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Abstract This paper reconciles the state-of-the-art observations and simulations of evapotranspiration
(ET) temporal variability through a diagnostic framework composed of an observation-model-theory
triplet. Specifically, a confirmed theoretical tool, Evapotranspiration Temporal VARiance Decomposition
(EVARD), is used as a benchmark to estimate ET monthly variance (σ2ET) across the contiguous United States
(CONUS) with inputs including hydroclimatic observations, Gravity Recovery and Climate Experiment-based
terrestrial water storage, four observation-based products (ETRSUW by the University of Washington,
ETRSMOD16 from MOD16 Global Terrestrial ET Data Set, ETFLUXNET upscaled from of fluxtower observations,
and ETGLEAM from Global Land Evaporation Amsterdam Model), and four operational land surface
models (LSMs: MOSAIC, NOAH, NOAH-MP, and VIC). Five experiments are systematically designed to
evaluate and diagnose possible errors and uncertainties in ET temporal variance estimated by the four
observation-based ET products and the four LSM simulations. Based on the results of these experiments, the
following diagnostic hypotheses regarding the uncertainty of the observation-based ET products are
illustrated: ETRSUW captures the highσ2ET signals in the Midwest with negligible bias andmoderate uncertainty
over the contiguous United States; ETFLUXNET systematically underestimates σ2ET over CONUS but with the
lowest level of uncertainty; ETRSMOD16 has medium bias with the highest level of uncertainty, and the
spatial distribution of high σ2ET signal from ETRSMOD16 is different from other estimates; ETGLEAM has slight
negative bias andmedium uncertainty, andσ2ET in theWest Coast is smaller than that from ETVARD. Regarding
the LSMs, it is found that any of the four LSMs can be the best depending on a certain set of reference
observations. The study reveals that LSMs have shown a reasonably worthy, though not perfect, capability in
estimating ET and its variability in regions/aquifers with limited human interference. However, RS-based
observations and theoretical estimates suggest that all the four LSMs examined in this study are not able to
accurately predict the ET variability in regions/aquifers heavily influenced by human activities like Central
Valley and High Plains aquifers; they all underestimate ET variability along the West Coast due to seasonal
vegetation responses to Mediterranean climate and human water use. In addition, LSMs underestimate
intraannual ET variance in California and the High Plains with underestimated terrestrial storage change
components in ET variance, due to the inappropriate representation of groundwater pumping and its impact
on ET and other hydrologic processes. This paper urges advancing hydrologic knowledge by finding
congruence among models, data, and theories.

1. Introduction

Evapotranspiration (ET) is a key hydroecological process that couples water and energy budgets (Yang et al.,
2008), links carbon and nutrient cycles (Porporato et al., 2015), and represents water consumption in food
and biomass production (Housh et al., 2014). Numerous efforts have been made in hydrologic observations
andsimulations toadvance theunderstandingofET. At theobservation side, theefforts include remote sensing
signal retrieval (Mu et al., 2011; Zhang et al., 2010), flux tower network development, and data assimilation
(Munier et al., 2015; Pan &Wood, 2006; Rodell et al., 2015). Meanwhile, the land surface modeling community
hasdevelopedmanynumericalmodels that includeET simulationwithdifferent process representations, para-
meterizations, data requirements, and model structures, such as the Global Land-Atmosphere Coupling
Experiment (Koster et al., 2004) and Land Data Assimilation System (Rodell et al., 2004). The observations and
numerical simulations play complementary and interdependent roles in advancing our knowledge about the
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various hydrological processes and systems. Hydroclimatic observations provide inputs and validation refer-
ences for numerical models; meanwhile, models generate data with continuous space and time dimensions,
which are often used for interpolating point-scale observation (Jung et al., 2009), observation network design,
and conceptual validation (Panet al., 2011).Moreover, observations also serve as the source for hydrologic con-
cept development and hypothesis testing, such as the Budyko hypothesis on long-term ET (Budyko, 1974), the
complementary relationship between actual and potential ET (Brutsaert & Stricker, 1979), and the evaporative
fraction between latent heat flux and available energy (Shuttleworth et al., 1989). In turn, improved theory
guides new observation acquisition and advances model improvement (Gulden et al., 2007). This paper
assesses hydrologic data, model, and theory congruence with a focus on ET in the CONUS.

Although advances have been made in monitoring and simulating ET over several decades, there is a press-
ing need to systematically evaluate observation and model consistency and enhance their complementary
outputs for hydrologic knowledge discovery (Montanari et al., 2013; Shuttleworth, 2007; Sivapalan et al.,
2011). Hydrologists nowadays often face a paradoxical situation: large amounts of data exist yet data uncer-
tainty is inadequately assessed. Therefore, when the modeling community addresses the sensitivity of
model performance to forcing data or parameters (Badgley et al., 2015; Montanari & Di Baldassarre, 2013;
Xia, Peter-Lidard, et al., 2015), conclusions made on model evaluation (Cai et al., 2014; Swenson &
Lawrence, 2015; Xia et al., 2016; Xia, Hobbins, et al., 2015) are essentially conditioned on the quality of refer-
ence observation data. Due to potential errors with a reference observation, a small discrepancy between
model output and the reference may not necessarily mean that the model is acceptable; meanwhile, a poor
fit to a set of noisy observation data does not provide a sufficient reason to reject a model. The efforts in
reducing the discrepancy between model outputs and observations in model calibration exercises may fail
to improve the model and result in a set of overconfident parameters if the reference observations involve
systematic errors (Hejazi & Cai, 2009). Thus mistakes, such as accepting a wrong model or rejecting a good
model, can be made due to unreliable reference data. Model evaluation can be further complicated when
multiple inconsistent reference observations are available. For example, Cai et al. (2014) reported a reason-
ably good agreement in ET annual mean estimates between simulations from land surface models (LSMs) in
Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and two remote sensing ET pro-
ducts (Jung et al., 2009; Mu et al., 2011). However, Xia et al. (2016) found that the same LSMs failed in gen-
erating the ET seasonal cycle observed from gridded FLUXNET observations (Jung et al., 2009).

It has been argued that the model evaluation process should be diagnostic, that is, to obtain knowledge that
can be used to either validate or reject the hypotheses underlying themodel conceptualization and structure,
which can eventually lead to improved models and advanced theories (Gupta et al., 2008). Hydrologic
responses simulated by a model can rarely capture the full spectrum of hydrologic dynamics and/or hydro-
logic variability (Kumar, 2015) that, however, can be reflected by observations. Especially, current data acqui-
sition has gone beyond what some existing LSMs can take as inputs. New variables, such as terrestrial water
storage (TWS; Long et al., 2015), are now available at the global scale. Xia et al. (2017) evaluated the monthly
TWS anomaly and the individual water storage components from three LSMs (i.e., Community Land Model
version 4.0, NOAH-MP and Catchment Land Surface Model Fortuna 2.5, all including a groundwater compo-
nent) against Gravity Recovery and Climate Experiment (GRACE). However, the change of TWS, which is
widely caused by human interferences, remains as an outstanding issue with hydrologic modeling in general
since few models have a reasonable depiction of the human dimension and its interactions with hydrologic
processes (Vogel et al., 2015).

