it may be impossible to reconstruct the sequence of events 

that exposed the bug in the first place, so it would be inappropriate to certify, in some 

sense, that the bug has actually been corrected [6]. Since exhaustive debugging may 

not be possible, proving program correctness may become the standard for developing 

highly reliable, large-scale software systems [7] [8]. 
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A.1 Flynn's Taxonomy 

The past decade has witnessed a flood of parallel architectures. To assist in the 

classification of these computers, Flynn categorized machines by the number of in­

struction streams and data streams utilized [9]. The number of instruction streams 

includes only unique streams. For example, two processors executing the same in­

structions would be counted as a single instruction stream computer. However, the 

number of data streams includes all data being manipulated or simply the number of 

processors working (because each processor will be working on its own data stream). 

While Sillicorn [10] has extended this taxonomy from four to 28 different classes, only 

the four major divisions given by Flynn will be explained. 

A.1.1 SISD 

Single Instruction stream-Single Data stream (SISD) processors are the most 

commonly used today. These are uniprocessor computers with one memory that 

process one instruction at a time. Figure 2 illustrates the SISD architecture, with 

P denoting the processor and M representing memory, whether that be physically 

separate or contiguous. The interconnection network connects the processor and 

memory in any fashion. 

This is essentially the von Neumann architecture, based on the original ideas of 

John von Neumann. For the basis of comparison, consider the following loop: 

for (i=1; i<=n; ++i) 
c(i) = a(i) + b(i); 

which might be converted into the following single instruction and data streams: Each 

line following down vertically indicates one time step, with the instruction stream 

following under the header of "Processor", and the data stream occurring as the 

arguments to each instruction. 
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Figure 2: Uniprocessor Architecture 

i = 1 LDA R1, a(1) 
LDA R2, b(1) 
ADD R3, R2, R1 
STD R3, c(1) 

i = 2 LDA R1, a(2) 
LDA R2, b(2) 
ADD R3, R2, R1 
STD R3, c(2) 
I I I 
I I I 

i = n LDA R1, a(n) 
LDA R2, b(n) 
ADD R3, R2, R1 
STD R3, c(n) 

As time proceeds, only one instruction can be carried out during each instruction 

cycle. Instructions are carried out upon the first element of the arrays, and then the 

process is repeated for the next corresponding element until all are processed. 

A.1.2 SIMD 

Single Instruction stream-Multiple Data stream (SIMD) machines employ mul­

tiple processors and, thus, multiple data streams; but each is performing the same 
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Control unit 
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M M M M 

I Interconnection Network ~ 
Figure 3: Array Processor Architecture 

operations or using the same instruction stream. Both array processors and vector 

processors are commonly considered SIMD machines. 

Array Processors An array processor contains multiple processing elements (PE's ), 

which can be thought of simply as a processor and memory. One control unit broad­

casts instructions simultaneously to all PE's. (See Figure 3. ) Each PE receives 

the same instructions and operates on the date in its memory. While the individual 

processors may be relatively slow, the speed comes in the sheer number of proces­

sors available to work. For example, the Thinking Machines CM-2 utilized 65,536 

processors in parallel. 
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The for loop from the prev10us example will demonstrate this method. The 

various processors are labeled Pl though Pn, with the instructions again following 

under the processor number and instructions on the same horizontal line occurring 

at the same time. 

Pi P2 Pn 
LDA R1, a(1) LDA R1, a(2) LDA R1, a(n) 
LDA R2, b(1) LDA R2, b(2) LDA R2, b(n) 
ADD R3, R2, R1 ADD R3, R2, R1 ADD R3, R2, R1 
STD R3, c(1) STD R3, c(2) STD R3, c(n) 

The same instruction stream is being broadcast to every processor, and each processor 

works only on its own data. 

Vector Processors The other SIMD architecture , vector proce ssor, functions dif­

ferently. A vector processor consists of a control unit, one memory, and one processor 

with specialized functional units. The proper functional units are "pipelined" into a 

stream of operations to be performed on the data stream. As each unit completes 

its operation, its output is fed directly into the next unit. The parallel computation 

comes as the pipeline fills with data and each instruction in the pipeline executes 

concurrently on a different data element. Figure 4 shows the logical components of 

this architecture. 

Let us go back to the familiar loop example: 

LDA VR1, a(1:n) 
LDA VR2, b(1:n) 
ADD VR3, VR2, VR1 
STD VR3, c(1:n) 

This contains the special instructions for dealing with vector registers. The elements 

of a will begin to fill the first vector register while the elements of b will fill the 

second. Elements at corresponding positions will be added and stored. If more than 
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Figure 4: Vector Processor Architecture 

four elements exist in the input vectors, then all four operations will occur in parallel, 

with each statement working one element behind its predecessor. 

A.1.3 MISD 

The Multiple Instruction stream-Single Data stream (MISD) has not found ap­

plication in industry and is only mentioned for the sake of completeness. 

A.1.4 MIMD 

Multiple Instruction stream-Multiple Data stream (MIMD) processors are capa­

ble of truly independent parallel operation. Each processor may function fully and 

communicate with other processors in different ways. Just as SIMD architectures 

may be naturally subdivided, MIMD machines are most correctly classified as either 

shared-memory or local-memory machines. 

Shared Memory Shared-memory machines consist of multiple processors con­

nected to one common memory, and may be represented as in Figure 5. Any memory 
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Figure 5: Shared-Memory Architecture 

address is directly accessible for any processor. Because of this, programs may trans­

parently access any address, without special concern as to the position of data in 

relation to the operating processor. Inter-process communication is very fast. The 

main pitfall for this method comes when shared data may be changed by any pro­

cessor. If two processes try to modify the same data, each will write the new result. 

This and similar operations result in errors and require special precautions. To pro­

tect this shared modifiable data, schemes must be developed to ensure that each 

process needing the data is given exclusive access. 

When considering shared-memory multiprocessors, many advantages become evi­

dent. Shared-memory models are perhaps the easiest to program, since any processor 

may access any memory location. The oldest parallel architectures are shared mem­

ory, so the programming environment is mature. Finally, although the memory is 

physically shared, it can mimic other architectures. Some disadvantages include the 

difficulty to scale bus-based machines beyond about 25 processors. Also, methods 

must be devised to ensure mutual exclusion of shared modifiable data. 
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Figure 6: Local-Memory Architecture 

The for loop would look similar for both models of MIMD machines. It is apparent 

that each processor is following a unique instruction and data stream. 

Pi P2 Pn 
LDA R1, a(1) LDA R2, b(2) STD R3, c(n-1) 
LDA R2, b(1) ADD R3, R2, R1 LDA R1, a(n) 
ADD R3, R2, R1 STD R3, c(2) LDA R2, b(n) 

STD R3, c(1) RTJ LABEL ADD R3, R2, R1 

Local Memory Unlike the shared-memory model, where a node is simply a pro­

cessor, the node in a local-memory machine consists of a processor and memory. This 

is concisely represented in Figure 6. The memory is local to a particular processor, 

and outside references to it must be handled by passing a message to the owner of 

a particular reference. The owning processor will then access the data and send a 

message back containing the requested data. Because no data is shared, the problem 

of shared modifiable data is eliminated. 

Workstations connected by a network and working in parallel fit this model. 

