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Interfacing nickel nitride and nickel boosts both
electrocatalytic hydrogen evolution and oxidation
reactions
Fuzhan Song1, Wei Li 1, Jiaqi Yang2, Guanqun Han1, Peilin Liao2 & Yujie Sun 1,3

Electrocatalysts of the hydrogen evolution and oxidation reactions (HER and HOR) are of

critical importance for the realization of future hydrogen economy. In order to make elec-

trocatalysts economically competitive for large-scale applications, increasing attention has

been devoted to developing noble metal-free HER and HOR electrocatalysts especially for

alkaline electrolytes due to the promise of emerging hydroxide exchange membrane fuel

cells. Herein, we report that interface engineering of Ni3N and Ni results in a unique Ni3N/Ni

electrocatalyst which exhibits exceptional HER/HOR activities in aqueous electrolytes. A

systematic electrochemical study was carried out to investigate the superior hydrogen

electrochemistry catalyzed by Ni3N/Ni, including nearly zero overpotential of catalytic onset,

robust long-term durability, unity Faradaic efficiency, and excellent CO tolerance. Density

functional theory computations were performed to aid the understanding of the electro-

chemical results and suggested that the real active sites are located at the interface between

Ni3N and Ni.
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Hydrogen (H2) has long been advocated as a clean and
carbon-neutral energy carrier in the field of renewable
energy catalysis, in that H2 can be produced from water

electrolysis with renewable energy inputs, like solar and wind
power, and its utilization in hydrogen fuel cells will produce
electricity with water as the sole product1. The success of a future
hydrogen economy strongly depends on the efficient H2 pro-
duction and utilization, which includes the hydrogen evolution
and oxidation reactions (HER and HOR)2–5. Owing to the multi-
proton multi-electron nature of both HER and HOR, electro-
catalysts are indispensable to drive the two reactions to achieve
industrially relevant rates. Pt-based electrocatalysts exhibit the
best performance for H2 evolution in strongly acidic electrolytes6,
however their HER activities are substantially diminished under
alkaline conditions. Since no Earth-abundant electrocatalysts of
water oxidation can survive under strongly acidic conditions and
match the rates of Pt-based HER electrocatalysts so far, an
increasing attention has been shifted towards H2 evolution in
alkaline media, in which a number of low-cost HER electro-
catalysts start to rival Pt-based HER electrocatalysts. The same
scenario occurs for the H2 oxidation reaction. Pt is still the state-
of-the-art HOR electrocatalyst under acidic conditions for
the application of proton exchange membrane fuel cells
(PEMFCs)7–9. However, the real kinetic bottleneck of PEMFCs in
acidic electrolytes is the cathodic O2 reduction reaction (ORR),
which requires a large amount of unaffordable Pt. In order to
develop economically attractive hydrogen fuel cells, it is
imperative to develop competent fuel cell electrocatalysts com-
posed of much fewer or no Pt-group metals. Recently, hydroxide
exchange membrane fuel cells (HEMFCs) emerge as a promising
alternative technology5,7–12, whose alkaline electrolytes enable the
utilization of many inexpensive ORR electrocatalysts, some of
which can compete the performance of Pt-based ORR electro-
catalysts. Ironically, under alkaline condition, it is HOR, instead
of ORR, becoming the challenging reaction, as even for Pt its
HOR performance in alkaline HEMFCs is two orders of magni-
tude lower than that in acidic PEMFCs. Therefore, it is of fun-
damental and practical importance to develop highly competent
and Earth-abundant electrocatalysts for improving hydrogen
electrochemistry in both HER and HOR for the realization of
hydrogen economy2,13.

Great research efforts have been devoted to the development of
nonprecious HER electrocatalysts, including transition metal com-
pounds, alloys, and molecular complexes14–19. Relatively less
attention has been concentrated on the development of HOR
electrocatalysts8,9,20–23. Since both HER and HOR involve the same
critical intermediate species, adsorbed hydrogen (H*) on the surface
of an electrocatalyst, it is not surprising that hydrogen adsorption
free energy (ΔGH*) has been widely adopted as a key descriptor in
assessing the performance of diverse electrocatalyst candidates for
HER and HOR6,24,25. The accumulated collection of experimental
and theoretical results has unambiguously established volcano-type
plots for HER/HOR activity versus ΔGH* on many electrocatalysts,
indicating that the optimal HER/HOR performance will be achieved
when ΔGH* is near 0 eV3,26,27. Hence, great efforts have been
focused on optimizing ΔGH* of diverse electrocatalysts through
metal alloying9,15,25, composition variation21,22,28, crystal facet
modification17, defect introduction, size/dimension confinement29,
and interface construction7,8,20,30–36. Despite the increasing efforts
in advancing the HER and HOR activities of inexpensive electro-
catalysts, most of them have not met the target performance for
large-scale industrial applications. To the best of our knowledge, no
catalytic systems ever reported focus on exploring the interfaces of
first-row transition metals and their nitrides for hydrogen electro-
chemistry in aqueous media.

