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Abstract
Long‐distance	migration	is	a	common	phenomenon	across	the	animal	kingdom	but	the	
scale	of	annual	migratory	movements	has	made	it	difficult	for	researchers	to	estimate	
survival	rates	during	these	periods	of	the	annual	cycle.	Estimating	migration	survival	is	
particularly	 challenging	 for	 small‐bodied	 species	 that	 cannot	 carry	 satellite	 tags,	 a	
group	that	includes	the	vast	majority	of	migratory	species.	When	capture–recapture	
data	 are	 available	 for	 linked	breeding	 and	non‐breeding	 populations,	 estimation	of	
overall	migration	survival	is	possible	but	current	methods	do	not	allow	separate	esti‐
mation	of	spring	and	autumn	survival	rates.	Recent	development	of	a	Bayesian	inte‐
grated	survival	model	has	provided	a	method	to	separately	estimate	the	latent	spring	
and	 autumn	 survival	 rates	 using	 capture–recapture	 data,	 though	 the	 accuracy	 and	
precision	of	these	estimates	has	not	been	formally	tested.	Here,	I	used	simulated	data	
to	explore	the	estimability	of	migration	survival	rates	using	this	model.	Under	a	variety	
of	biologically	realistic	scenarios,	I	demonstrate	that	spring	and	autumn	migration	sur‐
vival	can	be	estimated	from	the	integrated	survival	model,	though	estimates	are	bi‐
ased	toward	the	overall	migration	survival	probability.	The	direction	and	magnitude	of	
this	bias	are	influenced	by	the	relative	difference	in	spring	and	autumn	survival	rates	
as	well	as	the	degree	of	annual	variation	in	these	rates.	The	inclusion	of	covariates	can	
improve	the	model’s	performance,	especially	when	annual	variation	in	migration	sur‐
vival	rates	is	low.	Migration	survival	rates	can	be	estimated	from	relatively	short	time	
series	(4–5	years),	but	bias	and	precision	of	estimates	are	improved	when	longer	time	
series	 (10–12	years)	 are	available.	The	ability	 to	estimate	 seasonal	 survival	 rates	of	
small,	migratory	 organisms	 opens	 the	 door	 to	 advancing	 our	 understanding	 of	 the	
ecology	and	conservation	of	these	species.	Application	of	this	method	will	enable	re‐
searchers	 to	better	understand	when	mortality	occurs	across	 the	annual	cycle	and	
how	 the	migratory	periods	 contribute	 to	population	dynamics.	 Integrating	 summer	
and	winter	capture	data	requires	knowledge	of	the	migratory	connectivity	of	sampled	
populations	and	therefore	efforts	to	simultaneously	collect	both	survival	and	tracking	
data	should	be	a	high	priority,	especially	for	species	of	conservation	concern.
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1  | INTRODUC TION

Seasonal	migratory	movements	between	breeding	and	non‐breeding	
areas	are	common	phenomena	across	the	animal	kingdom	(Alerstam,	
Hedenström,	&	Åkesson,	2003).	These	movements,	which	can	range	
in	scale	from	tens	of	meters	to	thousands	of	kilometers,	induce	com‐
plexities	 on	 the	 demographic	 processes	 that	 shape	 population	 dy‐
namics	of	migratory	species.	Theoretical	and	empirical	studies	have	
demonstrated	that	not	only	can	migratory	species	experience	limiting	
factors	during	any	stage	of	the	annual	cycle	(e.g.,	breeding,	winter,	mi‐
gration;	Sherry	&	Holmes,	1996;	Sutherland,	1996),	but	also	that	en‐
vironmental	and	demographic	processes	can	interact	across	periods	
(Marra,	Cohen,	Loss,	Rutter,	&	Tonra,	2015).	As	a	result,	understand‐
ing	the	factors	that	limit	and	regulate	dynamics	of	migratory	species	
requires	population	models	that	can	accommodate	processes	oper‐
ating	across	the	full	annual	cycle	(Hostetler,	Sillett,	&	Marra,	2015).

Full‐annual‐cycle	models	are	a	broad	class	of	population	mod‐
els	 that	 include	 events	 occurring	 during	 both	 the	 breeding	 and	
non‐breeding	periods	(Hostetler	et	al.,	2015).	In	recent	years,	de‐
velopment	of	full‐annual‐cycle	models,	driven	in	large	part	by	the	
need	inform	conservation	planning	for	declining	migratory	species,	
has	 increased	 our	 understanding	 breeding	 vs.	winter	 population	
limitation	 (Robinson	et	al.,	 2016;	Rushing,	Ryder,	&	Marra,	 2016;	
Taylor,	2017).	Most	full‐annual‐cycle	models,	however,	have	either	
focused	only	on	events	occurring	during	 the	stationary	breeding	
and	winter	periods	or	have	 lumped	the	migration	and	winter	pe‐
riods	 into	 a	 single	 “non‐breeding”	 period	 (e.g.,	 Wilson,	 LaDeau,	
Tøttrup,	&	Marra,	2011).	As	a	result,	the	impact	of	the	spring	and	
autumn	migration	on	 the	dynamics	of	migratory	 species	 remains	
poorly	understood.

