Utah State University DigitalCommons@USU

Undergraduate Honors Capstone Projects

Honors Program

5-2017

Design of Logan City's Stormwater Conveyance System

Kade Jacob Beck Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/honors

Part of the Civil Engineering Commons

Recommended Citation

Beck, Kade Jacob, "Design of Logan City's Stormwater Conveyance System" (2017). *Undergraduate Honors Capstone Projects*. 261. https://digitalcommons.usu.edu/honors/261

This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@USU. It has been accepted for inclusion in Undergraduate Honors Capstone Projects by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

DESIGN OF LOGAN CITY'S STORMWATER CONVEYANCE STYSTEM

by

Kade Jacob Beck

Thesis submitted in partial fulfillment of the requirements for the degree

of

DEPARTMENTAL HONORS

in

Civil Engineering in the Department of Civil and Environmental Engineering

Approved:

Thesis/Project Advisor Dr. Richard C. Peralta **Departmental Honors Advisor** Dr. V. Dean Adams

Honors Program Director Dr. Kristine Miller

UTAH STATE UNIVERSITY Logan, UT

Spring 2017

Copyright 2017 Kade J. Beck

All Rights Reserved

Final Report for the Design of Logan City's Storm Water Conveyance System

Prepared for

Civil and Environmental Engineering Senior Design Sequence, Semester 3 CEE 4880, Dr. Peralta Utah State University

> Prepared by Kade Beck Megan Gordon Ryan Weller

Mentored by Lance E. Houser PE Dr. Michael C. Johnson PE

26 April 2017

Team Member Roles

Function or specialty on team	Last name	First name
External PE Liaison	Beck	Kade
Faculty Liaison	Weller	Ryan
Financial Planner	Beck	Kade
Geotechnical Engineer	Weller	Ryan
Hydraulic Engineer	Weller	Ryan
Hydrologist	Beck	Kade
Records Keeper	Gordon	Megan
Structural Engineer	Gordon	Megan
Team Leader	Beck	Kade
Technical Writer	Gordon	Megan

Table 1. Team Member Roles for 10th West Engineers

Executive Summary

This report summarizes 10th West Engineers' (10WE) storm water conveyance design for Logan City. The implementation of the design mitigates flood risk due to storm water discharge, helps improve local water quality, and uses infrastructure that would otherwise be abandoned. The system collects storm water discharged along 1000 West and transports the water to the holding pond located at approximately 2400 West 2200 North, Logan, Utah (see Figure 1).

Figure 1. Aerial Photo of the Area of Interest Current Conditions

Logan City is located in northern Utah's Cache County. As development and redevelopment occur, storm water runoff quantities will decrease due to new regulations. However, Logan City's storm water system does not extend beyond 1000 West, which causes localized flooding.

This project had three phases. First, 10WE collected data from both Logan City and through field investigations. Second, 10WE designed an efficient system to convey water from existing discharge locations to the holding pond. Third, 10WE completed this final report to submit to Logan City on the proposed storm water conveyance system.

10WE followed several design methods outlined in government manuals. 10WE's postconstruction recommendations for Logan City are: 1) mow banks of each channel annually; 2) conduct a system inspection yearly and after a storm that exceeds the 20-year event to ensure that all channels and diversion structures are operating as designed.

10WE collaborated with the client, Logan City, to ensure the design satisfied all the client's goals. The client had three goals: design a gravity-fed system, minimize effect on wetlands, and produce an economical design. 10WE collaborated with Cutler Engineering, who designed a treatment process for the storm water, and Westside Drainage Solutions, who designed a drainage system for a farm.

Acknowledgements

I would like to thank Lance Houser PE for his mentorship and supervision during the Senior Design Sequence. I would also like to thank Dr. Michael C. Johnson PE for his assistance with the design and final product. I am grateful for the desire of Dr. Richard C. Peralta PE, F.ASCE, to inspire us to achieve our very best in his course and in all of our endeavors. I am grateful for Ryan Weller and Megan Gordon for their insight and engineering skills.

Table of Contents

Executive Summary 2
Acknowledgements
List of Tables
List of Figures
List of CD/DVD/USB contents
Problem Statement
Project Description
Tasks
Inter-team Cooperation10
Professional Ethics
Design Sequence
Data Collection12
Design Storm
Topography13
Design
Final Report
Budget
Duuget
Team Expenses
Team Expenses 22
Team Expenses 22 Estimated Cost 22 Conclusion 22
Team Expenses 22 Estimated Cost 22
Team Expenses 22 Estimated Cost 22 Conclusion 22 Reflective Writing 24
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31Canal Gate Specifications32
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31Canal Gate Specifications32Appendix II: Meeting Minutes35
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31Canal Gate Specifications32Appendix II: Meeting Minutes35Appendix II: Person-hour work reports51
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31Canal Gate Specifications32Appendix II: Meeting Minutes35
Team Expenses22Estimated Cost22Conclusion22Reflective Writing24Citations26Appendix I: Data27Soil Testing Data28Drainage Area Characteristics31Canal Gate Specifications32Appendix II: Meeting Minutes35Appendix II: Person-hour work reports51Team Member Work Record Summary Table52

Appendix VI: Detailed Calculations
Flow Calculations74
Channel Design Calculations
Diversion Structure Calculations
Budget 108
Estimated Design Costs 108
Cost Benefit Analysis 108
Special Summary Documentation 110
Constraints Consideration Summary111
Health and Safety
Constructability
Economic
Environmental
Social
Engineering Tools Summary112
Government Regulations112
Professional Responsibility and Conduct Summary112
Risk Considerations112
Design process risk considerations112
Post-design process risk considerations113
Potential Additional Reviewers
Methods for Overcoming Challenges113
Professional Author Biography 114

List of Tables

	2
Table 1. Team Member Roles for 10 th West Engineers	
Table 2. Groundwater Analysis	
Table 3. Reach Summary	17
Table 4. Diversion Structure 1 Riprap	
Table 5. Diversion Structure 2 Riprap	
Table I1. Drainage Basin Characteristics	
Table III1. Team Member Work Record Summary	52
Table SSD1. 10WE Engineering Tools	112
Table SSD2. 10WE Government Regulations	112
Table SSD3. Professional Standards	

List of Figures

Figure 1. Aerial Photo of the Area of Interest Current Conditions	2
Figure 2. Aerial Photo of the Area of Interest New Holding Pond1	0
Figure 3. Revised Gantt Chart 12	
Figure 4. AGRC, Elevation, TauDEM, Surface Water Rights1	4
Figure 5. Channel Reaches1	6
Figure 6. Profile Plot1	6
Figure 7. Channel Cross Sections 1	7
Figure 8. Section View	
Figure 9. Structure 1 View BB1	9
Figure 10. Structure 1 View AA 20	0
Figure 11. Structure 1 Plan View	0
Figure I1. CPT Soil Test	
Figure I2. Atterberg Limits Soil Test 1	9
Figure I3. Atterberg Limits Soil Test 2	0
Figure IV1. Final Gantt Chart	0
Figure IV2. Revised Gantt Chart 4870 60	0
Figure IV3. Projected Gantt Chart	1
Figure V1. Aerial Photo of Area of Interest Current Conditions	3
Figure V2. Aerial Photo of Area of Interest New Holding Pond	3
Figure V3. AGRC, Elevation, TauDEM, Surface Water Rights	4
Figure V4. Channel Reaches	
Figure V5. Profile Plot	
Figure V6. Channel Cross Sections	5
Figure V7. Section View	
Figure V8. Structure 1 View BB 60	6
Figure V9. Structure 1 View AA	7
Figure V10. Structure 1 Plan View	7
Figure V11. Structure 2 View BB	8
Figure V12. Structure 2 View AA 68	8
Figure V13. Structure 2 Plan View	9
Figure V14. Reach 1 Measurement Location	9
Figure V15. Reach 2 at Diversion Above Measurement Location	
Figure V16. Reach 3 Measurement Location	0
Figure V17. Reach 4 Measurement Location	
Figure V18. Reach 5 Measurement Location	2

List of CD/DVD/USB contents

- Appendix I: Data
 - ARCGIS
 - Soils Testing
 - Drainage Area Characteristics
 - Canal Gate Information
- Appendix II: Meeting Minutes
- Appendix III: Person-hour work reports
 - Team Member Work Record Summary Table
 - Individual Team Member Work Logs
- Appendix IV: Gantt Charts
- Appendix V: Photos
- Appendix VI: Detailed Calculations
 - Flow Calculations
 - Groundwater Analysis
 - Channel and Riprap Design Calculations
 - Diversion Structure Design Calculations
 - Budget
 - Cost Benefit Analysis
- Special Summary Documentation
 - Constraints and Consideration Summary
 - Engineering Tools Summary
 - Government Regulations
 - Professional Responsibility and Conduct Summary
 - Risk Considerations
 - Potential Additional Reviewers
 - Methods for Overcoming Challenges

Problem Statement

Logan City is located in northern Utah's Cache County. The average annual rainfall for Cache Valley is between 15 and 20 inches (PRISM 2016). Several times a year, the incomplete storm water system causes flooding, which risks industrial and agricultural lands. The current system collects storm water between 200 West and 1000 West, and discharges the water directly along 1000 West.

Cutler Reservoir, Swift Slough, and the Lower Bear River in Cache Valley do not comply with water quality regulations. The Clean Water Act of 1972 mandates that all municipal separate storm sewer systems (MS4) comply with EPA regulations, expressed as Total Maximum Daily Loads (TMDLs). Logan City's untreated storm water might contribute to the pollution in these water bodies. The pollution threatens surface water, groundwater, and wildlife in the area.

Logan City plans to implement a new wastewater treatment process. However, the new treatment process is not designed to use the existing polishing ponds. Consequently, Logan City hopes to use these polishing ponds to treat storm water.

The implementation of this design improves storm water management. 10th West Engineers (10WE) had three goals. First, design a system to transport water from the discharge locations to the holding pond. Second, design a system that provides irrigation users access to water during a storm. Third, comply with the goals of the client: design a gravity-fed system, minimize effect on wetlands, and produce an economical design.

Project Description

10WE's objective was to design a storm water conveyance system for the client, Logan City. This design report details a system that collects storm water along 1000 West and transports the water to the holding pond (see Figure 2).

Figure 2. Aerial Photo of the Area of Interest New Holding Pond

The following project description is divided into four sections: tasks, inter-team cooperation, professional ethics, and design sequence.

Tasks

- Completed a field investigation between 1000 West and 2400 West
- Gathered pertinent data from Logan City, Cutler Engineering, and Westside Drainage Solutions
- Identified locations of surface water rights using ArcGIS
- Identified potential flow paths using TauDEM and ArcGIS
- Created design storm using Storm and Sanitary
- Designed and drafted channels and diversion structures using AutoCAD and Microsoft Office
- Selected optimal flow paths
- Completed the final design report using Microsoft Office

Inter-team Cooperation

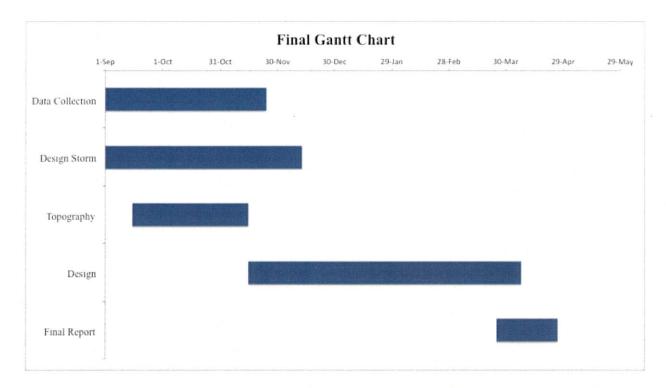
Lance Houser, PE, Assistant City Engineer, and client representative, served as the External Professional Engineer (EPE) for three related design projects. 10WE designed a system to transport storm water to the holding pond. Cutler Engineering designed a system to treat this

storm water. Westside Drainage Solutions designed a drainage system for a farm located near 1000 West.

10WE, Cutler Engineering, and Westside Drainage Solutions worked together to obtain and process data. Westside Drainage Solutions conducted a Cone Penetration Test (CPT) to identify soil properties (see Appendix I). Due to budget constraints, 10WE did not conduct further CPT's in the area of interest to verify soil conditions. However, Westside Drainage Solutions did not provide a unit weight or friction angle for the soil. Therefore, under the direction of the EPE, 10WE assumed a unit weight and friction angle.

The team leaders held meetings to coordinate assignments and deadlines. Additionally, the teams shared meeting minutes via Google Drive to provide each team access to relevant information.

Professional Ethics


10WE was committed to using the highest level of professional ethics. Therefore, 10WE complied with the American Society of Civil Engineers (ASCE) Code of Ethics (see Special Summary Documentation).

10WE used industry standard design criteria under the direction of the EPE. 10WE used the Natural Resources Conservation Service (NRCS) manual *Urban Hydrology for Small Watersheds* to create the design storm. 10WE used local design standards for open channel design and the United States Bureau of Reclamation (USBR) manual *Design of Small Canal Structures* for the hydraulic structure design. 10WE followed the American Concrete Institute's (ACI) design standards for the design of the diversion structures.10WE complied with additional regulations as needed (see Special Summary Documentation).

10WE used professional conduct in their interactions with the client and mentors. 10WE developed and applied effective methods for overcoming challenges (see Special Summary Documentation). During the design sequence, 10WE met all deadlines they had control over and was punctual to all meetings. Additionally, 10WE communicated professionally within the team, with the external and faculty mentors, and with team leaders from Cutler Engineering and Westside Drainage Solutions. Minutes for meetings conducted since the Interim Report submission are included in Appendix II. Person-hour work reports are included in Appendix III.

Design Sequence

The design sequence had three phases: data collection, system design, and a final report. 10WE produced a final Gantt chart that displays the project timeline (see Figure 3). The design phases were divided into five sections: data collection, design storm, topography, design, and final report. Appendix IV contains the proposed, revised, and final Gantt charts.

Figure 3. Final Gantt Chart

Data Collection. In May 2016, 10WE completed a field investigation from 1400 North to 2500 North and 200 West to 3200 West (area of interest) (see Figure 4). 10WE drove through the area of interest and identified potential flow paths. 10WE also observed the holding pond, polishing ponds, pump, and outflow from the polishing ponds. The field investigation illustrated the scale of the project and the current conditions in the area of interest.

This field investigation involved driving to, around, and through the area of interest. 10WE mitigated the risks from injury while traveling by wearing seatbelts and obeying all local driving regulations. Photographs from the field investigation are included in Appendix V.

The EPE and Logan City provided essential data for the completion of the design. Data collection began in May 2016. The design process commenced as soon as 10WE received the necessary data.

In addition, 10WE completed field measurements. These measurements established a base flow for various creeks in the area of interest. This process involved taking the water velocity and cross-sectional area measurements in the creeks (see Appendix VI). The creeks measured are lined with fine clay. 10WE carefully evaluated where to take measurements to ensure they did not become trapped in the clay. 10WE completed this investigation in late fall and all team members wore appropriate clothing to diminish the risk of illness.

Design Storm. Logan City's design storm was outdated due to the effect of land developments. Under the direction of the EPE, 10WE created a new design storm. The creation of the new design storm was not anticipated and delayed the project.

Using information from the NRCS, 10WE identified a hydrologic group for each soil type in the drainage basin. With topographical contours overlaid in ArcGIS, 10WE delineated sub basins and assigned a curve number to each sub basin. 10WE decided to create the design storm in Storm and Sanitary, an Autodesk application. The drainage area data is included in Appendix I. The hydrologic group and surface terrain of the sub basins determined the curve number. By determining the total sheet and pipe flow distance, 10WE calculated a time to concentration for each sub basin. The conveyance system design ensures containment of runoff for a 100-year storm. Using the 100-year storm minimizes the risk of flood damage to the area of interest.

The design was created on November 3, 2016, and approved by the EPE on December 13, 2016. The maximum flow of the 100-year storm is 430 cubic feet per second. Consequently, 10WE eliminated the do nothing alternative because of potential damage from the high flows.

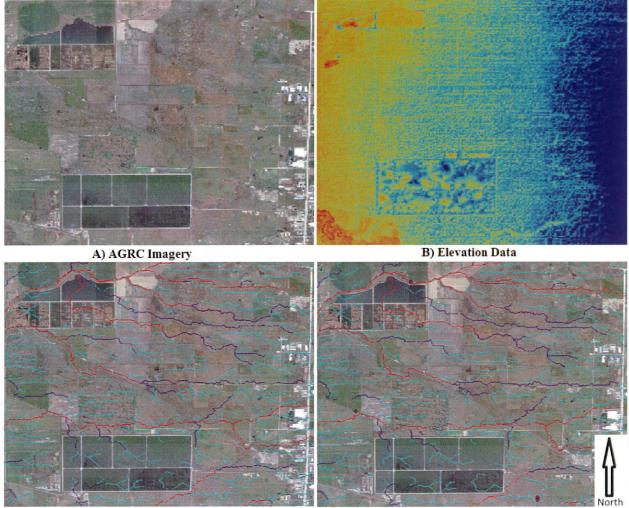

Under the supervision of the EPE, 10WE conducted a groundwater analysis to evaluate whether or not on-site treatment was a viable alternative. 10WE used data from the NRCS to determine a representative hydraulic conductivity (k) in the area of interest. To determine elevation of the water table, 10WE researched average well depths in the area of interest using information from the Utah Division of Water Rights. Using this information, 10WE calculated a groundwater velocity of 0.0064 feet per hour (see Table 2 and Appendix VI).

Table 2.	Groundwater Analysis	

Hydraulic Conductivity k (in/hr)	0.06
Differential Head Δh (ft)	207.13
Length L (ft)	161.00
Darcy Velocity v (ft./hr.)	0.0064

Due to the low permeability of the soil, 10WE determined that on-site treatment of storm water would not be possible. Furthermore, 10WE concluded that groundwater in the area would not be significantly affected by the construction and operation of the storm water conveyance system.

Topography. To understand the topography of the area of interest, 10WE compiled aerial photographs in ArcGIS (see Figure 4A).

C) TauDEM Results D) Surface Water Rights Figure 4. AGRC, Elevation, TauDEM, Surface Water Rights

10WE overlaid elevation data on the aerial photographs (see Figure 4B). Using this information, 10WE ran TauDEM over the area of interest. TauDEM analyzed the elevations in the area and displayed natural flow paths for the area (see Figure 4C). The natural flow paths helped 10WE consider the constraints associated with the design.

Canals in the area supply water to owners of water rights. Surface water rights are signified by pink dots in Figure 4D. This social constraint was addressed in the final design. 10WE ensured that all individuals have access to their water rights by designing diversion structures.

Diversion structure design was a health and safety constraint. Obtaining soil data where structures are built was essential for the safety of the structure (see Appendix I). As previously mentioned, 10WE used representative soil data for the design. 10WE ensured structural integrity by designing for the saturated soil conditions. Structural failure may cause flooding damages.

Wetlands in the area of interest were environmental and economic constraints. As defined by the EPA, wetlands improve water quality, provide wildlife habitat, and regulate surface water flow

(EPA 2016). For these reasons, the design avoided disturbing the wetlands to the extent possible. In addition, the Army Corps of Engineers requires three acres of wetlands be restored for every acre disturbed during construction. This was an economic constraint because the cost of replacing one acre of disturbed wetland is \$180,000.

The design of a gravity-operated conveyance system was an economic and constructability constraint. Pumps in the design were outside Logan City's budget. Therefore, natural flow paths identified by TauDEM enabled 10WE to design a gravity-operated system. 10WE conducted a meeting with the faculty advisor (FA) and the EPE to discuss flow paths. Several potential paths were identified.

