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Abstract: We consider the sparse recovery problem of signals with an unknown clustering pattern in
the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique.
For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern,
or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we
propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as
a measure of the overall clustering pattern in the solution. We further incorporate a parameter in
this prior to account for the emphasis on the amount of clumpiness in the supports of the solution
to improve the recovery performance of sparse signals with an unknown clustering pattern. This
parameter does not exist in the other existing algorithms and is learned via our hierarchical SBL
algorithm. While the proposed algorithm is constructed for the MMVs, it can also be applied to
the single measurement vector (SMV) problems. Simulation results show the effectiveness of our
algorithm compared to other algorithms for both SMV and MMVs.

Keywords: compressed sensing (CS); sparse Bayesian learning (SBL); joint sparsity; cluster structured
sparsity; single measurement vector (SMV); multiple measurement vectors (MMVs)

1. Background and Introduction

Single and multiple measurement vector (SMV and MMV) problems are computational inverse
problems in the compressive sensing (CS) area. CS provides the possibility of representing a sparse
or compressible signal using a small set of non-adaptive linear measurements [1,2]. In linear CS,
the P-dimensional signal x ∈ RP is modeled by the linear equation y = Φx, where y ∈ RM is the
measurement vector (with M�P) and Φ ∈ RM×P is a wide sensing matrix. The sensing matrix Φ is
usually constructed from a Gaussian or Bernoulli random operator. In [3], it was shown that Φ also
can be constructed from a class of circulant matrices based on deterministic sequences such as the
Golay sequence [3]. In the CS context, it is further assumed that x is sparse under some proper basis Ψ,
i.e., x = Ψxs, where xs denotes a sparse vector. A sparse vector contains few non-zero components.
Combining the two above equations, we obtain y = Axs, where A = ΦΨ [4]. Since A is wide, the
model is underdetermined, and CS looks for a sparse (if not the most sparse) solution x̂s such that
y=Ax̂s [5,6]. The SMV is a CS problem when A is known and the measurements are contaminated
with noise e, i.e., y=Axs + e. The case where Y and Xs are matrices is called the MMV problem, i.e.,
Y= AXs + E. In the basic MMV model, it is assumed that all the columns of the solution matrix Xs

share joint sparsity, meaning that they have the same unknown non-zero locations. Figure 1 shows an
example of the MMV structure.
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Figure 1. Example of the MMV structure.

The problem we address in this paper is for the recovery of sparse signals with an unknown
clustering pattern via either SMV or MMVs. After providing an extensive survey of existing techniques
in this area, we present a new hierarchical sparse Bayesian learning model and compare it to the
existing algorithms. Though the formulation and modeling will be presented for the basic MMV,
the proposed model is also applicable to SMV by simply considering vector cases rather than matrices
in the model.

1.1. Literature Review on SMV and MMVs

Finding a sparse representation x̂s in the SMV problem can be achieved using greedy algorithms
such as matching pursuit (MP) and orthogonal matching pursuit (OMP) [5,7] or relaxed-to-be-convex
methods (such as basis pursuit de-noising (BPDN) and the in-crowd algorithm) [8,9], the class
of iterative shrinkage-thresholding algorithms (ISTA), and their variations such as fast iterative
shrinkage-thresholding algorithm (FISTA), NESTA (a shorthand for Nesterov’s algorithm), and
ISTA-NET [10–12], and sparse Bayesian learning (SBL) algorithms [13–16]. Similarly, there exist three
main approaches for solving MMVs. The first approach is the extended version of the greedy-based
SMV solvers such as MMV basic matching pursuit (M-BMP), MMV order recursive matching pursuit
(M-ORMP), and MMV orthogonal matching pursuit (M-OMP) [17–19]. The second approach is
relaxed-to-be-convex algorithms such as the joint l2,0 approximation algorithm (JLZA) [20]. The third
approach includes the SBL algorithms that are more flexible for incorporating prior knowledge on the
structure of the solution compared to the greedy-based algorithms [21–23].

In some practical applications, the non-zero components of the sparse signal appear in clusters.
For the MMV case, this means that in addition to the joint sparsity structure, the non-zeros also appear
in clusters in each column of Xs in Y = AXs + E. This feature has been referred to as the clustered
structure or block-sparsity pattern in the literature [7,24,25]. Applications of clustered sparsity for
the SMV cases arise in problems such as gene expression analysis [26], image reconstruction of
hand-written digits [27], and audio signals using the discrete cosine transform (DCT) basis [28].
Applications of MMVs can be found in neuromagnetic imaging [17], the reconstruction stage of
Xampling (compressed-sensing of analog signals) for multi-band signals [7,24], and the direction of
arrival (DOA) estimation problem [29]. For example, in magnetoencephalography (MEG), the goal
is to investigate the locations where most brain activities are produced. The brain activities exhibit
contiguity, meaning that they occur in localized regions [25]. Therefore, the measured signal at each
snapshot can be modeled as a block-sparse SMV problem.

When taking successive and almost simultaneous snapshots from the phenomena, one expects
the block-sparsity structure to be preserved. Hence, it is possible to model these activities with a
block-sparse MMV problem where the block partitions are unknown a priori.

During the last decade, several greedy-based algorithms have been proposed to solve clustered
pattern SMVs such as reduce MMV and boost (ReMBo) algorithm [7], block-OMP [30], structured OMP
(StructOMP) algorithm [31], and group LASSO [32]. However, these algorithms need prior knowledge
on the block sizes or the cluster pattern.

Bayesian learning models incorporate prior knowledge on the characteristics of the underlying
signal. Starting with prior knowledge, these algorithms update their belief about the underlying
features of interest in an unsupervised manner using the observations. Regarding the sparse recovery of
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SMV and MMVs, existing SBL algorithms can be mainly categorized into the two following approaches.
The first and most common approach to impose sparsity on the solution is achieved by modeling each
component of the solution with a zero-mean Gaussian prior accompanied with a Gamma distribution
on the precision (inverse of variance) of the corresponding component [13,33–35]. In order to promote
the clustering pattern, as well as sparsity in these models, different priors have been introduced on the
variance of each component of the signal [15,28,36]. For example, in the case of clustered SMV using
SBL with zero-mean Gaussian priors, Zhang and Rao incorporated the intra-block correlation structure
(correlation structure in each block) [15]. In order to simplify the model, reduce the complexity, and
suppress the over-fitting of the parameters in the model, they considered the same, but uncorrelated
underlying covariance matrix for each possible block of the solution. The covariance matrix is updated
via the expectation-maximization (EM) algorithm. In another work, Fang et al. used a zero-mean
Gaussian prior where the precision on each component is statistically dependent on the precisions of
the corresponding component and its two immediate neighbors [28].

The second SBL approach for the clustered sparse signal reconstruction uses a spike-and-slab
prior [27,37–40]. These models have been applied to the SMV problem. Hernandez et al. proposed
the generalized spike-and-slab prior, which is suitable for situations where prior information on the
groups of components in the solution (that are expected to be jointly zero or jointly non-zero) is
available [27]. Yu et al. made the spike and slab probabilities for each solution component depend
on three possible patterns of the neighbor supports [37,40]. The patterns depend on whether the two
immediate neighbors of each component are active, inactive, or only one of them is active. In [38],
a Gaussian process prior was imposed on the spike-and-slab probabilities.

1.2. Idea Behind the Proposed Algorithm

In this paper, we present a new hierarchical Bayesian learning algorithm to solve the MMV
problem for sparse signals with an unknown cluster pattern. We first establish a simple hierarchical
Bayesian model for solving the general form of the MMV problem. In this initial model, we use the
Bernoulli-Gaussian prior, which approximates the spike-and-slab prior, but in the sense that instead of
employing spikes in the model, we have a binary vector that is to be learned to determine the supports
of the sparse solution. Related algorithms can be found in [37,41,42]. In terms of Gaussian–Bernoulli
modeling of the sparse signal, our initial model is close to the simplified form of [37,42], and in
terms implementation, it uses the MCMC implementation with Gibbs sampler technique as in [37,41].
A binary matrix was used as a part of the Bayesian modeling in [41] for separating the foreground
(sparse) component and the background (low-rank) component from the collection of noisy frames of a
video recording. The difference between our initial model and [41] is that here, we use a binary vector
to learn the supports of the solution for the MMV problem with the joint sparsity structure. However,
this initial model only favors sparse solutions without any feature to promote the clustering pattern.
The main reason for defining this initial model appears later in this paper where we modify the model
not only to promote sparsity, but also to account for the clustered structure that may exist in the
solution. The main contribution in this paper is related to the modified model, where we impose
a prior based on the l1-norm of the discrete gradient of the support vector s to promote clustering.
This prior incorporates a parameter to account for the measure of contiguity, or “clumpiness,” in the
supports of the solution. Assigning a large value to the hyperparameter represented by this parameter
encourages the overall supports of the solution to have fewer on/off transitions, that is more contiguity
of clustering in the supports. Similar to the other parameters, this parameter is also to be learned via
our hierarchical SBL algorithm. Previously-developed algorithms do not have this control parameter
for learning the pattern via the measure of overall clumpiness over the solution.