The	primary	obstacle	to	accounting	for	the	migratory	periods	in	
full‐annual‐cycle	models	 is	 the	 inability	 to	quantify	survival	during	
these	periods.	For	large	species	(>~100	g),	the	development	of	minia‐
turized	satellite	tags	has	revolutionized	our	ability	to	track	migratory	
movements	and	mortality	rates	during	these	periods	(e.g.,	Klaassen	
et	al.,	2014).	Most	species,	however,	are	too	small	to	directly	track	
during	migration	(Bridge	et	al.,	2011)	and	therefore	survival	during	
these	 periods	 can	 only	 be	 estimated	 from	 indirect	 (e.g.,	 capture–
mark–recapture)	 methods.	 In	 a	 seminal	 paper,	 Sillett	 and	 Holmes	
(2002)	used	capture–recapture	data	from	linked	breeding	and	win‐
ter	populations	of	Black‐throated	Blue	Warblers	(Setophaga caerules-
cens)	 to	 estimate	 overall	migration	 survival	 (i.e.,	 cumulative	 spring	
and	autumn	survival)	and	demonstrate	that	 the	majority	of	annual	
mortality	 in	 this	 species	 occurs	 during	 these	 periods.	 Subsequent	
application	of	 this	 approach	 to	 several	other	migratory	passerines	
(Paxton,	 Durst,	 Sogge,	 Koronkiewicz,	 &	 Paxton,	 2017;	 Rockwell	
et	al.,	2017)	has	corroborated	results	from	Sillett	and	Holmes	(2002)	
showing	the	highest	seasonal	mortality	during	migration.	However,	
the	method	used	by	Sillett	and	Holmes	 (2002)	was	not	developed	
to	separately	estimate	survival	during	spring	and	autumn	migration.	
This	limitation	has	prevented	a	full	understanding	of	when	mortality	
occurs	across	the	annual	cycle	as	well	as	how	the	survival	during	the	
migratory	periods	influences	population	dynamics.

Recently,	 Rushing	 et	al.	 (2017)	 developed	 a	 novel	 integrated	
population	model	 (IPM)	 to	 separately	 estimate	 spring	 and	 autumn	
migration	survival.	The	core	of	this	model	 is	an	 integrated	survival	
model	that	uses	capture–mark–recapture	data	collected	during	both	
the	breeding	and	winter	periods.	By	 integrating	the	two	data	sets,	
it	is	possible	to	estimate	the	latent	spring	and	autumn	survival	rates	
(Rushing	et	al.,	2017),	though	the	accuracy	and	precision	of	these	es‐
timates	has	not	been	formally	tested.	Here,	I	used	simulated	data	to	
explore	the	identifiability	and	estimability	of	migration	survival	rates	
using	the	integrated	survival	model.	Under	a	variety	of	biologically	
realistic	scenarios,	I	demonstrate	that	spring	and	autumn	migration	
survival	 are	 identifiable	and	can	be	estimated	 from	 the	 integrated	
capture–recapture	model.	 I	also	show	that	 the	 inclusion	of	covari‐
ates	can	improve	the	model’s	performance	compared	to	the	use	of	
capture	data	alone.	These	results	open	the	door	for	full‐annual‐cycle	
population	models	to	provide	deeper	understanding	of	the	ecology	
of	migratory	species.

2  | MATERIAL S AND METHODS

The	models	described	here	assume	a	simple	migratory	annual	cycle,	
with	two	stationary	periods	separated	by	distinct	migratory	stages.	
In	 the	 remainder	of	 the	paper,	 I	 refer	 to	 the	 stationary	periods	as	
“breeding”	and	“winter”	and	to	the	migratory	periods	as	“spring”	and	
“autumn”	(Figure	1).	For	all	simulations,	 I	assume	a	4	month	breed‐
ing	season,	2	month	autumn	migration,	5	month	winter	period,	and	
1	month	spring	migration.

To	infer	survival	during	spring	and	autumn,	the	integrated	model	
requires	 data	 sufficient	 to	 estimate	 survival	 within	 and	 between	
each	stationary	period.	In	practice,	these	estimates	could	come	from	
a	 variety	 of	 data	 types	 and	model	 frameworks	 but	 here	 I	 assume	
standard	 capture–mark–recapture	 data	 appropriate	 for	 estimating	
apparent	survival	using	the	basic	Cormack‐Jolly‐Seber	 (CJS)	model	
(Lebreton,	Burnham,	Clobert,	&	Anderson,	1992).	 I	 further	assume	
that	sampling	within	each	stationary	period	takes	place	at	the	begin‐
ning	and	again	at	the	end	of	each	season,	allowing	one	to	estimate	
both	within‐	and	between‐season	survival	probabilities	(Figure	1).	In	
the	remainder	of	the	paper,	I	refer	to	survival	between	breeding	pe‐
riods as ϕBB	and	survival	between	winter	periods	as	ϕBW.

As	illustrated	in	Figure	1,	ϕBB and ϕBW	contain	information	about	
the	latent	autumn	and	spring	survival	rates.	By	integrating	the	breed‐
ing	and	winter	CJS	models	in	a	unified	analysis,	the	between‐season	
survival	rates	can	be	parameterized	in	terms	of	the	underlying	sea‐
sonal	survival	parameters.	Specifically,

where ϕSum,t and ϕWin,t	are	the	summer	and	winter	survival	probabili‐
ties	estimated	from	the	capture–recapture	data	and	ϕAut,t and ϕSpr,t 
are	the	latent	autumn	and	spring	survival	rates.	When	repeated	over	

(1)�BB,t=�Aut,t�Win,t�Spr,t

(2)�BW,t=�Spr,t�Sum,t+1�Aut,t+1
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multiple	 years	 of	 sampling,	 Equations	1	 and	 2	 provide	 a	 system	 of	
equations	 that	can	be	parameterized	 in	 terms	of	 the	 latent	survival	
rates.

