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ARTICLE

The importance of cognitive diversity for sustaining
the commons
Jacopo A. Baggio1,2, Jacob Freeman3,4, Thomas R. Coyle5, Tam The Nguyen6, Dale Hancock5, Karrie E. Elpers5,

Samantha Nabity3, H.J.Francois Dengah II3 & David Pillow5

Cognitive abilities underpin the capacity of individuals to build models of their environment

and make decisions about how to govern resources. Here, we test the functional intelligences

proposition that functionally diverse cognitive abilities within a group are critical to govern

common pool resources. We assess the effect of two cognitive abilities, social and general

intelligence, on group performance on a resource harvesting and management game invol-

ving either a negative or a positive disturbance to the resource base. Our results indicate that

under improving conditions (positive disturbance) groups with higher general intelligence

perform better. However, when conditions deteriorate (negative disturbance) groups with

high competency in both general and social intelligence are less likely to deplete resources

and harvest more. Thus, we propose that a functional diversity of cognitive abilities improves

how effectively social groups govern common pool resources, especially when conditions

deteriorate and groups need to re-evaluate and change their behaviors.
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In the biological and the social sciences there are few topics as
important as the consequences of diversity for the functioning
and transformation of ecosystems and social systems1–4. One

of the most important lines of research in ecology, for instance, is
the effect of diverse functional traits on the stability and efficiency
of ecosystems1,5. Functional traits include physiological, mor-
phological, and phenological traits that affect individual fitness6,7

and provide mechanistic insights into how species may respond
to disturbance. A system with higher functional diversity and
redundancy of functions allows ecosystems to withstand dis-
turbance and maintain a consistent level of productivity1,5,8–11.
For example, fisheries with a greater diversity of functional
groups produce a higher level of fish biomass more consistently
than less diverse fisheries12. While the consequences of a func-
tional diversity of traits are well understood for ecosystems, the
effects of functional traits within cognitive and social contexts on
the governance of natural resources is less well developed.

Akin to functional traits in ecology, cognitive functional traits,
such as general (g) and social intelligence, specifically, theory of
mind (ToM), are domain general mental abilities that allow
individuals to process information and adapt in social-ecological
settings. g reflects the variance common to mental tests (e.g. IQ
tests) and measures the ability of individuals to engage in com-
plex reasoning and abstract thought13. ToM is the ability to
model and reason about the intentions of others14–16. Given these
definitions and the different tasks that g and ToM help indivi-
duals accomplish, we postulate that a functional diversity of
intelligences improves the ability of groups to govern resources
and that intelligence functional diversity is maximized when
groups have high competency in both g and ToM. In particular,
in this paper, we investigate the effects of cognitive functional
diversity on the ability of social groups to govern a common pool
resource system.

A common pool resource system is a system in which resources
are non-excludable (all individuals have access) and the harvest
decisions of each individual affect the availability of resources for
the entire group (i.e., the resource is rivalrous). In such systems,
governance entails developing rules and norms that allow indi-
viduals to harvest the resource now and, at the same time, create
incentives for sharing and preserving the resource for future
generations17,18. In order to assess the relationship between a
group’s ability to sustain common pool resources and cognitive
abilities, we conduct behavioral experiments in a spatially explicit
common pool resource system to test the functional intelligences
proposition (FIP)19.

The basic premise of the FIP is that g and ToM serve different
functions. This statement is supported, first, by the fact that high
g individuals with autism show a deficit in ToM14, and when such
high ability individuals attempt to model others’ mental states,
brain regions associated with ToM remain inactive14. Second,
while aspects of g (e.g., cause and effect detection and transitive
inference) are pervasive among vertebrates20, evidence of ToM
remains rare20. The best evidence of ToM among nonhuman
vertebrates comes from social animals with complex commu-
nication systems, in particular, blue jays, ravens, and chimpan-
zees21. These patterns suggest a widespread convergent selective
pressure for the ability to detect cause and effect and reason about
such relationships (aspects of g) among vertebrates, but this
selective pressure does not, apparently, lead to widespread ToM
abilities. In other words, the two abilities are not co-evolving in
nature. Finally, direct measures of social-cognitive ToM weakly
correlate with measures of g among human populations22.

