
1 

Effects of bark beetle attacks on forest snowpack and avalanche formation – 1 

implications for protection forest management 2 

Michaela Teicha,1, Andrew D. Giuntaa, Pascal Hagenmullerb, Peter Bebic,  3 

Martin Schneebelic, and Michael J. Jenkinsa 4 

aDepartment of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 5 

84322-5230, USA 6 

bUniv. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Etudes 7 

de la Neige, 1441 rue de la piscine, F-38400 Saint Martin d'Hères, France 8 

cWSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf, 9 

Switzerland 10 

Corresponding author: Michaela Teich (michaela.teich@bfw.gv.at) 11 

Declarations of interest: none  12 

                                                      

1Present address: Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Rennweg 1, 6020 

Innsbruck, Austria 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220141192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abstract 13 

Healthy dense forests growing in avalanche terrain reduce the likelihood of slab avalanche 14 

release by inhibiting the formation of continuous snow layers and weaknesses in the snowpack. 15 

Driven by climate change, trends towards more frequent and severe bark beetle disturbances 16 

have already resulted in the death of millions of hectares of forest in North America and central 17 

Europe affecting snowpack in mountain forests and potentially reducing their protective capacity 18 

against avalanches. We examined the spatial variability in snow stratigraphy, i.e. the 19 

characteristic layering of the snowpack, by repeatedly measuring vertical profiles of snow 20 

penetration resistance with a digital snow micro penetrometer (SMP) along 10 and 20 m long 21 

transects in a spruce beetle infested Engelmann spruce forest in Utah, USA. Three study plots 22 

were selected characterizing different stages within a spruce beetle outbreak cycle: non-23 

infested/green, infested > 3 years ago/gray stage, and salvage-logged. A fourth plot was installed 24 

in a non-forested meadow as the control. Based on our SMP measurements and a layer matching 25 

algorithm, we quantified the spatial variability in snow stratigraphy, and tested which forest, 26 

snow and/or meteorological conditions influenced differences between our plots using linear 27 

mixed effects models. Our results showed that spatial variability in snow stratigraphy was best 28 

explained by the percentage of canopy covering a transect (R2 = 0.71, p < 0.001), and that only 29 

14% of the variance was explained by the stage within the outbreak cycle. That is, differences 30 

between green and gray stage stands did not depend much on the reduction in needle mass, but 31 

spatial variability in snow stratigraphy increased significantly with increasing forest canopy 32 

cover. At both study plots, a more heterogeneous snow stratigraphy developed, which translates 33 

to disrupted and discontinuous snow layers and therefore reduced avalanche formation. We 34 

attribute this to the small fine branches and twigs still present in the canopy of gray stage trees 35 
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influencing snow interception and unloading, and especially increasing canopy drip. In contrast, 36 

salvage logging that reduced the canopy cover to ~25%, led to a spatially less variable and 37 

similar snow stratigraphy as observed in the meadow. At these two study plots, a homogeneous 38 

snow stratigraphy consisting of distinct vertical and continuous slope-parallel soft and hard snow 39 

layers including weak layers had formed, which is generally more prone to avalanche release. 40 

Our findings therefore emphasize advantages of leaving dead trees in place, especially in 41 

protection forests where bark beetle populations have reached epidemic phases. 42 

 43 

Keywords: snow stratigraphy; avalanche formation; protection forest; bark beetle; snow micro 44 

penetrometer; SMP 45 

 46 

Highlights 47 

▪ Snow penetration resistance was measured repeatedly below bark beetle killed trees 48 

▪ Variability in snow stratigraphy was quantified with a new layer matching algorithm 49 

▪ Spatial variability in snow stratigraphy is driven by percentage of canopy cover 50 

▪ Leaving dead trees in protection forests contributes to avalanche protection 51 

▪ Salvage logging can result in snow stratigraphy more prone to avalanche release  52 
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1. Introduction 53 

Mountain forests growing in avalanche terrain serve an important role in avalanche 54 

protection by reducing and disrupting the formation of continuous snow layers and weaknesses 55 

in the snowpack that contribute to slab avalanches (Bebi et al., 2009; Schweizer et al., 2003). The 56 

spatial deposition of snow and snow metamorphism determine snow stratigraphy, the 57 

characteristic layering of the snowpack with varying properties, which develops over the course 58 

of a winter (Pielmeier and Schneebeli, 2003). Forests modify snowpack properties through 59 

interception of falling snow by tree crowns, the reduction of near-surface wind speeds, changes 60 

to the energy balance beneath and around trees, and the direct support of the snowpack by stems, 61 

remnant stumps and dead wood (Schneebeli and Bebi, 2004). Collectively these processes 62 

promote a highly variable snow stratigraphy over space and time, which can inhibit avalanche 63 

formation in forests (Bebi et al., 2009; Brang et al., 2006). 64 

Native bark beetles (Coleoptera: Curculionidae: Scolytinae) are important disturbance agents 65 

in forest ecosystems that naturally occur alongside their hosts (Jenkins et al., 2012, 2008; Raffa 66 

et al., 2008). These insects infest weakened or stressed trees under endemic population phases 67 

and, therefore, naturally alter forest ecosystems by killing live overstory trees, which creates 68 

forest openings for other tree species and age classes to establish (Raffa et al., 2008; Veblen et 69 

al., 1991). Under the right environmental and stand conditions as well as availability of suitable 70 

host material, bark beetle populations can grow from an endemic to an epidemic phase, which 71 

may overcome host resistance and initiate mass infestations that overwhelm healthy live trees 72 

(Coulson, 1979). Recent bark beetle outbreaks in North America and central Europe have 73 

reached unprecedented levels resulting in the death of millions of hectares of forest (Baier et al., 74 

2007; Black et al., 2013). Driven by climate variability and change, this trend towards more 75 
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frequent and severe disturbances is presumed to continue for the coming decades (Bentz et al., 76 

2010). Bark beetles are also expected to further colonize previously unsuitable habitats at higher 77 

elevations and latitudes (Bentz et al., 2016; Logan et al., 2010; Seidl et al., 2009), which 78 

profoundly affects snowpack in mountain forests (Edburg et al., 2012; Pugh and Small, 2012). 79 

In the mountain forests of Europe, the European spruce bark beetle (Ips typographus L.) is 80 

the most important biotic agent of disturbance infesting Norway spruce (Picea abies (L.) Karst.) 81 

(Faccoli and Bernardinelli, 2014; Jönsson et al., 2009; Seidl et al., 2009). Likewise, the spruce 82 

beetle (Dendroctonus rufipennis Kirby) is the most prevalent bark beetle species in high-83 

elevation Engelmann spruce (Picea engelmannii Parry ex Engelm.) dominated forests in western 84 

North America (DeRose and Long, 2009; Hebertson and Jenkins, 2007; Veblen et al., 1991). 85 

Both bark beetle species (hereafter collectively referred to as spruce bark beetles) have similar 86 

impacts driving changes in community structure, composition, and function of spruce forests. 87 

Unlike wind or logging disturbances where trees are removed from the vertical forest strata, 88 

unmanaged beetle infested forests still retain stand structural integrity through standing dead tree 89 

boles (Müller et al., 2008). Following spruce bark beetle induced tree mortality, a reduction in 90 

canopy bulk density occurs (Jorgensen and Jenkins, 2011), as needles are shed from tree crowns 91 

over a one to five year period (Page et al., 2014). The loss of needles reduces canopy interception 92 

leading to enhanced subcanopy snow accumulation (Biederman et al., 2012; Pugh and Small, 93 

2013; Winkler et al., 2014). Shifts from green-infested (current year’s infestation) to phases 94 

where foliar moisture content declines and needles fade from green to yellow (previous year’s 95 

infestation), to a gray phase that occurs when dead trees have dropped all their needles 96 

(approximately three to five years post-infestation), gradually alter the energy balance at the 97 

snow surface beneath canopies through increased light transmission and wind speeds (Boon, 98 



6 

2009; Perrot et al., 2014). This also reduces snow surface albedo through increased litter 99 

accumulation on the snow surface (Winkler et al., 2010). These changes influence subcanopy 100 

snow stratigraphy significantly by altering snow (re-)distribution and metamorphism with 101 

uncertain consequences for the avalanche hazard. That is, the reduction in canopy bulk density 102 

may promote the formation of more homogeneous and continuous snow layering and weaknesses 103 

in the snowpack that are linked to slab avalanche formation (Schweizer et al., 2003). For 104 

example, the occurrence of deciduous tree species was found to be one key forest structural 105 

parameter that influences avalanche formation in forested areas (Schneebeli and Meyer-Grass, 106 

1993). Bebi et al. (2009) found that the presence of European larch (Larix decidua Mill.) is an 107 

important factor that increases the probability of avalanche release from spruce and larch 108 

dominated subalpine forests on steep slopes (slope angle >30°), in particular if they have a crown 109 

cover density between 30 and 50%. Moreover, the minimum gap widths required for avalanche 110 

formation in such subalpine forests is only 5-10 m compared to 20 m for coniferous forests with 111 

a crown cover density of 60% (Schneebeli and Bebi, 2004). Spruce bark beetle-induced tree 112 

mortality may therefore create potential avalanche release areas where the forest previously 113 

protected settlements and infrastructure against avalanches (Bebi et al., 2017; Teich et al., 2016). 114 

Managing protection forests for stability, resilience and sustainability is a long-term 115 

investment for mitigating the avalanche hazard (Motta and Haudemand, 2000). In the European 116 

Alps, avalanche protection forests primarily consist of Norway spruce and are therefore 117 

susceptible to frequent epidemic and severe European spruce bark beetle outbreaks as predicted 118 

for the coming decades (Seidl et al., 2009). Current management strategies include salvage 119 

logging to remove infested trees through costly helicopter operations with the goal to reduce the 120 

expansion of ongoing spruce bark beetle outbreaks and the potential decline in forest’s protective 121 
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effects against avalanches (Brang, 2001). However, little research has been conducted into 122 

whether or not and over what timespan infested spruce forests may still provide protection 123 

against avalanche release (Bebi et al., 2017), and only few studies have examined the 124 

stratigraphy of subcanopy snowpack in general (Fiebiger, 1978; Imbeck, 1983; Molotch et al., 125 

