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Abstract

Bumble bees (Bombus Latrielle) are significant pollinators of flowering plants due to their

large body size, abundant setae, and generalist foraging strategies. However, shared setal

coloration patterns among closely and distantly related bumble bee species makes identifi-

cation notoriously difficult. The advent of molecular genetic techniques has increased our

understanding of bumble bee evolution and taxonomy, and enables effective conservation

policy and management. Individuals belonging to the North American Bombus fervidus

species-complex (SC) are homogenous in body structure but exhibit significant body color

phenotype variation across their geographic distribution. Given the uncertainty of the genea-

logical boundaries within the SC, some authors have synonymized all members of the B. fer-

vidus SC within a single taxon, while others propose an alternative two taxa hypothesis.

Operating under the phylogenetic species concept, our analysis supports the hypothesis

that there are two independent lineages of bumble bees within the B. fervidus SC. With the

current evidence, however, it is not possible to assign valid names to either of them,

because both lineages include the color phenotypes found in the original species descrip-

tions of B. fervidus and B. californicus. Cryptic speciation does not seem to be the product of

Müllerian mimicry between the clades, because diverging coloration patterns are observed

when the distribution of the clades overlaps. Furthermore, within each lineage there is evi-

dence for strong population differentiation that is correlated with geographic distribution

rather than color phenotype. In our study, we demonstrate the importance of obtaining a

broad sample of multiple populations when conducting lower-level phylogenetic analyses.

In addition to improving our knowledge of bumble bee diversification patterns, characterizing

the evolutionary history of these pollinators provides the foundation needed to guide con-

temporary conservation assessments and management strategies.
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Introduction

Cryptic speciation is the process in which organisms share a nearly identical phenotype but

belong to different species [1]. It is a common phenomenon observed across the understudied

and numerically dominant insects, and can pose a significant hurdle to effective conservation

and management [2]. Biodiversity is rapidly declining on a global scale primarily due to

resource extraction activities associated with economic growth and expansion. In fact, it is esti-

mated that the contemporary extinction rate is 1,000 times higher than what has been experi-

enced prior to the global effects of humanity’s economic and developmental activities [3]. A

major impediment to the effective conservation of biodiversity includes the lack of consensus

among scientists and conservation practitioners on the taxonomic resolution appropriate to a

conservation or management goal. Without an operational unit that considers the ecology and

evolutionary history of a species, efforts to promote species conservation will remain daunting

[2].

Bumble bees (Hymenoptera: Apidae, Bombus) are one of the most important native pollina-

tors of North America, contributing to the ecosystem services required by wild and economi-

cally important flowering plant species [4,5]. They are dominant pollinators of the northern

hemisphere, specifically in alpine and temperate ecosystems [6,7]. Furthermore, wild bumble

bee populations have been found to enhance crop productivity through effective pollination

[4,8,9]. However, the global decline of wild bumble bee populations due to disease, pesticides,

urbanization, and agricultural intensification have prompted state, national, and international

efforts to document the diversity and distribution of these iconic bee fauna [10–12].

Concurrent efforts to conserve bumble bees are dependent on recognizing operational

units, whether they are species, taxonomic, evolutionary, or otherwise [2,11,13]. These units

have been useful in unveiling local biotic and abiotic factors that are specific to unique evolu-

tionary lineages of cryptic species [2,14]. Due to the spatial cohabitation of aposematic setal

coloration patterns, bumble bees have proven to be difficult to identify to species by both nov-

ice and seasoned taxonomists [15–20]. The dependence on setal coloration patterns to delin-

eate between closely related species has caused debate on the species status of many of these

taxa [15,16,20]. Contemporary phylogenetic investigations using both single and multiple

genetic loci, as well as morphology-based taxonomic studies, have resolved some cryptic spe-

cies complexes across bumble bee subgenera [18,19,21]. It has been demonstrated with a single

gene, Cytochrome c oxidase I (COI), that bumble bees exhibiting nearly identical aposematic

coloration patterns have been found to be separate species [22–25]. However, a lack of COI

variation between species has also been detected, leading to synonymizations [6,15].

In this study, we examine the evolutionary history of the Bombus fervidus species-group

(SC), which contains two species: B. fervidus (Fabricius, 1798) and the nominal sister taxon B.

californicus Smith, 1954. These species belong to the globally distributed subgenus Thoraco-
bombus [21,26]. The decline in flowering plants with long corollas due to urbanization and

agricultural intensification has been implicated in the decline of European Thoracobombus
[27,28]. Additionally, North American B. fervidus and B. californicus have been found to be

declining in abundance in both wild and urban environments, relative to historic population

abundance estimates [29–32]. Increased disease detection in wild populations of B. fervidus
and another Thoracobombus, B. pensylvanicus, has been hypothesized to be a major contribu-

tor to their decline in the wild [10,33].

Bombus fervidus and B. californicus have been recognized to be legitimate species, based on

historic and contemporary investigations using taxonomic and comprehensive phylogenetic

tools [16,20,21,26]. However, the lack of strong divergence in COI, and exhibition of transi-

tional color patterns following a continuum of variation from mostly black (i.e., B. californicus)

Phylogeny and population genetics of cryptic speciation
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to mostly yellow (i.e., B. fervidus) has been suggested to be evidence that they are conspecific

[15,34]. Bombus californicus is distributed from the Pacific Coast of North America, east to the

Black Hills of South Dakota [16,17,20]. Unlike B. californicus, which is distributed across a

broad latitudinal gradient relative to the longitudinal range, B. fervidus has a transcontinental

distribution, from the Pacific Coast to the northeastern United States [15,17,20,35]. While

both species are sympatric in portions of their range in western North America, Hobbs [36]

suggested that B. fervidus and B. californicus differ in nesting habitats in Canada, with B. cali-
fornicus nesting in wooded areas and the foothills of southern Alberta, and B. fervidus primar-

ily found to be in the prairies [20].

