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Abstract—This paper deals with the stability problem of continuous-time Takagi-Sugeno (T-S) fuzzy models. 

Based on the Tanaka and Sugeno theorem, a new systematic method is introduced to investigate the 

asymptotic stability of T-S models in case of having second-order and symmetric state matrices. This stability 

criterion has the merit that selection of the common positive-definite matrix P is independent of the sub-

diagonal entries of the state matrices. It means for a set of fuzzy models having the same main diagonal state 

matrices, it suffices to apply the method once. Furthermore, the method can be applied to T-S models having 

certain uncertainties. We obtain bounds for the uncertainties under which the asymptotic stability of the 

system is guaranteed. The obtained bounds are shown to be tight. Finally, the maximum permissible 

uncertainty bounds are investigated. Several examples are given to illustrate the effectiveness of the proposed 

method. 

Index Terms—Takagi-Sugeno (T-S) fuzzy model; asymptotic stability; Lyapunov function; linear matrix inequalities; 

eigenvalues estimation; symmetric matrices 

I. INTRODUCTION 

Stability is one of the most important issues of any control system. Since fuzzy systems have been proved to be 

applicable to many kinds of industrial applications, analyzing the stability of such systems is of great importance. 

However, fuzzy systems are essentially nonlinear systems and stability analysis of these systems has been difficult. 

In order to tackle this problem, Takagi and Sugeno [1] proposed the T-S fuzzy model. By the T-S fuzzy model, a 

complex dynamic model can be composed of a set of local linear subsystems via the fuzzy inference. 

Based on the Lyapunov direct method, Tanaka and Sugeno [2] showed that the stability of a Takagi-Sugeno (T-S) 

fuzzy model could be guaranteed by finding a common symmetric positive-definite matrix P for all the subsystems. 

But in many cases, especially by increasing number of fuzzy rules, finding such a common matrix for satisfying the 

set of Lyapunov’s inequalities seems to be a daunting task. During the past decades, many researchers were attracted 

to reduce the conservatism of the Tanaka and Sugeno’s method in finding the common positive definite matrix P [3, 

5]. In this area, Kawamoto et al. [3] proposed a simple approach to find the region of existence of such a matrix for 

discrete-time T-S models. There was not a systematic method for obtaining the aforementioned matrix P until 

Narendra et al. [4] proposed one to investigate the stability of switching systems in case of having pairwise 

commutative state matrices. A couple of years later, Joongseon Joh et al. [5] used the pairwise commutative 

characteristic and introduced a systematic approach for finding a common positive-definite matrix P for discrete T-S 

models. They also obtained criteria under which even if the state matrices are not pairwise commutative, a common 

matrix P can still be found. Thanks to their conducive work, it is possible to extend it to the continuous T-S models. 

But, it would not be easy to find the matrix P for fuzzy systems not having pairwise commutative characteristic. 

There were also introduced other approaches, on account of having difficulty in finding such a matrix to 

investigate the stability of T-S models [6-10]. In this area, Tanaka et al. [6] studied the stability problem by 

considering the time derivative property of the membership functions and the fuzzy Lyapunov function was defined 

by fuzzily blending quadratic Lyapunov functions. Wang and Sun [7] divided the state space into several sub-

regions and obtained the local common matrix Pj for each sub-region j. In order to avoid finding the common matrix 

P, Louh [8] employed a robust criterion and defined the average of the state matrices as the nominal matrix of the 

whole subsystems. Then, the difference between each state matrix and the nominal matrix was considered as the 

perturbation of its relevant subsystem. Finally, based on a robust criterion, they proposed a sufficient condition that 

sought a matrix P satisfying just one inequality instead of the famous Lyapunov inequalities. But this criterion is 

also conservative and it fails determining the stability of many stable systems. Based on the matrix norm, Pang and 

Guu [9] offered a necessary and sufficient condition for deciding on the stability of discrete T-S models. Wang and 

Sun [10] investigated the stability by checking the maximum distance of two successive states in the discrete model. 

Although many researchers have studied the stability analysis of fuzzy systems, there is still a substantial need for 

having a general reliable method to verify stability or instability of fuzzy systems.  
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In this paper, we propose a new systematic approach to analyze the stability of continuous T-S fuzzy models in 

case of having second-order and symmetric state matrices. In this case, a new sufficient stability criterion in terms of 

Lyapunov function candidate is introduced to investigate the global asymptotic stability of T-S models. This 

criterion is derived from the existing methods for estimating the spectrum of Hermitian matrices. Applying the 

criterion leads to bounds for the sub-diagonal entries of the state matrices. It will be shown that if the sub-diagonal 

entries of the state matrices are within their relevant obtained bounds, then the system is asymptotically stable. This 

implies that for a set of fuzzy models having the same main diagonal state matrices in their subsystems, it suffices to 

apply the method once. Furthermore, the method is also extended to systems having uncertainties in their sub-

diagonal entries of the state matrices and a sufficient condition for such systems is introduced. Finally, the maximum 

permissible uncertainty bounds which can guarantee the stability of the system are investigated. Several examples 

are given to illustrate the effectiveness of the proposed method. The work appears here has been partially published 

in [11,12]. 

This paper is organized as follows: The preliminaries are given in section II. In section III, firstly, the previous 

work [3] on the stability analysis is extended to continuous T-S fuzzy systems. Moreover, a sufficient criterion for 

the asymptotic stability of LTI systems having symmetric state matrices is introduced. Then, we propose a new 

systematic approach to determine the asymptotic stability of continuous T-S fuzzy systems having second-order and 

symmetric state matrices in their subsystems. The stability problem is also solved for T-S uncertain systems and the 

maximum allowable uncertainty bounds to guarantee the stability is obtained. Numerical examples are presented to 

demonstrate the effectiveness of the proposed methods. Finally, the concluding remarks are given in section IV. 