Herein, we demonstrate that purposely interfacing Ni and
Ni3N results in an electrocatalyst (Ni3N/Ni) with extraordinary
activities for both HER and HOR. The rich Ni3N/Ni interfacial
sites can be obtained by electrodeposition of Ni nanoparticles on
current collectors such as Ni foam (NF) followed by thermal
nitridation in ammonia (Ni3N/Ni/NF). Through interface engi-
neering, the resultant Ni3N/Ni/NF demonstrates excellent HER
apparent activity with nearly zero onset overpotential in alkaline
and neutral electrolytes, requiring only 12 to 19mV overpotential
to produce a current density of −10 mA cm−2, which can rival
the activity of Pt/C catalyst loaded on NF under the present
experimental conditions. Such exceptional electrocatalytic per-
formance renders Ni3N/Ni/NF the best among all the reported
nonprecious HER electrocatalysts. Besides, the intrinsic specific
activities (normalized by the real surface area or electrochemically
active surface area) of Ni3N/Ni/NF are also superior to those of
Pt/C catalysts loaded on NF for HER in neutral and alkaline
electrolytes under similar experimental conditions within the
scope of our investigation. Even more exciting is that Ni3N/Ni/NF
also shows superior HOR activity in alkaline medium (0.1 M
KOH) with a great tolerance to CO poisoning. Density functional
theory calculations were conducted to shed light on the excep-
tional performance of Ni3N/Ni/NF. It was found that the inter-
facial sites between Ni3N and Ni have very small values of ΔGH*.
The best hydrogen adsorption site on Ni3N/Ni/NF exhibits a
ΔGH* value of 0.01 eV, very close to the ideal amount of 0 eV.
Furthermore, our computational results also imply that the
existence of a Ni3N/Ni interface favors both the original
adsorption and the subsequent dissociation of water on the cat-
alyst surface, which is beneficial to HER (and arguably HOR as
well) activity in alkaline and neutral electrolytes. Overall, Ni3N/
Ni/NF represents an extremely active while still low-cost elec-
trocatalyst with bifunctional activity for both HER and HOR. Our
work also demonstrates that interfacing metals and nitrides is an
effective strategy in creating inexpensive and high-performance
catalysts of hydrogen electrochemistry, which deserves further
attention for applications not only limited to water electrolyzers
and fuel cells but also many other hydrogen-related reactions.

Results
Synthesis and characterization of interfacial Ni3N/Ni. The
Ni3N/Ni interfacial electrocatalysts were synthesized through the
cathodic electrodeposition of porous Ni microspheres on com-
mon current collectors such as Ni foam (NF) or carbon foam
(CF), followed by thermal nitridation in ammonia to create rich
Ni3N/Ni interfacial sites. The nitridation temperature and dura-
tion were both optimized for Ni3N/Ni/NF. The nitridation tem-
perature was varied from 200 to 400 °C and no Ni3N was formed
until the temperature reached 300 °C (Supplementary Fig. 1).
Further increasing the nitridation temperature led to the dis-
appearance of the Ni3N phase, most likely due to the low thermal
stability of Ni3N at high temperature (>350 °C)37,38. The nitri-
dation duration was also varied at 300 °C (Supplementary Fig. 2).
On the basis of the weight increase after ammonia treatment, the
weight percentage of Ni3N in Ni3N/Ni/NF increased from 8.67 to
44.66 wt.% with the nitridation duration rising from 0.5 to 12 h,
indicating the increased coverage of Ni3N (Supplementary Fig. 3).
The Ni3N/Ni/NF synthesized at 300 °C for 6 h with the weight
percentage of Ni3N of 41.82 wt.% exhibits the highest HER
activity, while longer duration resulted in decreased HER activity
(see Discussion).

The scanning electron microscopy (SEM) images in Fig. 1a
illustrate that Ni3N/Ni/NF prepared at 300 °C for 6 h possessed
three-dimensional (3D) macroporous ligament network structure
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with numerous stacked coarse particles over the skeleton surface,
which is inherited from the electrodeposited Ni/NF sample yet in
sharp contrast to the smooth surface of pristine Ni foams
(Supplementary Fig. 4). The elemental mapping images of Ni3N/
Ni/NF show that Ni and N are uniformly distributed and the
energy dispersive X-ray (EDX) spectrum confirms the major
composition of Ni and N in Ni3N/Ni/NF (Fig. 1b–e). The X-ray
diffraction (XRD) patterns (Fig. 1f) suggest that after nitridation
new peaks attributed to hexagonal Ni3N (JCPDS card No. 10-
0280) appeared while the major composition of Ni3Ni/Ni/NF
remained as the cubic Ni phase (JCPDS card No. 04-0850)38. The
high-resolution transmission electron microscopy (HRTEM)
image of the Ni3N/Ni interfacial electrocatalyst clearly shows
the interface between hexagonal Ni3N and cubic Ni (Fig. 1g). The
well-resolved lattice fringes with inter-planar spacing of 0.204 and
0.214 nm can be unambiguously assigned to the (111) and (002)
crystal planes of hexagonal Ni3N with an intersection angle of
62°39,40, in agreement with the XRD results. The unique lattice
fringes with inter-planar distance of 0.176 nm correspond to the
(200) crystal plane of cubic Ni. Moreover, the elemental mapping
results of N and Ni (Supplementary Fig. 5) demonstrate that Ni is
homogeneously distributed, while N is sporadically located. The
HRTEM and elemental mapping results corroborate the success-
ful formation of rich Ni3N/Ni interfaces. The surface elements
and their valence states in Ni3N/Ni/NF were further probed by X-
ray photoelectron spectroscopy (XPS). As shown in Fig. 1h, the
high-resolution Ni 2p3/2 spectrum can be deconvoluted to
features with maxima at 852.4 and 853.3 eV, which are assignable