To deal with the situations described above, a hydrologic theory that represents falsifiable conceptualization
of the real world is needed to diagnose the biases or errors involved in either observation or model, or both.
Hydrologic theories can play a key role in bridging the gaps between models and observations, synthesizing
our understanding of hydrologic phenomena and expanding hydrologic knowledge (Clark et al., 2016;
Kirchner, 2006). For example, water balance is usually used as a closure constraint for multivariable observa-
tions (Gao, Tang, Ferguson, et al., 2010; Sheffield et al., 2009); the Budyko-type water-energy coupling rela-
tionship is applied to assessing the ET average and interannual variability in the International Satellite
Land Surface Climatology Project Initiative (Koster et al., 2006). However, compared with the progresses in
data and model development, theory development is limited in hydrology. Therefore, developing new the-
ories and making better use of existing theories to underpin current models and data are urgently needed
(Beven, 2012; Clark et al., 2016; Kirchner, 2006).
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In this study, we treat an LSM as a set of hypotheses (Beven, 2012; Clark
et al., 2011, 2015b, 2016) that are posed for the various hydrologic pro-
cesses such as runoff generation, infiltration, and ET. For each of those pro-
cesses, there can be several alternative hypothetical forms to describe the
process; for example, infiltration can be described by Richard’s equation or
Green-Ampt method; potential ET can be calculated by Penman-Monteith
equation or temperature-based methods. Since these processes are inter-
connected, the hypotheses should be tested in a systematic framework.
For example, Koster and Suarez (1999) related ET variance to precipiation
variance based on the Budyko theory and evaluated ET simulations from
LSMs at the river basin scale. Recent research efforts have been made to
develop frameworks for LSMs intercomparison, diagnosis, and bench-
marking in land surface modeling communities and set model evaluation
in a hypothesis test framework. Such efforts include the Framework for
Understanding Structural Errors (Clark et al., 2008), the Joint U.K. Land
Environment Simulator (Best et al., 2011), the Structure for Unifying
Multiple Modeling Alternatives (Clark et al., 2015a, 2015b) and the PALS
Land Surface Model Benchmarking Evaluation Project (Best et al., 2015).
These comprehensive frameworks examine the simulation of relevant
hydroclimatic and land surface processes (e.g., ET, infiltration, and stream-
flow) through intercomparison of the various model configurations and
process representations (e.g., VIC calculates ET from soil evaporation,
canopy evaporation, and vegetation transpiration (Gao, Tang, Shi, et al.,

2010), and NOAH calculates ET from snow sublimation, bare soil evaporation, canopy water evaporation,
and vegetation transpiration (Niu et al., 2011).

This paper presents a diagnostic framework based on an observation-model-theory triplet (Figure 1) to exam-
ine both the congruence and discrepancy of ET temporal variance from observations, models, and theories
and provide guidelines for observation and model improvement. We adopt the Evapotranspiration
Temporal VARiance Decomposition (ETVARD) framework provided by Zeng and Cai (2015) as a theoretical
diagnostic tool. The original Budyko theory used in many previous studies as a constraining relationship in
assessing hydrologic variable variability is usually suitable for long-term averages of the hydrologic variables,
assuming that the long-term watershed system storage remains stable. This assumption is invalid for asses-
sing variability at a relatively short time scale (annual or monthly) and for watersheds with systematic terres-
trial storage change over a long-term period. ETVARD, based on an extension of the Budyko theory, takes
into consideration of TWS change and quantitative attributes to the sources of ET variance to climatic and
hydrologic components (Zeng & Cai, 2015). Taking ETVARD as a theory, five experiments are designed to
assess the congruence among theory, data, and model, as well as the gaps between multiple hydrologic
observations and LSMs on their estimate of ET temporal variability. The five experiments focus on ET monthly
variance in the following aspects: (1) quantifying the climatic and hydrologic components of ET variance,
such as precipitation (P), potential evaporation (PET), and TWS change (ΔS) to find the controlling factors
on ET variance; (2) assessing the consistency of ET variance from four observation-based products and their
bias/uncertainty compared to ETVARD framework and the compatiblity of a set of multivariable (i.e., P, PET,
ET, and ΔS) observations under the theoretical ETVARD framework with differnet observation-based ET pro-
ducts; (3) cross evaluating of the four LSMs (MOSAIC, NOAH, and VIC from NLDAS-2 project (Mitchell et al.,
2004; Xia, Mitchell, Ek, Cosgrove, et al., 2012; Xia, Hobbins, et al., 2015) and NOAH-MP (Cai et al., 2014)) subject
to multisource reference observations to show how reference data sets affect the model evaluation; (4)
benchmarking the four LSMs with ETVARD and diagnosing the possible deficits in each of the LSMs; and
(5) evaluating the LSMs’ simulation of the TWS to GRACE-estimated storage and their effects on the hydrolo-
gic system components of σET. Based on the results of the five experiments, we will address the following
questions: What hypotheses can be made from the diagnosis of the observation-model-theory triplet?
What will be the major factor to ET variance (climatic variables versus TWS) in a particular region? What pos-
sible bias and uncertainty are involved in the various observation based ET products? Which aspects of LSMs
and in which regions should be improved for more accurate simulation of intra-annual variance of ET?

Figure 1. The congruence among hydrologic theories, multisource multi-
variable hydroclimatic observation data, and multiple numerical models
represent our organized understanding of hydrologic processes.
ETVARD = Evapotranspiration Temporal VARiance Decomposition;
ET = evapotranspiration; NLDAS-2 = Phase 2 of the North American Land
Data Assimilation System; PET = potential evaporation; GRACE = Gravity
Recovery and Climate Experiment.
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2. Methodology, Data Sources, and Models
2.1. ET Temporal Variance Decomposition and Data Sources

Introducing TWS change as a variable in watershed water balance over a period, Zeng and Cai (2015)
extended the Budyko relationship and, based on which, established an equation to decompose ET temporal
variance into multiple contributing components as shown below:

σ2ET ¼ wPσ2P þ wPETσ2PET þ wΔSσ2ΔS þ wP;PET covP;PET þ wP;ΔS covP;ΔS þ wPET;ΔS covPET;ΔS (1)

where σ represents the standard deviation, cov represents the covariance, and w represents the weighting
factors, which quantify the contribution from different variance/covariance sources to ET variance. The
weighting factors, as shown in equation S1 in the supporting information, are calculated from the aridity
index (ϕ ¼ PET=P), Budyko equation F ϕ

� �
(Yang et al., 2008), and its first-order derivative F

0
ϕ
� �

, which is also
detailed in Zeng and Cai (2016). By equation (1), ET variance is determined by long-term climatic condition
(through the weighting factors), climatic fluctuations (σ2P and σ2PET) and their phasing (covP,PET), hydrologic
storage variability (σ2ΔS ), and its response to climate (covP,ΔS and covPET,ΔS). ETVARD provides an analytic
way to decompose ET variance into climatic and hydrologic components and offers an independent estimate
of ET variance based solely on hydroclimatic and catchment storage data (see Figure 2).

We can further aggregate the ET variance components based on their sources into two categories: One repre-
sents the contribution to ET variance from the variability of climatic forcing (σ2ETF) and the other from hydro-

logic storage (σ2ETS), that is,

σ2ETF ¼ wPσ2P þ wPETσ2PET þ wP;PET covP;PET (2)

σ2ETS ¼ wΔSσ2ΔS þ wP;ΔS covP;ΔS þ wPET;ΔS covPET;ΔS (3)

Equation (1) can then be written as follows:

σ2ET ¼ σ2ETF þ σ2ETS (4)

The time scale of ET variance depends on the time scale of the various variance/covariance terms. This study
addresses ET variance at the monthly scale, while the analysis on ET variance at both annual and monthly
scale can be found in Zeng and Cai (2016).

By assessing σ2ET; σ
2
ETF, and σ2ETS by cells in the CONUS, the spatial patterns of the ET temporal variance are cal-

culated. The assessments based on ETVARD will be used as a reference, and those from multiple ET products
are compared to the reference, by which the possible bias and uncertainty involved in each of the ET pro-
ducts and their spatial patterns will be discussed.