II. PRELIMINARIES 

An unforced continuous-time T-S fuzzy model can be presented as 
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where, )(tx  is the state vector, n is the number of IF-THEN rules, iRule  is the i-th fuzzy inference rule and i
j

M  is 

the fuzzy set. The global T-S fuzzy system is inferred as  

 
(2) 

where, ))((
1

))(( t
j

xi
j

M
n

j
tx

i

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M . By defining a normalized weight for each rule as 

  

the equation (2) can be rewritten as 

  
(3) 

Tanaka and Sugeno have presented the following theorem for verifying stability of the system (3). 

Theorem [2]: The continuous fuzzy system described by equation (3) is globally asymptotically stable if there exists 

a common positive-definite symmetric matrix P such that 
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The above inequalities (4) can be rewritten as 
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   It can be seen from (4) that matrix P must satisfy n inequalities. Hence, increasing the number of rules makes it 

difficult to find such a matrix. 
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III. MAIN RESULTS 

The main objective of this section is to propose a new systematic approach for analyzing the stability of 

continuous Takagi-Sugeno (T-S) fuzzy models in case of having symmetric and second-order state matrices. Before 

describing our new stability criterion, it is required to extend a previous approach for analyzing the stability of 

discrete-time second–order fuzzy models to the corresponding continuous-time systems. The method seeks the 

region of existence for common symmetric positive-definite matrix P under which the set of Lyapunov inequalities 

are satisfied. Then, the stability problem of linear continuous-time systems of having symmetric state matrices is 

considered. The stability investigation will then be accomplished using the existing methods in estimating the 

spectra of Hermitian matrices. Finally, the stability analysis of continuous T-S models in case of having symmetric 

and second-order state matrices is carried out. This stability criterion is derived from the aforementioned tasks. 

A. EXPLORING P-REGION 

As has been stated before, the process of finding a common positive-definite matrix P fulfilling the set of 

inequalities, as defined in (4), especially by increasing number of fuzzy rules is not an easy task. The purpose of this 

section is to find the region of existence in which the common positive-definite matrix P for continuous-time T-S 

fuzzy systems with second-order state matrices does exist. This work is the extension of Kawamoto et al. method [3] 

in finding the P region for discrete T-S models and we are going to apply it to the relevant continuous systems. 

Consider the symmetric positive-definite matrix P as 
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This matrix can be written as follows 
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Please note that the existence of matrix P in case of 012 p can be investigated by substituting definition (6) into 

the set of Lyapunov equations (5). In the rest of this paper and without loss of generality, the common matrix P is 

considered in the form below. 
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It is easy to show that if P is a positive-definite matrix for the fuzzy system (1), then “kP” for any positive scalar 

“k” is also a positive-definite matrix for this system. Hence, considering matrix P as defined in (7) would not 

degrade the generality of the problem. For simplicity, define matrices P
P  and 

N
P  as follows 































2
1

1
1,

2
1

1
1

p

p

N
P

p

p

P
P  (8)

 
Assume that state matrices in the fuzzy system (1) are the second-order matrices and denoted by 
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Remark 1: Substitution of matrices Ai and P
P , instead of P, into the Lyapunov equations (5) and considering the 

positive-definite property of matrix P
P  and satisfaction of the Lyapunov inequalities provides the following lemma. 

In order to find the common positive-definite matrix P, required in the Tanaka-Sugeno theorem [2], it is sufficient to 

draw the region of existence of P
P for each subsystem, denoted by ,i

P
P and then investigate whether there exists a 

common intersection for all the 
i
P

P . The same approach can be applied to obtain the common matrix
N

P . 

Lemma 1: Consider a continuous-time T-S fuzzy system with second-order state matrices as follows. 
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Where the state matrices 
i

A  are assumed to be asymptotically stable and denoted by (9). 

Then, the system is asymptotically stable, if there exists a common region for either matrix P
P  or 

N
P  in the 

21 pp   plane. These regions are obtained from the following set of inequalities. 
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Where in the sign ± in the (10-3) and (10-4), the signs + and - refer to 
i
P

P and
i
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P , respectively. Finally 
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Proof: The proof can be easily obtained from remark 1, the positive definite property of matrices 

i
P

P  and
i
N

P , and 

the negative definite property of matrices Qi in the set of Lyapunov inequalities (5) and is omitted. 

Remark 2: It is not instructive to sketch both the diagrams of P
P  and 

N
P  in the 21 pp   plane. In other words, 

finding any intersection in one of these regions assures the stability of the system. 

Remark 3: Choosing any arbitrary point ( 21, pp ) lie in the intersection region of the 21 pp   plane which is obtained 

from common P
P  region or 

N
P  region (if exist) leads to construct a matrix P

P  or 
N

P , as defined in Eq. (8), 

respectively. According to lemma 1, the obtained matrix is a common positive-definite matrix for the fuzzy system.  

Example 1: Consider the T-S model (1) with nine rules which is borrowed from [8]. The state matrices are: 
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Again, applying lemma 1 yields to the following results: 

 

                                                                Fig 1. (a)                                 Fig 1. (b) 

Fig. (1): Fig. 1(a) and Fig. 1(b) show the region of existence for the matrices PP  and NP , respectively. 
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According to lemma1, the existence of the common positive definite matrix P (shaded region) in either of 
P

P  or 

N
P region assures the asymptotic stability of the system. We choose the same point ( 3,1 21  PP ) from the shaded 

regions of Fig. 1(a) and Fig. 1(b) and reach to the matrices 
P

P  and NP  below 
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Table 1: Validation of matrices PP  and NP . 

 

 

 

 

 

 

 

 

 

Example 2: Consider the following T-S fuzzy system with four rules. 
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By drawing the set of inequalities (10) corresponding to P
P in lemma 1, the region of existence for the common 

matrix P
P , defined in (8), is obtained and represented by the shaded region in the figure below. 

