
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1029/2018WR023468 

 

© 2018 American Geophysical Union. All rights reserved. 

Dependence of Aspen Stands on a Subsurface Water Subsidy: Implications for 

Climate Change Impacts 
 

 

 

D. M. Love
1*†

, M. D. Venturas
1
, J. S. Sperry

1
, P. D. Brooks

2
, J. L. Pettit

3
, Y. Wang

1
, W. 

R. L. Anderegg
1
, X. Tai

4,2
, and D. S. Mackay

4 

 

1
School of Biological Sciences, University of Utah, Salt Lake City, UT, USA 

2
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA 

3
Department of Wildland Resources, Utah State University, Logan, UT, USA 

4
Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA 

 

*
Corresponding author: David M. Love (david.love@uga.edu)  

†
Current address: Warnell School of Forestry and Natural Resources, University of Georgia, 

Athens, GA, USA 

 

Key Points: 

 Most aspen stands in Utah cannot survive on growing season rain and local soil 

moisture as their only water supply. 

 Aspen stands in Utah are highly dependent on a groundwater subsidy and vulnerable 

to any subsidy shortfall. 

 Aspen stand health in Utah will be threatened by diminished winter snowpack. 
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Abstract 

The reliance of ten Utah (USA) aspen forests on direct infiltration of growing season rain vs. 

an additional subsurface water subsidy was determined from a trait- and process-based model 

of stomatal control. The model simulated the relationship between water supply to the root 

zone vs. canopy transpiration and assimilation over a growing season. Canopy flux thresholds 

were identified that distinguished non-stressed, stressed, and dying stands. We found growing 

season rain and local soil moisture were insufficient for the survival of five of ten stands. Six 

stands required a substantial subsidy (31-80% of potential seasonal transpiration) to avoid 

water stress and maximize photosynthetic potential. Subsidy dependence increased with stand 

hydraulic conductance. Four of the six “subsidized” stands were predicted to be stressed 

during the survey year owing to a subsidy shortfall. Since winter snowpack is closely related 

to groundwater recharge in the region, we compared winter precipitation with tree-ring 

chronologies. Consistent with model predictions, chronologies were more sensitive to 

snowpack in subsidized stands than in non-subsidized ones. The results imply that aspen 

stand health in the region is more coupled to winter snowpack than to growing season water 

supply. Winters are predicted to have less precipitation as snow, indicating a stressful future 

for the region's aspen forests. 
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1 Introduction 

Climate change is expected to increase the frequency and severity of drought for 

many regions (Dai, 2013), leading to predictions of significant tree mortality and reduced 

forest productivity over the coming century (Allen et al., 2010). Which forests will be most 

likely to succumb to drought? The answer involves a complex interplay between climatic 

change, hydrological processes mediating plant water supply, the physiological demand for 

water by the forest, and the limits to tree productivity and survival (McDowell et al., 2008; 

Powell et al., 2013; Sperry et al., 2016; Tai et al., 2017). Insights from plant hydraulics can 

inform the plant side of the story. A number of studies have found drought mortality to be 

associated with losses of plant hydraulic conductance of 60-90% (e.g., Adams et al., 2017; 

Brodribb & Cochard, 2009; Litvak et al., 2012; Rodríguez‐Calcerrada et al., 2017; Venturas 

et al., 2016). The loss of plant hydraulic conductance from xylem cavitation and rhizosphere 

drying can be modeled from species' specific vulnerability curves and soil hydraulic 

properties (Mackay et al., 2015; McDowell et al., 2013; Sperry et al., 1998; Sperry et al., 

2002; Sperry & Love, 2015; Sperry & Tyree, 1988). The canopy's demand for water can be 

predicted from an optimization of transpiration-induced loss of conductance vs. concomitant 

carbon gain (Anderegg et al., 2018; Sperry et al., 2017; Wolf et al., 2016). Models that 

integrate these pieces (Sperry et al., 2017; Tai et al., 2018; Venturas et al., 2018) can be used 

to predict critical levels of root-zone water content that would reduce forest productivity and 

threaten their survival. The predictions of such models are backed by traits and process, 

which arguably makes them more appropriate forecasters than empirical models based on 

post-hoc fitted parameters which have no physical or physiological meaning (Venturas et al., 

2018). 

Considering forest drought stress from a hydrological perspective, it is crucial to 

understand how water available for plants during the growing season is influenced by 

climate, topography, substrate, and rooting depth. The net amount of water withdrawn from 

soil by roots in a growing season (∑sE) potentially comes from three Sources (Fig. 1):  

∑sE = SSOIL + SPPT + SSUBSIDY     Eqn. 1. 

The SSOIL is water from the draw-down in local soil water content of the root zone 

from its initial value at the beginning of growing season, SPPT is water from precipitation on 

the stand during the growing season, and SsUBSIDY is water from any extra source. In a natural 

setting SsUBSIDY represents the potential contribution from groundwater, either through 

capillary rise or through lateral redistribution (Fig. 1). The availability of the SsOIL and SPPT 

sources in Eqn. 1 are relatively easy to quantify from growing season weather, substrate type, 

and rooting depth. The availability of the SsUBSIDY source is more difficult to predict, even 

where it defines the ecosystem as in riparian communities and wetlands (Tai et al., 2018). 

Although difficult to model, the influence of groundwater subsidy has emerged as an 

important process in predicting plant productivity and survival in many settings (Fan, 2015; 

Richter & Billings, 2015; Swetnam et al., 2017; Thompson et al., 2011). Hydrologic 

redistribution creates locally wet vs. dry areas (Tai et al., 2017; Tai et al., 2018), and can 

buffer plants during dry seasons by delivering a subsidy to the root zone (Fan et al., 2017; 

Miguez‐Macho & Fan, 2012; Naumburg et al., 2005; Newman et al., 2006). The presence of 

an additional water supply may promote the survival of species in hydrologic refugia during 

regional drought (Keppel et al., 2012; McLaughlin et al., 2017; Stewart et al., 2010). The 

dependence of a forest or species on a groundwater subsidy can substantially influence its 

response to climate change (Fan, 2015; Hanson & Weltzin, 2000; Swetnam et al., 2017). 

This paper combines plant hydraulics with hydrology to assess the vulnerability to 

drought of aspen stands (Populus tremuloides) in Utah (USA) by determining the dependence 
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of stand ∑sE and seasonal photosynthesis (∑sA, a proxy for productivity) on the SsUBSIDY 

term (Eqn. 1). Aspen is an important component of the montane forests of the intermountain 

west of the USA. In this snow-dominated environment, aspen's growing season is out of 

phase with the bulk of annual precipitation that comes in the winter as snow (Barnett et al., 

2008; Castle et al., 2014). Groundwater recharged during snowmelt could continue to feed 

the aspen root zone during the much drier summer months (Maurer & Bowling, 2014). 