Setal color patterns are the principle diagnostic tool for differentiating between B. fervidus
and B. californicus [16,17,20]. Historically, female B. fervidus are described to have their scu-

tum, scutellum, metasomal tergites 1–4 with yellow setae, and metasomal tergite five with

black setae (phenotype 4) (Fig 1) [17,20,37]. Conversely, female B. californicus are described to

have their anterior scutum with yellow setae, scutellum with black setae, metasomal tergites

1–3 with black setae, metasomal tergite 4 with yellow setae, and metasomal tergite 5 with black

setae (phenotype 1) (Fig 1) (B. californicus sensu stricto) [17,20,37]. However, since the original

description of B. californicus, a number of taxa have been synonymized under B. californicus,
and are now documented to be variable in black and yellow setal coloration pattern through-

out their geographic distribution (phenotypes 2 and 3) (B. californicus sensu lato) [17]. In

coastal populations of B. californicus, the scutellum and metasomal tergites 1–3 are with black

setae (phenotype 1) [16,17,20]. However, in the intermountain west and Colorado Rockies, B.

californicus populations are observed with variable banding patterns of yellow setae on their

scutellum and metasomal tergites 1–3 (phenotypes 2 and 3). Historically, phenotype 3 has

been recognized as a subspecies, B. californicus consanguineus, and looks very similar to B. fer-
vidus with the exception of having two small patches of black setae on the apicolateral margins

of metasomal tergite two [16,17,20,34].

Multiple taxonomic investigations of the two bumble bee species have agreed on one central

idea: they are nearly impossible to separate morphologically [15,16,20,21,38]. In regards to dis-

tinguishing between B. californicus consanguineus and B. fervidus, W.P. Stephen stated in

Fig 1. Distribution of the major phenotypes associated with B. fervidus and the nominal B. californicus in the

United States. The size of each circle represents the number of specimens associated with each locality. The color of

each pie slice represents the proportion of specimens exhibiting one of four phenotype (P) classes. Shapes (i.e.,
hexagon, triangle, circle, and heart) below each pie slice correspond to the phenotype diagrams presented in Fig 2.

Phenotype diagrams are modified from Williams et al. [15]. The number at the center of each pie chart represents the

field sites described in Table 1. P1-P3 = B. californicus, P4 = B. fervidus.

https://doi.org/10.1371/journal.pone.0207080.g001
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Bumble Bees of Western North America, “There are no morphological features in either species

by which they can be distinguished, and separation is made exclusively on color pattern” [16].

In regards to distinguishing B. californicus (sensu stricto, phenotype 1) from B. fervidus (sensu
stricto, phenotype 4), he went on to write, “The species is close morphologically to B. fervidus
(Fabr.) and is impossible to separate structurally from that species.” [16]. Finally, W.P. Stephen

citing Franklin [38], went on to state that “californicus and fervidusmay eventually prove to be

subspecies of a single species”. Twenty-six years later, R. Thorp led the writing of Bumble Bees
and Cuckoo Bumble Bees of California (Hymenoptera: Apidae), and expressed a similar senti-

ment for the lack of variability (outside of setal color) between B. californicus and B. fervidus
[20]. Furthermore, a comparison of the male genitalia between B. fervidus and B. californicus
found no morphological differences [20]. However, he stated that there were distinct ecologi-

cal differences between B. californicus and B. fervidus when sympatric, showing no signs of

intergradation. At present, there is no biological evidence that B. californicus and B. fervidus
have the capacity to breed in the wild, despite historic reports that initially proposed this

hypothesis [34]. In a global systematic survey of bumble bees, Cameron et al. [26] inferred a

phylogeny based on five genetic loci and found that B. fervidus and B. californicus were sepa-

rated by substantial branch lengths, suggesting that they might be separate species. However,

Williams et al. [15] considered that the lack morphologically diagnostic traits and COI diver-

gence between the two species as evidence that B. fervidus and B. californicus are conspecific.

There are three major hypotheses concerning the species status of B. californicus and B. fer-
vidus. The first hypothesis proposes that B. californicus and B. fervidus are distinct species

[16,17,20,21,26]. The second hypothesis proposes that B. californicus and B. fervidus are dis-

tinct species, and produce a hybrid subspecies, B. californicus consanguineus [34]. Finally, the

third hypothesis proposes that B. californicus and B. fervidus are conspecific [15,16]. Operating

under the phylogenetic species concept, our goal in this study is to test all three hypotheses

simultaneously. We use data from neutral and adaptive genetic loci to examine their species

boundaries. We first infer a phylogeny with three mitochondrial loci: COI, 12s RNA, and 16s

RNA with specimens distributed across a broad geographic range, and exhibiting diverse setal

phenotypes. Next, we expand our genetic sampling effort of specimens and genotype popula-

tions using neutral microsatellite loci to examine potential hybridization and species assign-

ment. We predict that neutral microsatellite loci will have the power to identify introgression

between B. fervidus and B. californicus [39,40].

Materials and methods

Taxa examined

We included a total of 320 specimens associated with the B. fervidus SC, including the nominal

B. californicus. We made an effort to include a diversity of setal color phenotypes associated

with the B. fervidus SC (Fig 1) [15]. Exemplars of B. weisi (Thoracobombus) and B. insularis
(Psithyrus) were selected as outgroup taxa based on recent Bombus phylogenies [21,26]. In-

group taxa, exclusive to females were sampled throughout a major portion of their range in

North America. We recorded setal color pattern data and locality information associated with

queen and worker castes (S1 Table). We categorized specimens into four broad phenotype

groups (Fig 1). These phenotype groups are based on previous taxonomic assessments of the

B. fervidus SC [16,17,20]. Assignment of setal color patterns to specimens follow the schematic

diagram presented in [15] and [17]. In addition to phenotypes, we assigned specimens to

either B. fervidus and the nominal B. californicus following the species diagnoses from [20],

[16], and [17]. In brief, B. californicus is much more variable than B. fervidus, and has been

assigned three predominant setal phenotypes. Fig 1 presents the phenotypes (P) as P1, P2, and

Phylogeny and population genetics of cryptic speciation
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P3. Bombus fervidus is not considered to be variable in setal bandings, and is presented as P4

in Fig 1.

Forty-nine field sites did not require specific permissions to survey bumble bees as the sur-

veys were conducted in public spaces that had no specific geographic protections (Table 1).

Furthermore, collection permits are not necessary as members of the B. fervidus SC are not

protected under any state or federal laws. Four sites did require specific permits for bumble

bee surveys as they took place in U.S. National Parks. The sites and corresponding permits are

as follows: Pop ID 1 = PORE-2010-SCI-0021 (Point Reyes National Seashore), Pop ID

16 = LEWI-2013-SCI-003 (Lewis & Clark National Historical Park), Pop ID 39 = PINN-

2011-SCI-005 (Pinnacles National Park), and Pop ID 40 = YOSE-2004-SCI-011 (Yosemite

National Park) (Table 1). Permit details may be retrieved from National Park Service Research

and Reporting System (https://irma.nps.gov/rprs/). Collection data associated with specimens

used for this study have been digitized and deposited in the United States National Pollinating

Insect Collection at Utah State University in Logan, Utah, U.S.A (S1 Table).