 

Fig. (2): Shows the region of existence for the matrix PP . 

It can be seen from the above diagram that the intersection exists for matrix
P

P . Hence, according to lemma 1, 

choosing any arbitrary point ),( 21 pp included in the shaded region of the 21 pp   plane leads to a common positive-

definite matrix 
P

P  for the system. This shaded region assures that there exists a common positive-definite matrix 

Matrix iA  ][2,1 iPP
T
i APPA   ][2,1 iNN

T
i APPA   

1A -26.648 , -8.152 -46.6207 , -4.1793 

2A -21.945 , -6.255 -41.2191 , -2.9809 

3A -21.199 , -9.199 -41.9207 , -3.6793 

4A -26.487 , -7.513 -46.0238 , -3.9762 

5A -28.991 , -7.809 -50.2094 , -3.3906 

6A -23.483 , -7.9167 -43.7744 , -3.6256 

7A -25.919 , -8.080 -47.1676 , -4.0324 

8A -27.012 , -6.788 -51.2698 , -2.9302 

9A
 

-25.968 , -7.232 -46.1981 , -3.8019 
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for the system and consequently, the system is asymptotically stable. Now, we choose the point ( 5.11 P , 22 P ) 

from the shaded region of Fig. 2 and reach to the matrix 
P

P  as below.  


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
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21

15.1

P
P  

The following table demonstrates that the obtained matrix 
P

P  is in fact a common positive-definite matrix 

fulfilling the Lyapunov inequalities (4) and it guarantees the asymptotic stability of the T-S system. 

Table 2: Validation of the selected matrix PP . 

Matrix iA  1A 2A 3A 4A 

][2,1 iPP
T
i APPA  -8.1400 ,  -0.8599 -20 , -3 -11.2042 , -5.7958 -12.6897 ,  -0.3103 

Remark 4: Louh [8] suggested the following theorem for the stability analysis of T-S fuzzy models. 

Theorem [8]: The equilibrium point of (3) is asymptotically stable if there exists a positive definite matrix P such that  
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(12) 

The table below shows the merit of the proposed method on the stability analysis in comparison to the one 

introduced in [8]. 

Table 3: Comparison of the proposed method with the one obtained in [8]. 

Method Proposed by Stability Criterion 
Example 1 Example 2 

Criterion Stability Criterion Stability 

Robust 
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 


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No 

results 

Region of 

Existence  

In This Paper Finding any intersection 

Eq. (10) 

Intersection exists stable Intersection exists stable 

B. ESTIMATING EIGENVALUES OF SYMMETRIC MATRICES 

In this sub-section a sufficient criterion is proposed to investigate the asymptotic stability of continuous-time linear 

systems having symmetric and second-order state matrices. This criterion will be derived from the work of Chi-

Kwang Li and Ren- Cang Li in [13] and the previous works in the estimation of eigenvalues for Hermitian matrices. 

In this approach, the estimation of eigenvalues is calculated from the corresponding diagonal part of its Hermitian 

matrix. Now, before representing the stability criterion, let us have some definitions.  

Consider the following Hermitian matrix defined in [13] 
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        p       q 

A=
p
q [
𝐻1 E
𝐸∗ 𝐻2

] 

(13) 

where, E∗ is the complex conjugate transpose of matrix E. Suppose that A
~

is the diagonal matrix of A and is defined 

as follows  
        p       q 

𝐴̃=
p
q [
𝐻1 0
0 𝐻2

] 

(14) 

Assume that )(X  is the spectrum of the square matrix X, and X  is the spectral norm of the matrix Y, i.e., the 

largest singular value of X. There are three common types of bounds for the eigenvalues qp  ...21 and 

qp 
~

...
~~

21  corresponding to the matrices A and A
~

, respectively [13].  

1. .,...,2,1,
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where )( iH  is the spectra of the matrix 
i

H and
 


 
is the spectral gap between the spectra of 𝐻1 and 𝐻2. 

Note that having a small value of   in Eq. (16) leads to a very large and conservative bound. Furthermore, in case 

of 0 , Eq. (16) does not provide any bound! 

3. Theorem [13]: Consider matrices A and A
~

defined in Eq. (13) and (14). Assume that the eigenvalues of matrices 

A and A
~

be qp  ...21 and qp 
~
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~~

21 , respectively. Define   as follows 




















)

2
(

~
,

1

~

)
1

(
1

min

)
1

(
~

,
2

~

)
2

(
2

min

H
i

if
i

H

H
i

if
i

Hdef

i 





  (17) 

21
)

2
(

2
,)

1
(

1

min
1

min 


 






HH

i
qpi

def
 (18) 

Then, for qpi  ,...,2,1 , we have 
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Now, let us use the above theorem and propose a new sufficient criterion for continuous–time linear systems 

having symmetric state matrices. 

Lemma 2: Assume the following continuous-time linear system with a symmetric (p+q)×(p+q) state matrix.  

)()( tXAtX   

The system is asymptotically stable if the following inequality holds. 

0
2

42

2
2~

1
}

2
42

2
2~

{max 









E

E

E

E

i
i

SCH







 , for i=1,2, …, p+q.   (20)  

where, matrices A  and A
~

 have the form of definitions Eq. (13) and Eq. (14), respectively, E∗ is the transpose of 

matrix E and E  is the spectral norm of matrix E. 
i

  and   are obtained from Eq. (17) and Eq. (18).  
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(SCH stands for Stability Criterion of Hermitian matrices) 

Proof: By applying the method proposed in theorem [13], bounds locating the eigenvalues of matrix A were obtained 

from calculating the eigenvalues of its relevant diagonal matrix A
~

. Let us revisit the bound 

2
42

2
2~

E

E

ii






  

Note that the entries of the state matrix of a continuous-time linear system are real values. Moreover, in systems 

having symmetric state matrices, all the eigenvalues lie on the real axis of the complex plane. Hence for inequality 

(19), we have 

.,...,2,1,
2

42

2
2~

qpi

E

E

ii








  

Therefore, the system is asymptotically stable if the following inequalities hold. 