Winters in the intermountain west are expected to remain similarly wet over the coming 

century (Cayan et al., 2013), but with less precipitation as snow and more falling as rain 

(Barnett et al., 2008), which is less effective in recharging groundwater (Castle et al., 2014; 

Garreaud et al., 2017; Udall, 2013). Aspen in the neighboring state of Colorado has recently 

experienced significant drought-related mortality associated with cavitation-induced losses of 

plant hydraulic conductance (Anderegg et al., 2013; Anderegg et al., 2012). The spatial 

distribution of aspen mortality is generally consistent with topographically-mediated 

redistribution of precipitation (Tai et al., 2017). Smaller snowpacks could reduce the amount 

of subsidy available to plants during the growing season (Fig. 1), potentially stressing aspen 

forests. To the extent that aspen stands in the area depend on a subsidy, they may be more 

vulnerable to the loss of winter snowpack than to summer drought.   

To assess aspen's dependency on groundwater subsidy, we modeled the relationship 

between root zone water supply and canopy function in terms of cumulative water demand 

(∑sE), cumulative canopy assimilation (∑sA), and mortality risk over a full growing season at 

10 aspen stands across the state of Utah, USA. Aspen is amenable to modeling because of the 

homogenizing effect of its interconnected clonal growth and tendency to occur in mono-

specific stands with limited understory. We used the carbon-gain vs. hydraulic risk model of 

Sperry et al. (2017) as developed and tested for aspen by Venturas et al. (2018) in a research 

garden setting. This model assumes that plant gas exchange maximizes the difference 

between photosynthetic gain and hydraulic risk, where risk is the proximity to complete 

failure of water transport and canopy desiccation. The gain-risk model was found to represent 

aspen's observed drought response equally well as an empirical model that was fitted to the 

data (Venturas et al., 2018). The advantage of the gain-risk model is that all of its parameters 

are traits that can be measured or estimated (along with their uncertainties) a priori, making 

its predictions defensible under any combination of future environmental conditions. The 

Venturas et al. (2018) study also established a mortality threshold for aspen: all trees that died 

from drought in their experiment were predicted by the model to exceed 85 percent loss of 

soil-to-leaf hydraulic conductance (PLC) by the end of the growing season. 
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Figure 1. Conceptual diagram illustrating water sources for aspen stand seasonal 

transpiration (∑sE) and their representation in the one-dimensional soil-plant-atmosphere 

model. Soil moisture, SSOIL" represents water initially present in the soil column (assumed to 

be field capacity). "Rain, SPPT" is the measured rainfall during the growing season, which was 

assumed to infiltrate soil to field capacity from the top down. "SSUBSIDY" represents additional 

water from subsurface flow. For convenience this was modeled as vertical rise from a water 

table beneath the root zone as pictured. 

 

To predict each stand's SSUBSIDY (Eqn. 1), we first zeroed out this term and modeled 

∑sE assuming trees only had access to SSOIL and SPPT (soil starting at field capacity plus the 

rain incident on the stand during the growing season). This yielded ∑sErain: the cumulative 

water use supplied by the SSOIL and SPPT water sources. We then added a water table beneath 

the root zone at different depths so that additional water could move to the root zone through 

capillary rise. Increasing water input in this manner allowed us to determine the maximum 

seasonal water use (∑sEpot) that was not limited by soil water supply. We adopted this 

approach solely to determine the influence of an additional groundwater supply; an explicit 

model of three-dimensional groundwater flow was beyond the scope of the present study. The 

SSUBSIDY was calculated as ∑sEpot – ∑sErain, and it equals the amount of additional 

transpiration made possible by eliminating water limitation. The expectation was that this 

subsidy should also maximize stand productivity, which was assessed by the corresponding 

cumulative canopy photosynthesis (∑sArain, ∑sApot). In stands where ∑sErain was insufficient 

to keep the stand alive (above the 85 PLC mortality threshold by the end of the growing 

season), we established the minimum transpiration and photosynthesis required for survival 

(∑sEmort, ∑sAmort). Finally, we estimated the actual seasonal transpiration and canopy 

photosynthesis during the modeled (year 2016) growing season (∑sEpred, ∑sApred). From these 

benchmarks we were able to estimate the dependence of non-stressed aspen stands on a root 
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zone subsidy, the critical reduction in subsidy predicted to induce mortality, and the current 

stress level for the stand.  

To evaluate model predictions, we measured tree ring chronologies for each stand and 

compared them with long-term weather records. We expected that stands requiring large 

amount of subsidy from groundwater to maximize productivity would grow wider rings 

following a year of abundant snowpack.  Ring-widths in non-subsidized stands should be less 

sensitive to snowpack. We also expected that subsidized stands could be more sensitive to 

growing season moisture deficit, because they would tend to be stressed during periods of 

low subsidy. Non-subsidized stands would be less likely to suffer water stress and hence 

should show less sensitivity to growing season aridity.  

We also compared the model results with the xylem vulnerability curves collected 

across the 10 stands. These curves measure the loss of hydraulic conductance from xylem 

cavitation, and they are critical model parameters for calculating hydraulic risk. There can be 

a strong relationship across species between cavitation resistance and local (Kolb & Sperry, 

1999; Lopez et al., 2005; Pockman & Sperry, 2000; Vinya et al., 2013) and larger scale 

aridity gradients (Choat et al., 2012; Maherali et al., 2004). In particular, we evaluated 

whether stands that were more dependent on a subsidy and hence also more likely to be 

stressed during shortfalls, had xylem that was also more resistant to cavitation. Such patterns 

of within-species variability in cavitation resistance (e.g., Jacobsen et al., 2014; López et al., 

2016; López et al., 2013) may be useful for future model parameterization at landscape and 

regional scales. 

2 Materials and Methods 

2.1 Model overview, assumptions, and inputs 

The gain-risk model as implemented by Venturas et al. (2018) was run at hourly 

timesteps throughout the 2016 growing season, and produced an hourly time course of root-

zone water content, plant canopy xylem pressure, plant hydraulic conductance, whole stand 

transpiration and assimilation rates, and other gas exchange parameters. Boundary conditions 

were root zone water content at the beginning of the growing season (assumed half the 

saturated water content for the soil type; Campbell, 1985), and hourly measurements of wind 

speed, solar radiation, precipitation, air temperature, and atmospheric vapor pressure deficit 

(D). These hourly data for the 2016 growing season were obtained from stations nearest to 

the stand and at similar elevation (mesowest.utah.edu, see Horel et al., 2002). Model 

parameters were measured for 10 aspen stands across the state (Fig. 2) from data collected 

during 10 visits (one per stand) in late July to early September 2016 (Tables 1 and 2; for 

details on parameter measurements see Text S1). No stand was riparian, in the sense of being 

in a valley floor adjacent to a perennial stream, though one (Amasa Valley, AV) was near a 

spring. 
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Figure 2. Location and approximate elevation of survey stand locations in Utah, USA. Stand 

abbreviations, elevation, and other characteristics given in Tables 1 and 2. 

