
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Undergraduate Honors Capstone Projects Honors Program

4-20-1994

Developing a Benchmark for Evaluating the Performance of Developing a Benchmark for Evaluating the Performance of

Parallel Computers Parallel Computers

D. Ladd Williamson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Williamson, D. Ladd, "Developing a Benchmark for Evaluating the Performance of Parallel Computers"
(1994). Undergraduate Honors Capstone Projects. 309.
https://digitalcommons.usu.edu/honors/309

This Thesis is brought to you for free and open access by
the Honors Program at DigitalCommons@USU. It has
been accepted for inclusion in Undergraduate Honors
Capstone Projects by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fhonors%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/309?utm_source=digitalcommons.usu.edu%2Fhonors%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Developing a Benchmark for Evaluating the
Performance of Parallel Computers

D. Ladd Williamson

April 20, 199/ tf

EE492 Technical Report

Utah State University
Electrical Engineering Department

and

Argonne National Laboratory
Mathematics and Computer Science Division

Abstract

This paper discusses the development of a portable suite of benchmarking pro ­
grams for parallel computers. Comparative measurement of the performance of paral­
lel computing systems has been limited because of the great diversity of architectures
and of processor interconnection schemes. One solution is to translate benchmark
codes into a consistent and portable parallel language. This paper reports on progress
in developing such a portable suite of benchmarks. An extensive introduction to par­
allel computing is included as an appendix, to provide a thorough understanding of
the factors complicating development of the performance suite. Key to the develop­
ment was the use of p4, a library of tools developed at Argonne National Laboratory.
The benchmark codes were translated successfully using p4 and were run on a variety
of parallel machines. Conclusions and suggestions for future work are given.

Williamson

Contents

1 Introduction 1

1.1 Project Goals 1

1.2 Approach 1

1.3 Scope 2

1.4 Plan 3

2 Parallel Computers 4

3 p4 5

3.1 Portability 5

3.2 Models Supported . 6

3.3 Alog .. 7

3.4 Upshot . 8

4 Benchmarking 8

4.1 Perfect -I . 10

4.2 Perfect-II 11

5 The Argonne Project 12

5.1 FDMOD 13

5.2 SEIS .. 14

5.3 Future Plans . 16

6 Conclusions 17

Vitae 18

Appendix A Al

Williamson 11

A Parallel Computers Al

A.1 Flynn's Taxonomy A2

A.1.1 SISD . A2

A.1.2 SIMD A3

A.1.3 MISD A6

A.1.4 MIMD A6

A.2 Processor Interconnection Schemes A9

A.2.1 Shared Bus A9

A.2.2 Crossbar-Switch Matrix AlO

A.2.3 Multistage Networks AlO

A.2.4 Hypercube ... All

A.3 Detecting Parallelism . A12

A.4 Granularity A13

A.4.1 Speedup and Efficiency . A13

A.4.2 Fine Grain .. A13

A.4.3 Coarse Grain A15

A.5 Programming Models . A16

A.5.1 Loop-Level Parallelism A16

A.5.2 Shared Memory Model A17

A.5.3 Message Passing Model . A18

A.5.4 Cluster Model A20

References A22

Appendix B Bl

Williamson lll

B Users Guide Bl

B.l Introduction . Bl

B.2 P4 Bl

B.3 Directory Structure . B2

B.4 The Applications B3

B.4.1 Fdmod. B3

B.4.2 Seis ... B4

B.4.3 General Make Notes B5

B.5 Local Memory Machines B6

B.5.1 Intel DELTA B6

B.5.2 Intel iPSC/860 BS

B.5.3 Special Notes Bl0

B.5.4 nCUBE BlO

B.5.5 IBM SP-1 Bl2

B.5.6 CM-5 .. Bl3

B.6 Networks of Workstations Bl4

B.6.1 SUN Network . . Bl4

B.6.2 RS6000 Network Bl6

B.7 Shared Memory Machines Bl8

B.7.1 KSR-1 Bl8

B.7.2 Alliant FX/2800 B20

B.7.3 BBN TC2000 .. B22

B.7.4 Sequent Symmetry B24

B.8 List of Common Problems B24

B.9 Results B24

Williamson IV

List of Figures

1 Upshot View of Log File Data 9

2 Uniprocessor Architecture .. A3

3 Array Processor Architecture A4

4 Vector Processor Architecture A6

5 Shared-Memory Architecture. A7

6 Local-Memory Architecture AB

7 Shared Bus A9

8 Crossbar .. All

9 Hypercubes A12

Williamson

List of Tables

1

2

FDMOD timing results

SEIS timing results

V

15

16

1 Introduction

Parallel computers have enabled researchers to attack larger and increasingly

more complex problems. At the same time, the diversity of parallel architectures has

made it important to know which computer is best suited for a particular problem

class. Unfortunately, no standard benchmarks exist to compare the performance of

parallel computers.

1.1 Project Goals

The objective of this performance evaluation project at Argonne National Lab­

oratory is to create a suitable benchmark for parallel computers. The goal is to

standardize existing programs, thus allowing identical source code to be compiled

and run on different parallel machines.

1.2 Approach

Several programs exist that could serve as a suitable benchmark across architec­

tural boundaries-if the programs were made portable. At Argonne, the focus was

on the Perfect-Seismic codes, a subset of the Perfect-II codes that performs seismic

processing. The goal of the original developers of Perfect-II was to provide support

for three models of parallel processing: Loop-level parallelism, Fortran 90, and mes­

sage passing. To date, however, only sequential programs written in Fortran 77 have

been completed. My task was to translate these programs into a consistent parallel

language based on message passing.

The word translate is important here. The intent of this project was not to create

new codes but to parallelize and standardize existing software.

Key to this work was the use of p4, a library of macros and subroutines developed

at Argonne for programming parallel machines. With p4, I prepared parallel versions

Williamson 2

of the codes on a network of workstations and then ported the codes to several parallel

machines.

1.3 Scope

Perfect-II comprises three applications: SEIS (pre-stack seismic processing), FD­

MOD (3D finite-difference modeling), and FKMIG (3D Fourier domain migration).

Because FKMIG is already being parallelized by other researchers, the project at

Argonne focused on SEIS and FDMOD.

The target machines used for the parallel work were as follows:

Intel iPSC/860 A local-memory, 8 node hypercube at Argonne. A 64 node iPSC/860

at Caltech is also available over the Internet.

Intel DELTA, with 512, nodes at Caltech. The DELTA is connected in a mesh and

capable of scaling to 2048 nodes.

Sequent Symmetry shared-memory multiprocessor at Argonne, with 26 nodes.

BBN TC-2000 shared-memory multiprocessor, with 45 nodes, at Argonne. Memory

is local to individual nodes but is treated as shared. Remote access to memory

can be accomplished via a butterfly switch.

Alliant FX/2800 shared-memory, 28-node multiprocessor at Argonne. Their Fortran

77 compiler is instructed to parallelize standard code, automatically looking for

loop parallelizations.

).

Kendall Square KSR-1, 64-node multiprocessor at Oak Ridge National Labora-

tory. Memory is physically distributed but treated as shared. The nodes are

connected in stacked 32-node rings.

Williamson 3

Thinking Machines CM-5, with 512 nodes, at University of Illinois Urbana-Champaign.

In this local memory machine, nodes are connected by a fat-tree topology where

the bandwidth is the greatest at the root of the tree.

nCube 6400, with 192 nodes, at MIT. This is a local memory machine in a hypercube

topology.

IBM SP-1 with 32 nodes at Argonne. This machine is a local memory architecture,

with each node containing the same processor as their RS6000 workstations and

128MB of RAM.

This list comprises the major participants in parallel supercomputing. The ar­

chitectures include shared-memory machines, local-memory machines, and hybrids

(such as the KSR-1, which physically has a distributed memory but acts as a shared­

memory machine) . The interconnection scheme describes how nodes, memory, and

I/O modules are connected. In this group are found shared buses, hypercubes , mesh

topologies, and butterfly switches. Given the fundamental differences in architecture,

running the same program on each platform represented a major challenge.

1.4 Plan

This report is organized as follows. Section 2 gives a brief review of parallel

processing. Section 3 discusses p4 and the visualization tools that facilitated parallel

program development. Section 4 presents a brief look at benchmarking in general

and the Perfect benchmark suite in particular. Section 5 details the work on the two

codes FDMOD and SEIS performed at Argonne; included are some of the problems

encountered and results obtained. Also discussed is future work needed before this

parallel benchmark is fully usable. Finally, Section 6 draws conclusions about the

project and the benchmarking of parallel computers. Appendix A provides a much

Williamson 4

more lengthy review of parallel processing, to illustrate the great diversity of parallel

architectures, network configuration, and program models and, thus, underscore the

challenges to developing a standard, portable benchmark suite. Appendix B contains

the Argonne Technical Report written by the author which will be distributed with

the actual benchmarking codes.

2 Parallel Computers

While all urnprocessors function under the von Neumann architecture (fetch,

decode, execute) there exists no underlying standard for parallel machines. As man­

ufacturers have taken different hardware approaches to parallel processing, the fun­

damental workings of varying multiprocessors can be quite different. A very brief

overview of parallel processing will be given here.

Of today's multiprocessers, most fit into one of two broad classes depending on

the mode of communication between processors. Shared memory machines consist of

processors and a single common memory. Communication occurs via shared variables,

with each processor accessing the shared variable when information is needed from

another processor. While programming shared memory multiprocessors is relatively

straight foreward and syncronization and communication costs are relatively low,

problems arise when more than one processor tries to access a shared variable.

Local memory multiprocessors have no shared memory, but rather a private local

memory attached to each processor. Communication then takes place through explicit

message passing. This requires carefull programming and is very slow. However local

memory machines are much more economical and scale more easily, hence most new

machines are of the local memory architecture.

Because of the low overhead of communication, shared memory machines tend

to exploit fine-grain parallelism. This would be represented by sending independent

Williamson 5

statements in a function to different processors. The time required to send messages

in a local memory machine encourages coarse-grain parallelism. Commonly whole

programs are run in parallel, with each processor having its own copy of the program

and communicating only rarely with another processor .

Many different methods have been used to physically connect processors, I/0

processors, and memory. Among these are the Shared Bus, which uses a single com­

munication path between nodes , Crossbar-Switch Matrix, in which each node is con­

nected to every other, and the Hypercube, where large numbers of processors are

connected relativ ely cheaply.

Since very different programming models are used for different multiprocessors,

no single programs have been run on different classes of parallel computers. Bench­

marking has been difficult and inaccurate, and no guidelines have been available on

which to base conclusions as to the merit of one system over another .

3 p4

The diversit y of machines and of parallel programming models motivated the

developme r:t of the p4 system at Argonne National Laboratory in the 1980's. The p4

system is a library of macros and subroutines for programming parallel machines. It

grew out of the effort described in the book Portable Programs for Parallel Proces­

sors [4], from which p4 takes its name. One may think of p4 as an extension to C

or Fortran, since it consists primarily of C functions that achieve process communi­

cation and ynchronization. Because a Fortran interface is provided, C and Fortran

programm ers need not learn a completely new language.

3.1 Po rtability

An im portant virtue of p4 is portability. It started out as simple macros used

to change parameters in function calls, depending upon the machine for which the

Williamson 6

program was being compiled. Since many message-passing primitives work in a similar

fashion and all that might be required is the inversion of some function parameters,

this worked well. Now, however, this has grown into what must be deemed as a new

language. The authors determined what philosophy should be used in programming

parallel machines and then wrote the abstract p4 function calls required to accomplish

it. Because portability was an original motivating factor, support for many new

architectures were included; currently, 24 platforms are supported.

The portability of a p4 program is easily achieved. Specifically, any p4 program

that runs on one architecture requires only a recompilation on a new architecture to

run in the new environment. Of course, various machine-specific flags must be set at

compile time; but the source code can be used without modification.