Given that g and ToM serve distinct functions, both abilities
should affect the performance of social groups that attempt to
harvest common pool resources. This is because harvesting
common pool resources requires both a cognitive mapping of

resource dynamics and effective models of others’ intentions. In
particular, we propose that the highest functional diversity of
intelligence occurs when groups contain individuals with high
g and high ToM. In this scenario, groups are made up of indi-
viduals good at mapping their biophysical environment and
individuals good at mapping and communicating intentions
within their social environment. In short, g and ToM should
interact, and, as both abilities increase, groups should more
effectively solve the collective action dilemmas that arise in a
common pool resource system. However, if either capacity
declines, collective action becomes more problematic and thus the
sustainable management of resources more difficult.

Collective action dilemmas continually arise in a common pool
resource system because of the incentives that an individual has
to maximize her gains while dealing with uncertainties related to
resource abundance and the behavior of other individuals in the
system. Such uncertainty, along with the willingness to maximize
one’s own gain, creates an incentive to over exploit resources.
Following Hardin’s seminal work23, only two strategies were once
thought capable of solving such dilemmas and conserving com-
mon pool resources: (1) strong, top–down state control, and (2)
privatization23. However, the depletion of common pool resour-
ces does not inevitably occur absent state control or private
property rights18. In fact, researchers have documented multiple
cases in which groups sustainably manage common pool
resources from the bottom-up17,18,24–27. These groups often
display five common characteristics: They (1) adapt rules of
harvesting and resource appropriation to local resource dynamics;
(2) establish a proportionality between the provision and
appropriation of resources; (3) monitor the resource itself; (4)
sanction those who do not comply with the community rules (or
the rules of the commons); and (5) clearly define who has access
to harvesting resources17.

In the context of the five characteristics above, g is critical to
understand the local resource dynamics13,28. Higher g should
allow groups to analyze and assess resource changes, hence the
higher the total group g (or the average), the more likely a group
contains many individuals who model resource dynamics cor-
rectly and notice changes in local resource conditions29. However,
higher g also implies an increase in individuals who rationally
calculate the costs and benefits of using resources and more
readily compute strategies that will yield the highest net benefit to
themselves30. Thus, the effects of g on the harvest of common
pool resources should remain context dependent. For example,
harvesting resources in systems where boundaries, monitoring of
resources and rule matching are irrelevant, high g individuals
should maximize their own short-term rewards31. However,
when harvesting resources in common pool resource systems,
higher g individuals assess uncertainty in both the resource
(abundance and dynamics) as well as in others’ behavior. Espe-
cially when uncertainty related to others’ behavior is high, high g
individuals are more likely to defect in order to maximize their
current benefit, potentially leading to the overharvest of
resources32.

ToM is critical for individuals to model and monitor others’
mental states and social positions14,15,33. Higher ToM should
increase an individual’s ability to anticipate and monitor others’
behaviors, abide by inclusive rule making and diffuse more effi-
ciently, either through their actions or words, conflicts that may
arise in common pool resource systems33–36. A higher ability to
model others’mental states is associated with more efficient social
interactions and more pro-social behavior as defined by Frey37,
allowing groups with higher ToM to build and maintain fair and
legitimate rules that take proportionality and local circumstances
into account. Intelligence research in psychology also indicates
that increases in ToM improves the ability of groups to achieve a
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mutually beneficial goal in a static environment. For example,
Woolley and colleagues36 find that the g of individuals does not
predict a general group level intelligence factor but ToM
does35,36. This means that groups with higher ToM perform
better on a battery of tasks than groups with lower ToM scores. In
contrast with g, where the sum of the ability of individuals
forming a group drives the overall understanding of a system, any
one individual with low ToM may jeopardize the whole group’s
ability to devise effective rules to manage the system29,38, redu-
cing a group’s ability to manage resources in the face of change
and, in some cases, leading to overharvest.

In the case of environmental change that affects resources, a
functional diversity of cognitive abilities should be critical for
adapting to negative changes (HL treatment –discussed below),
while, perhaps, not as important when environmental change
improves a resource (LH treatment–discussed below). The dif-
ference in the importance of cognitive abilities may stem from the
difference between resource and group dynamics when condi-
tions improve vs. degrade. When conditions improve, there is no
need for re-negotiation and one can keep behaving as she did in
the past without adverse consequences. On the other hand, when
conditions deteriorate, harvest behavior needs to change in
accordance with the new condition of local scarcity. In this
context, negotiations about resource appropriation need to hap-
pen in order for the group to continue to manage resources
sustainably. For example, in repeated and environmentally stable
situations, all groups may eventually find optimal solutions (i.e.,
learning by doing). However, when the ecological system changes,
effective mental models of the underlying resource dynamics, as
well as other individuals’ behavior are critical. More effective
information processing improves learning and adaptation.
Groups composed of individuals with higher g should better
adapt to changes in their resource base than groups with lower g,
as groups with higher g more readily detect changes in a system
and devise rules to match such changes. However, changes in the
biophysical resource system often require the re-negotiation of
social rules and the communication of new knowledge. Hence,
higher ToM should increase a group’s ability to work towards a
common goal.