to metallic Ni and Ni(I) of Ni3N, respectively41–44. A small peak
at 855.4 eV corresponds to the oxidized Ni species likely due to
adventitious surface oxidation; while the satellite peak at 859.8 eV
is attributed to the shake-up excitation of the high-spin nickel
ions42. The N 1 s XPS spectrum in Fig. 1i can be simulated by the
combination of two features at 397.5 and 399.2 eV, ascribed to N
species of Ni3N and NH moieties, respectively, in which the latter
likely resulted from the incomplete reaction with NH3

42,45,46. Due
to the partial transformation of surface Ni to Ni3N, the collective
characterization results discussed above suggest that Ni3N/Ni/NF
inevitably possesses rich interfacial sites between Ni and Ni3N.

Electrocatalytic H2 evolution. The electrocatalytic performance
of Ni3N/Ni/NF towards HER was investigated in H2-saturated
electrolytes of 1.0 M potassium phosphate (KPi) buffer (pH 7.17)
and 1.0 M KOH (pH 13.80). All potentials reported herein are
referenced to the reversible hydrogen electrode (RHE) and the
current densities were calculated on the basis of both the geo-
metric areas and the real surface areas of electrodes. The effects of
nitridation temperature and duration of Ni3N/Ni/NF on the
electrocatalytic HER activity were first studied. As shown in
Supplementary Figs. 6–7, the Ni3N/Ni/NF synthesized at 300 °C
for 6 h possessed the best HER activity in all electrolytes, high-
lighting the importance in obtaining the appropriate amount of
Ni3N/Ni interfacial sites for optimal HER performance. There-
fore, all the following studies were conducted on Ni3N/Ni/NF
prepared at 300 °C for 6 h unless noted otherwise.
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Fig. 1 Characterization of Ni3N/Ni interfacial electrocatalysts. a, b SEM images of Ni3N/Ni/NF at different magnifications. Elemental mapping images of Ni
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For comparison, Pt/C (20 wt.%) powder loaded on the same-
type nickel foam was included as a control sample (Pt/NF). The
loading amount of Pt/C (2.5 mg cm−2) was optimized to achieve
the best electrocatalytic HER activity under each pH condition
(Supplementary Figs. 8–9). The iR-corrected linear sweep
voltammetry (LSV) curves of Ni3N/Ni/NF, Ni/NF, and Pt/NF
for H2 evolution at different pH are plotted in Fig. 2a, b. Under
neutral and alkaline conditions, because of the lack of free
protons, water adsorption and dissociation generally take place
prior to H2 evolution2,5,30,47. To our delight, Ni3N/Ni/NF
exhibited extraordinary HER performance with catalytic onset
potentials at ~0 V vs. RHE and required an overpotential of only
19 and 12mV to deliver a current density of −10 mA cm−2 in 1.0
M KPi buffer and 1.0 M KOH, respectively. In 1.0 M KPi, in order
to produce an industrially meaningful current density like −100
mA cm−2, Ni3N/Ni/NF only needed an overpotential of 126 mV.
However, an overpotential of 272 mV was required for Pt/NF to
deliver the same HER current. Without nitridation, the parent Ni/
NF showed rather mediocre HER activity. The drastic difference
in their HER activities of Ni3N/Ni/NF and Ni/NF unequivocally
proves the critical role of the Ni3N/Ni interfaces formed during
nitridation in catalyzing H2 production, as these two electrodes
have similar morphology. The best HER performance of Ni3N/
Ni/NF was achieved in 1.0 M KOH, wherein an overpotential of

merely 64 mV was needed to produce −100 mA cm−2, saving at
least 31 mV of voltage input relative to that on Pt/NF. The charge
transfer resistance of Ni3N/Ni/NF was also much smaller
than that of Ni/NF under the same conditions (Supplementary
Figs. 10–11).