DNA extraction, amplification, and gene sequencing

We extracted genomic DNA from the mid-leg of a specimen using a modified Chelex 10 pro-

tocol following Strange et al [41]. DNA extracted in this manner was primarily used for micro-

satellite genotyping (i.e., Fragment Analysis), and was not especially successful when used in

PCR aimed at amplifying gene fragments >500 base pairs. In this case, we also extracted geno-

mic DNA using the Roche High Pure Template Preparation Kit (Roche Diagnostics GmbH,

Germany) to obtain high quality genomic DNA suitable for downstream amplicon

sequencing.

For 64 specimens, we amplified three mitochondrial gene fragments: 489 nucleotides of 16S

rRNA, 369 nucleotides of 12S rRNA, and 900 nucleotides of COI. PCR conditions and primers

followed the recommendations of the published literature [21,42–44]. Briefly, PCR was carried

out in a 25 μL reaction volume, containing approximately 3 μL of extracted DNA, 1x Promega

(Madison, WI) reaction buffer, 0.6 mM dNTP mixture, 10 μM primer, 5 units Taq polymerase

(Promega, Madison, WI) and the MgCl2 concentration was adjusted to 1.4 mM. 16S rRNA

fragments were amplified with the primers 875-16S1F and 875-16S1R described in Cameron

et al. [42] at 50˚/70˚C annealing and elongation temperatures, respectively. 12S rRNA frag-

ments were amplified with the primers 12Sa-5’ and 12-SLR-5’ described in [21] at 48˚/70˚C

annealing and elongation temperatures, respectively. Finally, COI was amplified with the for-

ward primer 5'-ATAATTTTTTTTATAGTTATA-3' and the reverse primer 5'-GATATTA
ATCCTAAAAAATGTTGAGG-3' described in Bertsch et al. [43] from Tanaka et al. [44] at 45˚/

60˚C annealing and elongation temperatures, respectively [43,44]. Sequencing reactions were

performed for both forward and reverse DNA strands (http://etonbio.com). We edited and

assembled reads, and aligned the DNA sequences with Geneious v8 (http://geneious.com

[45]).

Phylogenetic analysis

The mitochondrial genes were examined separately and combined into a single partitioned

dataset (1758 nucleotides) to infer a phylogeny with a Bayesian likelihood-based approach.

Models of molecular evolution for each mitochondrial locus and codon position (COI) were

first investigated with PartitionFinder v1.0.1 [46]. We implemented the model HKY+Gamma

for 12S and 16S, HKY+I for COI first codon position, F81 for COI second codon position and

HKY for COI third codon position. The Bayesian single-gene and concatenated phylogenies

were estimated with MrBayes v3.2.1 [47] using two independent runs with three heated chains

Phylogeny and population genetics of cryptic speciation
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Table 1. Survey locations of populations in the Bombus fervidus species complex in North America.

