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 Abstract—  An empirical model of the approximate electron 
range of some common materials has been extended to predict the 
range for many diverse types of materials. The electron range of a 
material is the maximum distance electrons can travel through a 
material, before losing all of their incident kinetic energy. The 
original model used the Continuous Slow Down Approximation 
(CSDA) and the constant loss approximation (CLA) for energy 
deposition in a material to develop a composite analytical formula 
which estimated the range from <10 eV to >10 MeV with an 
uncertainty of ≲20% using a single empirical fitting parameter, 
𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆. This effective number of valence electrons, was empirically 

calculated for >200 materials which have tabulated range and 
inelastic mean free path data in the NIST ESTAR and IMFP 
databases.  Correlations of 𝑵𝑵𝑽𝑽

𝒆𝒆𝒆𝒆𝒆𝒆 with common material properties 
(density, atomic number, atomic weight, and band gap) were 
established for this large set of materials, leading to the 
development of a predictive formula to accurately determine 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 
for arbitrary materials. This paper discusses the accuracy and 
limitations of the predictive formula and presents illustrative 
applications to several materials of interest. 
 

Index Terms— range, inelastic mean free path, electron 
scattering, spacecraft charging 

NOMENCLATURE 
 

b Stopping power proportionality constant. 
c Speed of light in vacuum. 
CSDA Continuous Slow Down Approximation. 
E Energy. 
𝐸𝐸𝑚𝑚 Mean energy lost per collision. 
Egap Band gap energy. 
EHI Energy used for the high end to calculate n. 
ELO Energy separating high and intermediate parts of range 
EHL  Energy gap between HOMO and LUMO. 
Epeff Effective plasmon energy. 
ESTAR NIST Stopping-power and range tables for electrons. 
fi Number of i-type atoms in a material. 
ħ Reduced Planck’s constant. 
HOMO Highest occupied molecular orbital. 
IMFP Inelastic mean free path. 
LUMO Lowest unoccupied molecular orbital. 
𝑀𝑀𝐴𝐴���� Mean atomic weight. 
me Electron rest mass. 
n Stopping power exponent. 
no Exponent fitting parameter for 𝑍𝑍𝐴𝐴��� in 𝑁𝑁𝑉𝑉

𝑝𝑝𝑟𝑟𝑟𝑟. 
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n1 Slope of a linear fit of 𝜌𝜌𝑚𝑚 versus 𝑍𝑍𝐴𝐴���. 
NA Avogadro’s number. 
Noffset Offset fitting parameter for 𝑍𝑍𝐴𝐴��� in 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝. 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 Empirical effective number of valence electrons. 

𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝 Predicted effective number of valence electrons. 

No Scaling fitting parameter for 𝑍𝑍𝐴𝐴��� in 𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝. 

N1 Scaling fitting parameter for ρm in 𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝. 

NIST National Institute of Standards and Technology. 
qe Electron charge. 
r Linear correlation coefficient. 
R Electron range. 
z Distance along normal into a material. 
𝑍𝑍𝐴𝐴��� Mean atomic number. 
𝛽𝛽, 𝛾𝛾,𝐶𝐶,𝐷𝐷 Coefficients used in the TPP-2M formula.  
𝜀𝜀0 Permittivity of free space. 
𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 Inelastic mean free path. 
ρm Mass density. 
𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  Reduced chi squared. 
 

I. INTRODUCTION 
He electron range in materials, R, describes the maximum 
distance electrons of an initial incident energy can travel 

through a material before they lose all of their kinetic energy 
and come to a rest, depositing their charge. It is also described 
as the mean path length from a primary electron’s point of 
incidence to where it comes to rest. It differs from the 
penetration depth which is the mean projection of the range 
onto the direction of incidence [1].  The primary energy loss 
mechanism for electrons is due to inelastic collisions within the 
material with a mean energy loss defined as the mean excitation 
energy. At very low energies where only a single inelastic 
collision is likely to occur, the range becomes synonomous to 
the inelastic mean free path (IFMP).  

Due to the probabilistic nature of this process, the Continuous 
Slow Down Approximation (CSDA) is often employed to 
simplify the problem.  In the CSDA, the rate of energy loss, 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  (termed the total stopping power) is assumed equal to 
the total stopping power at every position along the penetration 
path; variations in energy-loss rate with energy, E, or with 
penetration depth, z, are neglected and discrete energy loss for 
individual collisions is averaged over a mean free path. A 
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further approximation can be made which assumes a constant 
loss approximation (CLA), approximating dE/dz as a constant.  

