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ABSTRACT

Tool edge radius plays a significant role in affecting the surface integrity of machined products.

The vast majority of existing research, however, takes no account of the effect of tool edge

radius in the evaluation and modeling of machined surface roughness, an essential indicator of

surface integrity. The present study fills this important research gap and has performed a total

of 45 turning experiments on Unified Numbering System (UNS) A92024-T351 aluminum alloy

with carefully selected cutting tools with three levels of tool edge radii. This article describes

the experimental setup and measurements of tool edge radius and machined surface rough-

ness. Machined surface roughness was evaluated using five parameters, including average

roughness, root-mean-square roughness, peak roughness, maximum roughness height, and

five-point average roughness. The experimental evidence presented in this article shows that

the tool edge radius has a profound effect on machined surface roughness, cutting forces, and

cutting vibrations. Based on the experimental data, three types of predictive models are de-

veloped, including a multiple regression model, multilayer perceptron neural network model,

and radial basis function neural network model. The prediction accuracy of the three models is

compared based on average mean squared errors. The results show that different models lead

to different prediction accuracy for different surface roughness parameters.
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Nomenclature

f= Feed rate

Fc= Cutting force

Ff= Feed force

Fp= Passive force

Ra=Average roughness

Rmax=Maximum roughness height

Rp= Peak roughness

Rq= Root-mean-square roughness

Rz= Five-point average roughness

r= Ratio of feed rate to tool edge radius

V= Cutting speed

Vx= Cutting vibration in the cutting speed direction

Vy= Cutting vibration in the feed rate direction

Vz= Cutting vibration in the depth of cut direction

rε= Tool edge radius

Introduction

THE IMPORTANT EFFECT OF TOOL EDGE RADIUS IN MACHINING

Machining is a material removal process widely employed in modern manufacturing. The quality of machined

products, such as the dimensional accuracy and surface integrity, depends on many factors, for example tool

geometry, work material, and cutting conditions employed in machining. Tool geometry typically includes tool

rake angle, tool flank angle, tool inclination angle, tool nose radius (also called tool corner radius), tool edge

radius, and so on. Recent years have seen a growing interest in and need to incorporate the effect of tool edge

radius in the predictive modeling of machining because of the rapid development and application of precision and

ultraprecision machining in a variety of modern industries, such as the aerospace, automotive, and die- and mold-

making industries.

In precision and ultraprecision machining, the feed rate is often in the same magnitude as the tool edge

radius. The effect of the tool edge radius cannot be neglected because extensive experimental evidence has

suggested that the tool edge radius significantly affects chip formation,1–3 cutting forces,4–6 cutting temperatures,7

tool wear,8 and surface integrity.9 For example, Arif, Rahman, and San5 found that tool edge radius affects

crack propagation in the cutting zone in the ductile-mode machining of brittle materials, such as tungsten car-

bides. Nasr, Ng, and Elbestawi9 developed an Arbitrary Lagrangian-Eulerian finite element model to simulate the

effect of tool edge radius on the residual stress of machined surfaces in orthogonal cutting. They found that a

larger tool edge radius induced higher residual stress in both the tensile and compressive regions of the machined

surface.

MACHINED SURFACE ROUGHNESS

The surface roughness of machined products, or simply machined surface roughness, is a widely used index of

product quality because it significantly affects the surface integrity, dimensional accuracy, wear resistance, and

fatigue strength of machined products.10–12 Research has been conducted to study factors affecting machined

surface roughness13,14 and develop various methods for surface roughness evaluation.15–17

For example, Grum and Kisin14 conducted turning experiments on three two-phase alloys (aluminum silicon

[AlSi] 5, AlSi2, and AlSi20) with different soft-phase sizes. They concluded that material microstructure also plays

an important role in affecting average surface roughness. Scandiffio, Diniz, and de Souza15 studied machined

surface roughness, tool life, and machining force in milling free-form shaped, hardened AISI D6 steel with
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cemented carbide tools. They found that the average surface roughness varied in descendant and ascendant

milling conditions and was affected by the combined effect of machining forces and vibrations.