Pop

ID

Population

Code

Location Description Latitude Longitude Country State/Province County

1 CA_Marin01 Coast Campground, Point Reyes National Seashore 38.01651 -122.85357 USA California Marin

2 CA_Sierra01 0.92 km SSW of Sierra Valley 39.61279 -120.42351 USA California Sierra

3 CA_Sierra02 1.52 km SSW Sierraville 39.57604 -120.36991 USA California Sierra

4 CA_Sierra03 2.33 km WNW Sierraville 39.59517 -120.39332 USA California Sierra

5 CAN_BC Uplands Park, Victoria, District of Oak Bay 48.44218 -123.29772 Canada British Columbia

6 CO_Gunn01 2.61 km NNW Crested Butte 38.8908 -106.9951 USA Colorado Gunnison

7 CO_Gunn02 Swanson Lake, 2.59 km NW 38.32304 -107.4761 USA Colorado Gunnison

8 CO_Larimer01 Dry Gulch Rd, Estes Park 40.39179 -105.48759 USA Colorado Larimer

9 CO_Ouray01 Angel Creek Campground, Uncompahgre NF 38.00169 -107.69428 USA Colorado Ouray

10 CO_Summit01 9.54 km NW Silverthorne 39.7184 -106.1513 USA Colorado Summit

11 MO_Missoula01 MPG Ranch: Plot 109 46.70016 -114.03231 USA Montana Missoula

12 NE_Elko01 Gollaher Mtn; Chokecherry spring, 4.2km NW 41.93535 -114.50717 USA Nevada Elko

13 NE_Lander01 Toiyoabe Range, Birch Creek, site 5 39.38735 -117.02886 USA Nevada Lander

14 OR_Baker01 32.5 km NE Baker City 45.00649 -117.57936 USA Oregon Baker

15 OR_Benton01 Corvallis 44.5667 -123.2833 USA Oregon Benton

16 OR_Clatstop01 Lewis & Clark National Historic Park 46.1298 -123.8903 USA Oregon Clatstop

17 OR_Grant01 Billy Fields Recreation Site, 1.07 km SSW 44.3552 -119.3054 USA Oregon Grant

18 OR_Hood River01 0.35 km ESE of Wyeth 45.69103 -121.76563 USA Oregon Hood River

19 OR_Lake01 Warner Canyon Ski Area 42.23806 -120.29696 USA Oregon Lake

20 OR_Wallowa01 Wallowa-Whitman National Forest, 1.42km NNW of Hideaway Spring 45.70638 -117.29303 USA Oregon Wallowa

21 SD_Custer01 Fs Rd. 284 43.8312 -103.03775 USA South Dakota Custer

22 SD_Lawrence01 FS Rd.198 44.20805 -103.774533 USA South Dakota Lawrence

23 SD_Pennington01 Ditch Creek, West, Black Hills National Forest 44.0091 -103.831 USA South Dakota Pennington

24 UT_Box Elder01 Raft River Meadows 41.90004 -113.40052 USA Utah Box Elder

25 UT_Cache01 Logan Canyon, area 48 41.91778 -111.48035 USA Utah Cache

26 UT_Daggett01 3.77 km ESE Sheep Creek Lake 40.8836 -109.8066 USA Utah Daggett

27 UT_Wasatch01 Guardsman Pass, 7.09km SSW of Park City 40.6065 -111.555 USA Utah Wasatch

28 UT_Wasatch02 Timber Canyon, 3.8 km E Soldier Summit 39.9302 -111.0338 USA Utah Wasatch

29 WA_Asotin01 Anatone, 17 km SE 46.10825 -117.2458 USA Washington Asotin

30 WA_Clallam01 Dungeness Recreation Area 48.13381 -123.19755 USA Washington Clallam

31 WA_Clark01 Vancouver 47.47 -122.28 USA Washington Clark

32 WA_Island01 Kettles Trail, near Coupeville 48.34782 -121.06564 USA Washington Island

33 WA_Lewis01 Glenoma, 4.92 km ENE 46.53815 -122.10821 USA Washington Lewis

34 WA_Okanogan01 0.3 mi E Cornell Butte 48.5957 -118.8897 USA Washington Okanogan

35 WA_Skagit01 Concrete 48.53928 -121.74625 USA Washington Skagit

36 WA_Thurston01 Olympia, 2.43 km NW 47.05933 -122.92552 USA Washington Thurston

37 WY_Big Horn01 Medicine Mtn, 1.60 km N, Big Horn National Forest 44.80227 -107.90035 USA Wyoming Big Horn

39 CA_Pinnacles High Peaks Tr; Condor Gulch Tr jct, EbyS 0.75km 36.48891 -121.18265 USA California San Benito

38 WY_Johnson01 Cow Camp Spring, Big Horn National Forest 44.31898 -106.94241 USA Wyoming Johnson

40 CA_Yos Joes Point, 0.7 mi NNE 37.8945 -119.9493 USA California Tuolumne

41 ID_Ada01 Eagle, Dry Creek Cemetery, 2 km N 43.71038 -116.30246 USA Idaho Ada

42 ID_Cassia01 City of Rocks; Twin Sisters Peak, 3km SE 42.02338 -113.6963 USA Idaho Cassia

43 ID_Owyhee01 Inside Desert; Pence Butte; 10.26km SSW 42.01196 -115.33798 USA Idaho Owyhee

44 Indiana PPAC3, Tarp target pest:AG 41.44395 -86.92045 USA Indiana Porter

45 NE_Otero01 Cloudcroft, 3.6 km NNW 32.9757 -105.7559 USA New Mexico Otero

46 NE_Sandoval01 Valle San Antonio 35.9749 -106.5408 USA New Mexico Sandoval

(Continued)
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and one cold chain each. The MCMC chains were run for 10 million generations with sam-

pling every 1000 generations. Convergence diagnostics were evaluated with Tracer v1.5 [48].

Ten-percent of samples were discarded as burn-in. Trees were visualized in FigTree v1.4.0

[49].

Microsatellite genotyping

A total of 373 bumble bees across 53 field sites were screened at 13 microsatellite loci docu-

mented in the literature: BL15, B124, BTERN01, BT28, BT10, B96, BTMS0066, B126,

BTMS0062, BTERN02, BTMS0086, BTMS0044 and BTMS0059 [50–52]. PCR were performed

in final volumes of 10 μL, containing approximately 1 μL of extracted DNA, 1x Promega

(Madison, WI) reaction buffer, 0.6 mM dNTP mixture, 0.2–0.4 μM primer, 0.001 mg BSA, 0.4

units Taq polymerase (Promega, Madison, WI) and the MgCl2 concentration was adjusted to

1.4 mM. The PCR conditions for both multiplex reactions were one 3:30 min cycle at 95˚C, 30

cycles of 95˚C for 30 s, annealing temperature 55/58˚C for 1:15 min, 72˚C for 45 s and a final

extension period of 15 min at 72˚C. The DNA amplifications were performed with fluorescent

5’ dye-labeled primers (6-FAM, NED, VIC, or PET) and separated on an Applied Biosystems

3730xl automatic sequencer at the Center for Integrated Biology at Utah State University

(Logan, UT). The allele sizes were scored manually using Geneious v8 [45]. Because we were

potentially working with two different species in our study, we elected to use a universal bin

set when scoring alleles for all specimens. This approach ensured that alleles were being consis-

tently called with the appropriate microsatellites motifs with no a priori assumptions of species

identity. Our method did not yield any ambiguous allele calls nor did we observe any “bin

creep” [53], suggesting that the genotypes discovered in this study were suitable for down-

stream analyses.

Population genetic analysis

A Bayesian clustering method implemented in Structure v2.3.4 [54] was used to assign individ-

uals to populations a priori. This method ensured that we did not base species identifications

on the setal color phenotype the specimen displayed (Fig 1). We predicted that specimens that

were grouped together based on microsatellite genotypes composed distinct genetic clusters

separate from specimens in other predicted groups. The Structure algorithm in this way has

been found to be useful in identifying distinct genetic clusters in other studies of bumble bees

with cryptic phenotypes and evolutionary histories [18].

Table 1. (Continued)

Pop

ID

Population

Code

Location Description Latitude Longitude Country State/Province County

47 NE_Torrance01 Canon de Tajique, 4 air km NW 34.7689 -106.3285 USA New Mexico Torrance

49 SD_Fall River01 FS Rd. 379 43.3935 -103.751166 USA South Dakota Fall River

50 UT_Tooele01 Skull Valley; Salt Mtn, 10.9km NbE 40.6436 -112.68916 USA Utah Tooele

51 VI_Clarke01 Blandy Experiment Farm 39.065 -78.057 USA Virginia Clarke

52 WA_Spokane01 Spokane Airport 47.6231 -117.5133 USA Washington Spokane

53 WA_Whitman01 Kramer CRP 46.5829 -117.2094 USA Washington Whitman

Pop ID = population identification number associated with Fig 1 and Fig 3; Population Code = unique population code description; Location Description = location

description of survey location, Latitude = decimal degrees latitude (WGS1984); Longitude = decimal degrees longitude (WGS1984); Country = country; State/

Province = state/province; County = USA county name.

https://doi.org/10.1371/journal.pone.0207080.t001
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We used the admixture model in Structure, which assumes that individuals comprise K
unknown genetic clusters, to which an individual can be fractionally assigned. This allowed us

to group specimens based on their genotype without prior delineation to a population or spe-

cies. In this case, the inferred population represents a genetic cluster and would illuminate any

contemporary admixture of genes. The alternative to the admixture model would be to set the

modelling scheme to “no admixture” which would assume that populations are discrete, where

genotypes were assigned to a genetic cluster in full (i.e., no fractional assignment). As we are

testing whether B. fervidus and B. californicus are conspecific with gene flow among popula-

tions, incorporating admixture into the modelling framework would allow for fractional

assignment to K population(s). Furthermore, the admixture model would allow us to detect if

any hybridization at the microsatellite loci between the two species was evident in areas where

the two color phenotypes are sympatric. We set the admixture model to run with 20,000 burn-

in steps and 100,000 samples, with 10 iterations for each K, where K ranged from 1 to 10. Test-

ing a wide range of K ensured that we did not bias the assignment of genotypes to only one or

two species.