 

The model requires "vulnerability curves" (VC) for rhizosphere, root, stem, and leaf 

elements of the continuum. These describe how hydraulic conductance of the element (K) 

falls from its maximum (Kmax) as reduced by rhizosphere drying or xylem cavitation as the 

water pressure (P) becomes more negative: 

𝐾 = 𝐾𝑚𝑎𝑥 ∙ 𝑓(𝑃)      Eqn. 2 

The hydraulic conductance represents the average for trees in these relatively 

homogeneous stands. The rhizosphere Kmax was set to achieve an average of 50% resistance 

in the rhizosphere element, averaged from soil water potential (Ps) of zero to the Ps at 

hydraulic failure. This setting was based on controlled drought experiments in aspen 

(Venturas et al., 2018). The rhizosphere vulnerability curve was characterized using the van 

Genuchten function (van Genuchten, 1980) for the stand's soil type as assessed from soil 

texture and corresponding moisture release parameters ( and n). The van Genuchten 

functions were also used to relate soil water content and Ps, and to determine the volumetric 

water content of soils at field capacity. The soil was assumed to be free of rocks. Root and 

stem xylem curves were measured from samples collected on site using the standard 

centrifuge method (Alder et al., 1997; Tobin et al., 2013; Text S1.2), and represented by a 

two-parameter Weibull function (f(P)=e
-[(P/b)^c]

, with curve parameters b and c). The leaf 

vulnerability curve was assumed equal to the stem. Based on model tests with aspen saplings 

(Venturas et al., 2018), the model was run without xylem refilling, meaning that the reduction 

in xylem K was permanent. The rhizosphere K was assumed to recover without hysteresis 

when soil rehydrated. 
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The xylem element Kmax was estimated from leaf hydraulic conductance (LSC, per 

leaf area) measured onsite using the evaporative flux method for intact leafy shoots (Text 

S1.3). The LSC was scaled to the stand using the leaf area per basal area (LA:BA) as 

estimated from site branch samples and an average allometric relationship determined for 

broadleaf tree species (LA proportional to BA
0.87

, Text S1.3; Martin et al., 1998). Whole tree 

K was estimated by assuming leaves accounted for 25% of whole plant flow resistance (Sack 

& Tyree, 2005; von Allmen et al., 2015). Measured tree and leaf K values were used to back-

calculate their corresponding Kmax values based on predawn and midday xylem pressures on 

the day of LSC measurement. Stem and root Kmax assumed a 2:1 ratio of tree Kmax after leaf 

Kmax was factored out (Venturas et al., 2018). 

The vulnerability curves are used by the model to compute the risk function at each 

timestep. The risk function is calculated by incrementing the instantaneous transpiration rate 

(E) from E = 0 and solving for canopy P (including the gravitational pressure drop for stand 

height) until E = Ecrit is reached, at which point the drop in canopy P has driven the canopy 

hydraulic conductance to zero. The risk is the fractional loss of canopy hydraulic 

conductance, which starts from zero when E = 0 and rises to 1 at E = Ecrit. At the same time, 

the model calculates the gain function. Each E increment is used to calculate, in order: 1) leaf 

temperature, 2) leaf-to-air vapor pressure deficit, 3) diffusive conductance to water vapor and 

CO2, and 4) instantaneous net assimilation (A) from a Farquhar-type model (Sperry et al., 

2017). The A is normalized in a gain function to rise from zero when E = 0 (negative A is set 

to zero) to 1 when A reaches a maximum (usually at Ecrit). The point at which the gain-risk 

difference is maximized provides the canopy P and associated outputs for that timestep. The 

model assumes no effect of prior drought on canopy P, but reduces fluxes at that P as 

calculated from any previous permanent loss of xylem conductance. The gain-risk calculation 

is then repeated for each subsequent timestep. If photosynthetic photon flux density (PPFD) 

falls below 30 µmol s
-1

 m
-2

, the stomata are assumed to stay shut; thus the model assumes no 

nocturnal transpiration. 

The maximum carboxylation capacity (Vmax25; denoting the 25 ºC value) needed to 

solve for A was estimated as the value providing the best fit to average midday P on the 

measurement day. The maximum electron transport capacity, Jmax25, was estimated as 

1.67×Vmax25 (Medlyn et al., 2002), and both Vmax25 and Jmax25 were assumed constant over the 

growing season. Separate gain functions were computed for sun and shade canopy layers 

based on the light penetration model outlined by Campbell and Norman (1998; see also 

Venturas et al. 2018). The light model required a stand leaf area index (LAI) which was 

calculated from hemispheric photographs using Gap Light Analyzer software (Frazer et al., 

1999). LAI was also assumed constant over the growing season.  

Between hourly timesteps, the root-zone water content and Ps were updated based on 

the net flux from each of 5 soil layers. Layer depths were set for equal root biomass (assumed 

proportional to absorbing root area) according to: 

𝑀 = 1 − 𝐵𝑑       Eqn. 3 

where M is the fraction of root biomass above depth d (in cm), and B is a coefficient (0-1) set 

from the maximum rooting depth (d at M=0.995). Average root depth was set to 1.25 m, with 

a range from 0.5 to 2 m (Gifford, 1966). Net flux per layer was the sum of: 1) root 

withdrawal, 2) root efflux in the case of root-mediated redistribution (flux into the layer is 

negative), 3) rain infiltration, and 4) vertical losses or gains to adjacent horizontal layers via 

soil transport. 
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Root fluxes (1 and 2) were scaled to a ground area basis based on the basal area per 

ground area of the stand (BA:GA; Text S1.1). Understory vegetation was not modeled 

because it was scarce and represented a small proportion of total living biomass. Rain (flux 3) 

was assumed to infiltrate soil to field capacity from the surface down, with no loss to 

interception, runoff, or lateral subsurface flow. Vertical fluxes between soil layers (flux 4) 

included losses to soil surface evaporation and a subsidy simulated as vertical flow into the 

root zone from a water table. Soil evaporation was modeled from a 2 cm thick surface layer 

devoid of roots (see Venturas et al., 2018). To control the subsurface subsidy, an optional 

water table (Ps = 0) was set to a specified depth below the root zone. Soil flow between layers 

was estimated as the integral over Ps between layers of the van Genuchten soil conductivity 

function, with Kmax corresponding to the vertical distance between layer midpoints (or to the 

water table surface in the case of rise into the root zone).  

The beginning of the growing season was determined from thermal time (Fu et al., 

2012) calculated as the cumulative degree days above 5 ºC from February 1, 2016. Budburst 

was assumed to coincide with the abrupt increase seen in cumulative degree days during 

spring (occurring at 165 degree days on average, range 110-250). Simulations ended on the 

last day of September 2016.  

2.2 Simulating root supply vs. canopy function 

For each stand, cumulative seasonal stand transpiration (∑sE, mm season
-1

), was 

predicted as a function of root-zone water input. An input of zero meant the stand could only 

use the water locally stored in the root zone at the start of the season (source SSOIL in Eqn. 1). 