2016; Perrot et al., 2014; Sturm, 1992; Zingg, 1958), despite its considerable contribution to 126 

forest avalanche formation (Teich et al., 2013). To our knowledge, no study to date has 127 

investigated the effects of spruce bark beetle infestations on the evolution of subcanopy snow 128 

stratigraphy linked to avalanche protection by forests. 129 

Snowpack observations in forested terrain are rare, and typically describe layering and 130 

related physical and mechanical properties by point observations with snow pit profiles 131 

(Fiebiger, 1978; Imbeck, 1983; Imbeck and Ott, 1987; Zingg, 1958). Such point observations 132 

emphasize and illustrate the heterogeneous stratigraphy of subcanopy snowpack, but are not able 133 

to adequately describe spatially distributed effects of forests on the evolution of snow 134 

stratigraphy throughout the snow season. Furthermore, manual snow pit profiles disturb the 135 

snowpack such that repeat measurements are not possible, and are highly dependent on observer 136 

skills introducing uncertainty and potential bias, if the snow pit profile is mischaracterized. In 137 

contrast to time- and labor-intensive manual snow pit profiles, the SnowMicroPen (SMP) is a 138 

portable and minimally invasive digital penetrometer, which quickly measures snow penetration 139 

resistance along a vertical profile (Johnson and Schneebeli, 1999; Schneebeli and Johnson, 140 

1998). Therefore, snow layering can be identified from SMP penetration resistance profiles 141 

enabling an unambiguous investigation of snow stratigraphy and if several adjacent SMP 142 

measurements are taken, its spatial variability. Due to that spatial variability in snow stratigraphy, 143 

continuous snow layers are not necessarily positioned at the same depth in adjacent 144 
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measurements. To quantify spatial variability it is therefore necessary to track common layers 145 

between different SMP penetration resistance profiles (e.g. Kronholm et al., 2004). This tracking 146 

was generally performed manually, which limits the amount of SMP penetration resistance 147 

profiles to be processed and the number of snow layers to be compared (e.g. Kronholm et al., 148 

2004; Sturm and Benson, 2004). By automatically tracking distinct snow layers with a recently 149 

developed matching method, vertical and slope-parallel variabilities in snow stratigraphy 150 

observed by several spatially distributed SMP measurements, can now be disentangled and 151 

quantified (Hagenmuller and Pilloix, 2016). This quantification can be used to infer, if a snow 152 

stratigraphy observed at one site might be more (homogeneous snow stratigraphy) or less 153 

(heterogeneous snow stratigraphy) prone to avalanche release. We define a homogeneous snow 154 

stratigraphy as continuous slope-parallel snow layering with a distinct vertical heterogeneity. In 155 

contrast, a heterogeneous snow stratigraphy is characterized by less distinct vertical snow 156 

layering that discontinue parallel to a slope. 157 

We used the SMP to repeatedly examine the snowpack under tree canopies of spruce beetle 158 

infested Engelmann spruce forest stands in the Uinta Mountains in Utah, USA, over two winter 159 

seasons. We then applied the described matching algorithm to our dataset to quantify the 160 

observed spatiotemporal variability in snow stratigraphy. 161 

We hypothesize that: 162 

1) Associated with the decrease in live canopy, spatial variability in snow stratigraphy is 163 

gradually decreasing from a more heterogeneous snowpack to a more homogeneous 164 

snowpack (i.e., increasing distinct vertical and continuous slope-parallel snow layering) 165 

from green and green-infested to gray stage to salvage-logged spruce forest stands. 166 
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2) Forest canopy condition (i.e., green and green-infested vs. gray stage vs. salvage logged 167 

forest stands vs. no canopy), in combination with typical snow and meteorological 168 

patterns, is the main driver for changes to the spatial variability in snow stratigraphy. 169 

3) Surface roughness in terms of the amount and height of downed woody debris is linked to 170 

a greater heterogeneity in the spatial variability of snow stratigraphy. 171 

We test and discuss our hypotheses by linking the quantified spatiotemporal variability in 172 

snow stratigraphy to forest, snow and meteorological conditions. Guided by our small-scale but 173 

highly detailed observations, we develop a conceptual framework describing the effects of 174 

subalpine spruce forests on snow stratigraphy following spruce bark beetle outbreaks years to 175 

decades after infestation, and discuss implications for avalanche protection forest management. 176 

Developing appropriate mitigation and adaptation measures is important throughout subalpine 177 

spruce forests across Europe where infestations by European spruce bark beetle have been 178 

increasing (Faccoli, 2009; Grodzki, 2007; Jonášová and Prach, 2008; Seidl et al., 2014), and 179 

particularly in densely populated mountain regions where protection forest management is 180 

critical for safeguarding property, lives, and infrastructure (Dorren et al., 2004; Olschewski et al., 181 

2012). 182 

2. Methods 183 

2.1 Study site and plot descriptions 184 

Our study site was located in an Engelmann spruce-subalpine fir (Abies lasiocarpa (Hooker) 185 

Nuttall) forest at an elevation of approximately 2900 m in the Uinta Mountains in Utah, USA 186 

(40.854655N 110.9568W; Fig. 1). 187 
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 188 

Fig. 1. Study site (A), and study plot (B) locations including one green stand (GREEN), one gray stage 189 

stand (GRAY), one salvage-logged stand (HARVEST), and one meadow area (MEADOW) in the Uinta 190 

Mountains in Utah, USA (C). Imagery from National Agricultural Imagery Program (USDA Farm Service 191 

Agency, 2014). 192 

Four study plots were selected in October 2014 in close proximity to each other (< 350 m) to 193 

minimize meteorological and topographical differences between study plots while characterizing 194 

different stages during a spruce beetle outbreak cycle (Table 1, Figs. 1 and 2). 195 

 196 

Table 1 197 

Topography of four selected study plots at the study site in the Uinta Mountains in Utah, USA (Fig. 1). 198 

Topography Study plot*    

 GREEN GRAY HARVEST MEADOW 

Elevation (m) 2909 2901 2909 2896 

Slope (º) 5 5-10 10 10 

Aspect N-NE N NW N 

GREEN = green stand; GRAY = gray stage stand; HARVEST = salvage-logged stand; MEADOW = non-199 

forested meadow area 200 
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*Each study plot was approximately 200 m2 in size 201 

We selected four plots that were (1) non-infested by Dendroctonus rufipennis (hereafter 202 

referred to as GREEN), (2) infested > 3 years prior to the study (GRAY), (3) salvage logged 203 

(HARVEST), and (4) an open meadow plot as a control (MEADOW; Fig. 2). 204 

 205 

 206 

Fig. 2. Stand conditions of study plots in summer 2015 (A, B, C) and winter 2016 (D): A) GREEN, B) 207 

GRAY, C) HARVEST, and D) MEADOW (see Fig. 1 for locations). Photos: Michaela Teich 208 

Salvage logging is a post-disturbance forest management strategy designed to recuperate 209 

wood product value, reduce hazardous fuels, and to enhance regeneration (Lindenmayer and 210 

Noss, 2006). The HARVEST plot was salvage logged in the fall of 2013 (USFS personal 211 

communication) where dead overstory spruce were removed and live overstory and understory 212 

trees were retained with dbh (diameter at breast height; measured at 1.37 m above ground) < 15 213 

cm. This size class of trees is less prone to spruce bark beetle attack (Fettig et al., 2007). Logging 214 
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activities increased the surface roughness over this plot through the spread of residual logging 215 

slash with effective woody debris heights found to be up to 0.95 m (Fig. 2C). A non-forested plot 216 

was installed and delineated by a roped boundary to prevent anthropogenic disturbance in an 217 

open MEADOW as the control, representing a total removal of forest canopy cover (Fig. 2D). 218 

During plot establishment, standard forest mensuration measurements of forest structure 219 

including stem density, tree height, dbh, crown diameter, canopy base height, percentage of 220 

canopy cover, and percentage of live canopy were collected in each plot. 221 

After plot selection and beginning with winter snowpack data collection, few trees (< 5) in 222 

the GREEN plot showed signs of current year’s spruce beetle infestation, i.e. reddish-brown frass 223 

had accumulated at the base of trees, and beetle entrance holes were visible, but needles were 224 

still green and had yet to fade. During the winter of 2014/2015 (hereafter referred to as winter of 225 

2015), the infested trees were partially debarked by woodpeckers leaving layers of bark flakes on 226 

the snow surface around the boles of trees, which were subsequently buried throughout the snow 227 

season. Needles of infested trees started to turn yellowish-green and needle release began during 228 

the winter of 2015/2016 (hereafter referred to as winter of 2016) increasing the litter content on 229 

the snow surface and at snow layer boundaries. As we revisited the GREEN plot in July 2016 230 

(after winter field campaigns were completed), almost all trees had become infested, and 5-10% 231 

of trees had begun to lose the majority of their needles indicating that they were dead. 232 

Trees in the GRAY plot were attacked in 2011 and had already dropped needles at the time of 233 

study plot establishment leaving the upper crowns exposed with only twigs and small branches 234 

still attached (Fig. 2). Gray trees were interspersed with few green-infested trees which 235 

consistently dropped needles onto the snow surface throughout both winters. 236 
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2.2 Field measurements 237 

The SnowMicroPen (SMP) is a digital snow penetrometer that records penetration resistance 238 

with a constant penetration speed of 20 mm s-1 every 4 μm to a depth of 1.2 m (Schneebeli and 239 