The proposed algorithm learns the supports and the corresponding values of the active
components in the solution simultaneously. This task is accomplished by defining a Bernoulli-Gaussian-
inverse Gamma distribution on the solution. Based on the built-in prior modeling, the solution tends to
become sparse. In contrast, existing algorithms that use Gaussian-inverse Gamma prior modeling may
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need to perform some post-processing to remove the non-dominant components from the estimated
solution. Existing algorithms in this area evaluate the performance based on the MSE reconstruction
performance, but there are applications for which the support recovery is of equal or more importance.
Examples can be found in compressive sampling and reconstruction of blind multi-narrowband signals
in the continuous-to-finite (CTF) reconstruction stage, where the goal is to seek the edges of the
sparsely-scattered narrowband signals to estimate the carrier frequencies [7,24]. In [7,24], the authors
assumed that the number of narrowband signals is known, which yields the use of a modified OMP.
The modified OMP is fed with the true sparsity level and the support block sizes of two. However,
if the number of such signals is unknown, then we need an algorithm such as our proposed algorithm
to learn the actual sparsity level, as well. For the problems raised in [7,24], it turns out that the supports
of the solution in the CTF stage tend to clump together, which is representative of clustered pattern
supports. For this problem, the supports of the solution are needed in order to figure out the locations
of the actual carriers of the signals in the spectrum. Since our algorithm learns the support vector,
it can naturally estimate the location of the carriers. In contrast, the other existing algorithms may
tend to provide many supports, including non-dominant supports, which need to be post-processed
to estimate the locations of the carriers. Another example is in [43], where the goal is to figure out
the location of the sparsely-scattered multi-narrowband signals in the spectrum and then use this
information to be able to fill out the empty spaces in the spectrum.

The novelty of our algorithm can be described as follows. Prior works in this area usually consider
three hyperpriors commonly modeled by Gamma distributions, either on the precision of the Gaussian
modeling on the solution or on the probabilities associated with Bernoulli modeling of the support
vector elements, to promote clustered pattern solutions. These Gamma hyperpriors have different
parameters to decide on each component of the solution based on the active/inactive status of its
immediate components. By contrast, our model incorporates a total variation-like hyperprior, as a
measure of the overall clustering pattern, on the support vector of the solution. Our model includes one
control parameter in this prior to account for the emphasis on the amount of clumpiness in the support
vector. This control parameter is learned in a Bayesian fashion, rather than having three different
hyperpriors. Learning this parameter and the use of total variation-like prior on the support vector
are novel.

Our proposed algorithm differs from [28] in two aspects. First, our model can be readily applied
to either SMV or MMV problems, while the original PC-SBL algorithm proposed in [28] solves for
the clustered pattern SMVs. Although it has been recently extended via generalized approximate
message passing (GAMP) to solve for 2D problems [44], it needs some extra modifications to be used
for the MMVs. Secondly, our model uses the Bernoulli-Gaussian prior, and it promotes the clustering
pattern by adding hyperpriors on the supports of the solution, while in [28], this task is performed on
the variances of the solution components. Yu et al. [37,40] used the spike-and-slab prior model and
forced each mixing weight to depend on one of the three different possible active/inactive patterns
of its immediate neighboring supports. This idea comes from the k-nearest neighbor approach in the
clustering problems. Our approach differs from [37,40] due to the first reason we provided earlier
for [28]. Tibshirani et al. presented an algorithm for SMVs referred to as the fused-lassoalgorithm,
which promotes both sparsity and smoothness in the solution[26]. In this algorithm, the smoothness is
promoted by using the absolute value of the difference between the estimated values of the successive
components of the solution. In contrast, our proposed algorithm promotes sparsity and is able to
learn the clustering pattern that may exist in the supports of the solution. The clustering pattern
is learned by using the summed absolute value of the differences in the supports (our sigma-delta
function), which distinguishes these algorithms. More specifically, we incorporate a total variation-like
prior on the support vector of the solution rather than using such a prior on the solution vector itself.
Finally, there are some SMV solvers that use the spike and slab prior model where the slab is modeled
by a Gaussian scaled mixture model instead of just one Gaussian distribution [45]. It turns out that
using this model can provide a better estimate of the underlying distribution of the non-zero elements.
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However, using this model increases the number of parameters to be learned even when we have
only one mixing probability parameter to learn the supports. In [45], for the purpose of reducing the
complexity of the algorithm, the expectation-maximization algorithm using approximate message
passing was employed. Our measure of clumpiness can also be incorporated in this model to promote
the clustering pattern.

Early development of this work was presented in [46], following which significant changes have
been made. We have completely changed the update rule of some of the parameters, i.e., γp in (15) and
the controlling parameter α in (20) to learn the overall clumpiness of the supports. The convergence
issue in the MCMC algorithm is addressed, and we explain how to track and monitor the convergence
of the posterior distributions and make decisions on the supports based on the collected samples.
Additionally, we compare the performance of our algorithm with other algorithms for both the SMV
and MMVs, both on synthetic and real data.

This paper is organized as follows. In Section 2, we construct a basic hierarchical SBL model for
solving the MMVs when the solution shares joint sparsity. Section 3 describes our main proposed
algorithm, which extends this basic model to account for both joint sparsity and the unknown clustering
pattern that may exist in the solution. In Section 4, we illustrate the performance of our proposed
work compared to the other algorithms. Finally, Section 5 discusses the convergence diagnostic of the
MCMC technique for the proposed algorithm. Section 6 presents conclusions.

2. Initial Model: Sparse Bayesian Learning for MMVs

As an initial model, here we construct a hierarchical SBL algorithm for the sparse recovery of basic
MMVs with the joint sparsity structure that is expected to occur across the columns of the solution
matrix. As discussed earlier, this model serves as the initial model, which we will modify in Section 3
for the clustered pattern sparse signals. We refer to this SBL algorithm as ordinary-SBL (O-SBL).

In this model, the supports of the solution are modeled by the binary vector s. Therefore,
the sparse solution is described by s ◦X, where s and X account for the support and the solution-values,
respectively, and ◦ denotes element-by-element multiplication (Hadamard product) applied across the
columns of X. The model for the MMV problem is:

Y = A(s ◦ X) + E, (1)

where Y ∈ RM×N , A ∈ RM×P, s ∈ {0, 1}P×1, X ∈ RP×N , and E ∈ RM×N . The matrix Y contains
N columns of observed noisy data; A denotes the known sensing matrix; s is an unknown binary
support-learning vector; X is an unknown solution-values matrix; and E represents the measurement
noise. In the product s ◦ X, when N > 1, the support vector s deals across the columns of X. The term
s ◦ X is simply equivalent to diag{s} · X, where “·” is the regular matrix product and diag{·} creates a
diagonal matrix from its argument vector.

A representation of a hierarchical Bayesian graphical model of the problem used in the
development of our algorithm is portrayed in Figure 2.

The shaded node Y shows the observations, and the small solid nodes represent the
hyperparameters. Each unshaded node denotes a random variable (or a group of random
variables) [47]. The support-learning component s in (1) is a binary vector, and we model the elements
of s as Bernoulli random variables, whose probabilities are governed by the prior γ = [γ1, γ2, . . . , γP]

T ;
that is,

sp∼Bernoulli(γp), γp∼Beta(α0, β0), p=1, . . . , P. (2)

In order to favor the sparsity structure in s, on the basis of experimentation, we set α0 = 1
P and

β0 = 1−α0, as suggested in [41].
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The columns of the solution-value matrix X = [x1, . . . , xN ] in (1) are assumed to be drawn i.i.d.
according to the normal-gammadistribution:

xn∼N (0, τ−1 IP), τ∼Gamma(a0, b0), n= 1, . . . , N,

where a0 and b0 denote the shape and rate of the Gamma distribution, respectively. For the purpose of
reducing the model complexity, we use the same precision τ for all the components of X. Moreover,
due to the lack of prior knowledge on the entries of X, we experimentally set the hyper-parameters to
a0=b0=10−3, endowing X a priori with a fairly high variance.
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Figure 2. Graphical model of the Bayesian formulation (1).