The evaluation and modeling of machined surface roughness is important for machining process planning

and optimization, such as the optimal design and selection of tool geometry and cutting conditions. In an effort to

correlate cutting conditions with cutting forces and machined surface roughness in end milling, Maher et al.18

developed an adaptive neuro-fuzzy inference system model to predict average surface roughness using cutting

force data. Wang et al.19 performed lens slow tool servo turning experiments and developed regression and least

squares support vector machine (LS-SVM) models to predict the average surface roughness. Their models in-

cluded five inputs: the tool nose radius, feed rate, depth of cut, discretization angle, and C-axis speed. They

reported that the LS-SVM model provided better prediction capabilities than the regression model because

the LS-SVM model had a better ability to model complex nonlinearities and interactions.

THE CONTRIBUTION OF THE PRESENT STUDY

The vast majority of existing research takes no account of the effect of the tool edge radius in the evaluation and

modeling of machined surface roughness. One reason is that it has been challenging for tool manufacturers to

ensure that the tool edge radius, typically at the level of micrometers, is uniformly distributed along a tool cutting

edge, because of manufacturing errors. The tool edge radius measured at different locations along the same tool

cutting edge can vary significantly from one location to another location.1 Without cutting tools with a uniformly

distributed tool edge radius along the same tool cutting edge, it is challenging for researchers to study the effect of

the tool edge radius in machining. The vast majority of existing research seldom reports the magnitude of the tool

edge radius employed in machining experiments.

The most significant contribution of the present study is that the effect of the tool edge radius is taken into

account in the evaluation and modeling of machined surface roughness. Note that the tool edge radius1 and tool

nose radius19 are two totally different concepts measured in different planes. Figure 1 shows the difference be-

tween the tool edge radius and tool nose radius. The tool nose radius is also called the tool corner radius and

measured in the tool rake face. The magnitudes of the tool nose radius on commercial cutting tools are typically

0.2–1.2 mm. The tool edge radius is measured in the plane perpendicular to the tool cutting edge, and its

magnitudes are often at the level of micrometers (μm). The effect of the tool nose radius on machined surface

roughness has been well known and well documented in the literature.19 However, there is little experimental

study and theoretical modeling efforts on the effect of tool edge radius on machined surface roughness.

The present study fills this important research gap.

Side 
cutting    
edge

Tool nose radius (mm)

Tool rake face

End cutting edgeA
A

A-A cross section

Tool edge 
radius ( m)

Tool rake face
Tool 
flank 
face

FIG. 1

Difference between tool

edge radius and tool

nose radius.
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In addition, five surface roughness parameters, rather than the commonly used average surface roughness Ra

only, were evaluated in the present study. A total of 45 cutting experiments were performed with tool inserts with

three levels of tool edge radii and covered a range of cutting speed and feed rate conditions. The cutting tools

employed in the present study were carefully selected from more than 20 commercially available triangular tool

inserts involving more than 60 tool cutting edges. Each triangular tool insert had three tool cutting edges. Only

those tool inserts with the most uniform distribution of tool edge radius along the same tool cutting edge were

chosen in the present study. Based on the experimental data of cutting forces and vibrations, three types of mod-

els, including a multiple regression model, multilayer perceptron (MLP) neural network model, and radial basis

function (RBF) neural network model, were developed to predict five surface roughness parameters.

In the remaining sections of this article, the experimental setup is described, including the work and tool

materials, tool geometry, and cutting conditions. The measurements of the tool edge radius, machined surface

roughness, cutting forces, and cutting vibrations are also described. The effect of the tool edge radius on the

machined surface roughness, cutting forces, and cutting vibrations is presented and analyzed. The methods

of multiple regression, MLP, and RBF neural network modeling are introduced, followed by a comparison of

prediction accuracy using the three models. The major research findings are summarized at the end of the article.

Experimental Setup and Measurements

WORK MATERIAL

A computer-numerically-controlled turning center made by HAAS Automation Inc. (HAAS SL10) was employed

to conduct three-dimensional (3-D) turning experiments on a UNS A92024-T351 aluminum alloy bar (ASTM

B211, Standard Specification for Aluminum and Aluminum-Alloy Rolled or Cold Finished Bar, Rod, and Wire,

grade). Aluminum alloys have been widely applied in a variety of industries, such as the aerospace and automotive

industries.20 UNS A92024-T351 aluminum alloy has the following chemical compositions in percentage of

weight: aluminum: 90.7-94.7; chromium: 0.1 max; copper: 3.8-4.9; iron: 0.5 max; magnesium: 1.2 -1.8; manganese:

0.3-0.9; silicon: 0.5 max; titanium: 0.15 max; and zinc: 0.25 max.

