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Unexpected Occurrence of Mesospheric Frontal
Gravity Wave Events Over South Pole (90°S)
P.-D. Pautet1 , M. J. Taylor1 , J. B. Snively2 , and C. Solorio1

1Center for Atmospheric and Space Sciences (CASS), Utah State University, Logan, UT, USA, 2Department of Physical
Sciences and CSAR, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

Abstract Since 2010, Utah State University has operated an infrared Advanced Mesospheric Temperature
Mapper at the Amundsen–Scott South Pole station to investigate the upper atmosphere dynamics and
temperature deep within the vortex. A surprising number of “frontal” gravity wave events (86) were recorded
in the mesospheric OH(3,1) band intensity and rotational temperature images (typical altitude of ~87 km)
during four austral winters (2012–2015). These events are gravity waves (GWs) characterized by a sharp
leading wave front followed by a quasi-monochromatic wave train that grows with time. A particular subset
of frontal gravity wave events has been identified in the past (Dewan & Picard, 1998) as “bores.” These are
usually associated with wave ducting within stable mesospheric inversion layers, which allow them to
propagate over very large distances. They have been observed on numerous occasions from low-latitude and
midlatitude sites, but to date, very few have been reported at high latitudes. This study provides new analyses
of the characteristics of frontal events at high latitudes and shows that most of them are likely ducted.
The occurrence of these frontal GW events over this isolated region strongly supports the existence of
horizontally extensive mesospheric thermal inversion layers over Antarctica, leading to regions of enhanced
stability necessary for GW trapping and ducting.

1. Introduction

The mesosphere and lower thermosphere (MLT), located between ~80 and 120 km, connects the lower
and middle atmosphere, where most of the gravity wave (GW) sources reside, with the ionosphere–
thermosphere system (IT). It defines the IT lower boundary input, which affects the neutral and plasma
responses at higher altitudes and thus can directly influence space weather. It is therefore important to
understand the MLT structure and dynamics that are deeply affected by the propagation of short period
(<1 h) GWs, which alter global circulation and thermal balance when they deposit their momentum and
energy (e.g., Fritts & Alexander, 2003, and references cited therein). Short-period GW account for up to
70% of the total momentum transported (Fritts & Vincent, 1987), and their effects include closure of the
mesospheric jets, the general circulation from the summer to the winter mesosphere, and the thermal struc-
ture of the polar upper atmosphere (Fritts & Alexander, 2003; Holton, 1982). Likewise, the MLT structure also
affects the propagation and dissipation of GWs, which are highly dependent on the wind and temperature
backgrounds.The nature of a small-scale GW vertical propagation can be characterized by its effective local
vertical wavenumberm. In the case of the WKB approximation (where buoyancy frequency varies slowly and
gradually), this is frequently obtained through the “refractive index” m2 of the Taylor–Goldstein equation,
here shown in the form derived by Nappo (2002), when the vertical shear (first derivative) and curvature
(second derivative) of the horizontal wind are neglected (for a smoothly and gradually varying background
wind speed):

m2 ¼ N2

c � uð Þ2 �
1

4H2 � k2 (1)

where N is the Brunt–Väisälä frequency, c is the wave observed phase speed, u is the background wind in the
direction of propagation of the wave, H is the scale height, and k is the wave horizontal wavenumber. The
vertical wavenumber strongly depends on two atmospheric parameters: u, the background wind, and T,
the background temperature, through N and the scale height H defined by

H ¼ RT
g

(2)
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where R = 287 J kg�1 K�1 is the gas constant for the atmosphere below the turbopause and g = 9.54 m s�2 is
the acceleration of gravity. The Brunt–Väisälä frequency N can be expressed as.

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
T

dT
dz

þ Γ
� �s

(3)

where Γ = 9.5 K km�1 is the adiabatic lapse rate.

In layers where m2 > 0, the wave is able to freely propagate, transporting momentum to a higher/lower
altitude (in case of an upward/downward-propagating wave). In layers where m2 is negative, the wave will
be evanescent, and its amplitude will decrease exponentially over altitude. The boundary wherem2 = 0 thus
indicates the onset of reflection back into the region from where the wave propagated; likewise, possible
transmission may occur into another vertically adjacent region wherem2 again becomes >0. When a propa-
gating wave is observed in a region of positivem2 between two deep layers wherem2 is negative or equal to
0, it will become “ducted” and propagate primarily in the horizontal direction. This may allow for long-
distance propagation (e.g., Walterscheid et al., 2000), where vertical leakage from the duct region may occur
gradually and over an extended range (Heale, Snively, & Hickey, 2014). These “trapped” or “ducted”waves are
a common occurrence at mesospheric altitudes, but their actual percentage, compared to freely propagating
or evanescent waves, has not yet been clearly assessed nor quantified. Depending on the study, ducting can
vary between ~3% and ~75% of the total number of measured short-period waves (Ejiri et al., 2003; Isler,
Taylor, & Fritts, 1997; Nielsen et al., 2012; Walterscheid et al., 1999).

