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Abstract—Machined surface roughness is an important 

parameter used in the evaluation of the surface integrity of 

machined parts and components. This paper proposes a new 

computational intelligence approach to predicting the machined 

surface roughness in metal machining. In this approach, wavelet 

packet transform (WPT) is incorporated into artificial neural 

networks (ANN) to develop two ANN models for predicting 

average roughness Ra and root-mean-square roughness Rq, 

respectively. Each model has eight inputs, including the cutting 

speed, the feed rate, energy of wavelet packets for three cutting 

force components, and energy of wavelet packets for three 

cutting vibration components. Forty-five machining 

experiments were performed to collect relevant data to train and 

test the ANN models.  Based on the test data, the average mean 

square errors (MSE) were 1.23% for predicting average 

roughness Ra and 2.85% for predicting root-mean-square 

roughness Rq. These results show that the ANN models 

developed from the present study have high prediction accuracy. 

 
Index Terms—Artificial neural networks (ANN), machined 

surface roughness, predictive modeling, wavelet packet 

transform (WPT).  

 

I. INTRODUCTION 

Metal machining is a material removal technology widely 

employed in a variety of modern manufacturing industries, 

such as automotive, aerospace, as well as mould and die 

making industries.  In machining processes, a significant 

amount of signals, such as the cutting forces, the cutting 

vibrations, and the cutting temperatures, is often generated [1], 

[2]. These big data signals are often employed to develop a 

variety of theoretical, empirical, or hybrid models to predict 

or evaluate a variety of machining performance measures, 

such as tool wear, tool life, and surface integrity of the 

machined parts and components [3]-[5].  

Machined surface roughness is an important parameter 

used in the evaluation of the surface integrity of machined 

parts and components [6]-[8]. Experimental research has been 

conducted to study how the machined surface roughness is 

affected by cutting parameters and tool geometry [9], [10]. 

The artificial neural network (ANN) model is often 

established to predict the machined surface roughness so as to 

optimize the selection of cutting parameters and tool 

geometry.           

For example, Risbood et al. [11] developed an ANN model 
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to predict the machined surface roughness in turning 

operations.  Their model has three inputs: the cutting speed,  

the feed rate, and the acceleration of radial vibration of tool 

holder. The prediction errors for average roughness Ra varied 

between 0.51% and 18.21% in their ANN model [11]. They 

also reported that neural network models can be fitted for 

different tool materials and machining conditions in dry or 

wet machining.    

This paper proposes a new computational intelligence 

approach to predicting the machined surface roughness in 

aluminum alloy machining.  In this approach, wavelet packet 

transform (WPT) is incorporated into artificial neural 

networks (ANN) to predict average roughness Ra and 

root-mean-square roughness Rq, two parameters most 

commonly used for evaluating surface roughness. This paper 

describes this approach and relevant experimental 

measurements.  The results and analysis are presented. A 

conclusion is made at the end of the paper.  

 

II. NEW COMPUTATIONAL INTELLIGENCE APPROACH 

A. Wavelet Packet Transform (WPT) 

The wavelet package transform (WPT) is a method of 

signal processing that decomposes both approximate and 

detail parts of signals [12], particularly unsteady and 

non-stationary signals, such as those generated in metal 

machining. As compared to the conventional wavelet 

transform technique, which has poor resolution in the high 

frequency region and is unable to recognize high frequency 

signals, WPT extracts more information from non-stationary 

signals including both low and high frequency signals [13].  

A wavelet packet function is a function with three indices (i, 

j, k) satisfying [14]. 

/ 2
, ( ) 2 (2 )n j n j

j kW t W t k                         (1) 

where j and k are index of scale and translation operations, 

respectively; the index n is called the modulation parameter or 

the oscillation parameter, and n = 0,1,2,….2
j-1

.  