In	 this	paper,	 I	used	simulated	data	 to	assess	 the	 identifiability	
and	estimability	of	 the	 latent	 spring	 and	autumn	 survival	 rates.	 In	
CMR	 models,	 parameter	 identifiability	 can	 be	 assessed	 by	 simu‐
lating	 capture	histories	 for	 a	 very	 large	number	of	 individuals	 and	
then	 quantifying	 the	 bias	 of	 parameter	 estimates	 from	 the	model	
(Gimenez,	Viallefont,	Catchpole,	Choquet,	&	Morgan,	2004).	With	
large	 sample	 sizes,	 the	observed	 frequency	of	encounter	histories	
should	be	equal	to	the	expected	frequency	(i.e.,	no	sampling	error),	
and	therefore	bias	 in	the	estimated	parameters	 indicates	a	 lack	in‐
trinsic	identifiability.	In	some	cases,	parameters	may	technically	be	
identifiable	but	may	nonetheless	not	be	estimable	given	the	data	at	
hand	 (Auger‐Méthé	et	al.,	 2016).	To	 investigate	estimability	of	 the	
latent	survival	rates,	I	simulated	CMR	data	with	sample	sizes	more	
typical	of	CMR	studies	and	assessed	the	bias	and	precision	of	esti‐
mates	based	on	these	data.

2.1 | Simulating survival data

For	 each	 simulation,	 I	 generated	data	 consistent	with	 typical	 cap‐
ture–mark–recapture	 (CMR)	 sampling	 protocols.	 All	 simulations	
consisted	of	two	CMR	data	sets	collected	during	both	summer	and	
winter.	For	tests	of	identifiability,	I	simulated	data	with	10,000	new	
individuals	 captured	 in	 each	 year.	 This	 number	was	 chosen	 to	 be	
large	enough	that	parameter	estimates	were	not	influenced	by	sam‐
pling	error	(Gimenez	et	al.,	2004).	For	tests	of	estimability,	I	assumed	
75	new	individuals	captured	each	year,	a	sample	size	more	typical	of	
many	CMR	studies.	Mean	monthly	survival	probabilities	during	sum‐
mer,	winter,	and	autumn	were	held	constant	across	all	 simulations	
(μSum	=	0.97,	μWin	=	0.98,	μAut	=	0.90).	Mean	monthly	spring	survival	
(μSpr)	 varied	 across	 simulations	 (described	 below).	 These	 monthly	
survival	 rates	were	 chosen	 to	produce	biologically	 realistic	 annual	
survival	 rates	 for	 a	 small,	 migratory	 songbird	 (~0.43–0.58).	 Each	
simulation	consisted	of	the	following	steps:

1.	 Determine	 mean	 spring	 migration	 survival

For	each	simulation,	μSpr	was	determined	as:

where	∆	is	the	relative	difference	between	μSpr and μAut.

2.	 Simulate	 realized	 autumn/spring	 survival	 probabilities

For	each	year	t,	realized	monthly	survival	probability	in	autumn	and	
spring	were	simulated	as:

where ϕj,t	is	the	realized	monthly	survival	rate	for	season	j	(autumn	
or	spring),	βj	is	the	effect	of	covariate	Xj,t on ϕj,t,	Σ	is	the	variance–
covariance	matrix	describing	annual	variation	in	spring	and	autumn	
migration,	�2

Aut
 and �2

Spr
	are	the	annual	variances	of	autumn	and	spring	

survival,	and	ρ	is	the	correlation	between	autumn	and	spring	survival	
in	a	given	year.	Parameterizing	the	yearly	spring	and	autumn	survival	
rates	in	this	way	made	it	possible	to	independently	vary	the	annual	
variance	in	and	correlation	between	spring	and	autumn	migration.

3.	 Generate	 Φ	 matrix

The	 monthly	 ϕj,t	 rates	 were	 converted	 into	 survival	 across	
the	 entire	 season	 by	 raising	 each	 to	 the	 appropriate	 number	
of	 months.	 The	 seasonal	 survival	 rates	 were	 then	 arranged	 in	
a	 matrix	 Φ	 containing	 the	 survival	 rates	 across	 all	 48	 seasons	
(12	years	×	4	seasons/year):

(3)�Spr=Δ×�Aut

(4)logit(�j,t)= logit(�j)+�jXj,t+�j,t, �j,t∼MV(0,Σ)

Σ=

(

�2
Aut

�

√

�2
Aut

�2
Spr

�

√

�2
Aut

�2
Spr

�2
Spr

)

Φ=
[

0.97
4
,�Aut,1

2,0.98
5
,�Spr,1,… ,0.97

4
,�Aut,12

2,0.98
5
,�Spr,12

]

F I G U R E  1  Conceptual	diagram	of	the	integrated	survival	model
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4.	 Simulate	 summer/winter	 survival	 histories

Survival	 histories	 were	 simulated	 for	 individuals	 in	 both	 the	
summer	and	winter	populations	using	the	occasion‐specific	survival	
probabilities	in	Φ.	Conditional	on	first	capture,	survival	of	individual	
i	across	all	subsequent	seasons	was	modeled	as:

where zi,j	 is	 the	 true	 state	 (0	=	dead,	 1	=	alive)	 of	 individual	 i dur‐
ing season j,	and	Φj−1	 is	the	survival	probability	from	season	 j−1	to	
season j.	Note	 that	although	summer	and	winter	 survival	histories	
were	 generated	 independently	 (i.e.,	 did	 not	 share	 any	 individuals),	
individuals	 in	both	data	sets	shared	the	same	survival	rates	during	
each occasion.