Local-memory machines are very scalable, and nodes may be added in an economic 

manner. The main disadvantages to using a local memory machine are the extra 

effort required to access data and the overhead, in the way of processing time, added 

by the messages. 
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Figure 7: Shared Bus 

Hybrid Architectures Machines have been developed to overcome the problems of 

both shared- and local-memory architectures. Many have shared but not equidistant 

memory. Not enough research has been done in this area, and it remains to be seen 

whether this approach will produce the best of both worlds or simply the worst of 

each. 

A.2 Processor Interconnection Schemes 

An inportant aspect in parallel architectures is that of the processor intercon­

nect network. In shared-memory machines, every processor must have access to the 

common memory. To request information in a local memory architecture, every node 

must have a route of communication to every other node. For both types, each pro­

cessing unit must also be connected to input/output processors, control units, and 

devices and must be controlled by one operating system. 

A.2.1 Shared Bus 

The shared-bus multiprocessor organization uses a single shared communication 

path between all processors, storage units, and 1/0 units (see Figure 7). The bus is 

a passive unit, with transfer operations between functional units controlled by bus 

interfaces on the units themselves. Ethernet local area networking uses this simple 

scheme. 

The processor or 1/0 processor wishing to transfer data must check the avail­

ability of the bus and the availability of the destination unit and must initiate the 
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actual data transfer. The receiving units must be able to recognize which messages on 

the bus are addressed to them, and they must interpret and acknowledge the control 

signals received from the sending unit. Adding a new node is accomplished by simply 

connecting it to the bus. Then all that is needed is a software announcement to the 

other nodes that a new node is on the bus. 

The primary disadvantage of this organizational scheme results from the single 

communications path. The bus can handle only one transmission at a time. The 

entire system will fail ( catastrophic failure) if the bus fails. The transmission rate of 

the system is constrained by the transmission rate of the bus. Contention for the use 

of the bus in a busy system will degrade performance. 

A.2.2 Crossbar-Switch Matrix 

To circumvent the shared bus problems, a separate path can be added for every 

processor by increasing the number of buses, as shown in Figure 8. This method, 

the crossbar-switch matrix, can support simultaneous references to every storage unit 

without blockage. Certainly the crossbar-switch is the best-performing interconnec­

tion scheme. 

The hardware to build such a switch, however, becomes increasingly complex as 

nodes are added. The switch must be capable of resolving conflicts for the same stor­

age unit. Cost of the switch will increase as the product of the number of functional 

units and the number of storage units, effectively making this method inadequate for 

massively parallel systems. 

A.2.3 Multistage Networks 

In this compromise of the crossbar-switch matrix, multistage networks achieve 

good performance at a lower complexity. In this scheme, processors are connected 

to switches or "hubs", which are then connected to other hubs or switches. This is 
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Figure 8: Crossbar 

similar to the system used in the airline industry, which does not support flights from 

every destination to every other. Most flights from less-used locations are routed to 

a hub and from there to another hub or the final destination. Each unit is able to 

connect with any other unit, and the complexity of the interconnection scheme is 

greatly reduced for large numbers of processors. It is termed multistage because each 

message must pass through multiple switching elements to reach its destination. 

A.2.4 Hypercube 

The hypercube interconnection network connects large numbers of processors in a 

relatively economical manner. A two-dimensional hypercube is simply a square with 

a node at each corner. A three-dimensional hypercube is formed by connecting the 

corresponding points of two two-dimensional hypercubes, in this case, a cube with 

nodes on the corners. Higher-dimensional hypercubes are formed by connecting corre­

sponding points on two hypercubes of the next lower dimension. Figure 9 sketches the 

several smaller dimensional hypercubes. Nodes reside at the endpoints of each solid 
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Figure 9: Hypercubes 

line, with dotted lines connecting corresponding nodes. The savings of connections of 

this method can be easily seen in an example . For 8 nodes, a three-dimensional cube 

is used. A node can communicate with any other node via, at most, 3 connections. 

At the highest end of practical use, the CM-2 uses a 16-dimensional hypercube that 

supports 65,536 processors, with each being, at most, 16 connections from another. 

A.3 Detecting Parallelism 

Parallel detection is one important research possibility. This can be done by 

the programmer, language translator, hardware, or the operating system [11]. The 

shared memory model may use explicit or implicit parallelism . Explicit parallelism is 

indicated by a programmer using a concurrency construct such as cobegin/ coend, as 

follows: 

cobegin 
statement-1; 
statement-2; 

statement-n; 
coend 

In a multiprocessing system , one processor would be assigned to each statement. 

Explicit parallelism is time consuming for the programmer, and the programmer may 
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include statements that are not truly independent of each other. The real hope in this 

area lies in implicit parallelism, or parallelism intrinsic to the algorithm. Compilers, 

operating systems, and computer hardware may be used to exploit this parallelism. 

A.4 Granularity 

The size of the tasks to be completed in parallel is referred to as its granularity. 

Fine-grained tasks include parallelizing individual assignment statements. Coarse­

grained tasks consist of entire subroutines being executed in parallel. 

A.4.1 Speedup and Efficiency 

To determine the effect of adding processors to an effort, measure of the speedup 

and efficiency prove valuable. Speedup is defined as the time required to complete a 

program, using one processor divided by the time required using n processors. Perfect 

speedup is obtained when a program runs n times as fast when using n processors. 

Efficiency is defined as the speedup divided by the number of processors. Perfect 

speedup will result in 100 percent efficiency. Below is an example of 5 processors 

executing a program in 25 milliseconds; the program required 100 milliseconds when 

executed on one processor. The speedup and efficiency can be determined as shown. 

A.4.2 Fine Grain 

100 
Ss = - = 4 

25 

4 
Es= - = 80% 

5 

Directing fine-grained parallelism would be tedious and difficult. Luckily, the 

compiler is responsible for it. To achieve fine-grained parallelism, the compiler breaks 

individual statements into independent pieces and runs them concurrently. 
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Loop Distribution Often the statements within a loop are independent of each 

other. In such a case, one processor could be assigned to each iteration of the loop. 

The following statement 

for (i=O; i<3; ++i) 
a [i] = b [i] + c [i] ; 

would become 

cobegin 
a[1] = b[1] + c[1]; 
a[2] = b[2] + c[2]; 
a[3] = b[3] + c[3]; 

coend 

With n processors available, the time to execute such a loop with up ton elements 

is simply the time needed to calculate one element. In this way, data parallelism can 

be taken advantage of by true hardware parallelism. 

Tree-Height Reduction Using rules of precedence, a processor may reorder an 

equation and indicate processes that may be executed concurrently in the object 

code. Often, a unique and sequential ordering is not needed. Using the rules of com­

mutativity, associativity, and distributivity, compilers may rearrange expressions so 

that they are more amenable to parallel computation. Using the associative property 

of addition, the expression ((p+q)+r)+s) may be changed into (p+q)+(r+s), which 

can be solved in fewer time steps because the first two additions may be carried out 

independently. The first equation requires three instruction cycles (from the three 

tree levels) while the second requires only two. 

Using commutativity, p + ( q * r) + s goes to (p + s) + ( q * r ), which again reduces 

from three levels of execution or dependence to two. 

Finally, using distributivity, p * ( q * r * s + t) becomes (p * q) * (r * s) + (p * t), 
which actually has added one more operation (five versus four) but reduced the tree 

height from four to three. 
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Never Wait A similar way of speeding mathematical computations involves the 

"never wait" rule. If a computation can be performed, it is better to do it now, even 

if it might not be valid later. If it is needed, computation is speeded. 

a= c * c; 
if (a==9) 

d = 10; 

e = d * f; 

The third statement does not rely at all on the first and may be performed in 

parallel with it . Should the second statement alter the value of d, then the third 

statement will need to be reevaluated. If d is not changed, then the third statement 

has already been performed; and the computation will complete faster. 