To determine the optimal K (i.e., populations/species or genetic lineages), the distributions

of the probability of the data (ln P(D)) and ΔK, as described by Earl and von Holdt [55] and

Evanno and vonHoldt [55], were visualized with the web-based software program Structure

Harvester [55]. To account for multimodality associated with individual Structure simulations,

we averaged each individual’s admixture proportions over the 10 replicates for the best K
using Clumpp v1.1.2 [56]. Finally, in addition to Structure analyses, we combined the 13

microsatellite loci into a principal components analysis to determine if significant clustering of

similar genotypes could be inferred.

After determining the appropriate species assignments and number of K genetic clusters,

the probability of null alleles was estimated with the software program MicroChecker [57]. We

then estimated pairwise linkage disequilibrium (LD) and deviations from Hardy-Weinberg

equilibrium (HWE) across populations and loci with the web-based software program Gene-

pop v 4.0.10 using default parameters [58]. Based on the genetic clusters inferred by Structure,

we performed an analysis of molecular variance (AMOVA) to test for differences in genetic

structure with Arlequin v3.5 [59]. We then tested for a correlation between pairwise estimates

of fixation based on allele frequencies with geographic distance (Isolation by Distance) within

the genetic clusters inferred from the Structure analysis with GeneAlEx v6.5 [60].

Results

Phylogenetic analysis

Our inferred phylogeny based on the concatenated gene sequences recovered two distinct mono-

phyletic groups with strong support (Bayesian Posterior Probability, BPP = 1.0) (Fig 2A). Our

data recover a paraphyletic B. californicus sensu lato and a polyphyletic B. californicus sensu
stricto and B. fervidus, but support the hypothesis that there are two phylogenetically distinct spe-

cies—clade b and clade c—due to fairly long branch lengths separating them. Single gene investi-

gations revealed similar topologies to the full evidenced set but with lower support for clades b

and c, specifically, BPPCOI = 0.89, BPP12s = 0.84, and BPP16s = 0.86. All three genes contributed to

the inferred Bayesian phylogeny and were retained in all analyses. Examination of sequence

divergence between clades b and c, revealed the COI gene to have 861 identical sites (95.7%)

with an average sequence divergence of 1.67% between clades; 16s revealed 473 identical sites

(97.1%) with an average sequence divergence of 1.66%; and 12s revealed 348 identical sites

(94.8%) with an average sequence divergence of 5.04%. GenBank accession numbers for the

three mitochondrial gene fragments of the 64 specimens are found in S2 Table.
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Species descriptions of B. californicus by Smith (1859) and B. fervidus by Fabricius (1798)

did not capture the phenotype (setal color) variability associated with lineages inferred in our

well supported phylogeny. While setal color variability has been documented in both species,

taxonomic keys and diagnoses by Thorp et al. [20], Stephen [16], Mitchell [35], Koch et al.

[17], and others do not account for the shared setal color polymorphisms uncovered in this

study. Coloration patterns from the holotypes of both species have been recovered in the two

clades, which impedes us from assigning taxonomic names to them. Clade c includes the least

color variability, which has traditionally been assigned to B. fervidus. This clade contains indi-

viduals from phenotype 1 from the Coastal/South Sierra California, forming the subclade i

(Table 1, sites 39 and 40). Within the Intermountain West + Pacific Northwest h clade, indi-

viduals that exhibited no signs of admixed black setae on the dorsal regions of terga two and

three of the metasoma were detected, which is typically attributed to B. californicus consangui-
neus (Fig 2A) (Table 1, site 13) [20].

Within the respective b and c clades, we found a degree of support for geographic structur-

ing across lineages (Fig 2A). Specifically, within clade b, we found strong support (BPP = 1.0)

for a Rocky Mountain clade g as sister to the populations distributed in the Intermountain

Fig 2. Phylogeny and microsatellite genotype assignment of B. fervidus and B. californicus. (A) Bayesian phylogeny

of B. fervidus SC inferred using the fragments of three mitochondrial genes: cytochrome c oxidase I + 12s rRNA+ 16s

rRNA. Values preceding each node correspond to Bayesian posterior probabilities. The scale bar indicates branch

lengths in expected substitutions per site. Specimen phenotype group is mapped out with a corresponding shape and

color. Phenotype 1 = black hexagon, phenotype 2 = black triangle, phenotype 3 = orange circle, phenotype 4 = orange

heart. Outgroups = B. weisi (Thoracobombus) and B. insularis (Psythirus), with the branch length of the latter species

truncated. Bold lowercase letters refer to the clades associated with a node preceding each lineages’ geographic

distribution. (B) Fractional genotype assignment (genetic cluster) based on a Bayesian analysis of 13 microsatellite loci

implemented in Structure assuming K = 2. Each horizontal bar represents a single specimen’s microsatellite genotype,

where each color represents a fractional assignment to one of two genetic clusters. Colors of each fractional genotype

correspond to the text color of the specimens mapped on the Bayesian phylogeny (A). Dashed line associating the

phylogeny to the fractional genotype assignments of the Structure plot link the pool of corresponding individuals that

were sequenced and genotyped.

https://doi.org/10.1371/journal.pone.0207080.g002
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West + Black Hills and the Pacific West clade d. An exception was a South Dakota specimen

(CusterSD, DD13197) that was found within the Intermountain West clade d, but it was pre-

ceded by a node with poor support (BPP = 0.71). Within clade c, we found strong support for

the Coastal/South Sierra California clade i as sister to a lineage that comprises specimens dis-

tributed from North Sierra California + Intermountain West to Eastern USA clade e. Within

clade e we found low support (BPP = 0.61) for the sister relationship between the North Sierra

California populations and the populations that comprises the Intermountain West to Eastern

USA.

Population genetic analysis

Microsatellite genotypes corroborate the existence of two monophyletic groups inferred from

the multi-gene phylogeny within the B. fervidus SC (Fig 2B). Structure analysis of the available

genotypes revealed two major genetic clusters within the B. fervidus + B. californicus clade a

(Fig 2A). The estimate of the optimal cluster is based on a Structure Harvester analysis that

found the highest log likelihood of the inferred models of K to occur at K = 2 (Table 2; Mean

LnP(K|2) = -14577.2). Significantly less explanatory power was gained by additional clusters

(ΔK = 954.68) [55] (Table 2). Finally, at six localities in our study, we found sympatric popula-

tions of clades b and c as evidenced by distinct microsatellite genotypes (Fig 3A), and the

inferred phylogeny (Fig 2A).