In sum, the combination of high g and high ToM should lead
to groups who are better at solving collective action dilemmas
and, thus, managing a common pool resource system19. Figure 1
summarizes the predicted interaction between g and ToM. In the
lower right quadrant, groups composed of many individuals with
high g should effectively monitor a resource and develop rules
that match the dynamics of the resource. However, such groups
also have low ToM and should experience more conflict, espe-
cially when a system changes. The costs associated with conflict
should nullify the gains from higher g. Another way to think
about this prediction is that ToM affects how efficiently indivi-
duals cooperate in groups and may lead to the emergence of a
general group intelligence factor39. When ToM is low, a group
has a lot of individual cognitive capital relevant to understanding
the resource, but conflict and difficulty communicating blunt the
emergence of a group level intelligence that harnesses the indi-
vidual level capital to maintain good governance over time.
Similarly, in the upper left quadrant, groups with high ToM but
low g should lack individuals with effective mental models of how
a resource system works, and this may nullify the benefits of more
amicable groups. In the lower left quadrant, low g and ToM
groups should find it difficult to understand the resource system
and effectively work together, which should lead to poor gov-
ernance. Finally, in the upper right quadrant, high g and ToM
should improve governance, especially in a system susceptible to
negative changes in a resource base over space and time. Groups
that contain individuals with high g and high ToM understand

the system well and more efficiently work together to govern a
resource.

Our results indicate that groups with high g and ToM better
adapt to deteriorating environmental conditions. Such groups are
less likely to deplete resources and harvest more resources, as
these groups have a better understanding of how the system
works and are also able to negotiate and communicate effectively.
Conversely, our results also indicate that when conditions
improve, groups with high competency in g more effectively reap
the benefit of the positive change. In fact, high g, along with
reciprocity, is sufficient for groups to perform well when resource
conditions improve, as conflict situations are less likely to arise
when resources are plentiful. In this situation the discriminating
variable between group performances is how well each group
understands the resource system.

Results
Assessing effects of g and ToM. To evaluate the effects of a
functional diversity of intelligence capacities, we ran behavioral
experiments by modifying the experimental environment devel-
oped by Janssen and colleagues40. The experimental environment
consists of a spatially dispersed resource (tokens) that grows
according to a density-dependent function (see Supplementary
Method 5). In this environment, groups of four harvest tokens for
six rounds. Two experimental treatments manipulate the growth
function to simulate a perturbation to the resource base of the
common pool resource (see Methods and Supplementary
Method 5). In treatment one, groups harvest resources at a high
growth rate for three rounds and then experience a sudden
decline in the growth rate of the resource and harvest resources
with a lower growth rate for another three rounds (HL treat-
ment). In treatment two, the exact opposite sequence occurs (LH
treatment). In both treatments, groups harvest tokens with a
specific growth rate for three rounds (rounds 1–3), and then with
a changed growth rate for another three rounds (rounds 4–6).
The change always occurred between rounds 3 and 4.

To isolate the effects of g and ToM, we use three response
variables. (1) The time a group stares at a collapsed resource in a
given round (Time). The greater the proportion of time within a
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Fig. 1 Predicted interaction effects of g and ToM on the ability of groups to
harvest resources and adapt to changes in resource growth
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round that a group stares at an empty screen, due to complete
resource depletion, the less effectively they governed the common
pool resource. (2) The difference in the percentage of potential
tokens harvested, on average, before and after an ecological
change (ΔT, see also Supplementary Method 1 for details). The
lower (or negative) this difference, the less intense the harvest
pressure on the resource after the change in resource growth. (3)
The percentage of potential tokens harvested per round (avgT, see
also Supplementary Method 1 for details). This metric estimates
how fully each group uses the resource round-to-round. The
three metrics used are related, and assess slightly different group
performance metrics: Time relates to resource depletion and
collapse; ΔT relates to harvest pressure pre vs.post environmental
change, and avgT relates to the ability of groups to harvest at the
optimal level.