In order to assess the intrinsic specific activities of Ni3N/Ni/NF
and Pt/NF, their electrocatalytic activities were normalized by the
Brunauer–Emmett–Teller (BET) surface area measured by N2

adsorption–desorption48 and the electrochemically active surface
area (ECSA) measured by the double layer capacitance method
on the basis of cyclic voltammetry in a nonaqueous aprotic
KPF6–CH3CN electrolyte (Fig. 2c, Supplementary Figs. 12–16 and
Tables 1-2)49. Apparently, Ni3N/Ni/NF showed higher specific
activity than Pt/NF for HER in alkaline and neutral electrolytes
under similar experimental measurement conditions. The Tafel
plots of Ni3N/Ni/NF, Pt/NF, and Ni/NF derived from their
respective polarization curves in 1.0 M KOH presented
overpotential-dependent Tafel slopes (Supplementary Fig. 17).
The findings of variable Tafel slopes were reported for many HER
electrocatalysts including Co0.6Mo1.4N2

45, Pt50–52, Ni-Mo-Cd53,
Ni2P54,55, MoP56, and FeP/Ni2P57 under different pH conditions.
This phenomenon could be attributed to many factors, such as
back reaction at low overpotentials, mass transport together with
the blocking effect of produced H2 bubbles at high overpotentials,
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Fig. 2 The electrocatalytic HER performance in neutral and alkaline solutions. a, b Linear sweep voltammetry (LSV) curves of Ni3N/Ni/NF, Ni/NF, and
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formation of a large number of N–H moieties, and the
dependence of adsorbed hydrogen intermediate on overpoten-
tial45,50,58. Therefore, it is difficult to ascertain the rate
determining step(s) and kinetic mechanism of Ni3N/Ni/NF for
HER from its potential-dependent Tafel slopes. Future work will
aim to elucidate the catalytic mechanism of Ni3N/Ni with more
sophisticated electrochemical techniques47,59.

The exciting HER activity of Ni3N/Ni/NF prompted us to
further evaluate its durability for long-term H2 production
through repetitive cyclic voltammetry (CV) and chronopotentio-
metry experiments. After 5000 CV cycles in 1.0 M KPi and 10,000
CV cycles in 1.0 M KOH, Ni3N/Ni/NF only showed a slight
overpotential increase by ca. 9 mV for delivering −100 mA cm−2

under both neutral and alkaline conditions (Supplementary
Figs. 18–19). As plotted in Fig. 2d, Ni3N/Ni/NF also demon-
strated very stable potential requirement over 50 h of galvano-
static electrolysis at −10 mA cm−2 in both neutral and
alkaline electrolytes. It could also produce a high current density
of −100 mA cm−2 over 10 h with negligible degradation in 1.0 M
KOH (Supplementary Fig. 20). Post-electrolysis characterization
confirmed that Ni3N/Ni/NF retained its original morphology and
exhibited negligible changes of morphology, crystallinity, and
composition after extended HER electrolysis (Supplementary
Figs. 21–23), highlighting its outstanding structural robustness
and mechanical stability. The produced H2 amount well matched
the theoretically calculated quantity (Supplementary Fig. 24)
assuming that all the passed charge was utilized to generate H2,
implying a Faradaic efficiency close to 100%.

In order to reveal the roles of Ni foam and Ni/NF, thermal
nitridation was also conducted on either carbon foam (CF) with
pre-electrodeposited Ni microparticles or bare Ni foam to obtain
two control samples of Ni3N/Ni/CF and Ni3N/NF, respectively.
The comprehensive characterization of Ni3N/Ni/CF confirmed
the presence of Ni3N/Ni interfaces over CF with the composition,
morphology, and crystallinity similar to those of Ni3N/Ni/NF
(Supplementary Figs. 25–27). Electrochemical studies revealed
that Ni3N/Ni/CF exhibited nearly identical HER activity as Ni3N/
Ni/NF (Supplementary Figs. 28–29), demonstrating that the
Ni3N/Ni interfacial sites are the real active sites of HER and their
activities are independent of the electrode support. In sharp
contrast, Ni3N/NF has smooth surface (Supplementary Fig. 30)
and shows much lower electrocatalytic HER activities in alkaline
and neutral solutions (Supplementary Figs. 31–32), indicating the
advantages of using rough and porous Ni/NF for thermal
nitridation to obtain Ni3N/Ni/NF.

Overall, the low cost, exceptional activity, and robust durability of
Ni3N/Ni/NF (and Ni3N/Ni/CF) render it a promising electro-
catalyst for sustainable H2 production from water, ranking it the
best among most of the reported nonprecious HER electrocatalysts
(Supplementary Table 3 & Fig. 33)29,60,61, including nanostructured
Ni3N, Ni3N/Ni(OH)2, and Pt/Ni3N42,62–64.