The p4 library frees programmers from the specific details of parallel program­

ming. By using abstracted function calls, the details of the interface to the machine

may be ignored .

3.2 Models Supported

The p4 system supports three programming models: Shared memory, message

passing, and cluster programs. To develop programs in a shared-memory environ­

ment, p4 had to develop a scheme to protect shared variables. This is done by use of

monitors. A monitor protects shared modifiable data by allowing only one processor

at a time access to that data. A look at the specific monitors provided by p4 will

evidence the success of abstracting communication constructs from the hardware re­

quirements to a logical level. A simple LOCK monitor may be used to protect a critical

section of code containing a shared modifiable variable. The BARRIER monitor forces

some number of processors to wait until all of them have reached a certain point.

This represents a simple way to achieve process synchronization. The GETSUB mon­

itor is used to obtain the next value of a shared counter (the next subscript for an

Williamson 7

index variable). The ASKFOR monitor functions like a general dispatcher of work. It

requests a new "problem" to work on from the problem pool. With this flexible array

of functions to manage shared variables, efficient shared memory programs may be

written in p4.

The p4 system supports a set of send/receive procedures to accomplish message

passing. These procedures are "generic" in the sense that they do not know whether

a message must travel across a network or through shared memory or via some other

mechanism. When a processor requires a reference to a variable not located in its

own memory, it sends a message to the owning process. That processor will fetch the

data and then send a message back with the requested data. Also, p4 provides several

mechanisms for dealing with all processes at once, such as a broadcast of information

that goes to all processors.

Special cluster management functions are included in p4. Once a cluster is orga­

nized, regular monitors are used for the processes within that cluster. One process

per cluster will be designated the cluster master and will be responsible for all inter­

cluster communication. Normal p4 message-passing routines are used for this message

passing, with the restriction being that only cluster masters may send or receive mes­

sages.

3.3 Alog

Distributed with p4 is a set of routines for creating logfiles, called Alog. The

created logfiles consist of time-stamped events. The timestamps are obtained from

various microsecond-level resolution timers, depending on the specific machine.

To use Alog, users simply need to call the Alog initialization functions before any

event is logged and then define the type of event to be logged. The only step left is

to place a logging call at important areas of execution.

Williamson 8

On networks of workstations and some distributed memory machines, the mi­

crosecond timers on the various processors are synchronized. To produce a usable

merged logfile, a program has been included to adjust the timestamps for offset and

drift before they are merged.

3.4 Upshot

While not included with the distribution of p4, Upshot may be freely obtained for

use with p4. Upshot was designed to examine Alog produced logfiles and to produce a

visual representation of parallel program behavior. To increase the usefulness of such

data, the user may define certain events to mark entrance and exit into states. With

the combination of Alog and Upshot, programs may be more easily understood; and

new insight may be gained as to the workings of a particular program. Figure 1 shows

a typical view of upshot, with the states clearly discernible by different patterns.

4 Benchmarking

The discussion of parallel machines in Section 2 raises several questions: Which

machine gives the best performance? Does performance depend on the class of appli­

cation? What types of problems scale easily? The answers to these questions depend

on the availability of accurate benchmarks.

Benchmarks are programs that measure the performance of computers. When

performance is measured, judgments as to the effectiveness of various architectures

and configurations may be made. Kuck and Sameh [1] identify three basic purposes

for using benchmarks to evaluate existing machines:

1. Selecting a new machine,

2. Tuning of an existing system, and

Williamson

UPSHOT
Zoom-out II Zoom-In II Display Options II State Definition l~I __ R_es_e_t_~l~I __ Q~u_l_t_~

Page view
Graph view

15 ..: ::::::::::::::· 1

Log file:
.,,, Laa■_hyp.161

Zoo111Step:

L2
f,'ENTKEY

1: Start A

2: End A

3: Start B

4: End B

5: Start C

6: End C

7: Start D

8: End D

9: Proof

File pages:

, ,-: : :: ::: ::: ::: :: ··· ··· ··· ··· · :::::::::: :::::: ::: ::: ::: :::::: ::: :::::: ::: ::: ::: ::: ::::: 1111::: ::: ::: ::: ::: :: : ::: ::: State file:

12_::::::::::::::: ::: ::::::::: ::: :::::: ::: :::::: :::::: :::::: :::::: ::: ::: :::::: ::: ::: ::: ::: :: : ::: :: t:: :::::::::::: ::: l,roo, sts. bw I
I _ ,::::::::::::::::::::::::::::::::::: :: : ::::: ::::::: ::: ::::: ::::::::::::::::::::::::: ::: ::::::: §: :::::::::::::::: JLoad I
5 --..; : :: ::: ::: :::::: ::: :: ::: :: : ::: ::: ::: ::: ::: :: ::: ::: ::: ::: ::::::: :: :::::::::: :: :::::: :11:: ::: ::: ::: ::: ::: ::: :::

•;:: ::::::: ::::::::::::::::::::::::::::::::: :: :::::::::::::::::: :::::::::::::::::::: ::::: J:: ::::: ::::: ::: ::::::: :

11~ :::::::::::: :::::::::::::::::::: :::::::::::::::::::::::::: ::::: ::::: :::::: :::::::::::::::::: 1:::::::::::::::::

ll -~== ··~···=···~··~·::=::~·::=:::=::~:::=: ==~ ·'~"'='"=::~'''='''~''~'''='''~''~'''~'''~'',f~ '=''='''='''=''~'''=::::
,~ ::::::::::;:::::::::::::: :: :: : :::::::: ::: : :::::::::::::::::::::::::::::: ::::::::::::: t::::::::::::::::::::: :

" ,-·.;.; '' .;.;.;'''c.;.;'';.;;'''.;.;.;'''c.;.;'';.;;'' 'c.;.;'''c.;.;' '.;.;.;'''c.;.;'';.;;'''_;._;_''·;.;;·''.;.;.;'''c.;.;'';.;;''' .;.;.;' ''c.;.;''';.;;''.;.;.;'''c.;.;' ';.;;'''.;.;.;'''c.;.;'';.;;'''.;.;.;'''c.;.;'';.;;'''.;.;.;'''c.;.;'' ;.;;'''.;al;.;;'' .;.;.;'''c.;.;'';.;;'''.;.;.;'''c.;.;'';.;;.;.;'''''

p 11 __: :::·: ···:::::::::::::: : :::::::::::: :: ::: ::::: :: : ::: ::: :: :::::::: : :: : ::: :1: ::::::::::::::::::

r I
0
C 2
e
5 l
s
e ,
s

:::::: ::::::::::: ::: :: ::: :: ::::: ::::::::::::::::: :: : :::::::: ::: : -
·:::::::::::::: : :::::::: : ···················

Ml ;; • ::::::::::: :::::: :: ::::: ::: :::: :: ::::::::::::::::::::: :: -·
I I I I I I

I 51 IDI 151 200 251

time In mllllseconds

Figure 1: Upshot View of Log File Data

c::::::i
task_a -task_b -task_c

~
task_d

9

Williamson 10

3. Determining which strengths to incorporate and which weaknesses to avoid in

the design of a new machine.

Benchmarks can be divided into two categories: Kernel and application. Kernel

benchmarks, by far the older and more widely used, employ a small set of compu­

tationally expensive loops to compare machines. Application benchmarks compare

machines by running whole applications, not just fragments of code. Since application

benchmarks run complete programs, they give more reliable performance estimates.

Unfortunately, while standard benchmarks exist for sequential processors, such

as the LINPACK [3] libraries developed at Argonne National Laboratory and used

for measuring :floating-point performance, no comparable standard has emerged for

parallel processors. This situation makes performance comparisons very difficult,

because different parallel architectures are believed to be suited for different problems.

A suite of parallel programs that is easily portable to a wide selection of architectures

is needed. These machines may then be compared, using the same standard.

4.1 Perfect-I

Motivated by this need and guided by a proposal of Kuck and Sameh [1] to create

a benchmarking suite, academic and industrial collaborators initiated, in 1987, the

Perfect (Performance Evaluation for Cost-Effective Transformations) benchmarking

group. The goal was to produce a large number of applications that could be used in

performance evaluation and could be ported to a large number of high-performance

computing machines [2].

This effort culminated in 13 programs representing a variety of scientific and

engineering problems. The codes were successfully ported to over 30 machines. This

effort proved to be the first systematic solution to the problem of benchmarking

parallel machines.

Williamson 11

4.2 Perfect-II

Supercomputers have matured tremendously in the years since 1987, when the

Perfect-I benchmark was being developed. The relatively smallness of the datasets

and other problems made it less useful for benchmarking high-end parallel machines.

The Perfect-II was introduced to provide a better benchmarking suite. Perfect­

Seismic, a subset of Perfect-II with all codes relating to seismic processing, was the

first to actually be included in Perfect-II.

The Perfect-II suite contains three applications. The first, SEIS, performs

prestack seismic processing . An originating process reads seismic traces, which are

then piped through a chain of data processing routines. A final process writes the

processed traces out to disk or tape. The initial release of SEIS includes the following

processes [3]:

DCON - seismic trace deconvolution
DGEN - synthetic data generation
DMOC - dip moveout correction
FANF - 2D spatial filtering by Fourier transform
GEOM - seismic geometry specification
NMOC - normal moveout correction
READ - read seismic benchmark file
RTMG - reverse time finite difference migration
STAK - stack seismic traces
WRIT - write seismic benchmark file

A processing flow would include process "READ" to input the initial parameters, one

or more of the processing routines, and then process "WRIT" to capture the output.

The second program, FDMOD, performs 3D finite difference modeling. This

forward modeling is accomplished with the acoustic (scalar) wave equation.

The final program, FKMIG, accomplishes 3D Fourier domain migration. Multi­

dimensional Fourier transforms are used to obtain images of geologic structure from

recordings of pressure on the surface of the earth.

Williamson 12

As noted in Section 1.2, the initial release of Perfect-II was supposed to support

three models of parallel processing: Loop-level parallelism, Fortran 90, and message

passing. However, only sequential programs written in Fortran 77, suitable for auto­

matic loop parallelization by the specific compilers, were included. Neither Fortran

90 array syntax nor message passing was supplied.

Two institutions have recently undertaken an effort to complete the work on

Perfect -Seismic. A group at Dartmouth College is translating FKMIG, and Argonne

is translating FDMOD and SEIS.

5 The Argonne Project

The project involved several steps:

1. Learn how to use p4 for translating from standard Fortran 77.

2. Master the Alog and Upshot visualization tools provided by p4 for displaying

the parallel behavior of codes.

3. Translate FDMOD and SEIS into p4.

4. Port each program to eight parallel machines.

5. Document the results.

The first two steps required writing simple programs in C (since p4 is written in

C with a Fortran 77 interface), experimenting with the various logging features of p4,

and studying the users manuals for the Perfect-Seismic benchmarks. The remaining

steps were done separately for the two codes, FDMOD and SEIS.

Williamson 13

5.1 FDMOD

FDMOD was selected to be first because the author had already written a

parallel version that used the message-passing functions specific to the Intel machine.

Initial attempts to run the parallel code on the Argonne iPSC/860, however,

uncovered the fact that the code had many bugs. These ranged from simple errors,

such as the wrong number of parameters passed to a subroutine, to very subtle errors,

such as having two similar variables transposed in a formula. Over a week passed

before the (supposedly) correct code was running. The rough structure, coupled with

the many errors, made this version seem to be an unfortunate basis for creating a

new message-passing version in p4.

Fortunately, Argonne was able to obtain a message-passing version being devel­

oped at MIT for the nCUBE machine, with the message passing being organized

either through nCUBE calls or what were called p4 wrappers. These wrappers were

actually functions that used p4 to accomplish nCUBE calls. This version was, of

course, not portable; but it was closer to what could be set up as a message-passing

standard, and the code was much cleaner.

