Utah State University

An Introduction to the Study of Rocky Mountain Bees

T. D. A. Cockerell
University of Colorado

W. W. Robbins

Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_co
Part of the Entomology Commons

Recommended Citation

Cockerell, T. D. A. and Robbins, W. W., "An Introduction to the Study of Rocky Mountain Bees" (1910). Co. Paper 259.
https://digitalcommons.usu.edu/bee_lab_co/259

This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Co by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
 any previous time, and its quality is probably much improved.

From a military point of view the decline in the birthrate is important. A reduction of surplus population now utilized for standing armies with which to menace the peace of nations would contribute greatly to international tranquility. Anything that increases the value of a man and his usefulness to the state, renders his government less disposed to trump up quarrels with other nations which may result in destruction of life. Nations with a stationary population are anxious to avoid war. The declining birthrate, therefore, is one of the factors making for international peace.

It is an error to assume that the present materialistic attitude of the social mind is likely to endure permanently. There is not the slightest evidence that it represents a social psychology that will long obtain. On the contrary, there are indications that at the present time large sections of our population are beginning to question the worth of the sarifices made in the race for wealth. Exposures of the investigations of the past few years have directed public attention to the questionable sources of many great fortunes, and have made familiar the words "tainted money." Criticism of the manner in which so many fortunes have been made has tended to lessen the social value of wealth, and has done much to direct the attention of the world to the advantages of the simple life. It is coming to be realized that the greatest satisfactions of life are not in extravagant living, but consist rather in the consciousness of duty done and loyalty to high ideals. In so far as these ideas which havebeen for some time obscured in the struggle for material comforts return again to their proper place in the popular mind, it is likely that there will not be the same antagonism between the birthrate and ambition that has existed during several of the past decades.

Much of the discussion of race-suicide is academic and sentimental and tends to draw public attention away from questions whose study is of vastly more vital interest in their relation to the general welfare. Thus far the improvements in medical and sanitary science have greatly increased the expectation of life and have in some degree compensated for any loss due to the lowering of the birthrate.

AN INTRODUCTION TO THE STUDY OF ROCKY MOUNTAIN BEES
By T. D. A. Cockerel and W. W. Robbins
The Rocky Mountain bee fauna is not only remarkably rich and interesting, but in spite of many years of collecting it continues to yield numerous undescribed forms. Among the species described the nesting habits are known only in a few cases, and there is an immense field for interesting research into the biology of these insects. Tables for the separation of many of the species have been published but there has existed no quite serviceable modern work for the determination of the genera, and consequently the beginner has been discouraged at the outset. Nothing can be written which will make the study of bees easy, in the sense of absolving the worker from attention to numerous minute details or substituting anything for his critical judgment; but it is hoped that the present paper will at least make it possible for him to proceed, supposing him to be reasonably intelligent and industrious.

There is given first a summary of the classification adopted, in which most of the genera are distinguished. As an appendix to this follows a very brief abstract of Robertson's classification, which is of great value, but unfortunately inadequate, being based wholly on Illinois species. Finally there is offered an artificial key, which can be used by one unfamiliar with the classification, or the place in the system of the specimen in hand. The numerous illustrations of venation include nearly all the local genera, and can be used to interpret the tables and confirm determinations. It must be remembered, however, that the venation varies a little within specific limits, and of course still more within a large genus.

For the local species, the student will use the tables of Boulder County bees, published in these Studies, Vol. IV, June, 1907. The artificial key is mainly to genera, but species have been run in when convenient, these being nearly all additions to the Boulder County list since June, 1907. Several genera, and some species, not at present known from

Colorado have been included in the tables, largely for purposes of comparison. These nearly all live in New Mexico, and consequently may be considered to belong to the Rocky Mountain fauna.

Numerous fossil bees are known from the Miocene shales of Florissant. These are not included in the keys, but it will be useful to present a list. Those marked with an asterisk belong to extinct genera:

Halictus miocenicus Ckll. Halictus florissantellus Ck11.
Halictus scudderiellus Ckll.
*Libellulapis antiquorum Ckll.
*Lithandrena saxorum Ckll.
*Pelandrena reducta Ckll.
Andrena sepulta Ckll.
Andrena clavula Ckll.
Andrena hypolitha Ckll. Melitta willardi Ckll.
*Cyriapis anomalus Ckll.
*Protomelecta brevipennis CkII.
Anthophora melfordi Ckll.
Megachile pradicta Ckll.
Anthidium scudderi Ckll.
Anthidium exhumatum Ckll.
Dianthidium tertiarium Ckll.
Heriades laminarum Ckil
Heriades halictinus Ckll.
Heriades bowditchi Ckll.
Ceratina disrupta Ckll.
*Calyptapis florissantensis Ckll.

Descriptive Terms

Head (See Fig. 2)
Vertex: top of head.
Occiput: region behind the vertex.
Cheeks: region behind the eyes. .
Front: region between the vertex and the antennae.
Face: region below the antennae, chiefly occupied by a large central plate, the clypeus.
Ocelli: the three simple eyes on upper part of head.
Malar space: the space between eyes and mandibles.
Antennae: r_{2}-jointed in males, r_{3}-jointed in females; the long basal joint is the scape, the apical part, of many joints, the flagellum.