Theoretical computations. In order to shed light on the superior
activity of Ni3N/Ni/NF as a HER electrocatalyst, DFT calculations
were conducted on model systems. We modeled the Ni3N and
blank Ni control samples by their lowest energy-surfaces of bulk
Ni3N(001) and Ni(111), respectively. In order to model the
interfacing structure of Ni3N/Ni, we reasoned that an appropriate
structure was a few layers of nitrogen-terminated Ni3N located on
the Ni(111) surface. As proposed by Nørskov et al., the adsorp-
tion energy of hydrogen has been widely employed as a descriptor
for predicting the HER performance of many electrocatalysts3,27.
As shown in Fig. 3a and Supplementary Figs. 34–36, hydrogen
atoms are preferred to adsorb along the interface between Ni3N
and Ni in Ni3N/Ni. In fact, two interfacial sites (Ni3N/Ni_N and

Ni3N/Ni_hollow) were identified with very weak hydrogen
adsorption energies (Supplementary Table 4). The resulting free
energy changes (ΔGH*) of hydrogen adsorption at these two
positions of Ni3N/Ni (Fig. 3b) were calculated to be 0.01 and
−0.07 eV, which are very close to 0 eV27. In contrast, pure Ni
exhibits very strong hydrogen affinity with calculated ΔGH* close
to −0.30 eV (Fig. 3b and Supplementary Figs. 37–38). Even
though there exists one site on Ni3N which has a ΔGH* of 0.01 eV,
there is another site on Ni3N showing very strong hydrogen
binding affinity (ΔGH*=−0.57 eV), which would not be bene-
ficial towards efficient hydrogen electrochemistry (Fig. 3b and
Supplementary Figs. 39–40).

In order to better understand the HER activity trend among
Ni3N/Ni, Ni3N, and Ni under neutral and alkaline conditions
which are lack of free protons, we sought to investigate the
adsorption and dissociation of water on catalyst surface, which
was believed to shed more lights on their hydrogen electro-
chemistry. The computed water adsorption energies on Ni3N/Ni,
Ni3N, and Ni are compared in Fig. 3c and their corresponding
adsorption configurations are shown in Supplementary Fig. 41. It
is apparent that Ni3N/Ni and Ni possess similar water adsorption
energies, much higher than that on Ni3N. Based on the optimal
water adsorption structure on Ni3N/Ni, one can conclude that
indeed the adsorbed water prefers to reside along the interface
between Ni3N and Ni with one hydrogen atom pointing towards
the edge N in Ni3N, probably due to hydrogen bond interaction.
Such interaction also facilitates the subsequent water dissociation
on Ni3N/Ni. Figure 3d and Supplementary Figs. 42–44 present
the comparison of the activation energy barrier of water
dissociation on Ni3N/Ni, Ni3N, and Ni. As expected, Ni3N/Ni
shows the lowest energy barrier (0.50 eV) for water dissociation,
nearly 0.08 eV smaller than that on Ni3N and 0.42 eV lower than
that on Ni. The transition state structures of water dissociation on
Ni, Ni3N, and Ni3N/Ni are included in Fig. 3e. Collectively, these
computational results further corroborate our hypothesis that the
interfacial sites present on the surface of Ni3N/Ni indeed exhibit
appropriate binding affinities towards hydrogen and water, and
can also facilitate water dissociation, consistent with our
experimentally obtained HER performance of Ni3N/Ni from
neutral to alkaline conditions.

Electrocatalytic H2 oxidation. The nearly zero catalytic onset
potential for HER and very small free energy change of hydrogen
adsorption of Ni3N/Ni/NF granted us confidence to believe that
Ni3/Ni/NF could act as an excellent electrocatalyst for H2 oxi-
dation as well. Currently, it remains a critical challenge in
developing inexpensive HOR electrocatalysts in alkaline electro-
lytes for the widespread employment of HEMFCs6,9,65–67. Due to
the monolithic nature of the Ni3N/Ni/NF electrode, its HOR
performance was measured in H2-saturated 0.1 M KOH with
continuous H2 bubbling to mimic the HEMFC condition. For
comparison, Pt/C was also loaded on NF and optimized (1.5 mg
cm−2) to achieve the best HOR activity under the similar con-
ditions (Supplementary Fig. 45). The polarization curves of Ni3N/
Ni/NF collected between 0 and 0.1 V vs. RHE in H2 and Ar-
saturated 0.1 M KOH are plotted in Supplementary Fig. 46. In
contrast to the negligible capacitance current obtained in the Ar-
saturated electrolyte, Ni3N/Ni/NF showed appreciable anodic
current beyond 0 V vs. RHE upon H2 saturation, implying the
anodic current was due to H2 oxidation. In fact, the HOR cata-
lytic current of Ni3N/Ni/NF took off at 0 V vs. RHE, very close to
that on Pt/NF, and surpassed the latter’s at increasing applied
potential (Fig. 4a). At 0.09 V vs. RHE, Ni3N/Ni/NF achieved a
current density of 6.95 mA cm−2, higher than that of Pt/NF (5.25
mA cm−2), whereas Ni/NF only exhibited a current density of
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merely 0.34 mA cm−2. The exchange current density was esti-
mated from the micro-polarization region within a small poten-
tial window from −20 to 20 mV vs. RHE (Supplementary
Fig. 47). Both Ni3N/Ni/NF and Pt/NF showed electrocatalytic
HER and HOR activities starting at nearly zero overpotential in
0.1 M KOH. The calculated exchange current density of Ni3N/Ni/
NF was 3.08 mA cm−2, which was 1.4 and 17.6 times that of Pt/