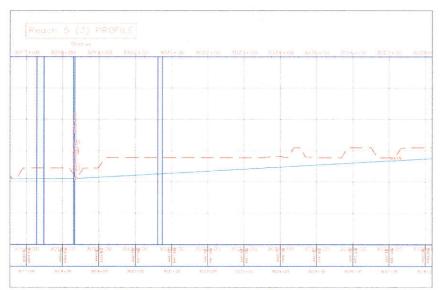
The existing pipe transporting water from the holding pond to the polishing ponds does not have the required capacity. Two alternative designs were replacing the existing 48-inch pipe with 60-inch pipe or moving the holding pond. These alternatives were economic constraints that required a cost benefit analysis (Appendix VI). 10WE determined that moving the holding pond is more economical than replacing the existing pipe (see Figure 2).

Design. 10WE designed channels and diversion structures for the storm water conveyance system. 10WE used *Design of Small Canal Structures* to design safe and effective structures. A sedimentology specialist may review the design to analyze long-term channel conditions. The channels and diversion structures were constrained by economic, health and safety, and constructability factors.

Economic constraints were a factor in this design. 10WE minimized the size, length, and quantity of hydraulic structures. As the channel length increases, more materials, time, and work are necessary to complete construction. These factors increased the cost of the project. As the size and quantity of diversion structures increased, construction costs also increased.

The health and safety of the public is an important factor to consider. All structures were designed to government standards and with adequate factors of safety. This prevents failure that could risk public health and safety.

Constructability was important to consider. Many constructability factors were related to economic factors. 10WE designed simple and economical channels and diversion structures. 10WE avoided harming wetlands to the extent possible during design. Additionally, saturated soil and slope instability may cause construction equipment to sink or overturn. 10WE considered saturated conditions to ensure the safety of construction workers.


The final channel alignment governed channel design. 10WE designed the channels to avoid wetlands and transport the water to the new holding pond. Mitigating disturbed wetlands is expensive. Therefore, 10WE decided to expand the existing canals to convey the water and avoid the wetlands. 10WE looked at maps of the area to determine what channels could be used to convey the water to the new holding pond location. With the assistance of the EPE, 10WE selected the final channel alignment.

The next step in channel design was to size the existing channels for the 100-year design storm. 10WE used the outflow hydrograph to determine the flow rates for each channel (Figure 5).

Reach 5 Dive Diversion 1 North

Figure 5. Channel Reaches

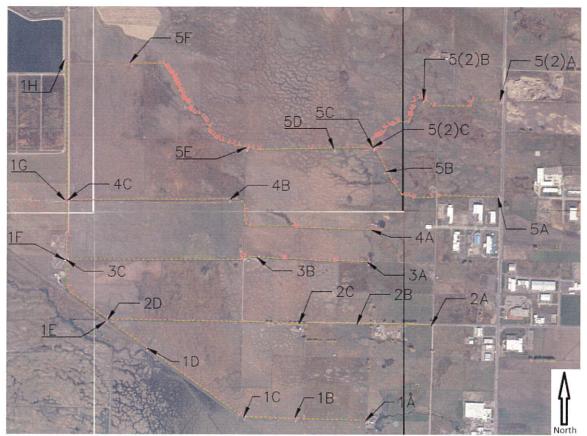

10WE used elevation and aerial photography in AutoCAD Civil 3D to plot the existing channels. 10WE created profile plots of the existing ground surface for each channel (Figure 6).

Figure 6. Profile Plot

Using the profile plots, 10WE determined the channel bed slopes. Each time the flow rate or channel bed slope changed, 10WE designed a unique cross section. Under the direction of the EPE and the FA, 10WE used Manning's equation to design each cross section. 10WE ensured channel geometry followed standards from Logan City's *Cache Valley Storm Water Design Standards*. The USBR manual *Design of Small Canal Structures* provided specifications for the freeboard requirements.

Figure 7 shows a map of every cross section. The number and letter for each cross section corresponds to a table displaying the geometry for each cross section. Table 3 contains the geometry of each section on Reach 5(2). Appendix VI contains cross sections and tables for every channel. Detailed calculations for the channel geometry are contained on the flash drive.

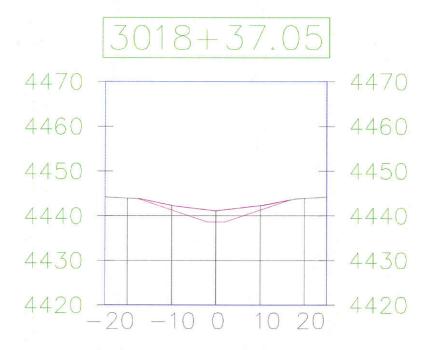


Figure 7. Channel Cross Sections

Reach 5(2)						
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope
5(2)A	3036+00	97.79	0.0065	3	3.7	3
5(2)B	3018+37	97.79	0.0006	4	5.0	3
5(2)C	3000+00	97.79	0.0006	f	5.0	3

Table 3. Reach Summary

Using the section lines, 10WE created a plot of the ground surface at every location. 10WE drew cross sections to calculate cut volumes and top scrape areas. 10WE used this data in the economic analysis. Figure 8 shows a section view of station number 3018+37.

Figure 8. Section View

The bottom axis represents distance in feet from the centerline of the channel. The left and right axes display channel elevation in feet. 10WE created similar section views for every cross section shown in Figure 7. The area between the pink lines represents the soil that must be excavated along the channel. 10WE used the end area method to calculate total cut volumes and scrape areas (Appendix VI).

In the area of interest, there are multiple owners of surface water rights. The owners of surface water rights are legally entitled to have access to the water at any time during the year. 10WE designed two reinforced concrete diversion structures to ensure the owners have access to the water (see Figure 5). 10WE designed the diversion structures under the direction of the EPE in compliance with the ACI Building Code, *Building Code for Requirements for Structural Concrete*. Calculations are shown in Appendix VI. 10WE designed the diversion structures as cantilever retaining walls.

The entire area of interest was assumed to be wetlands for the cost estimate. Local water rights and the layout of the channels governed the location of the diversion structures. Therefore, 10WE did not attempt to avoid wetlands when determining the location of the diversion structures.

10WE began diversion structure design after the width of the channels and flow through the channels were designed. Under the direction of the EPE, twelve-inch diameter head gates were selected to ensure water right owners are provided with three to five cubic feet of water per second. The owners of the water rights will use a Waterman C-10 12-inch Canal Gate, or an equivalent gate, based on specifications provided by the manufacturer (see Appendix I) (Waterman Industries, 2017). 10WE designed a weir to pass the maximum flow to the polishing ponds when the head gate is closed. The top widths of the channel and the existing diversion canal determined the length of the structure (see Figure 9). 10WE designed both diversion structures using the same method. Figures of diversion structure 2 are in Appendix V.

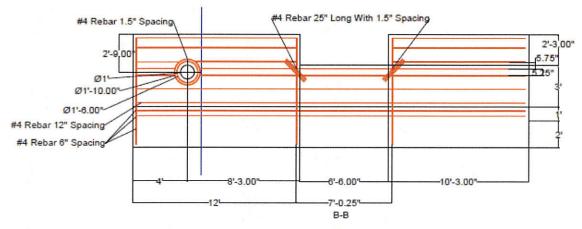
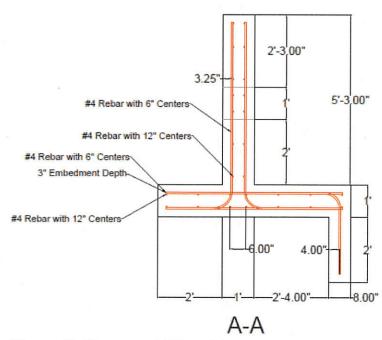



Figure 9. Structure 1 View BB

Once the initial dimensions of the structures were calculated, 10WE determined the base width of the structure through trial and error. 10WE minimized the size of the structure due to economic constraints. 10WE used the following safety factors for design: 1.5 for overturning, 2 for sliding, and 3 for bearing capacity.

To prevent sliding, 10WE could have increased the width of the structure or added a cutoff wall. Adding a cutoff wall was more economical. Additionally, the cutoff wall controls seepage under the structure (see Figure 10). 10WE assumed the specific weight of the soil was 100 pounds per cubic foot, and the friction angle of the soil was 30 degrees.

The structures will have 1.5 feet of soil on top of the foundation. 10WE designed diversion structure 1 to be embedded in 3 feet of soil on each side and diversion structure 2 to be embedded in 5 feet of soil on each side. Using Google Earth, 10WE calculated the angle required for the design of the diversion structures (see Figure 11).

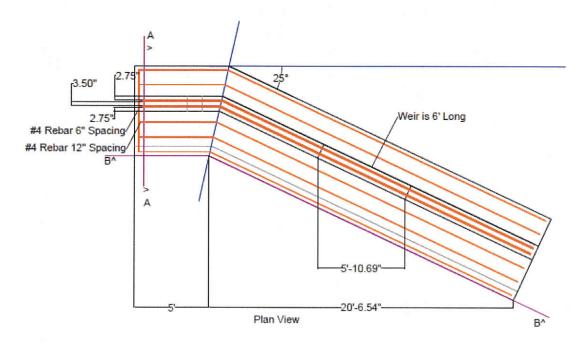


Figure 11. Structure 1 Plan View

10WE calculated the necessary amount of reinforcing steel. The design complies with the ACI Building Code minimum area of reinforcing steel for temperature shrinkage. 10WE designed the reinforcing steel to be embedded in three inches of concrete because the structure is in contact with soil and water.

When the diversion structures are constructed, the contractor will need to stabilize the soil to prevent differential settlement. The contractors must excavate the area to a depth of 18 inches and backfill with 12 inches of 3-inch diameter rock. The contractors will continue to consolidate the soil and add rock until the area stabilizes. Once the area stabilizes, the contractors will add 6 inches of crushed, well-graded aggregate with a maximum particle size of ³/₄-inch. Contractors will compact the area to 95% of standard proctor. Once this has occurred, the contractors may build the diversion structure.

10WE designed riprap to prevent scour on the downstream side of the structure. Scour could undermine the foundation, causing failure. 10WE calculated the plunge velocity of the water and the appropriate gradation of riprap required to prevent scour. The design specifies that the riprap be 24 inches deep and extend 10 feet downstream (see Table 4 and Table 5).

	Lower Range			Higher Range		
	ft	in	lbs	ft	in	lbs
D ₁₀₀	0.91	10.90	64.76	1.23	14.79	161.91
D ₅₀	0.72	8.65	32.38	0.77	9.19	38.86
D ₁₅	0.49	5.87	10.12	0.61	7.30	19.43

Table 4. Diversion Structure 1 Riprap

Table 5. Diversion Structure 2 Riprap

	Lower Range ft	in	lbs	Higher Range ft	in	lbs
D ₁₀₀	1.53	18.31	306.76	2.07	24.85	766.89
D ₅₀	1.21	14.53	153.38	1.29	15.44	184.05
D ₁₅	0.82	9.86	47.93	1.02	12.26	92.03

10WE's post-construction recommendations for Logan City are: 1) mow banks of each channel annually; 2) conduct a system inspection yearly and after a storm that exceeds the 20-year event to ensure that all channels and diversion structures are operating as designed.

An alternative to this design is to install about 8.6 miles of box culvert instead of expanding the existing canals. The estimated cost of this alternative is \$68.3 million dollars. Therefore, 10WE selected the design presented in this report.

Final Report. The objective of this project was to deliver this final report to Logan City on the design of a storm water conveyance system. The FA and EPE approved all final designs, construction drawings, and estimated costs before 10WE submitted this final report. Construction of this design is dependent upon approval by Logan City Council. Contractors will review this design report during the bidding process.

Budget

10WE incurred travel expenses during the field investigation. These expenses and the estimated cost of the project are outlined below.

Team Expenses

Per the Internal Revenue System (IRS 2016), the "standard mileage rates for the use of a car" is reimbursed at 54 cents per mile driven for business purposes. Consequently, the travel reimbursement to date is \$24.30 (Appendix VI). However, 10WE is volunteering their time and will not actually be reimbursed by Logan City.

Estimated Cost

The total estimated cost of the project is \$12.4 million. This cost includes design, materials, excavation, wetland mitigation, relocating pump stations, and purchasing land (Appendix VI). All construction costs were estimated under the direction of the EPE.

Conclusion

This design focused on transporting storm water from 1000 West to a holding pond. The water is pumped from the holding pond into the polishing ponds for treatment. The treated water is discharged into Swift Slough. Logan City's interest in this project highlights the possibility of implementing this design.

The negative environmental impact of untreated storm water affects water bodies downstream of Logan City. Collecting and treating storm water could prevent pollution, which contributes to removing Cutler Reservoir, Swift Slough, and the Lower Bear River from the EPA's list of impaired waters.

Conveying storm water to the holding ponds and through the polishing ponds has three benefits. First, flood risk is minimized. Second, pollutant discharge is decreased. Third, Logan City uses infrastructure that would otherwise be abandoned.

10WE cooperated with Cutler Engineering and Westside Drainage Solutions to design a storm water conveyance and treatment system. Together, these teams provided a long-term sustainable solution for Logan City's storm water management system.

Reflective Writing

My participation in the Civil and Environmental Engineering Design Sequence (CEEDS) was a growing experience for three reasons. First, I learned how the design process works. Second, I gained experience overcoming challenges and delays. Third, I learned from each of my team members and became a better leader because of them.

We began the project by meeting with Lance Houser, the Assistant City Engineer for Logan City. As we met with Lance, we outlined the scope of the project. This experience was valuable because it was an open-ended problem that wasn't from a textbook. It was up to us to evaluate and analyze what parameters would be important. I enjoyed this because it helped me realize that a thorough understanding of the problem isn't sufficient. It was necessary for us to understand all of the elements that were connected to the problem and how they influenced the problem. We spent a great deal of time understanding as much as we could about the problem. This helped us create a better solution. I believe that the ability to understand a problem is directly proportional to the ability to develop an effective solution efficiently. In other words, this experience reinforced the fact that it's difficult to fix something that you don't know is broke—or how it broke in the first place.

The next phase of the process was to collect data and evaluate alternative designs. This process was helpful because I was able to apply what I had learned about economic analysis and quantify why some alternatives were better than others. It was satisfying to present an alternative to our client with a monetary benefit associated with it.

One of my main contributions to the project was to create a 100-year storm event. This was rewarding because I was able to apply the theory and concepts I learned in CEE 3430 (Hydrology). I was expected to scientifically determine the amount of runoff that would be generated in subdivisions and industrial areas. This was difficult because I had never done this before. Once the design storm was approved, I was extremely satisfied knowing that I succeeded in applying what I had learned in my course. This helped me look forward to applying principles that I understand to solve a variety of problems.

Understanding the design process was helpful because now I have a better idea what to expect in my career. Most of the coursework in the department focuses on covering theory and application. However, I don't recall ever understanding how it all fit into the big picture. This design process did that for me. It helped to see how technical knowledge is necessary, but not sufficient. Economic, social, and constructability factors constrained the design.

Compiling the design report was the most frustrating part of the project. It was frustrating because I felt that I was expected to perform at a high standard without being provided sufficient tools to help me elevate my performance to meet the expectations. During this process, technical writing help wasn't provided to assist students in the class. However, I took our design report to technical writers on campus who helped me improve the language mechanics of the report. During these visits, I found myself correcting the report before the technical writers caught errors. This was an extremely rewarding feeling. Although, it wasn't an easy learning process, I felt that I learned technical writing better than I would have otherwise.

As the team leader, I had the primary responsibility to communicate with the client and External Professional Engineer (EPE). This was often difficult because he was unresponsive. I attempted steadily for 3 months to establish contact and was unsuccessful. This was demotivating and frustrating. Looking back, I realized that I could have leveraged a contract that was signed by our team and the EPE to hold the EPE accountable. I believe that I could have done this in a professional and empathetic way. I understood that the EPE was busy, but I could have prevented a great deal of frustration if I had gone to the EPE's office and spoken directly about how we as a team were feeling because of his neglect. I think that the ability to express feelings and perspectives openly helps prevent and resolve conflict. I could have done better at developing this ability.

I felt that we used our time wisely throughout the entire course of the project. We focused on creating detailed agendas to help attendees prepare for the meeting. The agendas enabled us to use the time we were together to make decisions and receive feedback. Minimal time was spent updating each other because that was taken care of mainly over email. It was extremely rewarding to complete the final design report on schedule even when our final report file became corrupted. This was rewarding because even though there were many things we couldn't control, we accomplished everything that we did have control over.

I enjoy coordinating with people. As the team leader, I felt that I learned a lot from each of my team members. I learned to be more thorough and detail oriented in design. I learned to think through problems and analyze each component of a project. I also experienced the creativity and synergy that can come from a group that trusts and values each other's opinions. I became a better leader because of the strengths of my team members.

For engineering students preparing for their senior design project I would emphasize the importance of initiative. It is essential to meet deadlines. Mentors are busy people and they don't get paid extra money to assist and supervise you. I would also emphasize that students spend time selecting a team that they can work with and invest in open communication to build trust as a team. This will pay dividends all throughout the design process.

The CEEDS process was helpful because I learned that it is worth every effort to develop a deep understanding of the problem because this is an essential in order to solve the problem. I also learned how to manage setbacks and delays in a project. Finally, I felt that I was able to learn from the skills and abilities of my team members.

Citations

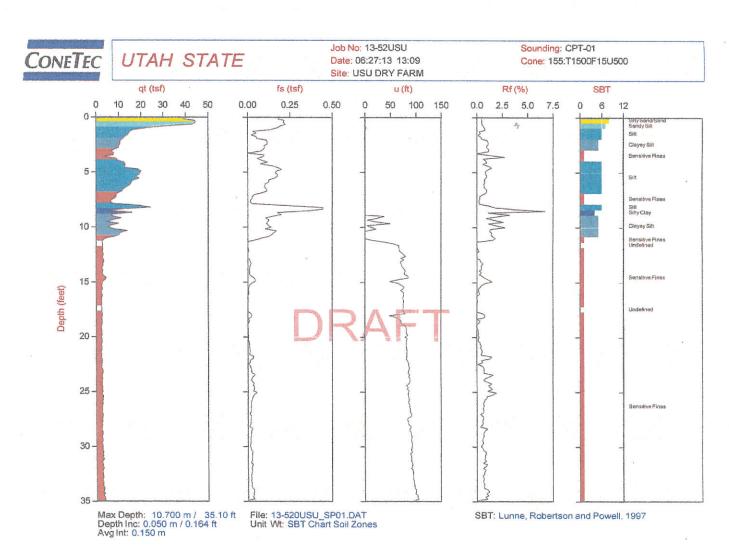
ASCE (American Society of Civil Engineers). (2006). "Code of Ethics," http://www.asce.org/code-of-ethics/ (November 21, 2016).

Environmental Protection Agency (EPA). (2016). "Why are wetlands important?" EPA, https://www.epa.gov/wetlands/why-are-wetlands-important> (November 21, 2016).

Google. (2014). "Logan, Utah." Map. *Google Maps.* <https://www.google.com/maps/@41.7660798,-111.8738348,4395m/data=!3m1!1e3> (April 4, 2016).

IRS (Internal Revenue Service). (2016). "2016 Standard Mileage Rates for Business." https://www.irs.gov/uac/newsroom/2016-standard-mileage-rates-for-business-medical-and-moving-announced (December 1, 2016).

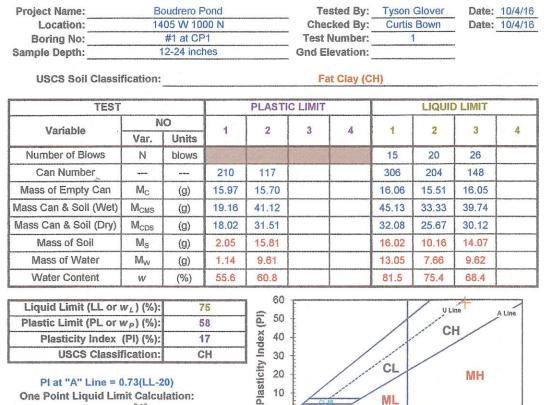
Natural Resource Conservation Service. (2017). "Web Soil Survey." https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (March 3, 2017).