The initial non-zero input corresponded to 2016 growing season precipitation without any 

subsurface subsidy (SSOIL + SPPT sources). This rain-only simulation yielded the 

corresponding cumulative stand transpiration (∑sE = ∑sErain, mm season
-1

). Inputs above 

growing season rainfall were achieved by adding a water table perched beneath the root zone 

(SSOIL + SPPT + SSUBSIDY sources). Water table depth was constant over a growing season 

simulation, but was progressively raised between simulations until stand ∑sE reached its 

maximum potential rate (∑sEpot, mm season
-1

). The SSUBSIDY term was quantified by the 

increase in seasonal transpiration achieved by eliminating the water limitation (∑sEpot – 

∑sErain) as a percentage of maximum potential transpiration (% SSUBSIDY): 

% 𝑆𝑆𝑈𝐵𝑆𝐼𝐷𝑌 = 100 ∙
(∑s𝐸𝑝𝑜𝑡−∑s𝐸𝑟𝑎𝑖𝑛)

∑s𝐸𝑝𝑜𝑡
   Eqn. 4 

Root zone inputs low enough to induce stand mortality (at ∑sE = ∑sEmort, mm season
-

1
) were based on the 85 PLC mortality threshold identified for aspen by Venturas et al. 

(2018). The actual transpiration of each stand in 2016 (∑sEpred) was estimated by matching 

measured predawn xylem pressure with simulated predawn xylem pressure for the same day. 

To assess the relationship between stand water use benchmarks (∑sEpot, ∑sEpred, 

∑sEmort and ∑sErain) and productivity we also determined the associated values for seasonal 

canopy net photosynthesis (∑sA, kg C season
-1

 m
-2

 ground area), a proxy for stand 

productivity. The corresponding values for soil-to-canopy hydraulic conductance and the end 

of the growing season (Ktree, kg h
-1

 MPa
-1

 m
-2

 basal area) indicated the role of vascular 

transport capacity in limiting canopy fluxes. 

To assess uncertainty in model output, we bootstrapped major model inputs 100 times 

for ∑sEpot, ∑sErain, and % SSUBSIDY outputs (sample size was limited by computing time 

required). The 95% confidence intervals around the bootstrapped mean outputs were 

estimated from percentiles (2.25th and 97.25th). Where possible, inputs were bootstrapped 

with replacement from the measured sample size (LA:BA, LSC, xylem VCs, tree height, the 



 

 

© 2018 American Geophysical Union. All rights reserved. 

same inputs were bootstrapped at every stand). The BA:GA was a single measurement and 

was bootstrapped over a ±10% range. Maximum root depth was bootstrapped from 0.5 to 2 

m. Although we did not bootstrap the initial soil water content per volume (field capacity), 

bootstrapping the root depth varies the total water content accessible by roots. The 

bootstrapped range for estimates of Vmax25, % rhizosphere resistance and % resistance in the 

leaf was ±20%. Bootstrapping included Kmax values through their dependence on 

bootstrapped LA:BA, LSC, and % resistance in the leaf. 

2.3 Tree ring analysis 

Tree cores collected from a minimum of 10 overstory ramets at each site were 

processed, cross-dated, and measured for ring width using standard methods at the Utah State 

Dendrochronology Laboratory (Text S1.4; Bunn, 2010; Holmes, 1983; Stokes & Smiley, 

1996). For each chronology we analyzed the correlation of annual ring width index with 

annual precipitation as snow (PAS) and Hargreaves climatic moisture deficit (CMD, mm, 

summed from May through September) for chronologies of 20 to 114 years prior to 2016. 

The CMD integrates the effect of annual precipitation and vapor pressure deficit. The PAS 

and CMD records were estimated from 4 km gridded climate data (years 1901-2016) 

generated using the ClimateNA v5.10 software package (http://tinyurl.com/ClimateNA, 

based on methodology described by Wang et al., 2016). We quantified the Pearson 

correlation coefficient for 1,000 bootstrapped replicates of ring width to estimate stand 

sensitivity to climate using the R package ‘treeclim’ (Zang & Biondi, 2015). 

2.4 Relationships between cavitation resistance, climate, and modeled water status  

Cavitation resistance was quantified by the pressure at 50 percent loss in conductivity 

(P50) based on the Weibull function vulnerability curves of stems and roots at each site. 

Significant differences between P50's were determined by ANOVA. Where significant 

differences were identified, we determined significant inter-stand differences using a Tukey 

HSD test. Correlation between P50 and climate were assessed using Pearson correlation in 

the R software package (R Core Team, 2016). Six site-specific climatic variables were tested: 

1) mean 2016 midday (11:00-13:00 MST) vapor pressure deficit (VPD) during the growing 

season, 2) cumulative 2016 rainfall during the growing season (GSP, mm), 3) Precipitation as 

snow (PAS, mm) averaged from 1901-2016, 4) average annual (1901-2016) Hargreaves 

climatic moisture deficit (CMD, mm, summed from May through September), 5) average 

annual (1901-2016) precipitation (Mean AP, mm, summed from January through September), 

6) average annual (1901-2016) temperature (Mean AT, C
o
, from January through September). 

In addition, we tested for significant relationships between P50 and measured stand predawn 

xylem pressure, and whether stands were predicted to be "stressed" (i.e, with ∑sEpred greater 

than ∑sEmort, but less than ∑sEpot) vs. "non-stressed" (∑sEpred = ∑sEpot) using logistic 

regression. 

3 Results 

3.1 Model parameters 

The modeled 2016 growing season was drier than normal in terms of precipitation 

(74-181 mm) and CMD (415-550 mm; Table 1; hourly model weather inputs in Data Set S1). 

The climatically driest stand was AV in the more arid western part of Utah. The wetter stands 

were generally in the northern mountain ranges (Fig. 2, Table 1). Stand structure varied an 

order of magnitude in basal area per ground area, leaf area per basal area, and stand height 

(Table 2). Photosynthetic and hydraulic capacities were more consistent, but still showed 
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significant variation between stands (Table 2). The Vmax25 averaged 55.4 µmol s
-1

 m
-2

 (Table 

2) based on the best fit to midday xylem pressure (mean absolute error of 0.19 MPa).  

Aspen stems were significantly more resistant to cavitation than roots in nine out of 

ten stands (P ranged from 0.03 to <0.0001, t-test), the exception being stand AV (P = 0.11). 

Stands exhibited a range of stem cavitation resistance, with P50 values from -1.21 to -3.98 

MPa (averaging -2.57; Fig. 3a). There was less variability in root P50 (-0.57 to -1.69 MPa), 

and only two sites (Elk Hollow, EH, and Joes Valley, JV) were significantly different (Fig. 

3b).  