This study uses monthly meteorological forcing data (P and PET) obtained from the NLDAS-2 (Mitchell et al.,
2004; Xia, Mitchell, Ek, Sheffield, et al., 2012). P in NLDAS-2 is a product of gauge-only National Oceanic and
Atmospheric Administration Climate Prediction Center, which conducted orographic adjustment of daily pre-
cipitation based on the Parameter-elevation Relationships on Independent Slopes Model (PRISM) climatol-
ogy. The nonprecipitation land-surface forcing fields for NLDAS-2 are derived from the analysis fields of
the National Centers for Environmental Prediction North American Regional Reanalysis and further vertically
adjusted to account for the vertical difference between the North American Regional Reanalysis and NLDAS
fields of terrain height. PET is calculated from modified Penman scheme (Mahrt & Ek, 1984) from the land-
surface forcing fields for NLDAS-2. More details about the NLDAS-2 forcing data can be found at http://
ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php. The same forcing data fields are also used to drive the
NLDAS-2 LSMs. P and PET from NLDAS-2 forcing data sets have a spatial resolution of 0.125° by 0.125° and
cover the period from 1979 to 2015.

The terrestrial water storage (TWS) measured by the twin GRACE satellites is based on the distance change
between the two satellites due to gravity field variation (Tapley et al., 2004). GRACE satellites primarily capture
the mass change caused by TWS since other temporal changes of mass are negligible. GRACE-based TWS
includes the sum of storage in various media such as aquifer, soil profile, snow/glacier, and surface
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reservoir/lake. The GRACE satellites provide a unique measurement of TWS with a large spatial coverage
(Lettenmaier & Famiglietti, 2006) and have been widely applied for hydrologic studies such as groundwater
depletion assessment (Famiglietti et al., 2011), water budget closure estimation (Pan et al., 2011), and LSM
improvement (Gulden et al., 2007) and evaluation (Cai et al., 2014; Xia et al., 2017). The GRACE TWS data
set used in this study, with a spatial resolution at 1° by 1°, provides a monthly time series from January
2003 to June 2013. The monthly terrestrial storage change (ΔS) is calculated as the difference from the
monthly GRACE TWS time series (Landerer & Swenson, 2012) based on the Center for Space Research
Release 5.0 at the University of Texas at Austin (http://www.csr.utexas.edu/).

2.2. Multisource Multivariable Hydroclimatic Observations and ET Products Based on Observations

Four ET products, three based on remote sensing observation and one based on FLUXNET, are assessed in
this study. The remote sensing product by Tang et al. (2009) calculates ET as the combination of bare soil eva-
poration and vegetation transpiration based on the constant daily evaporative fraction assumption
(Shuttleworth et al., 1989). Bare soil evaporation is estimated from surface radiation budget and soil tempera-
ture, and vegetation transpiration is calculated using the complementary relationship to bridge the actual ET
with potential evaporation calculated by the Priestley-Taylor scheme. The data set covers the extent of the
CONUS from 2001 to 2008 at a spatial resolution of 0.05° by 0.05° and is denoted as ETRS � UW in this study.
The data and more details about the methodology can be found at Evaporation Estimation Using Remote
Sensing at the University of Washington. This ET product has been used to assess watershed water budget
(Gao, Tang, Ferguson, et al., 2010) and ET interannual variability (Cheng et al., 2011).

Another ET product by Mu et al. (2011) calculates ET from vegetation transpiration and soil evaporation
based on the Penman-Monteith scheme presented in Mu et al. (2007). Vegetation evaporation is further
separated into wet canopy surface evaporation and dry canopy vegetation transpiration, and the rates are
regulated by aerodynamics resistance and surface resistance. Soil evaporation is divided into saturated
soil potential evaporation and moist soil evaporation constrained by soil moisture stress. The monthly ver-
sion global ET from 2000 to 2009 at 0.5° by 0.5° spatial resolution is obtained from MOD16 Global
Terrestrial Evapotranspiration Data Set (http://www.ntsg.umt.edu/project/modis/mod16.php) and denoted
as ETRS � MOD16 in this study. The ET product has been applied for many studies such as drought assess-
ment (Mu et al., 2013) and LSM evaluation (Cai et al., 2014).

The third ET product is from Global Land Evaporation Amsterdam Model (GLEAM) by Martens et al. (2017).
The GLEAM uses the Priestley-Taylor equation to calculate the potential evaporation and builds a multilayer
water balance model to determine the water stress. Semiempirical relationships between soil moisture and
stress for evaporation and the depths of root zone depend on the land cover categories including bare soil,
low vegetation, and tall vegetation. The daily actual ET from 1987 to 2017 at 0.25° by 0.25° spatial resolution is
obtained from GLEAM v3.2a (https://www.gleam.eu/#downloads) and denoted as ETGLEAM in this study. The
forcing data of GLEAM v3.2a include reanalysis net radiation and air temperature, a combination of gauge-
based reanalysis and satellite-based precipitation, reanalysis and satellite-based soil moisture, and satellite-
based vegetation optical depth (Martens et al., 2017).

The ET product developed by Jung et al. (2009) is different from the remote sensing products in terms of both
data sources and retrieval algorithms. It is essentially the spatial upscaling of point measurements from eddy
covariance flux tower. This approach uses model tree ensemble, a machine learning technique, to upscale
current global network of eddy covariance towers (FLUXNET) and evaluates results from the virtual reality pro-
duced by Lund-Potsdam-Jenamanaged Land biosphere model simulation. This ET estimate has been applied
for ET trend analysis (Jung et al., 2010) and LSM improvement (Bonan et al., 2011) and evaluation (Cai et al.,
2014). The global monthly ET estimate from 1982 to 2008 at 0.5° by 0.5° spatial resolution is denoted as
ETFLUXNET in this study.

Since NLDAS-2 meteorological forcing, GRACE TWS, and the ET products have different spatial resolutions
and temporal coverage, these data sets (as summarized Table 1) are processed to calculate ET variance using
the following procedures: First, the time series from all data sets are spatially aggregated and matched at the
1° by 1° GRACE cells to for the CONUS domain of latitude between 25°N and 53°N and longitude between
67°W and 125°W. Cells with missing or incomplete data from the observation products are excluded when
aggregated to the 1° by 1° grid. At the 1° by 1° spatial resolution (the coarsest spatial resolution among

10.1029/2018WR022723Water Resources Research

ZENG AND CAI 5

http://www.csr.utexas.edu/
http://www.ntsg.umt.edu/project/modis/mod16.php
https://www.gleam.eu/#downloads


these data sets), we assume that the TWS change caused by lateral
flow is negligible. Note that for the cases of long-distance water diver-
sions, for example, California diverts water from the Colorado River
using an aqueduct that spans over 300 km; the storage changes at
some locations (cells) can be caused by those occurring at other loca-
tions. Second, the weighting factors in equation (1) are calculated
from long-term average climate condition based on NLDAS-2 P and
PET from 1979 to 2015. Third, climatic variabilities (i.e., σP, σPET, and
covP,PET in equation (2)) are calculated from monthly time series dur-
ing 1979–2015 and the variabilities associated with storage change
(i.e., σΔS, covP,ΔS,and covPET,ΔS in equation (3)) are calculated from
monthly time series during the period of January 2003 to June 2013
during which GRACE is available. ET variances from direct observa-
tions are calculated from their temporal coverages. Note that it is ideal
to compare ET variance calculated from different data sets with the

same temporal coverage. However, the period overlapped by all data sets in this study is only 6-year long
(January 2003 to December 2008), which is too short to get an accurate and stable estimate of ET monthly
variance. In order to use the longest records from each data set and make ET variance calculated from each
data set comparable, we assume that the variance and covariance terms are statistically stationary during the
whole period (January 1975 to January 2015). Based on our analysis, the average differences of ET variance
calculated between complete and overlapping periods are less than 5 mm2.

