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Abstract9

Faced with the challenge of saving as much diversity as possible given financial and time constraints, conser-10

vation biologists are increasingly prioritizing species on the basis of their overall contribution to evolutionary11

diversity. Metrics such as EDGE (Evolutionary Distinct and Globally Endangered) have been used to set12

such evolutionarily-based conservation priorities for a number of taxa, such as mammals, birds, corals, am-13

phibians, and sharks. Each application of EDGE has required some form of correction to account for species14

whose position within the tree of life are unknown. Perhaps the most advanced of these corrections is phy-15

logenetic imputation, but to date there has been no systematic assessment of both the sensitivity of EDGE16

scores to a phylogeny missing species, and the impact of using imputation to correct for species missing from17

the tree. Here we perform such an assessment, by simulating phylogenies, removing some species to make18

the phylogeny incomplete, imputating the position of those species, and measuring (1) how robust ED scores19

are for the species that are not removed and (2) how accurate the ED scores are for those removed and20

then imputed. We find that the EDGE ranking for species on a tree is remarkably robust to missing species21

from that tree, but that phylogenetic imputation for missing species, while unbiased, does not accurately22

reconstruct species’ evolutionary distinctiveness. On the basis of these results, we provide clear guidance for23

EDGE scoring in the face of phylogenetic uncertainty.24

Keywords: conservation prioritization, evolutionary distinctiveness, EDGE, phylogenetic imputation25
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Introduction26

Evidence from the fossil record and present-day studies argue we are in the midst of, or entering, a sixth27

mass extinction (Barnosky et al., 2011; Ceballos et al., 2015), such that more populations than ever are28

declining and species face heightened danger of extinction (Wake and Vredenburg, 2008; Thomas et al.,29

2004). Habitat destruction (Brooks et al., 2002), invasive species (Molnar et al., 2008), climate change30

(Pounds et al., 2006), and disease (Lips et al., 2006) are some of the leading causes of species declines31

globally. Conservation biologists seek to reduce these detrimental effects on species populations, but in32

reality they have limited resources with which to do so. This challenge, termed the “Noah’s Ark problem”33

(Weitzman, 1998), has driven conservation biologists to identify different ways by which to prioritize, or34

triage, their resource allocation (Bottrill et al., 2008).35

Conservation triage, like all sound decision-making, requires a method to quantify the relative urgency or36

importance for conservation among a set of options. This allows scientists and policy-makers to use data to37

quantify need and inform conservation decision-making and management activities. One triage strategy uses38

the EDGE metric to identify and prioritize species that are Evolutionarily Distinct and Globally Endangered39

(Isaac et al., 2007). Evolutionary Distinctiveness (ED) measures the relative contributions made by each40

species within a particular clade to phylogenetic diversity, assigning each branch length equally to all the41

subtending species (Redding, 2003; Isaac et al., 2007). Global Endangerment (GE), assigns numerical values42

to each of the International Union for Conservation of Nature (IUCN) Red List Categories. As species43

become increasingly threatened and are placed into categories of increasing concern (e.g. from Vulnerable44

to Endangered), the GE numerical value increases. A species’ EDGE score is an aggregate value intended45

to equally reflect a species’ evolutionary distinctiveness and conservation status (even if it does not always46

in practice; see Pearse et al., 2015).47

Usage of the EDGE metric has expanded greatly. First used to prioritize global mammals (Isaac et al.,48

2007), EDGE scores are now available for a variety of taxonomic groups, including amphibians (Isaac et al.,49

2012), birds (Jetz et al., 2014), corals (Curnick et al., 2015), squamate reptiles (Tonini et al., 2016), sharks50