A.4.3 Coarse Grain 

Whole subroutines running independently and concurrently exhibit coarse- or 

large-grained parallelism . This is the typ e of parallelism employed by all MIMD 

machines. Becaus e of the time wasted for communication, the larger the task to be 

performed in parallel, the faster the program will complete. If too few operations are 

directed by a synchronizing communication , the program may actually slow down. 

Lusk [4] demonstrated the relative speedup and efficiency of a simple program 

which added two vectors, working element by element. Each addition was given to 

a requesting process, with the time required to complete the additions compared as 

the number of processors available was varied. The following gives the results. 

Processes microseconds 
1 2980 
2 5584 
4 7201 
8 10061 
16 16159 
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For this problem, the execution time actually increased as processors were added. 

This is a result of the extremely small granularity of the program ( one operation per 

processor request). Now, with the same program modified to artificially accomplish 

more work (the addition was repeated 10000 times), the results became 

Processes microseconds speedup 
1 5151046 1.00 
2 2682454 1.92 
4 1440593 3.58 
8 826448 6.23 
16 437237 11.78 

When the granularity was increased (the load to each processor increased) , the posi­

tive speedup was obtained. 

A.5 Programming Models 

Partly as a response to the different architectures, several different programming 

models have emerged. They differ in the level of parallelism exploited and the use of 

memory. 

A.5.1 Loop-Level Parallelism 

Automatic parallelizing compilers provide loop-level parallelism. They are used 

mainly in architectures with shared memory . While the programmer may still give 

compiler directives, the compiler is very good at parallelizing things such as the 

execution of a DO loop. The biggest problem for loop level parallelism comes from 

data dependence. This is demonstrated in the following example: 

DO !=2,N 
A(I) = A(I-1) + B(I) 

ENDDO 

Each iteration relies on the previous computation. Data dependence defines a relation 

between two statements that imposes an order in which they must be executed. This 

occurs when the same memory location is used in both statements. 
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A notable example of a machine using this model is the Alliant FX/2800. It 

was specifically designed to determine, at compile time, if iterations of a loop were 

independent and then to exploit that situation by distributing the work of the loop 

across several processors. The result was a machine that could run old programs 

not written for any parallel operation and could spread the work out to achieve faster 

solutions. While speedups may be greater in programs written for parallel processors, 

this is a relatively easy way to attain parallel computation . 

A.5.2 Shared Memory Model 

Multiprocessors with a shared memory may use almost every programming model 

discussed. However, the most natural model for them is the shared-memory model. 

Large-grained parallelism is used as processors communicate through special variables. 

As long as no processor tries to change any of these special variables, no problems 

occur. However, when even one processor tries to change one of these special commu­

nication variables (known as shared modifiable data), indeterminate situations can 

arise. Assume the shared modifible variable count = 7. In parallel two processes 

execute: 

Processor One 
count= count+ 1 

for which the assembly code might look 

Processor One 
LOA R1, count 
ADD R1, 1 
STD R1, count 

Processor Two 
count= count - 1 

Processor Two 
LOA R1, count 
SUB R1, 1 
STD R1, count 

After this sequence of calls, would the variable count contain 6, 7, or 8? 

The way to safely execute the previous example is to halt one processor while the 

other continues. Using a special lock variable, LO = O, each can safely proceed. 
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Processor One 
CALL LOCK(LO) 

count= count+ 1 
CALL UNLOCK(LO) 

Processor Two 
CALL LOCK(LO) 

count= count+ 1 
CALL UNLOCK(LO) 

A18 

Only the first statement to call LOCK will be allowed to access the variable count. 

The other will be involved in a busy wait, meaning that it will perform no useful work 

while waiting for exclusive access to the variable count. Fortran style definitions 

would look like: 

SUBROUTINE LOCK(L) 

100 CONTINUE 
IF (L .EQ. 1) THEN 

GOTO 100 
ELSE 

L = 1 
RETURN 

ENDIF 
RETURN 
END 

SUBROUTINE UNLOCK(L) 

L = 0 
RETURN 
END 

When two or more processes attempt to access the variable count, they must first 

pass through the lock. The variable LO may be changed only by the LOCK and UNLOCK 

subroutines. The first process to access LOCK will set LO = 1. While process one works 

in its critical section (the section of code containing count, the shared modifiable 

data), any other process to enter the lock will continue to loop until process one calls 

subroutine UNLOCK and releases LO. 

A.5.3 Message Passing Model 

Each processor will have exclusive access to a portion of memory with the message 

passing model. A processor may reference data in its own memory, but all other 

references must be handled by message passing. A node needing a variable from 
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another processor would first request the location from the owning processor. That 

processor would retrieve the information and then send it back to the requesting node. 

This method eliminates the need of protecting shared variables but introduces 

other problems. Most significant of these is the overhead, in the way of processing 

time, required to send messages. The overhead required, however, is proportional to 

the grain of parallelism (or the size of tasks going on in parallel). With fine-grained 

parallelism, parallelism on a small level ( such as parts of a single assignment occurring 

concurrently), the cost of message passing greatly overshadows any gain obtained 

by parallelism. The time required to send the messages to coordinate the effort 

may become greater than the time required for one processor to complete the entire 

task. However, on large-grained problems (whole subroutines working concurrently), 

the time to pass messages becomes inconsequential. In other words, when the time 

required to send the message is small compared to the task specified to be performed 

by that message, then the message itself is not a performance issue . A good example 

of this is a message indicating a whole subroutine to run. 

The reasons to use message passing are numerous. First, is the applicability 

of the code. Message-passing programs were designed to accommodate local mem­

ory architectures, but they can also be run on shared-memory architectures. For 

shared-memory machines, the shared memory is divided between the processors; and 

communication between processors then takes place only through messages. While 

shared-memory machines may run message-passing programs, local-memory machines 

may not easily run shared-memory programs. Thus, message-passing programs may 

run on the widest range of parallel architectures. 

Second, these programs run efficiently on both shared- and local-memory archi­

tectures. Message passing encourages programs that have a very large grain. Since 

each message carries a penalty of wasted time, the number of messages per block of 



Williamson A20 

directed work decreases . Also, message passing takes advantage of data locality. The 

data on which each processor will work is predominately in its own memory space. 

Finally, the template of a message-passing program is very easy to understand. 

Every node will run the same program, with one node acting as a master and all the 

remaining nodes acting as slaves. The master is responsible for user input and output 

and orchestrating the work done by slave processes. Consider the following: 

#include "includes.h" 
main() 
{ 

} 

init (); 
if (get_my_id() -- 0) 

master(); 
else 

slave(); 
cleanup(); 

The function geLmyJd() returns a unique positive integer for each processor. The 

first process to call it will become the master and enter the master() function, where it 

will usually determine the total number of processors, divide the work, and broadcast 

the needed information to all other nodes. All other processors will enter the slave() 

function and wait for instructions from the master. Any message-passing program is 

simply an expansion of the above. 