In an initial study, an approximate range expression was 
developed by merging well known semi-empirical models for 
the interaction of electrons with materials in different energy 
regimes by employing the CSDA and the CLA; details of this 
model are provided in [4].  Using these approximations, a 
simple, continuous, composite, analytic formula—with the 
single empirical free parameter, 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒—was used to 
approximate the range (10-9 m to 10-2 m) over an extended 
energy span (<10 eV to >10 MeV).  Agreement of model range 
predictions with tabulated range data in the NIST databases was 
found to be within ≲20% (often much less) for more than 200 
conducting, semiconducting, and insulating materials [2,3,4].  

Correlations of 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 from this initial study [4] with common 

material properties have been established for this large initial 
set of materials [10,11,12]. This has led to the development of 
a predictive formula to accurately determine 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 for arbitrary 
materials based solely on mass density, mean atomic number 
and atomic weight from stoichiometric formula, and 
approximate band gap energy. This paper discusses the 
accuracy and limitation of the predictive formula and presents 
illustrative applications to several materials of interest. 

II. ORIGINAL RANGE MODEL 
The previously developed range model predicts the energy-

dependent range, R(E), as a function of incident electron 
energy, E, spanning incident energies from <10 eV to >10 MeV.  
The model uses a single fitting parameter, 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 and material 
parameters mass density ρm, mean atomic number 𝑍̅𝑍, mean 
atomic weight 𝑀𝑀𝐴𝐴���� weighted by atomic fraction, and band gap 
energy Egap [4].  The final result is a continuous piece-wise 
analytic approximation to the range, described by (1), (2), (3), 
and (4):  
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(1) 
 

The inelastic mean free path, λIMFP(E) is expressed with 
the TPP-2M formula [5] used in conjunction with the NIST 
IMFP database [3]: 
 
𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐸𝐸) = 𝐸𝐸�𝐸𝐸𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒�
−2

[𝛽𝛽𝛽𝛽𝛽𝛽(𝛾𝛾𝛾𝛾) − 𝐶𝐶𝐸𝐸−1 + 𝐷𝐷𝐸𝐸−2]−1.   (2) 
 
β, γ, C and D are defined in [5] and n and b are defined in [4];  
all these are defined in terms of only the material parameters 
ρm, 𝑍̅𝑍,  𝑀𝑀𝐴𝐴����, Egap, and various physical constants [4].  

Here 𝐸𝐸𝑚𝑚  is equal to mean energy lost per collision 
occurring on average at the inelastic mean free path  
𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝐸𝐸𝑚𝑚).  For 𝐸𝐸 < 𝐸𝐸𝑚𝑚 the range follows an approximation 
of the IMFP since the TPP-2M equation is not valid at these 
energies. As seen in Fig. 1, this curve increases for energies ≲
50 eV due to the increase in the IMFP for low energy electrons 
as demonstrated in [5]; however, due to small data sets and high 
variabilities and uncertainties in the IMFP at low energies, these 
values should be considered as trends and not definitive data. In 
order to approximate 𝐸𝐸𝑚𝑚, the energy at which these single 
collisions dominate, an empirically determined factor of 2.8 [4] 
is multiplied by the geometric mean of the effective plasmon 
energy and the bandgap energy, Egap, giving: 
 

 𝐸𝐸𝑚𝑚 = 2.8 ��𝐸𝐸𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒�
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 .          (3) 
 
The effective plasmon energy, 𝐸𝐸𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒 ,  for an arbitrary atomic 
or molecular material is defined in analogy with the bulk free-
electron plasma energy for conductors—which is proportional 
to the square root of the number of valance electrons per atom 
or molecule—as   
 
 𝐸𝐸𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒 = ħ�𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒𝑞𝑞𝑒𝑒2 𝑚𝑚𝑒𝑒𝜀𝜀0� �

1 2⁄
   .                        (4) 

 

Fig. 1. Range as a function of incident energy for Li. (a) Range calculated 
using both empirical and predicted 𝑵𝑵𝑽𝑽

𝒆𝒆𝒆𝒆𝒆𝒆 values as compared to NIST 
ESTAR range and IMFP data. (b) Percent differences for both medium 
and high energy regimes for Li ranges calculated for both empirical 
𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆and predicted 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 values, as compared to NIST ESTAR range and 
IMFP data. 
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Here qe and me are the electron charge and rest mass, ħ is the 
reduced Planck’s constant and ε0 is the permittivity of free 
space.  Following this analogy, the free parameter 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 is 
termed the effective number of valence electrons per atom 
though it lacks direct physical meaning, as discussed in [4].   