 

Figure 3. Box and whisker plots of variability in stem and root xylem pressure at 50% loss of 

hydraulic conductivity (P50) across aspen stands (abbreviations in Table 1). Letters denote 

significant differences between stands based on a Tukey HSD test. Whiskers represent the 

upper and lower values within 1.5*IQR (Inter Quartile Range) for each stand (n = 6). Outliers 

depicted as open symbols. (a) Stem P50 varied between stands with stands distinctly more 

vulnerable (AV) and more resistant (HM). (b) Root P50 showed only a single significant 

difference between stands JV and EH. 

 

3.2 Root supply vs. canopy function and subsidy estimation 

Simulations from stand HM (Henry Mountains) illustrate the process of generating 

each stand's relationship between root zone water supply and canopy function. A single 

simulation yielded a growing season time course of daily stand transpiration (∑dE, mm day
-1

; 

Fig. 4) for a given root zone input scenario with 2016 atmospheric conditions. Summing ∑dE 

and total root zone input over the season (mm season
-1

), yielded one point on the plot of 

seasonal E (∑sE) vs. water supply (Fig. 5a). The same process gave seasonal net assimilation 

(∑sA), and end-of-season Ktree (Fig. 5bc). The most important simulations for estimating the 

root zone subsidy were: 1) root zone initialized at field capacity and 2016 growing season 

precipitation with no subsidy (Fig. 4 blue-red line simulation and Fig. 5abc, ∑sErain, ∑sArain, 

and Krain), and 2) sufficient additional subsidy to maximize stand E (Fig. 4, black line and 

Fig. 5abc, ∑sEpot, ∑sApot, Kpot).  
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Figure 4. Daily transpiration as modeled for Henry Mountains stand (HM) 2016 growing 

season. The blue trace depicts daily transpiration (∑dE, mm day
-1

) under a rain input only 

scenario (plus initial root zone water content, SSOIL + SPPT from Eqn. 1). Rainfall (cyan bars) 

is insufficient to prevent the stand from crossing the mortality threshold (red line) based on 

an 85% reduction in soil-canopy hydraulic conductance. The black trace depicts the stand 

with a subsidy sufficient to maximize cumulative seasonal transpiration. Fluctuations are 

correlated with decreases in light and vapor pressure deficit during rain events. 
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Figure 5. Root supply vs. canopy function for the Henry Mountains stand (HM). Root zone 

water supply is cumulative amount per season. (a) Cumulative seasonal transpiration (∑sE). 

Input above the water limiting threshold (black arrow and circle) is sufficient to maximize 

transpiration and eliminate stand water stress (∑sEpot, "non-stressed"). Reduced input 

decreases ∑sE and results in "stressed" stands. When stress causes the soil-canopy hydraulic 

conductance to fall by 85% or more, the stand is at high risk of mortality (∑sEmort, red 

symbol, "dying"). The transpiration rate sustained by stored water and growing season 

precipitation (∑sErain) is shown with a blue symbol. The difference between ∑sEpot and ∑sErain 

(blue subsidy arrow) indicates the need for an additional water subsidy to eliminate stand 

water stress. The predicted stand location (∑sEpred) based on survey predawn pressure 

measurement is noted with a filled grey circle. (b) Cumulative net assimilation (∑sA) per 

ground area . The ∑sApot, ∑sAmort, ∑sArain, and ∑sApred for the corresponding ∑sE benchmarks 

are shown. (c) End of season minimum soil-canopy hydraulic conductance (Ktree). The Kpot, 

Kmort, Krain, and Kpred for the corresponding ∑sE benchmarks are indicated. 

In the case shown, summer rain and stored water were not sufficient to keep the HM 

stand alive because ∑dE fell sharply (by day 170) and the stand crossed the 85 percent loss in 

hydraulic conductance (PLC) mortality threshold by day 177 (Fig. 4, blue-to-red line 
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transition; Fig. 5c Kmort threshold). Rain events (cyan bars) had a limited effect despite 

increasing soil Ps (e.g., after day 183), because of the legacy of reduced plant hydraulic 

conductance caused by xylem cavitation. When a large enough subsidy was fed into the 

rooting zone, ∑dE became maximized (Fig. 4, black line), which was summed to give the 

∑sEpot (Fig. 5a). Daily variation in this maximum ∑dE was mainly driven by light intensity 

and atmospheric vapor pressure deficit (D). This can be seen in notable drops in transpiration 

during large rain events (e.g., Fig. 4, day 183) when light and D were much lower than on 

sunny days when ∑dE is limited by stand hydraulic conductance. Additional simulations 

filled in the gap between ∑sErain and ∑sEpot, allowing the thresholds for mortality to be 

estimated (Fig. 5abc, ∑sEmort).  

The trajectory of ∑sA and K with root water supply followed a similar trajectory as 

∑sE with all becoming saturated at a similar "water limiting threshold" (Fig. 5abc, ∑sEpot, 

∑sApot, and Kpot). This result indicates that peak water use corresponds with peak canopy 

photosynthesis (and by proxy the productivity), and that both are associated with avoiding 

loss of soil-to-canopy hydraulic conductance from water stress. The water-limiting-threshold 

(Fig. 5a, arrow) is the minimum root zone water supply required to prevent a significant loss 

of stand water conducting capacity over the growing season. 

The magnitude of seasonal ∑sE indicated the health and photosynthesis of the stand 

with respect to water status. "Non-stressed" stands were at ∑sEpot with minimal water stress 

and maximum assimilation. "Stressed" stands are between ∑sEpot and ∑sEmort, experiencing 

significant, but non-lethal water stress and reduced assimilation. "Mortality" stands are below 

∑sEmort and are expected to suffer death by drought. In the case shown, stand HM was 

estimated to fall within the stressed zone (Fig. 5, grey circle) based on its measured predawn 

xylem pressure (Table 2). The relationship of ∑sEpot to ∑sErain enabled the estimation of the 

subsidy under optimal conditions (% SSUBSIDY; Eqn. 4; Fig.5 upward blue arrow, analogous 

calculations can be performed for ∑sA). 

Six of the 10 stands had a ∑sEpot well above ∑sErain (Fig. 6a), and hence required a 

significant subsidy (Fig. 6c). The average % SSUBSIDY was 54% (range: 31 to 78%; Fig. 6c). 

The corresponding percentage of maximum assimilation averaged 52% (range: 32 to 76%; 

Fig. 6b). Five of these six stands were not projected to survive on rain alone (Fig. 6a, ∑sEmort 

> ∑sErain). Four of these six stands were estimated as "stressed" during the 2016 growing 

season (Fig 6ab, circles); the remaining two stands were "non-stressed" (symbols not shown). 

Four of the 10 stands had ∑sEpot = ∑sErain (Fig. 6a), meaning they had a low enough demand 

for water (∑sEpot ≤ 141 mm season
-1

) that they were never limited even if only supplied with 

stored water and growing season precipitation. These stands were all estimated to be "non-

stressed" and at their ∑sEpot. 