.,...,2,1,0
2

42

2
2~

qpi

E

E

i








 

Furthermore, by having
qp 

  ...
21

, if the largest eigenvalues of matrix A i.e., )(
1

A have negative upper 

bound, then the spectrum of matrix A are negative as well. Hence, it suffices to just investigate the following 

inequality for the stability. 

.,...,2,1,0
2

42

2
2~

1
}

2
42

2
2~

{max qpi

E

E

E

E

i
i

SCS 















 

The merit of Eq. (17-19) will be unveiled in the next section for investigating the stability analysis of continuous-

time T-S fuzzy systems. 

C. NEW STABILITY ANALYSIS OF CONTINUOUS-TIME T-S MODELS 

In the previous sections, the problem of exploring the P-region for T-S fuzzy models with second-order state 

matrices has been investigated. Moreover, a method for estimating the eigenvalues of Hermitian matrices was 

addressed. Then, a new sufficient criterion for analyzing the stability of continuous-time linear systems with 

symmetric state matrices has been proposed. In the rest of this paper, those aforementioned approaches will be 

applied to the continuous-time T-S fuzzy models having second-order and symmetric state matrices. In this case, a 

new sufficient condition in order to guarantee the stability of such systems will be introduced. 

Remark 5: Consider the continuous T-S fuzzy system (1). Assume that all the state matrices i
A

 are 2×2, diagonal 

and stable as well. Then, the stability conditions of Eq. (10) will be simplified as follows 

(21) 𝑃:

{
 
 
 

 
 
 0p1                                              

1

2

1

p
p                                           

ni
paa

aa
p

ii

ii

,...,2,1,
1

4

)(

141

2
41

2 




 

Now, define i  as 

(22) .,...,2,1,

41
4

2)
41

(
ni

iaia

iaia

i



 

Substituting Eq. (22) into Eq. (21) yields 
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(23)  













.,...,2,1,

1

)1,max(

2

0
1

ni

p

ip

p

 

Let us have a definition. 

.,...,2,1,)max,1max(:0 ni
i

i

def
   (24) 

Then for such a system, it is easy to show that the point ),(  lies in the region of existence for matrix P in the 

21 pp   plane. In the rest of this paper, the construction of matrices
P

P and
N

P , defined in (8), for the point ),(   

are denoted by



P and



P , respectively. 

0,
1

1
,

1

1























 kkPkP










 (25) 

Example 3: Suppose there is a continuous T-S fuzzy model, as defined in Eq. (1), with the following state matrices. 









































30

01

3
,

30

02

2
,

40

01

1
AAA  

Then by applying the results of Remark 5, the region of existence for the common positive-definite matrix P, as 

defined in (7), can be illustrated in the 21 pp  plane below. 

Table 4: The values of i Eq. (22) 

Rule i Rule 1 Rule 2 Rule 3 

i 
5626.11 

 
0417.12 

 
3333.13 

 
 

 

Fig. (3): The shaded region shows the region of existence for the matrix P. 

Now, consider a continuous-time T-S fuzzy model with asymptotically stable, second-order and symmetric state 

matrices. Assume that the diagonal parts of the state matrices are asymptotically stable as well. In our next stability 

criterion, the diagonal part of the i-th state matrix will be considered as the nominal state matrix
0,i

A of its 

corresponding subsystem. It means, 

.,...,2,1,)()(
2

)(
21

)(
1

: nitX
i

AtXthen
i

MistxandiMistxifiRule   

where  

.,...,2,1,
0,

ni
i

A
i

A
i

A   

1

2

1

p
P 

1

3
2

P
P




1

2
2

P
P




1

1
2

P
P



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In the above notation, 
i

A is the difference between the state matrix 
i

A  and its corresponding nominal matrix
0,i

A . 

Remark 6: In the following theorem, the positive definite matrices 



P and



P will be obtained from the main 

diagonal of the state matrices i.e., 
i

A . Then, the stability problem for the whole system with the state matrices 
i

A

will be solved by applying 



P and



P to the Lyapunov equations (5). In this case, we will obtain bounds for ia
2

s 

(sub-diagonal entries) under which the stability of the system is still guaranteed. 

Theorem 1: Consider a continuous-time T-S fuzzy model as follows. 

.,...,2,1,)()(
2

)(
21

)(
1

: nitX
i

AtXtheniMistxandiMistxifiRule   

where the state matrices are symmetric and defined as follows 

.,...,2,1,

42

21 ni
iaia

iaia

i
A 

















  

Assume that all the state matrices 
i

A and their corresponding diagonal matrices are asymptotically stable. 

Then the matrix



P , defined in (25), is a common positive-definite matrix for the system if the following conditions 

for all the sub-diagonal entries of the state matrices i.e. ia
2

s, hold. 

∀ 𝑖 = 1,2, … , 𝑛. 









































i
a

i
a

i

P
E

i

P
E

i
a

i
a

i
a

ii
i

ii
i

i

P
E

i

P
E

i
a

i
a

i
a

11
,

2
:

41

}
2

)(
,{min}

2

)(
,{max,

2
:

41 









 (26) 

and the matrix 



P , defined in (25), is a common positive-definite matrix for the system if all the sub-diagonal 

entries, 
ia
2  

s, be in their relevant below bounds.  