III. EMPIRICAL VALUES OF 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 

Empirical values of 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 were derived from fits to range [2] 

and inelastic mean free path (IMFP) [3] values as a function of 
incident electron energy from two NIST databases.  Tabulated 
values of the electron ranges at high energies using the CSDA 
can be found in the NIST ESTAR database spanning incident 
energies from ~20 keV to ~1 GeV [2]. IMFP data are found in 
the IMFP database spanning incident energies from ~500 eV to 
~2 keV [2].  Original fits to ~20 materials [4] using (1) have 
now been extended to include almost all of the 249 diverse 
materials found in the NIST databases; the materials now fit are 
categorized by conduction type (74 conductors, 17 
semiconductors, 74 insulators), phase (156 solids, 7 liquids, 2 
gases) and composition (92 elements, 47 compounds, 21 
polymers, 5 composites). 

A. Range Accuracy 
To assess the accuracy of the range model (1), comparisons 

can be made several ways between the NIST database range 
values and range values predicted from (1) using the empirical 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 values derived from fits to the NIST databases. The 

agreement between range values compared in this way were 
found in almost all cases to give good fits, with differences 
typically less (often much less) than ±20% over the 50 
eV<E<10 MeV spans.   

Plots of range versus energy are shown for Al, SiO2, Al2O3 
and Kapton in [4], for Au in [9], and for Sr in [10].  Fig. 1(a) 
shows such a plot for Li, a material with one of the worst range 
fits (see Table 1).  Fig. 1(b) shows the residual percent 
differences for Li between the range calculations using 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒and the NIST database values.  Si, Au and Sr also have 

relatively very poor fits (see Table 1). As with many of the 
materials with relatively poorer fits, the primary disagreement 
for Li, Si, Au and Sr results from trying to match the higher 
energy ranges well above mec2 where relativistic corrections 
become insufficient. 

Another way to quantify the agreement between range values 
from the NIST databases and those predicted from (1) using 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 values is to calculate the reduced chi-squared values, 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2 , 

over the full 50 eV to 10 MeV spans of NIST data.  Fig. 2(a) is 
a plot of  𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  versus 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 for all the materials fitted.  The mean 
𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  is ~6·10-7, indicative of very good fits.  However, the 

standard deviation of the 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  of ~2·10-6 suggests there is a wide 
range of 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  values.   

Indeed, plotting the 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  values versus 𝑁𝑁𝑣𝑣 for all of the 
materials revealed that the greatest errors were from a small 
number of materials, which were in three main populations. The 
first category consists of materials with 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 ≲ 3 which 
followed a power law trend as shown in Fig. 2(a). The second 
category consists of elemental alkali (Li, Na, K, Rb, Cs, Fr; 
yellow diamonds in Fig. 2) and alkaline earth (Be, Mg, Ca, Sr, 
Ba, Ra; yellow squares) metals as indicated in Fig. 2.  The third 
category includes highly ionic alkali halide compounds (blue 
diamonds).  When these three populations are removed, the 
mean 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  is ~4·10-7 with a standard deviation of ~1·10-6.  It is 
important to note, that while these three categories of materials 

Fig. 2.  Reduced chi squared values, 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2 , for comparisons of range values 
from the NIST databases to those predicted from (1) using NV values. 
Values for the range were calculated using: (a) the empirical values 𝑵𝑵𝑽𝑽

𝒆𝒆𝒆𝒆𝒆𝒆 
determined from fits to the NIST databases and (b) the values 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 
predicted using (7).  Materials are categorized with symbols as noted in the 
legends.  The mean 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  (solid lines) and standard deviation of the 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  
values (dashed lines) for the full data set (black) and data set with alkali, 
alkaline and alkali halide populations removed (red) are indicated on the 
graphs.  

Na 

Mg 

K Rb Ba Ra 

Fr 

Acetone 

Li 

K Rb Ce 

Fr 

Sr 

Sr 

Ba Ra 

Table I. Nv
eff and Nv

pre for several materials with corresponding 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  values 
and the percent change in Nv

eff and Nv
pre. 