(Stein et al., 2018), and all tetrapods (Gumbs et al., 2018). Related metrics are also now available, each51

subtly emphasizing different things, such as the expected contribution of each species to future phylogenetic52

diversity (HEDGE, I-HEDGE; Steel, Mimoto, and Mooers, 2007; Jensen et al., 2016) and our uncertainty53

over a species’ future (EDAM; Pearse et al., 2015) The development and expansion of EDGE-like metrics54

mirrors progress in other areas of conservation biology, and the likelihood of success in conservation (Wilson55

et al., 2007; McBride et al., 2007), the relative cost of certain interventions (Naidoo et al., 2006), and56
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complementarity of interventions (Pressey et al., 1993; Myers et al., 2000) can now be considered in its57

calculation. The EDGE index was developed explicitly with the intention of informing conservation triage,58

and is now the basis of the global EDGE of Existence Program (http://www.edgeofexistence.org/). The59

successful application of EDGE highlights the potential for phylogenetic conservation prioritization metrics60

to provide actionable insights while quantitatively measuring the evolutionary history a species represents.61

Nonetheless, almost every application of an EDGE-type approach must address uncertainty resulting from62

missing data. Addressing, and hopefully improving, our ability to handle uncertainty should be a continual63

effort to increase the support for such approaches. However, in an effort to dilineate between science and64

policy, it is important to note that the implications of missing data on policy making will vary depending65

upon the demands and goals of a particular person or organization.66

Missing data can affect EDGE scores in several ways. First, the IUCN identifies some species as Data67

Deficient (IUCN, 2001; IUCN, 2008), which affects the GE component of a species’ EDGE score. Fortunately,68

the IUCN provides guidance for using any available contextual data to assign some threat status to such69

species. A number of studies illustrate how to assign threat categories to Data Deficient species, which70

in turn should reduce the uncertainty in GE (Good, Zjhra, and Kremen, 2006; Butchart and Bird, 2010;71

Morais et al., 2013; Dulvy et al., 2014). The issue of missing phylogenetic data is arguably more complicated72

because not only does the focal species have no ED score, but its absence from the phylogeny may affect the73

ED scores of related species. Species of conservation concern are almost by definition rare, and frequently74

lack sufficient DNA (or even morphological) data to be placed with certainty on a phylogeny. In most cases,75

taxonomic information rather than sequence data alone has been used to place species in the tree of life76

when constructing EDGE lists (see Isaac et al., 2007; Collen et al., 2011; Isaac et al., 2012; Jetz et al., 2014;77

Curnick et al., 2015; Stein et al., 2018; Gumbs et al., 2018; Forest et al., 2018). Yet, to our knowledge,78

there has been no systematic study of the effect of imputation on species’ EDGE scores, despite this practice79

having received attention in other areas of comparative biology (Kuhn, Mooers, and Thomas, 2011; Thomas80

et al., 2013; Rabosky, 2015). Thus we do not know how accurate EDGE scores are when species are missing,81

or when species are added to phylogenies by imputation, nor do we know how accurate EDGE scores for82

imputed species might be. As interest in using EDGE-type measures and phylogenies for conservation triage83

grows, the need for consensus on how to resolve cases of phylogenetic uncertainty becomes increasingly84

urgent.85

Here we attempt to quantify the effect of one sort of phylogenetic uncertainty—the effect of missing species86

on EDGE rankings—and assess the degree to which subsequent imputation affects the accuracy of EDGE87

scores. We do so by simulating phylogenies and then removing species either at random, or with bias, across88
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those phylogenies. By contrasting the ED scores of the species before and after the loss of other species from89

the phylogenies, we measure the impact of missing species on ED scores. We then assess the extent to which90

phylogenetic imputation can accurately estimate the EDGE scores of missing species in simulated data. We91

also examine the extent to which such imputation affects the scores of species for which we have data. In92

doing so, we hope to provide clear guidance as to the applicability of phylogenetic imputation as a solution93

for species missing phylogenetic data. From our results, we argue that species’ ED values are remarkably94

robust to missing species, and that phylogenetic imputation does not reliably reconstruct the true ranking95

of those missing species.96

Methods97

We use a simulation approach to test the effect of having missing species on a phylogeny (through species re-98

moval from simulated phylogenies) and then imputing species for species’ ED (Evolutionary Distinctiveness)99

scores. We focus exclusively on the ED-component of the EDGE metric, since uncertainty in species GE100

scores has already been addressed by the IUCN’s proposal to assign Data Deficient species scores (IUCN,101