The entries of the noise component E are assumed to be drawn i.i.d. from a Gaussian distribution
with the precision ε−1. In our model, the precision ε−1 is unknown and will be inferred, so that:

emn ∼ N (0, ε−1), m = 1, . . . , M, n = 1, . . . , N, ε ∼ Gamma(θ0, θ1). (3)

The hyper-parameters in (3) are set to θ0 = θ1 = 10−3. Referring to the graphical model in Figure 2,
the joint probability distribution of the model can be written as:

p(Y, s, X)∝ p(Y|s, X, ε)
( N

∏
n=1

p(xn|0, τ−1 IP)
)

p(s|γ)p(γ; α0, β0)p(τ; a0, b0)p(ε; θ0, θ1). (4)

In the descriptions of the marginalized posterior distributions below, conditioning on−, as in (sp|−), is
used to denote the inference on sp conditioning upon all relevant variables (including the observations).

•
(sp|−) ∼ Bernoulli(

q1

q0 + q1
), (5)

where q1 = γpe−
ε
2 (‖ap‖2

2 ∑N
n=1 x2

pn−2aT
p ∑N

n=1 xpn ỹ−p
n ) and q0 = 1− γp.

Here, ỹ−p
n = [ỹ−p

1n , ..., ỹ−p
mn ]

T , and the term ỹ−p
mn is defined as:

ỹ−p
mn = ymn −

P

∑
l 6=p

amlsl xln.

The Appendix provides more details.
• (γp|−) ∝ p(sp|γp)p(γp; α0, β0) ∝ γ

sp
p (1− γp)

1−sp γα0−1
p (1− γp)β0−1

Therefore, (γp|−)∼Beta(α0 + sp , β0 + 1− sp).
• (xpn|−)∼N (µpn, σpn), where µpn = εspσpnaT

p ỹ−p
n and σpn =(τ+εs2

p
∥∥ap

∥∥2
2)
−1.

• (τ|−) ∝ p(X|0, τ−1)p(τ; a0, b0) ∝ τ
NP
2 e−

τ
2 ‖X‖

2
F τa0−1e−b0τ .
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Therefore, (τ|−) ∼ Gamma(a0 +
NP
2 , b0 +

1
2 ‖X‖

2
F), where ‖.‖F denotes the Frobenius norm.

Finally,
• (ε|−) ∝ p(Y|s, X, ε)p(ε; θ0, θ1) ∝ ε

MN
2 e−

1
2 ε‖Y−A(s◦X)‖2

F εθ0−1e−εθ1 .

Thus, (ε|−)∼Gamma(θ0+
MN

2 , θ1+
1
2 ‖Y−A(s◦X)‖2

F).

In our implementation, we draw from the conditional posterior densities via Markov chain Monte
Carlo (MCMC) using Gibbs sampling [41], as shown in the following pseudocode.

O-SBL Algorithm:

{Θ(i)}Ncollect
i=1 = O-SBL(Y, A, Θ0, Nburn-in, Ncollect)

For Iter = 1 to Nburn-in + Ncollect
% Support-learning vector component

For p = 1 to P
ỹ−p

mn = ymn −∑P
l 6=p amlsl xln, ∀m = 1 to M, ∀n = 1 to N

q0 = 1− γp

q1 = γpe−
ε
2 (‖ap‖2

2 ∑N
n=1 x2

pn−2aT
p ∑N

n=1 xpn ỹ−p
n )

(sp|−) ∼ Bernoulli( q1
q0+q1

)

% Solution-value matrix component
For l = 1 to P

σx = (τ + εs2
l ‖al‖2

2)
−1

µ̄ = εslσxal
ỹ−l

n = yn − A(s ◦ xn) + sl xlnal , ∀n = 1 to N
(xln|−) ∼ N (µ̄T ỹ−l

n , σx), ∀n = 1 to N
End For {l}
(γp|−) ∼ Beta(α0 + sp , β0 + 1− sp)

End For {p}
(τ|−) ∼ Gamma(a0 +

NP
2 , b0 +

1
2 ‖X‖

2
F)

(ε|−) ∼ Gamma(θ0+
MN

2 , θ1+
1
2 ‖Y−A(s◦X)‖2

F)

Θ(Iter−Nburn-in) ← Θ, ∀Iter > Nburn-in
End For {Iter}

In the above algorithm, Θ0 represents the set of initial values of the parameters of interest, drawn
initially from the prior distributions defined in (2)–(3). We then run the O-SBL algorithm for the
number of Nburn-in iterations. Samples are not collected during the burn-in period. Then, Ncollect more
iterations are performed to collect the set of samples. For example, the estimate of the solution matrix
X is computed from the sample mean, i.e., X̃=1/Ncollect ∑Nburn-in+Ncollect

n=Nburn-in+1 X̂[n], where X̂[n] denotes the
collected samples for the solution matrix obtained from the corresponding approximated posterior
distribution at the nth iteration. As an alternative, one may use the samples obtained from the last
iteration of the collection period as the estimate of the variable of interest. For example, X̃= X̂[Ncollect].
The MCMC convergence for the algorithm is discussed in Section 4.

3. Clustered Sparse Bayesian Learning

In this section, we modify the initial SBL model described in Section 2 to improve the support
recovery performance of MMVs for the clustered sparse signals. We assume that the columns of
the solution matrix are jointly sparse and that each of the vectors might have groups of clumps, i.e.,
groups of adjacent non-zero terms. Following [48], we measure the amount of clumpiness in the
support-learning vector s by the absolute sum of the differences between successive elements of s,

Σ∆(s) =
P

∑
p=2
|sp − sp−1|. (6)
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There exist fewer transitions in s, corresponding to a smaller Σ∆, when the supports of the solution
have a clustered pattern compared to an unstructured distribution of supports. The Σ∆ measure is
used to establish a prior probability, which encourages clustered pattern supports by setting the prior
for the support-learning vector s proportional to e−α(Σ∆)(s) for some α>0. The parameter α specifies
the significance of the clumpiness in the supports. Large values of α encourage more contiguity in the
supports of s. However, the measure of Σ∆ (total variation on the support vector) itself is not sufficient
to promote sparse clustered pattern supports, but rather only promotes clustered pattern solutions.
Here, we provide a motivational example to clarify the reasoning for this. In Figure 3, we have two
signals (one sparse and the other non-sparse), where both signals are of length 100.

Figure 3. Example showing the effect of Σ∆ on the pattern of support vector s.

According to Figure 3, both signals have the same measure of Σ∆ = 2. As we can see in this
figure, Signal 1 is sparse, while Signal 2 is non-sparse. Therefore, the measure of total variation is not
sufficient to promote sparse clustered pattern solutions. Let us also investigate how the measure of
total variation is affected by forcing a specific component in these two signals, active and inactive.
The original active locations of Signal 1 are 45:50 (with MATLAB notation). Now, if we set the 44th

component in Signal 1 to become active, the measure of total variation does not change. Similarly,
setting the 44th component on Signal 2 to zero does not change the measure of total variation. This
suggests that we need to further modify our model to promote sparsity, as well. For this purpose, we
incorporate a binomial distribution into our prior model for s. This distribution contains the effect of
the sparsifying hyperprior γp and the sum over all the support components of the support vector (for
both active and inactive status of sp). Referring back to the example illustrated in Figure 3, for Signal 1,
the sum over the supports of the signal (the number of active components) is six, while this measure is
94 for Signal 2. Therefore, the solution with the lower value of summation over the supports is sparser
and of more interest.