PRISM. (2016). "Average Annual Precipitation (1981-2010) Utah." Prism Climate Group, http://prism.oregonstate.edu/gallery/view.php?state=UT (November 30, 2016).

Utah Division of Water Rights. (2017). "Well Search." http://maps.waterrights.utah.gov/EsriMap/map.asp?layersToAdd=wellsearch (March 3, 2017).

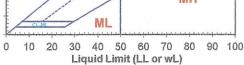
Waterman Industries (2017). "C-10 Cast Iron Canal Gates" *Waterman*, http://watermanusa.com/products/canal-gates/c-10-canal-gates/ (Apr. 7, 2017)

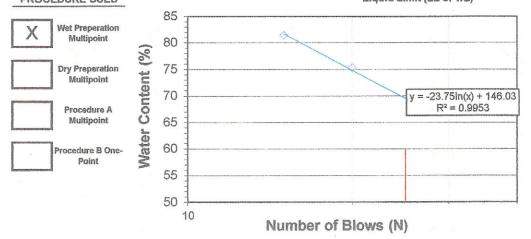
Appendix I: Data



Soil Testing Data

28

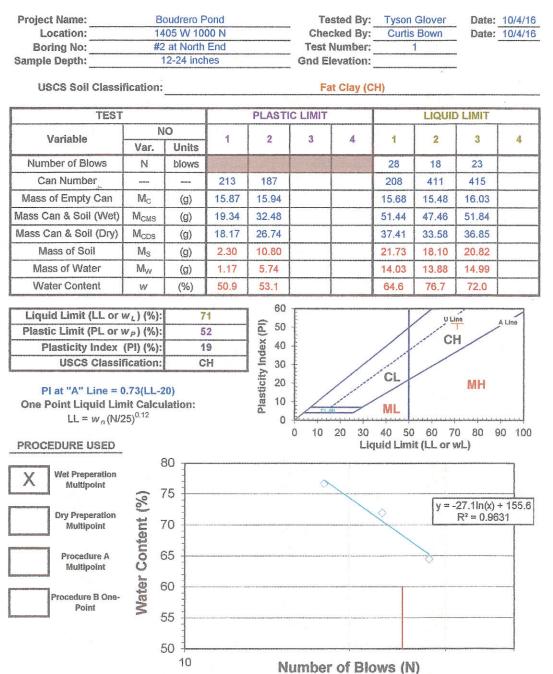

Atterberg Limits Data Sheet ASTM D4318-10


10

0

One Point Liquid Limit Calculation: $LL = w_n (N/25)^{0.12}$

PROCEDURE USED


14.333 Atterberg Limits Worksheet

Revised 02/13

____ 0f ____

Figure I2. Atterberg Limits Soil Test 1

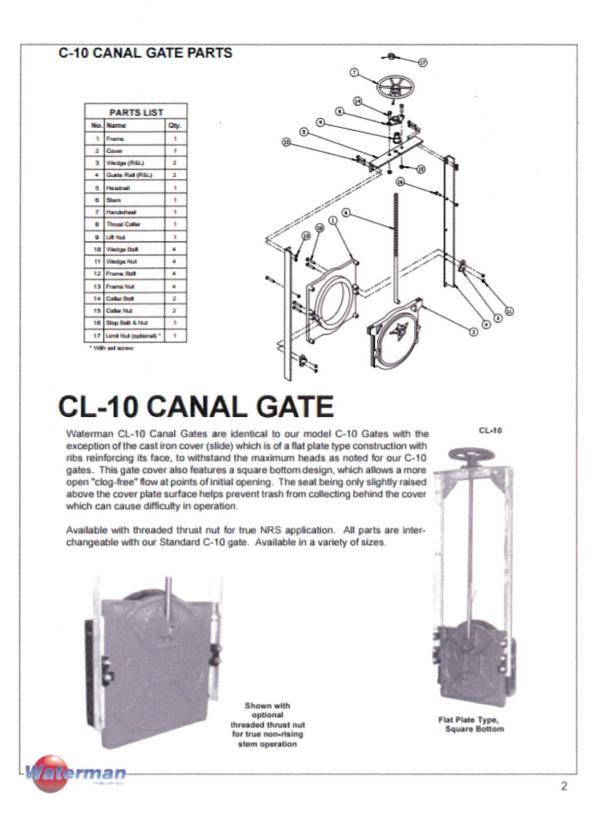
Atterberg Limits Data Sheet ASTM D4318-10

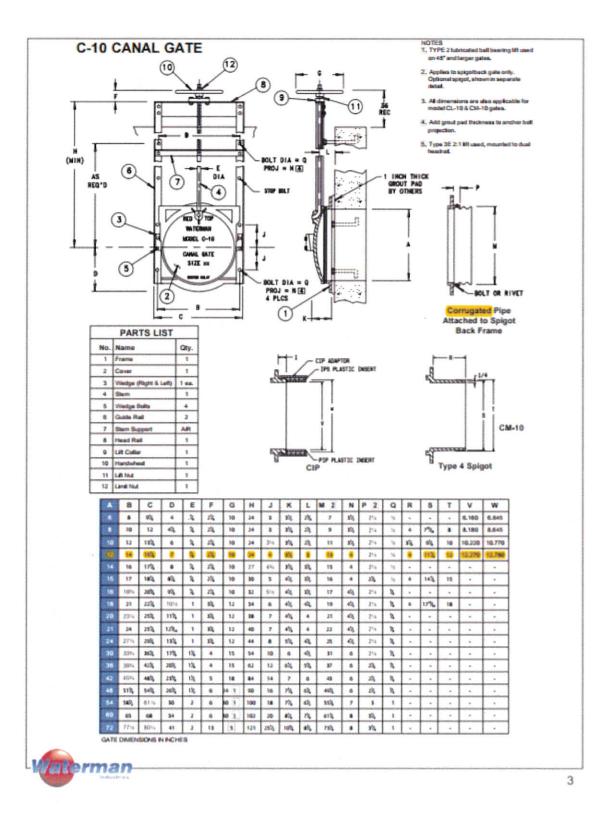
14.333 Atterberg Limits Worksheet

Revised 02/13

____ of ____

Figure I3. Atterberg Limits Soil Test 2


Drainage Area Characteristics


Table II1. Drainage Basin Characteristics

Basin #	Hydrologic Soil Group Classification	Area (Acres)
1	D	44.27
2	D	28.13
3	D	13.37
4	D	9.02
5	D	35.54
6	D	14.50
7	D	12.65
8	D	56.90
9	D	51.76
10	D	57.69
11	D	458.28
12	D	713.24
13	D	296.66
14	D	208.10
15	D	235.66
16	D	90.63

Canal Gate Specifications

Appendix II: Meeting Minutes

December 13, 2016 Minutes

Tuesday, December 13, 2016; 3:30pm – 5:00pm

Location

UWRL 2nd Floor Conference Room

Meeting Attendees:

Beck, Kade; Houser, Lance; Gordon, Megan; Johnson, Mike; Weller, Ryan

- 1. 3:55 Welcome Lance Houser
- 2. 3:57 Follow-up Mike Johnson
 - a. Discussion of Interim Report
- 3. 4:00 Discussion Lance Houser
 - a. Channels
 - i. Lance and Kade will finalize design storm after the meeting
 - ii. Ryan and Lance will size channels over the break
 - 1. 1ft freeboard required
 - 2. Vegetated side slope of 2:1 or 3:1
 - 3. Velocity below 2-3 cfs
 - 4. Safety factor on flows
 - 5. Use normal manning's coefficient and excel
 - b. Diversion Structures
 - i. 2 diversion structures needed for water rights
 - ii. Head gate with fixed orifice $(Q = 0.61 * A_0 * \sqrt{2 * g * \Delta h})$
 - iii. Assume gate will be full open
 - iv. Bypass weir at 5 cfs per mentor's advice
 - v. Concrete
 - 1. 12in thick walls
 - 2. 2 mats of steel/rebar
 - 3. Cantilever/retaining wall design
 - 4. Size footing for no water downstream
 - 5. Cutoff wall to prevent seepage
 - 6. Check for overturning
 - 7. Assume 4000psi concrete
 - 8. Waterman head gates, use bolt pattern
 - 9. Use same structures and worse case
 - vi. Culverts as needed
 - c. Final Drawings
 - i. Plan to overview and cross section at key locations
 - ii. Standard cross sections
 - iii. Locate and define grade breaks
 - d. Groundwater
 - i. Aquiclude
 - ii. Surface water does not penetrate into groundwater
 - iii. Signed memo from Lance approving aquiclude assumption

- e. Cost
 - i. Channels
 - 1. Assume the channel is filled in to begin with for estimating soil to be removed
 - ii. Ryan will work on costs and be given standard bid/estimate sheets
 - iii. Material, foundation, excavation, grading, excess material to landfill, mobilization, culverts, wetland, pollution
- f. Final Report
 - i. Start around Spring Break
- 4. 1:00 Timeline/Procedure Kade Beck
 - a.
- 5. 4:45 Task Summary Megan Gordon
 - a.
- 6. 4:50 Next Meeting Time Kade Beck, Lance Houser, Megan Gordon, Ryan Weller
 - a. Lance Houser and Ryan Weller will meet Monday, December 19, 2016 at 8am to go over channel sizing
 - b. Kade Beck, Lance Houser, and Megan Gordon will meet Tuesday, January 10, 2017 at 3:30pm to work on diversion structures
 - c. Both meetings will be held at Logan City
 - d. Next meeting with both mentors will be to approve economics
- 7. 5:00 Adjournment Lance Houser

January 20, 2017 Minutes

Friday, January 20, 2017; 9:25am – 10:10am

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

- 1. 9:25 Welcome Kade Beck
- 2. 9:26 Follow-up and Discussion Kade Beck, Megan Gordon, Ryan Weller
 - a. Bearing Capacity is still needed from the Westside group
 - b. Channels
 - i. Could not get the file to work and met with ArcGIS specialists for help
 - ii. Received new imagery and DEM files, working to import them into Civil 3D
 - iii. Will use all existing channels
 - 1. Kade had excluded two channels in his analysis and we will edit numbers and not redo design storm
 - iv. Ryan will meet with Lance this Tuesday if needed, if not Ryan will meet with Lance next Tuesday for final approval
 - v. Channels should be done by February 1, 2017
 - c. Economics and Resizing Culverts
 - i. Kade will wait to begin until channels and diversion structures are finalized
 - d. Diversion Structures
 - i. Begin making spreadsheet with tentative values
 - ii. Lance will put pressure on Westside for bearing capacity

3. 9:37 – Timeline/Procedure – Kade Beck

- a. Progress Report 1
 - i. Turn in by February 6, 2017 at 5pm
 - ii. Need report back by February 9, 2017 at 5pm
- b. Progress Report 2
 - i. Turn in by March 3, 2017 at 5pm
 - ii. Need report back by March 9, 2017 at 5pm
- c. Final Report
 - i. Turn in by April 17, 2017 at 5pm
 - ii. Need report back by April 20, 2017 at 5pm
- d. Meeting with Lance, Mike, and all group members
 - i. March 14, 2017 at 3:30pm in the UWRL 2nd Floor Conference Room
- 4. 10:07 Task Summary Megan Gordon
 - a. Ryan will work on channel cross sections and slopes
 - b. Kade will email Lance and Mike about dates to approve reports and meet
 - c. Megan will begin making a spreadsheet for diversion structures
- 5. 10:08 Next Meeting Time Kade Beck

- a. Friday, January 27, 2017 at 9:30am in the ASCE Study Room
 b. Tuesday, March 14, 2017 at 3:30pm in the UWRL 2nd Floor Conference Room

6. 10:10 – Adjournment – Kade Beck

February 2, 2017 Minutes

Friday, February 2, 2017; 9:30am - 10:30am

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

1. 9:30 – Welcome – Kade Beck

2. 9:30 - Follow-up

- a. Covered in discussion
- 3. 9:32 Discussion Kade Beck, Ryan Weller
 - a. Progress Report 3
 - i. We will not revise the Gantt Chart yet, just discuss changes
 - ii. Design will be done February 28th
 - iii. Team Mentor Meeting
 - **1.** Expectation for final report
 - **2.** Base flows
 - 3. Culvert and diversion structures
 - 4. Groundwater concerns
 - **a.** Need technical memo from Lance
 - 5. Economics
 - b. Design of channels
 - i. Difficulty with spatial references in program
 - ii. Finish design by February 10th and have the design be approved by Lance in meeting February 14th
 - c. Team leader presentation
 - i. Discussed presentation
 - ii. Practiced presentation
- 4. 10:25 Timeline/Procedure Kade Beck
 - a. Finish design by February 28th
 - b. Begin working on the Final Report March 1st
 - c. Send progress report to Lance by February 6th at 5pm
- 5. 10:28 Task Summary Megan Gordon
 - Megan Gordon will write the progress report and have it finished by February 3rd
 - b. Ryan Weller will complete the channel design
 - c. Kade Beck will complete the team leader presentation and send the progress report to Lance for approval by February 6th at 5pm
 - d. Kade and Ryan will review the progress report
- 6. 10:29 Next Meeting Time Kade Beck
 - a. Monday, February 6, 2017 at 7:45 am in ENLAB 235 B
- 7. 10:30 Adjournment Kade Beck

March 2, 2017 Minutes

Thursday, March 2, 2017; 3:00 pm-5:00 pm

Location

Lance Houser's Office

Meeting Attendees:

Beck, Kade; Gordon, Megan; Houser, Lance; Weller, Ryan

- 1. 3:00 Welcome Lance Houser
- 2. 3:10 Follow-up Lance Houser
 - a. See Discussion
- 3. 3:11 Discussion Lance Houser
 - a. Channels
 - i. Limited by the quality of data available
 - ii. Channel's will not show due to the level of detail (5m DEM)
 - iii. Cut vs. cut/fill channels
 - iv. Excavation numbers sound appropriate
 - b. Structures
 - i. One wall will be poured
 - ii. Pipe width of channel from field investigation
 - iii. Sliding FS=2, Overturn FS=1.5
 - iv. Frost depth at 30", have bottom of foundation at 30"
 - v. Weir crest at yo+.1ft, 6" freeboard when in use
 - vi. Cantilever wall
 - vii. 2 steel mats
 - viii. Use 1ft sections for typical section in series of independent beams
 - c. Cost
 - i. Kade was given spreadsheet as basis
 - ii. Filled out spreadsheet while discussing, see spreadsheet
 - iii. Need rip rap downstream of diversion structures
 - 1. Ryan given spreadsheet to find gradation of rip rap
 - iv. Need total soil excavation amounts
 - v. Think of any other potential costs
 - vi. Assume entire area is wetland and will be disturbed, \$180,000 per acre of wetland destroyed
 - vii. Beat \$83.2 million
 - d. Drawings
 - i. Overview and key locations of channel cross sections
 - ii. 1:100 scale appropriate for channels
 - iii. Draw and send to Lance for red line (Megan and Ryan)
 - 1. Send by next meeting
 - e. Groundwater
 - i. Consider to find if it is important
 - ii. Find data from the Soil Conservation Service

- 1. Depth to clay layer, pressure, permeability/hydraulic conductivity
- iii. DWR well logs drilled near the area of interest for thickness to clay layer
- iv. NRCS for physical properties and pick worst case
- v. Darcy's Law to estimate flow up through channel
- 4. 4:40 Timeline/Procedure Kade Beck
 - a. By next meeting
 - i. Cost estimate
 - ii. Diversion structures
 - iii. Drawings
- 5. 4:45- Task Summary Lance Houser
 - a. Kade Beck will finish cost estimates and look into groundwater
 - b. Ryan will finish excavation amounts and channel drawings
 - c. Megan will finish diversion structures and drawings

6. 4:55 – Next Meeting Time – Kade Beck

- a. March 14, 2017 at 3:30 pm at the UWRL
- 7. 5:00 Adjournment Lance Houser

March 23, 2017 Minutes

Thursday, March 23, 2017; 4:30pm - 5:05pm

Location

UWRL 2nd Floor Conference Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Houser, Lance; Johnson, Mike; Weller, Ryan

- 1. 4:50 Welcome Kade Beck
- 2. 4:50 Follow-up
 - a. See Discussion
- 3. 4:50 Discussion Kade Beck
 - a. Channels
 - i. Sections and tables need additional formatting
 - ii. Check style guide after meeting
 - iii. Profile is very long
 - 1. Tabular data with typical representation
 - 2. State to see complete file on drive in paper
 - 3. Overview with key that refers to table
 - b. Structures
 - i. Calculations are good so far
 - c. Cost
 - i. About \$12.4 million
 - ii. Cheaper than box and culvert along NW Field Canal
 - d. Final Drawings
 - i. Update after meeting
 - e. Groundwater
 - i. K is 0-0.06 in/hr with one location of 0.2 in/hr
 - 1. Throw out 0.2 in/hr (Lance Houser)
 - ii. Well depth to water is 306ft with 20 psi artesian pressure at surface
 - f. Presentation
 - i. Invited to presentation on April 12th or 14th
 - ii. Cover alternatives and design process
 - g. Final Report
 - i. Assignments have been made
 - ii. Incorporate revisions
 - iii. Send to Lance by April 19th
- 4. 5:00 Timeline/Procedure Kade Beck
 - a. Presentation on April 12th or 14th
 - b. Report to Lance by April 19th
- 5. 5:01 Task Summary Megan Gordon
- 6. 5:02 Next Meeting Time Kade Beck
 - a. We have finished with meetings with both mentors
- 7. 5:03 Adjournment Kade Beck

March 24, 2017 Minutes

Friday, March 24, 2017; 9:25am - 10:20am

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

- 1. 9:25 Welcome Kade Beck
- 2. 9:25 Follow-up
 - a. See Discussion
- 3. 9:26 Discussion Kade Beck
 - a. Updates
 - i. Structures
 - 1. Meeting with Lance March 29th to finish going over calculations
 - ii. Drawing
 - 1. Issues with elevations
 - 2. Annotate by hand
 - 3. Will re-snip profile and work on plan view
 - a. Data in table to coordinate with labels on diagrams
 - iii. Groundwater
 - 1. Checked calculations
 - 2. Report velocity and flow for reach one (as example of scale)
 - 3. Artesian conditions so the water is flowing upward
 - b. Presentation
 - i. North arrows
 - ii. Costs for alternatives
 - iii. Edit Gantt Chart to have finial and projected on same chart

4. 10:10 - Timeline/Procedure - Kade Beck

- a. Meet Monday, March 27th at 7:30am in the ASCE Study Room
 b. Meet Wednesday, March 29th at 8pm in ENGR 301
- c. Meet Thursday, March 30th at 8pm in ENGR 301
- d. Rough Draft of entire paper completed by April 7th
 - i. Kade and Megan will meet on April 7th at 9:30am in the ASCE Study room to begin editing the paper
- e. Kade will finish editing the Interim Report by April 3rd at 5pm
- 5. 10:20 Task Summary Megan Gordon
 - a. Kade
 - i. Finish groundwater
 - ii. Edit interim report
 - iii. Work on slides for presentation
 - iv. Work on section for paper
 - b. Megan

- i. Work on slides for presentation
- ii. Work on section for paper
- iii. Finish diversion structures
- iv. Meet with Lance on March 20th at 3pm
- v. Work on final paper

c. Ryan

- i. Update Gantt Chart
- ii. North arrows on pictures in presentation
- iii. Work on slides for presentation
- iv. Work on section for paper

6. 10:20 – Next Meeting Time – Kade Beck
a. Monday, March 27th at 7:30am in the ASCE Study Room

,

7. 10:20 – Adjournment – Kade Beck

March 27, 2017 Minutes

Monday, March 27, 2017; 7:30pm - 8:20pm

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

- 1. 7:30 Welcome Kade Beck
- 2. 7:30 Follow-up
 - a. Kade checked other well logs in the area of interest and changed the depth to water to an average value

3. 7:52 – Discussion – Kade Beck

- a. Worked on compiling the presentation
- b. Assigned roles for presentation
- c. Conclusion: will discuss realistic expectations if we need to fill more time