2001; IUCN, 2008). Because EDGE is the product of both ED and GE components, even perfectly accurate102

GE values could be associated with imperfect EDGE scores if the ED scores were inaccurate.103

All trees (both starting and imputed) were simulated under a pure-birth Yule model using ’gieger::sim.bdtree’104

(setting parameters b=1 and d=0; Pennell et al., 2014). This model was chosen because it is the simplest model105

possible: speciation rates are constant across the entire tree of life and there is no extinction. We suggest106

that imputation under a simple model that is identical to that used to simulate the data is a low, and fair,107

benchmark for a method to meet. However, we acknowledge that more complex and/or biologically realistic108

models of diversification could potentially improve the performance of imputation. We used ’caper::ed.calc’109

to calculate ED values (Orme et al., 2013). All simulations and analyses were performed using R (version110

3.4.0; R Core Team, 2017). We performed 100 replicate simulations of each parameter combination. All111

our analysis code is available online (https://github.com/bweedop/edgeSims) and in the supplementary112

materials.113
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The impact of missing species on EDGE scores114

Our first set of simulations assess the impact of missing species data on the ED scores of remaining species,115

considering data missing either in a random or phylogenetically-biased fashion. We simulated phylogenies116

of different sizes (number of species: 64, 128, 256, ..., 2048, 4096) and then removed constant fractions of117

tips from the tree (0%, 1%, 2%, ..., 19%, ..., 99%). To simulate species missing at random throughout the118

phylogeny, we used ’sample()’ to select the relevant fraction of species (rounded to the nearest whole number)119

without replacement. To remove species in a phylogenetically-biased manner, we used Felsenstein (2005)’s120

threshold model. We simulated a trait under a constant rate Brownian-motion model (σ=0.5, starting root121

value = 1) (using ’geiger::sim.char’ Pennell et al., 2014). Species were then removed from the tree if their122

simulated trait was in the upper quantile matching the fraction of species to be removed. For example,123

if 10% of species were to be removed from the tree, the species with the highest 10% of values would be124

removed. This results in closely related species being removed more often than expected by chance.125

To quantify the effect of these manipulations, we calculated the ED values of species that are not removed126

from a tree both before and after removal. We then correlated these ED scores: if missing species do not127

affect ED values of the remaining species, we would expect a strong, positive correlation between the ED128

scores of the remaining species calculated before and after species were removed from the phylogeny. We129

emphasize that species removed from the phylogeny are omitted from this comparison. We outline our130

approach in figure 1.131

The impact of phylogenetic imputation on EDGE scores132

Our second set of simulations tested the impact of imputation on ED scores within an imputed clade. We133

used relatively small clades (5, 6, 7, ..., 30, 31, 32 species) from phylogenies of different sizes [128 (27), 147134

(27.2, 168 (27.4), ... , 776 (29.6), 891 (29.8), 1024 (210) species). We first randomly selected a clade to be135

removed from the ‘true’ tree and then simulated a new phylogeny of the same size as the removed clade.136

This newly simulated clade was generated under the same pure-birth model as the original phylogeny. We137

then placed the newly simulated clade in the full phylogeny, in the same location as the removed clade. If a138

newly simulated clade was so old that it was not possible to graft it into place, we discarded that clade and139

simulated another. In an empirical study the model of evolution under which the phylogeny had evolved140

would have to be estimated, which is an additional source of error not considered here. We simulated each141

combination of clade and total phylogeny sizes 100 times when using a pure-birth Yule model and 5 times142
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when simulating under models with past extinction. An overview of our approach is given in figure 2.143

To assess whether clades, once imputed, had similar ED scores to their true values, we correlated the imputed144