TOOL MATERIAL AND GEOMETRY

The cutting tools used in machining experiments were three tool inserts of TPG432 made by Kennametal Inc.

These triangular, flat-faced tool inserts were made of cemented carbides (Kennametal Carbide KC 8050) with

titanium carbide/titanium nitride/titanium-carbon-nitride coating.

These tool inserts had the following common geometrical parameters: a tool working rake angle of 5°, tool

working flank angle of 6°, tool working side cutting edge angle of 0°, and tool nose radius of 0.8 mm. However,

the three tool inserts had different tool edge radii: 45.5 μm, 54.7 μm, and 72.4 μm. Note that the tool nose radius

and tool edge radius are two different concepts because they are measured in different geometrical planes in

3-D space.1

Typically, tool manufacturers cannot accurately control the tool edge radius because of manufacturing

errors. Therefore, the tool edge radius varies along the tool cutting edge on the same tool insert. The vast majority

of existing research on machined surface roughness seldom reports the tool edge radius employed in its exper-

imental work and modeling efforts. In the present study, the tool edge radius was carefully chosen after measuring

more than 20 triangular tool inserts. Each triangular tool insert had three tool cutting edges. In other words, more

than 60 tool cutting edges were measured. Only those tool inserts with the most uniform distribution of tool edge

radius along the same tool cutting edge were chosen. They represented three levels of tool edge radii: 45.5 μm,

54.7 μm, and 72.4 μm. The measurement of the tool edge radius will be described in detail in a subsequent section.

CUTTING CONDITIONS

The cutting speed V varied at three levels: 150 m/min, 200 m/min, and 250 m/min. The feed rate f was chosen

based on the tool edge radius rε and varied at five levels of f/rε ratios (r): 1.0, 1.5, 2.0, 2.5, and 3.0. The reason for
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using f/rε ratios rather than f values alone is that the effect of tool edge radius in machining highly depends on the

magnitude of the feed rate.1 If the f/rε ratio is significantly large, say larger than ten, the cutting tool is typically

considered a “sharp” tool, and the tool edge radius no longer plays a significant role in machining. Therefore,

to magnify the effect of the tool edge radius, the ratio of f/rε was controlled to be no more than 3.0 in the present

study.

Given three levels of cutting speeds (V), three levels of tool edge radii (rε), and five ratios (r) of feed rate to

tool edge radius, a total of 45 (3 × 3 × 5) cutting experiments were conducted. In all the cutting experiments, the

depth of cut was kept constant at 0.8 mm, the same as the tool nose radius. No cutting fluids were employed in

order to facilitate the online and real-time measurements of cutting vibrations and forces.

Particularly worthy of mention is that all the cutting experiments were conducted with no substantial tool

wear in order to avoid the effect of tool wear on machined surface roughness. Research has shown that tool wear

has a significant effect on machined surface roughness.21–24 For example, Jose et al.21 studied the effect of tool

wear and surface roughness in turning D2 steel. They reported that as tool wear increases machined surface

roughness increases considerably. Liang and Liu22 studied how tool wear affects machined surface topography

in the machining of Ti-6Al-4V. They reported that when machined with the new sharp tool, the machined surface

is relatively smooth. However, as the cutting process continues, tool wear develops on the tool flank face and has a

profound effect on machined surface roughness.

To avoid the effect of tool wear on machined surface roughness, fresh cutting tools (rather than worn cutting

tools) were employed in all the cutting experiments, and the cutting experiments were completed before notice-

able tool wear was developed on either the tool rake face or flank face. The diameters of the aluminum workpiece

varied between 62 mm and 87 mm. For an individual cutting experiment, the time of machining was less than ten

seconds. Therefore, tool wear by secondary adhesion, a phenomenon commonly occurring in aluminum machin-

ing, was controlled and minimized in the present study.

OFF-LINE MEASUREMENTS OF TOOL EDGE RADIUS AND MACHINED SURFACE ROUGHNESS

Prior to the cutting experiments, the tool edge radius was measured off-line using a Mitutoyo-type SV602 meas-

uring instrument, as shown in figure 2. The instrument had a diamond stylus with a tip radius of five μm. The tip

radius of the diamond stylus was taken into account when measuring the tool edge radius and machined surface

roughness. Measurements were taken at multiple locations along the same cutting edge to ensure that only those

tool inserts with the most uniform distribution of tool edge radius along the tool cutting edge would be employed

in the present study.