There are two types of gravity wave ducts, each corresponding to a background parameter limiting the wave
propagation. “Thermal ducting” occurs when the Brunt–Väisälä frequency N (depending on the vertical
temperature, which is defined by the vertical temperature profile) varies with altitude in such a way that it
prevents wave propagation (e.g., Bageston et al., 2011; Smith et al., 2005; Walterscheid, Schubert, &
Brinkman, 2001). Vertical shear of the horizontal wind u can also create the right conditions for GW reflection
and thus affects their propagation and characteristics (e.g., Snively et al., 2007, and references therein); thus,
“Doppler ducting” occurs in layers where the wind flow shifts the GW’s intrinsic frequency to enable its pro-
pagation between layers where the wave becomes evanescent. It should be noted that while thermal ducting
is isotropic, Doppler ducting does not affect wave propagation uniformly as it depends on the wind direction
(Nault & Sutherland, 2007).

Stable mesospheric thermal structures, where a GW may become ducted, are known as mesospheric inver-
sion layers (MILs) (e.g., Meriwether & Gardner, 2000; Meriwether & Gerrard, 2004). They may appear following
GW breaking, when a wave encounters a critical layer (Hauchecorne, Chanin, & Wilson, 1987; Huang et al.,
1998) or because of tidal activity (e.g., Fechine et al., 2009; Liu & Hagan, 1998; Meriwether et al., 1998;
Walterscheid, 1981; Yuan et al., 2014). They can persist up to several days and extend over large regions
(>500 km; Smith et al., 2003, 2005). Recent case studies (Bossert et al., 2014; Yuan et al., 2014) have described
some of their effects, but MIL reports at high latitudes are rare, especially on the Antarctic continent, because
of the lack of observations.

Ducted waves exhibit distinct observable characteristics; they tend to be quasi-monochromatic and coherent
especially as they disperse into modes (e.g., Snively & Pasko, 2005, and references therein). Waves
with shorter ground-relative periods and higher phase velocities may, in particular, be subject to
reflection/ducting at MLT altitudes. They are also more likely to produce in-phase or anti-phase airglow
intensity and temperature signatures in airglow (Hines & Tarasick, 1994; Snively, Pasko, & Taylor, 2010).

A particular type of ducted wave observed in the mesosphere is the “bore,” which exhibits the primary fea-
tures discussed above in addition to important evidence of nonlinearity, viz., the presence of steepness
and evidence for bulk fluid impacts. Bores on fluid surfaces were first observed in rivers during seasons of
incoming tide and initially analyzed by Lord Rayleigh (1908). Large amounts of additional water from the tide
overwhelm the outlet of a river, creating an unstable mound of water that eventually breaks into a bore
propagating upstream. Bore events would later be observed in the troposphere in the 1970s (e.g., Clarke,
Smith, & Reid, 1981; Hartung & Sitkowski, 2010). They were first recorded at mesospheric altitude as “front-
like” wave events in the early 1990s, during the Airborne Lidar and Observations of the Hawaiian Airglow
1993 (ALOHA-93) campaign (Taylor, Turnbull, & Lowe, 1995), and it was several years later that Dewan and
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Picard (1998) recognized them as such. Since these first reports, many observations of mesospheric bores
have been published, mostly at low-latitude (e.g., Fechine et al., 2005, 2009; Narayanan, Gurubaran, &
Emperumal, 2009; Shiokawa et al., 2006; Smith et al., 2005, 2006; Walterscheid et al., 2012) or midlatitude sites
(e.g., Brown et al., 2004; She et al., 2004; Smith et al., 2003; Yue et al., 2010). Indeed, only one event has been
reported from a high-latitude location (Nielsen et al., 2006). This can be explained in part by the shorter
record of observations in the polar regions but also by weaker winds in the upper atmosphere at high lati-
tudes, which indicate conditions less favorable for MIL generation, making it more difficult to create
Doppler ducts where strongly trapped bores could propagate.