ED scores with the true ED scores. We also calculated the sum of the absolute change in ranked ED for all145

species, which is particularly relevant for EDGE-listing as conservation actions are often focused around the146

top 100, 200, etc., species. Moreover, the correlation of imputed and real scores are bounded by the depth of147

the imputed clade, and therefore a high correlation could still produce inaccurate imputed scores, and a low148

correlation could still not be important (e.g. they could be anticorrelated but still differ in rank by a max149

of the size of the subclade). We modeled both of these metrics (the change in ranking and the correlation)150

as a function of a number of potential explanatory variables. Specifically, we included in our models: the151

estimated speciation rate of the original phylogeny (using ‘ape::yule’; Paradis, Claude, and Strimmer, 2004),152

the sum of all phylogenetic branch-lengths in the original phylogeny (Faith’s PD; Faith, 1992), the sum of153

all phylogenetic branch-lengths in the original focal clade (Faith’s PD; Faith, 1992), the value of γ in the154

original phylogeny (using ‘phytools::gammatest’; Pybus and Harvey, 2000; Revell, 2012), Colless’ index of155

the original phylogeny (using ‘apTreeshape::as.treeshape’; Colless, 1982; Bortolussi et al., 2009), the kurtosis156

of species’ ED values in the original phylogeny (using ‘moments::kurtosis’; Komsta and Novomestky, 2015),157

the skew of species’ ED values in the original phylogeny (using ‘moments::skew’; Komsta and Novomestky,158

2015), the total number of species in the original phylogeny, the total number of species within the imputed159

clade, and the depth (age) of the imputed clade in the phylogeny. Although the expectations of many of160

these explanatory variables are known for Yule trees, in each simulation they are expected to vary somewhat161

by chance.162

Recently, there has been interest in assigning missing species the mean ED score of the most exclusive163

clade which contain the species (see Gumbs et al., 2018). To test the efficacy of such methods, we assigned164

the average ED of the selected clade to each of its’ species and calculated (as above) the mean change in165

absolute ranking under this scheme. Note that we could not correlate ED scores (as we do above), since such166

a correlation would require variation in species’ scores and under this approach a single score (the mean ED)167

is assigned to all imputed species.168

We present, in the supplementary materials, two additional sets of analyses intended to examine the impact169

that past extinction rates may have played on our analyses. These simulations incorporate conditions of170

past extinction at low and high rates using ‘gieger::sim.bdtree’ (setting parameters for low extinction at171

b=1 and d=0.5 and high extinction b=1 and d=0.95; Pennell et al., 2014). These models represent large172

departures from our main simulations (which have b=1 and d=0), and so we performed only 5 replicates per173
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set of parameter combinations as our only aim was to detect any major differences in our results stemming174

from these changes. Otherwise, these simulations were identical to those we present in the main text.175

Results176

We asked how robust ED scores were for species with known positions on the phylogeny, when other species177

were missing from the phylogeny. In fact, when there were increasing numbers of missing species, ED178

scores for the remaining species’ became less accurate (table 1; figure 3). When species were missing from179

the tree in a phylogenetically-based fashion, ED values were less robust as compared to when species are180

randomly missing from the tree. However, the effect of missing species is not necessarily severe; even if181

20% of species are missing from the tree, the average correlation coefficient between true and estimated ED182

scores for the remaining species is 0.88 and 0.94 for phylogenetically-biased and random missing species,183

respectively.184

We also considered the impact of imputation on the accuracy of ED scores for imputated species. When185

clades were imputed on the tree, we found a weak (if any) average positive correlation between the imputed186

ED and true ED values for species within the imputed clades (overall mean correlation of 0.197 in a statistical187

model with an r2 of 0.5%; figure 4, table 2). We also found no explanatory variables that explained significant188

variation in this relationship (table 2; see Appendix S1 in Supporting Information). However, we did find189

evidence that, when imputing larger clades, the variation in the correlation between true and imputed ED190

scores decreases, although we emphasise the effect is weak (see table 2). When considering rankings rather191

than raw scores, we found that imputation can introduce sizable error into the estimation of species’ ED192

values (figure 5 and table 3). This ranking error increased with the size of the imputed clade and phylogeny193

(table 3), and can affect ranking error within the top 100 and 250 species (see Appendix S2 in Supporting194

Information). To give an example of the magnitude of the effect, within a phylogeny of 1024 species, the195

members of an imputed clade of 30 species are, on average, ± 315 rankings from their true rankings. We196

found similar effects in ranking error when using the average ED value of clade for a missing species (see197