The major determinant of ∑sEpot, and hence the dependence on a subsidy, was stand 

level Kmax (Kmax per ground area = Kmax per basal area multiplied by BA:GA; Fig. 7). Stand 

Kmax explained 94% of the variation in ∑sEpot (Fig. 7). Dense stands of high conductance 

trees had greater maximum demand for water, and hence required a greater subsidy. 
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Figure 6. (a) Stand estimates for season transpiration (∑sE). Upper limit (heavy black line) is 

the maximum achieved by subsidizing the root zone (∑sEpot) and the lower limit (dashed blue 

line) is the value for rain and stored water alone (∑sErain). Corresponding error bars are 

bootstrapped 95% confidence intervals (CI). Transition between stressed (grey) and dying 

(red) stands is the mortality threshold (∑sEmort). Stands with ∑sEpot > ∑sErain were 

"subsidized" and the four stands with ∑sEpot = ∑sErain were "non-subsidized". Four of the 10 

stands were estimated to be in the stressed zone between ∑sEpot and ∑sEmort (circles); the 

remaining stands were estimated to be at ∑sEpot. (b) Same graph as in (a), but for season net 

assimilation per ground area (∑sA). (c) The % SSUBSIDY for each stand was computed from 

Eqn. 4 with 95% CI. 
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Figure 7. Maximum seasonal stand transpiration (∑sEpot) vs. maximum stand hydraulic 

conductance (stand Kmax per ground area) obtained by bootstrapping (100 values per stand). 

The dashed black line is a significant linear regression (R
2 

= 0.94, P < 0.001). Open circles 

represent subsidized stands, and closed black circles non-subsidized stands. 

 

3.3 Tree ring analysis 

Over time the 6 subsidized stands showed a strong tendency for ring width to be 

positively correlated with precipitation as snow (larger growth rings with increasing PAS; 

Fig. 8a) and negatively correlated with climatic moisture deficit (narrower rings with 

increasing CMD; Fig. 8b). Non-subsidized stands were relatively insensitive to either metric. 

The pattern emerged more recently for PAS, becoming evident in 5 of the 6 subsidized stands 

within 35 years and in all 6 subsidized stands by 100 years. At a given time there was at most 

only one non-subsidized stand sensitive to PAS. The CMD relationship was less widespread 

and emerged more slowly with 5 of 6 subsidized stands becoming sensitive by 100 years. 

From 35 years on, none of the non-subsidized stands were sensitive to CMD. Only EH stand 

showed a significant correlation with CMD for 20 to 30 year long chronologies, but they 

were opposite to expected as it was a positive correlation (i.e., they showed wider growth 

rings on years with larger CMD).  

3.4 Relationships between cavitation resistance, climate, and modeled water status  

Cavitation resistance tended to increase with modeled and measured indicators of 

stand water stress. There was a significant association between "non-stressed" vs. "stressed" 

stands (as distinguished in Fig. 6) and increasingly negative P50 (root and root + stem 

average P50 P < 0.001, stem P50 P< 0.05; logistic regressions). Likewise, stands with more 

negative predawn xylem pressure had significantly more negative root P50 and average root 

+ stem P50 (r
2
 = 0.75 and 0.60, respectively; P < 0.01; not significant for stem P50).  

Cavitation resistance was not correlated with any climate drivers (Mean AP, Mean AT, PAS, 
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CMD) as calculated from the mean stand climate over years 1901-2016, or for 2016 growing 

season precipitation or VPD. Climate drivers were also not related in any detectable way to 

stand water status ("non-stressed" vs. "stressed") or predawn xylem pressure.  

 

 

Figure 8. Significance of correlation between tree ring width for chronologies of indicated 

length (prior to 2016) and (a) the annual Precipitation as Snow (PAS) or (b) growing season 

Hargreaves Climatic Moisture Deficit (CMD). Pearson correlation coefficients are shown for 

subsidized vs. non-subsidized stands. Significant correlation coefficients (P < 0.05) are 

highlighted in bold, with green shading indicating a positive correlation (i.e., wider rings for 

years with higher PAS or CMD) and red shading a negative correlation. 

 

 

4 Discussion 

The model predicted that a majority of the aspen stands required a significant amount 

of subsidy to the root-zone to minimize water stress and maximize assimilation. When only 

relying on root zone storage and incident summer rain, half of the stands would be at risk of 

mortality (Fig. 6). This dependence on groundwater subsidy was also supported by the tree 
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ring chronology, which showed a significant correlation with winter precipitation as snow in 

subsidized stands (Fig. 8). These findings are consistent with previous studies in snow-

dominated environment suggesting soil recharge during wintertime provides an important 

water source for sustaining plant water use during the growing season (Bigler et al., 2007; 

Fritts, 1974; Hanson & Weltzin, 2000; Williams et al., 2013). Although the modeling results 

pertain specifically to the 2016 season, summer rain is quite limited in these forests (based on 

PRISM climate record from 1901-2016; Table 1) and would be unlikely to ever provide the 

amount of water required to achieve the large ∑sEpot (>141 mm season
-1

; Fig. 6a) in 

subsidized stands. Because of the link between winter snowpack and groundwater recharge in 

the montane ecosystems where aspen forests occur in Utah (Castle et al., 2014; Garreaud et 

al., 2017; Maurer & Bowling, 2014), a major implication of the results is that subsidized 

aspen forests in the intermountain region of the USA could be much more vulnerable to 

reductions in winter precipitation than to summer drought.  

Most of the simplifying assumptions required to model the complexities of stand 

water balance would result in a conservative estimate of the subsidy. The generous root-zone 

depth range (0.5 to 2 m), and assumed absence of rocks, would tend to maximize the 

availability of local soil moisture per tree. We started simulations assuming initial stored 

water was at field capacity rather than saturation, which is reasonable considering relative 

water content measurements in other Utah montane stands (Maurer & Bowling, 2014). A 

sparse snowpack and early melt could even prevent field capacity from being reached prior to 

bud-break. Rain infiltration was maximized by assuming no interception or run-off. Soil 

evaporation represented a mean loss of 51.3% of growing season precipitation (GSP) across 

stands, ranging from 19.0% for AV to 69.5% for EH. This relatively high proportion of GSP 

lost to soil evaporation is due to rain events being infrequent and of small magnitude, which 

resulted in the rain not penetrating the soil beyond the 2 cm layer of surface soil. The absence 

of any understory allowed aspen sole access to root zone water content. Generous error in 

input estimates (e.g., ± 20%) propagated to broad confidence intervals on model output (Fig. 

6). Regardless of these settings, the predicted reliance on ground subsidy was significant. 

Summer rainfall was simply too sparse in these stands to sustain transpirational demands 

much above 141 mm season
-1

 without additional water supply. 