Facial foveae: depressed areas on each side of face parallel with the eyes.
Labrum: the plate below the clypeus, more or less covered by the mandibles.
The mouth parts are sufficiently explained in the figure. The blade of maxilla (that part of maxilla beyond the palpi) is often called the galea, but it is probably equivalent to the galea and lacinia fused (cf. Trans. Amer. Ent. Soc., Vol. XXIX, p. 185). The tongue is often called the glossa.

Thorax

When the thorax is seen from above, the prothorax appears in front, behind the head; it has lateral lobes, approaching the tegulae, known as the tubercles. The large piece following the prothorax is the mesothorax or mesonotunt; there may frequently be seen upon it two grooves, the parapsidal grooves. The next piece, just behind the level of the wings, is the scutellum; the axillae are small plates on each side of it, sometimes produced into spines, which are often described as the lateral spines of the scutellum. The posiscuteilum, a short sclerite, follows the scutellum, and behind this is the metathorax
propodeum or median segment. Morphologically this is considered to be part of the abdomen, but even so, the name metathorax is appropriate. The basal area of the metathorax is just behind the postscutellum. The large sclerites at the sides of the thorax constitute the pleura. At the base of the enterior wings are round scalelike bodies, the tegulae.

Wings
The venation of the wings is explained in Fig. r.
L.EGS (See Fig. 3)

The basal part of the leg consists of two short segments, the coxa and trochanter, followed by the long and robust femur, after which comes the tibia, with one or more apical spurs. The remaining joints constitute the tarsus; of these the first is longer than the others and is called the basitarsus or metatarsus, the latter term being morphologically incorrect. The last tarsal joint bears the claws, between which may be a small pad, the pulvillus. The scopa is the pollen-collecting apparatus, consisting of modified hairs on the hind legs.

Abdomen

Six dorsal segments are visible in the female, seven in the male. The ventral scopa is the brush of hairs covering the under surface in certain females.

Sculpture

The tegument or chitinous surface is variously sculptured; punctate, striate, rugose, etc. The terms are self-explanatory, except punctate or punctured, which refers to small depressions looking like punctures of the surface, but not actual perforations.

Synopsis of Classification

SOLITARY BEES

A. Tongae short, "broad, obtuse, emarginate at apex. COLLETIFORMES,

I Hairy bees; anterior wings with three submarginal cells, COLLETIDAE Colletes Latr. (P.)
2 Black bees with little hair, nearly always very small, face in nearly all the species with yellow or white markings; only two submarginal cells, PROSOPIDIDAE,

Prosopis Fabr. (P.)
B. Tongue more or less elongate, pointed, not emarginate; no ventral abdominal scopa. ANDRENIFORMES
r Tongue more or less short, dagger-like; marginal cell pointed; usually three submarginal cells; maxillary palpi 6-jointed, ANDRENIDAE.
a Females with facial foveae; basal nervure nearly straight; hind trochanters of females with curved tuft of hair. Andreninae,

Three submarginal cells; mostly black species.
Two submarginal cells.
Non-metallic species
Metallic green or blue species
Parandera Rob. (D, D)
arandrena Rob. (P. D.)
cies.
Andrena-like bees, with three submarginal cells, the second small; tegulae usually large; hind legs in male usually modified; abdomen often with opalescent green or blue bands. Nominas.

Nomia Latr. ${ }^{\text {(P.) }}$
${ }^{2}$ The allied genus Dieunomic occurs on the plains. D. marginipennis, Cresson, occurs at Rockyfor (Gillette) and D. xerophila Ckll. at Sterling (Johnson). These are large bees, with the male antennae modified
c Females without facial foveae; metallic or black bees, rarely with the abdomen orange or red, distinguished from Andreninae by the strongly curved basal nervure; hind spur of hind tibia in females often with long teeth. Halictinas.
aa Colors black or greenish, rarely at all brilliant; size often small; three submarginal cells; species numerous.

Halictus Latr. (P.)
bb Head and thorax metallic; size very small; like Halictus, but with only two submarginal cells.

Dialictus Rob. (P. D.)
cc Brilliant green (rarely blue or crimson) species, the color not conspicuously different in the sexes; eyes emarginate in front; a group invading North America from the Neotropical region; tongue sometimes quite long.

Augochlora Smith (S.)
$d d$ Brilliant green species, the abdomen sometimes dark or yellowish; males with abdomen striped with yellow and black. Agapostemon Smith (S.)
d Inquilinous or parasitic bees, with the head and thorax black, the abdomen red; three submarginal cells. Sphecodinas.

Sphecodes Latr. ${ }^{1}$ (P.)
2 Tongue elongate, though not as long as in some of the higher groups; only two submarginal cells except in Protandrena, which has three; never brilliantly metalic, though sometimes (Perdia) the head and thorax green; often with yellow markings. PANURGIDAE.
a Three submarginal cells; black species, the face with yellow markings; marginal cell truncate at end

Protandrena Ckll. (S.)
b Two submarginal cells.
Marginal cell pointed on costa.
Halictoides Nyl. ${ }^{2}$ (P.)
Marginal cell truncate (obliquely in some).
Marginal cell short and very broadly truncate; small species with nearly always light markings on abdomen.
Marginal cell elongate.