Appendix S3 in Supporting Information). As we show in the supplementary materials, the simulation (and198

subsequent imputation) of phylogenies under models incorporating extinction rates (i.e., not Yule models)199

had qualitatively identical results. We do not, therefore, discuss them in detail here.200
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Discussion201

Phylogenies are playing an increasing role in conservation prioritization, decision-making, and policy (Vézquez202

and Gittleman, 1998; Veron et al., 2017). A major obstacle to a more widespread adoption of phylogenetic203

prioritization methods such as EDGE is phylogenetic uncertainty (Collen, 2015). There is a tension between204

a purported need to make decisions to preserve biodiversity—including evolutionary history—now, and the205

reality that we rarely have complete information about the phylogenetic placement of many species of con-206

servation concern (Isaac and Pearse, 2018). The intention of our study is to provide concrete information207

about the impact of one source of phylogenetic uncertainty - missing species - on conservation prioritization.208

To address this uncertainty, we addressed two key issues: (1) the extent to which species that are missing209

from the tree of life impact the ED scores of species for which we do have data, and (2) the extent to which210

phylogenetic imputation can accurately estimate ED scores for taxa with no phylogenetic data. First, we211

found that missing species had a surprisingly small impact on the ED scores of other species, particularly if212

species are missing at random from the tree of life. Second, we found that phylogenetic imputation generally213

fails to accurately reconstruct species’ ED scores and rankings.214

In this study, we have examined imputation under three separate models of diversification: pure-birth Yule215

models (presented in the main text), and models with relatively high and low rates of extinction (both216

in the Supporting Information). We acknowledge that lineages evolve in more complex ways, although217

we suggest that focusing on these fundamental models of diversification makes our results more broadly218

applicable. We suggest that a method should perform well under basic conditions, and as such these results219

form an appropriate benchmark, particularly given we can see no reason to suppose that more complex220

models should increase model performance. Further, we focus here solely on the results from a single221

imputation in each simulation, despite, empirically, biologists reporting average ED scores calculated across222

pseudo-posterior distributions of many imputed phylogenies (Kuhn et al., 2011). Thus our results show223

that the variation within these pseudo-posterior distributions is likely very large. It is well-known that224

such imputation methods are not biased (indeed, this was originally shown by Kuhn et al., 2011): here we225

emphasize that the uncertainty they introduce is sufficiently large such that they may be less informative226

than previously has been thought.227

Conservation prioritization and triage have been controversial: to some triage represents an unacceptable228

defeat by accepting that some species will go extinct (Jachowski and Kesler, 2009; Parr et al., 2009), while229

to others it is either efficient resource allocation or a grim necessity (Bottrill et al., 2008). The debate over230

the implications of triage, both philosophically and practically, is an important one, but this study does not231
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address it. Conservation biology has been described as a crisis discipline where it is often necessary to act232

with imperfect information and, ultimately, tolerate and manage uncertainty (Soulé, 1985). Our intention233

here is to shine a light on how phylogenetic uncertainty and imputation can impact species ED(GE) scores.234

While we feel that EDGE and related approaches are worthwhile for conservation biologists, every user of235

any triage method must weigh the potential benefits and drawbacks associated with that method.236

ED scores are relatively robust to missing species237

Missing species and poor phylogenetic resolution have been identified as causes of uncertainty when calculat-238

ing ED (Isaac et al., 2007), but we were unable to find a quantitative assessment of how missing species might239

affect ED values of species for which data is available. Empirically in corals and gymnosperms, incomplete240

phylogenies produced similar results as later, more complete trees (Curnick et al., 2015; Forest et al., 2018).241

Our results support this finding. Indeed, our analysis suggests that, on average (and we emphasize that242

there is a good amount of variation about that average; see figure 3), a phylogeny missing 20% of species at243

random will still have ED scores for the remaining species that are strongly correlated (mean rho = 0.94)244

with the true ED scores.245

We did find that missing species are more problematic when those species are non-randomly distributed246

across the phylogeny. Our simulations do not examine extreme phylogenetic patterning, such as if an entire247

clade were missing. This is notable because clades that are geographically restricted to difficult-to-reach248

regions are both difficult to sequence and not uncommon (as is seen with 27 coral species in the Indian249

