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Abstract- This paper discusses the stability problem of linear continuous-time distributed systems. When 

dealing with large-scale systems, usually there is not thorough knowledge of the interconnection models 

between different parts of the entire system. In this case, a useful stability analysis method should be able to 

deal with high dimensional systems accompanied with bounded uncertainties for its interconnections. In this 

paper, in order to formulate the stability criterion for large-scale systems, stability analysis of LTI systems is 

first considered. Based on the existing methods for estimating the spectra of square matrices, sufficient 

criteria are proposed to guarantee the asymptotic stability of such systems. One of the advantages of these 

stability conditions is in analyzing linear systems having uncertainties. In this case, a new sufficient criterion 

is introduced. Back to the main purpose of the paper, it will be proved that the method can also be used for 

the stability investigation of large-scale systems accompanied with bounded time-variant uncertainties. Then 

the maximum permissible bounds for the interconnections while holding the stability will be obtained. Since 

in analyzing large-scale systems there is hardly thorough knowledge about the interactions between sub-

systems, finding such bounds is of great importance. Unlike most of the previous work, this method is not 

restricted to structured uncertainties belonging to convex sets. The merit of the suggested stability analysis is 

illustrated via several examples. 

Index Terms- Large-scale systems, Stability analysis, LTI systems, Uncertainty, Gerschgorin theorem, 

Eigenvalue estimation. 

I. INTRODUCTION 

Stability is one of the most important issues of any control system. In this case, there exist 

huge amount of literature on the stability of different types of control systems [1-28]. During the 

last few decades, systems have become larger and more complex in such a way that it makes it 

difficult to analyze the entire system. Therefore, researches and control designers have put much 

more attention to the control algorithms and stability methods to deal with such large-scale 

systems which might be accompanied with some sort of uncertainties and time delays as the 

practical sense. For the purpose of stability analysis of these systems there exist two main 

approaches. Most of the proposed methods are based on the previous results in small-scale 

systems and researchers seek to extend and apply those to large-scale systems. The other 

approach is to take advantage of recent developments in the analysis of networks and using 

graph-theory and so forth.  

As is mentioned before, stability analysis of large-scale systems has been paid great attention 

during the last few decades. Basically, analysis of these large-scale systems is difficult and if 

they include either some sort of uncertainties or delays, then the problem becomes more daunting 

[1-7]. In this area, Suh and Bien [1] proposed a stability sufficient condition for large-scale 

systems having time-invariant delay. But checking the stability using their approach requires 

finding positive scalars satisfying set of inequalities which is generally difficult. Hmamed [2] 

dealt with systems of the same structure and provided a sufficient delay-independent stability 

criterion. This approach is based on matrix measurement and checking the obtained inequalities 

for all the complex numbers lie inside the unit-circle of the complex plain which is not an easy 
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task. Huang et al. [4] extended Hmamed’s result [2] and based on Lyapunov function and matrix 

norms, they provided a theorem for systems having time-invariant delays. Since their stability 

condition is related to finding matrix measurements for each sub-system, it is conservative. 

Nian and Li [5] included uncertainties as well as delays in the structure of their large-scale 

model. They derived a sufficient stability condition from the spectra of matrices P and Q of 

Lyapunov method in the corresponding sub-systems. But meeting requirements of their obtained 

inequalities need to find some free variables which make it conservative and difficult. Xu [6] 

represented a lemma for stability of such systems having time-variant delays again based on 

matrix norm and the eigenvalues of positive-definite matrices P and Q of the Lyapunov function. 

In 2012, Lee and Chen discussed the stability of large-scale systems when accompanied with 

delay and non-linear interactions. Their proposed stability theorem requires satisfying set of 

inequalities that have two free scalars for each sub-system. But as aforementioned before finding 

these free variables make it difficult to fulfill the inequalities. 

This paper aims to deal with stability analysis of large-scale systems from another point of 

view. When analyzing large-scale systems we usually do not have enough knowledge about the 

interactions. Hence in this paper the author mainly seeks to find the bounds for the interactions in 

which the stability of the entire system is still guaranteed. The proposed method for finding such 

bounds is based on methods for estimating the eigenvalues. For this purpose, we first try to apply 

the results to small-scale linear systems and then the extension to large-scale systems will be 

done. 

In case of small-scale systems, stability analysis of LTI systems has been investigated via 

various methods. Famous methods such as Routh-Hurwitz stability criterion, Lyapunov 

functions, and calculating the eigenvalues of the state matrices are some of the standard 

approaches for checking the stability of such systems. But when having systems with high 

dimensional state matrices accompanied by uncertainties or time-variant parameters, using such 

methods seem to be abortive or time-consuming. 

The stability problem of uncertain linear systems has received considerable attention and 

numerous criteria have been proposed for this issue during the last three decades [8-19]. It is 

worth noting that most of these stability conditions are based on Lyapunov method [8-17]. A 

single quadratic Lyapunov function is one of the traditional methods for the stability 

investigation of such systems. However, using it for the aim of robust stability investigation 

seems to be conservative. In order to reduce this conservatism, other methods such as parameter-

dependent Lyapunov functions and piecewise Lyapunov functions were introduced. Based on 

using parameter-dependent Lyapunov functions, many criteria have been proposed to check the 

robust stability of systems having time-varying uncertain parameters which are less conservative 

than quadratic stability [11-15,17]. Let’s review some of the previous works in this area. 