In total, 93.8% of the 373 genotyped individuals were matched to the species identifications

performed by the authors (B. fervidus or B. californicus) based on the classic setal color pheno-

types found in taxonomic keys and field guides (Fig 1) [16,17,20]. Of the 209 specimens exhib-

iting the B. californicus phenotypes (phenotypes 1, 2, and 3) (Fig 1), 5.26% were assigned to

genetic cluster 2 (Fig 2B). While the genotypes of 10 specimens were assigned to genetic cluster

2, they exhibited phenotype 1 (B. californicus sensu stricto). Eight of the specimens were col-

lected in Pinnacles National Park and two of the specimens were collected in Yosemite

National Park (S1 Table). An additional individual assigned to genetic cluster 2 exhibited phe-

notype 3 (B. californicus sensu lato), and was collected in Owyhee County, Idaho. Of the 172

specimens exhibiting the B. fervidus phenotype (phenotype 4), 7.3% were assigned to genetic

cluster 1 (Fig 2B). While the genotypes of 12 specimens were assigned to genetic cluster 1, they

exhibited phenotype 4 (B. fervidus sensu stricto). Eight specimens were collected in the Toiyabe

Range in Lander County, Nevada, one specimen was collected in the Bitterroot Valley in Mis-

soula County, Montana, two specimens were collected in Logan Canyon in Cache County,

Table 2. Table of four probabilities of model fit implemented with the Evanno method associated with different values of K (i.e., genetic clusters) based on 13

microsatellites implemented in Structure Harvester. Bold text represents the indices that suggests the value of K that best predicts the microsatellite genotypes assigned

in the Structure analysis.

K Reps Mean LnP(K) Ln'(K) |Ln''(K)| Δ K
1 10 -15870.1 - - -

2 10 -14577.2 1292.85 865.67 954.6799

3 10 -14150 427.18 208.34 80.19935

4 10 -13931.2 218.84 31.18 0.906039

5 10 -13743.5 187.66 38.67 0.474636

6 10 -13594.5 148.99 99.93 1.567087

7 10 -13545.5 49.06 8.32 0.101161

8 10 -13488.1 57.38 99.03 0.945423

9 10 -13529.7 -41.65 146.24 0.348091

10 10 -13425.2 104.59 - -

https://doi.org/10.1371/journal.pone.0207080.t002
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Utah, and one specimen was collected in Guardsman Pass in Wasatch County, Utah (S1

Table).

Principal components analysis estimated 202 principal components for the 13 genetic loci

used in our study. Principal component 1 explained 4% of the variance in the genotype data

and principal component 2 explaining 6% of the variance in the genotype data (Fig 3B). While

the number of principal components is large, visual inspection of principal components 1 plot-

ted against principal components 2 revealed two distinct clusters associated with the genotype

assignments inferred from the Structure analyses (Fig 2B). Furthermore, AMOVA results

found that 14.66% of the genetic variation was partitioned among the two major genetic clus-

ters, 14.10% among individuals within populations, and 71.24% among individuals within

sites (Table 3). Overall FST among populations is 0.15 (P< 0.001) and FIS is 0.17 (P< 0.001).

Microsatellite genotype data is available at https://doi.org/10.6084/m9.figshare.6972518.v1.

Fig 3. Map and principal components analysis of B. fervidus species complex microsatellite genotypes. (A) Spatial

distribution of K = 2 genetic clusters, genetic cluster 1 (gray circles) and genetic cluster 2 (orange circles) inferred from

a Bayesian analysis of 13 microsatellite loci implemented in Structure. The size of each circle represents the number of

specimens genotyped per locality. Fractional genotypes are averaged across specimens within each genetic cluster (see

Fig 2B for individual genotype assignment to a lineage). Populations enclosed by a black or white dotted polygon

represent localities where genetic cluster 2 and genetic cluster 1 are geographically sympatric (i.e., Site 2: 0.92 km SSW

of Sierra Valley, Sierra County, California; Site 3: 1.52 km SSW Sierraville, Sierra County, California; Site 4: 2.33 km

WNW Sierraville, Sierra County, California; Site 14: 32.5 km NE Baker City, Baker County, Oregon; Site; Site 11: MPG

Ranch, Bitterroot Valley, Missoula County, Montana; Site 13: Toiyabe Range, Birch Creek, site 5, Lande County,

Nevada); Site 25: Logan Canyon, Cache County, Utah; Site 23: Mirror Lakes, Pennington County, South Dakota). The

number at the center of each pie chart represents the field sites described in Table 1. (B) Principal component analysis

of 13 microsatellite loci shared between genetic cluster 1 (gray points) and 2 (orange points).

https://doi.org/10.1371/journal.pone.0207080.g003

Table 3. Results of Analysis of Molecular Variance (AMOVA) for genetic clusters 1 and 2 in the Bombus fervidus species complex (n = 330) based on allele frequen-

cies of 13 loci.

Source of Variation df Sum of Squares Variance Components % Variation

Among populations 1 201.56 0.55 14.66

Among individuals within populations 356 1340.11 0.54 14.10

Within Individuals 358 965.50 2.70 71.24

Total 715 2507.173 3.79 100

FIS = 0.17, FST = 0.15, FIT = 0.29, (all p< 0.001)

https://doi.org/10.1371/journal.pone.0207080.t003
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To determine HWE and LD associated across populations within each genetic cluster (i.e.,
clade), we first separated out individuals based on genetic cluster assignment supported by

Structure analysis. After partitioning the specimens by genetic clusters, we used Micro-checker

to determine if any loci by population combinations exhibited evidence of null alleles or stut-

tering. From our analyses of population within the genetic cluster 1 (clade b), we elected to

remove BTMS0044 as it was found to be in LD with BTERN02. Finally, BL15 and B124 did not

amplify in several specimens in genetic cluster 2, and were not used in any further analyses.

After the removal of problematic loci, we retained the following eight loci for further analyses

with specimens assigned to genetic cluster 1: BT10, B96, BTERN02, B124, BL15, BT28,

BTMS0086, BTMS0066, and the following eight loci for specimens assigned to genetic cluster

2: B126, BT10, B96, BTERN02, BTERN01, BTMS0044, BT28, BTMS0066.

Across genetic cluster 2 (clade c) we detected a strong effect of geographic distance on pat-

terns of allelic fixation (Mantel Tests, r = 0.39, P = 0.03), with estimates of pair-wise linearized

FST ranging from 0 to 0.26 (Fig 4A). We also detected a strong effect of geographic distance on

patterns of allelic fixation within genetic cluster 1 (clade b) (Mantel Tests, r = 0.56, P = 0.01),

with estimates of pairwise linearized FST ranging from 0 to 0.53 (Fig 4B).