2.3. Multiple Operational LSMs

Four operational LSMs (MOSAIC, NOAH, and VIC NOAH-MP) use the same climate forcings and vegetation
cover parameters at the same temporal and spatial scales, allowing the intercomparison to focus on model
structure. This study uses monthly scale model inputs (i.e., P and PET) and outputs (i.e., ET and ΔS), which
are available at the National Oceanic and Atmospheric Administration/ National Centers for Environmental
Prediction/Environmental Modeling Center NLDAS ftp servers (http://www.emc.ncep.noaa.gov/mmb/nldas/
). A LSM calculates terrestrial ET from soil, canopy, snow, and vegetation, depending on the processes formu-
lated in the LSMs. TWS change (ΔS) includes the changes of soil moisture, snow, and aquifer storage. To com-
pare a LSM to ETVARD, the LSM results obtained at the resolution of 0.125° by 0.125° (the common scale used
by all the LSMs) must be aggregated to 1° by 1°, as the resolution of GRACE data. Each of the LSMs simulates
PET with different methods but using the same meteorological forcings, while ETVARD uses the PET that is
also calculated using NLDAS-2 forcing data (Mahrt & Ek, 1984).

2.4. Experiment Design

1. Experiment 1: We set σ2ETVARD�GRACE=σ
2
ETF+σ

2
ETS�GRACE using P and PET observations from NLDAS-2 and

GRACE-based ΔS (Figure 2). Through this experiment, we will investigate the climatic and hydrologic con-
tributions inσ2ET and their spatial patterns for the CONUS. Since GRACE satellites capture TWS change from
soil, snow, groundwater, river channels, and lakes, and they respond to climate fluctuation differently, this
experiment can identify the dominant control on ET variance at different hydroclimatic settings. We
further interpret the σ2ET components by ETVARD and assess the relative role of climatic variables and
hydrologic system variables (including human interferences).

2. Experiment 2: We use σ2ETVARD�GRACE from Experiment 1 as a reference to compare σ2ET�Obs from the four
observation-based ET products (σ2RSUW; σ

2
RSMOD16 , σ

2
FLUXNET , and σ2GLEAM). We compare the four estimates

to σ2ETVARD�GRACE at particular locations of interest and their spatial distribution across the CONUS.
3. Experiment 3: We compare the ET variance from the four LSMs (denoted as σ2ET�LSM) to that from the four

observation-based ET products σ2ET�Obs in Experiment 2. By calculating the difference of σ2ET between each
LSM simulation and each observation-based product, we will obtain a matrix showing the comparisons of
the LSMs and the observations. This experiment is designed to show how the conclusion of model evalua-
tion varies with the references.

4. Experiment 4: We calculate σ2ETVARD�LSM from ETVARD using the same climate forcings (i.e., P and PET) as
those used in the LSMs and the terrestrial storage ΔS simulated by the four LSMs. Depending on the
LSMs configuration and model structure, ΔS is summed up from soil profile, snow water equivalent, and

Table 1
Multisource Hydroclimatic Observations

Variables Source Spatial resolution Temporal coverage

P NLDAS-2 0.125° by 0.125° 1979–2015
PET NLDAS-2 0.125° by 0.125° 1979–2015

ET Tang et al. (2009) 0.05° by 0.05° 2001–2008
Mu et al. (2011) 0.5° by 0.5° 2000–2009
Jung et al. (2009) 0.5° by 0.5° 1982–2008
Martens et al. (2017) 0.25° by 0.25° 1980–2017

ΔS GRACE 1° by 1° January 2003 to
June 2013

Note. NLDAS-2 = Phase 2 of the North American Land Data Assimilation System;
PET = potential evaporation; ET = evapotranspiration; GRACE = Gravity
Recovery and Climate Experiment.
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groundwater storage (only available in NOAP-MPmodel). Note that different LSMs have different soil layers
and depths each soil layer, and we sum all soil layers in each model. Thus, in this experiment, σ2ET�LSM and
σ2ETVARD�LSM are based on the same climatic and storage change inputs for each LSM model. Thus, this
experiment isolates the effects on σET estimates associated with processes represented by LSMs from
that associated with the input data. Therefore, the comparison will focus on the difference caused by
the model structure (i.e., physical process representation) of an LSM and the analytical form of ETVARD.

5. Experiment 5: We assess the impact on σ2ETS from the TWS change (ΔS) estimates based on two sources:
GRACE-based observation (σ2ETS�GRACE) and LSM-simulation (σ2ETS�LSM), that is, the only variable of interest
in Experiment 5 is ΔS. With the same climatic forcings (i.e., P and PET) for ETVARD and LSMs, we focus on
the comparison of the hydrologic componentσ2ETS (equation (3)).σ2ETS includes water storage change varia-
bility, the correlation between P and ΔS (e.g., soil moisture replenishment, aquifer recharge due to rainfall
excess, and pumping and water withdrawal in dry days) and the correlation between PET and ΔS (e.g.,
snowmelting and thaw). Note thatσ2ETS represents the water storage related components inσ2ET and there-
fore can be negative or positive. The TWS in GRACE observation includes groundwater and surface water
storage (e.g., lakes, reservoirs and river channel storage), which are generally not simulated by operational
LSMs yet (Xia et al., 2017). Through Experiment 5, we expect to identify locations for LSM improvement
regarding the interaction between land surface processes and groundwater, by natural processes (e.g.,
groundwater recharge/discharge and snow dynamics), human activities (e.g., groundwater pumping),
or both.

3. Results
3.1. Experiment 1: σ2ET Components in the CONUS

Figures 3a–3c display the magnitudes and spatial distribution of σ2ET components from climatic variables P,

PET, and their phase, respectively. As can be seen from Figure 3a, the contribution from P (wPσ2P) is more than

2,000 mm2 in California and southern Florida. In the High Plains,wPσ2P is also notable (around 1,500 mm2) and

decreases gradually from south to north. wPσ2P is small (less than 500 mm2) in the Mountain States and neg-
ligible above the Great Lakes (since ET from the water surface is not constrained by fluctuation in P). The con-
tribution from PET variability (wPETσ2PET) is relatively small compared to wPσ2P and exhibits a sharp contrast

Figure 2. Schematics of hydrologic processes along with various ET variance estimates and its components from observa-
tion, simulation and ETVARD approaches. Theσ2ETF is the climatic components of ET variance;σ2ETS is the storage components
of ET variance, which can be calculated from GRACE-observed or LSM-simulated ΔS; σ2ET�Obs includes four observation
based products;σ2ET�LSM is calculated from four LSM simulation time series. Since the climatic components (driving force) in
σ2ETVARD�GRACE and σ

2
ETVARD�LSM are the same, the differences between them are due to model differences in storage change.

ETVARD = Evapotranspiration Temporal VARiance Decomposition; ET = evapotranspiration; NLDAS-2 = Phase 2 of the
North American Land Data Assimilation System; PET = potential evaporation; GRACE = Gravity Recovery and Climate
Experiment; ETS = evapotranspiration from hydrologic storage; ETF = evapotranspiration of climatic forcing; LSM = land
surface model.
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along the east-west direction, as shown in Figure 3b. The Mountain States (west of 100th Meridian West,
commonly considered as arid and semiarid region) have negligible wPETσ2PET . The coastal regions of
Washington and Oregon states, Northern California, and the Great Lakes have significant amount of contri-
bution from PET variability (more than 500mm2). In these regions, ET is limited by energy supply, and fluctua-

tion in PET propagates to ET variance. In addition, the northeastern region has a noticeable wPETσ2PET
component (between 200 and 400 mm2). Figure 3c shows that the in-phase of P~PET enhances ET variance
in the Corn Belt, while the out-of-phase P~PET reduces ET variance in the coastal regions of Washington,
Oregon, and California Central Valley due to the Mediterranean climate in those regions (as shown in
Figure S1). As ET is constrained by water availability during the dry season and by energy availability during
the wet season, ET intraannual fluctuation is dampened by the climate pattern.