Previous research on aspen mortality in Colorado, USA, supports the importance of 

soil water redistribution and indicates that the magnitude of the subsidy may be influenced by 

local topography. Tai et al. (2017) found that aspen stands located in topographically 

divergent areas (i.e., ridges) generally exhibited higher mortality compared to neighboring 

water-collecting convergent areas (i.e., valleys), in response to a severe multi-year drought 

(2000-2003). The anomalously hot and dry summers during this drought appear to have 

exacerbated aspen mortality in southwestern Colorado (Anderegg et al., 2013). This region is 

well inside the track of the southwestern monsoon and summer rain is normally more 

abundant than in the modeled Utah stands (Adams & Comrie, 1997), possibly leading to 

growth of more rain-dependent stands. Any shortfall in the subsurface subsidy would also 

amplify the effects of a dry summer on normally subsidized stands. Indeed, four of the 

subsidized Utah stands were estimated to be stressed in 2016, whereas all of the non-

subsidized ones were non-stressed. Tree ring chronologies of subsidized stands also tended to 

be more sensitive to the climatic moisture deficit during the growing season than non-

subsidized ones (Fig. 8b).  

Although our evidence for aspen stands relying on groundwater subsidy is strong, the 

mechanism of its delivery is not explicitly resolved. Although we modeled the subsidy as 

upward flux from a static water table, this was a convenient substitute for what is likely to be 

a much more complex situation. In actuality, the subsidy could be arriving via any 
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combination of vertical and lateral flow, within and below the root zone, and from a variety 

of precipitation events over a range of periods. It could also be delivered from a few deep 

roots tapping bedrock-bound aquifers. While most aspen roots are concentrated in the upper 

1.5 m of soil, aspen have been observed to have ‘sinker roots’ that can tap deeper water 

sources (Gifford, 1966). This trait may be supporting populations of aspen stands in regions 

that are more prone to persistent drought or with shallower and rockier soil that cannot store 

much water. Given the magnitude of the subsidy (Fig. 6), the paucity of summer rain, and the 

relative abundance of winter precipitation (Table 1), the subsidy is more likely sourced from 

winter rather than summer precipitation. This expectation is consistent with tree ring widths 

being positively associated with precipitation as snow in our subsidized stands (Fig. 8a). 

More insight into stand water supply and its origin (winter vs. summer precipitation, aquifer) 

could be obtained by matching stable isotopes of oxygen and hydrogen between tree and 

water source (Barbeta & Peñuelas, 2017; Ehleringer & Dawson, 1992; Hu et al., 2010; 

Snyder & Williams, 2000; West et al., 2012). 

The buffering effect of a root zone subsidy on stand water stress is consistent with the 

decoupling of cavitation resistance from the stand's local climate. Stand AV, for example, is 

one of the climatically driest locations (Table 1), yet its trees had the most cavitation-prone 

stem xylem (Fig. 3a). However, its vulnerable xylem was consistent with it being a "non-

stressed" stand that required, and obtained, a large subsurface subsidy (Fig. 6). It was also the 

only stand with an obvious nearby groundwater source (a small spring). Stand HM, by 

contrast, had the most cavitation-resistant stem xylem, which was consistent with its being 

one of the most under-supplied and stressed stands (Fig. 5, 6a). Cavitation resistance and 

water stress were thus found to be correlated, but neither was in any detectable way 

associated with stand climate. The more relevant factors determining water stress is the stand 

structure (i.e., stand Kmax and ∑sEpot) and the amount of subsidy delivered to the roots.  

The relationship of root supply to canopy function depicted in Fig.5 reveals a "water 

limiting threshold" of root zone water availability that is just sufficient to alleviate water 

stress and achieve ∑sEpot and ∑sApot (Fig. 5, water limited threshold arrow). While this 

threshold may not be as well-defined in a rain supplied system as in our subsidy driven 

situation, it still represents an ecologically and hydrologically significant benchmark. 

Ecologically, to optimize growth and minimize water stress, stands should develop over time 

so as to remain somewhat above this threshold (Fig. 9) by adjusting stand Kmax and hence 

∑sEpot (Fig. 7). This resembles Eagelson's concept of the long-term equilibrium between plant 

available water and the abundance of transpiring plants (Cabon et al., 2018; Eagleson, 1982). 

But the concept also provides a framework for charting long-term forest growth or dieback in 

response to water availability. Stands operating too far above the threshold over multiple 

years, with a perennial surplus of water, have the opportunity to add more foliage without 

increasing their water stress. Hence, they should grow to increase stand Kmax and ∑sEpot until 

the water-limiting threshold is approached (Fig. 9a) or another resource besides water 

becomes limiting (i.e., light or nutrients). Stands operating consistently below their threshold 

are "victims of their success." They have grown to a high threshold in response to former 

water availability, but any subsequent shortfall induces physiological stress. These stands 

should respond by reducing stand Kmax and ∑sEpot, by partial dieback, to reach a lower 

threshold and eliminate water stress (Fig. 9b). Should the stand fall within the mortality zone, 

it would have passed the point of no return and be unable to recover. 
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Figure 9. Conceptual diagram of how root supply vs. canopy function curves depicted in Fig. 

5 can predict the optimal response of stands to chronic shifts in root zone water input. Black 

line means the no stress zone, gray the stress zone, and red the dying zone. (a) A stand with a 

root zone water input above (grey filled circle) its water limiting threshold (black-to-grey 

transition) has a water surplus. This stand can increase its maximum transpiration rate 

(∑sEpot) without causing stress until the root supply becomes limiting (upper dashed line). (b) 

A stand with a limiting root zone water input (grey filled circle) is water stressed. This stand 

can eliminate stress by reducing ∑sEpot (via controlled dieback) and establishing a lower 

water limiting threshold. 

Hydrologically, the water-limiting threshold corresponds to the transition between 

transpiration limited by water supply and transpiration limited by the evaporative gradient 

("energy-limited"). The Budyko curve describes this transition for long-term water balance at 

the catchment scale: when catchment evapotranspiration (ET) equals its potential 

evapotranspiration (PET), the system is energy limited, but too little precipitation will make 

ET fall short of PET (Zhang et al., 2001). Despite the conceptual overlap with Budyko 

theory, our root supply vs. canopy function curves model a very different context. For one 

thing, our ∑sEpot is a physiologically defined maximum transpiration (not including soil 

evaporation) for a particular stand water conducting capacity and growing season rather than 
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the meteorologically based reference PET. For another, we are modeling single growing 

seasons at the stand scale rather than long-term equilibration of catchment water balance. 

However, this physiologically based approach does provide a roadmap to accurately infer the 

role of hydrology in stand function, and incorporate the dynamics of tree mortality and 

stomatal regulation. This advancement could facilitate upscaling forecasts of patch scale 

hydrology to watershed and regional dynamics under climate change (Thompson et al., 

2011). Bridging the gap between short-term stand and long-term catchment would require 

linking physiologically-based vegetation models to a 3D hydrological model (e.g., 

PARFLOW, Tai et al., 2018) at a landscape scale. Such an approach would constrain the 

mechanisms by which any root zone subsidy could be realized, including its dependence on 

winter precipitation regime, and the effects of slope and aspect on water availability and 

runoff (Zapata‐Rios et al., 2016).  