Diamond Stylus SV602

Tool
Insert

Tool
Holder

V shape
Fixture

FIG. 2

Measurements of tool

edge radius.
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After the cutting experiments, the machined surface roughness was measured off-line, also using Mitutoyo-

type SV602. The following five surface roughness parameters25 were measured:

(1) Average roughness Ra: the arithmetic average of the absolute values of the roughness profile ordinates.
Ra is the parameter most commonly used for evaluating the surface roughness.

(2) Root-mean-square (rms) roughness Rq: the rms average of the roughness profile ordinates.
(3) Peak roughness Rp: the maximum peak height of the roughness profile ordinates.
(4) Maximum roughness height Rmax: the maximum peak-to-valley height of the roughness profile ordinates.
(5) Five-point average roughness Rz: the five-point average peak-to-valley height of the roughness profile

ordinates.

It should be pointed out that the aforementioned surface roughness parameters were measured at three

equally spaced locations around the circumference of the workpiece. The average values of the measurements

at three locations were employed to represent the experimental values of machined surface roughness.

ONLINE REAL-TIME MEASUREMENTS OF CUTTING FORCES

For each cutting experiment, the cutting forces were measured online using a Kistler 9257B quartz three-

component dynamometer, Kistler 5010B multichannel dual-mode charge amplifier, and LabVIEW, as shown

in figure 3. The sampling rate was 10 kHz. MATLAB was employed to filter the high-frequency noise from

the collected signals. The digital filter employed in MATLAB was Butterworth (1, 0.015). A MATLAB code

was written to determine the average values of the three components of the cutting forces, namely the cutting

force Fc, feed force Ff, and passive force Fp. These three forces were measured in the tangential (x- or the cutting

speed), axial (y- or the feed rate), and radial (z- or the depth of cut) directions, respectively.

ONLINE REAL-TIME MEASUREMENTS OF CUTTING VIBRATIONS

The cutting vibrations were simultaneously measured online using a 356A63 Triaxial Integrated Circuit

Piezoelectric (ICP) accelerometer that was fixed to the tool holder, as also shown in figure 3. The sensitivity

of the accelerometer was 10 mV/g (±15 %), and its measurement range was ±5 g (peak). The accelerometer

sensed the vibration signals in the x-, y-, and z-directions, i.e., the cutting speed, feed rate, and depth of cut

directions, respectively.

FIG. 3 Measurements of cutting forces and vibrations.

Accelerometer
(PCB 356A61)
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(KISTLER 9257B)
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Amplifier
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NI SCXI-1000
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Vx, Vy, Vz
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The sensed vibration signals, at the sampling frequency of 10 KHz, were sent to a PicoCoulomB (PCB)

482A22 low noise signal conditioner and a National Instruments (NI) SCXI-1530/1531 ICP accelerometer con-

ditioning module. This amplified the conditioned signal, which was finally sent to a computer data acquisition

system (LabVIEW) for further processing and signal display. The rms, which is the average of the squared

values of the vibration amplitude, was calculated. The rms gives positive values that can be used for vibration

analysis.

The Effect of Tool Edge Radius

Figures 4 and 5 show the effect of the tool edge radius on the machined surface roughness, cutting forces, and

cutting vibrations under two representative experimental conditions, respectively—(1) the cutting speed of

250 m/min and feed rate to tool edge radius ratio of 2.0, and (2) the cutting speed of 350 m/min and feed rate

to tool edge radius ratio of 2.5.

As seen clearly from figures 4A and 5A, all five surface roughness parameters increase as the tool edge

radius increases. These varying trends can be explained based on the material flow and deformation in the tertiary

deformation zone immediately beneath the tool cutting edge. In his analytical model of chip formation, Fang1 has

shown that the geometry and size of the tertiary deformation zone highly depends on the magnitude of the tool

edge radius. As the tool edge radius increases, the tertiary deformation zone expands, which leads to more com-

plex material flow and deformation within this zone as well as more complex elastic recovery of the deformed

FIG. 4 The effect of the tool edge radius on (A) machined surface roughness, (B) cutting forces, and (C) cutting

vibrations at a cutting speed of 250 m/min and feed rate to tool edge radius ratio of 2.0.
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material immediately adjacent to the tertiary deformation zone. The complex elastic recovery of the deformed

material contributes directly to the machined surface roughness.