- Perdita Smith (N.) Abdomen with pale markings not due to hair. Spinoliella Ashm. (N.) Abdomen without pale markings.

Truncation of marginal cell little oblique.
Pangurginus Nyl. (P.)
Truncation of marginal cell conspicuously oblique; first recurrent nervure meeting first transverso-cubital. Only one species, ${ }^{3}$ which visits Malvastrum.

Greeleyella Ckll. (N.)
IThe subgenus Proteraner Rob. has males which appear in the spring with the females, which is not the case with other Halictinae. For a list of the species of Sphecodes, see Psyche, pp. 107-110, October, 1907. ${ }^{*}$ The related Californian genus Amblyapis Ckll. (type A. iliciololia Ckll.) is separated by the short palpi, second and third joints of labial palpi produced on one side apically, and blade of maxilla very short and
obtuse. A. ilicifolia is a small ($5 \frac{1}{2} \mathrm{~mm}$. long) black bee with greyish-white bair. obtuse. A. ilicifoliai is a small ($5 \frac{1}{2} \mathrm{~mm}$. long) black bee with greyish-white hair.
${ }^{3}$ Since this was written a second species, collected in Texas, has been received.

3 Tongue elongate; parasitic bees, usually highly ornamented, and with no pollen-collecting apparatus
a Maxillary palpi 6-jointed; a type derived from the Panurgidae, or rather from an ancestral type related thereto but with three submarginal cells; usually wasp-like in appearance, with bright yellow and often red colors; three submarginal cells in all but one or two species; marginal cell pointed on costa. NOMADIDAE.
Maxillary palpi with two to six joints; usually robust bees, with conspicuous markings due to hair, but without yellow tegumentary markings; a type derived from the Anthophoridae. MELECTIDAE.

Maxillary palpi 6 -jointed. Bombomelecta Patton (N.)
Maxillary palpi 5 -jointed, the last joint minute; genus parasitic on Anthophora

Pseudomelecta Rads. (N.
Maxillary palpi 3 -jointed; body with conspicuous light mark ings due to appressed hairs; genus parasitic on the Eucerinae.

Triepeolus Rob. (N.)
Maxillary palpi 2 -jointed; size usually smaller than in the last, and silvery area on end of abdomen of female
much smaller.
Like Epcolus, but with only two submarginal cells
Phileremus Latr. (P.)
c Maxillary palpi 5- to 6-jointed; small bees usually classed with Phileremus, etc., but apparently forming a distinct group. Neolarrinae. ${ }^{1}$

Maxillary palpi 6-jointed.
Marginal cell long, 'truncate at apex
Abdomen dull, constricted at the sutures. Veopasites Ashm. (N.)
Abdomen shining, not constricted at the sutures; genus parasitic on Spinoliella. Oreop

Neolarra Ashm. (N.)
-jointed; only one submarginal celf; very Phileremulus Ckll. (N.)
4 Tongue very long; first two joints of labial palpi elongate, sheath-like, last two minute; hairy, pollen-collecting bees, the males often with long antennae, and usually with the clypeus yellow. ANTHOPHORIDAE. ${ }^{2}$
a Paraglossae very short; form robust; Neotropical group reaching the southern border of the United States. Centrinae (or Hemisiinæ).

Maxillary palpi 6-jointed
Clypeus not yellow in male. Exomalopsis Spin. (S.) Clypeus yellow in male; usually only two submarginal cells. Anthophorula Ckll. (S.)
Maxillary palpi 4 -jointed; large robust, swift-flying bees. (The Fabrician Centris was a mixture; Schrottky (The Fabrician Ceniris was a mixable; Schrottky
contends that the name is not applicable to our bees.) b Paraglossae medium, not or hardly exceeding first joint of labial palpi. Anthophorinae.

Maxillary palpi 5 -jointed; tongue, labial palpi and maxillary
blade extremely long.
Melitoma Lep. \& Serv. (S.)
Ashmead, Bull. Colo. Biol. Assoc., No. 1. p. 33, 1890.

- For a list of the species, see Trans. Amer. Ent. Soc., Vol. XXXII, pp. 97-104, 1906.

Maxillary palpi 6-jointed
Blade of maxilla broad at base, suddenly narrowing to the slender apical portion

Clypeus dark in male. Diadasia Patt. (S.) Clypeus light in male. Dasiapis Ckll. (S.) Vachal includes both Diadasia and Dasia
Blade of maxilla broad, gradually narrowing to the Blade of maxilla broad
more or less blunt tip.

First recurrent nervure joining second submarginal cell near middle

Mandibles simple or bidentate.
Anthophora Latr. ${ }^{\text {A }}$ (P.)
Mandibles tridentate. Clisodon
Clisodon Patt. (P. D.)
First recurrent nervure joining second sub marginal cell at or very near end.

Emphoropsis Ashm. (P. D.)
C Paraglossae very long, hairy. Eucerinae.
Maxillary palpi 6-jointed.
Tetralonia Spin. (P.)
Maxillary palpi 5 -jointed.
Maxillary palpi comparatively long and slender; bees usually found on Cucubitaceae.