The dependency of montane aspen on groundwater subsidy revealed by this study is 

cause for concern given climate change projections for the intermountain region of the US: 

the area is expected to receive less precipitation as snow in the future, and a faster rate of 

snowpack melt due to rising winter and spring temperatures, as well as dust deposition 

(Cayan et al., 2013; Deems et al., 2013). Both of these factors may result in less effective 

recharge of groundwater from winter inputs (Deems et al., 2013; Udall, 2013). Based on the 

results from this study any reduction in root zone subsidy would be expected to drought-

stress many aspen stands and increase their mortality risk. The approach presented in this 

study provides a framework to develop more robust predictions of forest responses to climate 

change which are needed to anticipate effects on forest resources and to inform mitigation by 

appropriate management practices (Bradford & Bell, 2017). 
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Table 1. Stand physical characteristics and climatic data for 1901-2016 mean and for 2016. 
 

Stand 

ID 

Stand 

name 

Coordinates 

(Datum 

WGS84) 

Elevation 

(m) 

Soil type 

(, n) 

Mean 

AP 

(mm) 

Mean 

AT 

(Co) 

2016 

AP 

(mm) 

Mean 

PAS 

(mm) 

2016 

PAS 

(mm) 

Mean 

CMD 

(mm) 

2016 

CMD 

(mm) 

Mean 

GSP 

(mm) 

2016 

GSP 

(mm) 

2016 

Midday 

VPD 

(kPa) 

AV Amasa 

Valley 

39.172333 N 

113.392611 W 

2622 Loam 

(367.35, 1.56) 

440 7.8 510 105 118 502 550 101 74 3.1 

BM Boulder 

Mountain 

38.047028 N 

111.324472 W 

2878 Organic 

matter* 

(367.35, 1.56) 

519 4.1 508 196 197 386 466 205 150 3.0 

BR Bear River 40.853583 N 

110.821167 W 

2676 Loam 

(367.35, 1.56) 

696 1.7 718 408 415 378 442 211 165 4.0 

EH Elk Hollow 40.811917 N 

111.768194 W 

2032 Loam 

(367.35, 1.56) 

749 6.7 787 218 201 450 487 209 181 2.9 

FL Fish Lake 38.580306 N 

111.512500 W 

2780 Clay Loam 

(193.87, 1.31) 

518 3.8 520 212 233 401 477 192 139 1.5 

GP Guardsman 

Pass 

40.581861 N 

111.502861 W 

2457 Loam 

(367.35, 1.56) 

741 4.7 776 336 334 393 451 187 145 4.4 

HM Henry 

Mountains 

38.082056 N 

110.769944 W 

2826 Clay Loam 

(193.87, 1.31) 

612 4.2 626 252 257 376 452 210 159 2.1 

JV Joes Valley 39.313250 N 

111.326167 W 

2612 Silty Clay 

Loam 

(102.04, 1.23) 

593 3.7 627 270 322 395 464 191 142 1.6 

MH Mill 

Hollow 

40.443222 N 

111.146306 W 

2718 Clay Loam 

(193.87, 1.31) 

832 2.0 877 500 533 349 415 222 170 2.7 

NF Norway 

Flat 

40.614639 N 

111.091000 W 

2564 Loam 

(367.35, 1.56) 

742 3.2 776 397 407 416 483 199 152 3.4 

AP, annual precipitation; AT, annual temperature; PAS, annual water year (August-July) precipitation as snow; CMD, climatic moisture deficit during the growing season (May-September); 

GSP, growing season precipitation (May-September); VPD, midday (11:00-13:00) vapor pressure deficit during the growing season. 
*for stand BM only organic matter was obtained in the soil sample and the parameters for loam soil were used in model simulations. 
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Table 2 Stand plant traits. When appropriate the standard error of the mean (SE) is reported as well as significance letters based on a Tukey 

HSD test. 
 
Stand 

ID 

BA:GA 

(m2 ha-1) 

LA:BA 

(m2 m-2) 

Height 

(m) 

Age 

(years) 

PD 

(-MPa) 

MD 

(-MPa) 

LSC 

(mmol s-1 m-2 

MPa-1) 

Stem VC 

(b, c) 

Root VC 

(b, c) 

Vmax25 

(mol m-2 

s-1) 

Tree kmax 

(kg h-1 MPa-1 

m-2) 

Stand 

LAI 

(m2 m-2) 

AV 142.7 76069b 16.30.8bcd 987abc 0.400.05 1.490.13 3.50.8bcd 1.79, 0.94 1.03, 1.01 47.0 73.6 2.38 

BM 14.9 141070a 9.00.3e 372e 0.360.02 1.900.04 3.70.7bcd 2.53, 1.32 1.03, 0.84 55.1 137.5 1.43 

BR 80.7 98088b 16.40.8bc 1151a 0.550.05 1.730.21 8.41.4a 2.55, 1.27 1.46, 1.36 66.1 203.1 1.54 

EH 26.9 81948b 18.31.4ab 601de 0.340.02 1.840.29 1.20.4d 4.08, 1.56 0.78, 0.72 34.6 26.2 1.39 

FL 26.0 98241b 8.40.2e 10612abc 0.640.05 1.650.04 7.00.4ab 3.73, 2.00 1.37, 1.42 99.6 191.5 0.71 

GP 12.3 897128b 11.71.6de 454e 0.270.02 1.550.05 2.30.4cd 2.71, 3.24 0.90, 0.76 85.4 47.9 0.56 

HM 77.3 98372b 12.81e 12312a 1.090.05 1.860.05 6.31.2ab 4.72, 2.13 1.71, 1.31 62.4 224.7 1.45 

JV 43.9 87481b 11.60.5e 837bcd 0.860.11 1.510.05 3.30.5bcd 2.99, 2.21 2.33, 1.14 23.0 78.2 1.32 

MH 44.9 1105104ab 19.01.1ab 804cd 0.330.02 1.740.10 1.20.4d 2.98, 1.55 0.84, 0.90 32.2 31.7 0.90 

NF 45.7 96862b 22.91.1a 1102ab 0.360.01 1.430.05 5.60.8abc 3.74, 1.60 1.14, 1.20 50.9 111.2 0.72 

BA:GA, basal area to ground area ratio; LA:BA, leaf area to basal area ratio; PD, predawn xylem pressure; MD, midday xylem pressure; LSC, leaf specific conductance; Stem VC, stem xylem 

Weibull vulnerability curve b and c parameters; Root VC, root xylem Weibull vulnerability curve b and c parameters; Vmax25, maximum carboxylation rate at 25º Celsius; Tree Kmax, maximum 

whole tree conductance per basal area; Stand LAI, stand leaf area index obtained from hemispheric photographs. 