A.5.4 Cluster Model 

This software model is a combination of both the shared-memory and message­

passing models. Loosely coupled clusters of processors work together. Each processor 

within a cluster communicates through shared variables in a common memory, while 

communication among clusters is achieved by message passing. This model has not 

yet seen general acceptance, but seems to be the most plausible for the future. As 
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it becomes possible to include more than one processor on a physical chip, this pro­

gramming model will be most naturally implied by the hardware. 
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P4 Versions of the fdmod and seis Perfect-Seismic Codes 
David Levine and D. Ladd Williamson 

B Users Guide 

B.1 Introduction 

Guided by a proposal to create a benchmarking suite given by Kuck and Sameh[l], 
academic and industrial collaborators initiated the Perfect (Performance Evaluation 
for Cost-Effective Transformations) benchmarking group in 1987. The goal was to 
produce a large number of applications which could be used in performance evalu­
ation and ported to a large number of vector parallel high performance computing 
machines[2]. 

This effort was largely successful, with 13 programs representing a variety of 
scientific and engineering problems. These codes were successfully ported to over 30 
machines. This effort proved to be the first systematic solution to the problem of 
benchmarking parallel machines. 

The Perfect-2{P-2) codes are being developed to provide benchmarks of Massively 
Parallel Processing (MPP) computers. Eventually, three versions of every P-2 code 
will be included in the distribution: Fortran 77 for loop-level parallelism, Fortran 
90, and Fortran 77 + message passing. P-2 is eventually intended to encompass 
approximately 10-15 applications. Among these are the ARCO benchmarks[3], it is 
these which we are focusing on here. We are assisting in this project by providing 
p4 message passing versions that can run on most MPP machines and workstation 
networks. 

B.2 P4 

P4 is a collection of portable functions written in C to provide a basis for message 
passing[4]. A Fortran interface provides applicability for that language. The complete 
distribution of the latest version of p4 may be freely obtained by anonymous ftp from 
info .msc. anl .gov in the directory pub/p4. 

Three files must be included in the directories of each program. First, p4f .h 
declares certain constants and types p4 function calls. Second, procgroup specifies 
the number and location of each process to be started. See the machine specific notes 
section. Finally, the Makefile must be modified to point to the p4 directory to link 
in specific libraries. Examples showing different flags required will be shown in the 
machine specific notes section below. 



Williamson B2 

Several versions of p4 exist, with the most recent being p4-1.2b. This contains 
many improvements over p4-1.2, the most important to Perfect-Seismic being the 
exclusion of a special slave() function. Version 1.2 required such a subroutine, and 
slave processes could not exist outside of it. The newer p4-1.2b allows for more natural 
programs by not imposing the slave() subroutine. 

Within p4 is the ability to log user-specified events using alog subroutines. The 
resulting files, called logfiles, may be examined using Upshot, available from the same 
directory as p4 by anonymous ftp[5]. 

B.3 Directory Structure 

Information reguarding the Directory Structure may be obtained from the Arco 
Seismic Benchmark Users Guide[3]. An environment variable "BENCH" must be set to 
the top-level directory. Two other environment variables must be set to compile, link, 
and run correctly. The first, "ARCH", is the architecture of the machine where compi­
lation will occur (we used "sun4" "fx2800" "ksr" "symmetry" "ncube" "tc2000" 

' ' ' ' ' ' "rs6000", and "cm5" for the Sun SPARC, Alliant FX/2800, Kendall Square KSR-1, 
Sequent Symmetry, nCUBE 6400, BBN TC-2000, IBM RS6000, and Thinking Ma­
chines' CM-5, respectively). The second, "TARGET ...ARCH" is the architecture of the 
machine being compiled for. These variables determine where to build and search for 
various libraries and which makedef file is to be included for machine specific rules. 
One makedef file exists for each different architecture, and contains all the necessary 
flags for compiling on different machines. We used several architectures ("sun4", 
"gamma", "delta", "fx2800", "ksr", "symmetry", "ncube", "tc2000", "rs6000", and 
"cm5 ") but more could be used by adding the corresponding subdirectories and cre­
ating a specific makedef file. To support a new architecture, the user would need 
to create a makedef file for the desired machine which included all machine specific 
switches. The bin subdirectories consist of all possible architectures on which to run 
("TARGET_ARCH") . The lib directory functions similarly. The user must create 
the subdirectories under the bin and lib directories. 

The doc directory contains the Perfect-Seismic Users Manual, and the makedef 
files are in the include directory. The source code is found under src, with src/f77 
containing the sequential versions of the applications, and src/msg containing the p4 
versions. 

As an example, consider a user installing the software in 

/horne/williams/Benchmarks/PERFECT 

to be run on an Intel DELTA and cross-compiled on a sun4. The environment vari­
ables should be set as follows: 

% setenv BENCH /home/williams/Benchmarks/PERFECT 
¼ setenv ARCH sun4 
% setenv TARGET_ARCH delta 
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Also, the following directories must be created: 

¼ mkdir $(BENCH)/bin/delta $(BENCH)/lib/delta 

B .4 The Applications 

B.4.1 Fdmod 

B3 

fdmod performs 3D finite difference modeling with the acoustic wave equation. 
The directory containing this is $(BENCH)/ src/msg/fdmod. 

Files fdmod is made up of seven Fortran source files, p4 header and procgroup files, 
and an input file. 

1. fdmod.f is the driv er program for fdmod. It initializes the environment, creates 
the slave processes, and begins main processing routines . 

2. doit.f initializes various arrays, and then enters a loop to do all the calculations. 
Upon completion of the big loop, this subroutine prints out the performance 
results. 

3. getparm.f instructs the master node to read the parmfile and broadcast the 
values to all slave nodes. 

4. bcs.f contains the code for absorbing boundary conditions. 

5. fdoper.f is the actual finite difference operator. 

6. source.f is the Ricker's source function code. 

7. vclr.f zero's a vector. This is copied from the Standard Seismic Subroutine 
Library. 

8. parmfile contains the size of the model and various other input parameters. 

9. procgroup specifies to p4 which machine(s) to use. 

10. p4f.h types the p4 functions. 

To run f dmod, care must be taken to assure that the size of the model is small 
enough to fit in the memory of a single processor. This is because currently whole 
arrays are allocated even though only part is used by each processor. The number of 
depths per level is given by the first three parameters of the parmfile. For one node 
on all tested machines, a safe size is 50 per dimension, or 50 for each of the first three 
parameters in the parmfile. 

To determine the maximum model size allowed, divide the available memory size 
in bytes by the size of a real variable in bytes times three ( fdmod uses three large 
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arrays of type real). If Mis the available memory size and R is the size of the type 
real then the model size is found by 31:_R. This is the maximum size. To determine 
the maximum cubic model, take the cube root of the answer. These numbers will be 
the first three arguments in the parmfile. 

Changes and Bug Fixes The parallel version of fdmod was written by Siamak 
Hassanzadeh. Ted Charrette based his parallel version of fdmod on Hassanzadeh's 
code. Charrette's code is the source of our work. 
Feb 9, 1993: Alog calls removed from the code. The newer calls were added, and then 
removed because the final state of the calls is still in flux. The non-standard p4 calls 
have been replaced with similarly functioning standard p4 calls. 
May 3, 1993: Makefiles have been standardized, and now with very few exceptions, 
only changes to the path of p4 in the makedef files are required to compile and link 
on any supported architecture. 

Future Work Currently, the entire arrays are allocated on each processor, even 
though only part is used. This needs to be rewritten to only allocate the memory 
required per processor. Also, fdmod is only decomposed in one dimension, Alberto 
Roveda is working on a three-dimsional decomposition. 