Ni and Ni/NF, respectively. It was found that Ni3N/Ni/NF
showed higher specific activity than Pt/NF for HOR under similar
experimental conditions, even if the current densities were nor-
malized by their respective BET surface areas and/or ECSAs
(Supplementary Figs. 48–49). The stability of Ni3N/Ni/NF for
long-term H2 oxidation was assessed via chronoamperometry at
0.09 V vs. RHE in H2-saturated 0.1 M KOH and compared with
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that collected in the absence of H2 (Fig. 4b). Ni3N/Ni/NF main-
tained a stable anodic current density of ca. 8 mA cm−2 for 24 h
when H2 was bubbled through the electrolyte, while negligible
current density was obtained in Ar-saturated 0.1 M KOH. In
sharp contrast, if Ni/NF was utilized as the working electrode, no
more than 0.5 mA cm−2 could be obtained in H2-saturated
electrolyte (Supplementary Fig. 50).

In addition, the HOR performance of Ni3N/Ni/CF and Ni3N/NF
was also measured under the same condition as Ni3N/Ni/NF. Ni3N/
Ni/CF exhibited appreciable anodic current for HOR, although its
activity and stability were lower than those of Ni3N/Ni/NF, most
likely due to the inferior porosity of carbon foam for H2 diffusion
(Supplementary Figs. 51–52). On the other hand, Ni3N/NF only
showed negligible anodic current for HOR, highlighting the
advantages of utilizing rough and porous Ni/NF as the Ni source
for the preparation of Ni3N/Ni/NF (Supplementary Fig. 53). Since
the hydrogen (H*) adsorption free energy (ΔGH*) is also regarded as
a key descriptor in determining HOR activity6,8,9,67, the very small
ΔGH* value (0.01 eV) of Ni3N/Ni/NF mentioned above also supports
its excellent HOR performance (Fig. 3b). In addition, we further
evaluated the adsorption energies of H2 on Ni3N/Ni interface, Ni3N,
and Ni via DFT calculation (Supplementary Figs. 54–60). Ni3N/Ni
interface and Ni possess stronger H2 adsorption than Ni3N,

indicating favored H2 adsorption on Ni3N/Ni and Ni. Overall, given
both its ideal ΔGH* value and strong H2 adsorption, Ni3N/Ni was
DFT computationally predicted to be a great HOR electrocatalyst, in
agreement with the aforementioned experimental results.

Since the current industrial production of H2 mainly relies on
steam reforming from hydrocarbons, which may result in CO
impurity in the final H2 gas. Therefore, high tolerance to CO
impurity is a desirable property of electrocatalysts in hydrogen
fuel cells. Unfortunately, CO poisoning is notoriously intolerable
for Pt-based HOR electrocatalysts. Herein, we conducted CO
tolerance tests in an extreme case wherein a H2 gas mixture with
2% CO (v/v) was utilized. As shown in Fig. 4c, the HOR activity
of Pt/NF indeed was strongly suppressed by the presence of CO,
as its steady-state HOR polarization curves decreased substan-
tially in the H2/CO mixture relative to that in pure H2. For
instance, at 0.09 V vs. RHE, the maximum current density of Pt/
NF decreased by ~63% from 5.25 to 1.95 mA cm−2. On the other
hand, Ni3N/Ni/NF demonstrated a much better resistance
towards CO poisoning, showing a much less decrease of its
HOR polarization in the presence of CO. In fact, the maximum
current density achieved at 0.09 V vs. RHE was only decreased by
3.5% on Ni3N/Ni/NF, from 6.95 to 6.71 mA cm−2. Next,
chronoamperometry at 0.09 V vs. RHE was also conducted to
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further evaluate their CO tolerance. As shown in Fig. 4d, a rapid
current decrease was observed for Pt/NF in H2/CO-saturated 0.1
M KOH, resulting in a merely 0.57 mA cm−2 after 6 h electrolysis.
In contrast, Ni3N/Ni/NF was able to retain above 5 mA cm−2

under the same conditions. These results unambiguously proved
that our Ni3N/Ni/NF showed exceptional CO tolerance for HOR,
even though our testing conditions utilized a CO percentage at
least two orders higher than those typically reported68.