In their subsequent paper, Dewan and Picard (2001) investigated the bore generation mechanisms and their
possible origins. They also presented a list of characteristics to identify them. Some of these characteristics
should be particularly kept in mind: the phase speed of the front will be ~20–100 m/s; there will be a fixed
pattern of trailing crests, with their number gradually increasing over time as the bore dissipates and dis-
perses (in the case of undular bores); there will be a stable layer to provide the duct, formed through some
combination of wind shear and/or thermal inversions; and the change in temperature ΔT across the front
should be ~(h1 � h0)Γ, with h0 and h1 as the undisturbed and disturbed duct depths, respectively, and Γ
as the adiabatic lapse rate. If clearly identified, the presence of a bore should confirm that a strong, stable
mesospheric duct existed at the time of its observation. Indeed, recent theoretical and modeling efforts have
further recognized that mesospheric bores exhibit features consistent with the nonlinear theory for “internal”
bores and solitary internal wave trains, which require a stable ducting layer in which waves are generated and
subsequently propagate (Laughman, Fritts, & Werne, 2009, 2011; Seyler, 2005).

Another mesospheric phenomenon that appears very similar to bore events in airglow image data (e.g.,
Smith, 2014) was first described by Swenson and Espy (1995), who proposed the name of “wall” event. It also
appears as a sharp bright or dark front followed by trailing crests, but with a phase shift with altitude when
observed in several airglow emissions simultaneously. These waves are not clearly ducted but instead propa-
gate freely to higher altitude and thus transport momentum and energy vertically. Differences exist between
these two types of waves (i.e., the phase shift over altitude for “wall” events and their absence of ducting), but
they will both exhibit very similar characteristics in airglow image data.

This paper will present the unexpected observations of mesospheric frontal events from the South Pole sta-
tion during four Austral winters (2012–2015) and investigate their characteristics to assess the nature of their
propagation. Section 2 will give an overview of the instrumentation and observations. Section 3 will explain
the methods used to analyze the image data and to characterize the frontal events. Section 4 will describe
their main features and compare them with previous studies of similar phenomena. Section 5 will discuss
the possibility that a large fraction of these events may be ducted, revealing important information on the
high-latitude mesosphere structure. Finally, conclusions will be given in section 6.

2. Instrumentation–Observations

Airglow imaging of the hydroxyl (OH, ~87 km), sodium (Na, ~90 km), molecular oxygen (O2, ~92 km), and
atomic oxygen green line (O(1S), ~96 km) emissions has been commonly used for more than 40 years to study
the dynamics of the MLT (e.g., Peterson & Kieffaber, 1973; Moreels & Herse, 1977; Swenson & Mende, 1994;
Taylor, Bishop, & Taylor, 1995; Nakamura et al., 1999). The first instruments only measured the airglow emis-
sion brightness (intensity), but in the 1990s, a new imager was developed at Utah State University (USU) to
also map the OH rotational temperature—corresponding to a brightness-weighted temperature—of a large
region of the sky. This mesospheric temperature mapper used a back-illuminated CCD detector, a telecentric
lens system, and three narrow-band filters to sequentially measure the P1(2) and P1(4) lines of the OH(6,2)
band, and the sky background intensity at 857 nm. Combining these three emissions, it is possible to calcu-
late the OH(6,2) rotational temperature for each pixel of an image and “map” the mesospheric temperature at
~87 km (Pendleton, Taylor, & Gardner, 2000; Taylor, Gardner, & Pendleton, 2001). This instrument has per-
formed extremely well during the past 20 years (e.g., Taylor et al., 1999; Taori, Taylor, & Franke, 2005; Taori
& Taylor, 2006; Zhao, Taylor, & Chu, 2005; Zhao et al., 2007; Simkhada et al., 2009); nevertheless, it is limited
to low-latitude and midlatitude observations due to the usual presence of aurora over high-latitude sites.
Auroral emissions are brighter than the OH emission in the (6,2) band part of the spectrum and can contam-
inate the data. Thus, in 2010, a new instrument was developed at USU for high-latitude observations. This
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Advanced Mesospheric Temperature Mapper (AMTM) uses a 320 × 256 pixel IR sensor to measure lines of the
OH(3,1) band, instead of (6,2), around 1,500 nm. This region of the spectrum is uncontaminated by other
emissions under typical nightglow conditions, and auroral emissions are much weaker in this part of the
spectrum. Furthermore, the (3,1) band is ~70 times brighter than the (6,2) band and also is less affected by
water vapor absorption. Observations in the IR, the angle of view (120°), and the position of the moon,
always at low elevation angles at high-latitude sites, enable continuous measurements, even during full-
moon conditions. New temperature and band intensity maps are created every ~30 s, revealing the upper
atmosphere structure over a ~180 × 144 km region, centered at the zenith. More details about this
instrument and its measurements capabilities are given in Pautet et al. (2014).