Wavelet packet functions are determined as: 

2 ( ) 2 ( ) (2 )kn nW x h k W x k   (2) 

2 1( ) 2 ( ) (2 )kn nW x g k W x k    (3) 

where h(k) and g(k) are the low-pass and high-pass filters; 

0( ) ( )W x x  is the scaling function; 
1W ( ) ( )x x  is the 

wavelet function, and the discrete filters h(k) and g(k) are 

quadrature mirror filters associated with scaling function and 

wavelet function [14]. 
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B. Feature Selection Using WPT 

In the present study, WPT was employed to select 

dominant features of signals generated in metal machining 

processes. The signals subjected to WPT include surface 

roughness data (used for calculating two surface roughness 

parameters Ra and Rq), three-dimensional cutting force 

signals (i.e., the cutting force Fc, the feed force Ff, and the 

passive force Fp), and three-dimensional cutting vibration 

signals (i.e., the cutting vibrations Vx, Vy, and Vz in the 

direction of the cutting speed, the feed rate, and the depth of 

cut, respectively).  

Daubechies 8 wavelet (i.e., db8 function in MATLAB 

wavelet transform toolbox) was employed with three levels 

selected for multi-level signal decomposition.  The dominant 

wavelet packet coefficient was identified by calculating the 

energy for each wavelet packet coefficient and then selecting 

the one with the highest value.   

Based on the WPT analysis on the 

experimentally-measured signals, the dominant wavelet 

packet was W(3,0) for machined surface roughness data; W(3,0) 

for cutting force signals; and W(3,2), W(3,3) and W(3,2) for the 

cutting vibration signals in the direction of the cutting speed, 

the feed rate, and the depth of cut, respectively. The methods 

of experimental measurements will be described in Section 

III.  

C. Artificial Neural Networks (ANN) 

Artificial neural networks (ANN) are computing 

mechanisms modeled after biological brains.  ANN have one 

or more layers of processing elements called neurons.  

Neurons are uni-directional computing elements that receive 

and sum multiple inputs to generate outputs through a 

non-linear transfer function. 

In the present study, the ANN based on multi-layer 

perceptron (MLP) [15]-[21] were employed to develop two 

predictive models for machined surface roughness parameters 

Ra and Rq, respectively.  Each ANN model contains three 

layers: an input layer that receives relevant input information, 

a hidden layer that processes the information, and an output 

layer the presents the output.  Weighted connections exist 

between neurons (i.e., layers of processing elements in ANN) 

to move the output of a neuron to other neurons.  

In the present study, each ANN model has eight inputs and 

one output.  The eight inputs include:  

  The cutting speed Vc 

  The feed rate f 

  Energy of wavelet packet W(3,0) for Fc  

  Energy of wavelet packet W(3,0) for Ff 

  Energy of wavelet packet W(3,0) for Fp 

  Energy of wavelet packet W(3,2) for Vx 

  Energy of wavelet packet W(3,3) for Vy 

  Energy of wavelet packet W(3,2) for Vz 

The output is the energy of wavelet packet W(3,0) for 

machined surface roughness data.   

The ANN models were first trained using a set of training 

data generated from metal machining experiments, and were 

then tested using another set of test data generated from other 

metal machining experiments. 

III. EXPERIMENTAL SET UP  

A. Machining Conditions 

A total of 45 bar turning experiments were performed on a 

computer-numerically-controlled machining center HAAS 

SL-10. The workpiece material was aluminum alloy 

2024-T351 (ASTM B211 grade).  The cutting tool were three 

coated carbide inserts TPG 432 KC 8050 made by 

Kennametal Inc.  These tool inserts had average tool-edge 

radii of 45.5 m, 54.7 m, and 72.4 m, respectively.  

The machining conditions employed in the experiments 

were as follows.  The cutting speed varied at three levels: 150, 

250, and 350 m/min.  The feed rates were chosen based on the 

ratio of feed rate to tool edge radius that varied at five levels: 

1.0, 1.5, 2.0, 2.5, and 3.0.  The depth of cut was kept constant 

at 0.8 mm, the same as tool nose radius.  No coolants were 

employed in order to facilitate the experimental 

measurements of the cutting forces, the cutting vibrations, and 

machined surface roughness. 