We model the prior on the elements of the support-learning vector s as follows:

(sp; Ωp) ∼ Bernoulli(Ωp), ∀p = 1, 2, ..., P, (7)

where Ωp :=
ω1,p

ω0,p+ω1,p
and:

ωk,p = e−α(Σ∆)k,p Binomial(Σk,p, P, γp), k ∈ {0, 1}, (8)

and where Σk,p, k ∈ {0, 1}, is defined as:

Σk,p := k+
P

∑
i 6=p

sp,

that is, it is the sum over all the elements of s for the case of forcing sp = k. In other words, Σk,p is
the number of active elements in s when the pth component of s is set to be one (active, via k=1) or
zero (inactive, via k=0). For example, Σ1,5=1+∑P

p 6=5 sp. Furthermore, in (8), the term (Σ∆)k,p is the
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measure of clumpiness evaluated via (6) for the case of forcing the pth component of s equal to k. This
measures how the status of sp affects the contiguity over the supports of the solution. For example,
(Σ∆)0,5 =∑P

p=2 |sp − sp−1|, when we force s5 =0. This measures how the inactive status of s5 affects
the contiguity over the supports of the solution. The term Ωp in the prior on the support learning
vector s (7) can be further simplified into:

(sp; Ωp) ∼ Bernoulli(Ωp), Ωp :=
1

1 + cpe−α(Σ̄∆)p
, ∀p, (9)

where:

cp :=
1− γp

γp

Σ1,p

P− Σ0,p
, ∀p = 1, . . . , P, (10)

and:
(Σ̄∆)p =(Σ∆)0,p−(Σ∆)1,p, ∀p = 1, . . . , P. (11)

Roughly speaking, this distribution favors drawing sp = 1 if this draw reduces (Σ∆)1,p. Define
c̄p :=(1− γp)/(γp) and ζp :=Σ1,p/(P− Σ0,p)e−α(Σ̄∆)p , and thus, Ωp = 1/(1 + c̄pζp). If we set ζp =1
in Ωp, then the prior on sp would be only governed by c̄p. In this case, Ωp in (9) will be simplified into
Ωp =γp, which is the same prior as we had earlier in (2). This prior only tends to promote sparsity
without favoring the clustered pattern supports. By contrast, setting c̄p = 1 in Ωp, for a sufficiently
large value of α and (Σ̄∆)p > 0, favors clustered pattern supports, which may lead to non-sparse
solutions. Therefore, by incorporating both cp and the exponential term in the prior on sp, defined in
(9), the supports exhibit a trade off between sparsity and clustering.

In Figure 4, we demonstrate the effect of α defined in (8) and its role in the prior (9) on the support
learning vector s. The figure shows draws of s according to (9) using (10) and (11).
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Figure 4. Example showing the effect of α on the pattern of support vector s.

Larger values of α result in lower Σ∆(s), meaning that the support vector s will tend to have
fewer transitions along its components, promoting clustering.

We employ a Gamma prior α ∼ Gamma(a1, b1) on α, where a1 and b1 are hyperparameters
denoting the shape and rate of the Gamma distribution, respectively. In order to promote the clustering
pattern as a prior knowledge, we set a1=2× 10−3 and b1=10−3, meaning that on average, we expect
to have α = 2 before incorporating the measurements. By setting these parameters to small values,
as we have here, the learning process of α will not be biased by the prior, once the measurements are
incorporated.



Entropy 2019, 21, 247 10 of 28

With these priors, the joint probability distribution for the complete model becomes:

p(Y, s, X)∝ p(Y|s, X, ε)
( N

∏
n=1

p(xn|0, τ−1 IP)
)

p(τ; a0, b0)×

p(ε; θ0, θ1)
( P

∏
p=1

(sp|Ωp)
)

p(γ|s, α0, β0)p(α; a1, b1).

(12)

The graphical model for the clustered pattern MMVs is shown in Figure 5.
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Figure 5. Graphical model of the Bayesian formulation (12).

Below, we describe the inference on the variables that are modified by (12) compared to (4).
The inference on the other variables and parameters in the model is the same as those we described in
Section 2.

• The posterior for sp is given by:

p(sp|−)∝ p(Y|sp, X)p(sp|Ωp) ∝Bernoulli(sp|Ωp)e−
ε
2 (‖ap‖2

2(∑
N
n=1 x2

pn)s2
p−2aT

p (∑
N
n=1 xpn ỹ−p

n )sp),

where Ωp was defined in (7). Using the fact that sp is a binary random variable, the posterior
inference on sp can be simplified to (sp|−) ∼ Bernoulli(Qp), where Qp =

q1,p
q0,p+q1,p

,

q0,p =
1

1 + (
γp

1−γp
)(

P−Σ0,p
Σ1,p

)e−α
(
(Σ∆)1,p−(Σ∆)0,p

) ,

and:

q1,p = (1−q0,p)e
−ε

2

(
‖ap‖2

2(∑
N
n=1 x2

pn)−2aT
p (∑

N
n=1 xpn ỹ−p

n )
)

.

The posterior for sp can be further simplified into:

(sp|−) ∼ Bernoulli
( 1

1 + cpκpe−α(Σ̄∆)p

)
, (13)

where cp and (Σ̄∆)p were defined in (10) and (11), respectively, and:

κp := e
ε
2

(
‖ap‖2

2(∑
N
n=1 x2

pn)−2aT
p (∑

N
n=1 xpn ỹ−p

n )
)

. (14)

• The posterior for γp is given by p(γp|−) ∝ p(γp; α0, β0)∏1
k=0 p(ωk,p|Σk,p, γp, α, s). Thus,

(γp|−) ∼ Beta(α1, β1), where:

α1 := α0+1+2
P

∑
i 6=p

si , β1 := β0−1+2(P−
P

∑
i 6=p

si). (15)
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• The update rule for α is determined as follows. Using the joint probability distribution of the
complete model (12) and discarding the terms that are unrelated to α, we have:

p(α|−)∝ p(α; a1, b1)
P

∏
p=1

p(sp|Ωp)

∝ αa1−1e−b1α
P

∏
p=1

Bernoulli(
1

1 + cpe−α(Σ̄∆)p
).

(16)

Due to the complicated nature of (16), we estimate α based on the current value of all the other
variables and parameters of the model in the implemented MCMC approach. In other words, we
compute:

α̂
[t+1]
MAP|Y,X[t] ,s[t] ,Θ[t] = arg max

α
Lα|Y,X[t] ,s[t] ,Θ[t] , (17)

where Lα is obtained by taking the logarithm of (16) and is defined as:

Lα = log {p(α; a1, b1)
P

∏
p=1

p(sp|Ωp)}

∝ (a1−1) log α− b1α+
P

∑
p=1

{
sp log Ωp+(1−sp) log (1−Ωp)

}
,

(18)

and may be further simplified into:

Lα ∝ (a1−1) log α− b1α−α
P

∑
p=1

(1−sp)(Σ̄∆)p −
P

∑
p=1

log {1+cpe−α(Σ̄∆)p}. (19)

Taking the derivative of Lα with respect to α and equating the resulting equation to zero, we
obtain:

a1−1
α
−b1−

P

∑
p=1

(1−sp)(Σ̄∆)p+
P

∑
p=1

(Σ̄∆)p

1 + 1
cp

eα(Σ̄∆)p
= 0.

The maximum a posteriori point estimate of α conditioned on the measurements and the
current estimate of hidden variables and the parameters of the model can be obtained by
iteratively solving:

a1−1
α[t+1]

− b1 −
P

∑
p=1

(1−s[t]p )(Σ̄∆)[t]p +
P

∑
p=1

(Σ̄∆)[t]p

1+ 1
c[t]p

eα[t+1](Σ̄∆)[t]p
=0 (20)

This update is computed at each iteration of the MCMC approach.

As an alternative approach, one can set α to a fixed predefined value. If under some prior
knowledge, no clustering pattern is expected in the solution, one can set α to a small value close to
zero. In case of expecting a highly clustered solution, we recommend setting α�0.

Remark 1. In [46], the marginal posterior inference on γp was estimated by (γp|−) ∼ Beta(α0+sp, β0−
sp), ∀p=1, . . . , P. The idea behind the above update rule was the assumption of having a directed link from
the node γp to the node sp in Figure 5. However, in (15), we have removed this assumption and directly found
the inference based on the relationship between the variables that we have in Figure 5. Furthermore, we have
provided an analytical approach for the update rule of α, rather than the empirical approach discussed in [46].

The pseudocode below describes our algorithm, referred to as C-SBL, which works for the
clustered patterns SMV or MMVs.
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C-SBL Algorithm:

{Θ(i)}i=1 to Ncollect
= C-SBL(Y, A, Θ0, Nburn-in, Ncollect)

For Iter = 1 to Nburn-in + Ncollect

% Support-learning vector component
For p = 1 to P

ỹ−p
mn = ymn −∑P

l 6=p amlsl xln, ∀m = 1 to M, ∀n = 1 to N

cp =
1−γp

γp

Σ1,p
P+1−Σ1,p

, (Σ̄∆)p =(Σ∆)0,p−(Σ∆)1,p

kp = e
ε
2

(
(‖ap‖2

2 ∑N
n=1 x2

pn)−2aT
p (∑

N
n=1 xpn ỹ−p

n )
)

(sp|−) ∼ Bernoulli( 1
1+cpkpe−α(Σ̄∆)p

)

% Solution-value matrix component
For l = 1 to P

σx = (τ + εs2
l ‖al‖2

2)
−1

µ̄ = εslσxal

ỹ−l
n = yn − A(s ◦ xn) + sl xlnal , ∀n = 1, . . . , N

(xln|−) ∼ N (µ̄T ỹ−l
n , σx), ∀n = 1, . . . , N

End For {l}
(γp|−) ∼ Beta

(
α0 + 1 + 2 ∑P

k 6=p sk , β0 − 1 + 2(P−∑P
k 6=p sk)

)
End For {p}

(τ|−) ∼ Gamma(a0 +
NP
2 , b0 +

1
2 ‖X‖

2
F)

(ε|−) ∼ Gamma(θ0+
MN

2 , θ1+
1
2 ‖Y−A(s◦X)‖2

F)

α : obtained from solving (20) for α[t+1]

Θ(Iter−Nburn-in) ← Θ, ∀Iter > Nburn-in

End For {Iter}

Similar to the O-SBL algorithm, we perform MCMC inference in the implementation of the C-SBL
using Gibbs sampling for all the variables and parameters of the model.