The first AMTM was deployed in 2010 at the Amundsen–Scott South Pole station to take advantage of the
long polar night. It operates 24 h/day during the Austral winter, from mid-April until the end of August,
providing an unparalleled data set. During the first two winters of observation (2010 and 2011), the imager
operated nominally, but the data were partially obscured by frosting inside the observing dome, limiting
our initial studies mainly to long-term temperature evolution, large-scale gravity waves, and tidal features.
In 2012, the full potential of the AMTM was reached by continuously purging the dome (sealed to the top
lens) with liquid N2 vapor. Small-scale gravity waves became visible at high spatial resolution, enabling their
investigation. In addition, an all-sky airglow imager operated in parallel to the AMTM until Spring 2013. It
recorded the OH brightness in the near IR (~900 nm) and was used to provide a larger context to the
AMTM observations. This instrument measured weaker lines than the AMTM, but over a larger part of the
OH spectrum, thus with a similar sensitivity to GW detection.

Several studies have already revealed the surprisingly large number of mesospheric small-scale GWs propa-
gating over the South Pole, deep inside the polar vortex and without any of the expected GW sources in close
proximity (convection, orography, jet stream). Suzuki et al. (2011) described GW characteristics at South Pole
using data taken by an all-sky imager between 2003 and 2005 filtered to observe the Na airglow emission.
Employing the same data set, Mehta et al. (2016) investigated the possible origin of several events using a
ray-tracing technique. The AMTM data similarly show a very high number of small-scale GWs but also
provides more information about these waves, including their associated temperature perturbations.
Unexpectedly, a large number of these waves exhibited front-like characteristics, usually associated with
bore/ducted events: a sharp leading front, followed by a fixed pattern of trailing crests.

During four winter seasons (2012–2015, total 18 months of observations), 86 frontal events were identified
(~1 per week), and 68 of those exhibited formation of new trailing crests over time. The other 18 still showed
a distinct leading front with several trailing crests, but no more were formed during the time the event was
recorded. These 86 events correspond to approximately 10% of all the short-scale GWs observed during the
same period. Figure 1 provides a typical example of a South Pole (SP) frontal event shown in both intensity

Figure 1. Times series of frontal events observed on 4 May 2013. (top) OH(3,1) band intensity. (bottom) OH(3,1) rotational
temperature.
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(top) and temperature (bottom), which took place on 4 May 2013. The
image progression from left to right shows an increase in the number
of trailing crests over time. The amount of data obtained each winter
season (~3,400 h) makes the search for such events time-consuming,
but they can be readily identified within automatically created
Keogram images that summarize 24 h periods of observation. As an
example, Figure 2 shows the intensity (top) and temperature (bottom)
Keograms corresponding to the period when the event in Figure 1
was observed. The sharp leading front and the long series of trailing
crests are easily identifiable in both representations. Keograms also
give an indication on the main direction of propagation and the
number of trailing crests.

The fronts did not occur regularly along the winter as revealed in
Figure 3. More events were observed during the months of July and
August (7 and 5.5 per month on average, respectively) than before sol-
stice (3.75/month in May and 2/month in June), even if the viewing
conditions are usually similar throughout the winter. However, the
month of April had a large number of fronts (3.25 in average but for
2 weeks). This result seems consistent for each year, except for
August 2015 when only two fronts were observed.

Figure 2. Keogram representations for the frontal event displayed in Figure 1. (top) OH(3,1) band intensity. (bottom)
OH(3,1) rotational temperature. Note the large number of trailing waves.

Figure 3. Yearly and monthly fronts distributions (note: the April values corre-
spond to half a month). The horizontal lines correspond to the monthly
averages.
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3. Methods and Techniques

After the frontal events have been identified, their characteristics were measured using well-established
mathematical tools, such as the fast Fourier transform. Such processing was first described by Coble,
Papen, and Gardner (1998) and Garcia, Taylor, and Kelley, (1997) and has since been extensively used in
numerous airglow GW studies. The parameters employed to characterize each GW are the horizontal wave-
length λh, the observed horizontal phase speed c, the observed period τ, the direction of propagation θ, the
mean temperature T0 and intensity I0, and the temperature and intensity perturbations dT and dI. Two more
parameters can also be calculated to characterize frontal events: the number of trailing crests and their
generation growth rate. The latter is estimated using the following equation (Dewan & Picard, 1998):

dW
dt

¼ ci h1 � h0ð Þ3
2a2λhh1

(4)

Here ci is the intrinsic horizontal phase speed of the front, λh is its horizontal wavelength, h0 and h1 are the
undisturbed and disturbed duct depths, respectively, and a is the wave amplitude in meters. Note that h0,
h1, and a can be defined as functions of the other parameters by (Dewan & Picard, 1998; Stockwell
et al., 2011)

h1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bc2i
g0 þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
3
þ c4i
g02

s
3

vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bc2i
g0 � B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
3
þ c4i
g02

s
3

vuut (5)

B ¼ λ2h
2 2π

3

� �2 (6)

h0 ¼ g
0
h21

2c2i � g0h1
(7)

a ¼ 2ffiffiffi
3

p c2i
g0 � h1

� �
(8)

Now g0, the buoyant acceleration of gravity, is equal to 1.4 m s�2 at 85 km (Dewan & Picard, 1998). Finally, the
AMTM allows calculating the Krassovsky ratio associated with each event. This parameter was introduced by
Krassovsky (1972), to relate the temperature perturbation induced by GWs to the airglow brightness. It is
defined by

η ¼
dI
I0
dT
T0

(9)

dI and dT are the airglow intensity and brightness-weighted temperature perturbations, respectively, and I0
and T0 are the average integrated airglow intensity and brightness-weighted temperature, respectively.