Based on previous work, we first assess the effect of g and ToM
on Time and ΔT controlling for factors known to affect the ability
of groups to sustainably manage common pool resources: (1) the
volume of communication during the experiment, (2) a self-
reported measure of trust, (3) ethnic diversity, (4) religious
diversity, (5) the proportion of males in each group, and (6)
reciprocity40–46. Communication and trust often have positive
effects on sustaining a common pool resource40–43. Cross-cultural
studies suggest that within-group ethnic and religious homo-
geneity45,46 have positive effects on the governance of resources.
Finally, previous work also indicates that gender composition
may also affect the ability of groups to manage common pool
resources43, and that individuals are more likely to cooperate in
the future rounds of repeated games if they cooperated in
previous rounds42,47. Controlling for these factors, we find that
groups with high g and high ToM manage a common pool
resource better than groups lacking in one or both of these
distinct cognitive abilities.

Secondly, we assess a three-way interaction effect of g, ToM
and ecological change on avgT in order to assess how cognitive
abilities affect a group’s ability to follow the best cooperative
protocol for maximizing the number of tokens collected. When
environmental conditions deteriorate (HL treatment), we find,
once again, that groups with both high g and high ToM harvest
closer to the optimal level than groups lacking in one or both of
these distinct cognitive abilities.

Interaction effect of g and ToM on governing the commons. To
evaluate the effects of g and ToM on the ability of groups to
manage common pool resources, we used a general linear model
by re-scaling the dependent variable Time in the [0,1] interval.
Where both 0 and 1 have a theoretical positive probability of an
actual outcome: 0= a group is able to harvest tokens until the end
of a round, and 1= a group collapses the resource immediately.
We ran six models per treatment. For example, model HLt1
regresses Time on g, ToM, g*ToM and the results of the previous
round. Model HLt2 includes all of the independent variables of
HLt1, plus communication volume and so on until model HLt6,
which includes all of the additional factors (see also Supple-
mentary Method 2 and Supplementary Table 2).

In both the high-to-low (HL) and low-to-high treatments (LH),
the performance of a group in the previous round always has a
significant effect on the current round (see Supplementary
Method 2 and Supplementary Table 2 for more details). For
example, if groups sustain their resource until near the end of
round two, they are more likely to do so in round three as well. In
the LH treatment, performance in the previous round is the only
significant factor affecting Time. This may occur because
beginning the game with very low resource growth sends an
unambiguous signal to individuals that the resource is on the edge

of collapse. This lack of ambiguity about the consequences of
harvesting too fast could, potentially, impact the importance of
cognitive factors in managing the resource (i.e., the problem is
simple). However, in the HL treatment, in addition to the
previous round variable, g and ToM have a significant interaction
effect.

The interaction effect of high g and high ToM is illustrated by
Fig. 2 (see also Supplementary Method 2, Supplementary Table 2
and Supplementary Fig. 7). Figure 2 portrays a series of marginal
effect plots (one for each regression model run in each treatment).
The dark blue shading is the parameter space in which groups of
corresponding g and ToM values have a higher probability of
harvesting resources up to the end of a round, and, as the shading
becomes lighter and redder, groups have a higher probability of
spending more time staring at an empty screen as resources
deplete. Figure 2 illustrates that groups with both high g and high
ToM are less likely to collapse their resource, especially in the HL
treatment, before a round ends. However, Fig. 2 indicates that
increases in g or ToM alone increase the probability of over-
harvesting (see also Supplementary Table 2). For example, in the
plot labeled HLt1, the dark blue is in the upper right hand corner
of the graph where g and ToM are both high. That is, groups with
high g and high ToM use resources more sustainably. However,
low ToM and high g (bottom right corner of a given plot) or high
ToM, low g (top left corner of a given plot), lead to a higher
probability of collapsing the resource well before a round
completes. This pattern is displayed in both treatments; however,
the effect is weaker in the LH treatment and only significant in
the HL treatment (see Supplementary Method 2, Supplementary
Table 2). These results are further confirmed by analyzing the
interaction between cognitive abilities and the ecological change
(see Supplementary Method 3, Supplementary Table 2 and
Supplementary Fig. 8). The interaction term is, once again,
significant and negative, while g and ToM alone have a positive
effect on Time. In other words, groups with both high g and high
ToM, are more likely to avoid resource depletion. Conversely,
high g and low ToM or vice-versa is associated with a faster
collapse of the resource (Fig. 2, Supplementary Method 2,
Supplementary Table 2, Supplementary Method 3, Supplemen-
tary Table 4 and Supplementary Fig. 8).