Input and Output Files The input file parmfile contains the dimensions of the 
model and other parameters. The order of input variables is nx, ny, nz, nxs, nys, 
nzs, nstep, ioper, sf, dx, dt . 

The output comes to the screen. A file has been left in the code which may be 
used for the output instead, by changing the unit number on the write statements in 
doi t. f from "*" to 9, corresponding with the file fdmod. out. 

B.4.2 Seis 

seis performs prestack seismic processing. An originating process reads seismic 
traces, which are then piped through a chain of data processing routines. A final 
process writes the processed traces out to disk or tape. 

Files This version of seis includes the following processes: 

DCON - seismic trace deconvolution 
DGEN - synthetic data generation 
DMOC - dip moveout correction 
FANF - 2D spatial filtering by Fourier transform 
GEOM - seismic geometry specification 
NMOC - normal moveout correction 
READ - read seismic benchmark file 
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RTMG - reverse time finite difference migration 
STAK - stack seismic traces 
WRIT - write seismic benchmark file 

These processes are in $(BENCH)/ src/msg/ seis. 
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Input and Output Files Two small sample problems are supplied in the pa­
rameter files small 1. prm or small2. prm in the seis directory. These files contain a 
sequence of processes to be run that produce seismic trace files. The path will need to 
be modified on the line following the WRIT line in small 1. prm and the lines following 
both READ and WRIT in small2. prm. Then modify the path in the script run. small 
to point to the same place. The following script will then run both small tests, of 
which the second is dependent on the resulting seismic trace files of the first. 

rm -f /home/williams/tmp/stest?.* 
cp small1.prm seis.prm 
seis -p4pg procgroup_file_name 
cp small2.prm seis.prm 
seis -p4pg procgroup_file_name 

The first line deletes any previous seismic trace files. Any old files would cause a file 
creation error. The first parameter file is copied into seis. prm, which is looked for 
by seis. Then the program is started with a specific procgroup file. 

The utils directory contains many subroutines for managing seismic files. A 
make command in this directory will cause an archive called lib bench. a to be created. 
A make in the seis directory will create an archive called libseis. s. 

Changes and Bug Fixes March 12, 1993: The YAMPL message passing calls have 
been replaced by p4 calls. Most C functions used by YAMPL have been removed or 
replaced by Fortran versions. 
May 3, 1993: Makefiles have been standardized, and now only changes to the path of 
p4 in the makedef files are required to compile and link on any supported archtecture. 

Future Work Remove the final C function j loc which returns the addresses of a 
common block. 

B.4.3 General Make Notes 

All Makefiles are machine-independent. Changes are made in the 
$ (BENCH) /include/makedef. $(TARGET...ARCH) files. To compile either fdmod or seis, 
first edit the makedef.$(TARGET ..ARCH) and set the MACHINE and P4..HDME..DIR vari­
ables. fdmod can then be compiled using the usual UNIX make in its directory. The 
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utils directory must be compiled before seis, as many routines call the special seis­
mic 1/0 routines, etc. Perform a UNIX make first in the utils directory, and then 
m seis. 

A special notation may be used to keep multiple copies of the procgroup file 
specifing different numbers of processes. These are written $(ARCH)#. pg. E.g., the 
KSR-1 with procgroups specifying one, two, and sixteen processes would have files 
ksr1.pg,ksr2.pg,and ksr16.pg. 

Run scripts are included in each $(BENCH)/bin/$(TARGET...ARCH) directory. Usu­
ally the only modification needed for each run script is to change the name of the 
procgroup. 

B .5 Local Memory Machines 

For most local memory machines the procgroup will require only one line which 
contains the string "local", the number of slave processes, and the path to the 
exe cutable. The fast communication of the machine between nodes is then used. 

B.5.1 Intel DELTA 

The Intel DELTA is a local memory machine with 528 nodes ( each consisting of 
an i860 processor and 16MB of memory) connected in a 2-D mesh topology. Each 
node is connected to a Mesh Routing Chip which controls message passing. 

Compilation The machine-specific file makedef. delta which assumes compilation 
on a sun4 contains the following variables, 

MACHINE= DELTA 
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE) 

OTHER= -lkmath -node 
XLIB = -1X11 -lsocknode 
ARCH= sun4 

CC= ice 
FC = if77 
CFLAGS = $(COPT) 
FFLAGS = $(FOPT) 
COPT = 
FOPT = -04 -Mvect -Mnodepchk 

ARFLAGS = r 
AR= ar860 
AS= as 
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LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_HOME_DIR)/include 
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f 

.c.o: 
$(CC) $(CFLAGS) -c $< 

.c.a: 
$(CC) $(CFLAGS) -c $< 
$(AR) $(ARFLAGS) $© $*.o 
rm -f $*.o 

.f.o: 
$(FC) $(FFLAGS) -c $* . f 

.f.a: 
$(FC) $(FFLAGS) -c $*.f 
$(AR) $(ARFLAGS) $© $* .o 
rm -f $*.o 

. s .o: 
$(COMPILE.s) -o $© $< 
.s.a: 
$(COMPILE.s) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RM) $¼ 
COMPILE.s= $(AS) $(ASFLAGS) 
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Procgroup File The DELTA procgroup file ( del ta1. pg) to run seis on one node 
1s: 

local 0 

To run on two nodes ( delta2.pg) use: 

local 1 /usr2/levine/seis 

To run on 16 nodes (deltal6.pg) use: 

local 15 /usr2/levine/seis 
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Execution On the DELTA, the user must use the mexec command to allocate a 
partition and begin execution. Process O must be loaded on the first node with a 
parameter specifying the procgroup file to use. The remaining nodes are loaded with 
a switch to indicate that they are slave processes. For example, this command (see 
shellscript run1) loads one process on logical node "O". 

mexec -t "(1,1)" -f 110 seis -pg delta1.pg" 

This command (see shellscript run16) loads the "master" process on logical node "O", 
and the remaining processes on logical nodes 1-15. 

mexec -t "(4,4)" -f "0 seis -pg delta16.pg" -f 11 1-15 seis -amp4s1ave" 

Special Notes Be sure that the environment variables PGI and IPSC_JCDEV are 
pointing to the correct directori es. 

The path in the procgroup file is very likely to be different than the structure com­
piled on . Be careful of pathnam e when moving from the front-end where compilation 
is done to the mesh for execution . 

Current Status May 24, 1993: Both fdmod and seis compile, link, and run on 
the DELTA. 

B.5.2 Intel iPSC/860 

The Intel iPSC/860 is a local-memory machine connected in a hypercube topol­
ogy. The particular machine used was an 8-node system at Argonne . Each node 
consists of an Intel i860 microprocessor and 16MB of memory. The front-end is an 
Intel 386 computer . Compilation was done on a Sun Spare. 

Compilation The machine-specific file makedef. ipsc860 contains the following 
variables, of which only the first two lines will need to be modified before compilation. 