B. Measurement of the Cutting Forces and the Cutting 

Vibrations 

Fig. 1 shows the experimental measurements of the cutting 

forces and the cutting vibrations.  The equipment used to 

measure the cutting forces include a quartz three-component 

dynamometer Kistler 9257B, a multi-channel dual-mode 

charge amplifier Kistler 5010 B, and a computer data 

acquisition system Labview.  The sampling rate was 10 kHz.  

MATLAB was employed to filter the high-frequency noise 

from the collected three-dimensional signals: the cutting force 

Fc, the feed force Ff, and the passive force Fp.  Figs. 2-4 

shows representative examples of raw signals collected for 

measuring Fc, Ff, and Fp, respectively. 
 

 
Fig. 1. Experimental measurements of the cutting forces and the cutting 

vibrations. 
 

 
Fig. 2. A representative example of raw signals collected for measuring the 

cutting force Fc. 
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Fig. 3. A representative example of raw signals collected for measuring the 

feed force Ff. 

 
Fig. 4. A representative example of raw signals collected for measuring the 

passive force Fp. 

 

 
Fig. 5. A representative example of raw signals collected for measuring the 

cutting vibration Vx in the direction of the cutting speed. 

 

The cutting vibration signals were simultaneously 

measured online using an accelerometer (356A63Triaxial 

ICP) that was fixed to the tool holder.  The sensitivity of the 

accelerometer was 10 mV/g (±15 %), and its measurement 

range was ± 5 g (peak). The accelerometer sensed the 

vibration signals in the x-, y- and z-directions, that is, the 

cutting speed, feed rate, and depth of cut directions, 

respectively.  

MATLAB was also employed to filter the high-frequency 

noise from the collected three-dimensional vibration signals.  

Figs. 5-7 shows representative examples of raw signals 

collected for measuring the cutting vibrations Vx, Vy, and Vz, 

respectively.  

C. Measurement of the Machined Surface Roughness 

The surface roughness parameters and profiles were 

measured offline using a fine contour measuring instrument 

Mitutoyo type-SV602.  This instrument has a diamond stylus 

with a tip radius of five μm.  After each cutting experiment 

was conducted, the workpiece was removed from the chuck of 

the turning center and was taken to the fine contour measuring 

instrument to measure the machined surface roughness 

parameters and the profiles at three equally spaced locations 

around the circumference of the workpiece in order to obtain 

statistically significant data.  The average of the values was 

used for evaluation. 

 

 
Fig. 6. A representative example of raw signals collected for measuring the 

cutting vibration Vy in the direction of the feed rate. 

 

 
Fig. 7. A representative example of raw signals collected for measuring the 

cutting vibration Vz in the direction of the depth of cut. 
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Fig. 8. An example surface profile generated at the cutting speed of 150 

m/min and the feed rate of 0.0455 mm/rev. 
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Fig. 9. An example surface profile generated at the cutting speed of 350 

m/min and the feed rate of 0.0724 mm/rev. 

 

Two parameters most commonly used for evaluating 

surface roughness were measured, including:   
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1) Average roughness Ra: arithmetic average of the 

absolute values of the roughness profile ordinates. 

2) Root-mean-square (RMS) roughness Rq: the root mean 

square average of the roughness profile ordinates 

Figs. 8 and 9 show two example surface profiles obtained 

from two cutting experiments. Figs. 10 and 11 show the 

surface profiles reconstructed from wavelet packet W(3,0). 
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Fig. 10. An example surface profile reconstructed from wavelet packet W(3,0) 

for the cutting speed of 150 m/min and the feed rate of 0.0455 mm/rev. 
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Fig. 11. An example surface profile reconstructed from wavelet packet W(3,0) 

for the cutting speed of 350 m/min and the feed rate of 0.0724 mm/rev. 