Translating the MIT code to p4 proved to be much easier than working on the

author's parallel version for two reasons. First, the code was written in a much more

modular fashion, with the program flowing more naturally. Second, p4 had been used

in the code already. Again, a complication did arise: p4 had been used to rewrite the

nCUBE calls, contrary to its intended purpose; nevertheless, the effort now focused

on fixing misused p4 calls rather than porting to a totally new language.

Williamson 14

With the code successfully running on a network of workstations, the port to dif­

ferent architectures began. Specifically, this involved (1) taking an exact copy of all

files from the network to the target architecture, (2) setting the machine-specific com­

pile and linking flags correctly and (3) learning the procedure for running programs

on each machine.

The work on FD MOD proceeded relatively smoothly. The same source code was

used successfully on the Intel DELTA , the Intel iPSC/860, the Sequent Symmetry, the

BBN TC-2000, the Alliant FX/2800, the nCUBE 6400, Kendall Square Research's

KSR-1, IBM's SP-1, and IBM 's RS6000 and Sun's Spare workstations. The CM-5

has proven difficult and has not yet been run.

Even without a successful run on the CM-5, however, this work shows the remark ­

able portability of p4. To provide a consistent measuring stick, the same benchmark

program can be run on widely varying architectures. Although the focus has been

to provide the basis and method for parallel benchmarking, actual timed runs have

been made; and the results are summarized in Table 1. The row headings are the

different architectures timing runs were attempted on. When a machine might use

either shared memory or message passing (unix sockets) the specific memory access

methods is specified. The column headings give the number of processors and the

size of the problem. For example, the second column tested two processors with a

problem size of 70 test points per side for a cube. The times are in seconds.

5.2 SEIS

SEIS performs many processes, which may be run in varying order, on a stream

of seismic traces. The code is far more complex than FDMOD, with many more

subroutines used and a separate directory of utility functions.

The author of this code, Charles Moser, had constructed a message-passing paral ­

lel version that is specific to the Intel machines. To help manage such a large project,

Williamson 15

T bl 1 FDMOD .. a e timmg resu ts
Machine 1 (50) 2 (70) 4 (80) 8 (110) 16 (130)
Sun 3.08019 7.63494 7.20896 30.8019
nCUBE 4.25984 5.76716 4.32537 8.65075 6.02931
iPSC/860 1.83700 2.30100 1. 75500 2.36000
DELTA 1.64100 2.21900 1.69300 2.35100 2.23900
KSR- SM 2.73999 3.96000 3.31999 4.29999 4.01999
TC-2000 - SM 28.785 75.536 86.546 104.41 103.019
TC-2000 - Sock 28.785 97.297 115.75 392.09 1050.85
FX/2800 - SM 4.56 5.68 4.95 8.51 8.07
FX/2800 - Sock 4.56 6.98 8.97
Symmetry - Sock 42.86 116.050
CM-5
RS6000 3.96799 7.03999 12.2880 34.1759
SP-1 .639999 1.15199 2.55999 31.2320 42.3680

he put the separate processes into two library archives: One for routines specific to

SEIS and one for more general seismic-processing subroutines. The rules to compile

and link SEIS are very general but include a separate file for incorporating machine­

specific options. This approach simplifies the code by keeping all machine-specific

variables in one place.

Nevertheless, even with this careful management, SEIS proved difficult to trans­

late to p4. Not only was the code very large, but several C functions had been

included. These provided C functionality but introduced many non-standard For­

tran 77 programming practices. The first task, then, required eliminating these C

functions from the code. This was done, with the exception of one C function.

SEIS requires many machine-specific capabilities, such as archiving and retriev­

ing libraries. Because of the extra time required to complete each move to a new

architecture, ports were carried out only to a select subset of parallel machines. In

particular, since Sequent, BBN, and Alliant are all out of the scientific computing

arena (BBN and Alliant are out of business, and Sequent now works only with com­

mercial parallel computing), ports to those platforms were not attempted.

Williamson 16

a e 1mm T bl 2 SEIS t' . lt , resu s
Machine 1 (Sl) 1 (S2) 2 (Sl) 2 (S2) 4 (Sl) 4 (S2) 8 (Sl) 8 (S2)
Sun 1.20.1 41.47.1 57.9 43.02.8 0.47.8 18.47.0 0.47.9 10.01.1
iPSC/860 1.36.9 5.12.5 1.31.9 10.45.5 2.41.9 8.12.1
DELTA 1.29.5 4.14.0 1.29.8 3.40.8 0.46.0 4.42.8 1.02.2 4.45.0
RS6000 2.42.0 2.14.4 1.20.8 1.11.9 1.15.1 1.26.6 0.55.5 1.40.2
SP-1 0.26.6 0.20.9 0.20.1 0.19.4 0.27.8 0.24.0 0.32.8 0.43. 7

To date, SEIS is running on networks of both Spare and RS6000 workstations,

the Intel iPSC/860, the Intel DELTA, and IBM's SP-1. Efforts are being made to

test the newest version of p4 to use in the port to the nCUBE, KSR-1, and FX/2800 .

Th ese timing results may be examined in Table 2. The column headings give the

number of processors and which of the two example data sets was used (Sl or S2).

Tim es are reported in seconds .

5.3 Future Plans

With some careful work on SEIS, it may be possible to remove the final C

function. This would standardize the code considerably by removing a function that

accomplished a non-Fortran 77 operation. A script to run on each architecture would

prove helpful to anyone using the code.

Documentation is also essential. Currently, a document is being prepared that

explains the methods used in the new p4 versions of the code. It contains brief

explanations of both SEIS and FDMOD, the directory structure required, and notes

for running on each of the architectures used. This document is targeted at someone

unfamiliar with the Perfect-II codes who wishes to run the message-passing suite.

Finally, the work on FKMIG being done at Dartmouth must be incorporated

into the Argonne work; and the message-passing versions will then be standardized

and portable.

Williamson 17

6 Conclusions

The work at Argonne marks an important step in the development of effective

portable benchmarks for parallel systems. This work was aided considerably by the

use of p4.

Nevertheless, the Perfect-II benchmark effort is just a first step. If parallel com­

puters are to reach the processing speeds predicted, much more work needs to be done

in the area of performance evaluation. Without a way to judge relative performance

by different architectures, it is difficult to suggest realistic design improvements or

to guide application programmers in the use of specific machines for specific problem

classes. Only through careful notice of the merits of differing hardware and soft­

ware models can systems designers and programmers learn to exploit more powerful

systems.

Williamson 18

Replace this with the vitae.

Williamson Al

A Parallel Computers

Parallel processing requires two or more processors, each capable of completing

tasks independently and concurrently. Many advantages spur this revolution onward.

First, parallel processing is a more natural way of solving some problems than is

traditional sequential processing. In order to achieve very high processing speeds,

it may be cheaper to link together several relatively slow processors than to invest

in ultra-high speed uniprocessors. Fault tolerance is increased. ARPA (Advanced

Research Projects Agency) has funded the development of several parallel machines

and languages through the Strategic Computing Initiative (SCI).

Operating systems are important examples of concurrent systems. Air traffic

control systems, mission critical systems, and real -time process control systems (such

as those that control gasoline refineries, chemical manufacturing plants, and food

processing plants) are other examples of processes that require parallel processing to

achieve sufficient speed of execution.

Parallel processing does, however, bring about unique difficulties. Program logic

is harder to follow for people trained to think in a linear fashion. It is difficult and

time consuming to determine what activities can and cannot be performed in parallel.

Parallel programs are much more difficult to debug than sequential programs. After

a bug is supposedly fixed, it may be impossible to reconstruct the sequence of events

that exposed the bug in the first place, so it would be inappropriate to certify, in some

sense, that the bug has actually been corrected [6]. Since exhaustive debugging may

not be possible, proving program correctness may become the standard for developing

highly reliable, large-scale software systems [7] [8].

Williamson A2

A.1 Flynn's Taxonomy

The past decade has witnessed a flood of parallel architectures. To assist in the

classification of these computers, Flynn categorized machines by the number of in­

struction streams and data streams utilized [9]. The number of instruction streams

includes only unique streams. For example, two processors executing the same in­

structions would be counted as a single instruction stream computer. However, the

number of data streams includes all data being manipulated or simply the number of

processors working (because each processor will be working on its own data stream).

While Sillicorn [10] has extended this taxonomy from four to 28 different classes, only

the four major divisions given by Flynn will be explained.

A.1.1 SISD

Single Instruction stream-Single Data stream (SISD) processors are the most

commonly used today. These are uniprocessor computers with one memory that

process one instruction at a time. Figure 2 illustrates the SISD architecture, with

P denoting the processor and M representing memory, whether that be physically

separate or contiguous. The interconnection network connects the processor and

memory in any fashion.

This is essentially the von Neumann architecture, based on the original ideas of

John von Neumann. For the basis of comparison, consider the following loop:

for (i=1; i<=n; ++i)
c(i) = a(i) + b(i);

which might be converted into the following single instruction and data streams: Each

line following down vertically indicates one time step, with the instruction stream

following under the header of "Processor", and the data stream occurring as the

arguments to each instruction.

Williamson A3

M M M M

I Interconnection Network l

p

Figure 2: Uniprocessor Architecture

i = 1 LDA R1, a(1)
LDA R2, b(1)
ADD R3, R2, R1
STD R3, c(1)

i = 2 LDA R1, a(2)
LDA R2, b(2)
ADD R3, R2, R1
STD R3, c(2)
I I I
I I I

i = n LDA R1, a(n)
LDA R2, b(n)
ADD R3, R2, R1
STD R3, c(n)

As time proceeds, only one instruction can be carried out during each instruction

cycle. Instructions are carried out upon the first element of the arrays, and then the

process is repeated for the next corresponding element until all are processed.

A.1.2 SIMD

Single Instruction stream-Multiple Data stream (SIMD) machines employ mul­

tiple processors and, thus, multiple data streams; but each is performing the same

Williamson A4

Control unit

I

p p p p

M M M M

I Interconnection Network ~
Figure 3: Array Processor Architecture

operations or using the same instruction stream. Both array processors and vector

processors are commonly considered SIMD machines.

Array Processors An array processor contains multiple processing elements (PE's),

which can be thought of simply as a processor and memory. One control unit broad­

casts instructions simultaneously to all PE's. (See Figure 3.) Each PE receives

the same instructions and operates on the date in its memory. While the individual

processors may be relatively slow, the speed comes in the sheer number of proces­

sors available to work. For example, the Thinking Machines CM-2 utilized 65,536

processors in parallel.

Williamson A5

The for loop from the prev10us example will demonstrate this method. The

various processors are labeled Pl though Pn, with the instructions again following

under the processor number and instructions on the same horizontal line occurring

at the same time.

Pi P2 Pn
LDA R1, a(1) LDA R1, a(2) LDA R1, a(n)
LDA R2, b(1) LDA R2, b(2) LDA R2, b(n)
ADD R3, R2, R1 ADD R3, R2, R1 ADD R3, R2, R1
STD R3, c(1) STD R3, c(2) STD R3, c(n)

The same instruction stream is being broadcast to every processor, and each processor

works only on its own data.

Vector Processors The other SIMD architecture , vector proce ssor, functions dif­

ferently. A vector processor consists of a control unit, one memory, and one processor

with specialized functional units. The proper functional units are "pipelined" into a

stream of operations to be performed on the data stream. As each unit completes

its operation, its output is fed directly into the next unit. The parallel computation

comes as the pipeline fills with data and each instruction in the pipeline executes

concurrently on a different data element. Figure 4 shows the logical components of

this architecture.