∀ 𝑖 = 1,2, … , 𝑛. 









































i
a

i
a

i

N
E

i

N
E

i
a

i
a

i
a

ii
i

ii
i

i

N
E

i

N
E

i
a

i
a

i
a

11
,

2
:

41

}
2

)(
,{min}

2

)(
,{max,

2
:

41 









 (27) 

where  

i
a

i
a

i
a

i
a

ii
i

41
4

2
)

41
(

,)max,1(max


   (28) 

)
4

,
1

max(
i

a
i

a
i

M   
(29) 

iaia
i 41
  

(30) 
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iaiaiaia
i 4141

  
(31) 

2)
41

(25.02
41

iaiaiaia
i

M
i

 
 

(32) 

iii
 42 

 

(33) 

Consequently, having 



P or 



P  as a common positive-definite for the system guarantees the global asymptotic 

stability of the equilibrium of the fuzzy system. 

Proof: see appendix 

Example 4: Investigate the stability of the T-S fuzzy model described below. 

.4,3,2,1,)()(
2

)(
21

)(
1

:  itX
i

AtXtheniMistxandiMistxifiRule   

where  






















































35.2

5.23
,

25.1

5.12
,

1255.1

255.12
,

42.1

2.15.1
4321 AAAA

 

































































































05.2

5.20
,

0.30

00.3
,

05.1

5.10
,

0.20

00.2
,

0255.1

255.10
,

0.10

00.2
,

02.1

2.10
,

0.40

05.1
,

40,440,44

30,330,33

20,220,22

10,110,11

AAAAA

AAAAA

AAAAA

AAAAA

 

Then, the positive definite matrix



P , as defined in Eq. (25), can be easily obtained from the matrices
0,i

A . 

Consider the positive definite matrix 



P  as defined in (25). According to theorem 1, we can investigate the 

acceptable bounds for the sub-diagonal entries of the state matrices under which the stability of the system is 

guaranteed. Table (5) shows those obtained permissible bounds. 

Table 5: Calculation of the acceptable 
i

P
i
P EE , for matrix


P . 

Matrix 

iA  
i  

(28) 

i  
(30) 

i  
(31) 

i  

(32) 

i


 
(33) 

i
P

i
P EE ,  

(26) 

ia2  
Sub-diagonal entry 

of matrix iA  

1A  1.26041   6  -3  1.6051 1.6061 
1
PE  =(0.5529  1.8271) 

1
2a = 1.2 

2A  1.12502   2  -2 0.6613 1.1640 
2
PE  =(0.3317  1.25501) 

2
2a = 1.255 

3A  1.00003 
 
 2 -4 4.0000 0 

3
PE  =(-2  2) 

3
2a = 1.5 

4A
 

1.00004 
 3 -6 9.0000 0 

4
PE  =(-3  3) 

4
2a =-2.5 

Since each ia
2

is within its relevant obtained bound of the table above, the following matrix 



P  is certainly a 

common positive-definite matrix for the system satisfying the Lyapunov inequalities (5). This concludes the 

asymptotically stability of the system. 











2604.11

12604.1
kP


 

The stability of the system is validated in the following table.  
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Table 6: Eigenvalues of i
T
i APPA    with k=1. 

iA Matrix 
ii

T
i QAPPA  

 )(2,1 iQ 

1A 













6833.74750.2

4750.23813.1
1Q -8.5391, -0.5255 

2A 













0108.01636.0

1636.05316.2
2Q -2.5422, -0.0002 

3A 













0417.22188.0

2188.00417.2
3Q -2.2604, -1.8229 

4A 













5625.123021.12

3021.125625.12
4Q

 
-24.8646, -0.2604 

Example 5: Assume that the state matrices of a continuous-time T-S model are represented as 



































































21086.3

1086.37

5
,

52

23

4
,

55.2

5.24

3
,

31

12

2
,

45616.1

5616.11

1
AAAAA  

In this example we want to show the merit of theorem 1 in investigating the stability problem via the existence of 

matrix 



P  defined in (25). The obtained acceptable bounds for ia
2

s are shown in the table below. 

Table 7: Calculation of the acceptable 
i
NE for matrix


P . 

Matrix 

iA  
i  

(28) 

i  
(30) 

i  
(31) 

i  

(32) 

i  
(33) 

i
NE  

(26) 

ia2  
Sub-diagonal entry 

of matrix iA  

1A  1 1.5625 2 -2 -1.0742 2.8804 
1
NE  =(-1.5617 ,  0.2817) 

1
2a =-1.5616 

2A   2 1.0417 6  -4 1.3672 3.2452 
2
NE  =(-2.3185 , -0.2415) 

2
2a =-1.0 

3A  3 1.0125 2 5  -8 10.4844 4.6971 
3
NE =(-4.0631 , -1.0569) 

3
2a =-2.5 

4A
 

 4 1.0667 15  -6 1.3516 5.5311 
4
NE =(-3.6900 , -0.1500) 

4
2a =-2.0 

5A  5 1.4464 14  -4 -4.1641 5.7146 
5
NE =(-3.10862 ,  0.5487) 

5
2a =-3.1086

 
 

Since each ia
2

is within its relevant obtained bound of the above table, the following matrix 



P  is certainly a 

common positive-definite matrix for the system satisfying the Lyapunov inequalities (5).  

0,
5625.11

15625.1













 kkP


 

Table 8: Validation of the matrix 

P  as a common positive-definite matrix for the system for k=1. 

iA Matrix 1A 2A 3A 4A 5A 

)(2,1 iQ -9.3783 , -0.0003 -8.253 , -3.372 -7.100 , -11.025 -12.082 , -4.918 -15.6904, -0.0002 

Therefore, the fuzzy system is asymptotically stable. 

Remark 7: It can be seen from Ex. 4 that the obtained upper-bounds for the sub-diagonal entries of the state matrices 

for the fuzzy system are tight i.e., )
2

(
1

Q in table 6 is very close to zero. Having  













12552.1

2552.12
2A  for the fuzzy 

system of Ex. 4 causes )( 22,1 Q -2.5418, 0.0002.  
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It can also be seen from the Ex. 5 that the obtained lower-bounds for the sub-diagonal entries of the state matrices 

are tight as well.  