To follow up on the results presented above, we ran an OLS
regression employing intelligence (g, ToM, and g*ToM) to
predict changes in the percentage of the maximum potential
tokens harvested before and after an ecological change: ΔT (see
Fig. 3, and Supplementary Table 3). This allows us to track, on
average, whether cognitive abilities influence groups’ responses
to ecological changes by increasing (i.e. harvest more tokens
after a change, ΔT > 0), reducing (i.e. harvest fewer tokens after
a change, ΔT < 0) or maintaining constant pressure (ΔT= 0).
Analogous to above, we ran six models per treatment, one that
includes just g, ToM & g*ToM and five that include control
variables (see Supplementary Method 2 and Supplementary
Table 3 for more details). We find that across all regression
models g and ToM have positive, statistically significant
independent effects on the response variable ΔT (Supplemen-
tary Table 3). This means that where either g or ToM is higher
alone, groups harvest more of the potential tokens from the
resource system after an ecological change and, thus, push the
system closer to a potential collapse. However, g and ToM also
have a negative, statistically significant interaction effect on ΔT.
This indicates that when g and ToM are higher together,
resources are harvested more sustainably after an ecological
change. In short, after a perturbation changes the growth rate of
the resource, groups with high g or high ToM alone push the
resource closer to its ecological limit (increase harvest
pressure). The interaction of g and ToM compensates for these
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individual effects of g and ToM, indicating that groups with
high values of both cognitive abilities more readily adapt to a
perturbation to their resource system and maintain a more
sustainable harvest.

These results are further supported by analyzing the ability of
groups to harvest resources near the optimal level for a
simulated group (avgT). In this regression analysis, we include a
three-way interaction between g, ToM, and ecological change
(see Supplementary Method 3 and Supplementary Table 4).
avgT, the response variable, is defined as the percentage of the
maximum potential tokens harvested per round by a group
(avgT), and change is a dummy variable that assumes a value of
0 in rounds 1–3 (pre growth-rate change), and a value of 1 in
rounds 4–6 (post growth-rate change). Figure 4 illustrates, as
above, the marginal effects of g and ToM, and the importance of

both high g and high ToM for sustainably managing the
resource in the HL treatment. Panels HLr4-b and HLr4-a
indicate the marginal effects of g and ToM before (-b) and after
(-a) the ecological change in the HL treatment. These panels
illustrate that groups with higher competency in both cognitive
abilities harvest closer to the optimal level (indicated by the
dark blue color on the top right corner of panels HLr4-b and
HLr4-a). When both g and ToM are high, groups harvest a
greater percentage of potential tokens because they cooperate
better and do not collapse the resource base as quickly as
groups with only high g or high ToM. In contrast, prior to the
resource change in the LH treatment, groups with high g do
better than groups with high g and high ToM or just as well. In
other words, when conditions improve, groups with high g are
better able to take advantage of the improved conditions and
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hence harvest closer to the optimal level (the dark blue is in the
lower right-hand corner of all effect plots labeled LH in Fig. 4,
and Supplementary Fig. 9).

In sum, when conditions deteriorate (HL treatment) Figs. 2–4
illustrate that groups with high g but low ToM push a system
closer to its ecological limits, are more likely to deplete resources
faster, and harvest a lower percentage of potential tokens. Groups
high in both g and ToM put less harvest pressure on the resource
base, are more likely to avoid resources depletion altogether, and
harvest a greater percentage of tokens. When the ecological
change is positive (LH treatment), groups with higher g tend to
harvest a greater percentage of potential tokens. This most likely
occurs because these groups realize the novel opportunity
presented by the decreased likelihood of resource depletion in
that environment

Discussion
This work contributes to identifying how a functional diversity of
cognitive abilities affects the ability of groups to manage resources
sustainably. It is well understood that functional diversity
increases the stability of ecosystems faced with disturbances1. The
effects of diversity in social systems are more contextual48–52. For
example, some argue that less ethnic and religious diversity
promotes the governance of resources because homogeneity
reduces uncertainty within the social domain and, at the same
time, may increase trust53,54. On the other hand, such diversity
also generates different learning heuristics and perspectives,
which may increase the ability of social groups to innovate and
adapt to social change2,55. Previous studies also indicate that
personality and behavioral diversity have long-term positive
effects on the performance of teams while the benefits due to
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informational diversity may decline with prolonged contact
between team members50,51,56,57. Our approach contributes to
sorting out why the effects of diversity are contextual by con-
sidering g and ToM as analogous to functional traits that provide
the cognitive infrastructure for individuals and groups to adapt to
social and ecological change.