Discussion

Globally, there are more than 260 species of described Bombus [26]. Bumble bees are typically

regarded as well studied relative to other Hymenoptera given that they represent the only

extant genus in the tribe Bombini (Apidae), particularly in North America. In our study, we

uncovered two well-supported lineages made up of populations that exhibit shared setal color

polymorphisms across clades b and c in the B. fervidus SC (Fig 2A). Cluster assignment of 13

microsatellite loci corroborates the results of the inferred phylogeny, specifically, that two dis-

tinct genetic lineages are present in areas where the species are broadly sympatric (Figs 2B

and 3).

Phylogeny and population genetic structure

The recent and rapid diversification within the B. fervidus SC was likely driven by climate

change and glacial oscillations associated with the late Pleistocene [18,61,62]. Simple pairwise

examination of the average levels of divergence across COI between clade b and c is 1.67%.

The observed level of divergence is below the 2% level that is often considered reflective of

what delimits a species [15]. This suggests that divergence from a common ancestor likely

occurred less than ~1 million years ago based on estimates of mitochondrial divergence with

respect to time [63]. However, in addition to COI, we considered that distinct 16s and 12s hap-

lotypes are characteristic of individuals associated with both clades (Fig 2). Because there are

no morphological differences other than setal coloration [16,17,20], and color patterns found

in the holotypes of B. californicus and B. fervidus are represented in the two clades recovered,

there is no evidence to assign species names to either clade. Future studies including molecular

and/or morphological data from molecular specimens and the holotypes will be crucial to

establish the species boundaries within this SC.

Despite shared setal color polymorphisms in the B. fervidus SC, we reject the hypothesis

that the complex is composed of a single species. However, due to the lack of evidence other

than setal coloration, we cannot reject the hypothesis that B. fervidus and B. californicus are

conspecific, because the type specimen of both could be included in a single lineage. Microsat-

ellites are powerful molecular tools that have the capacity to uncover introgression between

cryptic species [39,40,64]. Our microsatellite data found sympatric populations within the B.

fervidus SC to be reproductively isolated, with no evidence of introgression (Figs 2B and 3).
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Therefore, we reject the hypothesis that B. californicus and B. fervidus produce the hybrid B.

californicus consanguineus (phenotype 3).

Williams et al. [15] and Stephen [16] state that current taxonomic tools are not useful for

differentiating some closely related species, including B. californicus and B. fervidus. We agree

with both Williams et al. [15] and Stephen [16] that B. californicus and B. fervidus cannot be

identified to species using setal color in certain parts of the geographic distribution based on

the results generated in this study (Figs 2 and 3). For example, based on the data in this study,

we found that specimens, which would be identified as B. californicus in southern California

(sites 39 and 40) (Fig 1), could be assigned to clade c which are made up of populations exhib-

iting the “B. fervidus” phenotype (Figs 1, 2A and 3A). Furthermore, populations distributed in

the Toiyabe Range in Nevada, and the Bear River Mountain Range in Utah identified as B. fer-
vidus based on the absence of black setae on the dorsum of the metasoma [20] could be

assigned to clade b which are made up of populations exhibiting the “B. californicus” pheno-

type (Fig 2A).

Fig 4. Isolation by distances (IBD) of genetic clusters 2 and 1 in the B. fervidus species complex. (A) Isolation by

Distance Plot: Linearized FST between pairs of genetic cluster 2 populations compared to geographic distance. (B)

Isolation by Distance Plot: Linearized FST between pairs of genetic cluster 1 populations compared to geographic

distance.

https://doi.org/10.1371/journal.pone.0207080.g004
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Given the results of our study, setal color patterns appear to be of limited taxonomic use.

Despite the degree of crypsis associated within the B. fervidus SC, we assigned 89% of the B.

californicus specimens used in our study to clade b (genetic cluster 1) with microsatellite geno-

types (Fig 2A). With B. fervidus, we assigned 93% of the specimens to clade c (genetic cluster

2) with microsatellite genotypes based on recognized phenotypes of the SC (Figs 2 and 3). If

the type specimens were samples, and the clades could be assigned to correct names, species

assignment to either B. californicus or B. fervidus based on current taxonomic tools could be

possible in some areas of North America. Future research on the B. fervidus SC should evaluate

taxonomic characters like wing venation as it has been useful method for distinguishing

between cryptic bumble bee species [65].

Cryptic speciation and mimicry

Cryptic speciation is found in a diversity of bumble bee clades, as well as other invertebrate

and vertebrate taxa. For example, species in the B. lucorum SC (B. lucorum, B.magnus, and B.

cryptarum) are indistinguishable from each other using taxonomic methods of identification

(i.e., setal color patterns), and can only be diagnosed to species using molecular techniques

such as barcoding [22]. Müllerian mimicry is a well-documented phenomenon where sympat-

ric species share a common aposematic phenotype to warn predators of their noxious chemical

composition [66]. Like the B. lucorum SC, the B. trifasciatus SC in east Asia is another example

where species identification based on setal color pattern fails to differentiate between species.

Genetic divergence among the B. trifasciatus SC is hypothesized to be generated by Himalaya

orogeny with Müllerian mimicry the likely factor shaping cryptic speciation among unrelated

bumble bees [66]. Other cryptic species complexes among the bumble bees include the B. pata-
giatus and B. hypocrita SCs of Asia [67], and the B. ephippiatus SC of Mesoamerica [18,65].

Examples of cryptic speciation facilitated by Müllerian mimicry is observed in butterflies (Heli-
conius spp.) [68], spider wasps (Pompilidae) [69], velvet ants (Mutillidae) [70], and frogs (Den-
drobates spp.) [71].