5.	 Simulate	 capture	 histories

To	account	for	imperfect	detection	during	each	sampling	period,	
individual	capture	histories	were	generated	based	on	each	individu‐
al’s	true	state	at	sampling	occasion	k	and	a	season‐specific	monthly	
recapture	probability	pj:

where yi,j,k	is	the	observed	state	(0	=	not	recaptured,	1	=	recaptured)	
during season j on occasion k	 (beginning	or	end	of	season).	For	all	
simulations,	pSum	=	0.6	and	pWin = 0.4.

2.2 | Simulation scenarios

Equations	3,6,7	 contain	 several	 parameters	 that	 may	 influence	
identifiability	 and	 estimability	 of	 the	 latent	 spring	 and	 autumn	
survival	 rates.	To	quantify	the	effects	of	 these	factors	on	model	
performance,	I	generated	capture	histories	under	a	range	of	simu‐
lation	scenarios:
“Basic” model:	To	understand	the	performance	of	the	integrated	CJS	
model	in	instances	where	no	additional	information	is	available	(e.g.,	
covariates),	 I	 simulated	 12	years	 of	CMR	data	 following	 steps	 1–5	
while	manipulating	three	parameters:	Δ,	�2

j
,	and	ρ.	In	the	remainder	

of	the	paper,	I	refer	to	this	as	the	“basic”	model.	For	each	parameter,	
data	were	simulated	under	 three	 levels	corresponding	 to	 low,	me‐
dium,	and	high	values.	To	examine	the	influence	of	the	relative	dif‐
ference	between	μSpr and μAut,	data	were	generated	assuming	Δ	=	1,	
0.875,	and	0.75.	Because	μAut	was	held	constant	at	0.9	in	all	simula‐
tions,	these	scenarios	correspond	to	μSpr	=	0.9,	0.78,	and	0.675.	To	
examine	the	effect	of	annual	variation	in	migration	survival	on	iden‐
tifiability	and	estimability,	data	were	generated	assuming	�2

j
	=	0.02,	

0.25,	and	0.50.	To	minimize	the	total	number	of	simulation	scenarios,	
I	assumed	that	�2

Aut
=�2

Spr
.	To	examine	the	effect	of	 the	correlation	

between	ϕSpr,t and ϕAut,t,	data	were	generated	assuming	ρ	=	0,	0.4,	
and	0.8.	In	all	cases,	parameter	values	were	chosen	to	produce	bio‐
logically	realistic	survival	rates.	For	all	“basic”	model	simulations,	βj in 
Eq.	(4)	was	fixed	at	0.	The	three	parameters	were	varied	in	a	factorial	
design,	resulting	in	33	=	27	simulation	scenarios.

Covariate model:	 To	 investigate	 whether	 including	 covariates	 im‐
proves	estimation	of	the	latent	migration	survival	rates,	I	conducted	
additional	simulations	with	a	range	of	βj	values	for	both	spring	and	
autumn	(0,	0.5,	1.0)	and	σ2	values	(0.02,	0.25,	0.50).	Annual	values	
for	each	covariate	Xj,t	were	simulated	from	a	normal	distribution	with	
mean	0	and	standard	deviation	of	1.	As	for	the	basic	model,	these	
three	parameters	(βAut,	βSpr,	and	σ

2)	were	varied	in	a	factorial	design	
resulting	in	27	scenarios.	All	covariate	models	included	12	years	of	
CMR	data	and	assumed	Δ	=	0.75	and	ρ	=	0.	I	did	not	conduct	identifi‐
ability	simulations	for	the	covariate	model	because	if	the	parameters	
are	identifiable	under	the	basic	model,	than	they	should	also	be	iden‐
tifiable	with	the	addition	of	covariates.
Number of years:	Estimability	of	survival	rates	in	CJS	models	is	influ‐
enced	by	the	number	of	years	of	capture–recapture	data	 included	
in	the	analysis	(Pollock,	Nichols,	Brownie,	&	Hines,	1990).	To	inves‐
tigate	how	study	length	influences	estimability	of	migration	survival	
rates,	 I	conducted	additional	simulations	of	the	“basic”	model	with	
4–11	years	of	data,	resulting	in	8	scenarios.	For	all	study	length	simu‐
lations,	Δ	=	0.75,	σ2	=	0.25,	and	ρ = 0.