Xenoglossa Smith (S.)
Maxillary palpi shorter, fifth joint reduced.
Maxillary palpi 4 -jointed.
Xenoglossodes Ashm. (S. D.) (Xenoglossor. Melissodes Latr. (S.) lossa closely allied to Martina is a genus found in New Mexico, as ly allied to Melissodes. The only known species has the flagellum bright yellow in the male.)
C. Tongue long, filiform; two submarginal cells; labiai palpi with the basal joints much elongated, the apical minute; under side of female abdomen with a pollen-collecting copa, except in the parasitic genera. MEGACHILIFORMES. MEGACHIIIDAE

I Eyes hairy; parasitic group related to the Megachilinae. Coelioxynae
Coelioxys Latr. (P.)
2 Eyes not hairy.
a Non-metallic, ${ }^{2}$ pollen-collecting bees, without colored markings. Megachilinar.
aa Bees of large or medium size
Marginal cell sharply pointed; face in female with
a protuberance; male with a pulvillus. ${ }^{2}$
Lithurgus Berthold (P.)
Margina
no pulvillus in either sex; maxillary palpi 3-jointed.
Megachile Latr. (Many species) (part P., part N.)
$b b$ Small bees, with a pulvillus. Osminae. Maxillary palpi 3 -jointed.

Base of first abdominal segment with a

[^0]: Exceptions to these characters are found in certain Old-World species.
smooth area bounded by a stron rim; body coarsely punctured

Heriades Spin. (P.)
Base of abdomen not thus formed, the basal area not surrounded by a rim; area not surrounded by more delicately punctured. Chelostoma Latr. (P.)
Maxillary palpi 4 -jointed.
Female clypeus smooth and shining, emarginate in the middle; first joint of labial palpi nine-tenths length of second. Titusella Ckll. (N.)
Clypeus ordinary
First abdominal segment at base with with a wide impunctate basin; male with abdomen
ending in four small ending
Ashmeadiella Ckll. (N.)
First abdominal segment at base rounded, with a narrow. sulcus; male abdomen not ending in four teeth.
Robertsonella Titus (N.)
male antennae modified. Icidamea Cresson (one species) (N.)
R Rather large bees, resembling Osmia, but black, with long, parallel-sided abdomen; male with clypeus subemarginate, nd antennae approaching the Alcidamea type, but without n apical hook; maxillary palpi 5 -jointed.

Monumetha Cresson (one species) (N.) The few black species of Osmia will come in here and will be distinguished by the 5 -jointed maxillary palpi, mer with normal anternae in the male.)
b Metallic, dark or brilliant blue or green, pollen-collecting bees, with a pulvillus; maxillary palpi 5 -jointed. OsmiINaE.
c Metallic or non-metallic parasitic bees, with or without light markings; postscutellun not toothed. Stelidinat.

Second submarginal cell receiving both recurrent nervures. Chelynia Provancher (N.)
Second recurrent nervure received at or beyond apex of second submarginal cell.

Stelis Panzer (P.)
Non-metallic, sometimes partly red, parasitic bees, rather like Coelioxys in form, but eyes not hairy; postscutellum with a median tooth; no pulvilli. Dioxynae.

Dioxys Lepeletier
Black bees with conspicuous yellow or whitish markings; pollencollecting. AntHidinae.

No pulvillus; cottony material used in preparing nests, which are in burrows.

Anthidium Fabr. (P.)
Pulvilli present; nests made of resin, on rocks, etc.
Dianthidium Ckll. (P.)
D. Pollen-collecting bees with three submarginal cells and a long, filiform tongue, makin nests in wood or in stems of plants. XYLOCOPIFORMES

I Large robust bees; mostly tropical. XYLOCOPIDAE
Xylocopa Latr. (P.)
2 Small bees; not rare in temperate regions. CERATINIDAE.
SOCIAL BEES: APIFORMES Ceratina Latr. (P.)

Bombus Fabr. (P.)
Parasitic bees, the females without polleniferous areas on hind legs; living in nests of Bombus.

The North American bees may be divided into three groups according to their supposed origin:
I Nearctic genera, which have probably inhabited North America during the larger part of Tertiary time.
2 Palaearctic genera, which have probably reached North America during the Miocene, or derivatives from such genera.
3 Neotropical genera and their derivatives, which probably for the most part reached America during the latter part of Tertiary time.
These are marked N., P. and S., respectively, in the list above. D. signifies an American derivative.

A few genera, such as Lithurgus and Megachile, were doubtless common to the New and Old Worlds prior to the Miocene invasion. There can be no doubt that Megachile contains elements of Nearctic as well as Palaearctic origin; the truly Palaearctic types are such species as M. melanophaea, M. vidua, etc.

Robertson’s Classification

Mr. Charles Robertson, in the Canadian Entomologist, 1904, has fiven a classification of the groups of Illinois bees, of which the followng is a partial abstract. It is based wholly on the females. Equivalent pames in our classification are given within square brackets.

APYGIDIALIA

(Sixth abdominal segment exserted, without a pygidial area)
Tongue flat, bilobed; facial foveae present; mandibles bidentate; maxillary palpi longer than blade of maxilla.