Ocean; Arrigoni et al., 2012). We also do not attempt to comprehensively simulate all of the different ways250

in which species could be missing from a phylogeny. We emphasize that we have not demonstrated, and251

do not argue, that missing species cannot affect ED scores. We simply demonstrate that, compared to252

a scenario in which species are missing at random, phylogenetically patterned missing species can have a253

greater effect on the ED scores of species for which we have data, and that (in our opinion) ED scores are254

remarkably robust to missing species. Other patterns and scenarios for species to be missing could easily255

lead to systematic biases of ED scores, and so very effort should be made to gather accurate phylogenetic256

information for all species within a clade before prioritisation is carried out.257
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Imputation does not reconstruct the ED values of missing species with great258

precision259

Our results show that neither imputation (figures 4 and 5), nor clade-averages of ED (see Appendix S3260

in Supporting Information), accurately recover the true ED values or the true ED rank of missing species.261

Thus we argue that, even though imputation allows missing species to be incorporated into EDGE lists, their262

associated EDGE scores may not accurately reflect their true scores. We acknowledge these are averages263

and may change depending on particular phylogeny, but we can find no statistically significant predictors of264

that variation.265

While we did not assess clades with fewer than five species (we do not consider correlations or averages to266

be reliable with so few data-points), we cannot think why smaller clades would necessarily be more reliable267

(and this would require a large deviation from the trend in figure 4). Indeed, in the smallest possible clade268

(two species), imputation is essentially sampling a terminal branch length from an exponential distribution269

(Kuhn et al., 2011); such a process should still lead to a great degree of uncertainty.270

It is, perhaps, unsurprising that imputed ED values do not correlate with their true values (see figure 4),271

but we were surprised at the degree of ranking error. Indeed, larger phylogenies showed greater ranking272

error; we näıvely would have expected the opposite. We would expect the the upper bound on the age of273

the imputed clade, which should have expected be relatively younger in larger phylogenies, would partially274

controlled the range of the ranks for the imputed species. ED is known to be driven mostly by terminal275

branch length (Isaac et al., 2007; Steel et al., 2007; Redding et al., 2008); our results therefore emphasize276

this.277

Imputation is not the only way to incorporate missing species into EDGE-like frameworks (see Collen et al.,278

2011; Gumbs et al., 2018), but it is likely the most common. 3, 330 of the birds (˜30%; Jetz et al., 2014),279

250 of the mammals (˜5.6%; Collen et al., 2011), and 610 of the sharks (˜49%; Stein et al., 2018) in recent280

EDGE lists were imputed. It is well-known that phylogenetic imputation can cause biases in other statistical281

methods, such as the estimation of evolutionary phylogenetic signal (Rabosky, 2015). We emphasize that282

we are not suggesting that imputation biases ED scores: we are, instead, suggesting that it is less precise283

than has previously been acknowledged.284
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Guidelines for the use of imputation285

The impact of imputation on EDGE scores is almost certainly less than its impact on ED scores, because286

EDGE scores are a product of both ED and IUCN status (‘GE’). However, the goal of EDGE-like measures287

is to incorporate phylogeny, and if imputed EDGE scores are driven by their GE component because of288

uncertainty introduced by imputation, this essentially creates another metric of IUCN status. With this in289

mind, we hope to provide clear guidelines, along with the benefits and drawbacks, when using imputation in290

EDGE-based approaches to scientists and policy makers.291

Our results further suggest that incomplete phylogenies can be used to estimate ED scores with remarkably292

high degrees of accuracy. Instead of using imputation to account solely for the relatively minor impact of miss-293

ing species, we suggest that conservation biologists should, without accounting for phylogenetic uncertainty,294

addressfocus on the phylogenetic uncertainty of species for which they have data. While we have not ex-295

plored this uncertainty here, evolutionary biologists commonly work with distributions of trees generated296

from genetic data (reviewed in Huelsenbeck et al., 2001; Bollback, 2005), since the precise topology and297

dating of a phylogeny is almost always uncertain. This uncertainty has, indeed, already been shown to affect298