Based on Lyapunov function and by approximating the uncertain region with a convex hyper-

polyhedron, Gu et al [8] provided a necessary and sufficient condition to guarantee the quadratic 

stability of uncertain linear systems. Interestingly, it has also been shown that their method can 

be used for checking the stability of other types of systems like uncertain Takagi-Sugeno fuzzy 

models [20]. Fang and Loparo [10] used a Lyapunov equation for the nominal system and 

proposed an approach to check the robust stability of linear systems having structured 

uncertainty. Though improving the obtained bounds for the structured uncertainty comparing to 

the previous works, it requires satisfying one of the three defined inequalities which seems to be 
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time-consuming. Romas and Peres [11] introduced a sufficient condition for the robust stability 

of continuous-time uncertain linear systems with convex bounded uncertainties. Based on linear 

matrix inequalities, they constructed a parameter dependent Lyapunov function to guarantee the 

stability of any matrix inside the defined uncertainty domain. Montanger et al [12] proposed a 

sufficient condition for the robust stability of linear systems with time-varying uncertainty. They 

guaranteed the stability of means of a parameter-dependent Lyapunov function and imposing 

bounds on the time derivatives of the uncertain parameters. Their method was based on two 

assumptions: the uncertain parameters belong to a polytope and the time derivatives of them are 

defined in certain bounds. 

In terms of linear matrix inequalities and based on parameter-dependent Lyapunov function, 

Zhai et al [14] investigated the robust stability of such systems having real parametric 

uncertainty. However, the method requires checking the existence of some symmetric matrices 

and a skew matrix which seems not to be an easy task. Yang and Dong [15] derived stability 

criteria for the existence of a parameter-dependent Lyapunov function in order to guarantee the 

robust stability of those systems having polytopic uncertainty. Amao et al [16] considered the 

robust stability problem for linear uncertain systems subjected to parametric time-varying 

uncertainties. In this case, they made use of polyhedral Lyapunov functions and obtained less 

conservative results for such systems compared to the classical quadratic stability method. 

It can be seen that many of those aforementioned studies on this issue have been based on the 

parameter dependent Lyapunov functions. However, the introduced stability conditions seem to 

be rather conservative and some impose very restrictive assumptions. Moreover, most of the 

obtained criteria for the stability problem are based on the fact that the uncertainties are 

structured and are confined to convex sets. These restrictions have led the researchers to think of 

introducing approaches which are not dependent on Lyapunov functions [18,19]. Gong and 

Thompson [18] considered the stability problem of systems having unstructured parameter 

perturbation. Their stability condition was derived from the polar decomposition of the nominal 

system matrix. Ren et al [19] studied linear systems having constant parameter uncertainty. By 

applying a Guardian map, they derived sufficient criteria to guarantee the robust stability of such 

systems. Though proposing a different and novel approach, their method is firstly limited to a 

certain type of uncertainties. Secondly, checking the stability via this method requires satisfying 

number of inequalities which will be increased when having higher-dimensional state matrices. 

As have been stated before, most of the previous studies for the stability problem of linear 

systems having uncertainties are based on Lyapunov function with the assumption of having 

structured uncertainties belonging to convex sets. In this paper, the authors seek to propose a 

different method that has not the restrictions and conservativeness of the famous Lyapunov 

function. In this case, we will investigate the stability via estimating the eigenvalues of the 

perturbed system directly. The idea is inspired from [21-25,27,28], where the authors studied the 

estimation methods for the eigenvalues of any arbitrary matrix. 

The estimation and location of eigenvalues have been always one of the important topics in 

matrix theory. In this area, the famous Gerschgorin disk theorem estimates all the eigenvalues of 

any arbitrary complex matrix in the union of defined disks [22-24]. C. K. Li and R. C. Li in [25] 

improved the previous results in estimating the eigenvalues of Hermitian matrices. They 

estimated the eigenvalues of such matrices from the eigenvalues of their corresponding diagonal 
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matrices. In other words, the sub-diagonal entries were considered to be perturbations on the 

diagonal matrix which was defined as the nominal matrix. Aside from just estimating the spectra, 

this method can also be used for the stability investigation of linear systems. In this case, 

Shekaramiz and Sheikholeslam took advantage of such a method to analyze the stability of 

Takagi-Sugeno fuzzy models [26]. Zou and Jiang [27] showed that the spectra of an arbitrary 

complex matrix can be found in one closed disk. Though providing a better estimation in 

comparison to the previous works, it is not an easy task to compute. Xingdong et al [28] dealt 

with the eigenvalue estimation in order to propose a solution to the perturbed matrix Lyapunov 

equation. It is a novel work applicable to control theory and linear system stability. However, the 

method is again based on Lyapunov method and the obtained inequality seems not to be easily 

fulfilled. 

In this paper, firstly, the common method for the stability analysis of large-scale systems is 

reviewed. Then, the famous Gerschgorin circle theorem and some other recent estimation 

methods for estimating the eigenvalues will be discussed. Gerschgorin circle theorem is a 

method that specifies regions in which the spectra of any complex square matrix do exist. By 

using the aforementioned theorem, some sufficient criteria will then be proposed in order to 

check the asymptotic stability of LTI systems. Moreover, the stability problem of linear systems 

having uncertainties will be considered. In this case, a sufficient criterion is proposed to 

guarantee the asymptotic stability of such systems. After building up all the required 

preliminaries, the main purpose of the paper will be stated. In this case, the obtained results from 

the small-scale systems will be extended and applied to large scale systems. Finally, we will find 

the maximum permissible bounds for the interactions in which the entire large-scale system is 

asymptotically stable. 