COLLETOIDEA [Colletiformes] Prosopididae
(Two submarginal cells; no polleniferous scopa) Colletidae
(Three submarginal cells; polleniferous scopa present)
B. Tongue filiform; no facial foveae; maxillary palpi shorter than blade of maxilla.

I Two submarginal cells; labrum longer than wide.
TRYPETOIDEA [Megachiliformes]
Stelididae [Stelidinae and Anthidiinae]
(Claws cleft, inner tooth subapical)
Megachilidae [Megachilidae, excluding Stelidinae and Anthidiinae]
(Claws simple, sometimes with a basal tooth)
2 Three submarginal cells; labrum wider than long.
a Apex of sixth abdominal segment with a spine or mucro,
a little concave before the point; maxillary palpi 6-jointed.
CERATINOIDEA [Xylocopiformes]
Ceratinidae (Stigma large)
Xylocopidae (Stigma obsolete)
b Apex of sixth abdominal segment obtuse, without a spine or mucro.

APOIDEA [Apiformes]
Apidae (hind basitarsus shorter than tibia) [Apidae and Bombidae]
PYGIDIALIA [Andreniformes
(Sixth abdominal segment exserted or retracted, with a pygidial area)
A. Tongue acute, flat, rarely filiform; second to fourth joints of labial palpi simple; stigma large, rarely middle-sized.

ANDRENOIDEA

Tegulae very large; labial palpi simple; tongue lance-linear, acuminate. Tegulae ordinary.

I Labrum free from mandibles, as large as clypeus, shorter than wide, transversely striate, without basal process; labial palpi simple.
Labrum ordinary.
2
2 Hind tibia and basitarsus broad, with dense simple hairs; labial palpi simple. Macropodidae [not in our fauna] Hind tibia and basitarsus ordinary.
3 Marginal cell truncate; two submarginal, cells (three in Protandrena); facial foveae present. Panurgidae Marginal cell pointed; usually three submarginal cells.
4 No facial foveae; basal nervure strongly bent or arcuate
Halictidae [Halictinae]
Facial foveae present; basal nervure slightly arcuate.
Andrenidae [Andreninae]
B. Tongue filiform; first two joints of labial palpi flat; labrum large, without basal process; stigma small or middle-sized, rarely large.

Scopa absent.

ANTHOPHOROIDEA

Scopa present; three submarginal cells.
Melectidae [Melectidae and Nomadidae]
I Marginal cell with apex rounded; stigma obsolete or nearly
Anthophoridae [Anthophorinae]
Marginal cell lanceolate; apex acute, bent away from costa.
2 Vertex crested; paraglossae at least as long as first two joints of labial palpi together; basitarsus broad, with a posterior apical appendage.
with a posterior apical
Vertex not crested; paraglossae shorter than first two joints of labial palpi together; basitarsus narrow.

Emphoridae [Entechnia $=$ Melitoma.]
Protandrena, not found in Illinois, Mr. Robertson would place in Panurgidae, as a subfamily Protandreninae. It has three submarginal cells. Robertson's Emphoridæ includes two subfamilies:

$$
\begin{array}{ll}
\text { Pulvilli absent. } & \text { Emphorinæ: Emphor[not in our fauna.] } \\
\text { Pulvilli present. } & \text { Entechiinæ: Entechnia. }
\end{array}
$$

Vachal has recently argued that Entechnia is the same as the prior genus Melitoma, and upon going over the description of the latter, this certainly seems to be correct.

Artificial Key

The numbers following the generic names refer to the figures of wings. Only one submarginal cell; minute parasitic bees.

Phileremulus
Two submarginal cells.
I
Three submarginal cells. 42
I Marginal cell sharply truncate at tip, the lower apical corner with an appendicular nervure (Panurgidae).

2
2 Marginal cell short; small bees with the head and thorax usually metallic, dark green or blue, and the abdomen usually with light spots or bands.

Perdita (4, 5) Marginal cell rather long, more narrowly truncate; head and thorax not metallic.

3 Abdomen with conspicuous light tegumentary spots or bands
Abdomen without light tegumentary markings.
Calliopsis Abdomen shining, black, not banded. - 5

5 Coarsely punctured; wings very dark; marginal cell obliquely truncate; first recur rent nervure joining second submarginal cell no great distance before its middle.

Delicately punctured; wings hyaline or subhyaline.
Pseudopanurgus
6 its base.

Panurginus (7)

First recurrent nervure entering first submarginal cell; alpine species (Topaz Butte, Colorado, at flowers of Drymocallis fissa, June 23, 1907, S. A. Rohwer).

Panurginus verus Ckll.
First recurrent nervure joining, or almost joining, first transverso-cubital.
7 Smaller, mountain species; upper corner of apical truncation of marginal cell angular; legs of male dark.

Panurginus cressoniellus Ckll. (7) Larger species, visiting Malvastrum in the foothills and plains; upper corner of apical truncation of marginal cell rounded; legs of male mainly yellow.

Greeleyella beardsleyi Ckll.
8 Eyes hairy; parasitic bees, without scopa.
9
Eyes not hairy.
I5
9 Legs red.
IO
Legs dark.
II
ro Male about 8 mm . long, with punctures on middle of fifth abdominal segment conspicuously smaller and denser than those of apical half of fourth. (Boulder, July 20, W. P. Cockerell).