Overall, our results illustrate that round-to-round, groups
with a high g but low ToM spend the most time staring at a
blank screen and put the most pressure on the resource after an
ecological change (see Figs. 2 and 3). However, only when
conditions deteriorate do groups with high g and high ToM
really reap the benefits of functional diversity, in terms of
overall tokens harvested (see Fig. 4). Over the first three rounds,
groups with high g and low ToM understand how to optimize
token harvest and work to maximize their profit. This behavior
also implies pushing the resource closer to its breaking point
and risks a collapse. This risk materializes more often round-to-
round among high g and low ToM groups. At the same time,
groups with high ToM and low g are also more likely to increase
pressure on resources as shown in Fig. 3, especially when the

growth rate of resources declines (HL treatment); however they
are, we speculate, better able to re-negotiate and avoid the
resource collapse than high g, low ToM groups as depicted in
Fig. 2.

Based on the experimental evidence presented here, we reason
that groups with high g and high ToM manage a common pool
resource more sustainably than groups with high g or ToM alone,
especially in the case of a negative change to the resource
(HL treatments). In fact, our results indicate that groups either
high in g or high in ToM alone harvest common pool resources
less sustainably than groups with high values of g and ToM. This
result is most robust in the HL treatment (see HL panels in Figs. 2
and 3, Supplementary Tables 2 and 3). In our LH treatment, the
effects are the same, but not significant with respect to speed of
resource depletion (see Supplementary Table 2). In the LH
treatment, the history of success or failure in the previous round
is the main variable with a significant effect on the sustainable
harvest of resources. Thus, as anticipated, cognitive abilities seem
less salient for managing the resource sustainably when the
resource conditions improve.
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Taken together, the experimental results presented here hint at
the possibility that a deficit in either g or ToM leads to less
beneficial group outcomes (sustained resource use), and, espe-
cially where g is high and ToM low, more selfish behaviors that
maximize an individual’s short-run harvest. The patterns
observed fit experimental data beyond our study. For example, in
time pressure experiments, which reduce cognitive function (g),
individuals cooperate much more in public goods games and one
shot prisoner’s dilemmas58. Further, in a meta analysis of
76 studies, Imuta and colleagues find a positive and statistically
significant association between ToM and pro-social behavior
among children 2–12 years old59.

Our results are also consistent with recent literature in psy-
chology suggesting that ToM (but not g) is the key individual
level factor predicting how well groups perform on a battery of
tasks (group intelligence)39. Groups with high g and low ToM
harvest faster and push the resource system closer to its
breaking point following a change in resource growth rate. This
does not occur where both g and ToM are high, perhaps sig-
naling the emergence of a more well developed group intelli-
gence. Similarly, Gonzalez-Forero and Gardner use a first
principles model of metabolic costs to illustrate that a combi-
nation of two types of games, individuals vs. nature (selecting
for high g) and groups vs. nature (selecting for higher ToM or
more social learning) accounts for 90% of variation in brain size
and life history of our species60. Our results are consistent with
the idea that both individual level intelligence and functioning
as social groups are important for humans to solve social-
ecological challenges.

We suspect that the salience of a functional diversity of cog-
nitive abilities for sustainably managing resources depends on a
system’s social and ecological complexity. In fact, we can classify
any social-ecological governance challenge along two axis, one
related to the degree of social complexity and one to the degree of
the ecological complexity (see also ref. 61). Social complexity
refers to the number of different objectives, the degree of con-
tentious objectives, the degree of cooperation or conflict, and the
degree of knowledge fragmentation. Ecological complexity refers
to the diversity, non-linearity, and predictability of processes
within the ecological system. Our experimental treatments fall
between a simple and a wicked problem (see Fig. 5). The low-to-

high treatment effectively represents a simpler problem in which
intelligence is much less salient and reciprocity takes over as the
main driver of harvest dynamics. We propose that the salience
and benefits of functionally diverse and high competence cogni-
tive abilities increases as a problem increases in both social and
ecological complexity. However, to better assess the relationship
between functional diversity of cognitive abilities and social and
ecological complexity, more studies are needed. Future experi-
mental studies could increase the ecological complexity by
changing the resource dynamics (different threshold of regrowth,
introducing high non-linear growth functions, giving different
types of signal or cues etc.) as well as the social complexity by, for
example, priming participants differently, and/or allowing for
different compensations dependent on different objectives for
each participant (or for groups of participants).