This paper is organized as follows: Common method for stability analysis of large-scale 

systems and some estimation methods for the eigenvalues of arbitrary matrices will be presented 

in section II. In section III, sufficient criteria will be introduced to seek the asymptotic stability 

of LTI systems. Section IV will provide sufficient stability conditions for continuous-time linear 

systems having uncertainties. Furthermore, numerical examples will be presented to demonstrate 

the effectiveness of the proposed method. Then in section V, stability analysis of autonomous 

large-scale systems will be represented and the maximum allowable bounds for the interactions 

to hold the system stable will be derived. Finally, the concluding remarks are given in section VI. 

 

II. PRELIMINARIES 

In this section, first a brief model description of the interaction-oriented model of large-scale 

systems is given. Then, the common method of analyzing the stability of such systems is 

discussed. Finally, some existing methods for estimating the eigenvalues of a matrix are 

represented. 

II.I INTERACTION-ORIENTED MODEL 

Consider the unforced large-scale system below. 

�̇�𝑜 = 𝐴𝑜𝑋𝑜 (1) 
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It is straight forward to show that the system in Eq. (1) can be represented by the following 

interaction-oriented model 

{
�̇�𝑖 = 𝐴𝑖𝑖𝑋𝑖 + 𝐸𝑖𝑆𝑖
𝑍𝑖 = 𝐶𝑧𝑖𝑋𝑖            

  , i=1,2,…,M. (2) 

where the interaction models can be defined as 

𝑆𝑖 =∑𝐿𝑖𝑗𝑍𝑗

𝑀

𝑗=1

 (3) 

In the above equation, 𝐿𝑖𝑗 are the interconnection matrices and the interconnection gain is 

defined by 

𝑙𝑖𝑗 = ‖𝐿𝑖𝑗‖ (4) 

such that 

‖𝑆𝑖‖ ≤∑𝑙𝑖𝑗‖𝑍𝑗‖

𝑀

𝑗=1

 (5) 

Now, in order to check the stability of the whole system, one must consider both the properties 

of each sub-system and the characterization of their interconnections. Let’s review the common 

method for dealing with the stability of such systems. 

The very first step is to verify the stability of each isolated sub-system i.e., neglecting the 

interactions. 

�̇�𝑖 = 𝐴𝑖𝑖𝑋𝑖 ,  i=1,2,…,M. (6) 

The stability investigation of the isolated sub-systems can be done using the Lyapunov 

method as follows. Systems in Eq. (6) are asymptotically stable if for all 𝑖 = 1,2, … ,𝑀 and for 

any 𝑄𝑖 = 𝑄𝑖
𝑇 > 0 there exist 𝑃𝑖 = 𝑃𝑖

𝑇 > 0 satisfying the set of Lyapunov equations below. 

𝑃𝑖𝐴𝑖𝑖 + 𝐴𝑖𝑖
𝑇𝑃𝑖 = −𝑄𝑖 (7) 

The second step is to identify the aggregate models describing the sub-systems’ dynamics and 

their mutual interactions which can be found by the following non-quadratic Lyapunov function. 

𝑉𝑖(𝑋𝑖) = √𝑋𝑖
𝑇𝑃𝑖𝑋𝑖  ,  i=1,2,…,M. (8) 

The followings are the key parameters and models. 

∀ i=1,2,…,M.    

{
�̇�𝑖 = 𝐴𝑖𝑖𝑋𝑖 + 𝐸𝑖𝑆𝑖
𝑍𝑖 = 𝐶𝑧𝑖𝑋𝑖            

   Revisited (2) 
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𝑏𝑖1 = ‖𝐸𝑖‖     (9) 

𝑏𝑖2 = ‖𝐶𝑧𝑖‖ (10) 

𝐶𝑖1 = √𝜆𝑚𝑖𝑛(𝑃𝑖) (11) 

𝐶𝑖2 = √𝜆𝑚𝑎𝑥(𝑃𝑖)  (12) 

𝐶𝑖3 =
𝜆𝑚𝑖𝑛(𝑄𝑖)

2 √𝜆𝑚𝑎𝑥(𝑃𝑖)
 (13) 

𝐶𝑖4 =
𝜆𝑚𝑎𝑥(𝑃𝑖)

√𝜆𝑚𝑖𝑛(𝑃𝑖)
 (14) 

‖𝑆𝑖‖ ≤∑ 𝑙�̅�𝑗‖𝑍𝑖‖
𝑗≠𝑖

 (15) 

where 

‖𝐿𝑖𝑗‖ ≤ 𝑙�̅�𝑗 (16) 

The third step is to verify the stability of the aggregate overall system using the aggregate 

parameters which can be done as follows. 

𝑉(𝑋) = [
𝑉1(𝑋1)
⋮

𝑉𝑀(𝑋𝑀)
] (17) 

The overall aggregate model is 

�̇� ≤ 𝑀𝑉 (18) 

where the matrix M is defined as follows. 