Johnson, 1998). The SMP measures the penetration resistance in a range from 0.01 N for soft 240 

low density snow up to 41 N (which was manually set as overload limit to prevent sensor 241 

damage) for dense hard snow. The obtained depth-resistance signals (further referred to as SMP 242 

profiles) can therefore be interpreted as snow hardness measurements, which are used in practice 243 

and research as indicators for snow mechanical properties (Fierz et al., 2009; Marshall and 244 

Johnson, 2009), and thus snowpack stability (Reuter et al., 2015). 245 

We used the SMP to examine the snow stratigraphy and to monitor the evolution of the 246 

snowpack in our four study plots from mid-January to mid-April of 2015 and 2016 for a total of 247 

15 winter field campaigns (Table A1). During the first campaign of each sampling season, we 248 

defined and marked start and endpoints of the initial transect (Transect 1) in each of the four 249 

plots, which served as reference for all following field campaigns (Fig. 3; Table A1). 250 

 251 

 252 

Fig. 3. Schematic of sampling design. SnowMicroPen (SMP) measurements were taken in an east to west 253 

direction at 0.3 m intervals in winter of 2015 and increased to every 0.5 m in winter of 2016. 254 

In 2015 transects were 10 m in length and adapted to 20 m in length in 2016, and in both 255 

years oriented in an east-west direction. We recorded SMP measurements along the entire length 256 
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of each transect at 0.3 m intervals in 2015 and in 0.5 m increments in 2016 resulting in a 257 

maximum of 34 (2015) and 41 (2016) sampling points per study plot and sampling date. We 258 

omitted sampling points, if their location coincided with a tree bole, and moved on to the next 259 

sampling point along a transect. In addition to SMP recordings, we measured snow depth with a 260 

300 cm graduated avalanche probe and canopy cover by using a GRS Densitometer (Geographic 261 

Resource Solutions; Forestry Suppliers, Jackson, MS) at each SMP sampling point. The 262 

densitometer was used by two independent observers to determine whether the reading was open 263 

sky (recorded as 0) or if canopy was present (recorded as 1). The percentage of canopy cover 264 

was calculated for each transect from the number of canopy readings (record 1) divided by the 265 

total number of readings per transect. The mean height of the snowpack (HS) was calculated 266 

from our snow depth measurements for each transect and sampling date. 267 

Each week during 2015, and every other week during 2016, transect start and endpoints were 268 

moved 0.5 m south from the previous point and measurements were repeated along each transect. 269 

This 0.5 m offset was sufficient to avoid any potential disturbances of snow layers along the 270 

current sampling transect that may have resulted from previous SMP measurements and/or 271 

footprints. In total, we sampled eight times throughout winter 2015 spanning a period of nine 272 

weeks and seven times in 2016 over a 14-week period. 273 

During each field campaign, a snow pit profile was excavated in the MEADOW plot. Each 274 

pit boundary was marked by bamboo poles so previous pit locations could be avoided during 275 

subsequent site visits. The International Classification for Seasonal Snow on the Ground (Fierz et 276 

al., 2009) was used to manually assess and classify layering, grain shape, grain size, and hand 277 

hardness. 278 
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Surface roughness in terms of downed woody material present at GREEN, GRAY, and 279 

HARVEST plots was measured in August 2015 and June 2016. Ten and 20 m long transects 280 

matching the exact location of the snowpack measurement transects were established. Along 281 

each transect the height and width of underlying down woody debris pieces were measured using 282 

a standard meter tape and counted along every other transect for each fuel diameter size class (1 283 

hour fuels ≤ 0.6 cm, 0.6 cm < 10 hour fuels ≤ 2.5 cm, 2.5 cm < 100 hour fuels ≤ 7.6 cm, 1000 284 

hour fuels > 7.6 cm) following the method described in Brown (1974). We used these 285 

measurements to calculate mean and maximum heights of debris > 7.6 cm in diameter (coarse 286 

woody debris, CWD), and the volume per ha of downed woody material for each fuel diameter 287 

class (see Brown, 1974), to retrieve a standardized measure describing the surface roughness 288 

found in our three forested study plots. 289 

2.3 Climate conditions and meteorological data 290 

The climate in the study area is typical of a continental subalpine site in the western USA, 291 

having a dry summer/wet winter pattern (Shaw and Long, 2007), with the majority of 292 

precipitation falling as snow during the winter months November through April (Gillies et al., 293 

2012; Munroe, 2003). Meteorological data of the study area are measured by Natural Resources 294 

Conservation Service (NRCS) SNOwpack TELemetry (SNOTEL) stations. The closest SNOTEL 295 

site is Chalk Creek #1 (ID392) and is located approximately 150 m lower at an elevation of 2741 296 

m and 8.2 km west of the study site. Daily data for snow depth and average air temperature were 297 

obtained for both winters (starting November 1) from the SNOTEL network via the NRCS 298 

website (www.wcc.nrcs.usda.gov/snow/; [accessed on 2 August 2017]) describing winter 299 

conditions over the study period (Fig. 4). During both winters, a permanent snow stake was 300 
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installed at the MEADOW plot and readings were recorded when approaching the plot during 301 

each winter field campaign (Fig. 4). 302 

 303 

 304 

Fig. 4. Daily average air temperature (A), and total snow depth measured at SNOTEL site Chalk Creek #1 305 

(ID392), and snow depths observed with a snow stake permanently installed at the MEADOW plot (B) in 306 

winters of 2015 and 2016. Vertical lines indicate first day of sampling transects (T) 1-8 in 2015 and T1-7 307 

in 2016; the majority of measurements were taken on two consecutive days (Table A1). 308 

To characterize the general weather pattern prior to each sampling date, which, in 309 

combination with the forest cover, may have influenced the snow stratigraphy observed at our 310 

four plots, we used daily values for average temperatures and accumulated precipitation from the 311 

SNOTEL site Chalk Creek #1 and calculated a set of variables known to be associated with 312 

avalanche release from forests (Teich et al., 2012, 2013; Table 2). Precipitation as well as 313 
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temperature variables were calculated for one to three day periods prior to our sampling dates 314 

since, if driven by temperature gradient metamorphism, complete turnover of snow crystals 315 

appears within a rather short time where little if any of the original grain remains after two to 316 

three days (Pinzer et al., 2012). 317 

 318 

Table 2 319 

Variables on meteorological conditions present prior to each winter field campaign calculated based on 320 

daily values for average air temperature and accumulated precipitation obtained from SNOTEL site Chalk 321 

Creek #1 (ID392). All data was screened manually for outliers and obvious instrument errors. 322 

Variable Symbol 

Average air temperature 1 day prior to measurements (ºC) Ta1 

Average air temperature within a 3-day period prior to measurements (ºC) Ta3 

Average air temperature difference between 1 and 3 days prior to measurements (ºC) ΔTa3 

Accumulated precipitation 1 day prior to measurements (mm) N1 

Accumulated precipitation 1 to 3 days prior to measurements (mm) N3 

 323 

2.4 SMP profile processing and similarity metrics calculations 324 

Prior to processing, all SMP recordings were checked for signal errors and quality according 325 

to the classification scheme of Pielmeier and Marshall (2009). Only profiles which were 326 

classified as "C1" (no error), and "C2" signals (trend or offset in absolute SMP penetration 327 

resistance) with a negligible linear drift in the air signal were retained. Air/snow and 328 

snow/ground interfaces were determined manually and cut-off automatically through profile 329 

processing from the initial SMP profile leaving only the signal recorded within each snowpack. 330 
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Profiles were automatically adjusted for offsets. Hereafter, we interpret the snow penetration 331 

resistance measured by the SMP as a measure for snow hardness. 332 

We further processed SMP profiles collected along each transect at each sampling date using 333 

the matching algorithm developed by Hagenmuller and Pilloix (2016). Due to variations in 334 

internal layer thicknesses observed in a set of measurements, layers at the same depth are not 335 

necessarily at the same position in the stratigraphic sequence, which creates an apparent spatial 336 

variability in stratigraphic features. To account for these stratigraphic mismatches, Hagenmuller 337 

and Pilloix (2016) developed a method to automatically adjust layer thicknesses to minimize the 338 

difference between adjacent SMP profiles. This provides us qualitative and quantitative measures 339 

to compare differences in snow stratigraphy observed throughout the two winters at our four 340 

study plots and to test, which forest, snow and/or meteorological conditions influence the spatial 341 

and temporal variability in the layering of subcanopy snowpack. 342 

The algorithm consists of three steps: 343 

1. SMP profile transformation and re-sampling on a regular grid: 344 

Each SMP profile is first re-sampled onto a one-dimensional regular depth grid h spanning 0 345 

to 120 cm (maximum SMP measurement depth) with a constant 0.1 cm vertical step Δh defining 346 

the resolution of the re-sampled profile (σ, h) by preserving thin snowpack features after re-347 

sampling. The transformation procedure T modifies the depth h by stretching or thinning the 348 

thickness l of the recorded layers j by a constant factor αj, i.e., the new thickness of layer j is αj × 349 

Δl. We restricted the transformation to stretch or thin the layer thickness by less than a factor of 350 

two, i.e., αj, in [0.5, 2]. The transformed depth points hT of the hardness measurements σ are then 351 

derived from the new layer thicknesses, but hT do not necessarily lie onto the regular grid points 352 
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h. The transformed profile (σ, hT) is thus linearly interpolated on the regular depth grid to obtain 353 

the final profile (σT, h). 354 

2. Similarity metrics: 355 

To quantify how similar individual SMP profiles are, we define two metrics: a) a distance D 356 

between one profile and a reference profile, and b) the intra-set variability V of a set of multiple 357 

profiles. 358 

a) The distance D between two profiles (σ, h) and (σref, h), which are re-sampled on the 359 

same depth grid h is defined as the mean square difference of the hardness in a log-360 

scale ensuring that hardness differences of crusts are as important as differences of 361 

soft (including weak) layers. 362 

b) The intra-set variability V is defined as the standard deviation of the hardness 363 

logarithm for a given height between different profiles, which is then averaged over 364 

the depth of the whole profile. V therefore quantifies how different several profiles 365 

are from each other without appointing one of them as the reference. 366 

3. Optimization and quantification of spatial variability: 367 

To quantify the similarity between two SMP profiles accounting for potential depth shifts, we 368 

computed the transformation T that minimizes the distance D between profile (σT, h), that is, the 369 

profile (, h) transformed by T, and profile (σref, h). The resulting minimal distance Dmin is a 370 

measure of the similarity between the two profiles (i.e., if Dmin = 0, then the two profiles are 371 

considered the same; if Dmin = +∞, then the two profiles are completely different) neglecting 372 

impacts of layer thickness variations in the range [-50%, +100%]. Hereafter, we denote Dmin by 373 