Figures 3d–3f display the magnitudes and spatial distribution of the contribution to σ2ET from the variance of

ΔS, the covariance of P and ΔS, and the covariance of PET and ΔS, respectively. The wΔsσ2ΔS is more than

Figure 3. (a–f) Climate and storage components of σ2ET derived from ETVARD in equation (1) based on P and PET from
NLDAS-2 forcing and ΔS from GRACE. ETVARD = Evapotranspiration Temporal VARiance Decomposition; PET = potential
evaporation; NLDAS-2 = Phase 2 of the North American Land Data Assimilation System; GRACE = Gravity Recovery and
Climate Experiment.
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1,000 mm2 in the Pacific Northwest and California and more than 500 mm2 in the south part of the High
Plains and Mississippi Embayment region. As can be seen from Figure 3e, the interaction between P and
ΔS (wP,ΔscovP,ΔS) significantly reduces σ2ET in the western coast especially in California (2,000 mm2) but

slightly enhances σ2ET (around 500 mm2) in the North High Plains and part of the East. Although covPET,ΔS is
significant in the West (see Figure S1f in the supporting information), its contribution to ET variance
concentrates to a limited region in California due to a low weighting factor shown in Figure S2f. The South
and the Appalachian Mountains also have a fairly significant wPET,ΔScovPET,ΔS component (more than
300 mm2).

Adding the climatic components together by equation (2), σ2ETF, the overall ET variance from the climate vari-

ables is shown in Figure 4a. Generally, the distribution of σ2ETF follows that of precipitation in most places. In
the Corn Belt, the in-phase of P~PET provides a favorable condition for crop water consumption, yielding a
relatively large σ2ETF (more than 1,500 mm2). The coastal regions in Washington and Oregon have relatively

mild σ2ETF, since the out-of-phase P~PET in those regions dampens ET variance. The Appalachian Mountains

have low σ2ETF (less than 1,000 mm2); the Mountain States have the lowest σ2ETF (less than 500 mm2) in
magnitude.

The aggregated hydrologic system components of ET variance σ2ETS by equation (3) is shown in Figure 4b.

Note that σ2ETS , denoting the responses of TWS change to climate and human interferences on σET, can be

negative (i.e., a dampening effect) or positive (i.e., an enhancing effect). In general, the magnitudes of σ2ETS
are smaller than those of σ2ETF , indicating the major impact of climatic variance in general. However, σ2ETS
enhances ET variance (more than 1,000 mm2) over the High Plains and Mississippi downstream and reduces

ET variance (more than 500 mm2) in California Central Valley. These regions with strong σ2ETS components
overlap with major aquifers that have been depleted for irrigation (Konikow, 2015). Anthropogenically
induced storage change either enhances (in the High Plains) or dampens (in California) ET variance through
the covariance between catchment water storage and precipitation seasonality as shown in Figure 3f. The
Cascade Range and northern part of the Rocky Mountains also have positive σ2ETS , mainly because the
snow accumulating and melting processes provide a temporal redistribution of water from cold to warm
seasons.

3.2. Experiment 2: Multisource σ2ET Comparison

Since the total ET variance is all positive, the following analysis on ET variance from multiple observations is
assessed in terms of ET standard deviation. In Figure 5a, σETVARD ranges between 0 and 60mm; the maximum
σETVARD occurs across the High Plains and decreases toward the west, with the minimum located along the
east of Sierra Nevada Mountains. Florida also has noticeable σETVARD (above 40 mm); the western coastal
region and the Appalachian-Northeast line also have moderate σETVARD (around 30 mm). As shown in
Figure 5b, the remote sensing σRSUW exhibits similar spatial zonation to σETVARD, with the peak value in the
Midwest and the coastal region of the North Pacific. The σRSUW is generally larger than 40 mm on other
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Figure 4. (a) Climatic (σ2ETF in equation (2)) and (b) storage (σ2ETS in equation (3)) components of σ2ET.
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parts of the East and less than 30 mm in the Mountain States, with the minimum located along the east of
Sierra Nevada Mountains. Remote sensing σRSMOD16 shows a contrasting west-east spatial pattern
(Figure 5c). The σRSMOD16 in western CONUS is mostly below 20 mm and is smaller than that from σETVARD
or σRSUW (above 20 mm in the region). However, the northern Pacific Coast is exceptional with σRSMOD16
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Figure 5. Spatial pattern of ET standard deviation (mm) estimated by four observation-based products: (a) ETVARD,
(b) ETRSUW, (c) ETRSMOD16, (d) ETFLUXNET, and (e) ETGLEAM. ET = evapotranspiration; ETVARD = Evapotranspiration
Temporal VARiance Decomposition; RSUW = ET from the University of Washington; RSMOD16 = from MOD16 Global
Terrestrial ET Data Set; GLEAM = from Global Land Evaporation Amsterdam Model.
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around 30 mm. The σRSMOD16 is about 10 mm smaller than σETVARD, σRSUW, and σGLEAM in the western CONUS.
The peak values (larger than 50 mm) of σRSMOD16 are located along the downstream of the Mississippi River
and the Southeast. The Midwest and Northeast has moderate σRSMOD16 between 30 and 50 mm. The
FLUXNET upscaling estimate σFLUXNET is shown in Figure 5d. The σFLUXNET, ranging between 0 and 40 mm,
is smaller than the other four estimations. The spatial distribution of maximun σFLUXNET is similar to that of
σETVARD, extending from the Midwest to the south part of the High Plains. The Appalachian-Northeast line
also has substantial σFLUXNET; the western CONUS has σFLUXNET generally below 20mm, which shows a similar
range to that of σRSMOD16. The σGLEAM in Figure 5e ranges between 10 and 50 mm and exhibits an east-west
gradient. The σGLEAM is significant in the Midwest. In addition, GLEAM produces highest σET over the Great
Lakes and less than 50 mm in other regions. Being opposite to σRSMOD16, σGLEAM shows lower values (below
40 mm) along the Appalachian Mountain and Lower Mississippi River. Similar to the spatial pattern in the
western CONUS by σRSMOD16 and σFLUXNET, GLEAM produces slightly higher σET between 10 and 30 mm. It
is noted that GLEAM produces erroneously high σET along the coastline, probably due to a mixed signal from
the sea and land.

It is not surprising to see the discrepency of spatial patterns of ET variance from these five estimates, but it is
difficult to draw the conclusion on which product is more reliable than others, since the true value is not
known. In general, σETVARD and σRSUW, the two independent estimates yield similar spatial patterns and mag-
nitudes. The σFLUXNET seems to be underestimated, compared to other four products. Probably, the flux tower
sites are too sparse to capture the heterogeneity of ET for a large region. Errors in σETVARD may exist at coastal
cells where GRACE-estimated ΔS contains signals of sea water.

The frequency histograms of the residuals between σETVARD and σRSUW, σRSMOD16, σFLUXNET, or σGLEAM are
plotted in Figure 6. As shown in Figure 6a, the residual between σRSUW and σETVARD fits a Gaussian distribution
with a mean of 0.52 mm and standard deviation of 11.09 mm. The small residual (i.e., σRSUW - σETVARD) indi-
cates that this set of multivariable hydroclimatic observations (i.e., NLDAS-2 P and PET and GRACE-estimated
ΔS) are statistically unbiased relative to σRSUW under the general laws embedded in ETVARD.

The residual between σRSMOD16 and σETVARD as plotted in Figure 6b yields a slightly bimodal distribution, and
a Gaussian fit results in a mean of �7.80 mm and standard deviation of 14.59 mm, the largest uncertainty
among the four observation-based ET products. The residual between σFLUXNET and σETVARD in Figure 6c
yields a Gaussian distribution with mean of �15.31 mm and standard deviation of 8.15 mm. The relatively
small residual standard deviation indicates ETFLUXNET may have relatively small uncertainty than the other
three ET products, while the large residual mean indicates that σFLUXNET is probably underestimated when
using ETVARD as a benchmark. The histogram of residual between σGLEAM and σETVARD in Figure 6d fits a
Gaussian distribution with a mean of �2.27 mm and standard deviation of 12.82 mm, similar to that by
ETRSUW. The cells along the coastline contribute to residuals larger than 20 mm.