4. 8:13 – Timeline/Procedure – Kade Beck

5. 8:15 – Task Summary – Megan Gordon

- a. Everyone will introduce themselves during the presentation
- b. Everyone will practice individually before the meeting on Wednesday
- c. Kade
 - i. Overview, on-site treatment, do nothing alternative, design, conclusion
- d. Megan
 - i. Objective, scope, site investigation, design, cost, Gantt chart
- e. Ryan
 - i. Design, constraints

6. 8:20 – Next Meeting Time – Kade Beck

- a. Wednesday, March 29th at 8pm in ENGR 301
- b. Thursday, March 30th at 8pm in ENGR 106
- 7. 8:20 Adjournment Kade Beck

April 3, 2017 Minutes

Monday, April 3, 2017; 7:45am - 8:20am

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

- 1. 7:45 Welcome Kade Beck
- 2. 7:45 Follow-up
- 3. 7:47 Discussion Kade Beck
 - a. Paper
 - i. Executive Summary
 - 1. Design and post-construction
 - 2. Methods
 - 3. Possibly re-write
 - ii. Description
 - 1. Post-constructions
 - 2. Paragraph about how entire project relates before section on design storm
 - 3. Alternatives, methods, decisions
 - 4. Table with all alternatives and costs
 - iii. Budget
 - 1. Revise to final estimate
 - 2. Take out mileage cost
 - iv. Conclusion/References
 - 1. Add necessary information
 - v. Appendices
 - 1. Add relevant calculations, figures, data, tables
 - 2. Gantt Chart for only 4880 (Ryan)
 - 3. Minutes for only this semester in paper, all on drive
 - 4. Total hours
 - 5. Re-write constraints to ensure it is not in passive voice
 - 6. Engineering tools
 - 7. Government regulations (ACI)
 - 8. Edit post-design risk
 - 9. Overcoming challenges

4. 8:15 – Timeline/Procedure – Kade Beck

a. Rough draft of paper by April 7th at 9:30 am

5. 8:17 – Task Summary – Megan Gordon

- a. Rough draft of paper all
 - i. Include decisions, logic, and alternatives
- b. Kade:
 - i. Edit and add to Interim Report as outlined above

- ii. Talk to Lance about post-construction
- c. Megan:
 - i. Box and Culvert alternative
 - ii. Finish diversion structure design
 - iii. Ask Lance about Box and Culverts
 - iv. Minutes for paper and drive
- d. Ryan Gantt Chart
- 6. 8:19 Next Meeting Time Kade Beck
 7. 8:20 Adjournment Kade Beck

April 12, 2017 Minutes

Wednesday, April 12, 2017; 7:20 am - 8:25 am

Location

ASCE Study Room

Meeting Attendees:

Beck, Kade; Gordon, Megan; Weller, Ryan

- 1. 7:20 Welcome: Kade Beck
- 2. 7:20 Follow-up
- 3. 7:20 Discussion: All
 - a. Review respective writing portions
 - i. Add North arrows
 - ii. Find water rights?
 - iii. No alternative table
 - iv. Box and Culvert
 - v. Add calculations
 - b. Discuss submission guideline items left to be done
 - i. Formatting appendices
 - 1. Everyone will add and format their own appendices
 - ii. Technical writing review
 - 1. Kade will take to technical writing lab and complete changes
 - iii. Update Lists of Tables and Figures
 - iv. Format USB
 - 1. Everyone will add their own files
 - v. Purchase new Binder (maybe new USB?)
 - 1. Megan will purchase new binder and USB
 - vi. Update Special Summary Documentation
 - 1. Everyone will add code and software used
- 4. 8:15 Discuss timeline for remainder of semester- Kade Beck
 - a. Have edits done by Friday
 - b. Ryan will add his appendices then give to Megan
- 5. 8:20 Task Summary- Megan Gordon
 - a. Kade:
 - i. Take to technical writing lab and incorporate changes
 - ii. Ask Lance about Box and Culvert
 - b. Ryan:
 - i. Ask Dr. Peralta about adding calculations from spreadsheet
 - ii. Add appendices
 - c. Megan:
 - i. Buy USB and binder
 - ii. Add appendices
 - d. All will review the paper
- 6. 8:25 Next Meeting Time Kade Beck

a. May meet next week7. 8:25 – Adjournment – Kade Beck

Appendix III: Person-hour work reports

Team Member Work Record Summary Table

Last Name	First Name	Role(s) on Team	Total work hrs for Fall 2016 & Spring 2017 semesters	Signature (by hand is required)
Beck	Kade	Team Leader, Hydrologist, Financial Planner, External P.E. Liaison	130	
Gordon	Megan	Structural Engineer, Technical Writer, Records Keeper	130	
Weller	Ryan	Faculty Liaison, Hydraulics and Geotechnical Engineer	152	

Table III1. Team Member Work Record Summary

Individual Team Member Work Logs

	Team:	10th West	Engineers												
Individual (last name, first name): Beck, Kade															
	Hours w	orked on t	t		2	(including class attendance)									
Week # Start Day End Day Su Mo							We	Th	Fr	Sa	Week Total	Task(s) (Details can be on another document. Or, there can be multiple rows per week or day.)			
i 8-May 14-May								1			Field Trip				
	ii	22-May	29-May	0	0	1.5	0	0	0	0	1.5	Meeting with Lance			
	iii 14-Aug 20-Aug 0 0						0	0	0	0	1	Contacting Lance			
	iv	0	0	0	0	0	0								
	1 28-Aug 3-Sep 0 0						0	2.8	0	0	3.45	Class/meeting with Lance			
	2	4-Sep	10-Sep	0	0	1.2	0	0.8	0	0	2	Class/team meeting			
	3	11-Sep	17-Sep	0	0	0.75	0	0.8	1	0	2.55	Class/meeting with Lance and TL's			
	4	4 18-Sep 24-Sep 0			0	0.75	0	1.5	0	0	2.25	Class/team meeting			
	5	5 25-Sep 1-Oct		0	1.5	0.75	0	0	0	0	2.25	Meeting with Lance/Mentors			
	6	2-Oct	8-Oct	0	0	0.75	0	0	0	0	0.75	class			
	7	9-Oct	15-Oct	0	0	0.75	0	0	0	2	2.75	Hydrology/class			
	8	16-0ct	22-Oct	0	1.5	0.75	0	0.8	0	0	3	Lance/team leader meeting			
	9	23-Oct	29-Oct	0	0	0.75	0	0	2	2	4.75	Meeting/Hydrology			
	10	30-Oct	5-Nov	0	3	3	0.75	6	1	0	13.75	Hydrology			
	11	6-Nov	12-Nov	0	1.25	0	2.5	0	0	0	3.75				
	12	13-Nov	19-Nov	0	0.75	3	1	0	0	0	4.75	Lance/class/team meeting			
	13	20-Nov	26-Nov	0	6	4	0	0	0	2	12	Interim Report			
	14	27-Nov	3-Dec	0	3	2.5	7	1	0	2.5	16	Interim Report			
	15	4-Dec	10-Dec	0	1	2.25	0.5	1	0	0	4.75	Interim Report			
	16	11-Dec	17-Dec	0	0	0	0	0	0	0	0				
							Seme	ster	tot	al	81.25				

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.

12/7/2016 Date

Certification by Team Leader

I believe that the above-reported hours are accurate.

12/7/2016 Date

2

Team: 10th West Engineers Individual (last name, first name): Beck, Kade Hours worked on team project (including class attendance)

Week	Start Day	End Day	Su	Mo	Tu	We	Th	Fr	Sa	Week Total	Task(s) (Details can be on another document. Or, there can be multiple rows per week
											or day.)
i	11-Dec	17-Dec	0	0	3	1	0 0	0	0	3	Meeting with Mentors
ii	18-Dec	24-Dec	0	0	0)	0 0	0	0	0	
iii	25-Dec	31-Dec	0	0	0)	0 0	0	0	0	
iv	1-Jan	7-Jan	0	0	C)	0 0	0	0	0	
1	8-Jan	14-Jan	0	0	C	0.7	5 0	0	0	0.75	Class
2	15-Jan	21-Jan	0	0	0	0.7	5 0	0.5	0	1.25	class, meeting
3	22-Jan	28-Jan	0	0	C	0.7	5 0	0	0	0.75	class
4	29-Jan	4-Feb	0	0	C	0.	5 0	2.5	0	3	Presentation, meeting
5	5-Feb	11-Feb	0	0.5	C)	0 0.5	0	0	1	Meeting, Progress Report
6	12-Feb	18-Feb	0	0	C)	0 0	0	0	0	
7	19-Feb	25-Feb	0	0	C)	0 0	1	0	1	Class
8	26-Feb	4-Mar	0	0	C)	0 2	0	0	2	Meeting with Lance
9	5-Mar	11-Mar	0	0	C)	0 0.5	0	1	1.5	groundwater/progress report
10	12-Mar	18-Mar	0	0	1.5		0 0	1	0	2.5	Progress Report
11	19-Mar	25-Mar	0	0.3	C)	0 2.5	2	0	4.75	Mentor meeting/Presentation
12	26-Mar		0	1	C)	2 2	1	0	6	Presentation
13	2-Apr	8-Apr	0	1	1.5		1 0	1.75	2.5	7.75	Meeting/Report
14	9-Apr	1	0	0	1	. 2.	5 2.8	3.25	4	13.5	Report
15	16-Apr		0	0	C)	0 0	0	0	0	
16	23-Apr			0	C		0 0		0	0	
17	30-Apr	6-May	0	0	C		0 0		0	0	
						Sem	ester t	otal		48.75	

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.

4/15/2017 Date

Certification by Team Leader

I believe that the above-reported hours are accurate.

4/15/2017 Date Team: 10th West Engineers Individual (last name, first name): Gordon, Megan Hours worked on team project (including class attendance)

Wee	ek#St	art Day	End Day	Su	Mo	Tu	We	Th	Fr	Sa	Week Total	Task(s) (Details can be on another document. Or, there can be multiple rows per week or day.)
		8-May	14-May	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	Field Trip
		22-May	28-May	0.00	0.00	1.50	0.00	0.00	0.00	0.00	1.50	Meeting with Lance
	i i	7-Aug	13-Aug	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ii	14-Aug	20-Aug	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	iii	21-Aug	27-Aug	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	1	28-Aug	3-Sep	0.00	0.00	0.75	0.00	1.50	0.00	0.00	2.25	Class and meeting with Lance
	2	4-Sep	10-Sep	0.00	0.00	1.50	0.00	0.83	0.00	0.00	2.33	Class, group meeting, minutes
	3	11-Sep	17-Sep	0.00	0.00	2.00	0.00	0.83	0.00	0.00	2.83	Class and meeting with Lance
	4	18-Sep	24-Sep	0.00	0.00	0.83	0.00	3.00	0.00	0.00	3.83	Class, team meeting, wrote progress report 1
	5	25-Sep	1-0ct	0.00	0.00	1.50	0.00	0.50	0.00	0.00	2.00	Meeting with mentors, team meeting, minutes
	6	2-Oct	8-Oct	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00	Class
	7	9-Oct	15-Oct	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.75	Class
	8	16-Oct	22-Oct	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	9	23-Oct	29-Oct	0.00	0.00	2.00	0.00	0.00	2.00	0.00	4.00	Group meeting, minutes, progress report 2
	10	30-Oct	5-Nov	0.00	0.00	1.00	0.00	0.75	1.00	0.00	2.75	Group meeting, minutes
	11	6-Nov	12-Nov	0.00	1.00	1.00	0.00	2.50	0.00	0.00	4.50	Class (presentations), meeting, minutes
	12	13-Nov	19-Nov	0.00	0.00	0.75	0.00	1.00	0.00	5.50	7.25	Class, meeting, minutes, interim report
	13	20-Nov	26-Nov	2.00	7.50	0.00	0.00	0.00	0.00	1.50	11.00	Interim report
	14	27-Nov	3-Dec	0.00	0.50	0.00	1.50	0.75	0.00	2.00	4.75	Meting, minutes, interim report, class quiz/survey
	15	4-Dec	10-Dec	0.00	0.25	3.00	0.00	0.00	0.00	0.00	3.25	Meeting, interim report, class quiz/survey
	16	11-Dec	17-Dec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
							Seme	ster to	tal		55.00	

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.

12/6/2016 Date

Certification by Team Leader

I believe that the above-reported hours are accurate.

12/6/2016 Date

	(last nam	Engineers le, first nan am project			Gordo	n, Mej (incluc	1. CONTRACTOR 1.	ass att				
Week # St	tart Day	Tu	We	Th	Fr	Sa	Week Total		Task(s) (Details can be on another document. Or, there can be multiple rows per week or day.)			
i	18-Dec	24-Dec	0	0	0	0	0	0	0		0	
ii	25-Dec	31-Dec	0	0	0	0	0	0	0		0	
	1-Jan	7-Jan	0	0	0	0	0	0	0		0	
1	8-Jan	14-Jan	0	0	1.5	0.75	0	0	0		2.25	Class, meeting with Lance
2	15-Jan	21-Jan	0	0	0	0.75	0	0.75	0		1.5	Class, meeting, minutes
3	22-Jan	28-Jan	0	0	0	0.75	0	0	0		0.75	Class
4	29-Jan	4-Feb	0	0	0	0	0.5	2.5	0		3	Class, meeting, minutes,
5	5-Feb	11-Feb	0	0.5	0	0	0	0	0		0.5	Meeting
6	12-Feb	18-Feb	0	0	0	0	0	0	0		0	
7	19-Feb	25-Feb	0	1	0	0	0	0.5	1		2.5	Diversion Structure
8	26-Feb	4-Mar	0	0	1.5	2	3	0	0		6.5	Diversion Structure, mee
9	5-Mar	11-Mar	0	0	0	6	0	0	0		6	Diversion Structure, minu
10	12-Mar	18-Mar	0	2	0.5	0	0	1.5	0		4	Diversion Structure, mee
11	19-Mar	25-Mar	0	0	0	0	2	2	0		4	Meeting, diversion struct
12	26-Mar	1-Apr	1	1	6	3	2	1.5	4.5		19	Meeting, diversion struct
13	2-Apr	8-Apr	4.5	4.5	5	3.5	2	2	0.5		22	Meeting, diversion struct
14	9-Apr	15-Apr	1	0.5	0	1.5	0	0	0		3	Meeting, diversion struct
15	16-Apr	22-Apr	0	0	0	0	0	0	0		0	
16	23-Apr	29-Apr	0	0	0	0	0	0	0		0	
			75									

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.

Certification by Team Leader

I believe that the above-reported hours are accurate.

15-Apr-17

15-Apr-17

Date

Date

Team: 10th West Engineers Individual (last name, first name): Hours worked on team project

Weller,Ryan (including class attendance)

(include of team project												
									Task(s) (Details can be on another			
Week # Start Day		End Day	Su	Mo	Tu	We	Th	Fr	Sa	Week Tot	al document. Or, there can be multiple	
												rows per week or day.)
	Ĩ	8-May	14-May	0	0	0	0	0	1		0	1 Field Trip
	ii	22-May	28-May	0	0	1.5	0	0	0		0 1	.5 Meeting w/ Lance
	1	28-Aug	3-Sep	0	0	0.75	0	2.75	0		3 3	.5 Class. Meeting w/ Lance
	2	4-Sep	10-Sep	0	0	1.25	2	2.5	0	0 0 5.75		75 Class. Team meeting. ArcGIS
	3	11-Sep	17-Sep	0	2	2.5	0	1.5	0.5	a 🕴	0 6	.5 Class. Meeting w/ Lance. ArcGIS
	4	18-Sep	24-Sep	0	0	1.75	5.5	2.5	0		9.7	75 Class. Team meeting. ArcGIS
	5	25-Sep	1-Oct	0	0	0.5	0	1	0	1) 1	.5 Meeting with P.E. and Faculty
	6	2-Oct	8-Oct	0	0	1	0	0	0)	1 Class
	7	9-Oct	15-Oct	0	0	0.75	0	0	0		0.7	75 Class
	8	16-Oct	22-Oct	0	0	0	0	0	0)	0
	9	23-Oct	29-Oct	0	0	0.75	0	1	4	1	5.7	75 Class, Presentation, Report
	10	30-Oct	5-Nov	0	0	0.5	0.5	0	1)	2 Group Meeting
	11	6-Nov	12-Nov	0	0	1.25	0	2.5	0		3.7	75 Class, Group Meeting
	12	13-Nov	19-Nov	0	0	1.25	2.75	0.5	0) 4	.5 Class, Report, P.E. Meeting
	13	20-Nov	26-Nov	0	8.75	4	0	0	0	(12.7	75 Report, Field Work
	14	27-Nov	3-Dec	0	2.5	3	0.5	0.5	3	1	2 11	.5 Flows, Team meeting, Class, Report
	15	4-Dec	10-Dec	0	4.25	3.5	0	0	0		7.7	75 Report, Team Meeting
	16	11-Dec	17-Dec	0	0	0	0	0	0		0	0
							Seme	ster to	tal		78.2	25

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.

Certification by Team Leader

I believe that the above-reported hours are accurate.

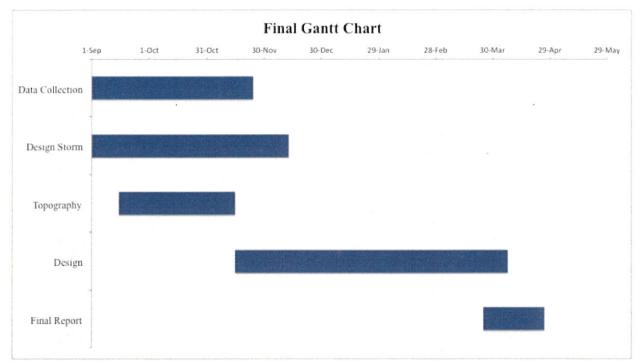
12/6/16 Date

12/6/16 Date

Team:	10th West	Engineers										
Individual (last name, first name): Weller,Ryan												
Hours w	vorked on te	eam projec	t			(inclue	ding cl	ass att	tenda	nce)		
												Task(s) (Details can be on another document.
Week #	Start Day	End Day	Su	Mo	Tu	We	Th	Fr	Sa	We	ek Total	Or, there can be multiple rows per week or day.)
i	1-Dec	8-Dec				5					5	
	18-Dec	24-Dec	0	1.5	0	0	0	0	6	0	1.5	Meeting w/ P.E.
ini	25-Dec	31-Dec	0	0	0	0	0	0	1	0	0	
1	1-Jan	7-Jan	0	0	0	0	0	0		0	0	
2	8-Jan	14-Jan	0	4	2	1.5	0	0		0	7.5	Meeting w/ P.E.,
3	15-Jan	21-Jan	0	0	2	1	0	1.75	1	0	4.75	Meeting w/ P.E., Class
4	22-Jan	28-Jan	0	2	1.75	2	0	0	(D	5.75	Channel Design, Class
5	29-Jan	4-Feb	0	0	2	0	0	1		3	6	Channel Design, Team
6	5-Feb	11-Feb	0	0	0	0	0	1		1	2	Channel Design,
7	12-Feb	18-Feb	0	0	0.5	0	0	0	(D	0.5	Channel Design
8	19-Feb	25-Feb	0	0	4.5	0	2	0.5	(D	7	Channel Design
9	26-Feb	4-Mar	0	0	0	4.5	2	1.5	(D	8	Channel Design,
10	5-Mar	11-Mar	0	0	0	0.5	0	1	(D	1.5	Team Meeting
	12-Mar	18-Mar										Meeting w/ P.E. and
11	12-iviar	To-Mar	0	0	1.5	0	0.75	7	(D	9.25	F.A., Channel Design
12	19-Mar	25-Mar	0	1	0	2.75	1.5	2			7.25	Team Meeting,
13	26-Mar	1-Apr	0	1.25	2.25	0	0	0	(D	3.5	Team Meeting, Paper
14	2-Apr	8-Apr	0	0	0.5	1.75	1				3.25	Paper, Team Meeting
15	9-Apr	15-Apr						1			1	Team Meeting
16	16-Apr	22-Apr									0	
17	23-Apr	29-Apr									0	
18	30-Apr	6-May									0	
						Semes	ster to	tal			73.75	

Certification by Individual

I declare that I worked at least the number of hours I report above for each week during the semester.