To summarize, collective action is essential for social groups to
solve complex ecological problems. While it is known that
institutions –rules and norms– have a key role in increasing
sustainability of common pool resources, it is individuals that lie
at the base of institutions. Individuals make and change rules and
norms as environments change. Yet, there have been few studies
that investigate the role of cognitive abilities in promoting col-
lective action in changing ecological settings. Cognitive abilities
underlay the ability of individuals to build models of their social
and ecological circumstances and, thus, make decisions about
how to collectively manage resources. In this paper we have
begun to disentangle the relationship between individual cogni-
tive abilities (ToM and g) and the ability of groups to act col-
lectively to manage common pool resources sustainably in a
changing environment. Consistent with the functional intelli-
gences proposition, results from two experimental treatments
illustrate how groups with both high g and ToM outperform
groups with high g or ToM alone, especially when faced with
negative environmental change.

Hence, in our experimental setting, a diversity and high
competency of different intelligences—g and ToM—is key to
sustainably manage resources. Just as a functional diversity of
traits increases and maintains the efficiency and stability of eco-
systems, a functional diversity of intelligence increases the ability
of groups to sustainably harvest resources, especially in degrading
environments.
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Methods
The experiment in a nutshell. The common pool resource system consists of a
spatially dispersed resource (tokens) that grows according to a density dependent
function (see Supplementary Method 5). The growth of the resource is not known
by the participants. Each participant in our experiment was paid $0.02 per unit of
resource harvested (tokens). Thus, individuals constantly faced the temptation to
harvest as many tokens as they could, as quickly as they could, to maximize their
revenue in the short-run. However, so doing always has a community cost in the
experiment: the resource base may be depleted quickly. In each experimental
treatment, groups of four anonymous individuals harvest tokens for 6 rounds (180
s each) on a 20×20 grid (see Supplementary Method 5). In treatment #1 (high
resource-to-low resource growth—HL), we evaluated the effect of a negative change
in the growth rate of the resource base on the ability of groups to collectively
harvest tokens. In this treatment, individuals harvest tokens in rounds 1–3 with a
high re-growth rate, and in rounds 4–6 with a low regrowth rate. In treatment #2
(low resource-to-high resource growth—LH), we evaluated the effect of a positive
change in the growth rate of the resource base on the ability of groups to collec-
tively harvest tokens. In this treatment, individuals harvest tokens in rounds 1–3
with a low regrowth rate, and in rounds 4–6 with a high regrowth rate. Both
negative and positive change relate to a halving or doubling of the resource growth
rate. In both experimental treatments, individuals were allowed to communicate
before each round of the game but were never informed about the change in the
growth rate of the resource base nor how many rounds they would play. See
Supplementary Method 5, 6 and 7 for the experimental design, recruitment and
protocol. This study complied with with all relevant ethical regulations for work
with human participants, and informed consent was obtained by each participant.
This study was approved by the Institutional Review Board (IRB) at Utah State
University (protocol # 7664) and at the University of Texas at San Antonio
(document # HRP-522, IRB number 16–256).

Measuring governance of the resource. The first performance measure is the
Time per round that a group stares at a blank screen because they have collapsed
their resource base. Time relates to the ability of groups to avoid collapse of
resources before the time of a round comes to an end. We rescale time to the [0,1]
interval, where 0= tokens harvested until the end of a round and 1= indicates an
immediate resource collapse. The second performance measure is the change in
performance between the first three1,3 and the second three rounds4,6 based on the
maximum theoretical average tokens collected: ΔT, where ΔT=AvgT1,3−AvgT4,6.
AvgT1,3 is the average number of tokens collected as a % of maximum possible
tokens in the first three rounds (55 token per individual in case of high growth rate,
and 36.25 tokens per individual per round in case of low growth rate), and AvgT4,6

is the average number of tokens collected in the second three rounds (calculated as
described for the first three). We also employ avgT on its own in order to assess
group performance as the number of tokens collected by groups each round (see
Supplementary Method 1, Supplementary Table 1 and Supplementary Figs. 4–6 for
more details on how ΔT and avgT were calculated). avgT thus represents the
average tokens harvested (as % of maximum possible tokens) of a group in rounds
1–3 and in rounds 4–6. All three dependent variables measure different aspects of
group performance with respect to resources. Groups that increase harvest pressure
after changes (higher ΔT are possibly not identifying local resource dynamics, and/
or are not able to re-negotiate resource allocation and harvest, hence leading to a
higher probability of resources collapsing (higher Time) and overall fewer tokens
collected (lower avgT). On the other hand, when environmental conditions
improve, we would not expect a strong relationship between increased harvest
pressure and resource depletion nor overall tokens collected.