Material Nv
eff 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2 (Nv

eff) Nv
pre 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2 (Nv

pre) % change in Nv 
Au 10.814 5.8·10-8 10.798 5.8·10-8 -0.2 
Si 5.493 1.2·10-7 5.607 2.2·10-7 2.1 
Al 5.195 7.4·10-8 5.273 1.2·10-7 1.5 
SiO2 4.716 6.1·10-8 4.472 5.6·10-7 -5.2 
Al2O3 4.538 7.0·10-8 4.145 9.8·10-7 -8.7 
Li 1.179 1.1·10-5 1.608 3.2·10-5 36.4 

 

Li 
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are shown to have the greatest deviations, their 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2  values are 
still ≲1·10-5.  Even though Li has the greatest 𝜒𝜒�𝑟𝑟𝑟𝑟𝑟𝑟2 , it still has 
reasonable agreement for the range when compared to NIST 
ESTAR range and IMFP data, with errors still ≲40% as shown 
in Fig 1(b).   

B. Sensitivity to 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 

In order to estimate the effect of variances in the fitting factor 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒, Fig. 3(a) shows  the variations of the composite fit (1) 

calculated with different 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒.  It compares plots of range 

versus energy for the ceramic insulator alumina (Al2O3)—with 
NV set equal to 0.1, 4.5 (the calculated value from the fit), and 
8.0, while other materials parameters are held constant—to the 
database range values. Similar comparisons for typical 
conductors, Al [4] and Au [9], are shown elsewhere.  We find 
that lower values of 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 overestimate the range, while higher 
values of 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 underestimate the range [4].  Based on the 
quality of the fits to the database values, the typical uncertainty 
in 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 is estimated to be ≲10%.  Based on these results, even 
with significant variance in 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒, we can expect to find values 
that are reasonably accurate for most applications.  

IV. PREDICTIVE FORMULA FOR 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 

In order to extend the usefulness of the approximate range 
model (1) to materials where there are no range data available 
to empirically find the single fitting parameter 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒, a simple 
formula using material parameters was developed to predict  
𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝:  
 

𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝐴𝐴���) = 𝑁𝑁𝑜𝑜� 𝑍𝑍𝐴𝐴���

𝑛𝑛0 + 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  �.           (5) 
 
This formula was found through extensive analysis of much 
more complex predictive formulas for 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝  involving products 
of power law terms for density, mean atomic number and 
weight, and bandgap plus other properties including plasmon 
energy, conductivity, phase, and more [11, 12]. This general fit 
for 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 was evaluated using general least squares fit analysis 
methods to simultaneously determine the best estimates for 
fitting parameters for each material property.  

A. Effect of Atomic Number Correction 
Remarkably, this predictive formula for effective number of 

valence electrons (5) was a function of only mean atomic 
number weighted by atomic fraction, 𝑍𝑍𝐴𝐴���, which can be easily 
determined from the stoichiometric formula for compounds or 
from elemental fractions for composite materials as 
 
𝑍𝑍𝐴𝐴��� ≡ [∑ 𝑓𝑓𝑖𝑖𝑖𝑖 𝑍𝑍𝐴𝐴𝐴𝐴] [∑ 𝑓𝑓𝑖𝑖𝑖𝑖 ]⁄                       (6) 

 

Fig. 4. Percent difference between the calculated range using 𝑵𝑵𝑽𝑽
𝒑𝒑𝒑𝒑𝒑𝒑 and the 

calculated range using  𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 as a function of energy, with 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 given by: 
(a) Eq. (5) and (b) Eq. (7).  (c) Percent difference between the 
approximated range using 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 using Eq. (7)  and the range from the NIST 
ESTAR range and IMFP databases.  Results for Au, Si, SiO2, Al2O3, Al 
and Li, which are particularly poor fits, are shown.  

Fig. 3. Effect of different 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 on the predicted range for Al2O3.  Range 

fits for three different 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 values (0.10, 4.50, and 8.00) alumina are 

compared.  
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where fi is the number of i-type atoms in the  
material and ZAi is the atomic number of the i-type atom. 

The fitting constants for (5), No, no and Noffset, were found 
through least squares fits to minimize the difference between 
𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝐴𝐴���) from (5) and the empirical values for 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒.  
Goodness of fit metrics of chi squared χ2

Nv and linear correlation 
coefficient rNv allowed quantification of the quality of these fits 
(see Table 2). The fitting parameters were then used to calculate 
values of 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝  using Eq. 5.  
To better assess the validity of the predictive formula (5) for 

𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝐴𝐴���), Fig. 4(a) plots the percent difference versus energy 

of ranges calculated with both empirical 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 and predicted 

𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝.  