MACHINE= IPSC860 
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE) 

OTHER= -lkmath -node 
XLIB = -1X11 -lsocknode 
ARCH= sun4 

IPSC_XDEV = /usr/local 
BIN860 = $(IPSC_XDEV)/i860/bin.$(ARCH) 
INC860 = $(IPSC_XDEV)/i860/include-ipsc 
AR= $(BIN860)/ar860 
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ARFLAGS = r 
CC= $(BIN860)/icc 
IFLAGS = -I$(INC860) 
CFLAGS = $(COPT) -i860 -Dipsc860 -DIPSC $(IFLAGS) 
FFLAGS = $(FOPT) -i860 
XFLAGS = -1X11 -lsocknode 
COPT = 
FDPT = -04 -Mvect -Mnodepchk 
FC = $(BIN860)/if77 
AS= $(BIN860)/as860 
FLINKER = $(FC) 

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_HOME_DIR)/include 
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f 

.c.o: 
$(CC) $(CFLAGS) -c $< 

.c.a: 
$(CC) $(CFLAGS) -c $< 
$(AR) $(ARFLAGS) $© $*.o 
rm -f $*.O 

.f .o: 
$(FC) $(FFLAGS) -c $*.f 

.f .a: 
$(FC) $(FFLAGS) -c $*.f 
$(AR) $(ARFLAGS) $© $*.o 
rm -f $*.o 

. s .o: 
$(COMPILE.s) -o $© $< 
.s.a: 
$(COMPILE.s) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RM) $¼ 
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COMPILE.s= $(AS) $(ASFLAGS) 

Procgroup File For the iPSC/860, the procgroup file is the string "local, the 
number of slaves, and the full pathname to the executable. The following was used 
for one node on the iPSC/860 at ANL. 

local 0 

and the procgroup for eight nodes is: 

local 7 /home/williams/PERFECT/bin/ipsc860/fdmod 

Execution To run, first a cube must be allocated, the program loaded and run, 
and then the cube cleaned up and released. The script run2 contains the following 
commands to run on 8 nodes using the procgroup file p4gamma8. pg. 

getcube -t8 
load 1-7 /home/williams/PERFECT/bin/ipsc860/fdmod -amp4slave 
load O /home/williams/PERFECT/bin/ipsc860/fdmod -pg gamma8.pg;waitcube 
killcube 
relcube 

B.5.3 Special Notes 

Remember to always cross-compile on a Sun. 
Any path beginning with /cfs uses the "concurrent file system". This is a fast 

I/0 system accessible only through the nodes, not the front-end. No references to 
the / cf s currently exist in the benchmark suite. 

Current Status May 24, 1993: Both fdmod and seis compile, link, and run. 

B.5.4 nCUBE 

The nCUBE is a local memory machine in a hypercube topology. 

Compilation The machine-specific file makedef. ncube contains the following vari­
ables, 

MACHINE= NCUBE 
P4_HOME_DIR = /home/users/cust/williams/p4-1.3 

AR= nar 
ARFLAGS = r 
CC= nee 
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CFLAGS = $(C0PT) 
FFLAGS = $(F0PT) 
C0PT = -03 -BX 
F0PT = -03 -BX -ncube2s 
FC = nf77 
RAN= ranlib 
FLINKER = $(FC) 

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_H0ME_DIR)/include 
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f 

.c.o: 

. c.a: 

. f.o: 

. f.a: 

.s.o: 

.s.a: 

$(CC) $(CFLAGS) -c $< 

$(CC) $(CFLAGS) -c $< 
$(AR) $(ARFLAGS) $© $*.o 
rm -f $* .o 

$(FC) $(FFLAGS) $(F0PT) -BX -03 -c $* .f 

$(FC) $(FFLAGS) $(F0PT) -BX -03 -c $*.f 
$(AR) $(ARFLAGS) $© $*.o 
rm -f $*.o 

$(C0MPILE.s) -o $© $< 

$(C0MPILE.s) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¾ 
$(RM)$¾ 

C0MPILE.s= $(AS) $(ASFLAGS) 
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Procgroup File The procgroup file contains the string "local", the number of slave 
processes, and the full path to the executable. An example procgroup file for one node 
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running fdmod is: 

local O /visitors/levine/PERFECT/bin/ncube/fdmod 

For 16 nodes running seis use: 

local 15 /visitors/levine/PERFECT/bin/ncube/seis 

Note that even with only one node, the full pathname must be specified. 
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Execution The shell script runcube in the $ (BENCH) /bin/ipsc860 directory will 
execute any p4 program. It takes as arguments the procgroup file name and any 
parameters to be passed to p4. From the procgroup file the number of processors 
to be used is determined, the path is found, and a cube is allocated, loaded, and 
execution is initiated. To maintain consistency, runcube is called from the usual 
run. fdmod and run. seis scripts. 

Special Notes Many utilities are available, just prepend an "n" to whatever you 
are looking for. For example, the link editor is nld, the archiver is nar, and the 
debugger is ndb. To find on-line information, use nman. 

One C function remains in seis. To compile, change the name of the function 
to all uppercase, and remove the trailing underscore. 

Current Status May 24, 1993: fdmod will run with only one process, and com­
plains about an overfull message buffer with two processes. This ran the first time 
around. 
May 24, 1993: seis compiles. When run with smalll.prm, it works fine, but when 
used with small2.prm, it crashes early (during file creation). 

B.5.5 IBM SP-1 

The SP-1 is a local memory machine with nodes consisting of IBM RS6000 pro­
cessors and a 128MB memory. The configuration used in our testing used Ethernet 
connectivity. 

Compilation For compilation, follow exactly the procedure for compiling for a 
network of RS6000's described in Section B.6.2. The SP-1 is binary compatible with 
the RS6000. 

Procgroup File The procgroup file to run on one node is: 

local 0 

For four nodes, one line must be included for each process (at the time of this writing 
the fast switch was not installed and Ethernet was used for message passing). 
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local 0 
spnode4 1 /u/williams/seis 
spnode5 1 /u/williams/seis 
spnode6 1 /u/williams/seis 
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Execution No prior allocation of nodes is necessary for the SP-1, nodes are specified 
in the procgroup file. To execute on four nodes using the procgroup in the previous 
Section use 

rlogin spnode3 
cd /u/williams 
rm -f /u/williams/stest?.* 
cp small1.prm seis.prm 
seis -p4pg /u/williams/seis 
cp small2.prm seis.prm 
seis -p4pg /u/williams/seis 

Special Notes In our test machine, the nodes were connected via Ethernet. How­
ever, a switch is coming which will speed message passing greatly. 

Current Status May 24, 1993: The first port of fdmod was successful, but this 
time it crashes right at the start. 
May 24, 1993: seis runs fine, but without the fast switch, slows as processors are 
added. 

B.5.6 CM-5 

The CM-5 is a local memory machine with nodes connected in a Fat-Tree topol­
ogy. To most effectively use the CM-5, jobs must be submitted to the distributed job 
manager (DJM). Although smaller p4 programs have been run on the CM-5, we have 
been unable to successfully run either fdmod or seis there. 

Compilation A complete makedef file has not been completed, but here are some 
of the appropriate definitions: 

cc= cc 
FC = emf 
CLINKER= cmmd-ld -comp cc 
FLINKER = cmmd-ld -comp f77 
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Procgroup File For the CM-5, the procgroup consists of the string "local", the 
number of slave processes, and the full pathname to the executable. For one node, 
use: 

local 0 

and for 4 nodes use a procgroup of the form: 

local 3 /u/ncsa/dschneid/PERFECT/bin/cm5/fdmod 

Execution To submit jobs to the Distributed Job Manager, do the following: 

¼ jsub myjob 
Number of processors (8K)? 
Estimated CPU time (5min)? 
Estimated memory (128M)? 
Job submitted successfully. Job id is 43. 

Special Notes 

Current Status May 20, 1993: Nothing important has compiled. 