D. 374 
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We computed a pairwise distance matrix for our data set by matching and comparing each 375 

SMP profile collected along a transect with every other SMP profile recorded along that transect. 376 

The intra-set median distance was then calculated as the median D of all SMP profile pairs. 377 

To quantify the similarity between more than two SMP profiles accounting for potential 378 

depth shifts, we computed the set of transformations {T} that minimized the intra-set variability 379 

V between all profiles transformed by {T}. This complex optimization problem was heuristically 380 

solved by iteratively matching each profile to the mean profile of the set (evolving with 381 

iterations) as proposed by Petitjean et al. (2011). The resulting minimal intra-set variability Vmin 382 

provides a quantitative measure of the variability of SMP profiles collected at a given site and 383 

time (i.e., if Vmin = 0, then all profiles are considered the same; if Vmin = +∞, then the profiles are 384 

completely different) neglecting impacts of layer thickness variations in the range [-50%, 385 

+100%]. The mean profile of the transformed profiles also provides one representative profile for 386 

the SMP profile set. Hereafter, we denote Vmin by V. For further details about the matching and 387 

optimization procedure see Hagenmuller and Pilloix (2016). 388 

2.5 Data analysis 389 

First, repeated measures ANOVA (α = 0.05) and paired-samples t-tests were conducted to 390 

compare V (intra-set variability), which we calculated for each sampled transect and year as a 391 

measure to quantify the combined vertical and slope-parallel variability in snow stratigraphy (see 392 

section 2.4), between our four study plots GREEN, GRAY, HARVEST and MEADOW. 393 

We then used linear mixed effects models (LMMs; Zuur et al., 2009) to characterize the 394 

relationships between forest, snow and meteorological variables as potential drivers for 395 

variability in snow stratigraphy, and the response variable V. LMMs extend traditional linear 396 

models by including a combination of fixed and random effects as predictor variables explicitly 397 
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allowing to model non-independent observations and are therefore suitable for running repeated 398 

measures analyses (Zuur et al., 2009). Modeling random effects that typically represent some 399 

grouping variable supports correct inference about fixed effects and allows the estimation of 400 

variance in the response variable within and among these groups (Harrison et al., 2018). We used 401 

LMMs since we took repeated SMP measurements grouped by our four study plots every week 402 

(in winter of 2015) and every other week (in winter of 2016) in a snowpack that developed over 403 

the season and measurements are therefore not independent. Using LMMs allowed us to estimate 404 

the effects of explanatory variables (fixed effects) on V while also estimating and controlling for 405 

effects on V of the selected study plots (PLOT) and differences in winter conditions between 406 

2015 and 2016 (YEAR; random effects) that were not accounted for with fixed effect terms. 407 

Tested drivers for variability in snow stratigraphy were percentage of canopy cover, CWD 408 

mean and maximum heights (forest variables), a set of five meteorological variables (see Table 409 

2), and mean height of the snowpack (snow variable). All these drivers were treated as fixed 410 

effects and “PLOT” and “YEAR” (for models that included both winters’ data) as random effects 411 

during model development and selection, which was guided by our global model: 412 

𝑉 = 𝑓 { CANOPY + DEBRISmean + DEBRISmax + Ta1 + Ta3 + ΔTa3 + N1 + N3 + HS413 

+ (1|PLOT) + (1|YEAR) } 414 

where V = intra-set variability; CANOPY = percentage of canopy cover per transect; 415 

DEBRISmean = CWD mean height per transect; DEBRISmax = CWD maximum height per 416 

transect; see Table 2 for descriptions of Ta1, Ta3, ΔTa3, N1, N3; HS = mean height of the 417 

snowpack per transect; PLOT = four study plot categories GREEN, GRAY, HARVEST and 418 

MEADOW; YEAR = winter the transect was sampled, 2015 or 2016; the parentheses indicate 419 
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the term is a random effect (re), all other terms are fixed effects; (1 | re) indicates that the 420 

intercept was allowed to vary randomly. 421 

To analyze and test for differences between winters 2015 and 2016, we fit a model for each 422 

year separately and one for both years combined. To derive the “best-fit” models, we followed a 423 

four-step procedure: 1) We determined the optimal random effects structure for the model 424 

including data of both years and selected amongst three LMMs (fit with restricted maximum 425 

likelihood) with possible combinations of random effects “PLOT” and “YEAR”, but with no 426 

fixed effect term. 2) We used the function “dredge” implemented in the R package MuMIn 427 

(Barton, 2018) to automatically fit and rank LMMs with all possible combinations of fixed effect 428 

terms (all forest, snow and meteorological variables) and the random effect structure selected in 429 

step one (fit with maximum likelihood). 3) Based on the results of steps one and two, and our 430 

hypotheses, we selected the variables and their two-way interactions to be included in the models 431 

to be further tested (fitted with maximum likelihood). 4) We fit the models selected for each year 432 

and the one combining both winters with restricted maximum likelihood and considered these 433 

models to be our final ‘‘best-fit’’ models (Zuur et al., 2009). 434 

Akaike’s information criteria (Akaike, 1973) with small sample bias adjustment (AICc; 435 

Hurvich and Tsai, 1989) was used to determine the most parsimonious combination of fixed 436 

effect terms to select amongst models. For our best-fit models, we assessed the significance of 437 

the fixed-effects model coefficients using F-tests, and calculated marginal R2 as the proportion of 438 

variance in the response variable explained by the fixed effect explanatory variables, and 439 

conditional R2, which can be interpreted as the variance explained by both fixed and random 440 

effects terms, i.e. by the entire model (Nakagawa and Schielzeth, 2013; Xu, 2003). All models 441 

were fit in R version 3.5.0 using the lme4 package (Bates et al., 2015; R Core Team, 2018). The 442 
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R package MuMIn was used to support model selection, and test statistics were calculated with 443 

functions implemented in MuMIn or the R package car (Barton, 2018; Fox and Weisberg, 2011). 444 

We verified that the model residuals were normally distributed to validate using linear mixed 445 

effects models rather than generalized linear mixed effects models. 446 

3. Results 447 

3.1 Forest characteristics 448 

Forest stand structure is similar between GREEN and GRAY study plots in terms of mean 449 

dbh, tree height, and crown diameter (Table 3). The GREEN plot was found to have a higher 450 

mean stem density and mean basal area compared to GRAY and HARVEST plots. Overall 451 

percentage of canopy cover was much higher in GREEN (85%) and GRAY (80%) plots 452 

compared to the HARVEST plot (27%). The percentage of live canopy decreased over the course 453 

of the entire study in GREEN and GRAY plots. In the GREEN plot initial infestation occurred in 454 

2014, yet trees still retained the majority of live canopy during 2015 and 2016 winter campaigns. 455 

Spruce beetle infestation reached its highest level in summer 2016 where a reduction to 47% live 456 

canopy was estimated in June after winter field campaigns were completed. However, percentage 457 

of live canopy was always higher in the GREEN plot compared to the GRAY plot. The initial 458 

percent of live canopy cover found in the GRAY plot were attributed to interspersed subalpine 459 

firs and residual spruce saplings that were not infested by spruce beetles, and decreased only 460 

slightly over the course of the study to 34%. 461 

Surface roughness associated with down woody debris is expected to influence snow 462 

stratigraphy. We found loading of fine woody debris (FWD) with diameters < 7.6 cm (1, 10 and 463 

100 hour fuels) was highest in the HARVEST plot associated with residual slash following 464 

harvesting (Table 3). The HARVEST plot also had a higher mean CWD load (1000 hour fuels) 465 
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compared to GREEN and GRAY plots, and was found to have the highest maximum CWD fuel 466 

heights whereas the greatest overall mean CWD height was found in the GRAY plot. 467 

 468 

Table 3 469 

Stand characteristics (measured during plot establishments in October 2014) and fuel load characteristics 470 

(collected in August 2015 and June 2016) for forested study plots GREEN, GRAY, and HARVEST in the 471 

Uinta Mountains in Utah, USA. 472 

 GREEN  GRAY  HARVEST 

 M SD M SD M SD 

dbh (cm) 28 13 30 10 18 3 

Height (m) 17.5 5.9 17.6 5.0 14.4 3.7 

Canopy base height (m) 6.1 4.1 4.6 2.6 5.5 2.4 

Crown diameter (cm) 370 166 381 190 267 56 

CWD mean height (cm) 18 20 21 12 17 14 

Density (stems ha-1) 1127 - 676 - 526 - 

Basal area (m2 ha-1) 57.3 - 36.0 - 9.3 - 

Canopy cover (%)* 85 - 80 - 27 - 

Live canopy (%)** 89 - 37 - 100 - 

CWD maximum height (cm) 30 - 49 - 60 - 

Fuel load (kg ha-1)       - 

1 hr 19 - 95 - 151 - 

10 hr 192 - 150 - 1589 - 

100 hr 322 - 403 - 6038 - 

1000 hr (sound) 4296 - 0 - 25477 - 

1000 hr (rotten) 0 - 0 - 1268 - 

M = mean; SD = standard deviation; dbh = diameter at breast height; CWD = coarse woody debris 473 