Coelioxys edita Cresson
Male over 11 mm . long, with punctures on middle of fifth abdominal segment hardly different from those on apical part of fourth (Boulder, August, at flowers of Grindelia, W. P. Cockerell).

Coelioxys deplanata Cresson
II Very small, about 7 mm . long (Boulder).
Coelioxys deani Ckll.
Larger, 10 mm . or over (male gilensis sometimes 9 mm .).
12
12 Tarsi more or less red.
13
Tarsi dark.
14
13 Last ventral segment of female broad, its lateral margins strongly convex, its apex rounded, with a small projection (Boulder, at flowers of Melilotus alba, July, S. A. Rohwer).

Coelioxys gilensis Ckll.
Last ventral segment of female narrower, its lateral margins nearly straight, each with a notch (Boulder, July 3, Cockerell.)

Coelioxys rufitarsis rhois Ckll.
14 Last ventral segment of female broad, suddenly narrowing to the conoid apical projection (New Mexico, Cockerell; Milwaukee, Wisconsin, Graenicher).

Coelioxys ribis Ckll.
Last ventral segment of female narrow, notched but not abruptly narrowed at the beginning of the apical projection.

Coelioxys moesta Cresson
15 Abdomen with yellow or yellowish-white tegumentary bands or spots.
Abdomen not thus ornamented.
I6 Pulvillus absent; mostly large bees; females with ventral scopa. Pulvillus present.

Anthidium (9)

I7 Dark green or blue, the abdomen with light bands. Not metallic.
18 Hair of vertex pale, of pleura black.
Hair of vertex largely black, of pleura pale.
Chelynia pulchra Crawford
Chelynia elegans Cresson

I9 Second recurrent nervure joining second submarginal cell before its end; parasitic bees, without scopa.
Second recurrent nervure going beyond end of second submarginal cell.
20 Abdomen with the bands broken into widely separated spots; very small species (Santa Fé, New Mexico).

Chelynia permaculata Ckll.
Abdomen with the bands nearly entire, or several quite entire.
Chelynia monticola Cresson and C. subemarginata Cresson
2 I Very small, about 7 mm . long or less, with bright yellow markings; no scopa (Santa Fé, New Mexico).

Stelis rudbeckiarum Ckll. Large, more robust, females with a scopa.

Dianthidium (ro)
22 Marginal cell extremely minute; very small parasitic bees. Neolarra Marginal cell normal.
23 Head and thorax metallic, blue or green.
Not metallic.
26
24 Basal nervure strongly bent or arched; very small species; females with no ventral scopa.

Dialictus (II) Basal nervure straight or little arched. 25
25 Stigma well developed; marginal cell more pointed; females without ventral scopa (only one species in our region, visiting Nothocalais and allies). Diandrena (I2) Stigma little developed; marginal cell more obtuse at end; females with a ventral scopa on abdomen (many species).

Osmiar (I 3)
26 Third discoidal cell contracted above, the recurrent nervures joining the second submarginal cell not very far apart; small bees.

Phileremus (14) Third discoidal cell not so formed. 27
27 Marginal cell at apex very obtuse or subtruncate; small parasitic bees with hind margins of abdominal segments reddish, and abdomen with pale or white spots of appressed scale-like hairs.
Marginal cell pointed.
28 Abdominal spots white; abdomen reddish (Colorado Springs).
Neopasites pulchellus Cresson Abdominal spots dull; insect rather larger and much darker (Boulder, at flowers of Grindelia, July 16, 1908, W. P. Cockerell).

Neopasites heliopsis Rob. (15)
29 Head and thorax with yellow or yellowish-white markings; small bees with very little hair, the abdomen black without bands.

Prosopis (I6)
Head and thorax without light tegumentary markings.
30
30 Second submarginal cell quadrate, only moderately narrowed above; first recurrent nervure meeting first transverso-cubital; stigma well developed; wings dusky; thorax not hairy.

Prosopis basalis Smith, female Second submarginal cell more elongate, more narrowed above; thorax hairy.

$$
3 I
$$

Thelynia pavonina Ckl1., from Boulder, is like a bright metallic Osmia, without ventral scopa. Only one specimen is known.
The following species of Osmia were taken at Tolland in 1909 (Robbins): O. longula Cress., O. brevts
Cress., O. propinqua Cress., O. pentstemonis Ckll.

31 Marginal cell at apex reaching costal margin of wing; females without ventral scopa.
Marginal cell Halictoides (17) ventral scopa.

32
Females with two large protuberances on middle of face, the space below them smooth
32 Females with two large protuberances on middle of face, the space below them smooth
and shining; males with the abdomen ending in' a point; marginal cell sharply pointed, away from costa (one species, a rather large bee, in our region). Lithurgus (18) Females and males not thus distinguished.
33 Clypeus smooth and shining, emarginate in the middle; a small bee about 8 mm . long; ventral scopa light fulvous or orange (male unknown).