3.3. Intercomparison of σET Among Multiple Reference Observations, ETVARD, and Multiple LSMs
(Experiment 3)

The monthly σET from the four LSMs ranges from 0 to 60 mm as shown in Figure 7. The four LSMs commonly
produce high σET (above 40 mm) in Midwest and low σET (below 20 mm) in the region west of meridian
100°W. Meanwhile, the four LSMs produce different levels of σET in the northeastern region of CONUS, where
σET is above 30 mm for MOSAIC and NOAH-MP and around 20 mm for NOAH and VIC. The LSM-simulated σET
values show significant differences along the West Coast compared to the four observation-based estimates
in Figure 5. Compared to four observation-based estimates, which all yield noticeable σET (larger than 30mm)
along the West Coast, though varying in magnitude, the four LSMs result in low σET (20 mm) along the West
Coast. Compared to the result of ETVARD, the four LSMs consistently generate low σET in the West Coast as
well. A unique contributor to σET along the West Coast is the Mediterranean climate. By ETVARD, P and PET
are out-of-phase between the rainfall season and the warm season, resulting in a negative climatic compo-
nent (i.e., wP,PETcovP,PET) in σET in this region, as shown in Experiment 1 and Figure 3c. In addition, the contri-
butions from TWS change in this region are also notable. In California, the TWS release during the dry season
leads to a significant reduction in σET via a negative wP,ΔScovP,ΔS component, while snow melting during the
warm season enhances σET with a positive wPET,ΔScovPET,ΔS component in the coastal region of Oregon and
Washington. Thus, the relatively low σET from the four LSMs in the West Coast is probably due to the
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Mediterranean climate or the limited water storage representation in the models. More detailed results on
terrestrial storage change effects should be referred to Experiment 5, which includes the assessment of
GRACE-estimated terrestrial storage change on ET variance.

The average residual (σETres) between σET from a LSM and that from an observation-based product is calcu-
lated as themean absolute difference between the four observation products over all cells in the CONUS, that
is, σETres ¼ 1

n ∑
n
i¼1 σETLSM � σETObsj j. The pairwise intercomparisons are shown in Table 2. The σET calculated by

ETVARD is also used as a reference together with the observations. By each column of Table 2, one observa-
tion is used as the reference, and the model with the smallest residual is picked as the best model. For exam-
ple, when σET from ETVARD is treated as reference, MOSAIC model has the smallest residual (i.e., 8.41 mm)
among the four models and is therefore chosen as the best model. It is surprising to find that each of the
LSMs is identified once as the best model with the various references. This illustrates that intercomparison
of the multiple LSMs is observation dependent. Recognizing the possible limitations of using any single
model for problem solution, ensemble-based approaches have been widely used to handle model uncertain-
ties, in which the results from the various models are combined with a certain given set of priorities (often
subjective) on the models.

3.4. Model Processes Representation Assessment Using ETVARD as a Benchmark for LSMs
(Experiment 4)

The σET by ETVARD with ΔS inputs from each LSM is shown in Figure 8. The four σET estimates exhibit a clear
contrast along the east-west direction near the meridian 100°W line. For all cases, σET from ETVARD using ΔS

Figure 6. Residual histograms of total ET variance f between ETVARD and (a) ETRSUW, (b) ETRSMOD16, (c) ETFLUXNET, and
(d) ETGLEAM. Residuals are fitted into normal distribution. ET = evapotranspiration; ETVARD = Evapotranspiration
Temporal VARiance Decomposition; RSUW = ET from the University of Washington; RSMOD16 = from MOD16 Global
Terrestrial ET Data Set; GLEAM = from Global Land Evaporation Amsterdam Model.
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from all the LSMs is less than 20 mm in the west mountains and larger than 40 mm in the West Coast of
California. The maximum σET (about 50 mm) is generally located near the Midwest, while σET with ΔS from
NOAH-MP generates high σET in the whole eastern United States except for areas along the
Appalachian Mountains.

Figure 9 displays the differences in σET from each of the four LSM results (i.e., σETLSM = fLSM(P, PET,ΔSLSM) in
Figure 2), where fLSM represents a LSMmodel function) and ETVARD with ΔS simulation from each of the four
LSMs as input (i.e., σETVARD = fETVARD(P, PET,ΔSLSM) in Figure 2), where fETVARD represents equation (1). Note
that the inputs (P, PET, ΔSLSM) to ETVARD and the LSMs are the same. Thus, Figure 9 isolates out the impact
on σET from the input data and explicitly shows the difference between an LSM and ETVARD caused by the

physical process representation of σET in LSM (i.e., fLSM) and the analy-
tical ETVARD (i.e., fETVARD). A common spatial pattern shared by the
four LSMs is that σET along the West Coast is significantly smaller
(about 20 mm) than that from ETVARD. As discussed in Experiment
3, the most apparent σET difference between LSM results and the
observation-based estimates in Experiment 2 is also located along
the West Coast. We have suggested that the difference may be
caused by inaccurate simulation of TWS or by inadequate process
representation under the Mediterranean climate. Xia et al. (2016)
pointed out that some LSMs failed to acceptably simulate the annual
cycle of the monthly mean ET in the Mediterranean climate. Some
LSMs predict peak ET in spring, while others predict peak ET in sum-
mer. Since Mediterranean climate is water limited or energy limited
during different seasons, the vegetation response to climate in these
LSMs may not be well represented. For example, Cai et al. (2014)

Figure 7. The σET (i.e., the red σETLSM in Figure 2) simulated by the four LSMs: (a) MOSAIC, (b) NOAH, (c) NOAH-MP, and
(d) VIC, driven by the same forcing data sets and calculated at the same temporal and spatial resolution.
ET = evapotranspiration; LSM = land surface model.

Table 2
Pairwise σET Differences Between Land Surface Models and Observation Products

Land surface
models (mm) ETVARD RS-UW MOD16 FLUXNET GLEAM

MOSAIC 8.41 7.72 10.96 12.26 7.74
NOAH 12.03 11.96 10.52 6.21 8.29
NOAH-MP 8.95 6.58 11.16 15.49 7.40
VIC 9.61 8.52 10.26 9.12 8.65
Best model MOSAIC NOAH-MP VIC NOAH NOAH-MP

Note. Columnwise comparison represents the average σET residual when an
observation-based σET is used as reference, so the smallest absolute value in
the column (in italic) indicates the best model. ETVARD = Evapotranspiration
Temporal VARiance Decomposition; GLEAM = Gravity Recovery and Climate
Experiment.
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suggested that using a dynamic leaf phenology model in LSM (predicting LAI as a function of light,
temperature, and soil moisture) improves the ET simulation using the prescribed monthly LAI. In a study
that also discusses the discrepancies between LSMs and remote sensing observations of ET, Castle et al.
(2016) showed that ET was underestimated by some LSMs during peak irrigation times. In this experiment
that compares the differences in model processes representation of ET variance, we may further claim that
the differences are mainly attributed to the representation of vegetation responses to water and energy
stresses in dry and wet seasons, respectively.

Although σET differences between LSMs and ETVARD are found in other regions, they are not consistently
shared by the four LSMs. For instance, MOSAIC, NOAH-MP, and VIC generally yield slightly higher σET (less
than 5 mm) than that from ETVARD in the Midwest and Northeast, while NOAH exhibits higher σET mainly
in the Southeast. NOAH and NOAH-MP predict significant lower σET (more than 20 mm) than ETVARD near
Idaho, where the covariance between ΔS and PET contributes considerably to σET in Figure 3f. This implies
that the differences might be mainly associated with snow processes or vegetation’s responses to solar radia-
tion in NOAH and NOAH-MP. In addition, NOAH and VIC show significantly lower σET than ETVARD and
observation-based σET around the southern region along meridian 100°W, where P is the dominant compo-
nent in σET as shown in Figure 3a.