 

IV. RESULTS AND DISCUSSIONS 

The output of the ANN models developed from the present 

study is the energy of wavelet packet W(3,0) of machined 

surface roughness data. To relate the energy of wavelet packet 

W(3,0), with the magnitudes of machined surface roughness 

parameters, the following empirical equations were 

developed based on the experimental data: 

Ra = 0.144 + 0.084 ·W(3,0) (4) 

Rq = 0.180 + 0.122 ·W(3,0) (5) 

Among the total of 45 machining experiments carried out in 

the present study, 38 machining experiments (84%) were 

randomly selected to provide data to train the ANN models.  

The remaining seven machining experiments (16%) were 

employed to provide data to test the ANN models.    

To assess how well the ANN models fit with training or test 

data, mean square error (MSE) was further calculated using 

the following formula: 

 
2

1

1
MSE measured value predicted value

n

i

i i
n 

 

 

(6) 

The lower the MSE value, the higher prediction accuracy 

the model has.  Tables I and II show the training of the ANN 

models for average roughness Ra and root-mean-square 

roughness Rq, respectively.   

To more vividly show how the predicted values are close to 

the measured values, the data included in Tables I and II were 

employed to draw Figs. 8 and 9. As can be seen from Figs. 8 

and 9, the ANN models fit well with the training data.  The 

average mean square error (MSE) was 0.0011 (0.11%) for 

average roughness Ra and 0.0015 (0.15%) for 

root-mean-square roughness Rq.  

 
TABLE I: PREDICTION OF AVERAGE ROUGHNESS (TRAINING DATA) 

Training No. Measured value Predicted value Mean squared error 

1 0.103 0.1582 0.00152352 

2 0.190 0.1698 0.00020402 

3 0.128 0.1768 0.00119072 

4 0.153 0.1710 0.00016200 

5 0.122 0.1683 0.00107185 

6 0.143 0.1616 0.00017298 

7 0.195 0.2067 6.8445E-05 

8 0.216 0.1821 0.00057461 

9 0.242 0.1846 0.00164738 

10 0.271 0.2117 0.00175825 

11 0.265 0.1843 0.00325625 

12 0.244 0.2061 0.00071821 

13 0.286 0.2830 4.5E-06 

14 0.291 0.2492 0.00087362 

15 0.257 0.2255 0.00049613 

16 0.222 0.1919 0.00045301 

17 0.493 0.3627 0.00848905 

18 0.527 0.5463 0.00018625 

19 0.615 0.6750 0.00180000 

20 0.209 0.1914 0.00015488 

21 0.184 0.1947 5.7245E-05 

22 0.216 0.2099 0.00001861 

23 0.221 0.1967 0.00029525 

24 0.269 0.2561 8.3205E-05 

25 0.249 0.2168 0.00051842 

26 0.242 0.2144 0.00038088 

27 0.572 0.5159 0.00157361 

28 0.566 0.5428 0.00026912 

29 0.643 0.7031 0.00180601 

30 0.567 0.6079 0.00083641 

31 0.509 0.5056 5.78E-06 

32 0.103 0.1582 0.00152352 

33 0.190 0.1698 0.00020402 

34 0.128 0.1768 0.00119072 

35 0.153 0.1710 0.00016200 

36 0.122 0.1683 0.00107185 

37 0.143 0.1616 0.00017298 

38 0.195 0.2067 6.8445E-05 

 
Fig. 8. The training of the artificial neural network (ANN) model for average 

roughness Ra. 
 