4/15/2017


Date

Certification by Team Leader

I believe that the above-reported hours are accurate.

4/15/2017 Date **Appendix IV: Gantt Charts**

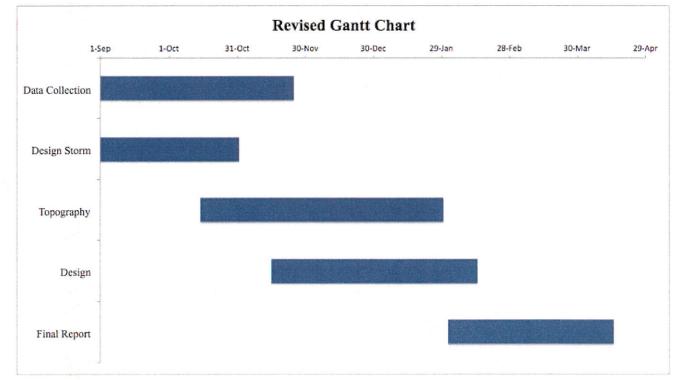
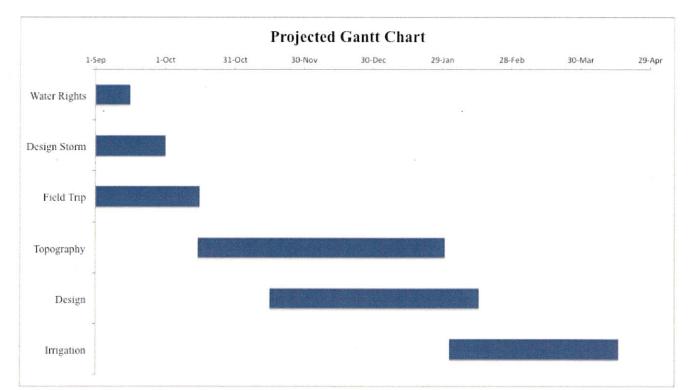
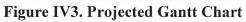




Figure IV2. Revised Gantt Chart 4870

Appendix V: Photos

.

Figure V1. Aerial Photo of Area of Interest Current Conditions

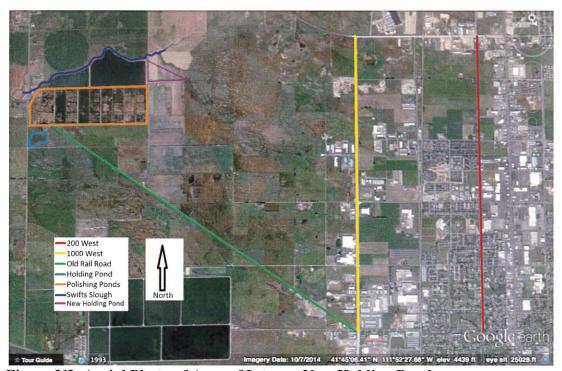
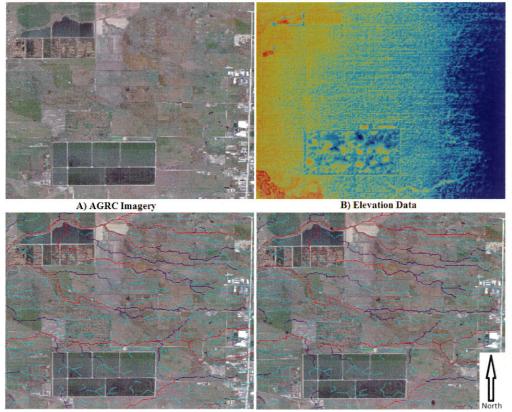



Figure V2. Aerial Photo of Area of Interest New Holding Pond

C) TauDEM Results D) Surface Water Rights Figure V3. AGRC, Elevation, TauDEM, Surface Water Rights

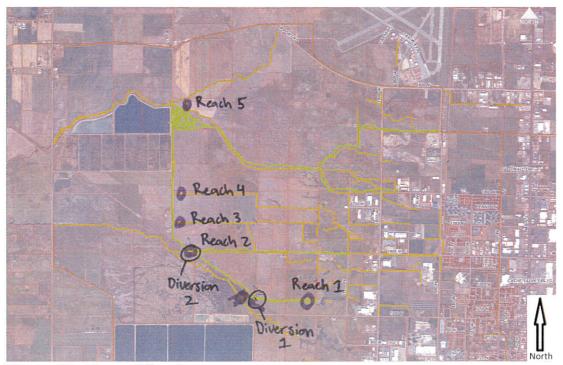


Figure V4. Channel Reaches

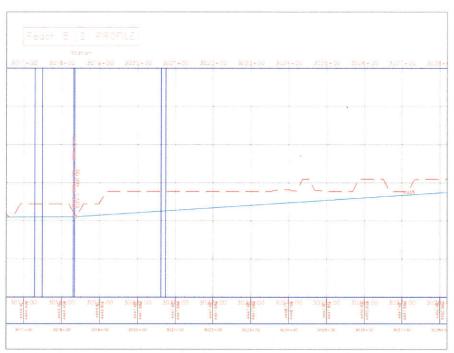


Figure V5. Profile Plot

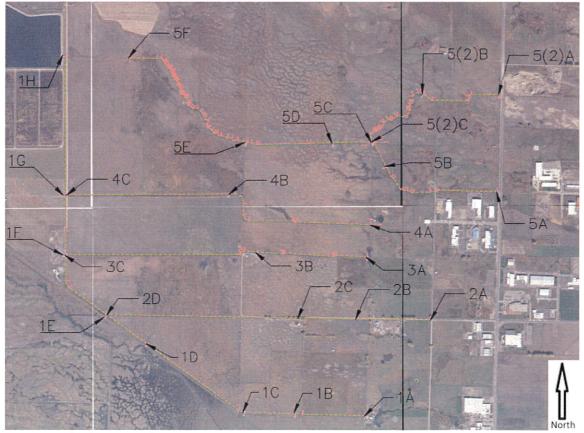


Figure V6. Channel Cross Sections

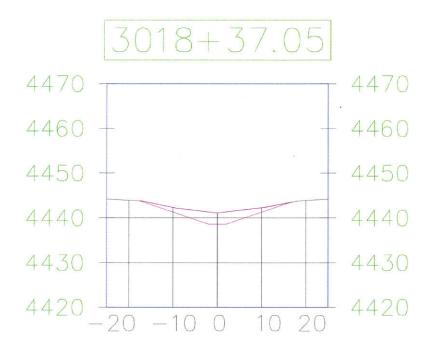


Figure V7. Section View

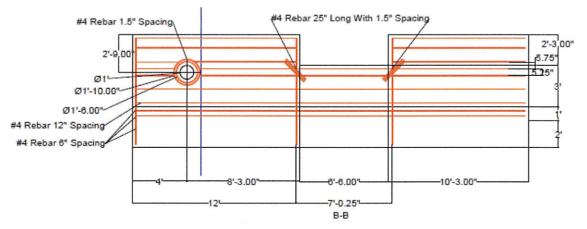


Figure V8. Structure 1 View BB

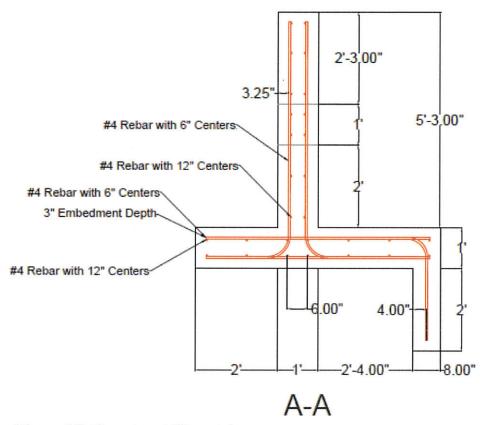


Figure V9. Structure 1 View AA

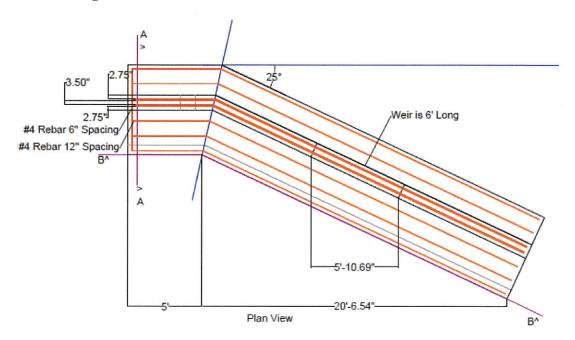
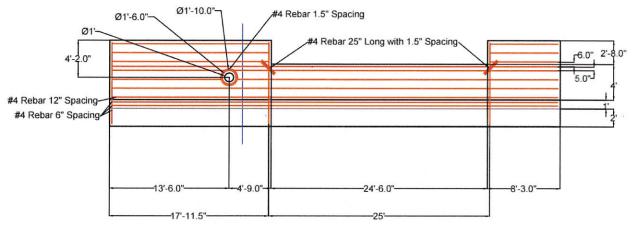



Figure V10. Structure 1 Plan View

BB

Figure V11. Structure 2 View BB

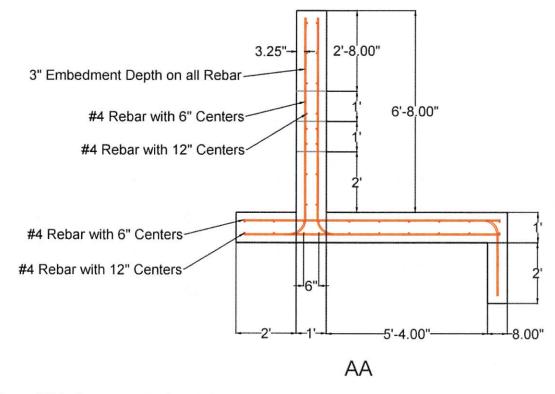
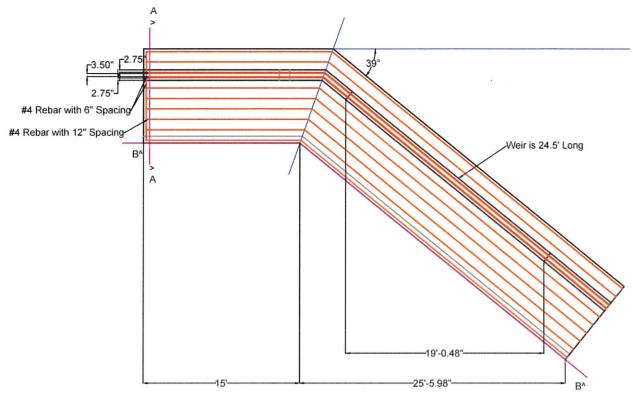



Figure V12. Structure 2 View AA

Plan View

Figure V13. Structure 2 Plan View

Figure V14. Reach 1 Measurement Location

Figure V15. Reach 2 at Diversion Above Measurement Location

Figure V16. Reach 3 Measurement Location

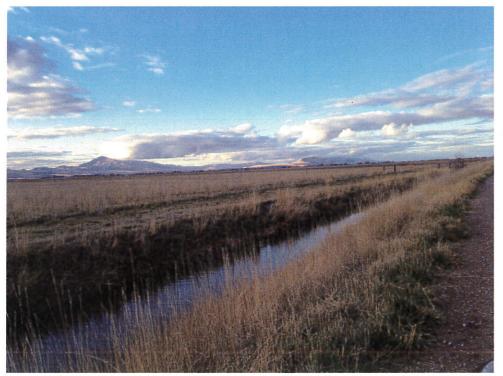


Figure V17. Reach 4 Measurement Location

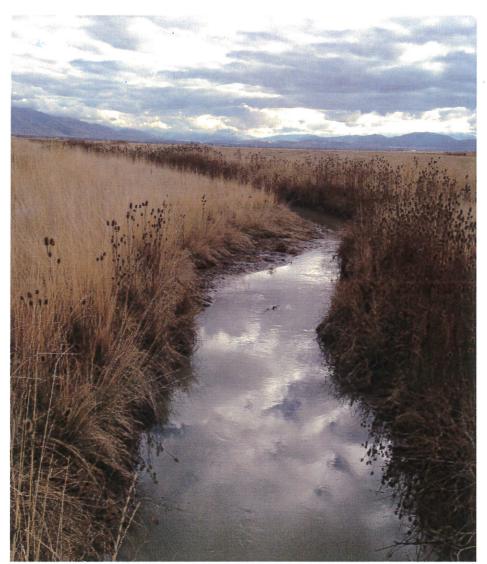


Figure V18. Reach 5 Measurement Location

Appendix VI: Detailed Calculations

Flow Calculations

Reach 1:

Velocity:

Ping Pong Balls:

$$\frac{L_{1}}{\text{Time}_{1\text{A}}} \cdot 8 = 1.0847 \frac{ft}{s}$$

$$\text{Velocity}_{1\text{B}} = \frac{L_{1}}{\text{Time}_{1\text{B}}} \cdot 8 = 1 \frac{ft}{s}$$

$$\text{Velocity}_{1\text{C}} = \frac{L_{1}}{\text{Time}_{1\text{C}}} \cdot 8 = 1.1327 \frac{ft}{s}$$

Cross Sections:

Culvert

$$Y_{1A} = 16 in \qquad Y_{1B} = 7 in \qquad D = 24 in$$

$$\theta_{1A} = a\cos\left(1 - 2\frac{Y_{1A}}{D}\right) = 1.9106$$

$$Area_{1A} = \frac{D^2}{4} \cdot \left(\theta_{1A} - \sin\left(\theta_{1A}\right)\cos\left(\theta_{1A}\right)\right) = 2.2249 ft^2$$

$$\theta_{1B} = a\cos\left(1 - 2\frac{Y_{1B}}{D}\right) = 1.141$$

$$Area_{1B} = \frac{D^2}{4} \cdot \left(\theta_{1B} - \sin\left(\theta_{1B}\right)\cos\left(\theta_{1B}\right)\right) = 0.7622 ft^2$$

$$Area_{avg1} = \frac{Area_{1A} + Area_{1B}}{2} = 1.4936 ft^2$$

Flows:

$$Q_{1A} = \operatorname{Area}_{avg1} \operatorname{Velocity}_{1A} = 1.6201 \frac{ft^{3}}{s}$$

$$Q_{1B} = \operatorname{Area}_{avg1} \operatorname{Velocity}_{1B} = 1.4936 \frac{ft^{3}}{s}$$

$$Q_{1C} = \operatorname{Area}_{avg1} \operatorname{Velocity}_{1C} = 1.6918 \frac{ft^{3}}{s}$$

$$Q_{1} = \frac{Q_{1A} + Q_{1B} + Q_{1C}}{3}$$

Q₁=1.6019-

Reach 2:
Velocity:
Dye:

$$Plume_{2A} = 60 \ s + 33 \ s = 93 \ s$$

 $Plume_{2B} = 60 \ s + 58 \ s = 118 \ s$
 $Plume_{2B} = 60 \ s + 58 \ s = 118 \ s$
 $Plume_{avg2} = \frac{Plume_{2A} + Plume_{2B}}{2} = 105.5 \ s$
 $vel_{2A} = \frac{L_2}{Plume_{avg2}} = 0.9479 \frac{ft}{s}$
 $Ping Pong Balls:$
 $Time_{2B} = 60 \ s + 44 \ s = 104 \ s$
 $Time_{2C} = 60 \ s + 47 \ s = 107 \ s$
 $vel_{2B} = \frac{L_2}{Time_{2B}} \cdot 8 = 0.7692 \frac{ft}{s}$
 $Vel_{2C} = \frac{L_2}{Time_{2C}} \cdot 8 = 0.7477 \frac{ft}{s}$
Cross Section:
 $B = 10 \ ft$

B:= 10 10

Y_{2A}=6in

Triangular cross section

$$\operatorname{Area}_{2} = \frac{\operatorname{BY}_{2A}}{2} = 2.5 \text{ ft}^{2}$$

Flows:

$$Q_{2A} = \operatorname{Area}_{2} \operatorname{Vel}_{2A} = 2.3697 \frac{ft^{3}}{s}$$

$$Q_{2B} = \operatorname{Area}_{2} \operatorname{Vel}_{2B} = 1.9231 \frac{ft^{3}}{s}$$

$$Q_{2C} = \operatorname{Area}_{2} \operatorname{Vel}_{2C} = 1.8692 \frac{ft^{3}}{s}$$

$$Q_{2} = \frac{Q_{2A} + Q_{2B} + Q_{2C}}{3}$$

$$Q_{2} = \frac{Q_{2A} + Q_{2B} + Q_{2C}}{3}$$

Reach 3:
Velocity:
Plume
$$_{3A} = 60 \ s + 1 \ s = 61 \ s$$
 $L_3 = 26 \ ft$
Plume $_{3B} = 60 \ s + 34 \ s = 94 \ s$
Plume $_{3B} = 60 \ s + 34 \ s = 94 \ s$
Plume $_{avg3} = \frac{Plume _{3A} + Plume _{3B}}{2} = 77.5 \ s$
Vel $_{3A} = \frac{L_3}{Flume _{avg3}} = 0.3355 \frac{ft}{s}$
Cross Section:
 $Y_{3A} = 4 \ in$ $Y_{3C} = 6 \ in$
 $Y_{3B} = 5 \ in$ $B_{3B} = 6 \ ft$
 $Area_{3B} = Y_{3C} B_{3B} = 3 \ ft^2$
 $Y_{avg3} = \frac{Y_{3A} + Y_{3B}}{2} = 4.5 \ in$ $B_{3A} = 6 \ ft$
 $Area_{avg3} = \frac{Area_{3A} + Area_{3B}}{2} = 2.625 \ ft^2$
Plows:
 $Q_3 = Vel_{3A} Area_{avg3}$

 $Q_3 = 0.8806 \frac{f\tau^3}{r}$

Reach 4:

Velocity:

$$\begin{aligned} & \text{Plume}_{4\text{A}} = 5 \ 60 \ s + 57 \ s = 357 \ s \\ & \text{L}_{4} = 50 \ ft \\ & \text{Plume}_{4\text{B}} = 8 \ 60 \ s + 4 \ s = 484 \ s \\ & \text{Plume}_{4\text{B}} = 8 \ 60 \ s + 4 \ s = 484 \ s \\ & \text{Plume}_{avg4} = \frac{\text{Plume}_{4\text{A}} + \text{Plume}_{4\text{B}}}{2} = 420.5 \ s \\ & \text{vel}_{4} = \frac{\text{L}_{4}}{\text{Plume}_{avg4}} = 0.1189 \frac{\text{ft}}{\text{s}} \\ & \text{Cross Section:} \\ & \text{Y}_{4\text{A}} = 2.5 \ \text{ft} \\ & \text{B}_{4\text{A}} = 14 \ \text{ft} \\ & \text{B}_{4\text{B}} = 14 \ \text{ft} \\ & \text{Area}_{4\text{A}} = B_{4\text{A}} \ \text{Y}_{4\text{A}} = 35 \ \text{ft}^{2} \\ & \text{Area}_{4\text{B}} = \text{Y}_{4\text{B}} \ B_{4\text{B}} = 35 \ \text{ft}^{2} \end{aligned}$$

Flows:

Q₄=Vel₄ Area avg4

° ₄ =	4 1617	ft 3
	4.101/	8

Reach 5:

Velocity:

Dye:

Plume
$$_{55} = 60 s + 37 s = 97 s$$

$$L_{z} = 100 ft$$

Plume 5B = 2.60 s + 3 s = 123 s .

$$Plume_{avg5} = \frac{Plume_{5A} + Plume_{5B}}{2} = 110 s$$
$$Vel_{5A} = \frac{L_5}{Plume_{avg5}} = 0.9091 \frac{ft}{s}$$