2.3 | Model fit

For	each	scenario,	I	simulated	a	single	data	set	for	the	identifiability	
tests	 and	250	data	 sets	 for	 the	 estimability	 tests.	 I	 estimated	 the	
joint	 likelihood	 of	 the	 model	 using	 JAGS	 version	 3.3.0	 (Plummer,	
2012)	called	from	program	R	version	3.3.1	(R	Core	Team,	2016)	with	
package	 jagsUI	 version	 1.4.2	 (Kellner,	 2016).	 Breeding	 and	winter	
monthly	survival	rates	were	given	uninformative	Uniform(0,1)	priors	
and	beta	coefficients	in	the	covariate	models	were	given	uninforma‐
tive	Normal(0,100)	priors.	The	monthly	spring	and	autumn	survival	
probabilities	were	given	weakly	 informative	Beta(3,2)	priors.	 Initial	
model	testing	indicated	that	this	prior	improved	mixing	of	the	chains	
compared	to	an	uninformative	uniform	prior	(effective	sample	sizes	
were	~4×	higher	under	the	Beta	prior)	but	did	not	meaningfully	in‐
fluence	 posterior	means	 (on	 average,	 posterior	means	 differed	 by	
<0.01	under	the	Uniform	vs.	Beta	priors).	For	all	models,	I	ran	three	
chains	for	50,000	iterations	each	after	an	adaptation	phase	of	5,000	
iterations	 and	discarding	 the	 first	 10,000	 iterations	 as	burn‐in.	 To	
reduce	autocorrelation	 in	 the	 chains,	 I	 saved	every	10th	 iteration.	
Convergence	was	confirmed	through	Rhat	values	and	visual	inspec‐
tions	of	trace	plots.

2.4 | Model evaluation

Model	performance	was	measured	using	five	metrics.	To	meas‐
ure	 identifiability	 of	 the	 mean	 survival	 rates	 (μSpr and μAut)	
under	 the	 “basic”	 model,	 I	 measured	 relative	 bias	 under	 each	
scenario as (�̂�i,j−𝜇j)∕𝜇j,	 where	 �̂�j	 is	 the	 estimated	 mean	 sur‐
vival	 rate	 for	 season	 j,	 and	 μ j	 is	 the	 true	 mean	 survival	 rate.	
Parameters	were	considered	identifiable	if	the	relative	bias	was	
>−0.01	and	<0.01.

For	 each	 of	 the	 estimability	 scenarios,	 mean	 relative	 bias	 and	
root	mean	square	error	(RMSE)	of	μSpr and μAut	were	measured	as:

(5)zi,j∼Bernoulli(zi,j−1Φj−1)

(6)yi,j,k∼Bernoulli(zi,jpj)
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In	some	applications,	researchers	may	also	be	interested	in	de‐
termining	which	season	has	the	 lowest	survival.	For	simulations	 in	
which Δ	<	1,	I	also	estimated	the	proportion	of	simulations	in	which	
�̂�Spr<�̂�Aut.	 This	 metric	 provides	 an	 estimate	 of	 the	 power	 of	 the	
model	to	correctly	infer	which	season	has	the	lowest	survival.

For	 the	 annual	 estimates	 (ϕAut,t and ϕSpr,t),	 performance	 was	
measured	as	the	mean	correlation	between	the	estimated	and	true	
values:

where �̂�i,j,t	is	the	estimated	survival	for	season	j	in	year	t	in	simula‐
tion	i.

3  | RESULTS

For	the	“basic”	model,	the	relative	bias	of	mean	monthly	spring	and	
autumn	survival	 (�̂�Spr and �̂�Aut)	was	<0.01	 for	all	parameter	combi‐
nations,	 indicating	 that	 these	parameters	are	 identifiable	under	all	

simulated	 scenarios	 (Figure	2,	 Supporting	 Information	 Table	 S1).	
However,	 under	more	 realistic	 sample	 sizes	 �̂�Spr and �̂�Aut	were	 bi‐
ased	toward	the	overall	mean	migration	survival	rate	(i.e.,	�2

Aut
×�Spr

).	The	magnitude	of	both	bias	and	 root	mean	square	error	 (RMSE)	
were	proportional	to	the	relative	difference	between	the	seasonal	
survival	rates	(Δ)	and	the	magnitude	of	annual	variation	in	survival	
rates	(σ2;	Figure	2).	When	mean	monthly	survival	 in	spring	and	au‐
tumn	were	 equal	 (Δ	=	1),	was	 biased	 on	 average	 by	 −2.92%	while	
�̂�Aut	was	 biased	by	1.27%.	Note	 that	when	monthly	 survival	 rates	
are	equal,	survival	across	the	entire	2	month	autumn	period	is	lower	
than	survival	during	the	1	month	spring	period,	resulting	in	negative	
bias	in	�̂�Spr	and	positive	bias	in	�̂�Aut.	When	Δ	=	0.75,	the	direction	of	
bias	switched	and	the	magnitude	of	bias	in	�̂�Spr	increased	to	8.62%	
and	to	−3.2%	for	�̂�Aut	(Figure	2).