Figures 4B, 5B, 4C, and 5C further show that all three components of cutting forces (Fc, Ff, and Fp) and

cutting vibrations (Vx, Vy, and Vz) increase with an increase in the tool edge radius. These experimental results

clearly demonstrate the effect of the tool edge radius on the cutting forces and vibrations. For both experimental

conditions, the cutting force Fc and cutting vibration component Vz exhibit higher values when compared to other

force and vibration components.

Multiple Regression Modeling

To explicitly and mathematically show how the machined surface roughness is affected by various

factors, especially the tool edge radius, a multiple regression model was developed to predict the machined surface

roughness. The multiple regression model has eight inputs: the tool edge radius rε, cutting speed V, feed rate to

tool edge radius ratio r, three components of cutting forces (Fc, Ff, and Fp), and three components of cutting

vibrations (Vx, Vy, and Vz). The outputs of the model are five surface roughness parameters: the average rough-

ness Ra, rms roughness Rq, peak roughness Rp, maximum roughness height Rmax, and five-point average rough-

ness Rz.

Among 45 cutting experiments, the datasets for 38 experiments (representing 85 % of all the data collected)

were randomly selected as training data to establish the multiple regression model. The data set for the remaining

seven experiments (representing 15 % of all the data collected) was employed as test data to validate the prediction

FIG. 5 The effect of the tool edge radius on (A)machined surface roughness, (B) cutting forces, and (C) cutting vibrations

at a cutting speed of 350 m/min and feed rate to tool edge radius ratio of 2.5.
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accuracy of the model. Interactions among inputs (or called predictor variables) were found to be of no statistical

significance. The following equations (1)–(5) show the multiple regression model developed in the present study,

considering the individual parameters:

Ra = 0.6041rε5:26V0.000477r0.0367Fc
0.00041Ff

0.01433Fp
−0.0263Vx

−0.240Vy
0.2043Vz

0.0171 (1)

Rq = 0.479rε7:64V0.000555r0.0504Fc
0.00221Ff

0.01852Fp
−0.0365Vx

−0.272Vy
0.298Vz

−0.044 (2)

Rp = 0.2516rε15:40V0.002534r0.201Fc
0.0144Ff

0.0095Fp
−0.0727Vx

−0.620Vy
0.385Vz

0.154 (3)

Rmax = 0.0517rε28:8V0.00378r0.097Fc
−0.0075Ff

0.0887Fp
−0.080Vx

−1.305Vy
1.269Vz

−0.005 (4)

Rz = 0.0485rε26:4V0.00361r0.093Fc
−0.0102Ff

0.0892Fp
−0.055Vx

−1.361Vy
1.385Vz

−0.085 (5)

The effect of the tool edge radius on the machined surface roughness is highlighted in the bold letters and

digits in these five equations. To determine how well the aforementioned model fits the data, R-squared (R2)

values were calculated. In general, the higher the R-squared value, the better the model fits the data. The results

show that the R-squared values are 0.859 for average roughness Ra, 0.8645 for rms roughness Rq, 0.8225 for peak

roughness Rp, 0.8503 for maximum roughness height Rmax, and 0.8471 for five-point average roughness Rz. These

results mean that the nine predictor variables included in the multiple regression model account for 85.9 %,

86.45 %, 82.25 %, 85.03 %, and 84.71 % of the variations in Ra, Rq, Rp, Rmax, and Rz, respectively.

Refer to the positive or negative exponents in equations (1)–(5). For all five surface roughness parameters

(Ra, Rq, Rp, Rmax, and Rz), the exponents for the tool edge radius rε, cutting speed V, feed rate to tool edge radius

ratio r, feed force Ff, and cutting vibration in the feed rate direction Vy, are positive. The exponents for the cutting

force Fc, cutting vibration in the cutting speed direction Vx, and cutting vibration in depth of cut direction Vz are

not always positive. These observations imply that, in general, the machined surface roughness increases with the

increasing tool edge radius rε, cutting speed V, feed rate to tool edge radius r, feed force Ff, and cutting vibrations

in the feed rate direction Vy.

Neural Network Modeling

Two types of neural network models—an MLP model and RBF model—were further developed to compare their

prediction accuracy with the multiple regression model. Both the neural network models have the same inputs

and outputs as the multiple regression model. The data employed to train and test both the neural network

models were also the same as those described in the previous section.