The Krassovsky ratio, η, is a complex quantity and thus can be expressed using its modulus |η| and its
phase φ; that is, when φ is positive (negative), the intensity leads (lags) the temperature. Following the
introduction of the Krassovsky ratio, several theoretical studies investigated the effects of GW propagation
on the airglow layers and used it to relate the GW parameters to the airglow response (e.g., Hines &
Tarasick, 1987; Schubert, Walterscheid, & Hickey, 1991; Swenson & Gardner, 1998). Subsequently, numer-
ous observations have been compared to these theories using optical measurements, but mostly for
long-period (>1 h) GWs or for tides (see Ghodpage et al., 2016, and references therein). Only Reisin and
Scheer (2001) have extended the comparison to relatively short-period GWs (~17 min to ~170 min) using
measurements of the OH and O2 emissions made at the zenith by a tilting filter spectrometer from two
midlatitude sites: El Leoncito Observatory, Argentina (31.8°S), and El Arenosillo, Spain (37.1°N). The
Krassovsky ratio is of relevance for diagnosing ducted waves, since ideal ducting (resonant standing GW
structure) is predicted to result in a near-zero or 180° response, depending on chemistry and the layered
species profiles (e.g., Hines & Tarasick, 1994; Snively, Pasko, & Taylor, 2010). The SP AMTM measures both
the OH(3,1) band intensity and OH(3,1) rotational temperature (height-weighted over the thickness of the
OH layer) perturbations associated with a wave (see Figure 1), and consequently, it is possible with this
instrument to assess Krassovsky ratios.
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4. Results

Figure 4 illustrates the distributions corresponding to (a) the horizontal
wavelengths, (b) the observed horizontal phase speeds, and (c) the
observed periods. These distributions are similar to the ones obtained
during previous short-period GW studies, in particular, Suzuki et al.
(2011), already for the South Pole location. However, the average values
were somewhat different: Suzuki et al. measured larger average λh
(29.2 km for short-period waves compared with 22.0 km for this study)
but slightly lower c (49.7 m/s compared with 51.2 m/s), resulting in lar-
ger τ (10.3 min compared with 7.8 min). Furthermore, images obtained
by the small all-sky OH imager operating in parallel with the AMTM
have been analyzed. The winter 2010 short-period GW data show
almost identical average values as reported by Suzuki et al. (λh = 27.1 km,
c = 48.7 m/s, τ = 10.1 min), confirming that the frontal events have simi-
lar characteristics as the general short-period GW events, but with
shorter average horizontal wavelengths and thus shorter observed per-
iods. These results are also in agreement with other GW studies at lower
latitudes (e.g., Medeiros et al., 2003; Nielsen et al., 2009). Additionally,
Fechine et al. (2005) investigated frontal events (64, out of a total of
660 short-period GWs over a 2 year period) over São João do Cariri,
Brazil (7.5°S), and found similar ranges for the horizontal wavelengths
(10–40 km) and the observed phase speeds (10–70 m/s) as the
present study.

To completely define the horizontal parameters of GWs, it is normally
necessary to know the background wind, u, to calculate the GW intrinsic
phase speed, which is equal to c � u and found in equations such as
equation (1). Unfortunately, nomesospheric winddata are available after
2011 at the SP; however, earlier measurements can give an estimate of
the typical wind values during the winter months. A Fabry–Pérot spec-
trometer measured the wind at the altitude of the OH layer between
1990 and 2010 (e.g., Hernandez, Smith, & Conner, 1992), and during
almost the same period, ameteor radar recorded themesospheric winds
near 95 km altitude (e.g., Portnyagin, Forbes, & Makarov, 1997). Both
instruments indicated very weak winds, with normal maximum daily
values of <20 m/s and unusually short peaks at ~40 m/s. Modeling stu-
dies also indicate that mesospheric winds at SP should be weak (Roble,
1992). Therefore, projecting the horizontal wind vectors in the direction
of propagation of the GWs should give notably smaller values than typi-
cal at midlatitude sites; subsequently, the intrinsic phase speed can be
reasonably approximated as being almost equal to the observed phase
speed. Indeed, thermal variations may have dominant influence on
small-scale propagation in these cases (Snively et al., 2013).