4. Simulation Results

Here, we compare the performance of our algorithm against other algorithms on both
synthetic/simulated and real-world data for both the SMV and MMV problems.

4.1. Simulations on Synthetic Data

We first compare our proposed algorithm with other algorithms for the SMV problem, i.e., N = 1
defined in (1). We then consider the MMV problem for the case where the number of columns in the
solution matrix X is N=2, 5.

4.1.1. Performance for the SMV Problem

Each independently-generated trial is constructed as follows. We consider the solution-value
vector x∈R100, i.e., P=100 and N=1 in (1). The supports of the true solution are drawn randomly so
that the support vector s exhibits a random clustered sparsity pattern. The total number of non-zeros
in the sparse solution (xs = s ◦ x) is set to 25 for all the trials. The nonzero elements of x at the
active supports of s are drawn i.i.d. from a zero-mean Gaussian distribution with variance σ2

x = 1.
For each trial, the entries of the sensing matrix A∈RM×100 are drawn i.i.d. from a zero-mean Gaussian
distribution with variance one, and then, we normalize the columns of A. We vary the number of
measurements M to show the performance as the ratio λ=M/P changes. The elements of the noise



Entropy 2019, 21, 247 13 of 28

component are drawn i.i.d. from a Gaussian distribution em ∼N (0, σ2). The SNR for all trials was
25 dB and is defined as SNR = 20 log10(σx/σ). The measurement y is computed from y = Axs + e.
The data described above were generated for 200 trials.

The recovery performance of the algorithms is demonstrated using both probability of
support recovery and mean squared error. The probability of correct detection of a support
location (probability of detection) PD and the probability of (erroneously) detecting a support
location where there is none (probability of false alarm) PFA are respectively defined as PD =
(#Correct detections)/(#Possible correct detections), PFA = (#False detections)/ ((#Possible detections)−
(#Correct detections)). A successful reconstruction is reported when all the supports of the true solution
are recovered. The normalized mean-squared error is defined as:

NMSE (dB) := 20 log10
‖xs − x̂s‖2

‖xs‖2
, (21)

where x̂s is the estimated solution.
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Figure 6. Aspects of performance of the proposed C-SBL algorithm for the SMV problem. (a) Empirical
ROC; (b) Detection rate; (c) PD − PFA; (d) NMSE (dB).

Figure 6a–d demonstrates the aspects of the performance of the C-SBL algorithm. Figure 6a
shows the performance of C-SBL using receiver operating characteristic (ROC) curves as the number
of measurements, and equivalently the ratio λ = M/P varies. For λ > 0.4 (M > 40, P = 100),
C-SBL successfully finds all the supports of the true solution with generally a low false alarm rate.
The algorithm exhibits high performance when the number of measurements is almost twice the
number of true non-zeros in the solution (the true number of non-zeros was set to 25). In Figure 6b–d,
we also illustrate the performance of C-SBL vs. the threshold, where the threshold is defined as
follows. We average over all of the Ncollect collected samples of the support learning vector, where each
component belongs to {0, 1}. In other words, we compute ŝave = 1/Ncollect ∑Ncollect

n=Nburn-in+1 ŝ[n]. Then,
those indices in the resulting vector ŝave that contain values greater than the threshold are chosen as
the estimated supports of the solution (setting the threshold to 0.5 results in the sample mean of the
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collected samples). In Figure 6b, we illustrate the detection rate vs. the threshold as the ratio M/P
changes (if we decide on the supports based on all the samples obtained in both burn-in and collected
periods, then the detection rate would become zero for the threshold of one for all λ). Figure 6c shows
the difference between detection rate and false alarm rate of C-SBL vs. the threshold. The higher
values of PD−PFA indicates the higher overall support recovery of the algorithm. In Figure 6c, there
is a threshold of around 0.5, where PD − PFA has a peak for λ≤ 0.4. For the case of λ > 0.4, C-SBL
reaches its highest performance with a wide range of threshold of approximately [0.1, 0.9]. This verifies
that estimating the support learning vector based on the sample mean (threshold of 0.5) provides
a high performance for all λ. Finally, Figure 6d shows the C-SBL behavior in terms of normalized
mean-squared error, defined in (21), vs. the threshold. In Figure 6d, the error term for each λ remains
almost constant regardless of the threshold. This means that one can take a threshold that leads to a
very high detection rate, even for a very low number of measurements, without any major change in
terms of the error. However, according to Figure 6a and Figure 6c, different choices of the threshold
result in different false alarm rates. According to Figure 6d, as the number of measurements becomes
around twice the sparsity level (λ≥0.5), the error becomes almost negligible.

We now compare the performance of C-SBL and O-SBL with other algorithms, specifically:
CLUSS-MCMC algorithm for solving clustered structure compressive sensing using Markov
chain Monte Carlo method [37], orthogonal matching pursuit (OMP) algorithm [5,49], MMV
focal underdetermined system solver (MFOCUSS) [17], block-sparse Bayesian learning algorithm
(BSBL) [15,23], MMV sparse Bayesian learning algorithm (MSBL) [22], basis pursuit denoising
algorithm for group sparsity (BPDN-group) using the spectral projected gradient for l1 minimization
(SPGL1) solver [50], the single-task version of multi-task compressive sensing algorithm (MTCS) [34,51],
and PC-SBL [28,52]. In all of the algorithms, we discarded those estimated elements in the solution
with an amplitude less than 0.01 from the support set. In Figure 7a–d, the results for the O-SBL and
C-SBL algorithms are based on the sample mean of the collected samples.

In Figure 7a, we demonstrate the empirical results of detection rate vs. the ratio M/P.
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Figure 7. Comparisons of various algorithms in the SMV case. (a) Detection rate; (b) False alarm rate; (c) PD − PFA;
(d) NMSE (dB).



Entropy 2019, 21, 247 15 of 28

Figure 7a shows that C-SBL provides the best performance in terms of detecting the true supports
of the solution. In Figure 7b, the false alarm rate in support recovery is illustrated, where we see
that for M/P < 0.35, our algorithm has a higher false alarm rate in support recovery at the cost of
providing a higher detection rate within the same range for M/P. In contrast, the rates for C-SBL,
O-SBL, CLUSS-MCMC, and MTCS become almost the same and have the lowest values.

Figure 7c compares the performance algorithms in terms of the trade off between the detection
rate and false alarm rate in support recovery, in which C-SBL and PC-SBL show almost the same
performance for M/P<0.35. However, C-SBL outperforms all the other algorithms for M/P>0.35.
Figure 7d illustrates the comparison of NMSE between the true and estimated solution. We observe
that C-SBL provides lower error among the other algorithms for a wide range of M/P.

Remark 2. The MATLAB codes for BSBL, MSBL, and MFOCUSS were obtained from [53]. For BSBL, the
noise flag was set to two (small noise). and the block-size of h = 2 was considered. For MSBL, we activated
the option for learning the tuning parameter and initialized it by the true noise variance. For the MFOCUSS
algorithm, the regularization parameter was set to 10−3. Based on some initial experiments, we decided to use
the default settings for CLUSS-MCMC [54] and PCSBL [52]. The parameters of the Gamma prior on the noise
variance for MTCS [51] were both set to one.

It has been very common in the literature to demonstrate the performance primarily on NMSE,
so that successful recovery is reported when the NMSE becomes lower than some pre-defined value.
In that sense and by referring to Figure 7d, we see that our algorithm provides the lowest error rate for
a wide range of M/P. In addition, our algorithm demonstrates good performance on the ROC plot,
showing high detection against the false alarm rate. Finally, in Figure 8, we show the average run-time
comparison of the respective algorithms for 500 randomly-generated SMVs in the same way stated
earlier. In Figure 8, the legend C-SBL(learning α) denotes the execution time of the C-SBL algorithm for
the case where the algorithm learns α from (20), while in C-SBL(α = 1), we do not use (20) and instead
experimentally set α = 1.
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Figure 8. Execution-time comparison for the SMV case.