(diameter > 7.6 cm); hr = hour 474 
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Fuel load size classes: 1 hr ≤ 0.6 cm, 0.6 cm < 10 hr ≤ 2.5 cm, 2.5 cm < 100 hr ≤ 7.6 cm, 1000 hr > 7.6 475 

cm, volumes were calculated based on Brown (1974). 476 

*Canopy cover (%) refers to the total percent canopy cover for a plot. 477 

**Live canopy (%) refers to the percentage of canopy within a plot that is live (green). 478 

3.2 Snowpack characteristics and evolution 479 

3.2.1 Snow height 480 

On average, snowpack was higher in winter of 2016 compared to 2015 (Fig. 4). Spatially 481 

distributed snow depth measurements that were taken at every SMP sampling point during each 482 

field campaign showed that HS for winter 2015 was highest in the MEADOW, followed by the 483 

HARVEST, GRAY and GREEN plots (Fig. 5A). This pattern was found to be similar in winter of 484 

2016 (Fig. 5B), although differences in HS between GREEN (M = 87, SD = 12) and GRAY (M = 485 

89, SD = 14) as well as between HARVEST (M = 129, SD = 19) and MEADOW (M = 132, SD = 486 

17) plots were smaller compared to HS differences observed in the winter of 2015 (GREEN: M = 487 

52, SD = 7; GRAY: M = 61, SD = 7; HARVEST: M = 102, SD = 10; MEADOW: M = 107, SD = 488 

8). 489 

 490 
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 491 

Fig. 5. Evolution over time of the mean height of the snowpack (HS) measured along transects at 492 

GREEN, GRAY, HARVEST, and MEADOW study plots in A) 2015, N34 per transect and date 493 

(Transects 1 to 8), and B) 2016, N41 per transect and date (Transects 1 to 7, Table A1). Error bars 494 

represent standard deviations. 495 

3.2.2 Qualitative snowpack observations 496 

In general, larger differences in hardness that were measured by the SMP were also manually 497 

observed as layers of different hardness in the snow pit profiles excavated at the MEADOW plot. 498 

Figure 6 shows an example of a snow stratigraphy observed in the MEADOW plot on January 499 

25, 2016. For example, a hard snow layer was detected at 42 cm snow height by measurements 500 

from both the SMP and hand hardness tests in the snow pit. This continuous hard layer was 501 

correctly tracked by the matching algorithm and is visible in the snow hardness profile 502 

assembled from plotting SMP profiles side-by-side in the order they were taken along the 503 
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transect. Moreover, snow layers that were missed or misclassified by the snow pit observer can 504 

be easily identified from the SMP derived snow hardness profile. 505 

 506 

 507 

Fig. 6. Stratigraphy of the snowpack observed at the MEADOW plot on January 25, 2016: (A) in the 508 

excavated snow pit profile, and, aligned to the corresponding height in the snow pit profile, (B and C) 509 

along the sampled SMP transect (Transect 2, 2016). Initial (B) and matched (C) SMP profiles are plotted 510 

side-by-side in the same order as measurements were taken in 0.5 m intervals. Visualization of snow pit 511 

profile adapted from Snowpro Plus+ (snowprofile.ca). Symbols according to the International 512 

Classification for Seasonal Snow (Fierz et al., 2009). 513 

Throughout the winter of 2015, snow hardness profiles constructed from individual but 514 

matched SMP profiles show that continuous persistent hard layers such as melt-freeze snow, and 515 

wind or sun crusts were present in the MEADOW and HARVEST plots visible as dark red bands 516 

in Figure 7. Distinct vertical and continuous slope-parallel hard and soft snow layers indicate that 517 

snow stratigraphy is more homogeneous at these plots. In the GREEN and GRAY plots, 518 

discontinuous hard and soft layers were observed at different snow heights within the snow 519 
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stratigraphy. These observations demonstrate a more heterogeneous snow stratigraphy 520 

throughout the winter. 521 

 522 

 523 

Fig. 7. Matched SMP profiles plotted side-by-side in the order taken in winter 2015 in the study plots 524 

MEADOW, HARVEST, GRAY and GREEN every 0.3 m along 10 m long transects. Snow hardness 525 

profile height corresponds to the actual snow height. Missing SMP profiles (white columns) are either 526 

sampling points that were coinciding with a tree bole, or SMP profiles that were classified as > "C2" 527 

according to the classification scheme of Pielmeier and Marshall (2009). 528 

Similar results were observed throughout the winter of 2016, which, in contrast to the low 529 

snowpack in 2015, was an average snowfall year (Figs. 4 and 5). However, an increase in 530 

hardness with snow depth was more pronounced in the winter of 2016 in MEADOW and 531 

HARVEST plots compared to winter 2015, and compared to GRAY and GREEN plots caused by 532 
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greater self-weight gravity snow settlement. At GREEN and GRAY plots, more homogeneous 533 

snow layers of different hardness were observed in the snowpack towards the end of the winter 534 

(Transects 5 to 7), but they were not as distinct during the beginning and the middle of the 535 

sampling period (Transect 1 to 4). Distinct and continuous hard layers, for example, buried sun, 536 

wind or melt-freeze crusts, and ice lenses (recorded as such in snow pit profiles) were present in 537 

the entire snowpack at HARVEST and MEADOW plots (Fig. 8). 538 

 539 

 540 

Fig. 8. Matched SMP profiles plotted side-by-side in the order taken in winter 2016 in the study plots 541 

MEADOW, HARVEST, GRAY and GREEN every 0.5 m along 20 m long transects. Snow hardness 542 

profile height corresponds to the snow height that was present at GREEN and GRAY plots. Except for 543 

Transect 1, snow height exceeded the maximum SMP probe length of 1.2 m at MEADOW and 544 

HARVEST plots. Missing SMP profiles (white columns) are either sampling points that were coinciding 545 
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with a tree bole, or SMP profiles that were classified as > "C2" according to the classification scheme of 546 

Pielmeier and Marshall (2009). 547 

3.2.3 Quantification of variability in snow stratigraphy 548 

In general, the computation of the similarity metric distance D revealed that SMP profiles 549 

that are closer in space have lower D values than SMP profiles that are more distant, which 550 

translates to a more similar snow stratigraphy from point to point (data not shown). Figure 9 551 

shows a pair-wise comparison of the median D, that is, the median of all D for all matched SMP 552 

profiles pairs collected at one day in the respective study plots. Two main groups are clearly 553 

distinguishable: 1) the MEADOW and the HARVEST plots, and 2) the GREEN and the GRAY 554 

plots. Median D retrieved by matching and comparing SMP profiles collected in a study plot of 555 

one group with the SMP profiles from a study plot of the other group are clearly larger than D 556 

within both groups. This is especially true for the winter of 2015 where numerous SMP profiles 557 

collected in MEADOW and GRAY plots could not be matched for Transects 1, 2, 4, and 7 (D > 558 

2) due to layer thickness variations that exceeded the set range of [-50%, +100%]. 559 

In contrast, median D within HARVEST and MEADOW, and between HARVEST and 560 

MEADOW plots are small, which indicates a smaller slope-parallel variability in snow 561 

stratigraphy and, therefore, a more homogeneous snow layering. Median D of GREEN and 562 

GRAY plots as well as between GREEN and GRAY plots are larger pointing to a greater slope-563 

parallel variability, that is, a more heterogeneous snow stratigraphy. 564 

 565 
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 566 

Fig. 9. Pair-wise comparison of the median of distance D computed from SMP profile pairs sampled 567 

along transects at GREEN (G), GRAY (GR), HARVEST (H), and MEADOW (M) study plots in A) 2015, 568 

and B) 2016. 569 

This distinction between the two groups MEADOW/HARVEST and GREEN/GRAY is also 570 

visible in Figure 10, which shows the evolution of the intra-set variability V that was calculated 571 

for every transect collected at each of our four study plots. In both winters V, which quantifies 572 

how different the collected SMP profiles are, was found to be generally higher for transects 573 

sampled at GREEN/GRAY plots compared to MEADOW/HARVEST plots. 574 

 575 
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 576 

Fig. 10. Evolution over time of intra-set variability V calculated for transects sampled at GREEN, GRAY, 577 

HARVEST, and MEADOW study plots in A) 2015 (Transects 1 to 8), and B) 2016 (Transects 1 to 7, 578 

Table A1). 579 

In 2016, values of V in the GREEN plot were mostly slightly higher than V-values calculated 580 

for the GRAY plot followed by HARVEST and MEADOW plots suggesting a decrease from a 581 

more heterogeneous to a more homogeneous snow stratigraphy in that order. For the latter one, 582 

we calculated the lowest V-values that changed only little over the course of the 2016 sampling 583 

period (Fig. 10B); however, greater fluctuations in V were found in 2015 (Fig. 10A). Values and 584 

range of V retrieved for the HARVEST plot were similar for both winters. Compared to 2016, V 585 

retrieved for transects collected at the GRAY plot in 2015 were higher with greater fluctuations 586 

over the sampling period (Fig. 10A). For the GREEN plot calculated V-values were found to be 587 

in a similar range in both years, but with greater fluctuations over the sampling period in 2016.  588 



33 

Repeated measures ANOVA and pairwise t-tests conducted with data combined for both 589 

winters revealed no significant difference in V for GREEN (M = 0.73, SD = 0.13) and GRAY (M 590 

= 0.71, SD = 0.16) plots; t (14) = -0.14, p = 0.88, and between HARVEST (M = 0.36, SD = 0.08) 591 

and MEADOW (M = 0.29, SD = 0.08) plots; (t (14) = -1.86, p = 0.08). However, V differed 592 

significantly between the two distinguished groups GREEN/GRAY (M = 0.72, SD = 0.14) and 593 