𝜇𝑖𝑗 =

{
 
 

 
 −

𝐶𝑖3
𝐶𝑖2

                    𝑖𝑓 𝑗 = 𝑖 

𝐶𝑖4𝑏𝑖1𝑙�̅�𝑗
𝑏𝑗2

𝐶𝑗1
      𝑖𝑓 𝑗 ≠ 𝑖

 (19) 

Finally, the stability of the whole unstructured model is guaranteed if the aggregate overall 

model is stable. In other words, the whole system is asymptotically stable if all the spectra of the 

obtained matrix M have negative real-part values. Moreover, using the Gerschgorin theorem 

(which will be defined in the next sub-section), it also can be proved that the whole system is 

asymptotically stable if the below set of inequalities hold. 

𝐶𝑖3
𝐶𝑖2

> 𝐶𝑖4𝑏𝑖1𝑙�̅�𝑗
𝑏𝑗2

𝐶𝑗1
 (20) 

II.II ESTIMATION OF THE SPECTRA 

Estimating the location of eigenvalues is one of the hot topics in matrix analysis. In this 

section, some of the estimating methods for the spectra of any arbitrary matrix are represented.  
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In 1909, Schur presented the following well-known estimation for the eigenvalues of an 

arbitrary square matrix 𝐴 [29]. 

∑ |𝜆𝑖|
2𝑛

𝑖=1 ≤ ‖𝐴‖𝐹
2 , ,  ‖𝐴‖𝐹 = (𝑡𝑟(𝐴

∗𝐴))
1

2 
(21) 

Kress et al. [30] improved the upper bound of the above disk as follows 

∑|𝜆𝑖|
2

𝑛

𝑖=1

≤ {‖𝐴‖𝐹
4 −

1

2
‖[𝐴, 𝐴∗]‖𝐹

2}

1
2
 (22) 

where,  

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 

But since the aforementioned estimations include a disk centered at the origin of the complex 

plane, they cannot be used for the purpose of stability analysis. 

Gerschgorin circle theorem is another estimation method that seeks the location of 

eigenvalues for any arbitrary square matrix. It specifies circular regions in which the entire 

eigenvalues of a square matrix can be found. The theorem is described below.  

Gerschgorin Circle Theorem 1 [21, 22]: Consider an arbitrary complex square matrix nnA   as follows. 

  .,...,2,1,, njiaA ijnn   (23) 

Then, any eigenvalue   of the matrix A  is located in at least one of the closed disks of the 

complex plane centered at iia  and having the defined radius R
iR  below. These disks are called 

Gerschgorin disks. 






n

ij
j

ij
R
i aR

1

 (24) 

In other words, 

R
iR  that such,)(  iiaiA   (25) 

where )(A  is the spectrum of matrix A  such that  

 nA  ,...,,)( 21 . 

Corollary 1 [23]: Since the above result also holds for the transpose of matrix A , we can formulate 

a version of the Gerschgorin circle theorem based on columns sums instead of rows sums and 

reach to the following results. 

C
jR  that such,)(  jjajA   (26) 

where, 
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n

ji
i

ij
C
j aR

1

 (27) 

The result is obtained from the fact that the eigenvalues of any arbitrary matrix are equal to the 

eigenvalues of its transpose. 

Gu [31] proved that all the eigenvalues of any complex matrix 𝐴𝑛×𝑛 are located in the 

following disk. 

{𝑧 ∈ 𝐶 ∶  |𝑧 −
𝑡𝑟𝑎𝑐𝑒(𝐴)

𝑛
| ≤ √

𝑛 − 1

𝑛
(‖𝐴‖𝐹

2 −
|𝑡𝑟𝑎𝑐𝑒(𝐴)|2

𝑛
)} (28) 

O. Rojo and R. Soro [32] provided almost the same bound below for such estimation. 

{ |𝜆𝑖 −
𝑡𝑟𝑎𝑐𝑒(𝑀)

𝑛
| ≤ √

𝑛 − 1

𝑛
(𝑡𝑟𝑎𝑐𝑒(𝑀)2 −

|𝑡𝑟𝑎𝑐𝑒(𝑀)|2

𝑛
)} (29) 

Zou and Jiang [27] proved that all the eigenvalues of arbitrarily complex matrix are located in 

one closed disk. Let’s review their main results. 

Let 𝑀𝑛(𝐶) be the set of all complex matrices of order 𝑛. Let 𝑀 = (𝑚𝑖𝑗) ∈ 𝑀𝑛(𝐶) and 𝑀∗ =

(�̅�𝑖𝑗) ∈ 𝑀𝑛(𝐶). Denote by 𝜆(𝑀) the class of all eigenvalues of 𝑀. Denote 

‖𝑀‖𝐹 = (𝑡𝑟(𝑀
∗𝑀))

1
2   

Theorem 2 [27]: Let 𝑀 ∈ 𝑀𝑛(𝐶) be 𝑛 × 𝑛 an complex matrix partitioned as 

𝑀 = [
𝐴𝑘×𝑘 𝐵𝑘×(𝑛−𝑘)

𝐶(𝑛−𝑘)×𝑘 𝐷(𝑛−𝑘)×(𝑛−𝑘)
] (30) 

where 𝐴𝑘×𝑘 is a 𝑘 × 𝑘 principal submatrix of 𝑀, 1 ≤ 𝑘 ≤ 𝑛 − 1. Then, all the eigenvalues of 𝑀 are 

located in the following disk. 