According to Figure 8, for low sampling ratios, which is of more interest in CS problems, the lowest
execution times belong to THE PBDN, MFOCUSS, MTCS, and CLUSS-MCMC algorithms, respectively.
However, as we showed in Figure 7, these algorithms do not provide good accuracy in signal
reconstruction compared to the other algorithms. Furthermore, these algorithms do not account
for learning the unknown clustering pattern. Comparing the execution time of the PC-SBL, B-SBL,
and C-SBL algorithms for low sampling ratios, we observe that C-SBL demonstrates reasonably low
execution time. Furthermore, notice that the C-SBL and CLUSS-MCMC algorithms are the only
algorithms that are implemented using the MCMC method, and based on Figure 8, we observe that
they both show the same behavior with respect to the change of the sampling ratio. The reason for the
higher execution time of C-SBL against CLUSS-MCMC is again due to the extra computations that
C-SBL requires to account for the clustering pattern.
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4.1.2. Performance for the MMV Problem with N=2

We first demonstrate the performance of C-SBL in terms of detection rate and false alarm rate in
support recovery as the ratio M/P and NMSE.

Figure 9a displays ROC curves. Comparing the results demonstrated in Figure 6a with Figure 9a,
increasing the number of columns in the solution from N = 1 to N = 2 provides considerable
improvement in the support recovery. Figure 9b illustrates the detection rate of C-SBL for the MMVs
(with N=2) vs. different threshold values. Once M/P ≥ 0.4 (over 40% compression and the sparsity
of 25), almost full success in support recovery is attained regardless of the selected threshold value.
The difference between the detection rate and false alarm rate of C-SBL vs. the threshold is shown in
Figure 9c. There is a threshold of around 0.5, where PD−PFA has a peak for λ≤0.4. For λ>0.4 in the
MMV case, C-SBL reaches its highest performance almost regardless of the chosen threshold value.
Therefore, we make a decision on the supports based on computing the sample mean, i.e., setting the
threshold equal to 0.5. Figure 9d shows the NMSE vs. the threshold for the clustered MMV problem
using the C-SBL algorithm.
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Figure 9. Aspects of the performance of C-SBL for MMV (with N = 2). (a) Empirical ROC; (b) Detection
rate; (c) PD − PFA; (d) NMSE (dB).

Finally, Figure 10a–d compares the performance of C-SBL against the other algorithms.
We compare the results of C-SBL with the following algorithms: MFOCUSS [17], MSBL [22],
T-MSBL [55,56], and MTCS [34]. Notice that T-MSBL is devised for correlated signals, while our
model does not account for this feature. Although MTCS does not promote the clustering pattern,
we use it as a baseline for our comparisons. We consider two sets of simulations. Our setup for the
simulations is similar to the SMV case, as was described earlier. The only difference is in generating
the true solution matrices. In the first case, we generate uncorrelated columns for the solution matrices.
In the legend of Figure 10a–d, the uncorrelated cases are denoted by ρ = 0. In the second case, the
columns of the solution matrix for each trial are correlated with the correlation factor of ρ=0.85.

Figure 10a illustrates the detection rate in support recovery for clustered pattern MMVs (with
N=2), in which we observe that C-SBL has the highest performance among the other algorithms for
the uncorrelated case. Furthermore, we observe that C-SBL competes with T-MSBL for the correlated
case. In Figure 10b, it is clear that C-SBL provides a lower false alarm rate in terms of support recovery
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compared to the MSBL and T-MSBL algorithms. The best performance belongs to MTCS, but it
provided the lowest performance in terms of detection rate, as was shown in Figure 10a. For overall
comparison, Figure 10c shows the simulation results in terms of the difference between the detection
rate and false alarm rate in support recovery when varying the ratio M/P. According to Figure 10c,
the overall performance of C-SBL is higher than the other algorithms. The NMSE comparisons
are illustrated in Figure 10d, where we see that C-SBL provided the lowest error. According to
Figure 10a–d, C-SBL is more successful than the compared algorithms in terms of both support
recovery and estimating the non-zero values of the true solution.
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Figure 10. Comparison of various algorithms in the MMV case with N = 2. (a) Detection rate; (b) False
alarm rate; (c) PD − PFA; (d) NMSE (dB).

4.1.3. Performance for the MMV Problem with N=5

Here, we perform simulations on synthetically-generated data in the same way explained
previously except setting N=5. The burn-in and collection periods of C-SBL were set to 2000 and 1000,
respectively. Figure 11 illustrates the performance comparison results for both the uncorrelated case
(ρ = 0) and the correlated case (with ρ = 0.85).

According to Figure 11a, the best performance in terms of the difference between the detection
rate and false alarm rate belongs to the C-SBL algorithm. The lowest performance belongs to FOCUSS,
where as the sampling ratio becomes greater than 0.4, FOCUSS starts to activate more components
in s. As a result, the false alarm rate increases, and this yields the smaller PD−PFA. For a sampling
ratio of one, all the components of s are active, resulting in PD−PFA =0. The performance of FOCUSS
would be still acceptable if the NMSE for high sampling ratios would have became very low, meaning
that the wrongly-determined supports had very low amplitudes. However, according to the error
curve of FOCUSS in Figure 11b, this does not happen, meaning that MFOCUSS crashed for moderately
high and high sampling ratios. For sampling ratios λ>0.5, the best performance in terms of PD − PFA
belongs to both C-SBL and MTCS. Notice that they were both able to provide almost full support
recovery. However, for low sampling ratios like λ≤0.4, the best support recovery belongs to C-SBL.
For example, for λ = 0.2, the C-SBL provided PD−PFA of around 0.7, while the other algorithms
provided values less than 0.4. This should justify the merit of the C-SBL algorithm. In summary, C-SBL
demonstrates the best performance in support recovery for the uncorrelated case.
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Figure 11b compares the error between the true and estimated solution. C-SBL provides the
lowest error for the most possible range of λ (λ∈ [0.05, 0.25) ∪ [0.45, 1]) for the uncorrelated case.
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Figure 11. Comparison of various algorithms in the MMV case with N = 5. (a) PD − PFA;
(b) NMSE (dB).

4.1.4. Interpretation of the results for the correlated case

For the correlated case, Figure 11a shows that C-SBL performed a little bit better than the two
other compared algorithms in terms of support recovery, even though the C-SBL model does not
account for the correlation that may exist across the columns of X. According to Figure 11b, MTCS,
T-MSBL, and C-SBL have almost the same overall performance in terms of error.

4.2. Experiments on Real Data

In this section, we compare the performance of C-SBL against other algorithms on real data.
Specifically, we consider the image reconstruction problem for the SMV case using the MNISTdataset.
For the comparisons of the MMV case, the problem of blind sub-Nyquist sampling and reconstruction
of multi-narrowband signals is considered.

Performance for the SMV Case (Experiments on MNIST Data)

Here, we evaluate the performance of the algorithms in reconstructing images of hand-written
digits, using the well-known MNIST dataset [57]. MNIST consists of 70,000 gray-scale images of
28× 28 hand-written digits. Experiments are conducted on a randomly-chosen set of hand-written
digits from “0”–“9” from this dataset. Due to space considerations, we show only some of the results.
The original images are upsampled to size 100× 100 pixels, and the pixel values were normalized to
be within [0, 1]. Then, the pixel values were subtracted from one, and those with a value of less than
0.3 were set to zero, similar to the binary pixel values in [58,59]. The threshold of 0.3 was obtained
based on the average threshold of all the images using Otsu thresholding (the actual average threshold
was 0.268). The corresponding matrix of pixel values of each image is then treated as the true sparse
signal of interest, denoted by the true solution matrix X.