 
Fig. 9. The training of the artificial neural network (ANN) model for 

root-mean-square roughness Rq. 
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TABLE II: PREDICTION OF ROOT-MEAN-SQUARE ROUGHNESS (TRAINING 

DATA) 

Training 

No. 
Measured value Predicted value Mean squared error 

1 0.130 0.2263 0.00463685 

2 0.131 0.1799 0.00119561 

3 0.151 0.2247 0.00271585 

4 0.147 0.1918 0.00100352 

5 0.158 0.2311 0.00267181 

6 0.136 0.1912 0.00152352 

7 0.14 0.2113 0.00254185 

8 0.139 0.2007 0.00190345 

9 0.241 0.2174 0.00027848 

10 0.180 0.2276 0.00113288 

11 0.203 0.2192 0.00013122 

12 0.162 0.2153 0.00142045 

13 0.202 0.2056 6.48E-06 

14 0.255 0.2710 0.00012800 

15 0.272 0.2354 0.00066978 

16 0.316 0.239 0.00296450 

17 0.345 0.2783 0.00222445 

18 0.344 0.2385 0.00556513 

19 0.314 0.2702 0.00095922 

20 0.360 0.3819 0.00023981 

21 0.382 0.3328 0.00121032 

22 0.332 0.2984 0.00056448 

23 0.292 0.2496 0.00089888 

24 0.607 0.4977 0.00597325 

25 0.726 0.7643 0.00073345 

26 0.853 0.9512 0.00482162 

27 0.269 0.2489 0.00020201 

28 0.234 0.2537 0.00019405 

29 0.287 0.2756 6.498E-05 

30 0.286 0.2565 0.00043513 

31 0.348 0.3428 1.352E-05 

32 0.318 0.2857 0.00052165 

33 0.320 0.2823 0.00071065 

34 0.745 0.7202 0.00030752 

35 0.808 0.7592 0.00119072 

36 0.921 0.9921 0.00252761 

37 0.824 0.8537 0.00044105 

38 0.765 0.7051 0.00179401 

 
TABLE III: PREDICTION OF AVERAGE ROUGHNESS (TEST DATA) 

Test No. Measured value Predicted value Mean squared error 

1 0.100 0.0885 0.00006125 

2 0.099 0.1687 0.00242905 

3 0.563 0.8012 0.02836962 

4 0.506 0.3244 0.01648928 

5 0.193 0.1601 0.00054121 

6 0.229 0.4671 0.02834581 

7 0.274 0.4147 0.00989825 

 
TABLE IV: PREDICTION OF ROOT-MEAN-SQUARE ROUGHNESS (TEST DATA) 

Test No. Measured value Predicted value Mean squared error 

1 0.129 0.0994 0.000438 

2 0.127 0.2159 0.003952 

3 0.793 1.1345 0.058311 

4 0.736 0.442 0.043218 

5 0.253 0.2034 0.001230 

6 0.284 0.6493 0.066722 

7 0.346 0.5732 0.025810 

 

Tables III and IV show the testing of the ANN models for 

average roughness Ra and root-mean-square roughness Rq, 

respectively.  For the prediction of average roughness Ra, the 

average mean square error (MSE) varies between 0.00006125 

(0.006125%) and 0.02836962 (2.836962%) for different tests, 

with the average MSE of 0.0123 (1.23%).  For the prediction 

of root-mean-square roughness Rq, the average mean square 

error (MSE) varies between 0.000438 (0.0438%) and 

0.058311 (5.8311%) for different tests, with the average MSE 

of 0.0285 (2.85%).  These low values of MSE mean that the 

ANN models developed in the present study have high 

prediction accuracy. 

 

V.   CONCLUSION 

A new computational intelligence approach has been 

proposed to predict the machined surface roughness in metal 

machining. Wavelet packet transform (WPT) has been used to 

extract features from 3D cutting force signals and cutting 

vibration signals.  The energy of these features, along with the 

cutting speed and the feed rate, have been used as inputs of 

artificial neural networks (ANN) models. Forty-five 

machining experiments have been performed to collect data to 

train and test the ANN models.   

Based on the test data, the average mean square errors 

(MSE) were 1.23% for predicting average roughness Ra and 

2.85% for predicting root-mean-square roughness Rq.  These 

results show that the ANN models developed from the present 

study have high prediction accuracy.   
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