Although we do not claim that any of the estimates by LSMs, ETVARD, or observation-based estimates are
accurate, this experiment shows that in most of the regions in the CONUS the estimates from ETVARD
and observations are more similar to one another in the West Coast and upper plains, as shown by
the differences between Figures 5, 7, and 8. Following the analysis of the contribution sources of σET in
Experiment 1, we can target particular processes contributing to the disagreements for further studies.
Moreover, taking the ETVARD as a benchmark, Experiments 1 and 4 can be used for identifying the pro-
cesses controlling σET and their spatial locations in the four LSMs. For example, Experiment 1 shows that

Figure 8. The σET calculated by ETVARD (i.e., the green σETLSM in Figure 2) with terrestrial water storage change (ΔS, includ-
ing soil moisture, snow and/or groundwater) simulated by four LSMs: (a) MOSAIC, (b) NOAH, (c) NOAH-MP, and (d) VIC.
ETVARD = Evapotranspiration Temporal VARiance Decomposition.
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the energy budget dominates σET on the coast of Washington and Oregon. Therefore, energy-related pro-
cesses such as snow dynamics or vegetation water demand should be examined in the models for
these regions.

3.5. LSM Diagnosis Using TWS Observations (Experiment 5)

The terrestrial storage component of ET variance, σ2ETS , calculated from ΔSGRACE and four LSMs simulated
ΔSLSM, respectively, ranges from �800 to 1200 mm2, as shown in Figure 10. The estimates from the four
LSMs and GRACE are quite consistent in the South and the West, where ΔS buffers the ET fluctuation. In
Idaho, all five σ2ETS estimates consistently indicate that ΔS enhances σET, mainly due to the snow storage.

The NOAH-MP exhibits high σ2ETS (larger than 1,000 mm2) in a slightly larger area than other models.
Experiment 4 shows that the snow processes (variance of the storage) or vegetation’s response to solar radia-
tion (via the covariance between ΔS and PET) in NOAH and NOAH-MP may be responsible for the difference
between LSMs and ETVARD. Experiment 5 further finds that the vegetation’s response to solar radiation (the
covariance item, wPET,ΔScovPET,ΔS) can be the primary reason for the difference.

The most apparent σ2ETS difference between GRACE observation and LSM simulation appears in the Midwest

and the High Plains. The σ2ETS�GRACE shows that ΔS substantially enhances σET in the Midwest and the High

Plains, while the four LSMs generate largeσ2ETS generally to the east of meridian 90°W. The impacts on ET from
agricultural practices and groundwater-based irrigation in these regions have been well recognized by both
remote sensing estimates (Mutiibwa & Irmak, 2013; Strassberg et al., 2009) and groundwater well measure-
ments (Haacker et al., 2015; McGuire, 2012). However, an accurate representation of heavily managed agricul-
tural land use still remains a challenge in LSM formulation. LSMs generally have a relatively shallow soil profile
(e.g., 2 m in VIC; Liang et al., 1994) which can be sufficient to characterize natural vegetation root water uptak-
ing but cannot catch the effect of groundwater pumping, which decreases water storage deep in the aquifer,

Figure 9. The σET residual between ETVARD (σET = fETVARD(P, PET,ΔSLSM)) and LSM (σET = fLSM(P, PET,ΔSLSM)), that is,
fETVARD - fLSM, with the same input data; this residual shows the pairwise discrepancy between the benchmarking
ETVARD and aggregated processes in each of the four LSMs: (a) MOSAIC, (b) NOAH, (c) NOAH-MP, and (d) VIC.
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and in turn cannot reflect the effect of accumulated depletion of aquifer storage (Zeng & Cai, 2014). Although
NOAH-MP has a simple aquifer representation, the transient decline in groundwater level results in a large
amount of storage change which is beyond the storage capacity specified in LSMs. Thus, Experiment 5
unveils how a better simulation of ΔS, especially in intensively managed agricultural land, would improve
the simulation of ET and ET variance in LSMs. It is noted that some cells along the Mississippi River in
Figure 10a have high σ2ETS . This may not correctly reflect the storage components in ET variance, since the
GRACE data show very high TWS variation amplitude due to the water fluctuation in the river channel (Cai
et al., 2014).

Figure 10. The σ2ETS, the terrestrial water storage change components in σ2ET, with ΔS from (a) GRACE observation and the
four LSM simulations: (b) MOSAIC, (c) NOAH, (d) NOAH-MP, and (e) VIC. GRACE = Gravity Recovery and Climate Experiment;
LSM = land surface model.
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The scatter plot of σ2ETS�GRACE and σ
2
ETS�LSM of the four LSMs in the CONUS is shown Figure 11. Overall, all LSMs

yield smaller σ2ETS components than the GRACE-based σ2ETS (the regression slopes are less than 1). Among all

the LSMs, NOAH-MP produces the closest σ2ETS to the GRACE-based estimate, which is probably due to the
aquifer module (though a simple one) in the NOAH-MP. It is noted that in regions where ΔS buffers σET
(i.e., the σ2ETS<0), the buffering effect by LSMs is consistently less than that reflected by GRACE observation.
These regions are mainly located in the westernmountainous regions where TWS plays amore dominant role
in σ2ETS than other regions. Further study is needed to assess not only the accuracy of ΔS from GRACE but also
the uncertainties involved in the LSMs, especially in the process representations associated with ΔS
simulation.

4. Discussion
4.1. The Clustering of Most Important Components of ET Variance in Climatic Plane

Zeng and Cai (2015) qualitatively divided the P; PET
� �

plane into several zones with various controlling factors

on σ2ET based on the weighting factors. Here we take the largest absolute value of the six components in each

Figure 11. The scatter plot of σ2ETS from GRACE observation and the four LSM simulations: (a) MOSAIC, (b) NOAH, (c) NOAH-
MP, and (d) VIC. The positive σ2ETS indicates cells where σET is enhanced by terrestrial water storage change, and negative
σ2ETS indicates cells where σET is dampened by terrestrial water storage change.
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grid (Figure 3) and identify that as the most important controlling component of ET variance. Those

identifications are plotted in the P; PET
� �

plane as shown in Figure 12, which confirms that in the CONUS P

and PET are the major controls of σ2ET in arid (ϕ > 1) and humid regions (ϕ < 1), respectively. The major
components associated with ΔS are in the lower left region, where the water and energy fluxes have

relatively small values (approximately, P < 1,000 mm and Pþ PET < 2,200 mm). Beyond these empirical
thresholds, climate factors are the major components in σ2ET since the catchment storage has relatively
limited capacity to buffer the water and energy fluctuations.

Exceptionally, several major components associated with storage (ΔS and P&ΔS) are far beyond a thresholds

(Pþ PET < 2; 200 mm) shown in Figure 12. These points represent the major components of California or
the areas along the lower reaches of the Mississippi River as shown in Figure 12. The deviation of the domi-
nant components in these regions may be due to the water storage change by agricultural water uses,
which have significantly larger capability to use storage (e.g., pumping groundwater or surface water sto-
rage) than natural vegetation. This shows that human water use significantly affects ET, causing the domi-
nant components of σ2ET to deviate from those in natural catchments. Another possible reason that
storage change dominates the Mississippi River would be the large fluctuation in river channel storage

change due to lateral flow, which is not considered in ETVARD framework. Thus, the P; PET
� �

plane provides

a visual diagnostic tool to detect human interferences or possible errors on σ2ET.

The spatial pattern of σ2ET dominant components shows that P dominates σ2ET in most parts of the East and

Central CONUS. PET dominates σ2ET in the Great Lakes and New England, since this region is strictly energy
limited. The Mountain West shows much diversity on the dominant components. ΔS in Montana, Idaho,
Northern Utah, and Northern Nevada dominates σ2ET , showing the important role of snow storage in local
hydrologic dynamics. The cells in California show P&ΔS as dominant factors, due to the
coincidence between dry season and snow melting and groundwater use.