EDGE scores and rankings (Pearse et al., 2015). If biologists are concerned about the impact of missing299

species on known species’ ED(GE) scores we see no harm in being precautionary and using imputation. It300

is important, however, to focus on known sources of potential error, and so we would encourage biologists301

to incorporate uncertainty in species with phylogenetic data as a priority.302

Our results suggest that prioritizing species whose phylogenetic structure has been imputed should be done303

with extreme care, if at all. In the case that an species is imputed to be below a threshold set for conservation304

(most EDGE studies focus on the ‘top 100’ species or something similar), then the path forward is clear:305

that species should not have conservation funds allocated to it at this time. The case where a species, on306

average, passes a threshold is more complex, but the theory underlying imputation can give some guidance.307

Imputed distributions of trees essentially represent Bayesian posterior distributions (Kuhn et al., 2011), and308

so the 95% posterior densities of these distributions’ ED values represent a range within which we can be309

95% certain the true ED scores lie (if the model assumptions are met). Thus we suggest that conservation310

action should only be initiated for a species if there is a 95% (or 80%, or whatever confidence is deemed311

appropriate) probability that it is above that threshold. For example, a species whose ranking is estimated to312

have a 20% probability of being between the 1st and 100th highest-ranked species could not, with confidence,313

be called a top-100 species. Our results suggest that, on average, very few imputed species will meet such a314

criterion. Regardless, the calculations of such probabilities is trivial with the data users of imputation have315
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in hand already.316

Ultimately, we are currently fighting a losing battle to preserve the tree of life. Our results are good news:317

they suggest that we can start right away using the (incomplete) phylogenies we already have. The effect of318

missing species is negligible enough that we often do not need time-consuming imputation, and imputation319

rarely gives us sufficiently precise estimates of species’ ED scores anyway. We suggest that, given we do not320

have the resources to save everything, we should consider focusing our efforts on those species whose ED321

scores we can know with greater certainty: those for which we have data.322
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Estimate Std. Error t value Pr(>|t|)
Reference—Phylogenetically biased
Intercept 1.0315 0.0013 821.39 <0.0001
Fraction of species removed -0.4696 0.0020 -233.16 <0.0001
Number of species overall 2.500× 10−6 2.984× 10−7 7.89 <0.0001
Contrast—Random
Intercept 0.0630 0.0018 35.47 <0.0001
Fraction of species removed -0.2774 0.0028 -97.45 <0.0001
Number of species overall 5.013× 10−6 4.219× 10−7 -4.38 <0.0001

Table 1: Statistical model of the effect of missing data on the calculation of the remaining
species’ ED values. Results of a multiple regression fit to the data shown in figure 3, regressing the
correlation coefficient of (remaining) species’ ED scores before and after other species were removed from
the phylogeny (F139696,5 = 40, 350, r2 = 0.5908, p < 0.0001). We emphasize that these are simulated data,
and so, as the extremely large sample sizes are likely driving the low standard errors of the model terms,
we encourage the reader to focus on the magnitudes of the effects and the overall variance explained by our
model (r2 = 0.5908).The first three rows refer to the overall intercept, effect of the fraction of species removed
from the phylogeny, and the overall size of the phylogeny when species were removed in a phylogenetically
biased fashion. The last three rows are contrasts, reporting whether there is a difference in each coefficient
when the simulations were conducted with random, or phylogenetically biased, species loss. reporting the
difference (contrast) of each parameter when species were removed at random from the phylogeny. whether
random loss of species has a statistically different effect. The correlation of ED scores appears affected by an
interaction between the number of species removed from the tree and whether those species were removed at
random or in a phylogenetically-biased fashion. The overall size of the phylogeny has little discernible effect,
and its statistical significance is likely driven by the large number of simulations we performed (139, 700).