Remark 8: It can be seen from theorem1 that in order to check the stability of a set of fuzzy models having the same 

diagonal entries in their state matrices, it suffices to apply the method once. Despite achieving the same bounds for 

the sub-diagonal entries, the stability of each system may be different depending on whether or not all the sub-

diagonals lie in their relevant obtained bounds. For better understanding, look at the following example. 

Example 6: Consider a set of fuzzy models with the state matrices below. 

Fuzzy system 1: 






















































32

23

4
,

25.1

5.12

3
,

11

12

2
,

48.1

8.15.1

1
AAAA  

Fuzzy system 2: 






















































39.2

9.23

4
,

21

12

3
,

125.1

25.12

2
,

47.0

7.05.1

1
AAAA  

Fuzzy system 3: 






















































31

13

4
,

25.1

5.12

3
,

15.0

5.02

2
,

41

15.1

1
AAAA  

Fuzzy system 4: 






















































32

23

4
,

21.2

1.22

3
,

19.0

9.02

2
,

48.1

8.15.1

1
AAAA  

Since the main-diagonal of these matrices are the same as those in Ex.4, we will arrive at the same bounds of table 5. 

The table below shows the stability conclusions. 

Table 9: Stability investigation. 

Fuzzy system 
i

P
i
P EE ,  


P  Stability criterion Stability conclusion 

Fuzzy system 1 

1
PE  =(0.5529  1.8271) 

2
PE  =(0.3317  1.2550) 

3
PE  =(-2  2) 

4
PE  =(-3  3) 











2604.11

12604.1
P  

11
2 1.8 PEa   

22
2 0.1 PEa   

33
2 5.1 PEa 

 
44

2 0.2 PEa   

Asymptotically stable 

Fuzzy system 2 
The same as the one obtained 

for the fuzzy system 1 
The same as the one obtained 

for the fuzzy system 1 

11
2 0.7 PEa 

 
22

2 25.1 PEa 
 

33
2 0.1 PEa 

 
44

2 9.2 PEa 
 

Asymptotically stable 

Fuzzy system 3 
The same as the one obtained 

for the fuzzy system 1 
The same as the one obtained 

for the fuzzy system 1 

11
2 1.0 PEa   

22
2 5.0 PEa 

 
33

2 5.1 PEa 
 

44
2 0.1 PEa 

 

Asymptotically stable 

Fuzzy system 4 
The same as the one obtained 

for the fuzzy system 1 
The same as the one obtained 

for the fuzzy system 1 

11
2 1.8 PEa 

 
22

2 1 PEa 
 

33
2 1.2 PEa 

 
44

2 0.2 PEa 
 

No results 
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Remark 9: In theorem 1, we considered the diagonal part of the state matrices as nominal matrices and the stability 

problem was solved by applying the defined



P and



P to satisfy the Lyapunov equations. In this case, we found 

bounds for ia
2

s (sub-diagonal arrays) under which the stability is guaranteed. It means that the approach is 

independent of the value of ia
2

s and we can consider the sub-diagonal entries or part of them as uncertainties.  

Corollary 1: Consider the T-S fuzzy model with n symmetric uncertain rules below. 

.,...,2,1,)())(()()(...
1

)(
1

: nitXt
i

A
i

AtXtheni
n

Mist
n

xandiMistxifiRule 
 

)43(
 

where 
22R

i
A

 
is the nominal state matrix and )(t

i
A is its corresponding time-varying uncertainty, and are 

denoted by 

.,...,2,1,)(,
0)(

)(0
)(,

42

21 ni
i

t
i

d
t

i
d

t
i

d
t

i
A

iaia

iaia

i
A 






























 
 

)53(
 

Then, the uncertain system is asymptotically stable and 



P  , as defined in Eq. (25), is a common positive-definite 

matrix for the system if the following conditions hold. 

∀ 𝑖 = 1,2, … , 𝑛. 













i
P

E
i

iaiaia

i
P

E
i

iaiaia





2
:

41

2
:

41  (36) 

Where i
P

E  and i
P

E  are obtained from theorem 1. 

And 



P  , as defined in Eq. (25), is a common positive-definite matrix for the system if the below conditions hold. 

∀ 𝑖 = 1,2, … , 𝑛. 













i
N

E
i

iaiaia

i
N

E
i

iaiaia





2
:

41

2
:

41  (37) 

Where i
N

E  and i
N

E  are obtained from theorem 1. 

Proof: The proof can be easily obtained from theorem 1 and is omitted. 

According to corollary 1, the obtained common positive-definite matrix P can tolerate some perturbations on the 

sub-diagonal of the state matrices.  

Example 7: Consider the following T-S fuzzy system with n uncertain plant rules. 

.,...,2,1,)())(()()(...
1

)(
1

: nitXt
i

A
i

AtXtheni
n

Mist
n

xandiMistxifiRule   



































































25.1

5.17

5
,

52

23

4
,

55.2

5.24

3
,

31

12

2
,

48.0

8.01

1
AAAAA

 















































0)(3

)(30
)(

5
,

0)(3

)(30
)(

4
,

0)(4.1

)(4.10
)(

3
,

0)(

)(0
)(

2
,

0)(

)(0
)(

1 td

td
tA

td

td
tA

td

td
tA

td

td
tA

td

td
tA  

where i
A s are time-varying uncertainties and .5.0,)(  rrtd  

We first ignore the uncertainties and apply the method proposed in theorem 1. Consequently the stability problem 

is similar to the example 5 and we reach to the results of table 7 and the same 



P  as follows 



15 
 

0,
5625.11

15625.1













 kkP


 

Now applying corollary 1 yields 

Table 10: Investigation of stability via the matrix 

P  with k=1. 