MLP NEURAL NETWORK MODEL

Based on back-propagation, MLP neural networks are one of the most popular networks employed in the en-

gineering field, including machining.26–28 The MLP model does not have simple and explicit mathematical forms

to present in this article. Instead, the MATLAB computer software package29 was employed to develop computer

codes for the MLP model. The number of neurons in the hidden layer varied in order to develop a model that

generalized well. The activation function used in the hidden neurons was logsig. In this paper, MATLAB functions

are highlighted in italics. The output neuron had a linear activation function.

Two standard built-in functions within MATLAB—trainrp and traingdm—were initially selected to train

the MLP model. Table 1 shows the results of a comparison between the two training algorithms, including the

number of hidden neurons for each training algorithm for two representative surface roughness parameters, Ra

and Rmax. The mean squared error (MSE) for training was 0.01. From Table 1, the trainrp algorithm is much more

efficient than traingdm for Ra and Rmax, because trainrp takes a smaller number of epochs (within 20) to reach the

set error levels. However, it requires as many as 7,507 epochs (depending on the number of hidden neurons) for
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the traingdm algorithm to reach the same error level. Therefore, the trainrp algorithm was employed to train the

MLP model for Ra and Rmax. The number of hidden neurons selected was based on the generalization capacity of

the network in terms of its classification performance on the data.

Table 2 summarizes the accuracy of the best MLP model for predicting the five surface roughness param-

eters based on the training and test data. The accuracy (in percentage) in Table 2 is defined as (fitted or predicted

value – measured value) / measured value. The second column in Table 2 also shows the optimal architecture of

the best MLP model for each surface roughness parameter. For example, the optimal architecture of the best MLP

model for Ra is 9-8-1 (trainrp), which means the model contains 9 inputs, 8 hidden neurons, and 1 output, and the

best MLP model uses the trainrp algorithm. The optimal architecture of the best MLP model for Rz is 9-10-1

(traingdm), which means the model contains 9 inputs, 10 hidden neurons, and 1 output, and the best MLP model

uses the traingdm algorithm.

RBF NEURAL NETWORKS

RBF neural networks are a different class of neural network models that have not been widely applied in

the evaluation and modeling of machined surface roughness. In addition to the input and output layers, the

RBF model includes a hidden layer with a nonlinear RBF activation function. In the RBF algorithm, a method

called curve fitting in a high dimensional space is employed, which involves the process of finding a surface in a

multidimensional space to provide a best fit to the training data. A detailed description of the RBF algorithm can

be found in relevant literature.30

In the present study, MATLAB was also employed to develop the computer code for an RBF neural network

model. The function used for design was newrb.29 One of the important parameters for training using this func-

tion is the spread (width) of RBF functions. The spread (width) selection was made based on the performance of

the network on the training and test data.

TABLE 2
The accuracy of the best MLP model for predicting five surface roughness parameters

Surface Roughness Parameter The Best MLP Model Accuracy Based on Training Data, % Accuracy Based on Test Data, %

Ra 9-8-1 (trainrp) 100 71.42

Rq 9-10-1 (trainrp) 92.1 85.71

Rp 9-16-1 (traingdm) 81.57 71.42

Rmax 9-14-1 (trainrp) 86.84 85.71

Rz 9-10-1 (traingdm) 86.84 85.71

TABLE 1
Comparison between the trainrp and traingdm algorithms

Surface Roughness

Parameters

Number of Hidden

Neurons

trainrp Algorithm:

Number of Epochs

Trainrp Algorithm:

Error Reached

Traingdm Algorithm: Number

of Epochs for Target Error 0.01

Average roughness Ra 8 8 0.00799 7,507

10 5 0.00986 3,131

12 10 0.00903 2,838

14 6 0.00864 2,977

16 10 0.00887 2,183

Maximum roughness

height Rmax

8 6 0.00966 3,810

10 8 0.00794 3,915

12 6 0.00919 3,723

14 10 0.00974 3,470

16 8 0.00893 1,462
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Using two representative surface roughness parameters Ra and Rmax as examples, Table 3 summarizes

the performance of RBF neural networks for different values of RBF spread (width). The accuracy (in percentage)

in Table 3 is also defined as (fitted or predicted value – measured value) / measured value. The third column in

Table 3 also lists the optimal number of RBF hidden units selected based on the optimal network performance.

As seen clearly from Table 3, the accuracy of the RBF model is not affected by the RBF spread (width) for both the

training and test data in the present study. The accuracy of the RBF model is higher for Ra than Rmax.

Comparison Among Three Types of Models

The prediction accuracy is compared among the multiple regression model, MLP neural network model, and RBF

neural network model. All three models have the same sets of inputs and outputs. The same training data were

also employed to develop these three models.