Let us go back to the familiar loop example:

LDA VR1, a(1:n)
LDA VR2, b(1:n)
ADD VR3, VR2, VR1
STD VR3, c(1:n)

This contains the special instructions for dealing with vector registers. The elements

of a will begin to fill the first vector register while the elements of b will fill the

second. Elements at corresponding positions will be added and stored. If more than

Williamson A6

M M M M

I Interconnection Network I

I I I I I I
Functional p

unit

Figure 4: Vector Processor Architecture

four elements exist in the input vectors, then all four operations will occur in parallel,

with each statement working one element behind its predecessor.

A.1.3 MISD

The Multiple Instruction stream-Single Data stream (MISD) has not found ap­

plication in industry and is only mentioned for the sake of completeness.

A.1.4 MIMD

Multiple Instruction stream-Multiple Data stream (MIMD) processors are capa­

ble of truly independent parallel operation. Each processor may function fully and

communicate with other processors in different ways. Just as SIMD architectures

may be naturally subdivided, MIMD machines are most correctly classified as either

shared-memory or local-memory machines.

Shared Memory Shared-memory machines consist of multiple processors con­

nected to one common memory, and may be represented as in Figure 5. Any memory

Williamson A7

M M M M

I Interconnection Network I

p p p p

Figure 5: Shared-Memory Architecture

address is directly accessible for any processor. Because of this, programs may trans­

parently access any address, without special concern as to the position of data in

relation to the operating processor. Inter-process communication is very fast. The

main pitfall for this method comes when shared data may be changed by any pro­

cessor. If two processes try to modify the same data, each will write the new result.

This and similar operations result in errors and require special precautions. To pro­

tect this shared modifiable data, schemes must be developed to ensure that each

process needing the data is given exclusive access.

When considering shared-memory multiprocessors, many advantages become evi­

dent. Shared-memory models are perhaps the easiest to program, since any processor

may access any memory location. The oldest parallel architectures are shared mem­

ory, so the programming environment is mature. Finally, although the memory is

physically shared, it can mimic other architectures. Some disadvantages include the

difficulty to scale bus-based machines beyond about 25 processors. Also, methods

must be devised to ensure mutual exclusion of shared modifiable data.

Williamson AS

p p p p

M M M M

I Interconnection Network I
Figure 6: Local-Memory Architecture

The for loop would look similar for both models of MIMD machines. It is apparent

that each processor is following a unique instruction and data stream.

Pi P2 Pn
LDA R1, a(1) LDA R2, b(2) STD R3, c(n-1)
LDA R2, b(1) ADD R3, R2, R1 LDA R1, a(n)
ADD R3, R2, R1 STD R3, c(2) LDA R2, b(n)

STD R3, c(1) RTJ LABEL ADD R3, R2, R1

Local Memory Unlike the shared-memory model, where a node is simply a pro­

cessor, the node in a local-memory machine consists of a processor and memory. This

is concisely represented in Figure 6. The memory is local to a particular processor,

and outside references to it must be handled by passing a message to the owner of

a particular reference. The owning processor will then access the data and send a

message back containing the requested data. Because no data is shared, the problem

of shared modifiable data is eliminated.

Workstations connected by a network and working in parallel fit this model.

Local-memory machines are very scalable, and nodes may be added in an economic

manner. The main disadvantages to using a local memory machine are the extra

effort required to access data and the overhead, in the way of processing time, added

by the messages.

Williamson A9

M M p p 1/0 1/0

I I I I I I
Interconnection Network

Figure 7: Shared Bus

Hybrid Architectures Machines have been developed to overcome the problems of

both shared- and local-memory architectures. Many have shared but not equidistant

memory. Not enough research has been done in this area, and it remains to be seen

whether this approach will produce the best of both worlds or simply the worst of

each.

A.2 Processor Interconnection Schemes

An inportant aspect in parallel architectures is that of the processor intercon­

nect network. In shared-memory machines, every processor must have access to the

common memory. To request information in a local memory architecture, every node

must have a route of communication to every other node. For both types, each pro­

cessing unit must also be connected to input/output processors, control units, and

devices and must be controlled by one operating system.

A.2.1 Shared Bus

The shared-bus multiprocessor organization uses a single shared communication

path between all processors, storage units, and 1/0 units (see Figure 7). The bus is

a passive unit, with transfer operations between functional units controlled by bus

interfaces on the units themselves. Ethernet local area networking uses this simple

scheme.

The processor or 1/0 processor wishing to transfer data must check the avail­

ability of the bus and the availability of the destination unit and must initiate the

Williamson AlO

actual data transfer. The receiving units must be able to recognize which messages on

the bus are addressed to them, and they must interpret and acknowledge the control

signals received from the sending unit. Adding a new node is accomplished by simply

connecting it to the bus. Then all that is needed is a software announcement to the

other nodes that a new node is on the bus.

The primary disadvantage of this organizational scheme results from the single

communications path. The bus can handle only one transmission at a time. The

entire system will fail (catastrophic failure) if the bus fails. The transmission rate of

the system is constrained by the transmission rate of the bus. Contention for the use

of the bus in a busy system will degrade performance.

A.2.2 Crossbar-Switch Matrix

To circumvent the shared bus problems, a separate path can be added for every

processor by increasing the number of buses, as shown in Figure 8. This method,

the crossbar-switch matrix, can support simultaneous references to every storage unit

without blockage. Certainly the crossbar-switch is the best-performing interconnec­

tion scheme.

The hardware to build such a switch, however, becomes increasingly complex as

nodes are added. The switch must be capable of resolving conflicts for the same stor­

age unit. Cost of the switch will increase as the product of the number of functional

units and the number of storage units, effectively making this method inadequate for

massively parallel systems.

A.2.3 Multistage Networks

In this compromise of the crossbar-switch matrix, multistage networks achieve

good performance at a lower complexity. In this scheme, processors are connected

to switches or "hubs", which are then connected to other hubs or switches. This is

Williamson All

M M M

p I/0

p I/0

p I/0

Figure 8: Crossbar

similar to the system used in the airline industry, which does not support flights from

every destination to every other. Most flights from less-used locations are routed to

a hub and from there to another hub or the final destination. Each unit is able to

connect with any other unit, and the complexity of the interconnection scheme is

greatly reduced for large numbers of processors. It is termed multistage because each

message must pass through multiple switching elements to reach its destination.

A.2.4 Hypercube

The hypercube interconnection network connects large numbers of processors in a

relatively economical manner. A two-dimensional hypercube is simply a square with

a node at each corner. A three-dimensional hypercube is formed by connecting the

corresponding points of two two-dimensional hypercubes, in this case, a cube with

nodes on the corners. Higher-dimensional hypercubes are formed by connecting corre­

sponding points on two hypercubes of the next lower dimension. Figure 9 sketches the

several smaller dimensional hypercubes. Nodes reside at the endpoints of each solid

Williamson A12

2D .H.ypercube . • · · · .· .·_.·_.·.~

□· al] _._· .. LddJ .. · · · □ 4~ Hyp~r~u~e-:.-:.-:.-_.-_.-_-. ·
3D Hypercube

Figure 9: Hypercubes

line, with dotted lines connecting corresponding nodes. The savings of connections of

this method can be easily seen in an example . For 8 nodes, a three-dimensional cube

is used. A node can communicate with any other node via, at most, 3 connections.

At the highest end of practical use, the CM-2 uses a 16-dimensional hypercube that

supports 65,536 processors, with each being, at most, 16 connections from another.

A.3 Detecting Parallelism

Parallel detection is one important research possibility. This can be done by

the programmer, language translator, hardware, or the operating system [11]. The

shared memory model may use explicit or implicit parallelism . Explicit parallelism is

indicated by a programmer using a concurrency construct such as cobegin/ coend, as

follows:

cobegin
statement-1;
statement-2;

statement-n;
coend

In a multiprocessing system , one processor would be assigned to each statement.

Explicit parallelism is time consuming for the programmer, and the programmer may

Williamson A13

include statements that are not truly independent of each other. The real hope in this

area lies in implicit parallelism, or parallelism intrinsic to the algorithm. Compilers,

operating systems, and computer hardware may be used to exploit this parallelism.

A.4 Granularity

The size of the tasks to be completed in parallel is referred to as its granularity.

Fine-grained tasks include parallelizing individual assignment statements. Coarse­

grained tasks consist of entire subroutines being executed in parallel.

A.4.1 Speedup and Efficiency

To determine the effect of adding processors to an effort, measure of the speedup

and efficiency prove valuable. Speedup is defined as the time required to complete a

program, using one processor divided by the time required using n processors. Perfect

speedup is obtained when a program runs n times as fast when using n processors.

Efficiency is defined as the speedup divided by the number of processors. Perfect

speedup will result in 100 percent efficiency. Below is an example of 5 processors

executing a program in 25 milliseconds; the program required 100 milliseconds when

executed on one processor. The speedup and efficiency can be determined as shown.

A.4.2 Fine Grain

100
Ss = - = 4

25

4
Es= - = 80%

5

Directing fine-grained parallelism would be tedious and difficult. Luckily, the

compiler is responsible for it. To achieve fine-grained parallelism, the compiler breaks

individual statements into independent pieces and runs them concurrently.

Williamson A14

Loop Distribution Often the statements within a loop are independent of each

other. In such a case, one processor could be assigned to each iteration of the loop.

The following statement

for (i=O; i<3; ++i)
a [i] = b [i] + c [i] ;

would become

cobegin
a[1] = b[1] + c[1];
a[2] = b[2] + c[2];
a[3] = b[3] + c[3];

coend

With n processors available, the time to execute such a loop with up ton elements

is simply the time needed to calculate one element. In this way, data parallelism can

be taken advantage of by true hardware parallelism.

Tree-Height Reduction Using rules of precedence, a processor may reorder an

equation and indicate processes that may be executed concurrently in the object

code. Often, a unique and sequential ordering is not needed. Using the rules of com­

mutativity, associativity, and distributivity, compilers may rearrange expressions so

that they are more amenable to parallel computation. Using the associative property

of addition, the expression ((p+q)+r)+s) may be changed into (p+q)+(r+s), which

can be solved in fewer time steps because the first two additions may be carried out

independently. The first equation requires three instruction cycles (from the three

tree levels) while the second requires only two.

Using commutativity, p + (q * r) + s goes to (p + s) + (q * r), which again reduces

from three levels of execution or dependence to two.

Finally, using distributivity, p * (q * r * s + t) becomes (p * q) * (r * s) + (p * t),
which actually has added one more operation (five versus four) but reduced the tree

height from four to three.

Williamson A15

Never Wait A similar way of speeding mathematical computations involves the

"never wait" rule. If a computation can be performed, it is better to do it now, even

if it might not be valid later. If it is needed, computation is speeded.

a= c * c;
if (a==9)

d = 10;

e = d * f;

The third statement does not rely at all on the first and may be performed in

parallel with it . Should the second statement alter the value of d, then the third

statement will need to be reevaluated. If d is not changed, then the third statement

has already been performed; and the computation will complete faster.

A.4.3 Coarse Grain

Whole subroutines running independently and concurrently exhibit coarse- or

large-grained parallelism . This is the typ e of parallelism employed by all MIMD

machines. Becaus e of the time wasted for communication, the larger the task to be

performed in parallel, the faster the program will complete. If too few operations are

directed by a synchronizing communication , the program may actually slow down.

Lusk [4] demonstrated the relative speedup and efficiency of a simple program

which added two vectors, working element by element. Each addition was given to

a requesting process, with the time required to complete the additions compared as

the number of processors available was varied. The following gives the results.

Processes microseconds
1 2980
2 5584
4 7201
8 10061
16 16159

Williamson A16

For this problem, the execution time actually increased as processors were added.