The	 degree	 of	 bias	 in	 �̂�Spr and �̂�Aut	 was	 inversely	 related	 to	 σ
2 

(Figure	2).	Assuming	Δ	=	0.75,	bias	in	�̂�Spr	was	11.98%	and	bias	in	�̂�Aut 
was	−4.11%	when	σ2	=	0.02.	In	contrast,	when	σ2	=	0.5,	bias	in	�̂�Spr de‐
clined	to	6.18%	and	bias	in	�̂�Aut	declined	to	−2.74%.	Despite	the	sources	
of	bias	in	the	basic	model,	power	to	detect	the	direction	of	survival	dif‐
ferences	(i.e.,	whether	survival	was	lower	in	spring	or	autumn)	was	high	
(range	=	87%–100%).	Thus,	the	basic	model	was	generally	successful	
at	determining	which	period	had	lower	survival	but	tended	to	underes‐
timate	the	difference	between	the	two	periods.	Estimates	of	�̂�Spr and 
�̂�Aut	were	not	 influenced	by	correlation	between	spring	and	autumn	
migration	(ρ;	Supporting	Information	Figures	S1	and	S2).

In	 all	 “basic”	model	 scenarios,	 estimates	 of	 spring	 and	 autumn	
survival	were	positively	correlated	with	true	survival	but	the	magni‐
tude	of	the	correlation	was	strongly	affected	by	σ2	(Figure	3).	When	

(7)Biasj=

∑250

i=1
(�̂�i,j−𝜇j)∕𝜇j

250

(8)RMSEj=

�

∑250

i=1
(�̂�i,j−𝜇j)

2

250

(9)rj=

∑250

i=1
cor(�̂�i,j,t,𝜙j,t)

250

F I G U R E  2  Relative	bias	and	root	mean	square	error	of	mean	monthly	survival	estimates	for	spring	and	autumn	migration	as	a	function	
of	the	relative	difference	in	survival	between	the	two	seasons	(∆)	and	annual	variation	in	survival	rates	(σ2).	Relative	bias	of	identifiability	
models	are	indicated	by	open	circles/dashed	lines	and	relative	bias	of	estimability	models	are	indicated	by	filled	circles/solid	lines.	In	all	
simulations	shown,	ρ = 0
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spring	and	autumn	survival	showed	little	annual	variation	(σ2	=	0.02),	
the	correlation	was	small	and	non‐significant	(rSpr	=	0.47,	95%	credi‐
ble	interval	=	−0.03	to	0.81;	rAut	=	0.34,	−0.22	to	0.76).	However,	as	
annual	 variation	 increased,	 survival	 estimates	were	more	 strongly	
correlated	 with	 true	 survival	 (σ2 = 0.25: rSpr	=	0.83,	 0.61–0.95;	
rAut	=	0.7,	 0.35–0.93;	 σ2 = 0.50: rSpr	=	0.87,	 0.65–0.97;	 rAut	=	0.77,	
0.46–0.96).	 The	 correlations	 between	 true	 and	 estimated	 survival	
were	inversely	related	to	Δ	but	were	not	influenced	by	ρ	(Supporting	
Information	Figure	S3).

Including	covariates	in	the	model	improved	estimation	of	migra‐
tion	survival	rates	compared	to	the	basic	model,	though	the	degree	
of	improvement	depended	on	σ2.	When	σ2	=	0.02,	including	covari‐
ates	 in	 the	model	 greatly	 reduced	 both	 bias	 and	RMSE	 (Figure	4).	
In	this	scenario,	including	covariates	with	a	strong	effect	(β	=	1)	re‐
duced	bias	in	�̂�Spr	by	78%	(3%	when	β	=	1	vs.	12%	when	β	=	0)	and	
by	86%	 (−1%	vs.	−4%),	despite	a	 large	relative	difference	between	
the	two	seasons	(Δ =	0.75).	In	contrast,	when	σ2	=	0.5,	the	effect	of	
covariates	was	much	smaller	(12%	and	35%	decreases	in	bias	of	�̂�Spr 
and �̂�Aut,	 respectively).	RMSE	was	 similarly	decreased	 through	 the	
inclusion	of	covariates	and	correlation	between	true	and	estimated	
survival	was	 increased.	For	example,	when	strong	covariates	were	
included	on	both	autumn	and	spring	survival,	rAut	increased	to	0.93	
(95%	credible	 interval	=	0.77–0.99)	and	rSpr	 increased	to	0.95	 (95%	
credible	interval	=	0.86–0.99;	Figure	5).	As	in	the	basic	model,	power	
to	detect	the	direction	of	survival	differences	was	high	when	covari‐
ates	were	included	in	the	model	(range	=	90–100%).

Both	bias	and	RMSE	of	�̂�Aut	 tended	 to	decrease	as	additional	
years	 of	 capture–recapture	 data	 were	 included	 in	 the	 analy‐
sis	 (Figure	6),	 but	 reached	 an	 asymptote	with	 ~10	years	 of	 data.	
Interestingly,	 neither	 bias	 or	 RMSE	 of	 �̂�Spr	 estimates	 were	 in‐
fluenced	 by	 the	 number	 of	 years	 of	 data.	 The	mean	 correlation	
between	 the	 true	 and	 estimated	 yearly	 survival	 rates	 tended	 to	
increase	with	additional	years	of	data	when	the	number	of	years	
was	 less	 than	6	but	beyond	6–7	years	of	 data	 there	was	no	 fur‐
ther	increase	in	the	mean	r	for	either	season.	However,	longer	time	
frames	greatly	 improved	the	precision	of	 the	 r	estimates,	as	evi‐
dent	from	the	decreasing	width	of	the	r	credible	 intervals	as	the	
number	of	years	increased	(Figure	7).