Estimate Std. Error t value Pr(>|t|)
Intercept 0.1974 0.0501 3.94 0.0001

Size of Focal Clade -0.0036 0.0005 -7.60 < 0.0001
Size of Phylogeny 0.0001 0.0001 0.60 0.5497

PD -0.0001 0.0001 -0.64 0.5241
Estimated speciation rate -0.0199 0.0493 -0.40 0.6865

Colless’ Index -0.0000 0.0000 -0.08 0.9380
Skew 0.0022 0.0083 0.27 0.7885

Kurtosis -0.0001 0.0008 -0.16 0.8736
Depth of Imputed Clade 0.0006 0.0005 1.27 0.2045

Table 2: Statistical model of the potential drivers of the correlation between imputed and
true ED values. Results of a multiple regression fitted to the data shown in figure 4, showing a relatively
poor correlation between imputed and true ED scores (F44791,8 = 29.1, r2 = 0.005, p < 0.0001). Given the
extremely low predictive power of this statistical model we are reticent to make strong claims about drivers
of the correlation between imputed and observed ED. Each coefficient refers to a measured variable in our
simulations, as described in the text.

Estimate Std. Error t value Pr(>|t|)
Intercept -1.6344 0.0332 -49.29 0.0001

Size of focal (imputed) clade 0.0900 0.0010 91.22 <0.0001
Size of phylogeny 0.5179 0.0013 383.99 <0.0001

Table 3: Statistical model of the effect of clade and phylogeny size on ranking error. Model
of the raw data underlying figure 5, regressing the ranking error of imputed species against the number of
species in the imputed clade and the entire phylogeny (F47997,2 = 77890, r2 = 0.7644, p < 0.0001). As can
be seen in figure 5, the average ranking error is positively correlated with the size of the clade being imputed
and the entire phylogeny. Square-root transformations werehave been applied to both ranking error and size
of phylogenyprior to fitting this model.
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Figures441

Figure 1: Conceptual overview of the missing-species simulations in this study. The simulated
tree on the left is the true tree prior to removal of missing species. On the right is the same tree after missing
species have been removed. Species that are removed are shown in red. To compare the ED values of the
remaining species, we correlate their ED values before (left) and after (right) removal of the missing species.
Dashed lines can be seen for the species which would have ED scores compared.
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Figure 2: Conceptual overview of the imputation simulations conducted in this study. The
simulated tree on the left is the ‘true tree’. We selected a clade to treat as ‘missing’ (highlighted with a
dashed line and in blue) by treating it as a polytomy (middle panel), and then imputed the ‘missing’ species
to produce the imputed clade in the right panel. To compare true and imputed ED values within the imputed
clade, we correlated ED values calculated for the true clade (left) with those for the imputed clade (right).
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Figure 3: The effect of missing data on the calculation of the remaining species’ ED values.
The correlation coefficient of species’ ED values in full (simulated) phylogenies, comparing values before and
after the random loss of (other) species from the tree. The color of data points denote whether the species
were removed from the phylogeny completely at random (orange) or in a phylogenetically biased fashion
(see text; grey). Lines show regressions for random (red) or phylogenetically biased (black) species loss; see
table 1 for model coefficients. This plot shows that the accuracy of estimation of ED values is inversely
proportional to the number of species missing from the phylogeny, and that phylogenetically-biased species
loss has a greater impact on accuracy.
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Figure 4: The correlation between species’ imputed and true ED scores plotted as a function
of the number of species imputed (focal clade size from all sizes of phylogenies used (n = 128,
..., 1024)). Each data point represents the correlation between ED values within the focal clades where
imputation has occurred, comparing species’ true ED values with their imputed ED values. This plot, and
the statistical analysis of it in table 2, show limited support for an association between true and imputed
ED values.

Figure 5: Mean ranking error of imputed species. An interpolated heat-map of the mean ranking
error of imputed species as a function of the total number of species in the phylogeny (vertical axis) and
number of species in the focal (imputed) clade (horizontal axis). Table 3 gives statistical support for the
trend of increased error in larger phylogenies and imputed clades. This figure shows a tendency for an
increase in error in larger phylogenies and imputed clades.
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