Rule i i
i

a 2  
 i

N
E  (27) 

Validity of 

i
N

E
i

i
a  2  

Rule 1 -1.0617 , -0.2183 
1
N

E  =(-1.5617 ,  0.2817)   

Rule 2 -1.8185 , -0.7415 
2
N

E  =(-2.3185 , -0.2415)   

Rule 3 -3.3631 , -1.7569 
3
N

E  =(-4.0631 , -1.0569)   

Rule 4 -2.1900 , -1.6500 
4
N

E  =(-3.6900 , -0.1500)   

Rule 5 -1.6087 , -0.9513 
5
N

E  =(-3.1087 ,  0.5487)   

Since all 
i

ia 
2

 are within their obtained bounds in table 10, the system is asymptotically stable.   

Corollary 2: consider the uncertain T-S fuzzy model having symmetric state matrices as 

.,...,2,1,)())(()()(...
1

)(
1

: nitXt
i

A
i

AtXtheni
n

Mist
n

xandiMistxifiRule   

where 
22R

i
A  is the nominal state matrix and the corresponding )(t

i
A  is time-varying uncertainty of the i-th 

rule having the following form 

.,...,2,1,
max,

)(,
0)(

)(0
)(,

42

21 ni
i

t
i

d
t

i
d

t
i

d
t

i
A

iaia

iaia

i
A 






























 

 

(38) 

If applying theorem 1 to the system having nominal state matrices 
i

A  leads to the stability of the system, then the 

maximum uncertainty bounds under which the stability of the system is still guaranteed can be obtained as below: 

),min(
max,

i
Min

i
Maxi

  (39) 

Where, 

Case 1: the stability of the nominal system is guaranteed by 



P :  

∀ 𝑖 = 1,2, … , 𝑛. 

















ii
Min

ii
Max

ii
Min

ii
Max

aa

aa

boundlower
i

P
Eboundupper

i
P

E
i

a
i

a

boundlower
i
P

Eboundupper
i
P

E
i

a
i

a

22

22

)(,)(:41

)(,)(:41
 (40) 

Where i
P

E  and i
P

E  are obtained from theorem 1. 

Case 2: the stability of the nominal system is guaranteed by 



P :  

∀ 𝑖 = 1,2, … , 𝑛. 













iaboundloweri
N

Ei
Min

iaboundupperi
N

Ei
Max

iaia

iaboundloweri
N

Ei
Min

iaboundupperi
N

Ei
Max

iaia

2
)(,

2
)(:

41

2
)(,

2
)(:

41
 (41) 
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Proof: The proof can be easily obtained from theorem 1 and corollary 1. 

Example 8: The objective is to calculate the maximum uncertainty bounds of example 7. 

Table 11: Calculating the maximum permissible uncertainty bounds. 

Rule i Rule1  Rule 2 Rule 3 Rule 4 Rule 5 

i
Min 0.762 1.318 1.563 1.69 1.609 

i
Max 1.0817 0.758 1.443 1.85 2.049 

max,i 0.762 0.758 1.443 1.69 1.609 

 

IV. CONCLUSION 

First, a sufficient stability condition is proposed to investigate the asymptotic stability of T-S fuzzy models with 

second-order state matrices. Then, the problem of estimating the spectrum of symmetric matrices was considered 

and a sufficient criterion for stability analysis of continuous-time linear systems having symmetric matrices was 

introduced. Moreover, the stability problem of T-S fuzzy models with symmetric and second-order state matrices 

was investigated. In our stability criterion we considered the diagonal-part of state matrices as nominal state 

matrices of the system. Then, the common matrix P was investigated for the system having those diagonal state 

matrices. The purpose was then to find the conditions under which matrices iQ in the Lyapunov equations be 

negative-definite. Finally, we obtained conditions for the sub-diagonal entries of state matrices under which the 

system is still stable. This leads to have the ability of checking the stability of set of fuzzy systems of having the 

same diagonal entries in their relevant subsystems. Then, we extended the method to systems with uncertainty in 

their sub-diagonal entries and a sufficient condition for checking the stability was represented. Finally, the 

maximum uncertainty bound under which the stability of the system is guaranteed, was investigated. 

APPENDIX 

Proof of theorem 1: 

It was shown in Remark 5 that matrices 
P  and 

P  are the common positive-definite matrices for the system 

when all the state matrices of fuzzy model are diagonal and asymptotically stable as well. The obtained matrices 
P  

and 
P  satisfy the Lyapunov inequalities (4) and are revisited below. 

0,
1

1
,

1

1






















  kkPkP








  (25) revisited 

where 

.,...,2,1,
4

)(

41

2
41 ni

aa

aa
ii

ii

i 



 

.,...,2,1,)max,1max(:0 nii
i

def

   

(22) revisited 

 

(24) revisited 

 

Now, consider a continuous-time T-S fuzzy model with asymptotically stable, second-order and symmetric state 

matrices. Assume that the diagonal parts of the state matrices are asymptotically stable as well. Define the diagonal 

part of the i-th state matrix as the nominal state matrix 0,iA of its corresponding subsystem. It means that Eq. (1) can 

be rewritten as 

.,...,2,1,)()()()()(: 0,2211 nitXAAtXthenMistxandMistxifiRule ii
ii 

 

where, iA is the difference between the state matrix iA  and its corresponding nominal matrix 0,iA . 

In this theorem, the positive definite matrices 
P

 
and 

P
 
will be obtained from the main diagonal of the state 

matrices i.e., iA . Then, the stability problem for the whole system with the state matrices iA  will be solved by 

applying 
P and 

P to the Lyapunov equations (5). In this case, we seek bounds for ia2 s (sub-diagonal entries) under 
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which the stability of the system is still guaranteed. Then, the system is proved to be asymptotically stable if all the 

sub-diagonal entries of the system are within their relevant obtained bounds. 

At first we prove the theorem for the case of investigating the stability via the common positive-definite matrix 
P  

as defined in (25). Consider matrices iA , 
P  and the Lyapunov inequalities for the fuzzy system as follows. 














ii

ii

i
aa

aa
A

42

21 , 0,
1

1









 kkP






, 0,  T

iiii
T
i QQQPAPA  , i=1, 2, …., n. 