This is a result of the extremely small granularity of the program (one operation per

processor request). Now, with the same program modified to artificially accomplish

more work (the addition was repeated 10000 times), the results became

Processes microseconds speedup
1 5151046 1.00
2 2682454 1.92
4 1440593 3.58
8 826448 6.23
16 437237 11.78

When the granularity was increased (the load to each processor increased) , the posi­

tive speedup was obtained.

A.5 Programming Models

Partly as a response to the different architectures, several different programming

models have emerged. They differ in the level of parallelism exploited and the use of

memory.

A.5.1 Loop-Level Parallelism

Automatic parallelizing compilers provide loop-level parallelism. They are used

mainly in architectures with shared memory . While the programmer may still give

compiler directives, the compiler is very good at parallelizing things such as the

execution of a DO loop. The biggest problem for loop level parallelism comes from

data dependence. This is demonstrated in the following example:

DO !=2,N
A(I) = A(I-1) + B(I)

ENDDO

Each iteration relies on the previous computation. Data dependence defines a relation

between two statements that imposes an order in which they must be executed. This

occurs when the same memory location is used in both statements.

Williamson A17

A notable example of a machine using this model is the Alliant FX/2800. It

was specifically designed to determine, at compile time, if iterations of a loop were

independent and then to exploit that situation by distributing the work of the loop

across several processors. The result was a machine that could run old programs

not written for any parallel operation and could spread the work out to achieve faster

solutions. While speedups may be greater in programs written for parallel processors,

this is a relatively easy way to attain parallel computation .

A.5.2 Shared Memory Model

Multiprocessors with a shared memory may use almost every programming model

discussed. However, the most natural model for them is the shared-memory model.

Large-grained parallelism is used as processors communicate through special variables.

As long as no processor tries to change any of these special variables, no problems

occur. However, when even one processor tries to change one of these special commu­

nication variables (known as shared modifiable data), indeterminate situations can

arise. Assume the shared modifible variable count = 7. In parallel two processes

execute:

Processor One
count= count+ 1

for which the assembly code might look

Processor One
LOA R1, count
ADD R1, 1
STD R1, count

Processor Two
count= count - 1

Processor Two
LOA R1, count
SUB R1, 1
STD R1, count

After this sequence of calls, would the variable count contain 6, 7, or 8?

The way to safely execute the previous example is to halt one processor while the

other continues. Using a special lock variable, LO = O, each can safely proceed.

Williamson

Processor One
CALL LOCK(LO)

count= count+ 1
CALL UNLOCK(LO)

Processor Two
CALL LOCK(LO)

count= count+ 1
CALL UNLOCK(LO)

A18

Only the first statement to call LOCK will be allowed to access the variable count.

The other will be involved in a busy wait, meaning that it will perform no useful work

while waiting for exclusive access to the variable count. Fortran style definitions

would look like:

SUBROUTINE LOCK(L)

100 CONTINUE
IF (L .EQ. 1) THEN

GOTO 100
ELSE

L = 1
RETURN

ENDIF
RETURN
END

SUBROUTINE UNLOCK(L)

L = 0
RETURN
END

When two or more processes attempt to access the variable count, they must first

pass through the lock. The variable LO may be changed only by the LOCK and UNLOCK

subroutines. The first process to access LOCK will set LO = 1. While process one works

in its critical section (the section of code containing count, the shared modifiable

data), any other process to enter the lock will continue to loop until process one calls

subroutine UNLOCK and releases LO.

A.5.3 Message Passing Model

Each processor will have exclusive access to a portion of memory with the message

passing model. A processor may reference data in its own memory, but all other

references must be handled by message passing. A node needing a variable from

Williamson A19

another processor would first request the location from the owning processor. That

processor would retrieve the information and then send it back to the requesting node.

This method eliminates the need of protecting shared variables but introduces

other problems. Most significant of these is the overhead, in the way of processing

time, required to send messages. The overhead required, however, is proportional to

the grain of parallelism (or the size of tasks going on in parallel). With fine-grained

parallelism, parallelism on a small level (such as parts of a single assignment occurring

concurrently), the cost of message passing greatly overshadows any gain obtained

by parallelism. The time required to send the messages to coordinate the effort

may become greater than the time required for one processor to complete the entire

task. However, on large-grained problems (whole subroutines working concurrently),

the time to pass messages becomes inconsequential. In other words, when the time

required to send the message is small compared to the task specified to be performed

by that message, then the message itself is not a performance issue . A good example

of this is a message indicating a whole subroutine to run.

The reasons to use message passing are numerous. First, is the applicability

of the code. Message-passing programs were designed to accommodate local mem­

ory architectures, but they can also be run on shared-memory architectures. For

shared-memory machines, the shared memory is divided between the processors; and

communication between processors then takes place only through messages. While

shared-memory machines may run message-passing programs, local-memory machines

may not easily run shared-memory programs. Thus, message-passing programs may

run on the widest range of parallel architectures.

Second, these programs run efficiently on both shared- and local-memory archi­

tectures. Message passing encourages programs that have a very large grain. Since

each message carries a penalty of wasted time, the number of messages per block of

Williamson A20

directed work decreases . Also, message passing takes advantage of data locality. The

data on which each processor will work is predominately in its own memory space.

Finally, the template of a message-passing program is very easy to understand.

Every node will run the same program, with one node acting as a master and all the

remaining nodes acting as slaves. The master is responsible for user input and output

and orchestrating the work done by slave processes. Consider the following:

#include "includes.h"
main()
{

}

init ();
if (get_my_id() -- 0)

master();
else

slave();
cleanup();

The function geLmyJd() returns a unique positive integer for each processor. The

first process to call it will become the master and enter the master() function, where it

will usually determine the total number of processors, divide the work, and broadcast

the needed information to all other nodes. All other processors will enter the slave()

function and wait for instructions from the master. Any message-passing program is

simply an expansion of the above.

A.5.4 Cluster Model

This software model is a combination of both the shared-memory and message­

passing models. Loosely coupled clusters of processors work together. Each processor

within a cluster communicates through shared variables in a common memory, while

communication among clusters is achieved by message passing. This model has not

yet seen general acceptance, but seems to be the most plausible for the future. As

Williamson A21

it becomes possible to include more than one processor on a physical chip, this pro­

gramming model will be most naturally implied by the hardware.

Williamson A22

References

[1] Lusk, E., Portable Programs for Parallel Processors. Holt, Rinehart and Winston,

Inc., 1987.

[2] Kuck, D. J., and A.H. Sameh, A Supercomputing Performance Evaluation Plan,

Tech. Rep. 692, Center for Supercomputing Research and Development, Univer­

sity of Illinois, June 1987.

[3] Dongarra, J. J. and J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK Users'

Guide. Philadelphia: the Society for Industrial and Applied Mathematics, 1979.

[4] Berry, M., et al., The Perfect Club Benchmarks: Effective Performance Evalu­

ation of Supercomputers , The International Journal of Supercomputer Applica­

tions, 3 (1989), pp . 5-40.

[5] Mosher, C. C., S. Hassanzadeh, and F. G. Lou, ARCO Seismic Benchmark Users

Guide, Version 1.00, January 1992.

[6] Myers, W., "Can Software for the Strategic Defense Initiative Ever Be Error­

Free?" Computer, Vol. 19, No. 11, November 1986, pp. 61-68.

[7] Keller, R. M., "Formal Verification of Parallel Programs," Communications of

the ACM, Vol. 19, No. 7, July 1976, pp. 371-384.

[8] Lamport, L., "Proving the Correctness of Multiprocess Programs," IEEE Trans­

actions on Software Engineering, Vol. SE-3, No. 3, March 1977, pp. 125-143.

[9] Flynn, M. J., "Very High-Speed Computing Systems," Proceedings of the IEEE,

Vol. 54, December 1966, pp. 1901-1909.

Williamson A23

[10] Sillicorn, D. B., "A Taxonomy for Computer Architectures," Computer, Vol. 21,

No. 11, November 1988, pp. 46-57.

[11] Kuck, D. J., "A Survey of Parallel Machine Organization and Programming,"

ACM Computing Surveys, Vol. 9, No. 1, March 1977, pp. 29-60.

[12] Margulis, N., i860 Microprocessor Architecture. Osborne McGraw-Hill, 1990.

[13] Perrott, R. H., Parallel Programming. Addison-Wesley Publishing Company,

1987.

[14] Stallman, R., GNU Emacs Manual. Free Software Foundation, 1986.

[15] Lamport, L., Tu\TEX: A Document Preparation System. Addison-Wesley Publish­

ing Company, 1986.

[16] Deitel, H. M., An Introduction to Operating Systems. Addison-Wesley Publishing

Company, 1990.

[17] Carey, G. F., Parallel Supercomputing: Methods, Algorithms, and Applications.

John Wiley and Sons, 1989.

[18] Cosnard, M., Parallel Algorithms and Architectures. Elsevier Science Publishing

Company, Inc., 1986.

[19] Hack, J. J., "Peak vs. Sustained Performance in Highly Concurrent Vector Ma­

chines," Computer, Vol. 19, No. 9, September 1986, pp. 11-20.

[20] Bertsekas, D. P. and J. N. Tsitsiklis., Parallel and Distributed Computation.

Englewood Cliffs, NJ: Prentice Hall, 1989.

[21] Bhuyan, L. N., Q. Yang and D. P. Agrawal, "Performance of Multiprocessor

Interconnection Networks," Computer, Vol. 22, No. 2, February 1989, pp. 25-37.

Williamson A24

[22] Burns, D., "Loop-Based Concurrency Identified As Best At Exploiting Paral­

lelism," Computer Technology Review, Vol. 8, No. 16, Winter 1988, pp. 19-23.

[23] Carlson, W. W. and K. Hwang, "Algorithmic Performance of Dataflow Multi­

processors," Computer, Vol. 18, No. 12, December 1985, pp. 30-43.

[24] Fox, G., "Use of the Caltech hypercube," IEEE Software, Vol. 2, July 1985, p.

73.

[25] Hillis, D., The Connection Machine Cambridge, Ma: MIT Press , 1985.

[26] Kuck, D. J., "A Survey of Parallel Machine Organization and Programming,"

ACM Computing Surveys, Vol. 9, No. 1, March 1977, pp. 29-60.

[27] Chandy, K. M. and S. Taylor, An Introduction to Parallel Programming. USA:

Jones and Bartlett Publishers, Inc ., 1992.

[28] Foster, I. and S. Taylor, Strand : New Concepts in Parallel Programming. Engle­

wood Cliffs, NJ: Prentice Hall, 1990.

Williamson Bl

P4 Versions of the fdmod and seis Perfect-Seismic Codes
David Levine and D. Ladd Williamson

B Users Guide

B.1 Introduction

Guided by a proposal to create a benchmarking suite given by Kuck and Sameh[l],
academic and industrial collaborators initiated the Perfect (Performance Evaluation
for Cost-Effective Transformations) benchmarking group in 1987. The goal was to
produce a large number of applications which could be used in performance evalu­
ation and ported to a large number of vector parallel high performance computing
machines[2].

This effort was largely successful, with 13 programs representing a variety of
scientific and engineering problems. These codes were successfully ported to over 30
machines. This effort proved to be the first systematic solution to the problem of
benchmarking parallel machines.

The Perfect-2{P-2) codes are being developed to provide benchmarks of Massively
Parallel Processing (MPP) computers. Eventually, three versions of every P-2 code
will be included in the distribution: Fortran 77 for loop-level parallelism, Fortran
90, and Fortran 77 + message passing. P-2 is eventually intended to encompass
approximately 10-15 applications. Among these are the ARCO benchmarks[3], it is
these which we are focusing on here. We are assisting in this project by providing
p4 message passing versions that can run on most MPP machines and workstation
networks.

B.2 P4

P4 is a collection of portable functions written in C to provide a basis for message
passing[4]. A Fortran interface provides applicability for that language. The complete
distribution of the latest version of p4 may be freely obtained by anonymous ftp from
info .msc. anl .gov in the directory pub/p4.