B.6 Networks of Workstations 

A network of workstations can be viewed as a loosely coupled local memory 
machine with very poor communication latencies and bandwidths. Since p4 programs 
are easily ported, program development often occurs by running first on workstation 
networks, and then porting debugged p4 code to other machines. 

B.6.1 SUN Network 

Compilation The machine-specific file makedef. sun4 contains the following vari­
ables, 

# 

# ARCO Seismic Benchmarks 
# Additions to make rules for Sun SPARC 
# For sun4, add ranlib to make rules for libraries 
# 

MACHINE= SUN 
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE) 

XLIB = -1X11 
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RAN = ranlib 

CFLAGS = -D$(ARCH) $(COPT) 
FFLAGS = $(FOPT) 
FOPT = -03 
COPT = -03 

FLINKER = $(FC) 

ARFLAGS = ruv 
LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_HOME_DIR)/include 
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f 

.c.o: 
$(CC) $(CFLAGS) -c $< 

.c.a: 
$(COMPILE.c) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RAN)$© 
$(RM)$¼ 

.f.o: 
$(FC) $(FFLAGS) -c $< 

.f. a: 
$(COMPILE.f) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RAN)$© 
$(RM) $¼ 
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Procgroup File The procgroup file for a network of workstations contains a sepa­
rate line for each process to start. More than one process may be run on one machine, 
however, each process must be specified on its own line. The procgroup file for one 
process looks as follows. 

local 0 
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For two processes it looks like: 

local 0 
shark 1 /home/williams/PERFECT/bin/sun4/seis 
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This will run one process on the machine the user is logged into (local "O"), and one 
process on "shark". If the user is logged onto "shark" this procgroup file would run 
two processes on "shark" which would then time share the single physical processor. 

An example procgroup to start eight processes is: 

local 0 
juju 1 /home/williams/PERFECT/bin/sun4/seis 
vulcan 1 /home/williams/PERFECT/bin/sun4/seis 
dalek 1 /home/williams/PERFECT/bin/sun4/seis 
jadoube 1 /home/williams/PERFECT/bin/sun4/seis 
clone 1 /home/williams/PERFECT/bin/sun4/seis 
cosmo 1 /home/williams/PERFECT/bin/sun4/seis 
chartres 1 /home/williams/PERFECT/bin/sun4/seis 

Execution To execute on a workstation network, the program must be started from 
the local machine. All that is required is the name of the executable. The procgroup 
file specifies the number and location of other processors. To run the program with 
eight processors use: 

¼ /home/williams/PERFECT/bin/sun4/seis -pg sun8.pg 

Special Notes If using the alog to produce files suitable for visualization with 
upshot on any architecture, use a workstation such as a Sun to run both the mergelogs 
and adj logs commands. 

Current Status May 24, 1993: fdmod compiles, links, and runs. 
May 24, 1993: seis compiles, links, and runs. 

B.6.2 RS6000 Network 

Compilation The machine-specific file makedef. rs6000 contains the following vari­
ables, 

# 

# ARCO Seismic Benchmarks 
# Default make rules for IBM RS6000 running AIX 
# 

MACHINE= RS6000 
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE) 
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FC = xlf 
FFLAGS = $(FOPT) -qextname 
cc= cc 
CFLAGS = $(COPT) -D$(ARCH) 
CLINKER= cc 
FLINKER = xlf -bloadmap:rs6000map -bnso -bI:/lib/syscalls.exp 
OTHER= -lbsd 
XLIB = -1X11 

COPT = -02 
FOPT = -0 

AR= ar 
RANLIB = true 
MDEP_LIBS = -lbsd 
MDEP_FFLAGS = -qextname 

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4 . a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_HOME_DIR)/include 
P4 FFLAGS = -I$(P4_HOME_DIR)/lib_f 

Procgroup File An example procgroup to start four processes is: 

local 0 
raft 1 /home/williams/PERFECT/bin/rs6000/fdmod 
wherry 1 /home/williams/PERFECT/bin/rs6000/fdmod 
kayak 1 /home/williams/PERFECT/bin/rs6000/fdmod 
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Execution The program must be started from the machine which is to be the local 
node. To run with four processors type: 

Y. /home/williams/PERFECT/bin/rs6000/fdmod -pg rs60004.pg 

Special Notes Running on the RS6000's is very similar to a network of Sun's. 
Before running anything on the IBM SP-1, first run on a newtork of RS6000's, as 
they are binary compatable. Then copy the executables to the SP-1 directory and 
continue from there. 
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Current Status May 19, 1993: fdmod compiles, links, and runs. 
May 19, 1993: seis compiles, links, and runs. 

B.7 Shared Memory Machines 

BIS 

P4 uses either of two methods to start processes for message passing on shared 
memory machines: shared memory or unix sockets. Although unix sockets are gen­
erally slower, either method may be used as specified in the procgroup file. If all 
processes are specified on one line, then shared memory is used. If all processes are 
specified on separate lines, unix sockets are used. 

B.7.1 KSR-1 

The KSR-1 is a Non-Uniform Memory Access machine with the memory physi­
cally distributed, but treated as shared. Nodes are connected in uni-dimensional rings 
of 32 which are then stacked to achieve larger numbers of processors. All memory 
is stored in the individual "caches" in each node, no "absolute" memory addresses 
exist. 

Compilation The machine-specific file makedef. ksr contains the following: 

MACHINE= KSR 
P4_H0ME_DIR = /usr/lusk/p4-1.3 

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench . a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_H0ME_DIR)/include 
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f 

XLIB = -1X11 
RAN= ranlib 

CFLAGS = $(C0PT) 
FFLAGS = $(F0PT) 
F0PT = -02 
C0PT = -02 

.c. a: 

-v -v -xfpu3 
-v -v -xfpu3 

$(C0MPILE.c) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 

-para 
-i4 -r8 -para 
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.f .a: 

$(RM)$¼ 

$(COMPILE.f) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RM)$¼ 
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Procgroup File To use shared memory the procgroup file for the KSR-1 is the 
string "local" and the number of slaves. The following procgroup starts one process 
using shared memory. 

local 0 

The procgroup below starts 16 processes using shared memory: 

local 15 

To start processes using UNIX sockets, the procgroup file would have a separate line 
for each process. The following procgroup would start four processes using UNIX 
sockets. 

local 0 

ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod 
ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod 
ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod 

Currently, the socket method does not work with the KSR. 

Execution Running on the KSR-1 is very simple. The procgroup file designates 
the number of processors needed and allocates them. To run, type the executable 
name and pass any arguments needed to p4. Assuming an executable named fdmod 
in the bin directory, and a procgroup named ksr16. pg specifiying 16 total processes, 
the command to run would be, 

¼ /home/williams/PERFECT/bin/fdmod -pg ksr16.pg 

Special Notes The KSR creates a program called trace. out when an executable 
crashes. If fdmod failed, the problem could be examined in the following manner, 

¼ stacktrace fdmod trace.out 

A special problem with the KSR involves the default size of integers, which is 
four bytes in C and eight bytes in Fortran 77. Since the Fortran calls to p4 are really 
just an interface to C functions, the differences in size prove fatal. The -i4 shown 
above sets the default size of an integer to four bytes in Fortran . The -r8 performs 
a similar function, by setting the default size for double precision to eight bytes. 
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Current Status May 21, 1993: fdmod runs, but never exits. Ming mentioned that 
destruction of threads can take up to 900 seconds, so I might not be patient enough. 
Will have to check up on that. 
May 21, 1993: seis will not run. It crashes early, something to do with the seismic 
trace files. 