B. Effect of Density Correction 
To assess the ability of (5) to accurately predict 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒,  Fig. 
5(a) plots the predicted 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 values using (5) against the 
empirical 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 values. Lines indicate ±10% (dashed red) and 
±30% (purple dot-dashed) deviations from a one-to-one linear 
fit (solid red), which would be expected for an exact predictive 
model. It is apparent that while there is strong correlation (𝑟𝑟 =
0.984), there is substantial scatter of ~±15% in the predictions 
from a perfect linear fit.   

To refine (5), separate fits similar to Fig. 5(a) were made for 
materials subcategorized into grouping such as solids/liquids/ 
gasses and conductors/semiconductors/insulators, with the 
hope that this categorization might reveal additional trends [11]. 
Semiconductors showed excellent agreement. Insulators 
showed very good agreement, with a slight downward 
concavity.  Although conductors showed good agreement, their 
values oscillated about the unity line, with amplitude increasing 
with increasing 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒.  Plots in Fig. 5(b) of the residuals 
(𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒) [using (5)] versus empirical 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 values also 
exhibited these patterns. 

The observed patterns were very reminiscent of the 
deviations from linearity seen in plots of density versus atomic 
number for the elements [13].  The oscillations in the density 
for conductors (and similar trends in atomic radius and 
ionization energy) are well understood in terms of how many 
free electrons there are in the outermost shell and specifically 
the electron overlap in the d and f orbitals of transition and rare 
earth/actinide elements due to metallic interactions between 
atoms.  

Therefore, a simple corrective term was added to (5) 
dependent on the mean atomic number  𝑍𝑍𝐴𝐴���  rather than 
elemental atomic number, so as to extend the correction to non-
elemental materials. Using the residuals from a linear fit of 𝜌𝜌𝑚𝑚 
versus 𝑍𝑍𝐴𝐴���, a scaled correction factor was added to (5) giving:  

 
  𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝐴𝐴���,𝜌𝜌𝑚𝑚) = 𝑁𝑁𝑜𝑜� 𝑍𝑍𝐴𝐴���
 𝑛𝑛0 + 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒  � − 𝑁𝑁1(𝜌𝜌𝑚𝑚 − 𝑛𝑛1𝑍𝑍𝐴𝐴���), (7) 

 
where 𝑁𝑁1 is a scaling factor. The parameter 𝑛𝑛1 was determined 
solely from  𝜌𝜌𝑚𝑚 and 𝑍𝑍𝐴𝐴��� values, independent of range data, as 
the slope of a linear fit of 𝜌𝜌𝑚𝑚 versus 𝑍𝑍𝐴𝐴���; separate values were 
found for all materials and for materials separated by category 
(see Table 2). As with (5), the fitting constants for (7), N1, No, 
no and Noffset, were found through least squares fits to minimize 
the difference between 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝐴𝐴���,𝜌𝜌𝑚𝑚) from (7) and the empirical 

values for 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒. Values for these fitting constants for all 

materials and for materials separated by category are listed in 
Table 2.  

To assess the ability of (7) to accurately predict 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒,  Fig. 

5(c) plots the residuals (𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒) [using (7)] against the 
empirical 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 values.  It is evident that the density correction 

Fig. 5. Comparison of predicted 𝑵𝑵𝑽𝑽
𝒑𝒑𝒑𝒑𝒑𝒑 values to empirical 𝑵𝑵𝑽𝑽

𝒆𝒆𝒆𝒆𝒆𝒆 values. (a) 
Predicted 𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 values [using (5)] versus empirical 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 values. The red and 

purple dashed lines represent 10% and 30% deviations, respectively, from 
an exact one-to-one linear fit (solid red). (b) Residuals (𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆) [using 

(5)] versus empirical 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 values. (c) Residuals (𝑵𝑵𝑽𝑽

𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆) values [using 

(7) with density correction] versus empirical 𝑵𝑵𝑽𝑽
𝒆𝒆𝒆𝒆𝒆𝒆 values.  

Ba 

Ba 

Ra 

Ra 
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term reduced almost all deviations to below 10%, with a much 
improved correlation coefficient of 𝑟𝑟 = 0.988.  