Three files must be included in the directories of each program. First, p4f .h
declares certain constants and types p4 function calls. Second, procgroup specifies
the number and location of each process to be started. See the machine specific notes
section. Finally, the Makefile must be modified to point to the p4 directory to link
in specific libraries. Examples showing different flags required will be shown in the
machine specific notes section below.

Williamson B2

Several versions of p4 exist, with the most recent being p4-1.2b. This contains
many improvements over p4-1.2, the most important to Perfect-Seismic being the
exclusion of a special slave() function. Version 1.2 required such a subroutine, and
slave processes could not exist outside of it. The newer p4-1.2b allows for more natural
programs by not imposing the slave() subroutine.

Within p4 is the ability to log user-specified events using alog subroutines. The
resulting files, called logfiles, may be examined using Upshot, available from the same
directory as p4 by anonymous ftp[5].

B.3 Directory Structure

Information reguarding the Directory Structure may be obtained from the Arco
Seismic Benchmark Users Guide[3]. An environment variable "BENCH" must be set to
the top-level directory. Two other environment variables must be set to compile, link,
and run correctly. The first, "ARCH", is the architecture of the machine where compi­
lation will occur (we used "sun4" "fx2800" "ksr" "symmetry" "ncube" "tc2000"

' ' ' ' ' ' "rs6000", and "cm5" for the Sun SPARC, Alliant FX/2800, Kendall Square KSR-1,
Sequent Symmetry, nCUBE 6400, BBN TC-2000, IBM RS6000, and Thinking Ma­
chines' CM-5, respectively). The second, "TARGET ...ARCH" is the architecture of the
machine being compiled for. These variables determine where to build and search for
various libraries and which makedef file is to be included for machine specific rules.
One makedef file exists for each different architecture, and contains all the necessary
flags for compiling on different machines. We used several architectures ("sun4",
"gamma", "delta", "fx2800", "ksr", "symmetry", "ncube", "tc2000", "rs6000", and
"cm5 ") but more could be used by adding the corresponding subdirectories and cre­
ating a specific makedef file. To support a new architecture, the user would need
to create a makedef file for the desired machine which included all machine specific
switches. The bin subdirectories consist of all possible architectures on which to run
("TARGET_ARCH") . The lib directory functions similarly. The user must create
the subdirectories under the bin and lib directories.

The doc directory contains the Perfect-Seismic Users Manual, and the makedef
files are in the include directory. The source code is found under src, with src/f77
containing the sequential versions of the applications, and src/msg containing the p4
versions.

As an example, consider a user installing the software in

/horne/williams/Benchmarks/PERFECT

to be run on an Intel DELTA and cross-compiled on a sun4. The environment vari­
ables should be set as follows:

% setenv BENCH /home/williams/Benchmarks/PERFECT
¼ setenv ARCH sun4
% setenv TARGET_ARCH delta

Williamson

Also, the following directories must be created:

¼ mkdir $(BENCH)/bin/delta $(BENCH)/lib/delta

B .4 The Applications

B.4.1 Fdmod

B3

fdmod performs 3D finite difference modeling with the acoustic wave equation.
The directory containing this is $(BENCH)/ src/msg/fdmod.

Files fdmod is made up of seven Fortran source files, p4 header and procgroup files,
and an input file.

1. fdmod.f is the driv er program for fdmod. It initializes the environment, creates
the slave processes, and begins main processing routines .

2. doit.f initializes various arrays, and then enters a loop to do all the calculations.
Upon completion of the big loop, this subroutine prints out the performance
results.

3. getparm.f instructs the master node to read the parmfile and broadcast the
values to all slave nodes.

4. bcs.f contains the code for absorbing boundary conditions.

5. fdoper.f is the actual finite difference operator.

6. source.f is the Ricker's source function code.

7. vclr.f zero's a vector. This is copied from the Standard Seismic Subroutine
Library.

8. parmfile contains the size of the model and various other input parameters.

9. procgroup specifies to p4 which machine(s) to use.

10. p4f.h types the p4 functions.

To run f dmod, care must be taken to assure that the size of the model is small
enough to fit in the memory of a single processor. This is because currently whole
arrays are allocated even though only part is used by each processor. The number of
depths per level is given by the first three parameters of the parmfile. For one node
on all tested machines, a safe size is 50 per dimension, or 50 for each of the first three
parameters in the parmfile.

To determine the maximum model size allowed, divide the available memory size
in bytes by the size of a real variable in bytes times three (fdmod uses three large

Williamson B4

arrays of type real). If Mis the available memory size and R is the size of the type
real then the model size is found by 31:_R. This is the maximum size. To determine
the maximum cubic model, take the cube root of the answer. These numbers will be
the first three arguments in the parmfile.

Changes and Bug Fixes The parallel version of fdmod was written by Siamak
Hassanzadeh. Ted Charrette based his parallel version of fdmod on Hassanzadeh's
code. Charrette's code is the source of our work.
Feb 9, 1993: Alog calls removed from the code. The newer calls were added, and then
removed because the final state of the calls is still in flux. The non-standard p4 calls
have been replaced with similarly functioning standard p4 calls.
May 3, 1993: Makefiles have been standardized, and now with very few exceptions,
only changes to the path of p4 in the makedef files are required to compile and link
on any supported architecture.

Future Work Currently, the entire arrays are allocated on each processor, even
though only part is used. This needs to be rewritten to only allocate the memory
required per processor. Also, fdmod is only decomposed in one dimension, Alberto
Roveda is working on a three-dimsional decomposition.

Input and Output Files The input file parmfile contains the dimensions of the
model and other parameters. The order of input variables is nx, ny, nz, nxs, nys,
nzs, nstep, ioper, sf, dx, dt .

The output comes to the screen. A file has been left in the code which may be
used for the output instead, by changing the unit number on the write statements in
doi t. f from "*" to 9, corresponding with the file fdmod. out.

B.4.2 Seis

seis performs prestack seismic processing. An originating process reads seismic
traces, which are then piped through a chain of data processing routines. A final
process writes the processed traces out to disk or tape.

Files This version of seis includes the following processes:

DCON - seismic trace deconvolution
DGEN - synthetic data generation
DMOC - dip moveout correction
FANF - 2D spatial filtering by Fourier transform
GEOM - seismic geometry specification
NMOC - normal moveout correction
READ - read seismic benchmark file

Williamson

RTMG - reverse time finite difference migration
STAK - stack seismic traces
WRIT - write seismic benchmark file

These processes are in $(BENCH)/ src/msg/ seis.

B5

Input and Output Files Two small sample problems are supplied in the pa­
rameter files small 1. prm or small2. prm in the seis directory. These files contain a
sequence of processes to be run that produce seismic trace files. The path will need to
be modified on the line following the WRIT line in small 1. prm and the lines following
both READ and WRIT in small2. prm. Then modify the path in the script run. small
to point to the same place. The following script will then run both small tests, of
which the second is dependent on the resulting seismic trace files of the first.

rm -f /home/williams/tmp/stest?.*
cp small1.prm seis.prm
seis -p4pg procgroup_file_name
cp small2.prm seis.prm
seis -p4pg procgroup_file_name

The first line deletes any previous seismic trace files. Any old files would cause a file
creation error. The first parameter file is copied into seis. prm, which is looked for
by seis. Then the program is started with a specific procgroup file.

The utils directory contains many subroutines for managing seismic files. A
make command in this directory will cause an archive called lib bench. a to be created.
A make in the seis directory will create an archive called libseis. s.

Changes and Bug Fixes March 12, 1993: The YAMPL message passing calls have
been replaced by p4 calls. Most C functions used by YAMPL have been removed or
replaced by Fortran versions.
May 3, 1993: Makefiles have been standardized, and now only changes to the path of
p4 in the makedef files are required to compile and link on any supported archtecture.

Future Work Remove the final C function j loc which returns the addresses of a
common block.

B.4.3 General Make Notes

All Makefiles are machine-independent. Changes are made in the
$ (BENCH) /include/makedef. $(TARGET...ARCH) files. To compile either fdmod or seis,
first edit the makedef.$(TARGET ..ARCH) and set the MACHINE and P4..HDME..DIR vari­
ables. fdmod can then be compiled using the usual UNIX make in its directory. The

Williamson B6

utils directory must be compiled before seis, as many routines call the special seis­
mic 1/0 routines, etc. Perform a UNIX make first in the utils directory, and then
m seis.

A special notation may be used to keep multiple copies of the procgroup file
specifing different numbers of processes. These are written $(ARCH)#. pg. E.g., the
KSR-1 with procgroups specifying one, two, and sixteen processes would have files
ksr1.pg,ksr2.pg,and ksr16.pg.

Run scripts are included in each $(BENCH)/bin/$(TARGET...ARCH) directory. Usu­
ally the only modification needed for each run script is to change the name of the
procgroup.

B .5 Local Memory Machines

For most local memory machines the procgroup will require only one line which
contains the string "local", the number of slave processes, and the path to the
exe cutable. The fast communication of the machine between nodes is then used.

B.5.1 Intel DELTA

The Intel DELTA is a local memory machine with 528 nodes (each consisting of
an i860 processor and 16MB of memory) connected in a 2-D mesh topology. Each
node is connected to a Mesh Routing Chip which controls message passing.

Compilation The machine-specific file makedef. delta which assumes compilation
on a sun4 contains the following variables,

MACHINE= DELTA
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE)

OTHER= -lkmath -node
XLIB = -1X11 -lsocknode
ARCH= sun4

CC= ice
FC = if77
CFLAGS = $(COPT)
FFLAGS = $(FOPT)
COPT =
FOPT = -04 -Mvect -Mnodepchk

ARFLAGS = r
AR= ar860
AS= as

Williamson

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_HOME_DIR)/include
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f

.c.o:
$(CC) $(CFLAGS) -c $<

.c.a:
$(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $© $*.o
rm -f $*.o

.f.o:
$(FC) $(FFLAGS) -c $* . f

.f.a:
$(FC) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $© $* .o
rm -f $*.o

. s .o:
$(COMPILE.s) -o $© $<
.s.a:
$(COMPILE.s) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
$(RM) $¼
COMPILE.s= $(AS) $(ASFLAGS)

B7

Procgroup File The DELTA procgroup file (del ta1. pg) to run seis on one node
1s:

local 0

To run on two nodes (delta2.pg) use:

local 1 /usr2/levine/seis

To run on 16 nodes (deltal6.pg) use:

local 15 /usr2/levine/seis

Williamson B8

Execution On the DELTA, the user must use the mexec command to allocate a
partition and begin execution. Process O must be loaded on the first node with a
parameter specifying the procgroup file to use. The remaining nodes are loaded with
a switch to indicate that they are slave processes. For example, this command (see
shellscript run1) loads one process on logical node "O".

mexec -t "(1,1)" -f 110 seis -pg delta1.pg"

This command (see shellscript run16) loads the "master" process on logical node "O",
and the remaining processes on logical nodes 1-15.

mexec -t "(4,4)" -f "0 seis -pg delta16.pg" -f 11 1-15 seis -amp4s1ave"

Special Notes Be sure that the environment variables PGI and IPSC_JCDEV are
pointing to the correct directori es.

The path in the procgroup file is very likely to be different than the structure com­
piled on . Be careful of pathnam e when moving from the front-end where compilation
is done to the mesh for execution .

Current Status May 24, 1993: Both fdmod and seis compile, link, and run on
the DELTA.

B.5.2 Intel iPSC/860

The Intel iPSC/860 is a local-memory machine connected in a hypercube topol­
ogy. The particular machine used was an 8-node system at Argonne . Each node
consists of an Intel i860 microprocessor and 16MB of memory. The front-end is an
Intel 386 computer . Compilation was done on a Sun Spare.