Figure 6 shows the comparison of the three models based on the training data, using two representative

surface roughness parameters Ra and Rmax as examples. Figure 7 shows the comparison of the three models based

on the test data for all five surface roughness parameters. Based on the results shown in figure 7, the average

MSE were further calculated to quantitatively compare the prediction accuracy of the three models. The MSE is

a statistical term measuring the difference between the estimator and what is measured.31 It is calculated as

follows:31

TABLE 3
The performance of the RBF neural networks for different values of the RBF spread (width)

Surface Roughness

Parameters

Spread

(Width)

Optimal Number

of RBF Hidden Units Epochs

Accuracy Based

on Training Data, %

Accuracy Based

on Test Data, %

Average roughness Ra 0.1 16 33 97.36 71.42

0.2 16 33 97.36 71.42

0.3 16 33 97.36 71.42

0.4 16 33 97.36 71.42

Maximum roughness

height Rmax

0.1 8 123 34.21 14.28

0.2 8 123 34.21 14.28

0.3 8 123 34.21 14.28

0.4 8 123 34.21 14.28

FIG. 6 A comparison of the three models based on the training data for two representative examples: (A) average

roughness Ra and (B) maximum roughness height Rmax.
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MSE =
1
n

Xn

i=1

ðmeasured value i − predicted value iÞ2 (6)

The lower the MSE value, the higher prediction accuracy the model has. Table 4 shows a comparison of the

average MSE among the three models for the five surface roughness parameters. It can be seen clearly from

Table 4 that different models lead to different prediction accuracies for different surface roughness parameters.

In the terms of average MSE, the multiple regression model has the highest accuracy (0.2743 %) for predicting the

average roughness Ra. The MLP neural network model has the highest accuracy (5.04 %) for predicting the

FIG. 7 A comparison of the three models based on the test data for (A) average roughness Ra, (B) rms roughness Rq,

(C) peak roughness Rp, (D) maximum roughness height Rmax, and (E) five-point average roughness Rz.
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five-point average roughness Rz. The RBF neural network model has the highest accuracy (0.1967 %, 1.2902 %,

and 9.3819 %) for predicting the rms roughness Rq, peak roughness Rp, and maximum roughness height Rmax,

respectively. The prediction accuracy is less than 4 % for Ra, Rq, and Rp for all three models.

Conclusions

The tool edge radius plays a significant role in machining and is an important factor to consider in precision and

ultraprecision machining. However, in the evaluation and modeling of machined surface roughness, the vast

majority of existing research takes no account of the effect of the tool edge radius. The present study has filled

this critical research gap by conducting a total of 45 cutting experiments that involved three levels of tool edge

radii. The cutting tools employed in the present study were carefully chosen from more than 20 commercial tool

inserts based on the multiple measurements of tool edge radius along the same tool cutting edge.

The experimental results from the present study have shown that the tool edge radius has a profound effect

on the machined surface roughness, cutting forces, and cutting vibrations. An increase in the tool edge radius

results in increases in all five surface roughness parameters, including average roughness Ra, rms roughness Rq,

peak roughness Rp, maximum roughness height Rmax, and five-point average roughness Rz.

Three types of models have also been developed from the present study, including a multiple regression

model, MLP neural network model, and RBF neural network model. Based on the average MSE, the multiple

regression model has the highest accuracy, 0.2743 %, for predicting the average roughness Ra. The MLP neural

network model outperforms the other two models in predicting the five-point average roughness Rz, with the

highest prediction accuracy of 5.04 %. The RBF neural network model outperforms the other two models in

predicting the rms roughness Rq, peak roughness Rp, and maximum roughness height Rmax, with prediction

accuracy of 0.1967 %, 1.2902 %, and 9.3819 %, respectively.