To estimate their possible sources, it is also important to measure the
direction of propagation θ of the frontal events. As shown in Figure 5,
the fronts exhibit a similar distribution as the complete set of short-

period GWs observed from SP. Figure 5a gives the directions of propagation for the frontal events observed
during the 2012–2015 winters, while Figure 5b displays the same distribution but for 183 short-period GWs
observed during the winter season 2010 by the collocated all-sky OH imager. Both plots show a predomi-
nance for wave propagation toward azimuths ~150–330°, corroborating the fact that the frontal events inves-
tigated in this study tend to travel in the same direction as typical short-period GWs.

Two other important parameters are shown in Figure 6: (a) the number of trailing crests for each event and (b)
the calculated trailing crest growth rates in number of crests per hour. The SP fronts had between 2 and 24

Figure 4. Histograms for the horizontal parameters for 86 frontal events
observed from South Pole during four winter seasons (2012–2015).
(a) Horizontal wavelength, (b) observed horizontal phase speed, and
(c) observed period.
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trailing crests, noticeably more than previously reported. For example, the bore observed at Halley Station,
Antarctica, by Nielsen et al. (2006) grew a total of 12 crests, while the extensive bore observed over Texas
and described by Smith et al. (2003) had a total of 14 crests. The in-depth study of mesospheric fronts done
by Fechine et al. (2005) revealed a range of 2–12 crests, with two to six crests per event being most common.
The average number of trailing crests per event over SP is 8.5, with 15 cases (~17%) having more than 12
crests, and a couple observations as much as twice the highest reports in the past. This result implies that
those events had already a long lifetime when measured, possibly being ducted over a large distance. It also
reveals strong ducting environment, with relatively deep regions of nearly zero stability surrounding the duct
(Grimshaw et al., 2015; Laughman, Fritts, & Werne, 2011). It is important to notice that the sensitivity of the
AMTM, compared to earlier airglow imagers, could also explain this result, but the all-sky OH camera operat-
ing at the SP until 2013, which was similar to the instruments used in previous studies, measured a compar-
able number of crests on most occasions.

Concerning the trailing crests growth rate, most of the times, observations did not provide precise num-
bers because the field of view of the AMTM is relatively small. Indeed, on several occasions, it was not
possible to see the end of the wave trail and to be sure that no new crests were created. Other times, it
was also difficult to determine whether an oscillation appearing close to the edge of the image had just
been created or was simply entering the field of view. Nevertheless, it is possible to calculate the the-
oretical growth rate for the SP events (Dewan & Picard, 1998; Stockwell et al., 2011). As shown in
Figure 6b, the average number is 0.95 crests/h, with 67% of the values between 0.5 and 1.5 crests/h.
This result is similar to, but somewhat smaller than, previous studies; the theoretical estimate by
Dewan and Picard (1998) for the Taylor, Turnbull, and Lowe, (1995) event was 2.8 crests/h, Smith et al.
(2003) measured a value of 1.0 ± 0.8 crests/h, and Smith et al. (2005), for another event observed over
Puerto Rico, obtained values of 3.0 crests/h from measurements and 1.9 crests/h from theory. More
recently, Li et al. (2013) computed a maximum rate of 2.43 crests/h for a bore recorded over northern
China, and Narayanan, Gurubaran, and Emperumal (2009) calculated a value of 3.6 crests/h for another

Figure 5. (a) Direction of propagation of 86 frontal events observed during the 2012–2015 winter seasons with the AMTM.
(b) Direction of propagation of 183 short-period gravity waves observed during the 2010 winter with the OH all-sky imager.

Figure 6. (a) Number of trailing crests associated with the SP fronts. (b) Theoretical generation rate for the same events.
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bore event over southern India. The range of values calculated for
the SP events is in good agreement with these previous results.

The next parameter of interest is the temperature perturbations dT cre-
ated by the wave events. It can only be measured by instruments like
the AMTM, which provide not only the airglow brightness but also
the OH rotational temperature. The values are obtained using an FFT
analysis method and correspond to the average perturbation over
the front and its trailing crests. Figure 7 shows the distribution for the
86 events. The average value is 1.2% with 85% of the values between
0.5% and 2.0%. Intensity dI perturbations have also been measured
using the same method.