MEADOW/HARVEST (M = 0.33, SD = 0.09) plots; (t (27) = -13.25, p < 0.001). 594 

Based on the similar and, therefore, robust results from both metrics median D and V, the 595 

above findings suggest that differences in the spatial variability in snow stratigraphy are related 596 

to different canopy effects of green and gray stage spruce forest stands. In contrast, the canopy 597 

cover of salvage-logged forests stands can be reduced to a degree where it has almost no effect 598 

on the snowpack. 599 

3.3 Predictors of variability in snow stratigraphy 600 

Through model selection based on the AICc and F-tests we found that variations in V were 601 

best explained by the percentage of canopy covering each transect observed on the SMP 602 

sampling day according to the best-fit model containing data for both years. The percentage of 603 

canopy cover was also the most important significant variable in combination with Ta1 and N1 604 

for 2015, and in combination with Ta3 and N3 for 2016. Conditional R2-values for the best-fit 605 

models range between 0.71 and 0.88 (Table 4). Two-way interactions of the chosen variables had 606 

no significant effects on variations in V. 607 

 608 

Table 4 609 

Model formulas, AICc, marginal R2 (R2
m), and conditional R2 (R2

c) for the three best-fit models selected 610 

for 2015, 2016, and for both years combined 611 
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Year Model formula* AICc R2
m R2

c 

2015** 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + (1|PLOT) } -70.9 0.61 0.71 

and 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + HS + (1|PLOT) } -70.4 0.63 0.71 

2016 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + HS + N3 + Ta1 + (1|PLOT) } -70.0 0.65 0.73 

2015 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + 𝐓𝐚𝟏 + 𝐍𝟏 + (1|PLOT) } -37.3 0.67 0.87 

 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + 𝐓𝐚𝟏 + N1 + HS + (1|PLOT) } -36.5 0.69 0.88 

 𝑉 = 𝑓 { CANOPY + 𝐓𝐚𝟏 + HS + (1|PLOT) } -36.2 0.71 0.85 

2016 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + 𝐓𝐚𝟑 + 𝐍𝟑 + (1|PLOT) } -38.1 0.82 0.82 

 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + (1|PLOT) } -36.8 0.77 0.77 

 𝑉 = 𝑓 { 𝐂𝐀𝐍𝐎𝐏𝐘 + 𝐓𝐚𝟏 + ΔTa3 + 𝐍𝟑 + (1|PLOT) } -35.6 0.82 0.82 

*Parameters in bold have significant coefficients (p < 0.05). 612 

V = intra-set variability; CANOPY = percentage of canopy cover per transect; HS = mean height of the 613 

snowpack; N3 = accumulated precipitation 1 to 3 days prior to measurements; Ta1 = average air 614 

temperature 1 day prior to measurements; N1 = accumulated precipitation 1 day prior to measurements; 615 

Ta3 = average air temperature within a 3-day period prior to measurements;ΔTa3 = average air 616 

temperature difference between 1 and 3 days prior to measurements; PLOT = plot categories GREEN, 617 

GRAY, HARVEST and MEADOW; the parentheses indicate the term is a random effect (re), all other 618 

terms are fixed effects; (1|re) indicates that the intercept was allowed to vary randomly. Parameters are 619 

listed in order of importance. 620 

**modelling YEAR as additional random effect (1|YEAR) did not enhance model fit. 621 

Including the year sampled as random effect did not enhance the performance of the model 622 

including data for both years. Therefore, we excluded “YEAR” and treated “PLOT” as the only 623 

random effect for the models for both winters. The variance explained by the random effect 624 

PLOT, which can be interpreted as the effect of the stage within the spruce bark beetle outbreak 625 

cycle and its associated canopy condition GREEN, GRAY, HARVEST or MEADOW, ranged 626 

between 0% in 2016 and 23% in 2015 (Table 4, calculated as fraction of the difference between 627 
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marginal R2 and conditional R2 of the conditional R2). Since it was also only 14% for the best-fit 628 

model including both years’ data, we, in addition, used linear regression to test for linear 629 

correlation between percentage of canopy cover and V. A highly significant positive correlation 630 

was found for both years’ data (Fig. 11), but also between percentage of canopy cover and V that 631 

were observed in 2015 (R2 = 0.70; p < 0.001), and in 2016 (R2 = 0.77; p < 0.001). No linear 632 

correlations were found either between Ta1 and V or between N1 and V (variables in the 2015 633 

best-fit LMM) as well as between Ta3 and V or N3 and V (variables in the 2016 best-fit LMM). 634 

 635 

 636 

Fig. 11. Intra-set variability V plotted against percentage of canopy cover for transects measured at 637 

GREEN, GRAY, HARVEST and MEADOW plots in 2015 and 2016. The R2 and p-value are for the linear 638 

regression model that only includes percentage of canopy cover as explanatory variable. Regression line 639 

is shown for the significant linear relationship between canopy cover and V. 640 

4. Discussion 641 

4.1 Effects of spruce bark beetle infestation on forest snowpack 642 

Our first hypothesis that, following spruce bark beetle infestation, the spatial variability in 643 

snow stratigraphy decreases gradually from a more heterogeneous snowpack to a more 644 
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homogeneous snowpack among non-infested to gray stage to salvage-logged spruce forest 645 

stands, is not supported by our findings. The variability in snow stratigraphy (quantified by the 646 

similarity metrics intra-set variability V and distance D) that we observed in winters of 2015 and 647 

2016 over 10 and 20 m long transects, did not differ significantly between green and gray stage 648 

Engelmann spruce forest stands. However, the snowpack in both stands was significantly more 649 

heterogeneous compared to the snow stratigraphy that developed in salvage-logged and non-650 

forested areas. This heterogeneous layering of sub-canopy snowpack translates to disrupted and 651 

discontinuous snow layers and weaknesses, and is the main reason why slab avalanche release 652 

from dense healthy forest is inhibited (Gubler and Rychetnik, 1991; Schneebeli and Bebi, 2004; 653 

Schneebeli and Meyer-Grass, 1993). We found that the percentage of canopy cover (out of all 654 

tested forest and weather variables) was the main predictor that influenced the spatial variability 655 

in subcanopy snow stratigraphy. Heterogeneity in snow stratigraphy increased with increasing 656 

forest canopy cover. The method we used to determine the presence of canopy did not depend 657 

solely on the presence of needles, but included additional canopy elements such as branches and 658 

twigs. That is, the spatial variability in snow stratigraphy did not depend on only the reduction in 659 

needle mass (i.e., the stage during the outbreak cycle) four to five years after the spruce beetle 660 

infestation. In contrast, salvage logging that reduced the canopy cover to ~25%, led to a more 661 

homogeneous snow stratigraphy. The snow stratigraphy found in this study plot was similar to 662 

observations in the non-forested (meadow) plot where distinct and continuous slope-parallel soft 663 

and hard snow layers including sun or wind crusts, ice lenses and weak layers (that we identified 664 

as such in snow pit profiles) are generally more likely to form (Schweizer et al., 2003). 665 

These differences in the spatial heterogeneity of snowpack properties between gray stage and 666 

harvested areas was also found in a modeling study (Perrot et al., 2014); however, we did not 667 
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observe a clear decrease in the heterogeneity of the snowpack with the progression of foliage 668 

loss (i.e., green to gray stage). This is especially true for the winter of 2015, which was 669 

characterized by a below average snowpack and warm January and February mean air 670 

temperatures. Compared to 2016, variability in snow stratigraphy of green and gray stage stands 671 

was more similar despite the greater difference in the proportion of live canopy. Moreover, 672 

differences between the two distinguished groups that had a similar variability in snow 673 

stratigraphy (i.e., green/gray stage stand, and salvage-logged/non-forested area) were very 674 

distinct. These differences were also found in 2016 but less pronounced suggesting the influence 675 

of typical snow and meteorological patterns that were present in each year. Linear mixed models 676 

that were fit to the data of each year separately revealed contributions of mean air temperature 677 

and accumulated precipitation, but no significant linear relationship between either of those 678 

variables and V was found. 679 

We therefore examined air temperature and snow depth measurements (see Fig. 4) that were 680 

present prior to field campaigns where greater differences in V between green and gray stage 681 

stands were found (see Fig. 10). Three campaigns stand out: January 29/20 (Transect 1) and 682 

February 19/20 (Transect 4) in 2015, and February 8/9 (Transect 3) in 2016. In January 2015, 683 

mean air temperatures were above 0°C and no new snow had fallen in the study region since the 684 

middle of the month. We therefore assume that more melt-freeze snow may have been formed in 685 

locations in less shaded areas along the transect in the gray stage stand compared to the green 686 

stand, which could have led to a greater spatial variability in snow stratigraphy. In the gray 687 

stand’s snow hardness profile, a discontinuous harder layer close to the snow surface can be 688 

identified, but also small areas of very hard snow at a depth of 10 cm (Fig. 7). According to our 689 

field notes and in field observations, these areas could be ice clumps that were a result of 690 



38 

refrozen melt water dripping from the canopy into the snowpack (Fig. 12C). The same process 691 

could have also influenced the greater variability in snow stratigraphy observed in the gray stage 692 

stand in February of the same year. Prior to that campaign, little snow had fallen, and air 693 

temperatures had increased suggesting that snow intercepted by dead trees melted faster 694 

compared to snow that was intercepted in live canopies. Meltwater dripping from branches forms 695 

meltwater channels in the snowpack which, after refreezing, are assumed to interrupt continuous 696 

snow layers with low tensile strength and to have a stabilizing effect on the snowpack (Gubler 697 

and Rychetnik, 1991). Schweizer et al. (1995) performed snowpack stability tests below the area 698 

projected by the crowns of larch trees and found that such a snowpack has greater tensile 699 

strength compared to areas just outside the projected crown area. The snowpack stabilizing effect 700 

of canopy drip is therefore restricted to the projected crown (Bründl et al., 1999). However, in 701 

contrast to the parts of protection forests at the upper tree line that mainly consist of larch with 702 

tree distances often exceeding 15 m, gray stage spruce stands still remain the physical structure 703 

of the original dense forest. Therefore, the snowpack stabilizing effect of increased canopy drip 704 

below crowns of larch trees is also present in gray stage spruce stands and even more 705 

pronounced because of the usually higher stem and canopy densities. 706 

 707 



39 

 708 

Fig. 12. Processes influencing subcanopy snow stratigraphy in forests after spruce beetle infestation: A) 709 