4.2. Implications of σ2ET Components for Model Development

The climatic components in equation (2) and storage components in equation (3) of σ2ET provide valuable
information for hydrologic model development in terms of increasing the accuracy of model inputs and
the improvement of model structures. For regions where σ2ET climatic components are significant (as shown
in Figures 3a–3c and 4a), more reliable model input fluxes (i.e., P and PET) would improve the model perfor-
mance. On the other hand, for example, σ2ET in the western CONUS is not significantly affected by PET
(Figure 3b). Therefore, the hydroclimatic processes and models in this region may not need to be sensitive
to the fluctuations in PET. Improving the model structure to better capture how the hydrologic state variable,
S (e.g., snow, soil moisture, and groundwater), responds to climate is important in regions where σ2ET storage
components are significant (Figures 3d–3f and 4b). For example, wP,ΔScovP,ΔS represents catchments’
response (both natural and anthropogenic) to P, such as groundwater recharge and pumping. Agricultural

Figure 12. (a) Dominant σ2ET component in each grid in the CONUS in the P; PET
� �

plane. The 45° dashline (ϕ ¼ 1) distin-
guish humid and arid climates. (b) Spatial distribution of dominant components of σ2:ET. PET = potential evaporation.

10.1029/2018WR022723Water Resources Research

ZENG AND CAI 18



irrigation enhances the σ2ET in the High Plains and dampens the σ2ET in California (Figure 3e). LSMs do not cap-
ture these processes mainly due to two reasons. First, most LSMs do not have an aquifer storage component,
and the buffering effect of soil profile is limited. Second, LSMs lack a good representation of farmers’ water
use behavior, such as irrigation. In some regions the groundwater table may be quite deep and not naturally
coupled with land surface processes. However, farmers’ pumping well can access the groundwater that can-
not be utilized by natural vegetation, connecting the groundwater dynamics to the crop water consumption
and climatic fluctuations. Therefore, farmers’ irrigation behavior should be reasonably represented in the
models developed for these regions. The wPET,ΔScovPET,ΔS represents catchments’ response to PET, such as
snow melting and vegetation water demand. Figure 3f indicates that the snow dynamics in north Pacific
Coast and vegetation dynamics in Eastern CONUS are important processes controlling the σ2ET in these
regions, respectively.

4.3. Limitations and Future Perspectives

The purpose of this study is to utilize the theoretic ETVARD framework for the reconciliation between LSMs
and observations focusing on ET temporal variance at the month scale. This study does not aim at providing
a comprehensive framework for LSM diagnosis, as done by other efforts (Best et al., 2015; Clark et al., 2015a).
However, we illustrate a meaningful framework in which ETVARD is used to disaggregate and diagnose σET in
LSMs while systematically adopting hydrologic observations that reflect some dynamics that may not be well
captured by LSMs. We do not explicitly assess the impact of climatic forcings on σET, given that the four LSMs
underlying the three experiments use the same set of forcings (from NLDAS-2 project). If another set of cli-
matic forcings (P and PET) are available, this study can be extended to account how different climatic forcings
impact σET.

With a growing amount of hydroclimatic observation data, LSMs are being improved. However, new theories
and hypotheses are still needed to synthesize hydrologic knowledge through the observation-model-theory
triplet. Researchers have recognized that the existing and even growing gap between models and theories is
impeding the progress of hydrologic science (Clark et al., 2016). The ETVARD framework is our first attempt
toward congruence among the observation-model-theory triplet.

Another issue is that existing hydrologic relationships are generally obtained in natural watersheds with mini-
mal human interferences. Existing LSMs essentially simulate the virgin hydrologic cycling without fully con-
sidering anthropogenic impacts. As human activities play an increasing role in transforming hydrologic
processes, such as irrigation and baseflow (Wang & Cai, 2009), hydrologic models should be developed or
improved to better capture the anthropogenic components at multiple temporal and spatial scales (Vogel
et al., 2015).

5. Conclusions

We illustrate how multisource, multivariable hydroclimatic observations, multiple LSMs, and ETVARD (a the-
oretical ET variance assessment framework) can serve complementarily by cross diagnosing each other,
through five systematically designed experiments. We particularly show the role of ETVARD as an indepen-
dent diagnosis tool in the observation-model-theory triplet. Based on σ2ET derived from ETVARD

(Experiment 1), we characterize the spatial distribution of σ2ET and its climatic and hydrologic components

across the CONUS. Although the contribution toσ2ET from climatic variables is larger than that from the hydro-
logic system variables in most of the regions of the CONUS, we identify some regions such as California and
the lower reach of Mississippi River, where TWS-related components have significantly changed the σ2ET. In
those regions, groundwater pumping for irrigation (e.g., in California) and water withdrawal from surface
water (e.g., lower reach of Mississippi River) have led to systematic change of the terrestrial storage.

Based on the comparison of four observation-based ET products using ETVARD as a reference, we propose
some diagnostic hypotheses regarding possible bias and uncertainty involved in the various ET products:
ETRS � UW captures the high σ2ET signals in the Midwest, with negligible bias and moderate uncertainty over

the CONUS; ETFLUX � MTE systematically underestimates σ2ET over the CONUS but with the lowest level of
uncertainty; ETRS � MOD16 has medium bias with the highest level of uncertainty, and the spatial distribution

of high σ2ET signal from ETRS � MOD16 is different from other estimates. Note that the reference value derived
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from ETVARD itself depends on the quality of the multiple data sources that are used to estimate the climatic
and hydrologic variables involved in ETVARD (P and PET from NLDAS-2 and ΔS from GRACE), including errors
that can be caused by the aggregation processes of the data sources with different spatial and temporal reso-
lutions. This complexity encourages the use of a diagnostic framework as illustrated in this paper, which
assumes uncertainties from estimates from a theoretical framework (ETVARD), observations, and models
and attempt to identify congruence among the three.

Further, it is found that any of the four models compared can be the best one for a certain set of reference
observations, which confirms our argument that intercomparison of multimodels depends on the reference
observation. Therefore, simply minimizing the residual between model and observation may result in
rejecting a good model with unreliable observation (the so-called Type I error) or accepting a wrong model
with unreliable observation (Type II error). It is also found that σET derived from ETVARD is consistently closer
to observation-based estimates than the LSM simulations, especially in regions along the West Coast,
Midwest, and High Plains. All four LSMs might underestimate σET along the West Coast due to the
Mediterranean climate and human water use; these models might also underestimate the terrestrial storage
contribution to ET variance in the High Plains compared to the ETVARD estimate and GRACE observation. This
is probably due to the inappropriate representation of groundwater pumping and its impact on ET and other
hydrologic processes in those LSMs. Furthermore, compared to GRACE-based estimates, the four LSMs do not
capture the high σ2ETS signal in the Midwest and High Plains. This is likely due to the limited representation of
the hydrologic processes in the LSMs that control the terrestrial storage changes such as groundwater bal-
ance in aquifers and vegetation dynamics.

Overall, via five systematically designed experiments, we diagnose the congruence in σET among multi-
source and multivariable hydrologic observations, multiple LSMs, and ETVARD. Each experiment indepen-
dently and complementarily provides information for the various assessments. Given possible errors and
uncertainties in multiple models and multiple observations, the observation-model-theory triplet with a the-
oretical diagnostic tool is useful for cross validating hydrologic theories, observations, and models. A match
between observation and simulation does not necessarily capture the reality unless it is consistent with a
confirmed, generic theory, that is, achieving congruence among observation, model, and theory. In particu-
lar, in this era with increasing multisource and multivariable hydrologic observations and improvement in
various hydrologic models, we demonstrate the role of generic hydrologic theories (e.g., ETVARD in this
study) as a bridge between models and observations and encourage further efforts along the line for the
hydrologic community.
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