5. Discussion

The fronts observed in the MLT over the SP during the 2012–2015 win-
ters exhibit several characteristics similar to those of bore events as

defined by Dewan and Picard (2001). This type of GWs has been described in numerous studies but almost
exclusively from low-latitude or midlatitude sites. They are a good indicator of wave ducting enabled by
the presence of a stable layer, due to a temperature inversion (MIL), or a sheared wind profile due to large-
scale wave motions. However, it is normally difficult to confirm that such stable ducts exist without additional
measurements of temperature profiles, as obtained by lidars, to identify inversion layers (and define N), or
wind profiles from meteor radars, to estimate Doppler shifts and wind shear effects. None of these instru-
ments were operating at the SP when the AMTM was taking the data, so there is no direct way to positively
confirm the presence of MILs or Doppler ducts. Nevertheless, the confirmation that some of the extensive
frontal events were consistent with bores or ducted waves strongly supports the possibility that they propa-
gated within a stable ducting environment, such as likely provided by an MIL.

Figure 8 shows an example of temperature and intensity horizontal profiles recorded perpendicularly to the
wave front of the Figure 1 event. The data have been demeaned, detrended, and smoothed. The phase shift φ
is then measured by calculating the cross-correlation coefficient between the two curves. In this case, both
profiles were almost perfectly in phase, with φ = 0.1° ± 10°. The 86 SP events have been processed in the same
way and their Krassovsky ratio calculated, as shown in Figure 9. The modulus (Figure 9a) has an average value
of 5.5 ± 0.2 (minimum 1.7, maximum 11.1) for observed periods between ~4 and ~20 min. This value is larger
than previous measurements: Reisin and Scheer (2001) obtained |ɳ| = 1.68 ± 0.07 for the OH emission as well,
and periods between 17 and 170 min, while other measurements for GWs with periods over 2 h and tides
resulted in values between ~2 and ~10, but with usually smaller numbers for shorter periods. Such a large

range of values appears in all studies. Indeed, Hines and Tarasick
(1987) noted that a strong dependence exists between the GW para-
meters and both the intensity and temperature perturbations, resulting
in a complicated relation for |ɳ|. Figure 10 shows the distribution of |ɳ|
as a function of the fronts’ observed periods. No straightforward corre-
lation appears, as in previous investigations. Similar plots (not shown)
do not exhibit any direct relationship as well between the Krassovsky
ratio and other wave parameters (horizontal wavelength and observed
horizontal phase speed). Snively, Pasko, and Taylor (2010) also found
that the Krassovsky ratio was determined primarily by the vertical struc-
ture of the gravity waves as they perturbed the airglow species and was
strongly dependent on the altitude of the duct relative to the layer and
thus also the shape of the layer.

However, the Krassovsky ratio phase φ provides more relevant informa-
tion on the waves, in particular, about the possibility that they experi-
enced strong ducting. For the SP events (Figure 9b), the average
value was �12.2° ± 3°, with 31% of the phases >0°, implying a down-
ward phase propagation, as explained by several models (Hines &

Figure 7. Temperature perturbations for the 86 SP fronts.

Figure 8. Intensity and temperature profiles measured across the 4 May 2013
frontal event.
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Tarasick, 1987; Swenson & Gardner, 1998). Reisin and Scheer (2001) found somewhat similar values
(�17° ± 2°, 39% of positive phases) but with a much wider distribution: only 28% of their GWs had
|φ| < 30°, while 69% of the SP fronts were in that case. In other studies involving long-period GWs and
tides, |φ| was almost exclusively >25° (Ghodpage et al., 2016). In theory, a zero-phase shift corresponds to
vertically evanescent GWs, or GWs with a very large vertical wavelength (>200 km), but Hines and Tarasick
(1994) have explained that it can also result from a wave being reflected or trapped into a duct, because
of the vertical cancellation of phase shift in the integrated signatures (Snively & Pasko, 2005). In fact, the
phase does not have to be exactly 0°; several processes can slightly modify φ, especially if the wave is not
perfectly resonant within the duct, if the photochemistry involves time scales comparable to the wave
period, or if the observations are off-zenith (Hines & Tarasick, 1994; Snively, Pasko, & Taylor, 2010).
Nonetheless, small phase shifts seem generally associated with ducted or evanescent waves with large
vertical wavelengths. The large proportion of possibly ducted fronts (~70%) implies that stable layers and,
most likely, mesospheric inversion layers do indeed occur over the wintertime South Polar Region. This
study only discusses a specific type of waves, which are just a small part of the full short-period GW
spectrum but are easy to identify and analyze. Nonfrontal events can also be ducted: any monochromatic,
fast, long lasting GW might be trapped. Nevertheless, a main result of this analysis is that MILs commonly
exist at high latitudes, even with small horizontal winds, and have to be accounted for to determine the
origin of observed GWs.