Time := 60 s + 38 s = 98 s

Time 5B = 60 s + 37 s = 97 s

$$\operatorname{Vel}_{5B} = \frac{\operatorname{L}_{5}}{\operatorname{Time}_{5h}} \cdot .8 = 0.8163 \frac{ft}{s} \qquad \operatorname{Vel}_{5C} = \frac{\operatorname{L}_{5}}{\operatorname{Time}_{5h}} \cdot .8 = 0.8247 \frac{ft}{s}$$

Area:

$$B_{5A} = 78 in B_{5B} = 84 in Y_{5A} = 6 in Y_{5B} = 10 in$$

$$Area_{5A} = B_{5A} Y_{5A} = 3.25 ft^{2}$$

$$Area_{5B} = B_{5B} | Y_{5B} = 5.8333 ft^{2}$$

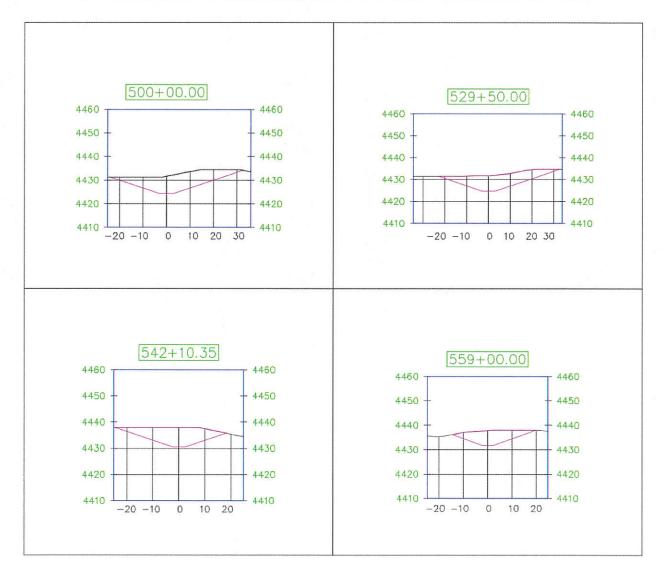
Area
$$avg5 = \frac{Area_{5A} + Area_{5B}}{2} = 4.5417 ft^2$$

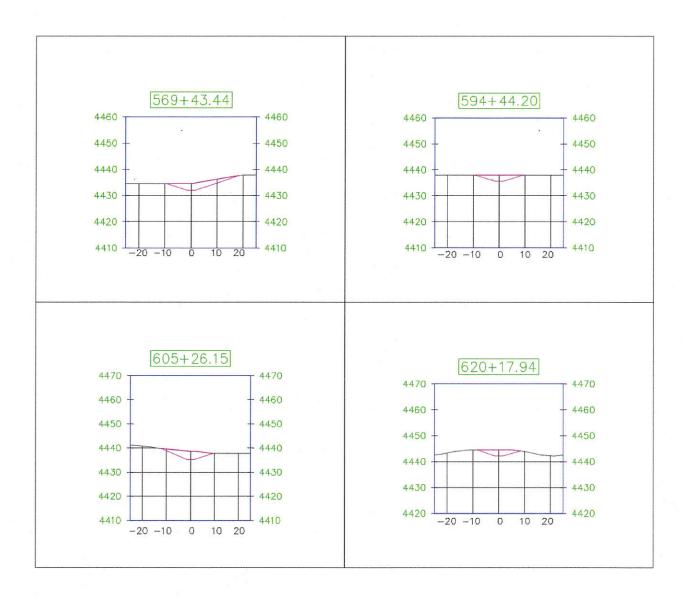
Flows:

$$Q_{5A} = Vel_{5A} Area_{avg5} = 4.1288 \frac{ft^{3}}{s}$$

$$Q_{5B} = Vel_{5B} Area_{avg5} = 3.7075 \frac{ft^{3}}{s}$$

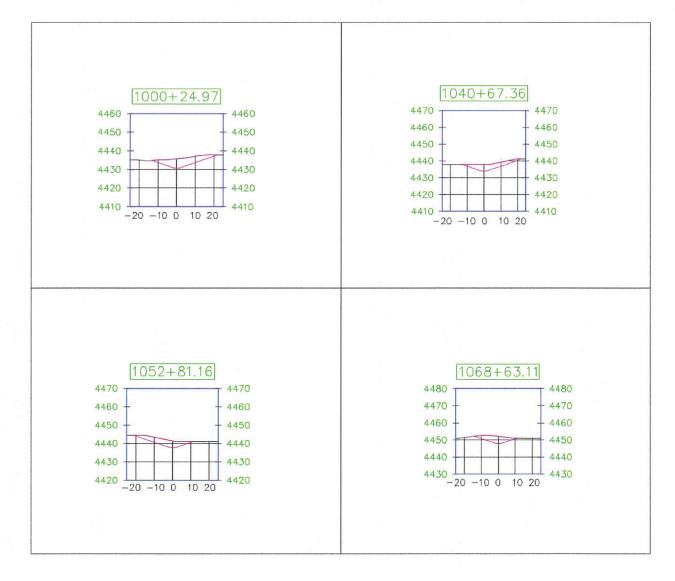
$$Q_{5C} = Vel_{5C} Area_{avg5} = 3.7457 \frac{ft^{3}}{s}$$


$$Q_{5C} = \frac{Q_{5A} + Q_{5B} + Q_{5C}}{3}$$


$$Q_{5} = \frac{Q_{5A} + Q_{5B} + Q_{5C}}{3}$$

Channel Design Calculations

n 1	-
Reach	1.
Reach	1.

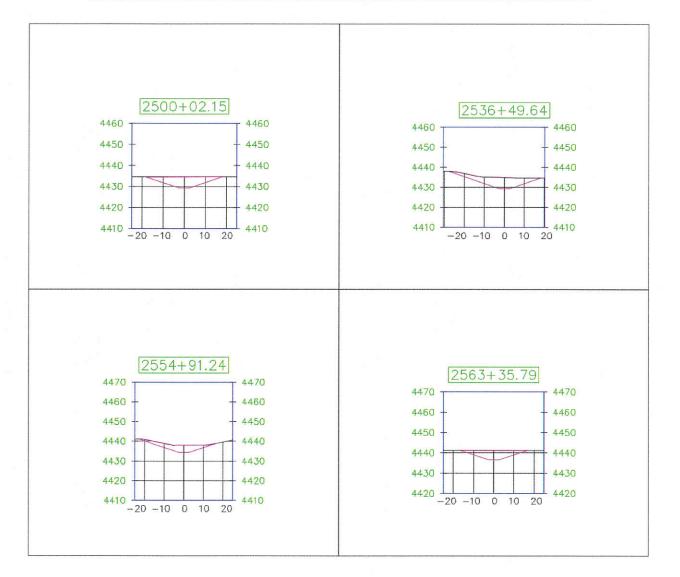

Reach 1								
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope		
1A	620+18	18.9	0.0022	3	2.3	3		
1B	605+26	18.9	0.0009	3	2.6	3		
1C	594+44	19.5	0.0009	3	2.6	3		
1D	569+43	19.5	0.0008	3	2.7	3		
1E	559+00	72.74	0.0008	4	4.2	3		
1F	542+00	131.95	0.0008	5	5.3	3		
1G	529+50	211.19	0.0003	6	7.0	3		
1H	500+00	211.19	0.0003	6	7.0	3		

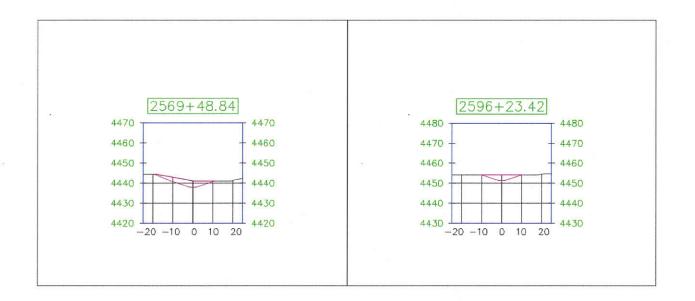
Dagal	L 7.
Reac	n 2:

		F	Reach 2			
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope
2A	1068+63	55.78	0.0055	3	. 3.2	3
2B	1052+81	55.78	0.0028	3	3.4	3
2C	1040+67	55.78	0.0008	3	4.0	3
2D	1000+00	55.78	0.0008	3	4.0	3

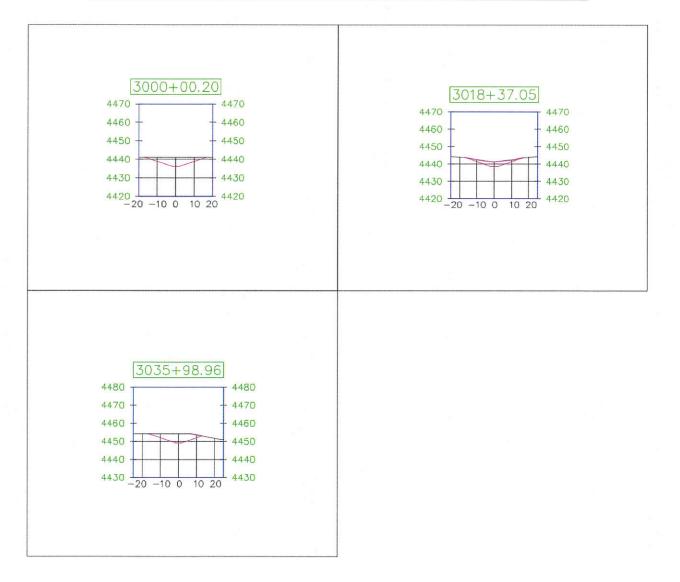
Reach 3:

		F	leach 3			2
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope
3A	1564+29	36.9	0.0014	3	3.0	3
3B	1540+71	36.9	0.0008	3	3.4	3
3C	1500+00	36.9	0.0008	3	3.4	3


Reach	4:
- couron	•••


			Reach 4			
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope
4A	2069+94	22.65	0.0017	3	2.6	3.
4B	2034+31	22.65	0.0005	3	3.0	3
4C	2000+00	22.65	0.0005	3	3.0	3

Reach 5:


Reach 5							
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope	
5A	2596+26	43.44	0.0049	3	2.9	3	
5B	2569+48	43.44	0.0023	. 3	3.2	3	
5C	2563+36	140.28	0.0023	5	4.7	3	
5D	2554+91	140.28	0.0026	5	4.6	3	
5E	2536+49	140.28	0.0009	5	5.2	3	
5F	2500+00	140.28	0.0009	5	5.2	3	

Reach	5	(2)	:

Reach 5 (2)						
Plan View Key	Station	Flow (cfs)	Slope	Base (ft)	Depth (ft)	Side Slope
5(2)A	3036+00	97.79	0.0065	3	3.7	3
5(2)B	3018+37	97.79	0.0006	4	5.0	3
5(2)C	3000+00	97.79	0.0006	4	5.0	3

Diversion Structure Calculations

5 Apr 2017 18:52 48 - Structre 1 sm

Structure 1

Channel Dimensions: b=3ft m=3 y_0 =1.38ft FB=1.25ft d_t=2.63ft Q=19.5 $\frac{ft^3}{sec}$

s=0.009	y ₀ =1.5 ft	t == 18.77 W	ft d	= 3 ft	g= 32.2 ft	2
$T_w = b + 2 \cdot (m \cdot d_t) = $	21 ft	W := 2 ft	Width of	existing	channel sec	

For construction purposes, y0 is assumed to be 1.5 ft and total depth, is 3 ft.

Head Gate:

Di=1ft
$$h_{iii} \frac{y_0 - .5ft}{0} = 0$$

Orifice will be 6 inches from the bottom. Head is definded as the head at the midpoint of the orifice. Flow is assumed to fill the orifice.

$$A_{o} = D^{2} \cdot \frac{\pi}{4} = 0.7854 \, ft^{2}$$

$$Q_{o} = 0.7 \cdot A_{o} \cdot \sqrt{2 \cdot g \cdot h_{o}} = 3.1197 \frac{ft^{3}}{sec}$$

Weir:

Weir crest wil be at y0. 1 ft of flow is assumed to be going over the weir. The most conservative assumption will be that the head gate is closed and that the weir will need to pass the entire flow.

$$Q_{W} = 3 \cdot L \cdot h_{W}^{-1.5} \qquad L = \frac{Q_{W}}{3 \cdot h_{W}^{-1.5}}$$
$$Q_{W} = \frac{Q}{\frac{ft^{3}}{sec}} \qquad h_{W} = 1 \quad (ft)$$

Since the weir equation is not homogeneous, the values will need to be unitless.

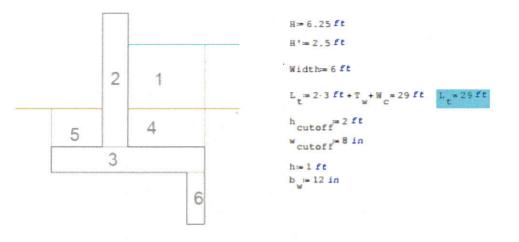
 $L_{m} = \frac{Q_{w}}{3 \cdot h_{c}^{-1.5}} ft = 6.5 ft$

Structure:

Assume: Φ≔ 30 (deg)

16

$$\alpha \approx 0 (deg) = k_a \approx 0.33$$


 $Y_{\text{concrete}} \approx 150 \frac{Ib}{ft^3}$

$$v_{soil} = 100 \frac{Ib}{ft^3}$$
 c'= 0 $\frac{Ib}{ft^3}$ kp⁼³

$$Y_{water} \approx 62.4 \frac{lb}{ft^3}$$

Yw Ywater Yc Yconcrete Ys Ysoil

5 Apr 2017 18 52 48 - Structire 1 sm

Overturning:

Area	Weight	Moment Arm
$A_1 = 3 ft \cdot 4 ft = 12 ft^2$	$W_1 = A_1 \cdot Y_w = 748.8 \frac{1b}{ft}$	$MA_3 = 3 ft + 3 \cdot \frac{ft}{2} = 4.5 ft$
$A_2 = 1 ft \cdot 5.25 ft = 5.25 ft^2$	$\mathbb{W}_{2^{\text{im}}} \mathbb{A}_{2} \mathbb{V}_{c} = 787.5 \frac{1b}{ft}$	$MA_{2} = 2 ft + 1 \cdot \frac{ft}{2} = 2.5 ft$
$\lambda_{3} = 1 ft \cdot 6 ft = 6 ft^{2}$	$W_3 = \lambda_3 \gamma_c = 900 \frac{Ib}{ft}$	$MA_{3} = 6 \cdot \frac{ft}{2} = 3 ft$
$A_{4} = 3 ft \cdot 1.5 ft = 4.5 ft^{2}$	$W_4 = \lambda_4 \cdot \gamma_s = 450 \frac{1b}{ft}$	$MA_4 = 3 ft + 3 \cdot \frac{ft}{2} = 4.5 ft$
$\lambda_{5} = 2 ft \cdot 1.5 ft = 3 ft^{2}$	$W_5 = \lambda_5 \cdot \gamma_s = 300 \frac{1b}{ft}$	$MA_5 = \frac{2ft}{2} = 1ft$
$A_{6} = 8 in \cdot 2 ft = 1.3333 ft^{2}$	$\mathbb{W}_{6} \stackrel{\text{\tiny{(m)}}}{\sim} \frac{\lambda}{6} Y_{c} \stackrel{\text{\tiny{(m)}}}{\sim} 200 \frac{Ib}{ft}$	$MA_6 = 5 ft + 1 \cdot \frac{ft}{2} = 5.5 ft$
		15

$$W = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 = 3386.3 \frac{1}{ft}$$

Moment

 $M_{1} = W_{1} \cdot MA_{1} = 3369.6 Ib$ $M_{2} = W_{2} \cdot MA_{2} = 1968.75 Ib$ $M_{3} = W_{3} \cdot MA_{3} = 2700 Ib$ $M_{4} = W_{4} \cdot MA_{4} = 2025 Ib$ $M_{5} = W_{5} \cdot MA_{5} = 300 Ib$ $M_{6} = W_{6} \cdot MA_{6} = 1100 Ib$ $M_{8} = M_{1} + M_{2} + M_{3} + M_{4} + M_{5} + M_{6} = 11463.35 Ib$ $P_{c} = .5 \cdot k_{p} \cdot h_{cutoff} + 2 \cdot \gamma_{s} = 600 \frac{Ib}{ft}$ $P_{h} = .5 \cdot k_{a} \cdot R^{1/2} \cdot \gamma_{s} = 103.125 \frac{Ib}{ft}$ $P_{w} = .5 \cdot (H - 1.25 ft)^{2} \cdot \gamma_{w} = 780 \frac{Ib}{ft}$

5 Apr 2017 18 52 48 - Structure 1 and

Soil forces cancel out

$$M_{D} = p_{W} \cdot \frac{H - 1.25 ft}{3} + \frac{p_{C} \cdot 2 \cdot h_{cutoff}}{3} = 2100 \, Ib$$

FS $a = \frac{M_{R}}{M_{D}} = 5.4587$
5.4587>1.5

Sliding:

Assume vertical weight is uniformly distrubuted

$$W_{s} = \frac{W}{Width} = 564.3833 \frac{lb}{ft^{2}}$$

$$W_{cutoff} = \frac{h_{cutoff}^{2} \cdot Y_{s}^{2} \cdot 5 \cdot k_{p}}{Width} = 100 \frac{lb}{ft^{2}}$$

$$F_{r} = k_{a} \cdot W_{s} \cdot W_{cutoff} = 286.2465 \frac{lb}{ft^{2}}$$

$$F_{s} = \frac{P_{w}}{Width} = 130 \frac{lb}{ft^{2}}$$

$$F_{s} = \frac{F_{w}}{Width} = 2.2019 = 2.2019 > 2.2019 > 2$$

Resisting Force is also in the banks

W = 3 ft Width of embedment on each side

D = 5.25 ft Depth of embedment

$$p_e \approx .5 \cdot k_a \cdot D_e^{-2} \cdot \gamma_s \approx 454.7813 \frac{lb}{ft}$$

 $F_e = 2.3 \text{ ft} \cdot p_e = 2728.6875 \text{ lb}$ Total resisting force from the embedment

$$F_{eperfoot} = \frac{F_e}{L_t \cdot \text{Width}} = 15.6821 \frac{Ib}{ft^2}$$

$$F_{rn} = F_r \cdot F_{eperfoot} = 301.9286 \frac{Ib}{ft^2}$$

$$FS_{sn} = \frac{rn}{F_s} = 2.3225$$

Bearing Capacity:

$$M_{net} = M_R - M_D = 9363.35 Ib$$

$$M_{net} = W \cdot X_{bar} = \frac{M_{net}}{M_{bar}} = e = \frac{B}{2} - X_{bar}$$

5 Apr 2017 18 52 48 - Structre 1 am

5 Apr 2017 18:52 48 - Structie 1 sin

Steel:

Flexural:

$$F_{W} = .5 \cdot \left(4 \ ft\right)^{2} \cdot \gamma_{W} = 499 \cdot 2 \frac{1b}{ft}$$

$$F_{s} = .5 \cdot k_{a} \cdot H^{2} \cdot \gamma_{s} = 103 \cdot 125 \frac{1b}{ft}$$
Force of soil will cancel
$$M_{a} = F_{W} \cdot 4 \cdot \frac{ft}{3} = 665 \cdot 6 \ 1b$$

d= h - 3.5 in = 8.5 in

β₁:=0.85 f'c:=4000*psi* fy:=60000*psi*

assume \$=0.9

$$3 \cdot \sqrt{\frac{f^{*}c}{psi}} \cdot \frac{b_{w}}{in} \cdot \frac{\frac{d}{in}}{\frac{f_{y}}{psi}} in^{2} = 0.3226 in^{2}$$