C. Range Accuracy 
To further assess the validity of the predictive formula for 

𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝 with density correction, (7), comparisons are made of 

ranges residuals calculated with both empirical 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒and 

predicted 𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝 (found in Table 2). Comparisons are shown in 

Figs. 4(b) and 4(c) for Au, Si, SiO2, Al2O3, Al and Li. Fig. 4(b) 
shows the percent difference between the calculated range 
using 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 and (7) and the calculated range using  𝑁𝑁𝑉𝑉
𝑒𝑒𝑓𝑓𝑓𝑓 as a 

function of energy.  Fig. 4(c) shows the percent difference 
between the calculated range using 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 and (7) and the range 
from the NIST ESTAR range and IMFP databases.  The 
benefits of this correction for metals are clearly visible. The 
change in the 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 for conductors can reduce residuals from as 
high as 50% to <5% as seen for Au.   Li, an alkali metal, is once 
again an outlier similar to the other alkali and alkaline metals as 
shown in Fig. 4(b) and 4(c). However, while Li has the greatest 
𝜒𝜒�2=3·10-5 [see Fig. 2(b)], it still exhibits good agreement with 
data and is nearly identical when using 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 versus 𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝.  Non-

metals and compounds do not see a large improvement from the 
density corrections, since the correction is based on metallic 
bonding between atoms; however, they also do not exhibit large 
changes in range residuals [see Fig. 4(c)] and 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 still remains 
within ~10% of 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 [see Fig. 5(c)].  

V. ESTIMATION OF ENERGY GAPS 
In order to perform range calculations, a value for the electron 

band gap is needed for each material. However, the band gap is 
a more difficult parameter to determine than the stoichiometry 
or 𝜌𝜌𝑚𝑚; this is especially true for some insulators, liquids and 
gases, and compounds, polymers and composites.  Band gaps 
for conductors and conductive alloys can be set to zero, with 𝐸𝐸� 
determined by the effective plasmon energy, 𝐸𝐸𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒 .  Band gaps 
for many semiconductors and some insulators are readily 
available in [2] and [14].   Tabulated energy gaps for different 
crystalline forms of the wide bandgap semiconductors BN and 
AlN [14] have been used with (1) to estimate the effect of 
changes in density and bandgap on the range for these 
allotropes, as detailed in Section VII. 

Fig. 6 shows the results of a study of the effect of changing 
the band gap on the predicted range. For a large bandgap 
insulator Al2O3 (Egap=8.5 eV), even ±30% (±2.6 eV) variations 
in band gap energy change 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 ≲ 10% and 𝜒𝜒�2 ≲ 15%.  
Similar results for variations in band gap energies were found 
for many other materials [10]. 

Given the insensitivity to variations in band gap energies, 
other methods can be used to adequately estimate the 
appropriate energy gap for use with (3).  Optical absorption and 
reflection spectroscopy, photoemission spectroscopy, and 

thermal activation energies in electrical conductivity are 
common experimental methods to determine energy gaps [14].  
For some materials with bandgaps in the visible range or lower, 
Egap might be estimated sufficiently well based solely of the 
color of the material. 

As an example, optical absorption edges measured with VUV 
absorbance spectroscopy—which were correlated closely with  
the ionization energy in the study—were measured for a series 
of linear and cyclic alkane molecules [15].  These energy gaps 
were then used to calculate the range for these materials, most 
of which lacked data in the NIST databases.   Work is in 
progress to compare range values calculated using optical 
absorption edge energies for these molecular materials to the 
tabulated NIST range values and thereby to assess the accuracy 
of using such surrogate energies.  

For other materials—including gases, liquids, and highly 
disordered solids—for which band gap is not a well-defined 
concept, the highest occupied molecular orbital-to-lowest 
unoccupied molecular orbital (HOMO-LUMO) gap, EHL, can 
provide a reasonable surrogate for the band gap in solids [16].  
We propose a potential connection to the range through (3) for 
𝐸𝐸𝑚𝑚 by adding EHL to the geometric mean of the effective 
plasmon energy and the bandgap energy as 
 

 𝐸𝐸𝑚𝑚 = 2.8 ��𝐸𝐸𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒�

2
+ �𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔�

2
+ (𝐸𝐸𝐻𝐻𝐻𝐻)2�

1/2
.            (8) 

 
There are many calculations of the EHL (often referred to as 

the Kohn-Sham band gap) in the literature, many of which are 
calculated using density function theory [16].  Alternately, EHL 
for reasonably complex molecular or polymeric materials and 
compounds can be calculated using available quantum 
chemistry computational packages such as Gaussian [17]. 