Measuring g, ToM, and other independent variables. To measure g, participants
were asked to release their official ACT/SAT scores. ACT/SAT scores correlate
highly with IQ scores and other measures of g (corrected r= 0.8662–64,), which
drives the predictive validity of cognitive tests13,270–301. We used equivalence tables
from the College Board 2016 in order to transform SAT scores into ACT scores65.
As a proxy for group g we averaged such scores at the group level. To measure
ToM, each participant in our experiments completed a short story test designed to
measure social reasoning (the SST)66—see also Supplementary Note 1 and Sup-
plementary Method 8. The SST requires reasoning about the mental states of
characters in a short story66 and measures social-cognitive theory of mind67. Social
cognitive ToM measures the ability to infer others’ intentions and plan potential
courses of action. As a proxy for group ToM we used the minimum ToM score
within a group, following the saying that one “low ToM” can have detrimental
effects on the overall group dynamics by increasing conflict and reducing com-
munication effectiveness. For more information on the variables used and their
descriptive statistics (see Supplementary Note 2 and Supplementary Figs. 1–3.)

The use of average g and minimum ToM to estimate group values of g and ToM
follows from the functional diversity of tasks that the two different cognitive
abilities allow individuals and groups to perform. g is key to understand the system,
and understand changes affecting the system, hence it is important that skills
between participants can be averaged in order to increase the likelihood of a
positive team outcome29. ToM is key for smooth social interactions. To maintain
smooth social interactions all members of the group need to communicate and
diffuse tension, which depends on understanding others at a minimal level. One

individual with very low ToM has the ability to jeopardize the effectiveness of the
whole group38; hence, tasks that are related to ToM are more akin to conjunctive
tasks, and the minimum level should determine the overall group ability to perform
a specific task29.

Finally, we measure ethnic and religious diversity as −Σ(Ci*log(Ci)) where Ci=
Ni/N represents the fraction of individuals of religion or ethnicity i within a group
of four. We assess gender as the % of males within a group. We measure trust via
survey questions (see Supplementary Method 9) and chat volume as the number of
messages exchanged within a group per round.

Statistical models. To assess the effect of g and ToM on ΔT we employ a simple
linear regression model with interaction between g and ToM. The difference in
communication between the first three and the second three rounds is based on:
ΔChat=Avg Chat1,3−Avg Chat4,6.

To assess the effect of g and ToM on Time we employ a general linear model.
Following Papke and Wooldrige68 the model was estimated via quasi-maximum
likelihood as suggested by Gourieroux69. Given the relationship between cognitive
abilities (as shown in70), we assess the following models for both treatments
separately (low-to-high, LH, and high-to-low HL resource regrowth rates,
representing, respectively a positive (LH) and a negative (HL) change in the
environment)—see Supplementary Method 2, 3 and 4, and Supplementary
Tables 2–9 for model results:

EjTimet ¼ β0 þ β1 � gþ β2 � ToMþ β3 � g � ToMþ βi � x
���!þ Rt þ ε ð1Þ

ΔT ¼ β0 þ β1 � g þ β2 � ToM þ β3 � g � ToM þ βi � x
���!þ ε ð2Þ

and

avgt ¼ β0 þ β1 � gþ β2 � ToMþ β3 � changeþ β4 � g � ToMþ β5 � g � change
þβ6 � ToM � changeþ β7 � g � ToM � changeþ ε

ð3Þ

where βi � x
���!

is the vector representing additional variables: ΔChat for Eq. (1), and
Chat volume for Eq. (2), ethnic diversity, religious diversity, and gender. R= round
groups are playing (only used in Eq. 2), and ε represents the error term.

The GLM is estimated by rescaling the dependent variable Time in the [0,1]
interval, where both 0 and 1 have a theoretical positive probability to be an actual
outcome. Such rescaling allows us to estimate the expected time that each group is

able to use to harvest tokens: EjTime ¼ fð βx�!Þ is estimated via quasi-maximum

likelihood, where E|Time is the expected harvesting time per round, and βx
�!

is a
vector of model variables including the interaction between g and ToM, with the
addition of the following control variables (inserted one by one, see Supplementary
Table 2): communication volume (difference between the first three rounds and the
second three rounds), ethnic diversity, religious diversity and gender. f(⋅) is the
logistic function: f(g)= eg/(1+ eg).

Ethical approval. This study was approved by the Institutional Review Board (IRB)
at Utah State University (protocol # 7664) and at the University of Texas at San
Antonio (document # HRP-522, IRB number 16-256).

Data availability
All data and codes used to generate figures and tables presented here and in the sup-
plementary information are available upon request to the corresponding author.
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