Snow intercepted by crowns of dead (gray) Engelmann spruce; B) Depressions at the snow surface 710 

created by unloading or melting of intercepted snow; C) Melt water that dripped from branches created 711 

melt channels in the snowpack and, after refreezing, emerged at the snow surface during snowmelt; D) 712 

Bark flakes that accumulated around woodpecker-debarked trunks of beetle-infested trees got 713 

subsequently buried in the snowpack. Photos: Michaela Teich 714 

Beginning of February 2016, mean air temperatures were very low (~-15ºC) and snow fall 715 

was reported during this cold period prior to our data collection, but mean air temperatures had 716 

increased to ~-5ºC at the time of sampling (we measured 1ºC in the afternoon at the study site). 717 

The amount of snow initially intercepted by a crown depends on branch structure and is 718 

influenced by wind, temperature, and solar radiation during deposition (Sturm, 1992). Therefore, 719 

this combination of cold temperatures and snow fall could have reduced snow interception by 720 

dead tree crowns while more snow may have been intercepted in the green stand that unloaded as 721 

relatively dense snow clumps with increasing air temperatures (Hedstrom and Pomeroy, 1998; 722 
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Schmidt and Pomeroy, 1990). These effects of green versus gray canopy interacting with low 723 

temperatures during snowfall followed by an increase in temperature could have resulted in the 724 

observed greater spatial variability in snow stratigraphy in the green compared to the gray stage 725 

stand. For example, Pfister and Schneebeli (1999) showed how temperature influences the 726 

interception efficiency on wooden boards of different sizes and shapes, which can be interpreted 727 

as differences between green and gray stage spruce forest stands. Because adhesion of snow to 728 

twigs increases as temperature rises toward the freezing point, differences between live and dead 729 

trees may be more important when temperature during snowfall is low. In addition to the 730 

influence of the canopy coverage itself, these interactions could have also led to the greater 731 

differences in snow depth measured on February 8/9, 2016 between the gray stage stand (M = 94 732 

cm) and the green stand (M = 90 cm) as well as on March 7/8 that year (green: M = 94 cm; gray: 733 

M = 88 cm). The snowfall prior to our measurements in early-March 2016 was accompanied by a 734 

decrease in air temperature (see Fig. 4), although differences in the variability in snow 735 

stratigraphy were rather low. 736 

Our second hypothesis is, therefore, not fully supported by our findings. Forest canopy 737 

condition was not found to be the main predictor for changes to the spatial variability in snow 738 

stratigraphy. Even with the majority of foliage absent from the canopy of gray stage spruce 739 

forests, the standing dead snags still affect snow stratigraphy similarly to green forest stands. We 740 

attribute this to the small fine branches and twigs still present in the canopy influencing snow 741 

interception, snow unloading and canopy drip (Fig. 12), and moderating wind and solar 742 

radiation. However, canopy related processes, which contribute to a higher or lower snowpack 743 

heterogeneity may differ under specific meteorological conditions as well as on different slope 744 

aspects and angles. Therefore, future long-term studies that in particular include winters with 745 
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well above average snow fall are needed to further investigate the protective capacity of gray 746 

stage avalanche protection forests. In addition, influences on snow stratigraphy due to energy 747 

balances associated with varying slope angles and aspects coupled with forest canopy loss 748 

requires further investigation. 749 

Our third hypothesis that surface roughness in terms of the amount and height of CWD is 750 

linked to snowpack heterogeneity was not supported by our findings. We measured the highest 751 

volume of sound CWD at our salvage logged plot compared to the other forested plots, but the 752 

snow stratigraphy was found to be homogeneous and similar to a non-forested area. However, 753 

although surface roughness was increased through remaining logging slash, this slash was 754 

mainly composed of FWD fuel classes, which can be easily buried during the initial early season 755 

snow fall. The sound CWD was mostly comprised of pieces of tree limbs and branches, and the 756 

majority of large CWD pieces such as tree boles were removed from this stand. The maximum 757 

height of CWD was fairly consistent among the three forested plot types, but only few dead and 758 

down tree boles were present mainly in the gray stage stand. Therefore, increasing roughness by 759 

leaving wood in a gray stand after salvage logging may only help to disrupt continuous layers 760 

and weaknesses in the snowpack, if large stems and/or high stumps and root plates are kept in the 761 

stand (McClung, 2001). 762 

4.2 Potential impacts on avalanche formation 763 

Based on our findings and personal observations while revisiting the study plots every week 764 

or every other week over two consecutive winter seasons, we conclude that spruce forest stands 765 

up to at least five years after the initial infestation are capable of providing adequate protection 766 

against avalanche formation and release. The processes of the canopy interacting with certain 767 

snow and weather conditions may differ between the different stages during a spruce bark beetle 768 
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outbreak cycle but lead to the same result: a heterogeneous snow stratigraphy that is less prone to 769 

avalanche release. In Figure 13 and below, we summarize the most important processes for each 770 

stage during a spruce bark beetle outbreak cycle and discuss implications for avalanche 771 

protection forest management after spruce bark beetle infestation. 772 

 773 

 774 

Fig. 13. Conceptual model of avalanche formation following spruce bark beetle outbreak for the stages 1) 775 

green-infested (current year’s attack), 2) yellow (previous year’s attack), 3) gray (approximately three to 776 

five years post infestation), and 4) snagfall and regeneration. Processes that do not change compared to 777 

undisturbed forests are shown in black. Processes that decrease in importance relative to undisturbed 778 

forests are shown in gray. Arrows indicate an increase relative to non-infested stands. Depending on the 779 

rate of snagfall between Stages 3 and 4, the probability for avalanche formation may decrease temporarily 780 

(especially during periods of heavy snow fall accompanied by cold air temperatures). The same is true, if 781 

decay rates of logs are faster than the establishment of sufficiently advanced regeneration. See Section 4.2 782 

for further descriptions. 783 

Stage 1 – Green-infested (current year’s attack): Dense and mature spruce forest stands 784 

without canopy gaps wider than 20 m provide avalanche protection through canopy interception 785 
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and subsequent unloading of intercepted snow (Bebi et al., 2009; Schneebeli and Meyer-Grass, 786 

1993). Snow clumps dumping from branches embedded in the snowpack as well as meltwater 787 

dripping into the snowpack below canopies disrupt the snow stratigraphy and, therefore, prevent 788 

the formation of continuous snow layers and weaknesses, which is the prerequisite for avalanche 789 

formation in forests (Bründl et al., 1999; Schweizer et al., 2003). The wind shielding effect of 790 

forests reduces snow redistribution and compaction, and therefore the formation of a fine slope-791 

parallel layering and hard- or wind-compacted snow slabs (Gubler and Rychetnik, 1991). Wind 792 

speed reduction and shading of the snowpack by the canopy also change the energy balance at 793 

the snow surface leading to more moderate temperature fluctuations, which reduces the 794 

formation of weak layers (Schneebeli and Bebi, 2004). 795 

Stage 2 - Yellow (previous year’s attack): In general, the same processes as in green-infested 796 

stands apply. In addition, needle release begins and debarking of infested trees by woodpeckers 797 

may occur, depositing needles and bark flakes onto the snow surface, which are subsequently 798 

buried in the snowpack throughout the snow season (Fig. 12D). The increase in the amount of 799 

organic material modifies the albedo and the radiation regime at the snow surface (Pugh and 800 

Gordon, 2013; Winkler et al., 2010), and creates flow channels for dripping meltwater (Bründl et 801 

al., 1999). Because needles and bark flakes have a lower albedo than snow they absorb more heat 802 

and emit long-wave radiation, which creates little melt depressions acting as entry ways for 803 

preferential flow. A layer of organic material buried in the snowpack can create an uneven 804 

boundary between snow layers, which also favors preferential flow of meltwater in the 805 

snowpack. Dripping meltwater, vertical flow and refreezing in the snowpack prevent the 806 

formation of weak layers and increase the stability of the snowpack. 807 
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Stage 3 - Gray (approximately three to five years post-infestation): At the beginning of this 808 

stage (at least up to five years after infestation), small branches and twigs that remain in the 809 

canopy as well as falling needles and branches provide similar protective benefits as green, 810 

green-infested and yellow stands. Although snow interception might be reduced during snow fall 811 

with air temperatures well below freezing level (Pfister and Schneebeli, 1999), unloading and an 812 

increase in canopy drip and preferential flow result in a similar heterogeneous snow stratigraphy 813 

as found in green, green-infested and yellow stands (Bründl et al., 1999). The stabilizing effect of 814 

gray trees may even exceed the snowpack stability found beneath larch crowns (Schweizer et al., 815 

1995), since spruce stands are usually higher in density. Once small branches start to release and 816 

the canopy structure starts to breakup through the loss of bigger branches and limbs, an increase 817 

in homogeneity in snow stratigraphy is expected to reach its maximum as the canopy is no longer 818 

shading the snowpack, and canopy drip is significantly reduced. 819 

Stage 4 – Snagfall and regeneration (decades after initial infestation): Once snagfall occurs, 820 

snow stratigraphy may gradually become more heterogeneous again as large diameter tree boles 821 

contribute to discontinuous snow layers, if the remaining standing and downed woody debris are 822 

spatially distributed without gaps larger than 20 m (Schönenberger et al., 2005; Feistl et al., 823 