Our phylogenetic and population genetic analytical framework discovered two distinct line-

ages exist in the B. fervidus SC, and that they can occur in the same habitat space. The results

of our study suggest that when both species are sympatric they appear to be phenotypically

divergent (Figs 2, 3A), which would indicate they are not mimicking each other. However,

while they can be some sympatric, some authors have suggested that B. fervidus and B. califor-
nicus inhabit different habitat niches [36]. Future research could examine how climate, mim-

icry, and floral niche might contribute to their ability to coexist in some portions of their

range, but not in others [27,28,65,72]. For example, Pleistocene climate variation has been

hypothesized to not only drive genetic divergence in B. huntii, but also differences in biocli-

matic niche, and potentially in setal color variation [72]. In addition to B. huntii, there is evi-

dence that historic climate variation has shaped patterns of genetic divergence and habitat

partitioning across closely related bumble bee species, and is hypothesized to have also cas-

caded down to changes in setal color patterns [6,18]. In the B. fervidus SC, shared setal colora-

tion patterns between the two clades is potentially a result of Müllerian mimicry where the

model is not in the SC. For example, at MPG Ranch in Missoula, Montana (site 11), popula-

tions belonging to genetic cluster 1 (clade b) and 2 (clade c) are detected, and exhibit divergent

phenotypes (Figs 1 and 3A). Other sites where B. fervidus SC species are sympatric (both

genetic clusters 1 and 2 are detected), exhibit divergent phenotypes, and show no evidence for

introgression include the North Sierra Nevada Mountains (sites 2, 3, 4), the Bear River Range

(site 25), the Toiyabe Range (site 13), southeastern Oregon (site 14), and the Black Hills (site

23) (Fig 3A).
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Among bumble bees, Müllerian mimicry is a common phenomenon, and has been docu-

mented across a diversity of communities around the globe [18,19,65,66]. For example, bum-

ble bees in eastern North America share similar yellow and black setal coloration patterns that

can make it difficult to correctly identify some individuals to species [15]. Outside of bumble

bees, participation in a Müllerian mimicry ring with species of a completely different, or

closely related taxonomic group is also common. For example, there is strong phylogenetic evi-

dence that spider wasps (Pompilidae) and velvet ants (Mutillidae) have exhibit similar pheno-

types when they sympatric [69].

Conservation implications and future work

Bumble bees are well regarded for their value in agricultural ecosystems as they are efficient

pollinators of a diversity of crops [4,5,73]. However, there is global concern for bumble bee

decline due to economic activities associated with human growth and expansion, namely the

shuffling of Hymenopteran disease due to movement of bee colonies to meet pollination

demands, as well as increased urbanization and agricultural intensification [10,74–76]. B. fervi-
dus in particular has been associated with decline at regional scales [30,32], and has been

found to be highly susceptible to a suite of pathogens [77]. Despite its co-distribution with B.

fervidus throughout western North America, B. californicus does not appear to be associated

with high levels of pathogen incidence [74,77].

Cryptic speciation in bumble bees is well documented [22,65,67]. Application of a phyloge-

netic and population genetic analytical framework has revealed that using setal color patterns

as a way to diagnosis species might not be useful in discriminating between closely related spe-

cies [22,67]. The inability to discriminate between species due to cryptic speciation has signifi-

cant implications to both biodiversity conservation and agriculture. For example, Carolan [22]

discovered that B. hypocrita and B. patagiatus exhibit a similar phenotype, but are phylogeneti-

cally distinct. The widespread Russian B. patagiatus are reared by commercial greenhouse

growers for pollination of food crops. Because they can be indistinguishable from B. hypocrita,

which are found in Japan, there is potential for misidentification and ultimately, the unin-

tended movement of B. patagiatus and B. hypocrita between continental Asia and Japan. The

movement of non-native species or populations has the potential to displace native bumble

bee species or populations [78,79], cause a reproductive disturbance with native species [80],

and potentially facilitate the spread of disease [76,81,82].

A prevailing hypothesis associated with bumble bee decline includes the introduction of

novel pathogens or pathogen strains [10,11]. Given the differences in pathogen prevalence

between B. fervidus and B. californicus, we suggest that researchers treat the two species in the

B. fervidus SC differently in the context of conservation, ecology, and evolution. Our results

show that the two lineages are phylogenetically distinct (Fig 2A), with no evidence for intro-

gression when sympatric (Figs 2B and 3). Given the pronounced genetic differences in the spe-

cies, treating them as separate will allow for a more robust assessment of their conservation

needs and disease profiles.

Despite the inability to identify the individuals to species based on current taxonomy, there

is potential for alternative, non-destructive ways to ensure correct species identification

[83,84]. Specifically, we found that microsatellite genotypes have the capacity to differentiate

species, even when they are sympatric (Figs 2 and 3). While we propose that a synoptic collec-

tions of the bumble bee community be created when conducting ecological research, we have

found that taking a tarsal clipping from the mid-leg for DNA extraction and subsequent geno-

typing is possible, which avoids sacrificing the whole individual, allowing it to continue with

its contribution to the nest economy [83]. Knowledge about the evolutionary processes
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associated with the formation of a species is required in conservation biology [2,14,85]. In this

study, we demonstrate that populations that compose B. fervidus SC lineages are cryptic, yet

form well supported clades. To reduce the complex to a single species based on the inability to

identify them to species using morphological traits will likely obscure the host-pathogen

dynamics associated with the species, and ultimately hinder effective action on their conserva-

tion and management.

Supporting information

S1 Table. Database of specimens in the B. fervidus species complex summarizing genetic

cluster assignment (K), phenotype/taxonomic assignment, and locality data. Specimen

Voucher = unique specimen identification number; Sequence ID = unique specimen identifi-

cation number associated with the GenBank accession number in S2 Table; Population

ID = unique population identification number associated with each population, see Figs 1 and

3 for geographic position; Population = alternative unique population code, GenusName =

genus of taxa; Phenotype (Biotype) = phenotype assignment of specimen, see Fig 1; Taxonomic

Species = species assignment based on phenotype and taxonomic keys; Genotype Confirm =

species assignment based on genotype (“californicus” = genetic cluster 1, “fervidus” = genetic

cluster 2); Genetic Cluster = microsatellite genetic cluster assignment; Identified correctly =

Yes/No statement that evaluates whether microsatellite genetic cluster assignment match taxo-

nomic species assignment; Location Description = location description; Decimal Latitude =

decimal latitude (WGS1984); Decimal Longitude = decimal longitude (WGS1984); Country =

country; State/Province = state/province; County = county; K1 Assignment = genetic cluster

assignment to K1 based on Structure analysis; K2 Assignment = genetic cluster assignment to

K2 based on Structure analysis. Microsatellite genotype data is available at https://doi.org/10.

6084/m9.figshare.6972518.v1.

(XLSX)

S2 Table. GenBank accession numbers for B. fervidus SC specimens. ID # = unique identifi-

cation number, Barcode = unique barcode identification number associated with S1 Table;

Species = species assignment; Sub-genus = subgenus assignment, Th. = Thoracobombus, Psy. =

Psythirus; Phenotype Group = phenotype assignment based on taxonomic keys; Locality =

Location collected; State/Province = state/province; Decimal Latitude = decimal degrees lati-

tude (WGS1984); Decimal Longitude = decimal degrees longitude (WGS1984); 12s = 12s Gen-

bank accession number; 16s = 16s Genbank accession number; COI = COI Genbank accession

number.

(XLSX)
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