Estimates of the appropriate energy gaps for composite 
materials and complex biological materials listed in the NIST 
databases (e.g., brain tissue and cortical bone tissue) are 
obviously much more difficult and ill-defined.  For these 

Table II. Fitting parameters and goodness of fit for predictive 𝑵𝑵𝑽𝑽
𝒑𝒑𝒑𝒑𝒑𝒑 model 

with density correction [Eq. (7)]. 
Materials No no Noffset N1 n1 𝝌𝝌𝑵𝑵𝑵𝑵𝟐𝟐  rNv 

All 6.91 0.240 1.067 0.202 0.144 1.492 0.988 
Insulators 8.625 0.212 1.603 0.188 0.144 0.861 0.986 
Conductors 7.361 0.236 1.114 0.207 0.144 0.251 0.948 
Semiconductors 5.202 0.289 0.995 0.268 0.144 0.109 0.997 

 

Fig. 6. Effect of bandgap on the predicted range for alumina SiO2.  The 
fractional change in the band gap (Egap=9.5 eV) versus the fractional 
change in 𝑵𝑵𝑽𝑽

𝒆𝒆𝒆𝒆𝒆𝒆 (●) and the fractional change in fitting error.  
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materials, fits to NIST database values have been used to 
empirically determine 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒, which in turn can lead to estimates 
of an effective energy gap. 

VI. PUBLICALLY AVAILABLE USER TOOL 
An HTML/Javascript webpage has been developed to 

provide an easy to use tool for users to plot the 249 pre-defined 
materials. It also contains a tool to use the predictive method, 
so that the range can be estimated for arbitrary materials based 
solely on stoichiometry, mass density, and estimated band gap 
energy. The webpage also includes a download link for two 
Excel worksheets, one, the material database with material 
properties and the tool parameters, and second, a range 
approximation worksheet. Details can be found in [18].  

 

VII. APPLICATIONS 
Because new materials are developed faster than they can be 

characterized, it is important to have a quick predictive range 
formula. An example of a material with myriad spacecraft 
applications for which there are no published range data is 
polyether ether ketone (PEEK).  Values of chemical formula, 
density, and band gap for PEEK [18,19] are listed in Table III, 
along with data for two similar polymers, polyimide and 
PMMA, for comparison. As shown in Fig. 7, the electron 
range for PEEK is predicted to be slightly greater than 

polyimide and slightly less than PMMA.  Similar data and 
calculations are also shown that contrast normal polyimide 
with polyimide with 50% deuterium.  Fig. 7 shows the 
electron range for deuterated polyimide is predicted to be only 
slightly greater than normal polyimide. 

An important example of range calculations for non-
stochometric materials is indium-tin-oxide (ITO), a heavily 
doped n-type semiconductor which finds important uses as an 
optically transparent, electrically conducting ternary oxide 
alloy glass or ceramic.  The optical band gap is largest at 4.20 
eV for 5% SnO2 by weight and reduces to 4.09 eV in the tin-
rich (15% SnO2 by weight) alloy [19].  Calculations are listed 
in Table III.  Figure 7(a) shows that the electron range for tin-
rich ITO is predicted to be less than normal polyimide. 

(a) 

Fig. 7. Electron range versus incident energy for (a) PEEK, polyimide, 
PMMA, and ITO (b) Pentane, Hexane, Heptane, Octane, and Decane (c) 
various forms of Boron Nitride and Aluminum Nitiride using a linear 
scale. 

(c) 

(b) 

Table III. Material data for PEEK, normal and partially deuterated 
polyimide, PMMA, and tin-rich ITO where 𝑬𝑬𝒈𝒈𝒈𝒈𝒈𝒈 is the band gap. The table 
also includes Pentane, Hexane, Heptane, Octane and Decane where 𝑬𝑬𝑯𝑯𝑯𝑯, 
the HOMO/LUMO gap, is used. Different structures can lead to different 
densities as shown by the various forms of Boron Nitride. Aluminum 
Nitride is also included. 

Material Formula 𝒁𝒁�𝑨𝑨 𝝆𝝆𝑴𝑴 
(𝒈𝒈/𝒄𝒄𝒄𝒄𝟑𝟑) 

𝑴𝑴� 𝑨𝑨 
(𝒂𝒂𝒂𝒂𝒂𝒂) 𝑵𝑵𝑽𝑽 

𝑬𝑬𝒈𝒈𝒈𝒈𝒈𝒈 
𝑬𝑬𝑯𝑯𝑯𝑯 
(𝒆𝒆𝒆𝒆) 