For the SMV case, we solve each column of X for each digit one at a time. The number of
measurements for each column of X is set to 55 and xn ∈ R100, ∀n = 1, . . . , 100, i.e., we consider a
compression of 55% measurements for each vector xn. We randomly generated the sensing matrix
A in the same way we described earlier. Then, each column of the matrix A is normalized to have
a unit norm. The hand-written images of MNIST are already naturally sparse since most pixels in
these images are inactive, i.e., they have a small number of non-zero pixels. The measurements for
each column of the digits are computed by yn = Axn + en with SNR = 25 dB, where e is a Gaussian
noise accounting for the measurement noise. This setting follows some of the other recent work in this
area [60–64]. We feed all the algorithms with the measurement vector y and the same sensing matrix A.
The generated measurement noise matrix is the same for the digits. Once x̂n, ∀n = 1, . . . , 100 is known,
we collect the results and then stack them all together and reconstruct the digits. For the purpose
of demonstrating the support recovery performance, in Figure 12, we illustrate how successful the
algorithms were in finding the non-zero pixel locations. Since in the compared algorithms, except our
proposed C-SBL, the models do not have the support-leaning vector s, we performed the following.
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In the reconstruction, we set the estimated pixel values less than 0.3 to zero, the same way as we
treated the actual images. This means that we zeroed out the brightest pixels with the normalized
value of lower than the threshold 0.3 and set the non-zero survival pixel values to one. However,
since the proposed C-SBL algorithm already can provide the estimates on the active locations via
s, the thresholding process is not required. The first column of images in Figure 12 shows the true
hand-written digits, and the other columns show the results of processing with other algorithms.
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Figure 12. Results of reconstructed images for the SMV case. The first row illustrates the non-zero
locations of the true hand-written digits. The other rows from top to bottom show the performance
in terms of supports using the C-SBL, BSBL (h = 4), PCSBL, CLUSS-MCMC, MTCS, MFOCUSS, and
BPDN algorithms, respectively.

We compare the performance of the C-SBL algorithm against other algorithms in the reconstruction
of the images via both the support and pattern recovery. In Table 1, we evaluate the reconstruction
based on the difference between the detection rate and false alarm rate (PD − PFA) in terms of support
recovery. In Table 2, the performance is evaluated based on the success in pattern recovery. For this
purpose, we stack all the columns of the true matrix X for each digit into a single column. We then
construct the corresponding support vector, where the index of pixels with non-zero value will be
replaced by “1” in the corresponding support vector. The true measure of clumpiness for each digit
will then be computed via (6). We do the same procedure for computing the estimated measure of
clumpiness in the reconstructed digits and provide the results in Table 2. In Table 3, the error between
the true and the reconstructed images is represented.

Table 1. SMV case: comparing the reconstruction performance in terms of PD − PFA for the digits. The
bold face numbers show the best results in terms of support recovery.

Algorithm Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

C-SBL 0.9530 0.9954 0.9592 0.9643 0.9834 0.9690 0.9847 0.9890 0.9250 0.9794
BSBL [15,23,53] 0.9204 0.9819 0.9341 0.8301 0.9617 0.9479 0.9116 0.9568 0.7469 0.9263
PCSBL [28,52] 0.7622 0.9544 0.8717 0.7281 0.8961 0.8270 0.8468 0.7787 0.5746 0.7046
CLUSS [37,54] 0.4265 0.6689 0.4803 0.4981 0.6421 0.5878 0.7179 0.6098 0.3123 0.4233
MTCS [34,51] 0.3030 0.4828 0.3380 0.4102 0.4779 0.4074 0.5989 0.5042 0.2740 0.3620

MFOCUSS [17,53] 0.3652 0.6510 0.4012 0.4378 0.5197 0.4961 0.5734 0.5054 0.2997 0.4324
BPDN [50] 0.3701 0.6360 0.4502 0.4161 0.5212 0.4967 0.5859 0.5370 0.3251 0.4052
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Table 2. SMV case: comparing the performance in terms of learning the clustering pattern via the
measure of clumpinesss (Σ∆) for the true and the reconstructed digits. The bold face numbers show
the best results in terms of pattern recovery of the supports of the solution.

Algorithm Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

True value 208 80 290 306 166 316 220 240 358 168
C-SBL 244 78 266 284 176 324 196 241 340 172

BSBL [15,23,53] 320 84 402 458 200 344 262 276 750 228
PCSBL [28,52] 634 126 528 636 346 632 344 532 1080 560
CLUSS [37,54] 1018 370 960 758 570 804 446 664 1152 708
MTCS [34,51] 1774 1022 1742 1200 1194 1496 760 1178 1646 1298

MFOCUSS [17,53] 1532 878 1508 1082 936 1220 684 1124 1346 1186
BPDN [50] 1478 818 1440 1054 908 1192 646 1014 1352 1172

Table 3. SMV case: comparing the performance in terms of the reconstruction error NMSE (dB) for the
reconstructed digits. The bold face numbers show the best results in terms of reconstruction error.

Algorithm Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

C-SBL −8.0264 −17.0256 −9.2213 −7.3822 −13.9387 −10.1113 −13.9837 −9.6984 −3.7184 −8.3104
BSBL [15,23,53] −11.6553 −16.4167 −12.0378 −7.2124 −13.5679 −12.7994 −11.3422 −13.3647 −5.4846 −11.3947
PCSBL [28,52] −5.3168 −13.1082 −8.2997 −4.9542 −8.8138 −6.8723 −8.3111 −5.3168 −2.9960 −4.1409
CLUSS [37,54] −1.5934 −4.1480 −2.1561 −2.6419 −4.1116 −3.3908 −6.1695 −3.1560 −0.9962 −1.3608
MTCS [34,51] 0.4987 −0.3990 0.1748 −0.4367 −0.9529 −0.1357 −2.6530 −0.8175 0.6790 0.4506

MFOCUSS [17,53] −1.1638 −3.1979 −1.3832 −1.7897 −2.4664 −2.2302 −3.4462 −2.2340 −0.7605 −1.4593
BPDN [50] −1.2096 −3.0473 −1.7805 −1.6362 −2.5115 −2.2342 −3.6447 −2.5400 −1.0469 −1.3351

According to the results shown in Table 1, the best results in support recovery belong to the C-SBL
algorithm. Furthermore, Table 2 shows that C-SBL was more successful in learning the underlying
clustering pattern of the digits. In terms of the reconstruction error, Table 3 shows that the C-SBL and
BSBL algorithms compete with each other, with some results being better for C-SBL and some being
better for BSBL.

4.3. Performance for the MMV Case (Experiments on Blind Multi-Narrowband Signal Sampling and
Reconstruction

In this section, we consider the problem of blind sub-Nyquist sampling and reconstruction of
multi-narrowband signals. The notion of blindness here means that the frequency support is unknown,
and it occupies only a small portion of a wide spectrum [65]. In the original problem, it is assumed that
the number of sparsely-scattered bands and their bandwidth are known, while the carrier locations are
unknown at the receiver. The sub-Nyquist sampling in [65] is performed in the modulated wideband
converter (MWC) stage, which multiplies the analog signal by a bank of Mch periodic waveforms
followed by low-pass filtering and then sampling the outputs uniformly at a low rate far less than
the Nyquist rate. The periodic waveforms intentionally alias the spectrum such that a portion of
each band appears in the baseband. The technique used here is referred to as Xampling for the
compressive sensing of analog signals [24,65]. The MMV problem appears in the reconstruction stage
of the Xampling framework, referred to as the continuous-to-finite (CTF) stage. In this stage, the low
rate samples, obtained from the MWC stage, are fed to the CTF stage to estimate the support vector.
The estimation problem here involves solving for the sparse solution of an underdetermined system of
linear equations, which has the structure of the MMV problem. The active bands (spectrum slices) of
the signal are reconstructed based on the estimated supports. For more detail, refer to [24,65–67]. In
our example, the signal of interest is a multi-band signal containing two pairs of bands, i.e., N0 =4,
where each band is of width B=50 MHz, and it is assumed that the Nyquist rate of the multi-band
signal is as high as fNyq =10 GHz. The true carriers are set to fc1 =2.4956 MHz and fc2 =4.4086 MHz,
which are assumed to be unknown for the simulation purposes. The number of channels are set to
Mch =70, and the energies of the bands are set to E1=1 and E2=2, respectively. All the other settings
of the signal model and the sampling parameters are defined the same as the implementation used
in [68,69], which do not appear here due to the space consideration. In the simulations, the MMV
problem that all algorithms need to solve is of the form Y=AX, where P=195, M=70, and N=8. The
actual sparsity level is k=8, which here we assume to be unknown. Having no information on k here
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means that we assume that the number of active bands in the signal is also unknown. In Figure 13, we
illustrate an example of a multi-narrowband signal, its spectrum, and the signal when contaminated
with noise, which is used for the simulation purposes. Furthermore, Figure 14 shows the comparison
of the OMP, our proposed algorithm (C-SBL), MFOCUSS, MSBL, and MTCS in estimating the spectrum
of the signal to reconstruct the signal. Notice that the OMP algorithm is fed with the actual sparsity level
(k=8), while this information is assumed unknown to the other algorithms. The results shown for the
OMP serve as a baseline in our comparisons, but the OMP requires more information to solve the
problem, so the comparison is not exactly fair.
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Figure 13. An example of a multi-narrowband signal for comparison purposes.(a) Original signal;
(b) Spectrum of the signal; (c) Original noisy signal.