{𝑧 ∈ 𝐶 ∶ |𝑧 −
𝑡𝑟𝑎𝑐𝑒(𝑀)

𝑛
| ≤ √

𝑛 − 1

𝑛
(‖𝑀‖𝐹

2 −
|𝑡𝑟𝑎𝑐𝑒(𝑀)|2

𝑛
− 𝑚𝑎𝑥

1≤𝑘≤𝑛−1
(‖𝐵𝑘×(𝑛−𝑘)‖𝐹

− ‖𝐶(𝑛−𝑘)×𝑘‖𝐹
)
2

)} (31) 

In other words, all the eigenvalues of the matrix 𝑀 are located in one closed disk with the 

following center and radius. 

𝐶(𝑀) =
𝑡𝑟𝑎𝑐𝑒 (𝑀)

𝑛
 (32) 

𝑅(𝑀) = √
𝑛 − 1

𝑛
(‖𝑀‖𝐹

2 −
|𝑡𝑟𝑎𝑐𝑒 (𝑀)|2

𝑛
− 𝑚𝑎𝑥
1≤𝑘≤𝑛−1

(‖𝐵𝑘×(𝑛−𝑘)‖𝐹
− ‖𝐶(𝑛−𝑘)×𝑘‖𝐹

)
2
)  

(33) 
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Now, as has been stated before, the stability problem is dependent on the spectra of matrix M 

defined in Eq. (19). In other words, we can redefine the stability problem of the whole system as 

the stability analysis of the system below.  

�̇�(𝑡) = 𝑀𝑋(𝑡) (34) 

Let’s go back to our main purpose of this paper. Though the verification of the stability of 

system Eq. (34) is less demanding than the verification of the stability of the whole large-scale 

system Eq.(1) (since 𝑀 ≪ 𝑛 ∶ the number of states in the whole system) depending on the 

number of the defined sub-systems, the stability verification of system Eq. (34) can be a daunting 

task for large number of sub-systems. Moreover, please note that the interaction models are not 

thoroughly known. Therefore, the stability method should also accounts for the changes on the 

interactions i.e., 𝑙�̅�𝑗. This problem is now nothing more than stability analysis of semi-large scale 

linear systems having uncertainties. In the following section, we aim to first provide some 

sufficient criteria for the stability analysis of small-scale linear systems, apply them to analyze 

the stability of system Eq. (34), and then conclude the stability of the whole unstructured system. 

III.STABILITY OF CONTINUOUS-TIME SMAILL-SCALE LTI SYSTEMS 

In this section, based on Gerschgorin circle theorem, sufficient criteria will be proposed to 

investigate the stability of LTI systems. Please note that we are dealing with continuous-time 

linear systems in which all the entries of their relevant state matrices are assumed to have real 

values. Hence according to Gerschgorin circle theorem, all of the Gerschgorin disks for such 

systems will be centered on the real-axis of the complex plane. Now, consider the following 

definitions. 

}{max
1






n

ij
j

ijii
i

aaH  (35) 

}{min
1






n

ij
j

ijii
i

aaH  (36) 

In the above definitions, H  and H  denote the maximum and minimum values that the real-

part of eigenvalues of square matrix A may have possess, respectively. For better understanding, 

ponder the following example. 

Example 1: Consider matrix A1 as follows. 

























112

120

211

1A  

In the figure below the related Gerschgorin disks and the values of H  and H  have been 

illustrated. 
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Figure 1: Gerschgorin disks for matrix A1 and of H  and H  obtained from Eq. (35) and Eq. (36), respectively. 

Since all the entries of matrix A1 are real values, the centers of all Gerschgorin disks are placed 

on the real-axis of the complex plane. This also can be seen in Fig. (1). 

In the theorem below, a sufficient criterion will be proposed in order to investigate the 

asymptotic stability of linear time-invariant systems. 

Lemma 1: Consider the unforced LTI system )()( tXAtX nn . Where, 

  .,...,2,1,, njiaA ijnn   

Then, the system is asymptotically stable if it has a negative value for H  in the following 

definition. 

}{max
1






n

ij
j

ijii
i

aaH  (37) 

Proof: Assume that one of the Gerschgorin disks of matrix A has been drawn as follows. 

 

Figure 2: One of the Gerschgorin disks of matrix A in the complex plane. 

Please note that all of the entries of matrix A have been assumed to have real values i.e., 

Rkka . Then, the real-part of any arbitrary point being inside or on the boundary of the above 

closed disk would have the value equal or less than . Now, consider Eq. (24) and Eq. (25) 

defined in the Gerschgorin circle theorem.  
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n

ij
j

ijii aaiA
1

   thatsuch,)(   

By having real values for the center of Gerschgorin disks, we can then rewrite the above 

inequality as follows. 









n

ij
j

ijii

n

ij
j

ijii aaaa
11

)Re(  

Now define iH  as 






n

ji
j

ijiii aaH
1

 (38) 

The term iH  denotes the maximum permissible value for k  related to the kth Gerschgorin disk. 

Then define 

)(max i
i

HH   (39) 

Now, having a negative value for H  concludes that all of the eigenvalues of matrix A have 

negative real-part values. In this case, the system is asymptotically stable.  

Example 2: Consider an LTI system having the below state matrix. 

























522

241

012

2A  

By applying definition Eq. (37) to this matrix, we obtain 01)( 2 AH . Therefore, according to 

lemma 1, the system is asymptotically stable. The Gerschgorin disks are shown below. 

-2-5

2j

H
H

-2j

Re

Im

-1-4-6-9 -3

j

-j

5j

-5j

 

Figure 3: The Gerschgorin disks for matrix A2 obtained from the Gerschgorin circle Theorem. 
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Finally, in order to verify the stability conclusion, the eigenvalues of matrix A2 have been 

calculated below. 