References

1. N. Fang, “Slip-Line Modeling of Machining with a Rounded-Edge Tool—Part I: New Model and Theory,” Journal of the
Mechanics and Physics of Solids 51, no. 4 (April 2003): 715–742, https://doi.org/10.1016/s0022-5096(02)00060-1

2. Y. Karpat, “Investigation of the Effect of Cutting Tool Edge Radius on Material Separation Due to Ductile Fracture in
Machining,” International Journal of Mechanical Sciences 51, no. 7 (July 2009): 541–546, https://doi.org/10.1016/j.
ijmecsci.2009.05.005

3. R. J. Schimmel, W. J. Endres, and R. Stevenson, “Application of an Internally Consistent Material Model to Determine the
Effect of Tool Edge Geometry in Orthogonal Machining,” Journal of Manufacturing Science and Engineering 124, no. 3
(July 2002): 536–543, https://doi.org/10.1115/1.1448334

4. P. Huang and W. B. Lee, “Cutting Force Prediction for Ultra-Precision Diamond Turning by Considering the Effect of
Tool Edge Radius,” International Journal of Machine Tools and Manufacture 109 (October 2016): 1–7, https://doi.org/10.
1016/j.ijmachtools.2016.06.005

5. M. Arif, M. Rahman, and W. Y. San, “A Study on the Effect of Tool-Edge Radius on Critical Machining Characteristics
in Ultra-Precision Milling of Tungsten Carbide,” International Journal of Advanced Manufacturing Technology 67, nos.
5–8 (July 2013): 1257–1265, https://doi.org/10.1007/s00170-012-4563-8

TABLE 4
Comparison of the average MSE among the three models based on the test data

Average MSE %

Predictive Models

Average

Roughness Ra

rms

Roughness Rq

Peak

Roughness Rp

Maximum Roughness

Height Rmax

Five-Point Average

Roughness Rz

Multiple regression model 0.2743 0.6210 1.4713 11.2370 12.9216

MLP neural network model 0.5813 0.5114 3.5524 17.0511 5.0413

RBF neural network model 0.5990 0.1976 1.2902 9.3819 8.0130

Journal of Testing and Evaluation

FANG AND SRINIVASA PAI ON EFFECT OF TOOL EDGE RADIUS 

Copyright by ASTM Int'l (all rights reserved); Tue Apr  2 12:17:15 EDT 2019
Downloaded/printed by
Utah State University Merrill-Cazier Library (Utah State University Merrill-Cazier Library) pursuant to License Agreement. No further reproductions authorized.

https://doi.org/10.1016/s0022-5096(02)00060-1
https://doi.org/10.1016/s0022-5096(02)00060-1
https://doi.org/10.1016/s0022-5096(02)00060-1
https://doi.org/10.1016/j.ijmecsci.2009.05.005
https://doi.org/10.1016/j.ijmecsci.2009.05.005
https://doi.org/10.1016/j.ijmecsci.2009.05.005
https://doi.org/10.1115/1.1448334
https://doi.org/10.1115/1.1448334
https://doi.org/10.1016/j.ijmachtools.2016.06.005
https://doi.org/10.1016/j.ijmachtools.2016.06.005
https://doi.org/10.1016/j.ijmachtools.2016.06.005
https://doi.org/10.1007/s00170-012-4563-8
https://doi.org/10.1007/s00170-012-4563-8


6. I. S. Kang, J. S. Kim, and Y. W. Seo, “Cutting Force Model Considering Tool Edge Geometry for Micro End Milling
Process,” Journal of Mechanical Science and Technology 22, no. 2 (February 2008): 293–299, https://doi.org/10.1007/
s12206-007-1110-x

7. K. Yang, Y.-C. Liang, K.-N. Zheng, Q.-S. Bai, and W.-Q. Chen, “Tool Edge Radius Effect on Cutting Temperature in
Micro-End-Milling Process,” International Journal of Advanced Manufacturing Technology 52, nos. 9–12 (February
2011): 905–912, https://doi.org/10.1007/s00170-010-2795-z

8. W. J. Endres and R. K. Kountanya, “The Effects of Corner Radius and Edge Radius on Tool Flank Wear,” Journal of
Manufacturing Processes 4, no. 2 (July 2002): 89–96, https://doi.org/10.1016/s1526-6125(02)70135-7

9. M. N. A. Nasr, E.-G. Ng, and M. A. Elbestawi, “Modelling the Effects of Tool-Edge Radius on Residual Stresses When
Orthogonal Cutting AISI 316L,” International Journal of Machine Tools and Manufacture 47, no. 2 (February 2007):
401–411, https://doi.org/10.1016/j.ijmachtools.2006.03.004

10. S. J. Zhang, S. To, S. J. Wang, and Z. W. Zhu, “A Review of Surface Roughness Generation in Ultra-Precision Machining,”
International Journal of Machine Tools and Manufacture 91 (April 2015): 76–95, https://doi.org/10.1016/j.ijmachtools.
2015.02.001
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