According to the results obtained in Figure 14, the C-SBL algorithm performed better than the
alternatives in estimating the spectrum supports (closest support recovery to the OMP), which resulted
in better signal reconstruction. Again, the OMP in these simulations is fed with the true sparsity level
with the true support block sizes.

In Table 4, the reconstruction error in terms of NMSE (dB) is represented. According to the results,
we see that the C-SBL algorithm outperformed the alternatives in reconstructing the signal.

Table 4. Comparing the reconstruction performance in terms of NMSE (dB) for the blind
multi-narrowband signal. The two bold face numbers show the best results, which belong to OMP and
C-SBL.

Algorithm OMP [5,49] C-SBL MTCS [34,51] MFOCUSS [17,53] MSBL [22,53]

NMSE (dB) −17.5898 −14.2124 −3.3095 −3.2028 −1.7223

The reason that the alternative algorithms did not provide low reconstruction error is due to the
fact that their estimated spectrum supports of the signal became non-sparse, as illustrated in Figure 14.
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Figure 14. Results of estimated spectrum of the signal and the reconstructed signal in the CTF stage of
Xampling when using the OMP, C-SBL, MFOCUSS, MSBL, and MTCS algorithms.
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5. Convergence Diagnostics of the MCMC Implementation

Convergence is an important issue in order to determine the burn-in period of MCMC
algorithms [37]. There is work on the convergence of iterative simulations and their inference using
multiple sequences via potential scale reduction factor (PSRF) and multiple-PSRF (MPSRF) in [70,71].
For example, in [37], the convergence issue of the CLUSS-MCMC algorithm was resolved via studying
the evolution of MPSRF in the collected samples for the sparse signal and its corresponding variances
and the measure of PSRF for the noise variance. Following the same approach, in Figure 15, we provide
some examples demonstrating the evolution of the PSRF for 20 independent chains of our proposed
C-SBL algorithm. In these examples, we generated random clustered pattern sparse signals of length
N=100, a sparsity level of 25, and with the number of measurements M= 20, 50, and 90.

In Figure 15a, we demonstrate the PSRF and MPSRF for the variables and parameters of interest
in our model for an example with the low sampling ratio of 0.2. According to the plot, the Gibbs
sampler converges very quickly for ε, γ, and x, i.e., the convergence measure of PSRF became close to
one with few iterations. However, the convergence of the distribution on s is slower. The convergence
of the precision on X was the slowest. According to Gelman’s discussion in [72], one may prefer
to set the burn-in period based on the PSRF close to 1.2. Based on this criterion, we can set the
burn-in period to approximately 2000 iterations for the example made in Figure 15a. In Figure 15b, we
provide another example for the case with the moderate sampling ratio of 0.5. As can be seen in this
plot, the distributions of all the variables and parameters of interest converged faster than when the
sampling ratio was 0.2. For this example, a burn-in period of around 600 is satisfactory. Figure 15c
illustrates another example for the high sampling ratio of 0.9. In this plot, we observe that a burn-in
period of around 200 suffices. Since in Figure 7 and Figures 9–11, we wanted to show the average of
the overall performance of our algorithm, we first performed the following and then set the burn-in
period based on the obtained experimental results. For each sampling ratio, we generated 100 random
trials for solving the SMV and MMV problems. In these trials, we assessed the average PSRF measure
for all the variables and parameters of interest based on Gelman’s criterion in [72]. We monitored the
average number of elapsed iterations until the variations on the outcomes of the estimated s became
negligible for a fair number of iterations (this is easy to monitor since the outcome of the posterior
on sp is Bernoulli). This is equivalent to monitoring the trace plots, as suggested by Neal [72]. More
specifically, we monitored the posterior distribution on the support learning vector s, using (5) for
O-SBL and (13) for C-SBL, based on the samples obtained from MCMC implementation. In Figure 16,
we illustrate some examples of support learning vector s using the C-SBL algorithm with the number
of measurements M=55. Each plot shows the learning process of s∈ R100, represented by the samples
drawn from (13), as a function of the number of iterations. Using the experimental results based on
both the PSRF evaluation and monitoring the outcomes of s, we then set fixed burn-in periods for the
simulations illustrated in Section 4. In other words, since we wanted show the average performance,
we preferred not to assess the PSRF of each simulated example, but rather using a fixed experimental
burn-in period. Below, we provide the details on the burn-in and the collection periods of both the
C-SBL and O-SBL algorithms for the simulation results illustrated in Section 4. In simulations on
the synthetic data and the MNIST for the MMVs, we set the burn-in period to 500 followed by 500
iterations for the collection period. The same settings were used for the SMV case on the MNIST. In the
experiments on synthetic data for the SMV, we set Nburn-in=2000 followed by Ncollect=1000 iterations
for the collection period for the sampling ratios of M/P≤0.4. For M/P>0.4, we set Nburn-in =1000
and Ncollect=1000. Thus, it might be the case that the burn-in period is required to be more than what
we set. The effect of the need for a longer burn-in period can be observed in the results of Figures
7, 10, and 11 for low sampling ratios. The convergence diagnostic and the effect of burn-in period
can also be detected in Figures 6 and 9. It should be clear from Figure 6c that for sampling ratios
over 0.4, the average detection performance is almost independent of the threshold. The performance
reveals that the approximated posterior distribution on s has already been stabilized. However, we
see a different behavior for lower sampling ratios in Figure 6c. The posterior distribution on s is
Bernoulli, and the variations on the supports in the iterative samples directly affect the performance
in the support recovery. We see in Figure 6c that the average sample mean of the collected samples
occurred around the threshold of 0.5. This can be interpreted as follows. The burn-in period may have
been required to be larger than our setting, but the posterior distributions have been almost stabilized.
Therefore, even for a lower burn-in period and sufficient iterations for the collection period, we could
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still extract the information required for estimating the supports via computing the sample mean of
the collected samples.

Computing the MSPRF for s needed some modifications. The estimated posterior variance of s is
assessed based on the mixture of all the simulated sequences divided by the average of the variances
within each sequence [72]. The main issue with the MPSRF for s occurred in our simulations when
computing R̂. In fact, this matrix became ill-conditioned, and the issue was with the fact that sequences
on s were either zero or one. We dealt with this issue by adding random draws from a zero-mean
Gaussian with the variance of 10−8 to the samples of s and then measured the MPSRF.
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Figure 15. Examples showing the evolution of PSRF for the precision on the solution τ and the
measurement noise precision ε and MPSRF for the solution vector x, the support vector s, and the
mixing-coefficient vector γ for sampling ratios of 0.2, 0.5, and 0.9. (a) Example with M= 20; (b) Example
with M= 50; (c) Example with M= 90.
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Figure 16. Examples showing samples of the support learning vector s. The vertical axis shows
the elements of s, and the horizontal axis represents the iterations. (a) Example 1; (b) Example 2;
(c) Example 3; (d) Example 4; (e) Example 5.

6. Conclusions

The O-SBL algorithm simultaneously learns both the supports and solution-value matrix for the
MMVs with the joint sparsity structure. As the main contribution of this paper, the method was then
extended to account for the case where the solution also exhibits an unknown clustered sparsity pattern.
For this purpose, we introduced the C-SBL algorithm, which incorporates a total variation-based prior
on the supports of the solution to learn the underlying clustered pattern. Based on simulations, we
observed that C-SBL provides competitive performance for both the SMV and MMVs compared to the
other algorithms.

Although C-SBL provides encouraging results, the MCMC implementation is computationally
expensive. In future work, we will consider alternative approaches to MCMC implementation such as
the variational Bayes inference technique [40,73].
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Appendix A

Below we describe the derivation of the inference equation for sp provided in (5). According to
the joint probability distribution (4), we have,

(sp|−) ∝ p(Y|sp, X, ε)p(sp|γp), and (sp|γp) ∼ Bernoulli(γp), ∀p = 1, . . . , P, (A1)

and:

log p(Y|s, X, ε) ∝ − ε
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∑
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where “?” in (κ)T(?) denotes “κ”. Define ỹ−p
mn = ymn − ∑P

l 6=p amlsl xln, ∀{m, n, p}, and substitute
into (A2) to obtain:
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ampỹ−p
m1 + · · ·+ xpN

M

∑
m=1

ampỹ−p
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where ỹ−p
n :=[ỹ−p

1n , . . . , ỹ−p
Mn]

T . Using (A1) and (A3), we have:

(sp|−)∝ γ
sp
p (1−γp)

sp e−
ε
2 (s

2
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2 ∑N
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n=1 xpn ỹ−p
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Since sp∈{0, 1}, the marginalized posterior inference on this parameter can be simplified into (5).
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