4  | DISCUSSION

The	twice‐annual	migrations	made	by	billions	of	individual	organisms	
each	year	are	among	the	most	fascinating	phenomena	in	the	natural	
world.	These	movements	have	important	implications	for	the	popula‐
tion	dynamics	and	conservation	of	migratory	species	but	have	proven	
difficult	to	study	in	most	species.	Using	simulated	data,	I	demonstrate	
that	the	integrated	survival	model	developed	by	Rushing	et	al.	(2017)	
is	capable	of	estimating	latent	spring	and	autumn	survival	probabili‐
ties	from	capture–recapture	data	under	certain	conditions.

Tests	of	identifiability	indicate	that	mean	monthly	spring	and	au‐
tumn	survival	rates	are	identifiable	using	the	integrated	survival	model.	

F I G U R E  3  Correlation	between	estimated	and	true	spring	and	autumn	survival	rates	under	the	basic	model.	For	all	simulations	shown,	
∆	=	0.75	and	ρ	=	0.	Points	show	estimates	of	ϕj,t	from	all	250	simulations	in	each	scenario.	Solid	and	dashed	black	lines	show	the	mean	
correlation	for	each	season	and	the	solid	gray	line	indicates	1:1	correspondence	between	estimated	and	true	survival.	Values	in	parentheses	
are	the	95%	credible	interval	of	the	r	estimates
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However,	estimates	of	these	rates	were	biased	in	simulations	that	as‐
sumed	sample	sizes	more	typical	of	many	CMR	studies	(75	new	individ‐
uals	released	at	each	occasion).	In	particular,	estimates	of	μSpr and μAut 
were	biased	 toward	 the	overall	 “migration”	 survival,	 suggesting	 that	
the	model	had	trouble	pulling	apart	the	seasonal	survival	rates	without	

larger	sample	sizes.	The	degree	of	bias	was	positively	 related	to	 the	
relative	difference	between	spring	and	autumn	survival	and	negatively	
related	to	the	amount	of	annual	variation	in	these	survival	rates.	Thus,	
bias	in	the	basic	model	was	lowest	when	the	difference	between	spring	
and	autumn	survival	was	small	and	when	annual	variation	was	high.	

F I G U R E  4  Relative	bias	and	root	mean	square	error	of	mean	monthly	survival	estimates	for	spring	and	autumn	migration	as	a	function	
of	covariate	effect	size	(β)	and	annual	variation	in	survival	rates	(σ2).	The	x‐axis	refers	to	the	simulated	value	of	both	βSpr and βAut.	In	all	
simulations	shown,	Δ	=	0.75	and	ρ = 0
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F I G U R E  5  Correlation	between	estimated	and	true	spring	and	autumn	survival	rates	under	the	covariate	models.	In	each	panel,	β	refers	
to	the	simulated	value	of	both	βSpr and βAut.	For	all	simulations	shown,	σ

2	=	0.25.	Points	show	estimates	of	ϕj,t	from	all	250	simulations	in	
each	scenario.	Solid	and	dashed	black	lines	show	the	mean	correlation	for	each	season	and	the	solid	gray	line	indicates	1:1	correspondence	
between	estimated	and	true	survival.	Values	in	parentheses	are	the	95%	credible	interval	of	the	r	estimates
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Lower	bias	with	increasing	year‐to‐year	variation	is	likely	the	result	of	
smaller	ranges	of	plausible	combinations	of	spring	and	autumn	survival	
in	 the	 time	series	defined	by	Eqs.	1	and	2.	The	correlation	between	
estimated	and	true	migration	survival	rates	(r)	was	also	influenced	by	
σ2,	with	higher	correlations	occurring	when	annual	variation	was	high.	
Given	the	bias	in	the	mean	survival	rates,	users	should	interpret	their	
results	carefully	and	are	encouraged	to	analyze	simulated	data	based	
on	their	actual	sample	sizes	and	estimated	parameters	as	a	post	hoc	
assessment	of	potential	bias	in	their	parameter	estimates.	Despite	bias	
toward	the	overall	migration	survival	rate,	the	model	had	high	power	to	
detect	which	season	had	lower	survival.

Including	covariates	in	the	model	improved	estimation	of	spring	
and	autumn	migration	rates.	When	annual	variation	in	these	rates	was	
small,	the	additional	information	provided	by	the	covariates	greatly	
reduced	bias	and	RMSE	and	increased	the	correlation	between	esti‐
mated	and	true	survival	compared	to	the	basic	model,	even	when	co‐
variates	had	only	a	moderate	effect	(β	=	0.5;	Supporting	Information	
Figures	S4–S6).	However,	when	annual	variation	 in	 spring	and	au‐
tumn	survival	 rates	was	high,	 including	covariates	 resulted	 in	only	
small	 improvements	 to	 parameter	 estimates,	 likely	 because	 the	
plausible	combinations	of	spring	and	autumn	survival	were	already	
reduced	by	the	year‐to‐year	variation.	Interestingly,	covariates	have	
little	effect	on	the	estimation	of	survival	rates	during	the	opposite	
migratory	period	(Supporting	Information	Figure	S6),	suggesting	that	
model	 performance	will	 be	 best	when	 covariates	 are	 included	 for	
both	spring	and	autumn	migration.