As min is max of:

$$A_{\min} = \frac{200 \cdot \frac{b_w}{in} \cdot \frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.34 in^2$$
$$A_{\min} = 0.34 in^2$$

$$\frac{\lambda_{s} fy}{0.85 f' c \cdot b_{w}} \qquad M_{a} = \Phi \cdot M_{n} \qquad \frac{M_{a}}{\Phi} = M_{n} \qquad M_{n} = \frac{M_{a}}{\Phi} = 739.5556 Ib$$

$$M_{a} = \lambda_{s} fy \left(d - \frac{a}{2} \right) \qquad M_{a} = \lambda_{s} \left(d \qquad \frac{\lambda_{s} fy}{\Phi} \right) \qquad how for \left(d \qquad \frac{\lambda_{s} fy}{\Phi} \right)$$

$$\mathbb{M}_{n} = \mathbb{A}_{s} \cdot f \mathbf{y} \cdot \left(\mathbf{d} - \frac{1}{2} \right) = \mathbb{M}_{n} = \mathbb{A}_{s} \cdot f \mathbf{y} \cdot \left(\mathbf{d} - \frac{1}{2 \cdot \mathbf{0} \cdot \mathbf{85} \cdot \mathbf{f}^{*} \mathbf{c} \cdot \mathbf{b}_{w}} \right) = \mathbb{A}_{s} \cdot f \mathbf{y} \cdot \left(\mathbf{d} - \frac{1}{2 \cdot \mathbf{0} \cdot \mathbf{85} \cdot \mathbf{f}^{*} \mathbf{c} \cdot \mathbf{b}_{w}} \right) = \mathbb{M}_{n} = 0$$

١

$$\frac{A_{s} \approx .001450323 in^{2}}{M_{n} \approx \frac{a}{\phi} \approx 739.5556 \, lb}$$

$$\frac{A_{s} \cdot fy}{in^{2} \cdot psi} \left(\frac{d}{in} - \frac{\frac{A_{s} \cdot fy}{psi \cdot in^{2}}}{2 \cdot 0.85^{2} \cdot \frac{f^{*}c}{psi} \cdot \frac{b}{in}} \right) - \frac{M_{n}}{lb} \approx -4.7619 \cdot 10^{-7}$$

As min governs

$$\lambda_s \approx \lambda_{amin} \approx 0.34 in^2$$

Use 2 no 4 bars

$$d_{b} = 0.5 in = 0.20 in^{2}$$

5 Apr 2017 18 52 48 - Structre 1 am

$$A = 2 \cdot A = 0.4 \text{ in}^2$$

Clear Space:
$$\frac{\left(12 \text{ in} - 2 \cdot 3 \text{ in} - 2 \cdot .375 \text{ in} - 2 \cdot d_{b}\right)}{1} = 4.25 \text{ in} > 1 \text{ in}$$

$$a = \frac{\lambda_{a} \cdot fy}{0.85 \cdot f' \cdot b_{w}} = 0.5882 \text{ in}$$

$$c = \frac{a}{\beta_{1}} = 0.692 \text{ in}$$

$$\frac{c}{d_{t}} = 0.0852 < 0.375 \text{ Therefore} \quad \Phi = 0.9$$

$$\Phi M_{n} = \Phi \cdot A_{s} \cdot fy \cdot \left[d_{t} - \frac{a}{2} \right] = 14.0956 \, ksi \, in^{-1} ft$$

$$\Phi M_{n} = \frac{\Phi M_{n} \cdot 10^{-3}}{ksi \, in^{-2} \, ft} \, lb \, ft = 14095.5882 \, lb \, ft$$

 $M_{a} \stackrel{\text{\tiny im}}{=} M_{a} \cdot 1 \text{ ft} = 665.6 \text{ lb ft} \qquad \Phi Mn < Ma$

Shear:

$$V_{max} = F_{w} + F_{g} = 602.325 \frac{1b}{ft} \qquad \Phi = 0.75$$

$$\Phi V_{c} \coloneqq \Phi \cdot 2 \cdot \sqrt{\frac{f \cdot c}{psi}} \cdot \frac{b_{w}}{in} \cdot \frac{d_{t}}{in} Ib = 9249.6622 Ib$$

 $\frac{\Phi V_C}{(2)} = 4624.8311 Ib$

$$\frac{\Phi V_{C}}{2} > V_{max}$$
 No stirrups required

Footing: M positive CCW

5 Apr 2017 18:52:48 - Structre 1.3/#

$$\begin{aligned} q_{heel}^{*} 431.7917 \frac{1b}{ct^{2}} \\ q_{diff}^{**} q_{toe}^{-} q_{heel}^{**} 265.1833 \frac{1b}{ct^{2}} \\ &M_{soilbc}^{**} \frac{W(dth^{2})}{2} \cdot q_{heel}^{*} \frac{(W(dth)^{2} \cdot 1}{2 \cdot 3} \cdot q_{diff}^{**} 9363.3510 \\ &M_{soilbc}^{**} \frac{W^{2} \cdot V_{w}^{*} k_{a}}{2} \cdot \left[H^{*} \cdot \frac{1}{3} + h\right] - \frac{H^{*2} \cdot V_{w}^{*} k_{a}}{2} \cdot \left[H^{*} \cdot \frac{1}{3} + h\right] = 0.10 \\ &M_{water}^{**} F_{w} \left[\frac{4}{13} + h\right] + 1164.810 \\ &M_{weight}^{**} - M_{R}^{**} - 11463.3510 \\ &M_{cutoff}^{**} \frac{h_{cutoff}^{**} V_{w}^{**} k_{p}^{*2}}{3 \cdot 2} = 80010 \\ &M_{att}^{**} M_{soilbc}^{**} M_{water}^{**} M_{weight}^{**} M_{cutoff}^{**} M_{soiltop} \\ &M_{att}^{**} M_{soilbc}^{**} M_{water}^{**} M_{weight}^{**} Cutoff^{**} M_{soiltop} \\ &M_{design}^{**} - 1 \left[M_{soiltop}^{**} M_{weight}^{**} H_{weight}^{**} H_{cutoff}^{**} M_{soiltop} \\ &M_{design}^{**} - 1 \left[M_{soiltop}^{**} M_{weight}^{**} H_{weight}^{**} H_{cutoff}^{**} M_{soiltop} \\ &M_{att}^{**} M_{soilto}^{**} H_{weight}^{**} H_{weight}^{**} H_{cutoff}^{**} H_{soiltop} \\ &M_{att}^{**} = 0.55 \quad f^{*} (= 4000 \ Psi \quad fy = 60000 \ Psi \\ &asume \quad 0 = 0.9 \\ &3 \sqrt{\frac{f'(c)}{psi}} \cdot \frac{h_{w}}{psi} \frac{\frac{dn}{cf_{psi}}} \ln^{2} = 0.3226 \ in^{2} \\ &A_{smin} = \frac{200 \cdot \frac{h_{w}}{16} \cdot \frac{d}{16}}{\frac{f_{psi}}{psi}} \ln^{2} = 0.34 \ in^{2} \\ &A_{smin} = \frac{M_{design}}{0.85 \cdot f^{*} \cdot c \cdot h_{w}} \\ &M_{n} = \frac{A_{a} \frac{f_{w}}{2} \frac{f_{w}}{2}}{\theta_{w}} \cdot \frac{f_{w}}{f_{w}} \left[d - \frac{A_{a} \cdot f_{w}}{2 \cdot 0.85 \cdot f^{*} \cdot c \cdot h_{w}} \right] - M_{n} = 0 \end{aligned}$$

5 Apr 2017 18:52 48 - Structve 1 sm

A₃=.02838929363in²

$$\frac{\frac{\lambda_{s}}{1}}{\frac{1}{1}} \frac{\frac{fy}{d}}{\frac{1}{1}} \left(\frac{\frac{\lambda_{s} \cdot fy}{psi \ in^{2}}}{\frac{1}{2} \cdot 0.85^{2} \cdot \frac{f^{*}c}{psi} \cdot \frac{b}{in}} \right) - \frac{M_{n}}{1b} = 1699.6528$$

As min governs

Use 2 no 4 bars

$$d_{b} = 0.5 in = A_{b} = 0.20 in^{2}$$

 $A_s \approx 2 \cdot A_b \approx 0.4 in^2$

Clear Space:
$$\frac{\left(12 \text{ in} - 2 \cdot 3 \text{ in} - 2 \cdot .375 \text{ in} - 2 \cdot d_{b}\right)}{1} = 4.25 \text{ in} > 1 \text{ in}$$

 $d_t \approx 12 in - 3 in - .375 in - d_b = 8.125 in$

$$a \coloneqq \frac{\lambda_s \cdot f y}{0.85 \cdot f' c \cdot b_w} = 0.5882 \text{ in}$$

$$c := \frac{a}{\beta_{1}} = 0.692 \text{ in}$$

$$\frac{c}{d_{t}} = 0.0852 < 0.375 \text{ Therefore } \Phi = 0.9$$

$$\Phi M_{n} := \Phi \cdot A_{s} \cdot fy \cdot \left(d_{t} - \frac{a}{2}\right) = 14.0956 \text{ ksi in}^{2} \text{ ft}$$

$$\Phi M_{n} := \frac{\Phi M_{n} \cdot 10^{3}}{\text{ ksi in}^{2} \text{ ft}} \text{ lb ft} = 14095.5882 \text{ lb ft}$$

M design M design 1 ft = 11463.35 lb ft

ΦMn<Mdesign

Cutoff Wall:

Mcutoff 800 Ib

β₁=0.85 f'c=4000*psi* fy=60000*psi*

assume ⊕=0.9

$$3 \cdot \sqrt{\frac{f^*c}{psi}} \cdot \frac{b_w}{in} \frac{\frac{d}{in}}{\frac{f\gamma}{psi}} = 0.1708 in^2$$

As min is max of:

$$A_{smin} = \frac{200 \cdot \frac{b_w}{in} \cdot \frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.18 in^2$$
$$A_{smin} = 0.18 in^2$$

A_s=.003294267*in*²

$$\frac{\frac{\lambda_{s}}{1n^{2}} \cdot \frac{fy}{psi}}{\frac{d}{1n}} = \frac{\frac{\lambda_{s} \cdot fy}{psi \ln^{2}}}{\frac{2 \cdot 0.85^{2} \cdot \frac{f'c}{psi} \cdot \frac{b_{w}}{1n}}} = \frac{M_{n}}{1b} = -6.1609 \cdot 10^{-5}$$

As min governs

$$\lambda_a = \lambda_{amin} = 0.18 \text{ in}^2$$

Use 1 no 4 bars

$$d_b = 0.5 in$$
 $A_b = 0.20 in^2$

 $A_{s} = 1 \cdot A_{b} = 0.2 \ln^{2}$

 $d_{t} = 8 in - 3 in - .375 in - d_{b} = 4.125 in$

5 Apr 2017 18 52 48 - Structure 1 sen

$$a:=\frac{A_{s} \cdot fy}{0.85 \cdot f^{*} c \cdot b_{w}} = 0.2941 \text{ in}$$

$$c:=\frac{a}{\beta_{1}} = 0.346 \text{ in}$$

$$\frac{c}{d_{t}} = 0.0839 < 0.375 \text{ Therefore} \quad \Phi := 0.9$$

$$\Phi M_{n} := \Phi \cdot A_{s} \cdot fy \cdot \left(d_{t} - \frac{a}{2}\right) = 3.5801 \text{ ksi in}^{2} \text{ ft}$$

$$\Phi M_{n} := \frac{\Phi M_{n} \cdot 10^{3}}{\text{ ksi in}^{2} \text{ ft}} \text{ lb ft} = 3580.1471 \text{ lb ft}$$

$$M_{cutoff} := M_{cutoff} \cdot 1 \text{ ft} = 800 \text{ lb ft}$$

Volume:

Vol. = 13.5154 yd

Steel (ACI min):

 $\rho_{\min} \approx 0.0018$ $D_t \approx 0.125 in$ $\lambda_s \approx \rho \cdot b \cdot d$ $d_t = 4.125 in$

 $A_s = p_{min} \cdot b_w \cdot D_t = 0.1755 in^2$ Foundation

 $A_s = \rho_{\min} \cdot b_w \cdot d_t = 0.0891 in^2$ Cutoff wall

For both, use 1 no 4 bar

$$l_{d} = \frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot d_{b}}{25 \cdot \lambda \cdot \sqrt{f' \cdot c}} \qquad f_{y} = \frac{f_{y}}{psi} = 60000 \qquad \lambda = 1.0$$

$$l_{d} = \frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot d_{b}}{25 \cdot \lambda \cdot \sqrt{f' \cdot c}} = 18.9737$$

$$l_{d} = \frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot d_{b}}{25 \cdot \lambda \cdot \sqrt{f' \cdot c}} = 18.9737$$

$$l_{s} = 1.3 \cdot l_{d} = 24.6658$$

1 := 25 in

Apr 2017 18 53:34 - Structure 2 sm

Structure 2

Channel Di	imensions	-	÷		
b= 4 ft	m= 3	y ₀ ≈ 2.43 ft	FB:= 1.8 ft	d = 4.23 ft	Q= 72.74 ft 3 sec
		y0 = 2.5 ft	t_=23.391ft	d _t ≈4.5 <i>ft</i>	$g = 32.2 \frac{ft}{sec^2}$
T = b+2-(m-d _t)= 31	Et	W = 10 ft Widt	h of existing	channel sec ~

For construction purposes, y0 is assumed to be 1.5 ft and total depth, is 3 ft.

Head Gate:

$$D = 1 ft$$

 $h_0 = y_0 - .5 ft - \frac{D}{2} = 1.5 ft$

Orifice will be $\vec{\sigma}$ inches from the bottom. Head is definded as the head at the midpoint of the orifice.

$$Q_{o} = 0.7 \cdot h_{o} \cdot \sqrt{2 \cdot g \cdot h}$$

$$h_{o} = D^{2} \cdot \frac{n}{4} = 0.7854 \text{ ft}^{2}$$

$$Q_{o} = 0.7 \cdot h_{o} \cdot \sqrt{2 \cdot g \cdot h_{o}} = 5.4035 \frac{\text{ft}^{3}}{\text{sec}}$$

Weir:

Weir creat wil be at y0. 1 ft of flow is assumed to be going over the weir. The most conservative assumption will be that the head gate is closed and that the weir will need to pass the entire flow.

Y_{concrete} 150 <u>1b</u> ft³

$$Q_{W} = 3 \cdot L \cdot h_{W}^{-1.5} \qquad L = \frac{Q_{W}}{3 \cdot h_{W}^{-1.5}}$$
$$Q_{W} = \frac{Q_{W}}{\frac{ft}{3}} \qquad h_{W} = 1 \quad (ft)$$

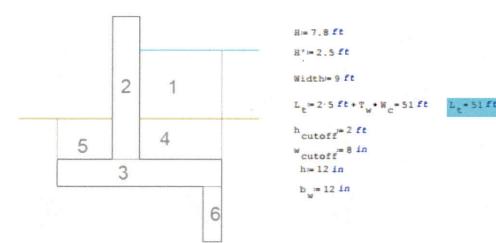
 $\begin{array}{lll} h & \coloneqq 1 & (ft) & \mbox{Since the weir equation is not homogeneous, the values} \\ & & & \mbox{will need to be unitless.} \end{array}$

$$L_{i} = \frac{Q_{W}}{3 \cdot h_{W}} ft = 24,2467 ft$$

Structure:

Assume: $\Phi = 30 (deg)$

$$\alpha = 0 \text{ (deg)} \qquad k_{a} = 0.33 \qquad \forall_{aoi1} = 100 \frac{1b}{ft}$$


k_⊫ 3

$$c' = 0 \frac{1b}{\epsilon t^3}$$

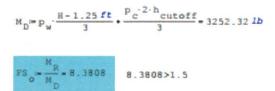
$$Y_{water} \approx 62.4 \frac{1b}{ft^3}$$

Ywww.water Yc=Yconcrete Ys=Ysoil

5 Apr 2017 18:53:34 - Structure 2 sm

Overturning:

Area Weight Moment Arm $A_1 = 6 ft \cdot 5 ft = 30 ft^2$ $W_1 = A_1 \cdot Y_w = 1872 \frac{Ib}{ft}$ $MA_1 = 3 ft + 6 \cdot \frac{ft}{2} = 6 ft$ $A_2 = 1 ft \cdot 6.8 ft = 6.8 ft^2$ $W_2 = \lambda_2 \cdot \gamma_c = 1020 \frac{lb}{ft}$ $MA_2 = 2 ft + 1 \cdot \frac{ft}{2} = 2.5 ft$ A3 = 1 ft Width 9 ft 2 $W_3 = A_3 \cdot Y_c = 1350 \frac{lb}{ft}$ $MA_{3} \approx \frac{Width}{2} = 4.5 ft$ $A_4 = 6 ft \cdot 1.5 ft - 9 ft^2$ $W_4 = A_4 \cdot Y_8 = 900 \frac{1b}{ft}$ MA4=MA1=6ft $A_5 \approx 2 ft \cdot 1.5 ft = 3 ft^2$ $W_5 = A_5 \cdot Y_8 = 300 \frac{1b}{ft}$ $MA_5 = \frac{2 ft}{2} = 1 ft$ A6 ** 8 in h cutoff * 1.3333 ft 2 $W_6 = A_6 \cdot \gamma_c = 200 \frac{1b}{ft}$ MA 61=8 ft + 1 - 1 = 8.5 ft Ib


$$W = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 = 5642 \frac{1}{11}$$

Moment

$$\begin{split} & M_{1} = W_{1} \cdot MA_{1} = 11232 \ Ib \\ & M_{2} = W_{2} \cdot MA_{2} = 2550 \ Ib \\ & M_{3} = W_{3} \cdot MA_{3} = 6075 \ Ib \\ & M_{4} = W_{4} \cdot MA_{4} = 5400 \ Ib \\ & M_{5} = W_{5} \cdot MA_{5} = 300 \ Ib \\ & M_{6} = W_{6} \cdot MA_{6} = 1700 \ Ib \\ & M_{6} = W_{6} \cdot MA_{6} = 1700 \ Ib \\ & M_{R} = M_{1} \cdot M_{2} \cdot M_{3} \cdot M_{4} + M_{5} \cdot M_{6} = 27257 \ Ib \\ & P_{c} = \cdot 5 \cdot k_{p} \cdot h_{cutoff} \frac{2}{t} \cdot \gamma_{s} = 600 \ \frac{Ib}{ft} \\ & P_{h} = \cdot 5 \cdot k_{a} \cdot H^{-2} \cdot \gamma_{s} = 103 \cdot 125 \frac{Ib}{ft} \\ & S_{H} = 0 \cdot 5 \cdot K_{h} \cdot H^{-1} \cdot 8 \ ft \Big)^{2} \cdot \gamma_{u} = 1123 \cdot 2 \frac{Ib}{ft} \end{split}$$

Soil forces cancel out

5 Apr 2017 18 53 34 - Structure 2.sm

Sliding:

Assume vertical weight is uniformly distrubuted

$$W_{s} = \frac{W}{Width} = 626.8889 \frac{Ib}{ft^{2}}$$

$$W_{cutoff} = \frac{h_{cutoff}^{2} \cdot V_{s} \cdot .5 \cdot k_{p}}{Width} = 66.6667 \frac{Ib}{ft^{2}}$$

$$F_{r} = k_{a} \cdot W_{s} + W_{cutoff}^{2} = 273.54 \frac{Ib}{ft^{2}}$$

$$F_{s} = \frac{P_{w}}{Width} = 124.8 \frac{Ib}{ft^{2}}$$

$$FS_{s} = \frac{F_{r}}{F_{s}} = 2.1918$$
 2.1918>2.0

Resisting Force is also in the banks

W = 5 ft Width of embedment on each side

D == 6.8 ft Depth of embedment

$$p_e \approx .5 \cdot k_a \cdot D_e^2 \cdot \gamma_s \approx 762.96 \frac{lb}{ft}$$