426.1,105.2787.4)( 2  jA  

So far, a sufficient criterion has been proposed in order to guarantee the asymptotic stability of 

LTI systems. But, there exist many systems that have non-negative values for H  while the 

systems are asymptotically stable. Let’s have a look at the following example. 

Example 3: Consider an LTI system with the below state matrix. 





























6226.0

8.11251

16.392.1

5.2613

3A  

In this example, applying lemma 1 concludes no results about the stability of the system; 

05.6)( 3 AH  while the system is asymptotic stability. 

Hence, our proposed lemma 1 still seems to be conservative. Now, let’s introduce another 

stability criterion for LTI systems. 

Corollary 2: Consider the LTI system )()( tAXtX  . The system is asymptotically stable if the 

below definition has negative value.  

}{max
1






n

ji
i

ijjj
j

aaH  (40) 

Proof: The proof can be easily obtained from Gerschgorin circle theorem 1, corollary 1, and 

lemma 1 and is omitted.  

 

Example 4: Consider the system described in Ex. (3). By applying definition Eq. (40) to the 

system, we reach to 02.0)( 3 AH . Therefore according to corollary 2, the system is 

asymptotically stable. 

Please note that the proposed criterion in corollary 2 also seems conservative. This is because 

of the fact that there exist many stable systems in which the stability criterion of corollary 2 is 

not fulfilled. Now, by taking advantage of what was introduced in lemma 1 and corollary 2, we 

can define the less conservative theorem below. 

Theorem 3: Consider an unforced LTI system )()( tXAtX nn . Where, 

  .,...,2,1,, njiaA ijnn   

Then, the system is asymptotically stable if the following inequality is satisfied. 

0),(min 


HHH  (41) 
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Where, 

}{max
1






n

ij
j

ijii
i

aaH  Revisited (37) 

}{max
1






n

ji
i

ijjj
j

aaH  

Revisited (40) 

Proof: The proof is straightforward and is omitted. 

 

Example 5: Consider a continuous-time LTI system having the same state matrix as Ex. (3). By 

applying the definitions of theorem 3, we reach to the following results. 

02.0)(2.0)(,5.6)( 333 


AHAHAH  

Therefore, the system is asymptotically stable. 

Now, reconsider the state matrix A3 represented in Ex. 5. It seems that stability investigation 

for systems having rather higher dimension state matrices by methods such as Routh-Hurwitz 

criterion, Lyapunov methods, or directly calculating the eigenvalues are much more time-

consuming when compared with our proposed stability criteria.  

IV. STABILITY ANALYSIS OF SYSTEMS HAVING UNCERTAINTIES 

So far, some sufficient criteria have been introduced in order to guarantee the asymptotic 

stability of LTI systems. In this section, the stability problem of systems having uncertainties 

will be considered. In this case, based on the Gerschgorin circle theorem and the obtained 

stability criteria of the previous section, a new stability condition for such systems will be 

proposed. 

Theorem 4: Consider the following unforced continuous-time linear system. 

)())(()( 0 tXtAAtX   (42) 

Where, 

    .,...,2,1,,)(,)()(,0 njiMtatatAaA ijijijij   (43) 

Matrices 𝐴𝑂 and ∆𝐴(𝑡) denote the nominal state matrix and the uncertainty, respectively. 

Suppose that the system with its nominal state matrix 𝐴𝑂 be asymptotically stable. Then, the 

system in Eq. (42) is stable if the following criterion is satisfied. 

0),(min )()()( 000
 



tAAtAAtAA HHH  
(44) 

Where, 
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  .,...,,2,1,
1

)(, 0
niMaR

n

ij
j

ijij
R

tAAi 



  (45) 

  .,...,,2,1,
1

)(, 0
njMaR

n

ji
i

ijij
C

tAAj 



  (46) 

.,...,,2,1, niMaC iiiii   (47) 

.,...,,2,1,)(max )(,)(
00

niRCH R
tAAii

i
tAA    (48) 

.,...,,2,1,)(max )(,)(
00

njRCH C
tAAjj

j
tAA    (49) 

The above notations represent the following definitions. 

R
tAAiR )(, 0  : Maximum permissible value for the radius of ith Gerschgorin disk corresponding to ith row of )(0 tAA  . 

C
tAAjR )(, 0  : Maximum permissible value for the radius of jth Gerschgorin disk corresponding to jth column of 

)(0 tAA  . 

iC : Maximum permissible value for the center of ith Gerschgorin disk corresponding to ith row of )(0 tAA  . 

)(0 tAAH  : Maximum permissible value for the real-part of spectra of  )(0 tAA   based on rows sums. 

)(0 tAAH  : Maximum permissible value for the real-part of spectra of )(0 tAA  based on columns sums. 

Proof: Having maximum values for the radii and centers of Gerschgorin disks, one can obtain the 

maximum permissible value for the )(0 tAAH 



 defined in Eq. (44). This value represents the 

maximum permissible value for the real-part of spectra of matrix )(0 tAA  . According to theorem 

3, having negative value for )(0 tAAH 



 guarantees the asymptotic stability of the system. The 

approach for the proof is almost the same as those described in lemma 1 and theorem 3 and is 

omitted. 

 

Example 6: Consider the uncertain linear system defined in Eq. (42) and Eq. (43). The state matrix 

of the system is as follows. 





