PEEK 𝐶𝐶21𝐻𝐻18𝑂𝑂3 4.00 1.32 7.58 1.09 3.1 

PI 
(Kapton) 𝐶𝐶22𝐻𝐻10𝑁𝑁2𝑂𝑂5 5.01 1.42 9.77 1.51 2.32 

Deuterated 
PI 𝐶𝐶22𝐻𝐻5𝐷𝐷5𝑁𝑁2𝑂𝑂5 5.03 1.42 9.93 1.09 2.32 

PMMA 
(Lucite) 𝐶𝐶6𝐻𝐻8𝑂𝑂2 3.82 1.19 7.15 0.96 3.7 

Tin-Rich ITO (𝐼𝐼𝐼𝐼2𝑂𝑂3)0.904(𝑆𝑆𝑆𝑆𝑂𝑂2)0.096 24.17 6.80 55.02 1.09 4.11 

Pentane 𝐶𝐶5𝐻𝐻12 2.47 0.63 4.24 0.33 7.18 

Hexane 𝐶𝐶6𝐻𝐻14 2.50 0.66 4.31 0.34 7.14 

Heptane 𝐶𝐶7𝐻𝐻16 2.52 0.68 4.36 0.36 7.09 

Octane 𝐶𝐶8𝐻𝐻18 2.54 0.70 4.40 0.36 7.06 

Decane 𝐶𝐶10𝐻𝐻22 2.56 0.73 4.45 0.38 7.05 

Boron Nitride 
(Cubic) 𝐵𝐵𝐵𝐵 6 3.45 12.41 1.64 6.2 

Boron Nitride 
(Hexagonal) 𝐵𝐵𝐵𝐵 6 2.1 12.41 1.80 5.2 

Boron Nitride 
(Wurtzite) 𝐵𝐵𝐵𝐵 6 3.49 12.41 1.64 5 

Boron Nitride 
(Amorphous) 𝐵𝐵𝐵𝐵 6 2.28 12.41 1.77 5.05 

Aluminum 
Nitride 
(Wurtzite) 

𝐴𝐴𝐴𝐴𝐴𝐴 10 3.26 20.50 2.78 6.02 
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Another useful example is the prediction of the range for a 
set of alkanes. Because the band gap is not applicable here, the 
HOMO/LUMO gap calculated using Gaussian is used instead. 
Calculations for the fitting parameters and required material 
properties are listed in Table III. Figure 7 (b) shows the 
electron range for pentane, hexane, heptane, octane, and 
decane. 

Different structures can also effect the range. To show the 
changes in range, boron nitride is used as an example, 
investigating four different crystal structures with different 
bandgaps and densities. From the graph in Fig. 7(c), it shows 
that the range tends to increase slightly with decreasing 
density with very little change due to the changes in bandgap.  

VIII. CONCLUSION 

Simulations were performed to test the sensitivity of 𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒and 

the range to materials parameters; these suggest that reasonably 
accurate results were achievable with modest precision of the 
parameters. These correlations have led to methods using only 
basic material properties to predict 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 and thus the range for 
additional untested materials which have no supporting range 
data.  These calculations are of great value for studies involving 
energetic electron bombardment, such as electron spectroscopy, 
spacecraft charging, or electron beam therapy. To make these 
range calculations easily accessible to the public, two user tools 
have been developed and can be accessed at the website in [18] 

Future work related to this model will: 
• Extend the database of materials with predicted 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 and 
range vesus energy data by considering tabulated energy 
gaps and other ways to estimate energy gaps for additional 
materials.  Where possible, comparisons will be made of 
𝑁𝑁𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 and the predicted range data to range data 
from the NIST databases and similar sources. 

• Evaluate the extention of the range model to better model 
liquids and gases by considering a possible surrogate of the 
band gap in solids for liquids and gases, using the highest 
occupied molecular orbital-to-lowest unoccupied 
molecular orbital (HOMO-LUMO) gap, ELH [17].  Where 
possible, comparisons will be made of 𝑁𝑁𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑁𝑁𝑉𝑉
𝑝𝑝𝑝𝑝𝑝𝑝 and 

the predicted range data to range data from the NIST 
databases and similar sources. 

• Develop a better relativistic approximation to improve 
range predictions above mec2=0.5 MeV, more closely 
based on the original range work of Bethe [21].  This 
should substaintially reduce the range versus energy 
residuals for the alkali and alkaline elemental metals and 
alkali halide compund materials, as exemplified by Li in 
Fig. 1. 

• Model the approximate internal charge deposition profile 
as the fraction of electrons deposited as a function of 
penetration depth scaled by the range determined by the 
predictive formula for 𝑁𝑁𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝 through convolution of a 
universal normalized deposition curve [10].  

These updates and changes as well as other future 
improvements will be applied to the online range tool in order 
to keep it up to date. 
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