Clypeus not thus smooth. 34
Titusella pronitens Ckll. (19)

34 No pulvilli on feet; s
ntral scopa usually pale (many species)
Pulvilli present.
35
35 Rather large bees, with a long parallel-sided abdomen; ventral scopa black.
Small bees, length 9 mm . or less; ventral scopa pale. 37
Male with face largely silvery from appressed hairs, and clypeus shal
36
Monumetha (2I)
Mace largely silvery from appressed hairs, and clypeus shallowly emarginate;
Mong emales with eyes slightly converging averging above; clypeus with a strong, smooth and shining, longitudinal median ridge.

Osmia hypocrita Ckll.
37 Base of first abdominal segment ordinary, rounded, with a narrow longitudinal sulcus.
Base first abdominal segment with a flattened or concave smooth shining plate or basin, the edge of which is well defined.
38 Male with flagellum greatly thickened, with a terminal hook. Alc
Male with flagellum long and filiform (genus not yet found in Colorado).
Robertsonella (22)
39 More coarsely punctured; end of first recurrent nervure not more (usually less) distant from base of second submarginal cell than half length of first transverso-cubital; male abdomen not ending in four teeth.

40
abdomen not from base of second submarginal cell than half length of first transverso-cubital; male abdomen ending in four teeth.

4 I
40 Anterior legs largely red (Boulder, at flowers of Monarda, July 16, 1908, W. P. Cockerell).
Legs all black (Boulder, July, W. P. Cockerell, S. A. Rohwer).
Heriades carinatus Cresson (24)
4I Larger, anterior wings $4 \frac{1}{2}$ to $5 \frac{1}{2} \mathrm{~mm}$. (Boulder, August 28, Rohwer; Rifle, Colo., July, Rohwer; usually taken at flowers of Grindelia).

Ashmeadiella denticulata Cresson (23) Smaller, anterior wings about 3 mm . (Boulder, May, Rohwer).

Ashmeadiella prosopidis Ckll

A further table of male Ashmeadiella is given:
Larger, 7 mm . long or a little over.
Small, less than 6 mm . long.
I
I Tegulae reddish testaceous; length about $5 \frac{1}{3} \mathrm{~mm}$. wings quite clear; abdominal teeth red-tipped, middle ones much longer than broad (Rifle, Colo.).

Tegulae dark.
aridula kl.
2 Length nearly 6 mm ., tegulae shining piceous; . 2 2 Length nearly 6 mm ., tegular shining piceous; middle abdominal teeth much longer than broad (Florissant, Colo., at flowers of Senecio cymbalarioides, June 29, Rohwer).

Length about $4 \frac{1}{2}$ to 5 mm .; middle teeth of abdomen short. cactorum Ckll
42 Marginal cell very long, almost reaching apex of wing; eyes hairy prosopidis Ckll.
Marginal cell very long, almost reaching apex of wing; eyes hairy.
Apis (26) Marginal cell with tip distant from apex of wing. 43
43 First recurrent nervure meeting first transverso-cubital; large bee with bright fulvous hair on thorax and base of abdomen, and abdomen with white hair bands (New Mexico).

Caupolicana yarrow Cresson
First recurrent nervure not meeting first transverso-cubital.
44 First discoidal cell much longer than marginal cell. 45
First discoidal cell not as long or scarcely longer than marginal cell.
45 Marginal cell short, not half the length of the first discoidal, and not or scarcely extending beyond apex of third submarginal cell; parasitic bees. 46
Marginal cell at least half the length of the first discoidal and extending more or less beyond the third submarginal.
46 Hair of thorax abundant and erect; first abdominal segment with hair like thorax; rest of abdomen black, in one species with light spots. Bombomelecta (46) with interrupted light bands.
7 with interrupted light bands.
Pseudomelecta
47 Third submarginal cell subquadrate, not or hardly narrower above than beneath; marginal cell obtuse at tip; hairy bees; the clypeus partly or wholly yellow or white in the male; tongue very long.

48
Third submarginal cell narrower above than beneath, or when not so, insect without erect hair; marginal cell extending far beyond apex of third submarginal cell.
48 Mandibles tridentate; apex of female abdomen with orange red hair; species nesting
in dead wood. in dead wood. Clisodon terminalis Cresson (27) Mandibles simple or bidentate; species nesting in banks.

Anthophore (47)
49 Robust, pollen-collecting bees, the thorax with abundant erect hairs; similar to Anthophora but first recurrent nervure reaching apical corner of second submarginal cell.

Emphoropsis (28) Parasitic bees, less hairy, and with conspicuous pale markings, or when these are absent, insect red.

50
50 Abdomen black with conspicuous pale bands due to appressed scale-like hair.

$$
5 I
$$

Abdomen with tegumentary bands (nearly always yellow) or spots, or red without markings.

51 Fifth segment of female abdomen with large patch of silvery hair. Triepeolus (20) Silvery patch reduced to a lumule or band; insects usually smaller. Epeolus
52 Mandibles simple.

Nomadar (30)
Mandibles with an inner tooth.
Nomada, subgenus Gnathias (30)
53 Head and thorax with metallic colors, blue or green.
Head and thorax black, rarely with some red, never metallic. 58
54 Head and thorax brilliant emerald green or blue green; basal nervure strongly arched.
Head and thorax dark green or blue.
55 First recurrent nervure joining second submarginal cell near middle; male abdomen banded with yellow and black, female abdomen green or black. Agapostemon (34) First recurrent nervure reaching apex, or very near apex, of second submarginal cell; abdomen green like thorax in both sexes.