Substitution of iA  and 
P  into the above Lyapunov equations yields 

 .,....,2,1,
)(2]2)[(

]2)[()(2

24241

24121 ni
aakaaak

aaakaak
Q

iiiii

iiiii

i 




















 

According to the Tanaka and Sugeno theorem [2], if iA  is a stable matrix and 
P  is a positive-definite matrix for 

the system, then matrix iQ  is certainly a negative definite matrix. Now, we want to specify the values for the ia2 s 

under which the above matrices iQ  can satisfy the Lyapunov inequalities i.e. being negative definite. In other words, 

it’s required to have negative spectrum for all the matrices iQ . As stated before, it is possible to estimate the location 

of the eigenvalues of a symmetric matrix via its corresponding diagonal matrix. According to the theorem [13], the 

relevant diagonal matrices of iQ  are 

 .,....,2,1,
)(20

0)(2~

24

21 ni
aak

aak
Q

ii

ii

i 




















 

Applying the definitions of theorem [13] yields 

 

 

 

  iii aak 412   : since 1  and 0i  

 iiii aaakE 241 2)(   

 

where i and iE  respectively denote  and E of theorem [13] related to the ith rule of the fuzzy model. 

Consider the spectrum of the second-order matrices iQ  and iQ
~

 by ii
21    and ii

21

~~
  , respectively. According to 

theorem [13]: 

.,...,2,1,.2,1,

4

2~

22

2

nij

E

E

iii

i
i
j

i
j 







  

where the index j denotes the j-th eignvalue of matrices iQ  and iQ
~

 and i describes the i-th rule. In other words, 

22

2

2412

22

2

2411

4

2
)),(min(2

4

2
)),(max(2

iii

i
iiii

iii

i
iiii

E

E
aaak

E

E
aaak

















 (A-1) 

Moreover, matrices iQ are symmetric and consequently all of their eigenvalues are real. Therefore, Eq. (A-1) can 

be rewritten as follows 

 































22

2

2412
22

2

241

22

2

2411
22

2

241

4

2
)),(min(2

4

2
)),(min(2

4

2
)),(max(2

4

2
)),(max(2

iii

i
iiii

iii

i
iii

iii

i
iiii

iii

i
iii

E

E
aaak

E

E
aaak

E

E
aaak

E

E
aaak
















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The symmetric matrices iQ  are negative definite when their i
1 and i

2  are negative i.e., the right-side bounds of i
1

and i
2 in the above inequalities be negative. It means: 

 (A-2) 



























0

4

2
)),(min(2

0

4

2
)),(max(2

22

2

2412

22

2

2411

iii

i
iiii

iii

i
iiii

E

E
aaak

E

E
aaak









 

where i  has a positive value. It is obvious from (A-2) that: 

 



























i

i
iii

iii

i
iiii

i

i
iii

iii

i
iiii

E
aaak

E

E
aaak

E
aaak

E

E
aaak















2

241
22

2

2412

2

241
22

2

2411

)),(min(2

4

2
)),(min(2

)),(max(2

4

2
)),(max(2

 

define 

),(max 41
ii

def

i aaM   

Consequently, for satisfying 02,1 i , it suffices to satisfy the inequalities below.  

(A-3) 0)(2:

2

241 
i

i
i

i
ii E

aMkaa


  

which concludes 

(A-4) 0)(4))((4)4( 2
41

2
4124141

2

2
2  iiii

i
iiiiii aaaaMaaaaaa   

Finally, solving the above inequalities for ia2  yield 

 (A-5) 


























2
41

2
41

4141

2

2

2

41

)(25.0

2

4

2

4

:

iiii
ii

iiii
i

iiiiiii

ii

aaaaM

aaaa

a

aa













 

Furthermore, it is assumed that matrices iA  and their corresponding diagonal matrices are asymptotically stable. 

Therefore,  

 (A-6) niaaaaaaaaaa iiiiiiiiii ,..,2,1,:0)(,0, 41241
2

24141   

Then, combination of equations (A-5) and (A-6) yields: 

 (A-7) 

 





































),(max

4

)(

}max,1{max

)(25.0

}
2

4
,min{}

2

4
,max{

41

41

2
41

2
41

2
41

4141

2

412

2

41

ii
i

ii

ii

i

i
i

iiii
ii

iiii
i

iiiiiiiiiii

aaM

aa

aa

aaaaM

aaaa

aaaaa
















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Hence, for any value of ia2 (i=1,2,…,n) lie in their corresponding intervals of the above inequalities, there exists 

the common positive-definite matrix 
P  for the fuzzy system. Notice that the assumption of ii aa 41  has been made 

in the above inequalities. Otherwise, we would have 0i  which leads to no bound at all. 

Now, consider a special case where one or all the state matrices of the subsystems have ii aa 41  . In this case, 

0i  and the method for investigating the bound for ia2  is aborted. 

?
2

)
~

()(
0

2


ii

i

ijij

E
QQ


  

Therefore, for this special case, we apply the bound defined in (15) 

(A-8) :41
ii aa  i

iii

i
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Then, the definitions of iM and 
iE  are simplified as: 

 

 (A-9) 

iii
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iii aaE 212   

Now, consider the inequality (A-8) 
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Having negative values for the right-side of the above inequalities ensure that the matrices iQ are negative definite. 

0)
~

(  i
ij EQ  

By substituting iE  in (A-9) into the above inequality, we have 

iiiii aaaaa 12141 :  (A-10) 

Therefore, for any arbitrary value of ia2  satisfies (A-10), the matrix 
P  is still a common positive-definite matrix 

for the fuzzy system. The proof for the matrix P in the form of 
P

 
is almost the same as the one for 

P
 
and is 

omitted. 
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