 $F_e \approx 2.3 ft \cdot p_e = 4577.76 lb$ Total resisting force from the embedment

$$F_{eperfoot} = \frac{F_e}{L_t \cdot \text{Width}} = 9.9733 \frac{1b}{ft^2}$$

$$F_{fn} = F_r + F_{eperfoot} = 283.5133 \frac{1b}{ft^2}$$

$$FS_{an} = \frac{F_{rn}}{F_a} = 2.2717 \quad 2.3062 > 2.0$$
Bearing Capacity:
$$M_{net} = M_R - M_D = 24004.68 \frac{1b}{W}$$

$$M_{net} = W \cdot X_{bar} \quad X_{bar} = \frac{M_{net}}{W} \quad e = \frac{B}{2} - X_{bar}$$

5 Apr 2017 18 53.34 - Structure 2 sm

5 Apr 2017 18:53 34 - Structure 2 sm

Steel: Flexural: $F_w^{pe} = .5 \cdot (5 ft)^2 \cdot \gamma_w = 780 \frac{Ib}{ft}$ $F_a^{pe} = .5 \cdot k_a \cdot H^{*2} \cdot \gamma_a = 103.125 \frac{Ib}{ft}$ Forces of soil will cancel $q_{avg} = \frac{q_{heel} + q_{toe}}{2} = 626.8889 \frac{Ib}{ft^2}$

$$M := F \cdot 5 \cdot \frac{ft}{3} = 1300 \ Ib$$

d= h-3.5 in=8.5 in

β₁=0.85 f'c= 4000 psi fy= 60000 psi

assume $\Phi = 0.9$

$$3 \cdot \sqrt{\frac{f'c}{psi}} \cdot \frac{b_w}{in} \cdot \frac{\frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.3226 in^2$$

As min is max of:

$$A_{smin} = \frac{200 \cdot \frac{b_w}{in} \cdot \frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.34 in^2$$
$$A_{smin} = 0.34 in^2$$

$$\frac{\lambda_{s}}{\ln^{2}} \cdot \frac{fy}{psi} \cdot \left(\frac{\frac{\lambda_{s} \cdot fy}{psi \ln^{2}}}{\frac{1}{2 \cdot 0.85^{2}} \cdot \frac{f \cdot c}{psi} \cdot \frac{b}{in}} - \frac{M_{n}}{1b} - 424.6521 \right)$$

As min governs

 $\lambda_s = \lambda_{amin} = 0.34 in^2$

5 Apr 2017 18 53 34 - Structure 2 sm

Use 2 no 4 bars

 $d_b = 0.5 in = \lambda_b = 0.20 in^2$

 $A_s = 2 \cdot A_b = 0.4 in^2$

Clear Space: $\frac{\left(12 \text{ in - } 2 \cdot 3 \text{ in - } 2 \cdot .375 \text{ in - } 2 \cdot d_b\right)}{1} = 4.25 \text{ in } >1 \text{ in }$

d = 12 in - 3 in - . 375 in - d = 8.125 in

- $\Delta := \frac{\lambda_s \cdot fy}{0.85 \cdot f' \cdot b_s} = 0.5882 \text{ in}$
- $c = \frac{a}{\beta_1} = 0.692 \text{ in}$ $\frac{c}{d_1} = 0.0852 < 0.375 \text{ Therefore } \Phi = 0.9$
- $\Phi M_{n} = \Phi A_{s} fy\left(d_{t} \frac{a}{2}\right) = 14095.5882psi in^{2} ft$ $\Phi M_{n} = \frac{\Phi M_{n}}{psi in^{2} ft} lb ft = 14095.5882 lb ft$

 $M := M \cdot 1 ft = 1300 Ib ft$

¢Mn<Ma

Shear:

- $V_{max} = F_{w} + F_{a} = 883.125 \frac{lb}{ft} \qquad \phi = 0.75$ $\Phi V_{c} = \Phi \cdot 2 \cdot \sqrt{\frac{f'c}{psi}} \cdot \frac{b_{w}}{in} \cdot \frac{d_{t}}{in} \ lb = 9249.6622 \ lb$ $\frac{\Phi V_{c}}{(2)} = 4624.8311 \ lb$
- $\frac{\Phi V_{c}}{2} > V_{max}$ No stirrups required

5 Aux 2012 18 53 34 - Structure 2 am

Footing: M positive CCW

 $q_{toe} = 729.4311 \frac{1b}{ft^2}$ $q_{heel} = 524.3467 \frac{1b}{ft^2}$

q_{diff} = q_{toe} - q_{heel} = 205.0844 $\frac{lb}{ft^2}$

 $M_{soilbc} = \frac{Width^{2}}{2} \cdot q_{heel} + \frac{(Width)^{2} \cdot 1}{2 \cdot 3} \cdot q_{diff} = 24004.682b$ $M_{soiltop} = \frac{H^{*2} \cdot Y_{s} \cdot k_{a}}{2} \cdot \left(H^{*} \cdot \frac{1}{3} + h\right) - \frac{H^{*2} \cdot Y_{s} \cdot k_{a}}{2} \cdot \left(H^{*} \cdot \frac{1}{3} + h\right) = 02b$ $M_{water} = F_{w} \left(\frac{5ft}{3} + h\right) = 20801b$

Mweight - MR - 27257 1b

$$M_{cutoff} = \frac{h_{cutoff}^{3} \cdot \gamma_{s} \cdot k_{p}^{-2}}{3 \cdot 2} = 800 \ lb$$

iltop Max moment will occur at the toe when moments in one direction are summed

d= h-3.5 in=8.5 in

β₁=0.85 f'c= 4000*psi* fy= 60000*psi*

assume $\Phi = 0.9$

$$3 \cdot \sqrt{\frac{f^*c}{psi}} \cdot \frac{b_w}{in} \cdot \frac{\frac{d}{in}}{\frac{f_y}{psi}} in^2 = 0.3226 in^2$$

As min is max of:

$$A_{\min} = \frac{200 \cdot \frac{w}{in} \cdot \frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.34 in^2$$

$$a^{\frac{A_{s} f y}{0.85 f' c b_{w}}} \overset{M}{design} \overset{\Phi M}{n} \frac{\frac{M}{design}}{\Phi} M_{n} \overset{M}{n} \overset{M}{\frac{design}{\Phi}} 30285.55561b$$

$$\mathbb{M}_{n} = \lambda_{s} \cdot fy \cdot \left(d - \frac{a}{2} \right) \qquad \mathbb{M}_{n} = \lambda_{s} \cdot fy \cdot \left(d - \frac{\lambda_{s} \cdot fy}{2 \cdot 0 \cdot 8 \cdot f^{*} c \cdot b_{w}} \right) \qquad \lambda_{s} \cdot fy \cdot \left(d - \frac{\lambda_{s} \cdot fy}{2 \cdot 0 \cdot 8 \cdot f^{*} c \cdot b_{w}} \right) = \mathbb{M}_{n} = 0$$

5 Apr 2017 18 53 34 - Structure 2 sm

$$\frac{\frac{\lambda_{s}}{1n^{2}} \frac{fy}{psi}}{\frac{d}{1n}} = \frac{\frac{\lambda_{s} \cdot fy}{psi in^{2}}}{\frac{2 \cdot 0.85^{2} \cdot \frac{f \cdot c}{psi} \frac{b}{in}}{\frac{psi}{psi} \frac{b}{in}}} = \frac{M_{n}}{1b} = -0.0008$$

As min governs

Use 2 no 4 bars

$$d_b = 0.5 in \qquad A_b = 0.20 in^2$$

 $A_{3} = 4 \cdot A_{3} = 0.8 \text{ in}^{2}$

Clear Space:
$$(12 in - 2 \cdot 3 in - 2 \cdot .375 in - 4 \cdot d_b) = 1.0833 in >1 in$$

d_t = 12 in - 3 in - .375 in - d_b = 8.125 in

$$a = \frac{A_{s} \cdot fy}{0.85 \cdot f^{*} c \cdot b_{s}} = 1.1765 in$$

$$c = \frac{a}{\beta_1} = 1.3841 \text{ in}$$

 $\frac{c}{d_1} = 0.1703 < 0.375 \text{ Therefore } \Phi = 0.9$

$$\Phi M_{n} = \Phi \cdot A_{s} \cdot fy \left(d_{t} - \frac{a}{2} \right) = 27.1324 \text{ ksi in}^{2} \text{ ft}$$

$$\Phi M_{n} = \frac{\Phi M_{n} \cdot 10^{3}}{ks1 i n^{2} ft} Ib ft = 27132.3529 Ib ft$$

M design design 1 ft = 27257 lb ft

ΦMn<Mdesign

Cutoff Wall:

M_{cutoff}= 800 1b

d= w _-3.5 in = 4.5 in

β₁=0.85 f'c=4000*psi* fy=60000*psi*

assume **0**=0.9

As min is max of:

$$3 \cdot \sqrt{\frac{f'c}{psi}} \cdot \frac{b_w}{in} \cdot \frac{\frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.1708 in^2$$
$$A_{smin} = \frac{200 \cdot \frac{b_w}{in} \cdot \frac{d}{in}}{\frac{fy}{psi}} in^2 = 0.18 in^2$$

$$\frac{\lambda_{s} \cdot fy}{0.85 \cdot f' \cdot c \cdot b_{w}} \xrightarrow{M_{cutoff} \bullet \Phi \cdot M_{n}} \frac{M_{cutoff}}{\Phi} = M_{n} \xrightarrow{M_{n}} \frac{M_{cutoff}}{\Phi} = 888.8889 Ib$$

$$M_{n} = \lambda_{s} \cdot fy \cdot \left(d - \frac{a}{2}\right) \xrightarrow{M_{n}} = \lambda_{s} \cdot fy \cdot \left(d - \frac{\lambda_{s} \cdot fy}{2 \cdot 0.85 \cdot f' \cdot c \cdot b_{w}}\right) \xrightarrow{\Lambda_{s}} fy \cdot \left(d - \frac{\lambda_{s} \cdot fy}{2 \cdot 0.85 \cdot f' \cdot c \cdot b_{w}}\right) = M_{n} = 0$$

A := .003294267 in 2

$$\frac{\frac{A_{s}}{1n^{2}} \cdot \frac{f_{y}}{psi}}{\frac{d}{1n} - \frac{\frac{A_{s} \cdot f_{y}}{psi in^{2}}}{2 \cdot 0.85^{2} \cdot \frac{f^{*}c}{psi} \cdot \frac{b_{w}}{in}} - \frac{M_{n}}{1b} = -6.1609 \cdot 10^{-5}$$

As min governs

Use 1 no 4 bar

$$d_{b} = 0.5 in \qquad A_{b} = 0.20 in^{2}$$

 $A_{b} = 1 \cdot A_{b} = 0.2 \text{ in}^{2}$

 $d_t = 8 in - 3 in - .375 in - d_b = 4.125 in$

$$a = \frac{\lambda_{3} \cdot fy}{0.85 \cdot f \cdot c \cdot b_{y}} = 0.2941 \text{ in}$$

Apr 2017 18 53 34 - Structure 2 sm

 $c = \frac{a}{\beta_1} = 0.346 in$ $\frac{c}{d_t} = 0.0839 < 0.375$ Therefore $\Phi = 0.9$

$$\Phi M_n = \Phi \cdot A_a \cdot fy \cdot \left(d_t - \frac{a}{2} \right) = 3.5801 \text{ ksi in}^2 \text{ ft}$$

$$\Phi M_n = \frac{\Phi M_n \cdot 10^3}{\text{ksi in}^2 \text{ ft}} \text{ lb ft} = 3580.1471 \text{ lb ft}$$

L := T + W + 2 + 10 ft = 51 ft

Vol₂= 32.363 yd³ Vol₁= 13.5154 yd³

Steel (ACI min):

 $\rho_{\min} \approx 0.0018$ $D_t \approx 8.125 in$ $A_s \approx \rho \cdot b \cdot d$ $d_t \approx 4.125 in$

 $A_{\text{g}} = \rho_{\text{min}} \cdot b_{\psi} \cdot D_{t} = 0.1755 \text{ in}^{2}$ Foundation

$$A_s = \rho_{\min} \cdot b_w \cdot d_t = 0.0891 in^2$$
 Cutoff wall

For both, use 1 no 4 bar

$$1_{d} = \frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot d_{b}}{25 \cdot \lambda \cdot \sqrt{f^{*}c}} \qquad f_{y} = \frac{f_{y}}{psi} = 60000 \qquad \lambda = 1.0$$

$$f_{y} = \frac{f_{y}}{psi} = 60000 \qquad \psi_{t} = 1.0$$

$$d_{b} = \frac{d_{b}}{1n} = 0.5 \qquad \psi_{e} = 1.0$$

$$1_{d} = \frac{f_{y} \cdot \psi_{t} \cdot \psi_{e} \cdot d_{b}}{25 \cdot \lambda \cdot \sqrt{f^{*}c}} = 18.9737$$

$$1_{g} = 1.3 \cdot 1_{d} = 24.6658$$

$$1_{g} = 25 \text{ in}$$

Budget

Travel reimbursement

IRS cost per mile = 0.54/mile

Miles to date = 45 miles

Expected total miles = 90 miles

Current Reimbursement = Cost per Mile * Miles

= \$0.54 * 45 = **\$24.30**

Estimated Design Costs

PRELIMINARY ESTIMATE

Stormwater Conveyance System for Logan City

Project:

Date

4/8/2017

ITEM				UNIT	TOTAL
NO.	DESCRIPTION	UNIT	QUANTITY	PRICE	PRICE
1	Mobilization	Lump Sum	1	 -	\$ 618,966.15
2	Implement SWPPP	Lump Sum	1	 -	\$ 618,966.15
3	Survey	Lump Sum	1	 -	\$ 25,000.00
4	Channel Grubbing	Square foot	1447451	\$ 0.30	\$ 434,235.30
5	Channel Excavation	Cubic Yard	134751	\$ 25.00	\$ 3,368,775.00
6	Install specialty concrete	Cubic Yard	46	\$ 350.00	\$ 16,100.00
7	Provide Quality Control Testin	Lump Sum	1	\$ 10,000.00	\$ 10,000.00
8	Install 18-inch stop gate	Each	1	\$ 500.00	\$ 500.00
9	Install 12-inch diameter rip rap	Cubic Yard	1106	\$ 60.00	\$ 66,360.00
10	Silt Fence	Lineal Feet	91060	\$ 1.25	\$ 113,825.00
11	Wetland Mitigation	Acres	33	\$ 180,000.00	\$ 5,981,202.48

Total

\$11,253,930.09

10% ADJUSTMENT (Design and Construction Inspection) 25% CONTINGENCY (Unexpected Construction Costs)

\$ 1,125,393.01	
\$ 2,658,740.98	

TOTAL OF BID \$12,379,323.10

Cost Benefit Analysis

Alternative 1—Moving the Polishing Pond

Land purchase for new polishing pond Land needed = 21.71 acres Land price = \$7596 per acre Land Price = Land Needed * Land Price Moving the pump station Estimated cost = **\$1,000,000**

Total Cost

Total Cost = Land Price + Moving the Pump Station = \$164,833 + \$1,000,000 = **\$1,164,833**

Alternative 2—Upgrading Existing Pipe

Feet of pipe to be replaced = 6200 Cost of 60" concrete pipe installed per foot = \$600 Cost of New Pipe = Feet of Pipe * Cost per Foot = 6200 * \$600 = \$3,720,000

Special Summary Documentation

.

Constraints Consideration Summary

Health and Safety. The implementation of this project minimizes flood risk to the agricultural and industrial land. During the construction process, equipment may overturn due to slope instability. 10WE considered the safety of the construction crew during the design process. 10WE used saturated soil conditions for design calculation. 10WE also used government design regulations and adequate factors of safety to ensure the integrity of the structures.

Constructability. 10WE designed simple channels and diversion structures. 10WE avoided harming wetlands to the extent possible. In addition, the storm water conveyance system is gravity fed.

Economic. There were many economic constraints for this project: gravity-fed system, channel length, hydraulic structures, wetlands, and moving the holding pond and screw pumps.

- The storm water system is gravity-fed due to the cost of installing and maintaining pumps.
- The channel length was minimized due to the increase in cost as the length increases.
- The size and quantity of hydraulic structures were minimized due to the cost increase as the structures grow in both size and quantity.
- The construction avoided wetlands to the extent possible due to the cost of replacing wetlands.
 - The Army Corps of Engineers requires three acres of wetlands be restored for every acre disturbed during construction.
 - The price of replacing one acre of disturbed wetland is \$180,000.
- The holding pond and screw pumps were relocated due to economic constraints.
 - 10WE completed a cost benefit analysis to assist in the decision of whether or not to move the holding pond and screw pumps.

Environmental. As defined by the EPA, wetlands improve water quality, provide wildlife habitat, and regulate surface water flow. The design avoided disturbing the wetlands to the extent possible.

Social. Canals in the area supply water to farmers who own water rights. 10WE ensured all individuals have access to their water rights by designing diversion structures.

Engineering Tools Summary

Software Name	Version	Manufacturer
ArcGIS	ArcGIS 10.4	Esri
AutoCAD	AutoCAD 2016	AutoDesk
Civil3D	Civil3D 2017	AutoDesk
Google Drive	N/A	Google
Slide	Slide 6.0	Rocscience
Smathstudio	0.98.6179	Andrey Ivashov
Storm and Sanitary	Storm and Sanitary 2015	AutoDesk
TauDEM	5.0	Available from David Tarboton

Table SSD1. 10WE Engineering Tools

Government Regulations

Table SSD2. 10WE Government Regulations

Organization	Number	Name	
NRCS	TR-55	Urban Hydrology for Small	
		Watersheds	
USBR	N/A	Design of Small Canal	
		Structures	
Logan City	N/A	Cache Valley Storm Water	
10000 000		Design Standards	
American Concrete Institute	318 & 10-5-4	Building Code for	
		Requirements for Structural	
		Concrete	

Professional Responsibility and Conduct Summary

Table SSD3. Professional Standards

Organization	Number	Name
ASCE	N/A	ASCE Code of Ethics

Risk Considerations

Design process risk considerations. The field investigation risked the health and safety of members of 10WE. The purpose of the field investigation was to gain a better understanding of current conditions in the area of interest. This involved driving and taking velocity and cross-sectional area measurements of canals. The canals of interest are lined with a fine clay. 10WE carefully evaluated where to take measurements to ensure they did not get trapped in the mud. 10WE completed this investigation in late fall and all team members wore appropriate clothing

to diminish the risk of illness. 10WE mitigated risk while driving to the area of interest by wearing seatbelts and obeying all local driving regulations.

Post-design process risk considerations. The implementation of this project minimizes flood risk to the agricultural and industrial land. During the construction process, equipment may overturn due to slope instability. 10WE considered the safety of the construction crew during the design process. 10WE used saturated soil conditions for design calculation.

Potential Additional Reviewers

- Lance Houser PE
- Sedimentologist
- Logan City Council
- Construction Contractors

Methods for Overcoming Challenges

10WE employed several methods to overcome challenges. 10WE focused on communication, comparative advantage, and planning. By designating a "naysayer" for several meetings, 10WE evaluated many different ideas and methods. 10WE avoided confusion among the team and between the client by using the proper method of communication for each task. 10WE reallocated assignments to increase efficiency. For example, Ryan Weller and Megan Gordon changed roles so that Megan is the primary technical writer and Ryan is the geotechnical engineer. Finally, 10WE used planning as method to communicate and coordinate with the client.

Professional Author Biography

Kade J. Beck majored in Civil Engineering. He is married to Megan Beck and they are the parents of Savannah Mae. Kade served as the Engineering Senator and Senate Pro Tempore during his sophomore year where he initiated a college sponsored career exploration program. Kade was an Engineering Undergraduate Research Fellow and conducted research at the Utah Water Research Laboratory. During this time, Kade chartered and served as the founding member and Chapter President of Utah's first Student Chapter of the American Water Works Association. Kade is the co-author of several publications on the subject of electromagnetic meter accuracy. He will intern with CH2M during the summer and continue at Utah State University in the fall to complete his master's degree in Fluid Mechanics and Hydraulics. In his free time Kade enjoys playing games with his wife and spending time on the playground with his daughter. Kade loves being with his family outdoors and enjoys mountain biking and reading.