Augochlora (32)
56 Small, shining dark green bees; first recurrent nervure joining second submarginal cell near apex; tongue long; face in female with an ivory spot, in male with a large tri-lobed ivory mark. Ceratina (33) Minutely punctured bees, with the head and thorax hairy; face without light markings in either sex or (in male Halictus) with a small light band on clypeus; tongue dagger-like.
7 Basal nervure strongly arched; abdomen often not metallic.
Halictus (35) Basal nervure hardly arched.
58 Mouth-parts greatly elongated, held under the body when at rest, like the beak of an Hemipteron (Denver, Colo.).

Melitoma grisella Call. and Porter
59 Marginal cell sharply truncate at tip, the lower corner with an appendicular nervure; face largely pale yellow.
Marginal cell not thus truncate, but obtuse or pointed.
fo Face more or less yellow or white, the color tegumentary; straight. ${ }^{2}$
Face without light tegumentary color.
6x Stigma nearly always well developed; male antennae not greatly elongated; tongue dagger-like.

Andrena (36, 49) Stigma little developed; male antennae usually elongated; tongue very long, linear. 62

62 Antennae very long, black; maxillary palpi 6-jointed.
Tetralonia (37) Antennae usually shorter, though long, and more or less reddish (in a few species black); maxillary palpi with less than six joints.
63 Maxillary palpi 4-jointed (many species).
Melissodes $3(38,48)$ Maxillary pali 5 -jointed.
64 Maxillary palpi comparatively long and slender
Xenoglossa (39) Maxillary palpi shorter (genus not known in Boulder County). Xenoglossodes (40)

- For a table of Rocky Mountain Nomada, see Bulletin 94, Colorado Agricultural Experiment Station.
- Some male Halictines have yellow on clypeus; these have the basal nervure strongly arched. If bright men with yellow and black abdomen they are A gapostemon; if dark green, Halictus.
${ }^{3}$ Antiedon, a genus scarcely distinct from Melissodes, has the male antennae with the last joint elongated. The scop of the female is simple.

65 Abciomen wholly or largely red.
66 Basal nervure strongly arched; small species. Basal nervure nearly straight.

Sphecodes (43)
Andrena (36, 49) 7 Second recurrent nervure with a strong double curve, approaching an S-shape; tongue short and emarginate; hairy bees.
Second recurrent nervure not so formed, straight or with a single gentle curve.
68 Lower inner corner of secend 68 long tongue.
hairy bees with very Second subm

69
Second submarginal cell not thus formed.
70
Females with shining pollen-collecting surfaces on hind legs. Females with unmodified hind legs, covered with hair.
Basal nervure strongly arched; stigma well developed; tongue dagger-like.
Basal nervure straight or almost.
71
71 Hind margins of abdominal segments with beautiful pale greenish tegumentary bands, the other parts of the abdomen strongly punctured (Boulder).
Abdomen without greenish bands.
Nomia universitatis Ckll.

Stigma little developed; apex of marginal cell away from costal ma
73 Posterior face of metathorax flat, shining, sharply sepa 74
is strongly ruse, tibi from basal area, which is strongly rugose; tibiae and tarsi bright ferruginous; hind tibiae of male deformed, wings yellowish, apical margin strongly dusky (Boulder, September 16, Rohwer; Denver, at flowers of Solidago, August 24, Mrs. C. Bennett).

Nomia bakeri Ckll. Posterior face of metathorax not thus differentiated; tibiae
male not deformed.
 apex.

Diadasia (4I)
Vertex less shining; abdomen otherwise formed at apex.
75
75 Maxillary palpi 6-jointed; scopa of hind legs in female simple. \qquad Tetralonia (37) Melissodes (38, 48) Maxilary palpi 4 -jointed; scopa plumose.

Xenoglossa (39) and Xenoglossodes (40) The following table separates a series of females of the last two genera: Abdomen red; large robust species (New Mexico).

Abdomen not red.
Xenoglossa patricia Ckll
I Lower margin of clypeus broadly yeliow (New Mexico).
Clypeus without yellow.
Xenoglossodes gutierreziae Ckll. yellow. 2
2 Flagellum bright ferruginous beneath, except at base (Roswell, New Mexico).

Xenoglossodes excurrens Ckll.

Flagellum dark, sometimes obscure reddish.
3 Abdomen beyond the second segment covered with ochreous tomentum, not at all banded (New Mexico).

Xenoglossodes imitatrix Ckll. and Porter Abdomen beyond the second segment banded.

4
4 Larger and more robust, breadth of thorax about 5 mm .; thorax covered above with fulvous hair; hind basitarsus thinly haired, but the hairs long.

Xenoglossa pruinosa Say Smaller and narrower, breadth of thorax 4 mm . or less; hair of thorax above not brilliantly colored; hind basitarsus more densely hairy. 5
5 Middle third of fifth abdominal segment with the hair dark chocolate brown (New Mexico).

Xenoglossodes lippiae Ckll. Middle of fifth abdominal segment with the hair wholly pale (Raton, New Mexico).

Xenoglossodes neotomae Ckll.

[^0]: pi. The only species is A. vallorum Ckll.