6215.0

11231

1398.0

2524

0A  and 





















)()()()(

)()()()(

)()()()(

)()()()(

)(

tatbtctd

tctbteta

tbtdtctb

tetctbta

tA  

Where, 

0.1)(,8.0)(,5.0)(,3.0)(,1.0)(  tetdtctbta   
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Now, by applying theorem 4, the following results are obtained. 

Table 1: Stability investigation of Ex.6 by applying theorem 4. 

Defined terms Applied equation 
Obtained values form 

the applied equation 

Stability conclusion of 

the nominal system 

Stability conclusion of the 

system having uncertainties 

0AH  Eq. (37) 5 No results - 

0AH  Eq. (40) -1.7 Asymptotically stable - 

0AH


 Eq. (41) -1.7 Asymptotically stable - 

)(0 tAAH   Eq. (48) Not useful - No results 

)(0 tAAH   Eq. (49) -0.1 - Asymptotically stable 

)(0 tAAH 



 Eq. (44) -0.1 - Asymptotically stable 

 

Therefore by having the results obtained in Table 1, one can conclude that for any permissible 

values of uncertainties being in their relevant bounds, the system is asymptotically stable. In the 

figure below, the spectra of matrix )(0 tAA   for different values of uncertainties have been 

illustrated. It can also be seen in the figure that the spectra of such system are placed on the left-

hand side of the imaginary axis in the complex plane. 

 

Figure 4: The spectra of matrix )(0 tAA   for all permissible values of uncertainties (precision: 0.001). 

V. STABILITY ANALYSIS OF LARGE-SCALE SYSTEMS 

Let’s first revisit our stability problem for large-scale systems. The goal is analyzing the 

stability of a system as follows. 

�̇�𝑜 = 𝐴𝑜𝑋𝑜 Revisited (1) 

where the number of state variables is in general huge and is denoted by n. 

Using the aforementioned discussion in the preliminaries, the problem is then reduced to 

check the stability of the system below. 

�̇�(𝑡) = 𝑀𝑋(𝑡) Revisited (34) 
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where the matrix M is defined as follows. 

𝜇𝑖𝑗 =

{
 
 

 
 −

𝐶𝑖3
𝐶𝑖2

                    𝑖𝑓 𝑗 = 𝑖 

𝐶𝑖4𝑏𝑖1𝑙�̅�𝑗
𝑏𝑗2

𝐶𝑗1
      𝑖𝑓 𝑗 ≠ 𝑖

 Revisited (19) 

The above matrix 𝑀 has a useful feature and that is its main diagonal entries are non-positive. 

In other words, the Gerschgorin disks are centered at the left-hand side of the complex-plane. 

Otherwise, we could not take an advantage form the aforementioned theorem. Now, by using 

what we obtained in the previous section, we reach to the following results. 

Corollary 3: Consider the following unforced large-scale linear system. 

{
�̇�𝑖 = 𝐴𝑖𝑖𝑋𝑖 + 𝐸𝑖𝑆𝑖
𝑍𝑖 = 𝐶𝑧𝑖𝑋𝑖            

  , i=1,2,…,M. Revisited (2) 

By applying the Lyapunov-based method as was stated in the preliminaries, we reach the 

following matrix 𝑀 defined in Eq. (19). 

The entire large-scale system in Eq. (1) is asymptotically stable if the following inequality is 

fulfilled for the matrix 𝑀. 

0),(min 


HHH  Revisited (41) 

Where, 

 
(50) 

 (51) 

Proof: The proof is straightforward and is neglected. 

 

 

Now, let’s look at the problem from another point of view. The off-diagonal entries of matrix 

𝑀 are related to the interconnections. But, in practical cases, we usually do not have enough 

knowledge about the interconnections between the sub-systems. Hence the objective is now 

finding the bounds for the existing interconnections, while the stability of the whole large-scale 

systems is guaranteed. 

Corollary 4: Suppose the unforced large-scale linear system defined in Eq. (1). Assume that there 

exists no thorough knowledge about the interconnection matrices of Eq. (2). Applying the 

common Lyapunov-based method we have now the main diagonal entries of the matrix 𝑀 in Eq. 

(19) on hand. Now, the entire system Eq. (1) is asymptotically stable if the interactions in the 

sub-systems belong to the following bounds. 

}{max
1





n

j

ij
i

mH

}{max
1





n

i

ij
j

mH
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‖𝐿𝑖𝑗‖ ≤
1

𝑛−1

𝐶𝑖3𝐶𝑗1

𝑏𝑗2𝐶𝑖4𝐶𝑗2
        ∀ 𝑖, 𝑗 = 1,2, … , 𝑛.    (52) 

Proof: Since we do not have enough knowledge about the interactions, the uncertainties that each 

main diagonal entry (spectra of the nominal matrix) can tolerate is assumed to be distributed 

equally between the interactions in the corresponding sub-system. This is why there is “𝑛 − 1” in 

the denominator of Eq. (52). In other words, the obtained matrix 𝑀 is broken in the two 

following parts. 

�̇�𝑟 (𝑡) = 𝑀𝑋𝑟 (𝑡) = (𝑀𝑜 + ∆𝑀(𝑡))𝑋𝑟 (𝑡) (53) 

Where, matrix 𝑀𝑜 is defined as the nominal state matrix derived from the sub-systems by 

neglecting the interactions, and Δ𝑀(𝑡) is assumed to be the effect of unknown interactions. 