For	most	 species,	 researchers	may	have	 little	 a	priori	 knowl‐
edge	 about	 the	 demographic	 or	 environmental	 processes	 that	

F I G U R E  6  Relative	bias	and	root	mean	square	error	of	mean	
monthly	survival	estimates	for	spring	and	autumn	migration	as	
a	function	of	study	length.	In	all	simulations	shown,	Δ	=	0.75,	
σ2	=	0.25,	and	ρ = 0
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F I G U R E  7  Correlation	between	estimated	and	true	spring	and	autumn	survival	rates	under	different	simulated	study	lengths.	For	
all	scenarios	shown,	Δ	=	0.75,	σ2	=	0.25,	and	ρ	=	0.	Points	show	estimates	of	ϕj,t	from	all	250	simulations	in	each	scenario.	Solid	and	
dashed	black	lines	show	the	mean	correlation	between	true	and	estimated	survival	for	each	season	and	the	solid	gray	line	indicates	1:1	
correspondence.	Values	in	parentheses	are	the	95%	credible	interval	of	the	r	estimates
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influence	migration	 survival.	 In	 these	 cases,	 it	may	 be	 useful	 to	
identify	 processes	 known	 to	 influence	 annual	 survival	 and	 test	
these	 as	 covariates	 on	 spring	 and/or	 autumn	migration.	 For	 ex‐
ample,	 Sillett,	Holmes,	 and	Sherry	 (2000)	 found	 that	 El	Niño/La	
Niña	 cycles	have	a	 strong	 influence	on	annual	 survival	of	Black‐
throated	Blue	Warblers	wintering	in	Jamaica.	Subsequent	analysis	
of	these	data	using	the	framework	presented	here	indicated	that	
the	 El	Niño/La	Niña	 effects	 primarily	 influence	 spring	migration	
survival	rather	than	survival	during	the	stationary	winter	or	breed‐
ing	periods	(C.	S.	Rushing	and	T.	S.	Sillett,	unpublished).	Because	
covariates	of	annual	survival	are	known	for	many	species,	this	may	
be	a	useful	approach	for	improving	estimates	of	migration	survival	
in	many	species.

Currently,	only	one	published	study	has	used	this	integrated	sur‐
vival	model	to	estimate	the	latent	spring	and	autumn	survival	rates	
from	capture–recapture	data.	Using	a	modification	of	the	basic	model	
presented	here,	Rushing	et	al.	(2017)	found	that	apparent	spring	mi‐
gration	survival	of	Wood	Thrush	(Hylocichla mustelina)	was	~5%	and	
50%	 lower	 than	 autumn	 survival	 for	 adults	 and	 juveniles,	 respec‐
tively.	Based	on	the	results	presented	in	this	paper,	we	conclude	that	
the	 direction	 of	 these	 differences	 (μSpr < μAut)	 is	 likely	 correct	 but	
that	the	magnitudes	of	the	differences	were	likely	underestimated.

In	addition	to	the	assumptions	of	conventional	CJS	models,	the	
integrated	 survival	 model	 assumes	 that	 individuals	 in	 each	 pop‐
ulation	have	 the	 same	 seasonal	 survival	 rates.	Thus,	 although	 it	 is	
not	 necessary	 to	 sample	 the	 same	 individuals	 in	 each	 season,	 the	
integrated	model	does	require	data	from	linked	breeding	and	winter	
populations.	In	reality,	most	breeding	CMR	data	will	contain	individ‐
uals	that	winter	in	different	locations	and	vice	versa	for	winter	CMR	
data.	The	degree	to	which	individuals	maintain	geographic	proximity	
across	 the	 annual	 cycle,	 termed	migratory	 connectivity	 (Webster,	
Marra,	 Haig,	 Bensch,	 &	 Holmes,	 2002),	 as	 well	 as	 the	 degree	 to	
which	 seasonal	 survival	 rates	 vary	 among	 populations	 could	 pro‐
duce	complex	forms	of	heterogeneity	that	were	not	included	in	the	
simulations	presented	here.	The	influence	of	migratory	connectivity	
on	 estimation	 of	 seasonal	 survival	 rates	 requires	 additional	 study,	
though	due	to	the	complexity	of	possible	patterns	and	strengths	of	
migratory	connectivity	(Cohen	et	al.,	2018),	this	topic	is	beyond	the	
scope	of	this	paper.	Until	the	effects	of	migratory	connectivity	are	
better	understood,	users	of	this	method	should	at	least	provide	evi‐
dence	that	their	data	comes	from	linked	breeding	and	winter	popu‐
lations	(Rushing	et	al.,	2017).

The	ability	to	estimate	seasonal	survival	rates	of	small,	migratory	
organisms	opens	the	door	to	advancing	our	understanding	of	these	
species.	At	present,	application	of	this	method	is	likely	restricted	to	
a	 few	well‐studied	 species	 that	 have	 adequate	 survival	 data	 from	
linked	populations.	Future	efforts	focused	on	quantifying	migratory	
connectivity	 and	 collecting	 mark–recapture	 data,	 especially	 from	
wintering	populations,	are	urgently	needed	for	many	other	species,	
especially	those	of	conservation	concern.	Collection	of	those	data,	
along	with	further	development	of	integrated	models	for	estimating	
seasonal	survival	and	population	dynamics,	will	provide	even	deeper	
insights	into	the	ecology	and	conservation	of	migratory	species.
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