Compilation The machine-specific file makedef. ipsc860 contains the following
variables, of which only the first two lines will need to be modified before compilation.

MACHINE= IPSC860
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE)

OTHER= -lkmath -node
XLIB = -1X11 -lsocknode
ARCH= sun4

IPSC_XDEV = /usr/local
BIN860 = $(IPSC_XDEV)/i860/bin.$(ARCH)
INC860 = $(IPSC_XDEV)/i860/include-ipsc
AR= $(BIN860)/ar860

Williamson B9

ARFLAGS = r
CC= $(BIN860)/icc
IFLAGS = -I$(INC860)
CFLAGS = $(COPT) -i860 -Dipsc860 -DIPSC $(IFLAGS)
FFLAGS = $(FOPT) -i860
XFLAGS = -1X11 -lsocknode
COPT =
FDPT = -04 -Mvect -Mnodepchk
FC = $(BIN860)/if77
AS= $(BIN860)/as860
FLINKER = $(FC)

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_HOME_DIR)/include
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f

.c.o:
$(CC) $(CFLAGS) -c $<

.c.a:
$(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $© $*.o
rm -f $*.O

.f .o:
$(FC) $(FFLAGS) -c $*.f

.f .a:
$(FC) $(FFLAGS) -c $*.f
$(AR) $(ARFLAGS) $© $*.o
rm -f $*.o

. s .o:
$(COMPILE.s) -o $© $<
.s.a:
$(COMPILE.s) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
$(RM) $¼

Williamson BIO

COMPILE.s= $(AS) $(ASFLAGS)

Procgroup File For the iPSC/860, the procgroup file is the string "local, the
number of slaves, and the full pathname to the executable. The following was used
for one node on the iPSC/860 at ANL.

local 0

and the procgroup for eight nodes is:

local 7 /home/williams/PERFECT/bin/ipsc860/fdmod

Execution To run, first a cube must be allocated, the program loaded and run,
and then the cube cleaned up and released. The script run2 contains the following
commands to run on 8 nodes using the procgroup file p4gamma8. pg.

getcube -t8
load 1-7 /home/williams/PERFECT/bin/ipsc860/fdmod -amp4slave
load O /home/williams/PERFECT/bin/ipsc860/fdmod -pg gamma8.pg;waitcube
killcube
relcube

B.5.3 Special Notes

Remember to always cross-compile on a Sun.
Any path beginning with /cfs uses the "concurrent file system". This is a fast

I/0 system accessible only through the nodes, not the front-end. No references to
the / cf s currently exist in the benchmark suite.

Current Status May 24, 1993: Both fdmod and seis compile, link, and run.

B.5.4 nCUBE

The nCUBE is a local memory machine in a hypercube topology.

Compilation The machine-specific file makedef. ncube contains the following vari­
ables,

MACHINE= NCUBE
P4_HOME_DIR = /home/users/cust/williams/p4-1.3

AR= nar
ARFLAGS = r
CC= nee

Williamson

CFLAGS = $(C0PT)
FFLAGS = $(F0PT)
C0PT = -03 -BX
F0PT = -03 -BX -ncube2s
FC = nf77
RAN= ranlib
FLINKER = $(FC)

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_H0ME_DIR)/include
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f

.c.o:

. c.a:

. f.o:

. f.a:

.s.o:

.s.a:

$(CC) $(CFLAGS) -c $<

$(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $© $*.o
rm -f $* .o

$(FC) $(FFLAGS) $(F0PT) -BX -03 -c $* .f

$(FC) $(FFLAGS) $(F0PT) -BX -03 -c $*.f
$(AR) $(ARFLAGS) $© $*.o
rm -f $*.o

$(C0MPILE.s) -o $© $<

$(C0MPILE.s) -o $¼ $<
$(AR) $(ARFLAGS) $© $¾
(RM)¾

C0MPILE.s= $(AS) $(ASFLAGS)

Bll

Procgroup File The procgroup file contains the string "local", the number of slave
processes, and the full path to the executable. An example procgroup file for one node

Williamson

running fdmod is:

local O /visitors/levine/PERFECT/bin/ncube/fdmod

For 16 nodes running seis use:

local 15 /visitors/levine/PERFECT/bin/ncube/seis

Note that even with only one node, the full pathname must be specified.

B12

Execution The shell script runcube in the $ (BENCH) /bin/ipsc860 directory will
execute any p4 program. It takes as arguments the procgroup file name and any
parameters to be passed to p4. From the procgroup file the number of processors
to be used is determined, the path is found, and a cube is allocated, loaded, and
execution is initiated. To maintain consistency, runcube is called from the usual
run. fdmod and run. seis scripts.

Special Notes Many utilities are available, just prepend an "n" to whatever you
are looking for. For example, the link editor is nld, the archiver is nar, and the
debugger is ndb. To find on-line information, use nman.

One C function remains in seis. To compile, change the name of the function
to all uppercase, and remove the trailing underscore.

Current Status May 24, 1993: fdmod will run with only one process, and com­
plains about an overfull message buffer with two processes. This ran the first time
around.
May 24, 1993: seis compiles. When run with smalll.prm, it works fine, but when
used with small2.prm, it crashes early (during file creation).

B.5.5 IBM SP-1

The SP-1 is a local memory machine with nodes consisting of IBM RS6000 pro­
cessors and a 128MB memory. The configuration used in our testing used Ethernet
connectivity.

Compilation For compilation, follow exactly the procedure for compiling for a
network of RS6000's described in Section B.6.2. The SP-1 is binary compatible with
the RS6000.

Procgroup File The procgroup file to run on one node is:

local 0

For four nodes, one line must be included for each process (at the time of this writing
the fast switch was not installed and Ethernet was used for message passing).

Williamson

local 0
spnode4 1 /u/williams/seis
spnode5 1 /u/williams/seis
spnode6 1 /u/williams/seis

B13

Execution No prior allocation of nodes is necessary for the SP-1, nodes are specified
in the procgroup file. To execute on four nodes using the procgroup in the previous
Section use

rlogin spnode3
cd /u/williams
rm -f /u/williams/stest?.*
cp small1.prm seis.prm
seis -p4pg /u/williams/seis
cp small2.prm seis.prm
seis -p4pg /u/williams/seis

Special Notes In our test machine, the nodes were connected via Ethernet. How­
ever, a switch is coming which will speed message passing greatly.

Current Status May 24, 1993: The first port of fdmod was successful, but this
time it crashes right at the start.
May 24, 1993: seis runs fine, but without the fast switch, slows as processors are
added.

B.5.6 CM-5

The CM-5 is a local memory machine with nodes connected in a Fat-Tree topol­
ogy. To most effectively use the CM-5, jobs must be submitted to the distributed job
manager (DJM). Although smaller p4 programs have been run on the CM-5, we have
been unable to successfully run either fdmod or seis there.

Compilation A complete makedef file has not been completed, but here are some
of the appropriate definitions:

cc= cc
FC = emf
CLINKER= cmmd-ld -comp cc
FLINKER = cmmd-ld -comp f77

Williamson B14

Procgroup File For the CM-5, the procgroup consists of the string "local", the
number of slave processes, and the full pathname to the executable. For one node,
use:

local 0

and for 4 nodes use a procgroup of the form:

local 3 /u/ncsa/dschneid/PERFECT/bin/cm5/fdmod

Execution To submit jobs to the Distributed Job Manager, do the following:

¼ jsub myjob
Number of processors (8K)?
Estimated CPU time (5min)?
Estimated memory (128M)?
Job submitted successfully. Job id is 43.

Special Notes

Current Status May 20, 1993: Nothing important has compiled.

B.6 Networks of Workstations

A network of workstations can be viewed as a loosely coupled local memory
machine with very poor communication latencies and bandwidths. Since p4 programs
are easily ported, program development often occurs by running first on workstation
networks, and then porting debugged p4 code to other machines.

B.6.1 SUN Network

Compilation The machine-specific file makedef. sun4 contains the following vari­
ables,

ARCO Seismic Benchmarks
Additions to make rules for Sun SPARC
For sun4, add ranlib to make rules for libraries

MACHINE= SUN
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE)

XLIB = -1X11

Williamson

RAN = ranlib

CFLAGS = -D$(ARCH) $(COPT)
FFLAGS = $(FOPT)
FOPT = -03
COPT = -03

FLINKER = $(FC)

ARFLAGS = ruv
LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_HOME_DIR)/include
P4_FFLAGS = -I$(P4_HOME_DIR)/lib_f

.c.o:
$(CC) $(CFLAGS) -c $<

.c.a:
$(COMPILE.c) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
(RAN)©
(RM)¼

.f.o:
$(FC) $(FFLAGS) -c $<

.f. a:
$(COMPILE.f) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
(RAN)©
$(RM) $¼

B15

Procgroup File The procgroup file for a network of workstations contains a sepa­
rate line for each process to start. More than one process may be run on one machine,
however, each process must be specified on its own line. The procgroup file for one
process looks as follows.

local 0

Williamson

For two processes it looks like:

local 0
shark 1 /home/williams/PERFECT/bin/sun4/seis

B16

This will run one process on the machine the user is logged into (local "O"), and one
process on "shark". If the user is logged onto "shark" this procgroup file would run
two processes on "shark" which would then time share the single physical processor.

An example procgroup to start eight processes is:

local 0
juju 1 /home/williams/PERFECT/bin/sun4/seis
vulcan 1 /home/williams/PERFECT/bin/sun4/seis
dalek 1 /home/williams/PERFECT/bin/sun4/seis
jadoube 1 /home/williams/PERFECT/bin/sun4/seis
clone 1 /home/williams/PERFECT/bin/sun4/seis
cosmo 1 /home/williams/PERFECT/bin/sun4/seis
chartres 1 /home/williams/PERFECT/bin/sun4/seis

Execution To execute on a workstation network, the program must be started from
the local machine. All that is required is the name of the executable. The procgroup
file specifies the number and location of other processors. To run the program with
eight processors use:

¼ /home/williams/PERFECT/bin/sun4/seis -pg sun8.pg

Special Notes If using the alog to produce files suitable for visualization with
upshot on any architecture, use a workstation such as a Sun to run both the mergelogs
and adj logs commands.

Current Status May 24, 1993: fdmod compiles, links, and runs.
May 24, 1993: seis compiles, links, and runs.

B.6.2 RS6000 Network

Compilation The machine-specific file makedef. rs6000 contains the following vari­
ables,

ARCO Seismic Benchmarks
Default make rules for IBM RS6000 running AIX

MACHINE= RS6000
P4_HOME_DIR = /usr/local/p4-1.3/$(MACHINE)

Williamson

FC = xlf
FFLAGS = $(FOPT) -qextname
cc= cc
CFLAGS = $(COPT) -D$(ARCH)
CLINKER= cc
FLINKER = xlf -bloadmap:rs6000map -bnso -bI:/lib/syscalls.exp
OTHER= -lbsd
XLIB = -1X11

COPT = -02
FOPT = -0

AR= ar
RANLIB = true
MDEP_LIBS = -lbsd
MDEP_FFLAGS = -qextname

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4 . a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_HOME_DIR)/include
P4 FFLAGS = -I$(P4_HOME_DIR)/lib_f

Procgroup File An example procgroup to start four processes is:

local 0
raft 1 /home/williams/PERFECT/bin/rs6000/fdmod
wherry 1 /home/williams/PERFECT/bin/rs6000/fdmod
kayak 1 /home/williams/PERFECT/bin/rs6000/fdmod

B17

Execution The program must be started from the machine which is to be the local
node. To run with four processors type:

Y. /home/williams/PERFECT/bin/rs6000/fdmod -pg rs60004.pg

Special Notes Running on the RS6000's is very similar to a network of Sun's.
Before running anything on the IBM SP-1, first run on a newtork of RS6000's, as
they are binary compatable. Then copy the executables to the SP-1 directory and
continue from there.