𝑀𝑜 = [𝜇𝑜,𝑖𝑗] ,    𝜇𝑜.𝑖𝑗 = {
−
𝐶𝑖3
𝐶𝑖2

                    𝑖𝑓 𝑗 = 𝑖 

𝟎                          𝑖𝑓 𝑗 ≠ 𝑖

 (54) 

∆𝑀(𝑡) = [∆𝜇𝑖𝑗]  ,    ∆𝜇𝑖𝑗 = {

𝟎                          𝑖𝑓 𝑗 = 𝑖 

𝐶𝑖4𝑏𝑖1𝑙𝑖𝑗
𝑏𝑗2

𝐶𝑗1
      𝑖𝑓 𝑗 ≠ 𝑖

 (55) 

The proof can be easily found form the obtained previous results and is omitted. 

 

Note: It is obvious that if "𝑘" number of subsystems, have no interaction with sub-system "𝑖", 
then the matrix measurement of the remained interactions in the corresponding sub-system i.e., 

“i”, can be found as follows. 

‖𝐿𝑖𝑗‖ ≤
1

𝑛−𝑘−1

𝐶𝑖3𝐶𝑗1

𝑏𝑗2𝐶𝑖4𝐶𝑗2
        ∀𝑗 = {1,2,… , 𝑛} − {𝑘}.    (56) 

Example 7: Consider the following system where the desired sub-systems are denoted by 𝛴1 and 
𝛴2. 

�̇�(𝑡) =

[
 
 
 
 
−1 0.1 0.2 0.1 0.2
0.2 −2 0.5 0.1 0.1
0.1
1
0.2

−1
0
0.5

−3
1
0

0.5
−4
1

0.4
0.2
−5]
 
 
 
 

𝑋(𝑡) 

Sub-systems: 

Σ1:    �̇�1 = [
−1 0.1 0.2
0.2 −2 0.5
0.1 −1 −3

]𝑋1 + ([
0.1 0.2
0.1 0.1
0.2 0.3

]𝑋2) 

Σ2:    �̇�2 = [
−4 0.2
1 −5

]𝑋2 + ([
1 0 1
0.2 0.5 0

] 𝑋1) 

In this case, as a measurement of interactions we have 
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𝐿12 = 0.4455, 𝐿21 = 1.4224 (57) 

But assume that there is not enough information about the interactions on hand. Here, we want 

to redefine the problem as follows. 

Σ1:    �̇�1 = [
−1 0.1 0.2
0.2 −2 0.5
0.1 −1 −3

]𝑋1 + (𝑳𝟏𝟐𝑋2) 

Σ2:    �̇�2 = [
−4 0.2
1 −5

]𝑋2 + (𝑳𝟐𝟏𝑋1) 

Applying the approach described in the preliminaries, one can reach to the following results. 

𝑃1 = [
0.5078 0.0230 0.0321
0.0230 0.2544 −0.0065
0.0321 −0.0065 0.1677

] 

𝑃2 = [
0.1258 0.0140
0.0140 0.1066

] 

It worth noting that matrices 𝑃1 and 𝑃2 are obtained from Lyapunov equations where matrices 

𝑄1 and 𝑄2 are assumed to be equal to identity. 

𝐶11 = 0.4048, 𝐶12 = 0.7160, 𝐶13 = 0.6983, 𝐶14 = 1.2664, 𝐶21 = 0.3077, 𝐶22 = 0.3665, 𝐶23 = 1.3644, 𝐶24 =

0.4364, 𝑏11 = 𝑏12 = 𝑏21 = 𝑏22 = 1 

Having the above matrices and parameters on hand, the main diagonal entries of matrix 𝑀 can 

be easily obtained. 

𝑀 = [
−0.9753 ?

? −3.7228
] 

Now, by applying Eq. (52) in corollary 4 the bounds below for the interactions will be 

obtained. 

‖𝐿𝑖𝑗‖ ≤
1

𝑛−1

𝐶𝑖3𝐶𝑗1

𝑏𝑗2𝐶𝑖4𝐶𝑗2
,  ‖𝐿12‖ ≤ 0.4629,  ‖𝐿21‖ ≤ 1.7676 

In other words, for any arbitrary interactions having the 2-norm within the above bounds, the 

entire system is asymptotically stable. Since for our case (when the knowledge for interactions is 

complete) the interactions measurements in Eq. (57) lie in their corresponding obtained bounds, 

the entire system is asymptotically stable. This also shows that for any other structure of 

interactions satisfying their corresponding bounds, the still will still be stable. 

VI. CONCLUSION 

The stability problem of continuous-time LTI large-scale systems has been considered. For the 

purpose of the stability investigation of such systems, the stability of linear systems having 

uncertainties was first established. Sufficient criteria have been proposed to guarantee the 

asymptotic stability of such systems. The merit of this approach is mainly in linear systems 

having uncertainties in their state matrices or in systems having time-variant state matrices. In 
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this case, a theorem has been proposed in order to investigate the asymptotic stability of such 

systems. Unlike most of the previous works in this area, our method is independent of any types 

of Lyapunov function. Therefore, it is not confined to having special structure for uncertainties. 

Finally, the obtained results were extended to check the stability of large-scale systems. In this 

case, the maximum permissible interactions’ matrix measurements that guarantee the stability of 

the entire system were derived. Due to the fact that in the practical cases the interactions in the 

sub-systems are not usually completely specified, this is of great importance when dealing with 

such systems. 
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