2014). It was found that areas in avalanche protection forests that were disturbed by wind and 824 

not cleared after the event occurred, effectively prevented avalanche release for at least ten and 825 

up to 20 years following the disturbance (Frey and Thee, 2002; Wohlgemuth et al., 2017). In 826 

contrast to windthrow, which occurs during one single event, snagfall in forests following spruce 827 

bark beetle disturbance is often more gradual, but such stands are also prone to additional wind 828 

disturbance. Kupferschmid Albisetti et al. (2003) found that 75% of snags in a Norway spruce 829 

mountain forest that was killed by European spruce bark beetle were already broken four to eight 830 
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years after infestation caused by a storm event and increased wind speeds. They concluded that 831 

leaving such stands unharvested is likely to result in effective protection against avalanche 832 

release for about 30 years after infestation. The protective effect of woody debris will 833 

increasingly be replaced by future regeneration once seedlings and saplings are twice as high as 834 

the expected maximum snow height, and forest succession moves from stem initiation to stem-835 

exclusion and closed-canopy stages. However, a critical ‘‘protection gap period’’ with reduced 836 

overall protection against natural hazards as suggested against rockfall after wind disturbance 837 

may occur (Frey and Thee, 2002), if snagfall and decay rates of logs are faster than the 838 

establishment of sufficiently advanced regeneration. In addition, the establishment of new 839 

seedlings and saplings on decaying Norway spruce logs may be hindered by the presence of 840 

brown-rot-causing fungus Fomitopsis pinicola (Fr.) Karst. in European spruce bark beetle killed 841 

forests (Bače et al., 2012). 842 

4.3 Implications for avalanche protection forest management 843 

Following spruce bark beetle infestation, it is common practice to implement some form of 844 

salvage logging or sanitation felling to reduce localized beetle population pressure and the 845 

buildup of hazardous fuels, and to recoup some economic value from infested trees (Collins et 846 

al., 2012; Jenkins et al., 2014; Stadelmann et al., 2013). In Norway spruce forests of the 847 

European Alps, reducing the spread of a European spruce bark beetle infestation within and into 848 

adjacent stands can be critical to prevent the extent of an outbreak throughout an avalanche 849 

protection forest (Stadelmann et al., 2014). When spruce bark beetle populations have reached 850 

epidemic phases, decisions about optimal management strategies (within a reasonable time and 851 

at reasonable costs) become thus more challenging. 852 
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For such forest areas where the maintenance of the protective effect is the highest priority, 853 

our results suggest that it is often more appropriate to leave dead trees in place. Results from our 854 

salvage-logged study plot, which had a lower stem density and, more importantly, a lower 855 

overall canopy cover, show that the snow stratigraphy that developed at this plot was 856 

homogeneous and similar to the stratigraphy found in the adjacent un-forested meadow. This 857 

indicates an insufficient protective effect in harvested stands where the majority of overstory 858 

large diameter trees was removed, which is comparable to clear-cut areas (McClung, 2001). On a 859 

larger spatial scale, removing infested and dead trees can affect local wind regimes resulting in 860 

higher wind speeds, which can increase snow drift and compaction, and loading of slopes that 861 

were previously shielded by forests (Teich et al., 2016). Consequently, post-outbreak harvest 862 

management decisions can greatly influence the future snow stratigraphy and thus avalanche 863 

formation. 864 

We recognize that in areas where the European spruce bark beetle pressure is endemic, 865 

management activities such as removal of infested trees through sanitation felling, and individual 866 

and small group salvage logging would be appropriate. These areas include, for example, 867 

important designated protection forest stands, recreation areas such as ski resorts, and viewsheds 868 

that are important for tourism to limit the loss and impact on these resources from future beetle 869 

infestations. Although, removing infested trees can be difficult and costly (e.g., by helicopter-870 

assisted logging operations) due to the often limited accessibility to the terrain. 871 

Strategies to increase resistance (decreased susceptibility) and resilience to a spruce bark 872 

beetle infestation, demand to manipulate stand structure and species composition (Brang, 2001; 873 

Jenkins et al., 2014; Motta and Haudemand, 2000; Schmid and Frye, 1977; Temperli et al., 874 

2014). In order to decrease the susceptibility to infestations and to foster advanced regeneration, 875 
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forest managers could supplement regeneration cuts with planting to increase species diversity 876 

and the proportion of non-host species (Wohlgemuth et al., 2017). This would also create more 877 

structural diversity, that is, uneven and multi-layered stands with a mosaic of tree sizes and age 878 

classes, which are ideal for long-term avalanche protection (e.g., Bachofen and Zingg, 2001; Ott 879 

et al., 1997; Motta and Haudemand, 2000). Following spruce bark beetle outbreak, it may be 880 

necessary to help accelerate forest succession in avalanche prone areas while also increasing 881 

future species diversity by local planting (Wohlgemuth et al., 2017). In high-risk areas where 882 

protective effects of the remaining gray stage stand and additional planting are still not 883 

considered to be sufficient, additional protection measures against avalanche formation and snow 884 

drift (e.g., wooden snow fences and tripods) may be required. 885 

In addition to sanitation felling and planting, forest managers must consider how to manage 886 

the CWD load following spruce bark beetle infestation. Although our findings did not support 887 

our hypothesis that increased CWD as observed in the salvage-logged forest stand would lead to 888 

a more heterogeneous snow stratigraphy, the majority of the present CWD were not tree boles. 889 

Moreover, our gray stage stand had yet to reach the snagfall stage and almost all dead trees 890 

remained standing. It has been found that retaining fallen trees after wind disturbance in Norway 891 

spruce dominated avalanche and rock fall protection forests still provides protective capacity 892 

through increased surface roughness (Schönenberger et al., 2005; Wohlgemuth et al., 2017). 893 

Moreover, these studies were conducted in wind disturbed forests where the predominant 894 

direction of snagfall is related to the wind direction in contrast to spruce bark beetle killed stands 895 

without subsequent wind disturbance. This approach is easier and less expensive than active 896 

management, and often maintains adequate protection against avalanches (Kulakowski et al., 897 

2017; Kupferschmid Albisetti et al., 2003). Additionally, in cases where only groups of trees are 898 
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infested as in an endemic phase, individual trees could be felled and debarked to prevent further 899 

spread of spruce bark beetles (Jenkins et al., 2014), and left in place as a snowpack stabilizing 900 

element. In order to further improve the protective effect by CWD, it may be necessary to 901 

strategically orient (i.e., 30 to 45º to the slope direction) and anchor these logs, and to 902 

periodically check their position, anchoring and decay rate (BAFU, 2008). 903 

4.4 Conclusions 904 

With climate change, more frequent and severe bark beetle outbreaks are expected. Mountain 905 

forests, which often serve an important role in avalanche protection are therefore prone to 906 

drastically increasing disturbances by spruce bark beetle, with uncertain consequences for the 907 

avalanche hazard. 908 

Our findings from studying the temporal and spatial variability of snow stratigraphy in non-909 

infested, gray stage and salvage-logged Engelmann spruce forest stands show that snow 910 

stratigraphy under canopies of non-infested and gray stage stands is similar and generally more 911 

heterogeneous compared to salvage-logged forests and non-forested areas. The small fine 912 

branches and twigs that are still present in the canopy five years after the initial attack maintain 913 

snow interception and unloading, and especially increase canopy drip. However, such canopy 914 

related processes that stabilize the snowpack may be reduced during specific meteorological 915 

conditions, that is, during extended periods of snowfall accompanied by cold air temperatures 916 

and in winters with above average snowfall. Salvage logging that reduced the canopy cover to 917 

~25%, led to a homogeneous snow stratigraphy similar to the layering found in non-forested 918 

areas, which is prone to avalanche formation. Residual logging slash did not increase the surface 919 

roughness enough to affect the snow stratigraphy; however, increased surface roughness after 920 

snagfall is a more effective protection measure. 921 
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Thus, our study suggests to leave dead trees and downed woody material in place, especially 922 

in protection forests where bark beetle populations have reached epidemic phases. Additionally, 923 

in cases where only groups of trees are infested as in an endemic phase, felling and debarking 924 

individual trees and anchoring of large debarked logs can prevent further spread of spruce bark 925 

beetles and stabilize the snowpack. Overall, logging operations and silvicultural measures after 926 

bark beetle disturbance in forests with a protective function have to be planned and carried out 927 

carefully. To provide sustainable long-term protection against avalanches, forest management 928 

decisions in spruce dominated forests must focus on increasing structural and species diversities 929 

and thus resilience to mitigate the severity of future attacks. 930 

Future long-term studies are needed to address questions of how long and under what 931 

meteorological conditions the protective effect of gray stage stands will be sufficient as canopy 932 

structure declines with time since the initial outbreak. 933 
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Appendix 1218 

Table A1 1219 

Sampling dates for Transects 1 to 8 in 2015 and Transects 1 to 7 in 2016 at four study plots GREEN, 1220 

GRAY, HARVEST, and MEADOW at the study site in the Uinta Mountains in Utah, USA. 1221 

  Sampling date and plot   

Transect no. Year GREEN GRAY HARVEST MEADOW 

Transect 1 2015 January 29 January 30 January 30 January 30 

Transect 2  February 5 February 6 February 5 February 6 

Transect 3  February 12 February 13 February 12 February 13 

Transect 4  February 19 February 20 February 19 February 20 

Transect 5  NA NA February 25 NA 

Transect 6  March 11 March 12 March 11 March 12 

Transect 7  March 19 March 20 March 19 March 20 

Transect 8  March 25 March 26 March 25 March 26 

Transect 1 2016 January 13 January 13 January 12 January 12 

Transect 2  January 26 January 26 January 25 January 26 

Transect 3  February 9 February 8 February 8 February 9 

Transect 4  February 23 February 22 February 22 February 23 

Transect 5  March 8 March 7 March 7 March 8 

Transect 6  March 21 March 21 March 21 NA 

Transect 7  April 7 April 7 April 7 April 9 
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