Williamson

Current Status May 19, 1993: fdmod compiles, links, and runs.
May 19, 1993: seis compiles, links, and runs.

B.7 Shared Memory Machines

BIS

P4 uses either of two methods to start processes for message passing on shared
memory machines: shared memory or unix sockets. Although unix sockets are gen­
erally slower, either method may be used as specified in the procgroup file. If all
processes are specified on one line, then shared memory is used. If all processes are
specified on separate lines, unix sockets are used.

B.7.1 KSR-1

The KSR-1 is a Non-Uniform Memory Access machine with the memory physi­
cally distributed, but treated as shared. Nodes are connected in uni-dimensional rings
of 32 which are then stacked to achieve larger numbers of processors. All memory
is stored in the individual "caches" in each node, no "absolute" memory addresses
exist.

Compilation The machine-specific file makedef. ksr contains the following:

MACHINE= KSR
P4_H0ME_DIR = /usr/lusk/p4-1.3

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench . a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_H0ME_DIR)/include
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f

XLIB = -1X11
RAN= ranlib

CFLAGS = $(C0PT)
FFLAGS = $(F0PT)
F0PT = -02
C0PT = -02

.c. a:

-v -v -xfpu3
-v -v -xfpu3

$(C0MPILE.c) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼

-para
-i4 -r8 -para

Williamson

.f .a:

(RM)¼

$(COMPILE.f) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
(RM)¼

B19

Procgroup File To use shared memory the procgroup file for the KSR-1 is the
string "local" and the number of slaves. The following procgroup starts one process
using shared memory.

local 0

The procgroup below starts 16 processes using shared memory:

local 15

To start processes using UNIX sockets, the procgroup file would have a separate line
for each process. The following procgroup would start four processes using UNIX
sockets.

local 0

ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod
ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod
ksr2 1 /u1/williams/PERFECT/bin/ksr/fdmod

Currently, the socket method does not work with the KSR.

Execution Running on the KSR-1 is very simple. The procgroup file designates
the number of processors needed and allocates them. To run, type the executable
name and pass any arguments needed to p4. Assuming an executable named fdmod
in the bin directory, and a procgroup named ksr16. pg specifiying 16 total processes,
the command to run would be,

¼ /home/williams/PERFECT/bin/fdmod -pg ksr16.pg

Special Notes The KSR creates a program called trace. out when an executable
crashes. If fdmod failed, the problem could be examined in the following manner,

¼ stacktrace fdmod trace.out

A special problem with the KSR involves the default size of integers, which is
four bytes in C and eight bytes in Fortran 77. Since the Fortran calls to p4 are really
just an interface to C functions, the differences in size prove fatal. The -i4 shown
above sets the default size of an integer to four bytes in Fortran . The -r8 performs
a similar function, by setting the default size for double precision to eight bytes.

Williamson B20

Current Status May 21, 1993: fdmod runs, but never exits. Ming mentioned that
destruction of threads can take up to 900 seconds, so I might not be patient enough.
Will have to check up on that.
May 21, 1993: seis will not run. It crashes early, something to do with the seismic
trace files.

B.7.2 Alliant FX/2800

The Alliant is a shared memory machine. It supports both unix sockets and
shared memory for inter-process communication (see Section B.7. The shared memory
works the best, but either may be used as determined by the procgroup.

Compilation The machine-specific file makedef. fx2800 contains the following vari­
ables,

MACHINE= FX2800
P4_HOME_DIR = /fx2800/usr8/lusk/p4-1.3

FC = fortran
FFLAGS = $(FOPT)
CFLAGS = $(COPT) -D$(ARCH)
FOPT = -Ogvc
COPT = -0
COMPILE.f = $(FC) $(FFLAGS) -c
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) -c
FLINKER = $(FC)

add ranlib to make rules for libraries

AR= ar
ARFLAGS = rv
RAN= ranlib
RM= rm

LIBS= $(P4_HOME_DIR)/lib_f/libp4_f.a $(P4_HOME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = $(P4_HOME_DIR)/include
P4_FFLAGS = $(P4_HOME_DIR)/lib_f

.c.a:

Williamson B21

.f .a:

$(COMPILE.c) $<
$(AR) $(ARFLAGS) $© $1/.
(RAN)©
(RM)¼

$(COMPILE.f) $<
$(AR) $(ARFLAGS) $© $¼
(RAN)©
(RM)¼

Procgroup File See Section B. 7 for a description of the posibilities for a procgroup
on shared memory machines. For one process, the procgroup would look like this:

local 0

The following is the procgroup for two and then eight processes using shared memory,
and then two and eight using sockets.

local 1 /usr8/levine/PERFECT/bin/fx2800/fdmod

local 7 /usr8/levine/PERFECT/bin/fx2800/fdmod

local 0
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod

local 0
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod
hurley 1 /usr8/levine/PERFECT/bin/fx2800/fdmod

Execution Give the filename and any options to run (such as the procgroup name.)
No explicit acquisition of nodes is required. E.g.,

¼ /usr8/levine/PERFECT/bin/fx2800/fdmod -pg fx28002.pg

Special N ates On the FX/2800 we used, the memory requirements were too large.
Add a switch to increase the amount of global memory used.

Williamson B22

Y. /usr8/levine/PERFECT/bin/fx2800/fdmod -pg fx28002.pg -gm 2000000

Also, for fdmod, the comment lines in parmfile caused an error. Delete the first
three lines and modify getparm. f by commenting out the first three reads.

Current Status As Alliant has gone out of business, providing full functionality
on the FX/2800 has not been a high priority. fdmod has been run, and seis should
be a relatively port.
May 20, 1993: fdmod ran earlier, but now seems to crash with two processors.
May 20, 1993: A minimal effort compiled seis, but it doesn't run. No further effort
was put there.

B. 7 .3 BBN TC2000

As a shared memory machine, the TC2000 may use sockets or shared memory.
(See the discussion under Section B. 7.)

Compilation The machine-specific file makedef. tc2000 contains the following vari­
ables,

MACHINE= TC_2000
P4_H0ME_DIR = /usr/local/$(MACHINE)

FC = f77
cc= cc

RAN= ranlib
AR= ar
ARFLAGS = r

CFLAGS = $(C0PT)
FFLAGS = $(F0PT)
C0PT =
F0PT =
FLINKER = $(FC)

-par

LIBS= $(P4_H0ME_DIR)/lib_f/libp4_f.a $(P4_H0ME_DIR)/lib/libp4.a
LIB= $(BENCH)/lib/$(TARGET_ARCH)/libbench.a
SLIB = $(BENCH)/lib/$(TARGET_ARCH)/libseis.a
BIN= $(BENCH)/bin/$(TARGET_ARCH)

P4_CFLAGS = -I$(P4_H0ME_DIR)/include
P4_FFLAGS = -I$(P4_H0ME_DIR)/lib_f

Williamson

.c.a:

.f.a:

$(COMPILE.c) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
(RAN)©
(RM)¼

$(COMPILE.f) -o $¼ $<
$(AR) $(ARFLAGS) $© $¼
(RAN)©
(RM)¼

B23

Procgroup File Examples of one, two, and eight processors will be shown, first for
shared memory and then for sockets.

local 0

local 1 /home/williams/PERFECT/bin/tc2000/fdmod

local 7 /home/williams/PERFECT/bin/tc2000/fdmod

local 0

local 0
lepido 1 /home/williams/PERFECT/bin/tc2000/fdmod

local 0
lepido
lepido
lepido
lepido
lepido
lepido
lepido

1
1
1
1
1
1
1

/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod
/home/williams/PERFECT/bin/tc2000/fdmod

Execution Run with the cluster command to limit the number of nodes used.

¼ cluster 8 fdmod -pg tc20008.pg

Special Notes

Williamson B24

Current Status BBN's advanced computer group is no longer making the TC2000
and only the port of fdmod has been attempted. The port to seis should be easily
accomplished.
May 19, 1993: fdmod compiles and runs.
May 19, 1993: seis cannot be run until the new version of p4 supports it. Will p4
be ported to the TC2000?

B. 7.4 Sequent Symmetry

The Symmetry has been used for only fdmod.

Special Notes Shared memory message passing is not supported in Fortran by p4.

Current Status

B.8 List of Common Problems

"pgm_path_name: Command not found" P4 tried to start the program with
the given name on a remote machine and the program did not exist. Verify the
full path name of the program.

"make: Warning: Can't find '/include/makedef.-sun4' Environment variables
are not set. Set BENCH, ARCH, and TARGET...ARCH before trying to make or run.

"SEIOPEN: ERROR OPENING path/stestl.HDR" Small1.prmmust be used
to create stestl. * before small2. prm is run.

B.9 Results

"these results are not officially approved and reported by the SPEC Perfect Group
Steering Committee. They may not be directly comparable to accepted and verified
results."

Williamson B25

T bl 3 FDMOD t' . lt a e : 1mmg resu s
Machine 1 (50) 2 (70) 4 (80) 8 (110) 16 (130)
Sun 3.08019 7.63494 7.20896 30.8019
nCUBE 4.25984 5.76716 4.32537 8.65075 6.02931
iPSC/860 1.83700 2.30100 1.75500 2.36000
DELTA 1.64100 2.21900 1.69300 2.35100 2.23900
KSR - SM 2.73999 3.96000 3.31999 4.29999 4.01999
KSR - Sock
TC-2000 - SM 28.785 75.536 86.546 104.41 103.019
TC-2000 - Sock 28.785 97.297 115.75 392.09 1050.85
FX/2800 - SM 4.56 5.68 4.95 8.51 8.07
FX/2800 - Sock 4.56 6.98 8.97
Symmetry - Sock 42.86 116.050
CM-5
RS6000 3.96799 7.03999 12.2880 34.1759
SP-1 .639999 1.15199 2.55999 31.2320 42.3680

a e 1mm T bl 4 SEIS t' . lt ~ resu s
Machine 1 (Sl) 1 (S2) 2 (Sl) 2 (S2) 4 (Sl) 4 (S2) 8 (Sl) 8 (S2)
Sun 1.20.1 41.47.1 57.9 43.02.8 0.47.8 18.47.0 0.47.9 10.01.1
iPSC/860 1.36.9 5.12.5 1.31.9 10.45.5 2.41.9 8.12.1
DELTA 1.29.5 4.14.0 1.29.8 3.40.8 0.46.0 4.42.8 1.02.2 4.45.0
RS6000 2.42.0 2.14.4 1.20.8 1.11.9 1.15.1 1.26.6 0.55.5 1.40.2
SP-1 0.26.6 0.20.9 0.20.1 0.19.4 0.27.8 0.24.0 0.32.8 0.43.7

Williamson B26

References

[1] Kuck, D. J., and A.H. Sameh, A Supercomputing Performance Evaluation Plan,
Tech. Rep. 692, Center for Supercomputing Research and Development, Univer­
sity of Illinois, June 1987.

(2) Berry, M., et al., The Perfect Club Benchmarks: Effective Performance Evalu­
ation of Supercomputers, The International Journal of Supercomputer Applica­
tions, 3 (1989), pp. 5-40.

(3) Mosher, C. C., S. Hassanzadeh, and F. G. Lou, ARCO Seismic Benchmark Users
Guide, Version 1.00, January 1992.

(4) Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming sys­
tem. Technical Report ANL-92/17, Argonne National Laboratory, Mathematics
and Computer Science Division, October 1992.

[5) Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with Up­
shot. Technical Report ANL-91/15, Argonne National Laboratory, Mathematics
and Computer Science Division, August 1991.

	Developing a Benchmark for Evaluating the Performance of Parallel Computers
	Recommended Citation

	tmp.1547158029.pdf.lM51U