Other investigations have tentatively studied the nature of these short-period waves from high-latitude loca-
tions. Suzuki et al. (2011) used meteor radar wind data in association with their Na all-sky images to estimate
m2. They found that ~10% of their GWs were evanescent. Unfortunately, they only had wind measurements
height-weighted around 92 km and no vertical temperature profiles. Similarly, Suzuki et al. (2009), using the
same type of instruments, investigated the propagation of GWs over Resolute Bay, Canada (75°N), and found

~13% of evanescent waves, but again without assessing the atmo-
spheric vertical structure. Nielsen et al. (2012) investigated further the
data set introduced by Nielsen et al. (2009) who presented the climatol-
ogy of short-period GWs over Halley (76°S) using OH all-sky images and
meteor radar wind measurements. This time, they also utilized collo-
cated SABER temperature data and discovered that while Doppler
ducting was rare at this latitude (~5% of the waves), 28% of their tem-
perature profiles featured a thermal duct (while 54% showed freely pro-
pagating conditions throughout the MLT region, and 18% suggested
evanescence). Snively et al. (2013) subsequently modeled the atmo-
spheric conditions over Halley to investigate the parameter space of
the GWs identified by Nielsen et al. (2009). They concluded that up to
70% of these waves might have experienced some form of thermal
reflection, evanescence, or ducting at some altitude(s) within the atmo-
sphere, 25% of them in the lower thermosphere region. Further simula-
tions by Heale, Snively, and Hickey (2014) also support the results of
Snively et al. (2013) and identify some role for the weak wind flow

Figure 9. (a) Krassovsky ratio modulus and (b) phase for the 86 SP frontal events.

Figure 10. Krassovsky ratio modulus as a function of the SP frontal events
observed period.
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and, additionally, find a role for the stratosphere to enable ducting over long distances, where waves may
leak upward into the mesosphere and lower thermosphere (where they may also be ducted).

The frequent occurrence of short-period GWs observed over the South Pole station and other remote high-
latitude sites is an unexpected result, since typical GW sources (convection or orography) are absent, except
around the Antarctic Peninsula (Hoffmann, Xue, & Alexander, 2013). Other GW sources such as unbalance
flow of the Polar Night Jet or secondary GW generation in the stratosphere or lower mesosphere (Chen
et al., 2013, 2016) could potentially be the origin of some of the SP GWs. Nevertheless, the structure of the
atmosphere itself may also provide some explanation for this result, suggesting the existence of wave duct-
ing within mesospheric inversion layers and allowing for GW propagation over long distances (e.g., Heale,
Snively, & Hickey, 2014; Pautet et al., 2005). The surprisingly large number of frontal events over South
Pole, with characteristics similar to ducted waves (short ground-relative periods, high horizontal phase
speeds, large numbers of quasi-monochromatic trailing crests that may increase with time, and in-phase tem-
perature and intensity perturbations), suggests that thermal ducting (since the small mesospheric winds at
the South Pole latitude generally prevent the generation of Doppler ducts) may indeed play a significant role
in GW propagation at high latitudes (France et al., 2015).

6. Conclusion

Since 2010, an Advanced Mesospheric Temperature Mapper has measured the OH(3,1) band intensity and
rotational temperature from mid-April to end of August at the South Pole station. Examination of data taken
during four consecutive austral winters (2012–15) reveals an unexpected number of front-like GWs. The 86
events exhibited characteristics similar to bores, indicative of the presence of mesospheric inversion layers,
but the current lack of supporting data on the prevailing background wind and temperature field limits
our ability to establish their propagation, ducting, and sources. Taking full advantage of the capabilities of
the AMTM, it was nevertheless possible to obtain more information about these frontal wave events and
the atmospheric background. Some important findings are as follows:

1. Frontal events are not rare at high latitudes (~1 per week during winter).
2. Their characteristics are similar to the general short-period gravity waves population, and they travel in

the same typical direction.
3. However, their horizontal wavelengths are in average shorter, and consequently, their periods are shorter

as well.
4. The Krassovsky ratio phases associated with these events indicate that possibly ~70% are ducted and

therefore might be bores.
5. In this case, the large number of their trailing waves (more than in any previous observations) suggests

that a significant proportion of events may have been ducted over very long trans-Antarctic distances
up to >1,000 km.

6. Thus, this reveals the presence of extensive thermal ducts at high latitudes.

This study provides insight on the atmospheric dynamics deep inside the winter polar vortex and gives
more evidence for GW long-range ducting, likely by thermal structure, which could explain why so
many short-period GWs are observed at high latitudes, especially over the Antarctic Continent, far from
typical sources. More AMTM observations with a collocated lidar would be most beneficial to confirm the
existence of mesospheric inversion layers. Such a facility now exists at McMurdo station (78°S) and hopefully
will further improve our knowledge on the high-latitude upper atmosphere structure and its effects on
GW propagation.
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