B.7.2 Alliant FX/2800 

The Alliant is a shared memory machine. It supports both unix sockets and 
shared memory for inter-process communication (see Section B.7. The shared memory 
works the best, but either may be used as determined by the procgroup. 

Compilation The machine-specific file makedef. fx2800 contains the following vari­
ables, 

MACHINE= FX2800 
P4_HOME_DIR = /fx2800/usr8/lusk/p4-1.3 

FC = fortran 
FFLAGS = $(FOPT) 
CFLAGS = $(COPT) -D$(ARCH) 
FOPT = -Ogvc 
COPT = -0 
COMPILE.f = $(FC) $(FFLAGS) -c 
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) -c 
FLINKER = $(FC) 
# 

# add ranlib to make rules for libraries 

AR= ar 
ARFLAGS = rv 
RAN= ranlib 
RM= rm 

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = $(P4_HOME_DIR)/include 
P4_FFLAGS = $(P4_HOME_DIR)/lib_f 

.c.a: 
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.f .a: 

$(COMPILE.c) $< 
$(AR) $(ARFLAGS) $© $1/. 
$(RAN)$© 
$(RM)$¼ 

$(COMPILE.f) $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RAN)$© 
$(RM)$¼ 

Procgroup File See Section B. 7 for a description of the posibilities for a procgroup 
on shared memory machines. For one process, the procgroup would look like this: 

local 0 

The following is the procgroup for two and then eight processes using shared memory, 
and then two and eight using sockets. 

local 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 

local 7 /usr8/levine/PERFECT/bin/fx2800/fdmod 

local 0 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 

local 0 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod 

Execution Give the filename and any options to run (such as the procgroup name.) 
No explicit acquisition of nodes is required. E.g., 

¼ /usr8/levine/PERFECT/bin/fx2800/fdmod -pg fx28002.pg 

Special N ates On the FX/2800 we used, the memory requirements were too large. 
Add a switch to increase the amount of global memory used. 
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Y. /usr8/levine/PERFECT/bin/fx2800/fdmod -pg fx28002.pg -gm 2000000 

Also, for fdmod, the comment lines in parmfile caused an error. Delete the first 
three lines and modify getparm. f by commenting out the first three reads. 

Current Status As Alliant has gone out of business, providing full functionality 
on the FX/2800 has not been a high priority. fdmod has been run, and seis should 
be a relatively port. 
May 20, 1993: fdmod ran earlier, but now seems to crash with two processors. 
May 20, 1993: A minimal effort compiled seis, but it doesn't run. No further effort 
was put there. 

B. 7 .3 BBN TC2000 

As a shared memory machine, the TC2000 may use sockets or shared memory. 
( See the discussion under Section B. 7.) 

Compilation The machine-specific file makedef. tc2000 contains the following vari­
ables, 

MACHINE= TC_2000 
P4_H0ME_DIR = /usr/local/$(MACHINE) 

FC = f77 
cc= cc 

RAN= ranlib 
AR= ar 
ARFLAGS = r 

CFLAGS = $(C0PT) 
FFLAGS = $(F0PT) 
C0PT = 
F0PT = 
FLINKER = $(FC) 

-par 

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a 
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a 
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a 
BIN= $(BENCH)/bin/$(TARGET_ARCH) 

P4_CFLAGS = -I$(P4_H0ME_DIR)/include 
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f 
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.c.a: 

.f.a: 

$(COMPILE.c) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RAN)$© 
$(RM)$¼ 

$(COMPILE.f) -o $¼ $< 
$(AR) $(ARFLAGS) $© $¼ 
$(RAN)$© 
$(RM)$¼ 
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Procgroup File Examples of one, two, and eight processors will be shown, first for 
shared memory and then for sockets. 

local 0 

local 1 /home/williams/PERFECT/bin/tc2000/fdmod 

local 7 /home/williams/PERFECT/bin/tc2000/fdmod 

local 0 

local 0 
lepido 1 /home/williams/PERFECT/bin/tc2000/fdmod 

local 0 
lepido 
lepido 
lepido 
lepido 
lepido 
lepido 
lepido 

1 
1 
1 
1 
1 
1 
1 

/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 
/home/williams/PERFECT/bin/tc2000/fdmod 

Execution Run with the cluster command to limit the number of nodes used. 

¼ cluster 8 fdmod -pg tc20008.pg 

Special Notes 
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Current Status BBN's advanced computer group is no longer making the TC2000 
and only the port of fdmod has been attempted. The port to seis should be easily 
accomplished. 
May 19, 1993: fdmod compiles and runs. 
May 19, 1993: seis cannot be run until the new version of p4 supports it. Will p4 
be ported to the TC2000? 

B. 7.4 Sequent Symmetry 

The Symmetry has been used for only fdmod. 

Special Notes Shared memory message passing is not supported in Fortran by p4. 

Current Status 

B.8 List of Common Problems 

"pgm_path_name: Command not found" P4 tried to start the program with 
the given name on a remote machine and the program did not exist. Verify the 
full path name of the program. 

"make: Warning: Can't find '/include/makedef.-sun4' Environment variables 
are not set. Set BENCH, ARCH, and TARGET...ARCH before trying to make or run. 

"SEIOPEN: ERROR OPENING path/stestl.HDR" Small1.prmmust be used 
to create stestl. * before small2. prm is run. 

B.9 Results 

"these results are not officially approved and reported by the SPEC Perfect Group 
Steering Committee. They may not be directly comparable to accepted and verified 
results." 
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T bl 3 FDMOD t' . lt a e : 1mmg resu s 
Machine 1 (50) 2 (70) 4 (80) 8 (110) 16 (130) 
Sun 3.08019 7.63494 7.20896 30.8019 
nCUBE 4.25984 5.76716 4.32537 8.65075 6.02931 
iPSC/860 1.83700 2.30100 1.75500 2.36000 
DELTA 1.64100 2.21900 1.69300 2.35100 2.23900 
KSR - SM 2.73999 3.96000 3.31999 4.29999 4.01999 
KSR - Sock 
TC-2000 - SM 28.785 75.536 86.546 104.41 103.019 
TC-2000 - Sock 28.785 97.297 115.75 392.09 1050.85 
FX/2800 - SM 4.56 5.68 4.95 8.51 8.07 
FX/2800 - Sock 4.56 6.98 8.97 
Symmetry - Sock 42.86 116.050 
CM-5 
RS6000 3.96799 7.03999 12.2880 34.1759 
SP-1 .639999 1.15199 2.55999 31.2320 42.3680 

a e 1mm T bl 4 SEIS t' . lt ~ resu s 
Machine 1 (Sl) 1 (S2) 2 (Sl) 2 (S2) 4 (Sl) 4 (S2) 8 (Sl) 8 (S2) 
Sun 1.20.1 41.47.1 57.9 43.02.8 0.47.8 18.47.0 0.47.9 10.01.1 
iPSC/860 1.36.9 5.12.5 1.31.9 10.45.5 2.41.9 8.12.1 
DELTA 1.29.5 4.14.0 1.29.8 3.40.8 0.46.0 4.42.8 1.02.2 4.45.0 
RS6000 2.42.0 2.14.4 1.20.8 1.11.9 1.15.1 1.26.6 0.55.5 1.40.2 
SP-1 0.26.6 0.20.9 0.20.1 0.19.4 0.27.8 0.24.0 0.32.8 0.43.7 
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