Discussion
In summary, we have demonstrated that interfacing Ni3N and Ni
on metallic nickel foam is an effective approach to producing
highly active and robust electrocatalysts for both H2 evolution
and oxidation reactions in aqueous media. The resultant Ni3N/
Ni/NF catalyzes HER/HOR starting at zero overpotential, robust
long-term durability, and great tolerance to CO poisoning. The
superior electrocatalytic performance makes Ni3N/Ni/NF the
most active catalyst among most of the reported inexpensive
electrocatalysts and it can even rival the activities of the state-of-
the-art Pt/C catalysts loaded on NF under similar experimental
conditions. A suite of physical characterizations, electrochemical
experiments, together with theoretical computations, were con-
ducted to gain the insights into the exceptional HER/HOR
activities of Ni3N/Ni/NF, which can be summarized in the fol-
lowing aspects.

The unique electronic and geometrical structures of the
interfacial sites on Ni3N/Ni provide great accommodation for
hydrogen adsorption. As estimated from DFT calculations, the
free energy change of hydrogen adsorption at the interfacial sites
of Ni3N/Ni/NF is very close to zero, which is beneficial to
hydrogen electrochemistry66. Although fully considering the
solvent environment and taking into account of water adsorption
when calculating the hydrogen adsorption are challenging and
beyond the scope of this work, our ongoing work aims to com-
pute the apparent hydrogen adsorption energy, which has been
recently proposed as a pH-dependent descriptor for HER and
HOR activities69.

Due to the lack of free protons in neutral and alkaline elec-
trolytes, water adsorption, and dissociation have been proposed
to be critical for HER at high pH. Our computational results
suggest that the interface between Ni3N and Ni significantly
promotes the initial water adsorption and reduces the energy
barrier for the subsequent water dissociation compared to the
situations on pure Ni or Ni3N. The Ni3N/Ni interface may also
lower the energy barrier for the reorganization of the interfacial
water network and enable efficient proton/hydroxide transfer
through the double layer, thereby promoting the HER/HOR
kinetics72. Another possible factor that cannot be completely
excluded is the potential formation of nickel oxides/hydroxides
on the surface of Ni3Ni/Ni/NF during HER/HOR testing. Despite
the debate over the promotional effect of interface oxophili-
city6,25,65–67,70,71, Markovic et al. proposed that regulating metal/
metal (oxy)hydroxide interface can promote water dissociation
for HER and optimize the balance between the active sites for H2

adsorption/dissociation and the sites for hydroxyl adsorption, in
order to enhance the alkaline HOR30–33. Analogous enhancement
due to surface nickel oxides/hydroxides may also exist, however it
should not be attributed as the primary factor, because the control
sample Ni/NF, which should have similar tendency to form
surface nickel oxides/hydroxide species, does not exhibit appre-
ciable HER or HOR performance.

The intimate contact between the Ni3N/Ni nanoparticles and
the nickel foam substrate as well as the intrinsically metallic
properties of both Ni3N and Ni enable fast electron transfer
between the active sites and the current collector. The hierarchical

topology and highly porous morphology of Ni3N/Ni/NF not only
maximize the accessibility of active sites but also facilitate mass
transport, which are all beneficial to electrocatalytic H2 evolution
and oxidation reactions.

Methods
Syntheses of Ni/NF and Ni3N/Ni/NF. The Ni3N/Ni/NF electrodes were prepared
by cathodic electrodeposition of Ni particles on nickel foams followed by thermal
nitridation. The electrodeposition was carried out with a two-electrode config-
uration in a cell containing NH4Cl (2.0 M) and NiCl2 (0.1 M) at room temperature.
A piece of clean nickel foam (0.5 cm×0.5 cm) and a carbon rod were used as the
working and counter electrodes, respectively. The electrodeposition was performed
at a constant current density of −1.0 A cm−2 for 500 s under N2 protection without
stirring to obtain Ni/NF. Then the resultant Ni/NF was placed in the center of a
quartz tube purged with NH3 flow. It was heated to the desired temperature at a
ramping rate of 10 °C min−1 and maintained at the same temperature for a given
duration. Finally, the furnace was naturally cooled down to room temperature,
leading to Ni3N/Ni/NF. The NH3 flow was kept throughout the whole process. Two
control samples of Ni3N/Ni/CF and Ni3N/NF were also synthesized under same
conditions for comparison (see Supplementary Information).

Electrocatalytic measurements. The linear sweep voltammetry (LSV), cyclic
voltammetry (CV), chronopotentiometry (CP), and chronoamperometry (CA)
experiments were conducted using a Gamry Interface 1000 electrochemical
workstation with a three-electrode configuration. The monolithic Ni3N/Ni/NF was
directly used as the working electrode. A calibrated Ag/AgCl (saturated KCl) with
salt bridge kit and a carbon rod were used as the reference and counter electrode,
respectively. The electrolyte for HER was 1.0 M potassium phosphate buffer (KPi,
pH 7.17), or 1.0 M KOH (pH 13.80). The electrolyte for HOR was 0.1 M KOH (pH
12.80). All electrolytes were bubbled with H2 throughout the whole electrochemical
experiments. All potentials are reported versus reversible hydrogen electrode
(RHE) according to the following equation:

E vs:RHEð Þ ¼ E vs:Ag=AgClð Þ þ 0:197þ 0:059 ´ pH ð1Þ

Hg/HgO (1.0 M KOH, CH Instruments) and Hg/Hg2SO4 (saturated K2SO4, CH
Instruments) reference electrodes were also used to verify the electrocatalytic
performances which were consistent with the results referenced to Ag/AgCl
(saturated KCl) electrodes. The LSV and CV curves were collected at 5 mV s−1.
Unless stated otherwise, all LSV polarization curves for HER were iR-corrected and
obtained by scanning from negative to positive potential. The correction was made
according to the following equation:

Ecorrected ¼ Emeasured � iRs ð2Þ

where Ecorrected is the iR-corrected potential, Emeasured and i are experimentally
measured potential and current, respectively, and Rs is the equivalent series
resistance measured via electrochemical impedance spectroscopy in the frequency
range of 106–0.1 Hz with an amplitude of 10 mV.

For HOR tests, the steady-state measurements were conducted to obtain the
polarization curves instead of LSV or CV methods to minimize the capacitive
current background. The multi-step CA was conducted at a potential window from
−0.05 to 0.1 V vs. RHE with a 5 mV interval for every 60 s. The stable anodic
current recorded at 60 s under each potential was used to plot the steady-state
polarization curves for HOR. For comparison, the polarization curves towards
HOR were also collected in 0.1 M KOH bubbled with high-purity H2 or H2

containing 2% CO (v/v). The catalytic stability for HER/HOR was evaluated by
either CP or CA measurement without iR correction. Besides Ni3N/Ni/NF, the
electrodeposited Ni/NF, Ni3N/Ni/CF, Ni3N/NF and commercial Pt/C catalysts
loaded on nickel foams with optimized loading were also used as working
electrodes for both HER and HOR. For HER, the optimal loading of Pt/C powder
on nickel foam (Pt/NF) was 2.5 mg cm−2 in 1.0 M KPi and 1.0 M KOH. For HOR
in 0.1 M KOH, the optimal loading of Pt/C on nickel foam (Pt/NF) was 1.5 mg cm
−2. The current densities in this work were calculated on the basis of the geometric
areas, BET surface areas, or electrochemically active surface areas (ECSAs) of
electrodes.

The exchange current (i0) can be obtained by fitting kinetic current (ik) versus
the overpotential (η) using the Butler–Volmer Eq. (3),

ik ¼ i0 e
αF
RTη � e

ðα�1ÞF
RT η

� �
ð3Þ

where α is the charge transfer coefficient, η is the overpotential, R is the ideal gas
constant (8.314 J mol−1 K−1), T is the experimental temperature (298 K), and F is
the Faradaic constant (96,485 Cmol−1).

In a small potential window of the micro-polarization region near the
equilibrium potential (±20 mV vs. RHE), ik approximately equals to the measured
current (i). In this case, the Butler–Volmer equation can be expanded by Taylor’s
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formula and simplified as Eq. (4),

i ¼ i0
ηF
RT

ð4Þ

Therefore, i0 can be obtained from the slope of the linear fitting in the micro-
polarization region5,25,72. The exchange current density (j0) was calculated by
dividing i0 by the geometric electrode area.

Theoretical computation. The DFT calculations were performed with Vienna Ab
initio Simulation Package (VASP) version 5.473–76. The projector augmented-wave
(PAW) potentials77 were used, with 1 s of H, 2s2p of N and O, and 3d4s of Ni
treated as valence electrons. The generalized gradient approximation (GGA) of
Perdew, Burke, and Ernzerhof (PBE)78 was employed. A cutoff energy of 450 eV
was used for the plane-wave basis set. The Brillouin zone was sampled by
Monkhorst-Pack k-point mesh, with reciprocal lattice spacing ≤0.04 Å−1. These
settings converge the total energy to ≤1 meV/atom with respect to higher kinetic
energy cutoff or denser k-point mesh. The convergence criterion for structural
optimization was set to 0.025 eV/Å for each atom.

The optimized bulk face centered cubic Ni structure has a lattice constant of
3.515 Å (experimental lattice constant is equal to 3.523 Å79. The lattice constants
for optimized bulk hexagonal Ni3N are a= 4.612 Å, c= 4.302 Å (experimental
values: a= 4.622 Å and c= 4.306 Å79). Predicted lattice constants for both
materials deviate <0.3 % from their corresponding experimental values. The
optimized bulk structures were used to construct surface slab models. A (4 × 4) Ni
(111) slab model of five layers was used for pure Ni, with the bottom two layers of
Ni atoms fixed to mimic bulk structure. For Ni3N, a N-terminated (2 × 2) Ni3N
(001) surface slab of 10 layers was built, with the bottom four layers fixed . For the
hybrid model, a four-layer (6 × 3) Ni (111) slab was constructed, with the bottom
two layers fixed and an Ni3N nanowire placed on top. The nanowire consists of
four layers of Ni3N (001), with N termination interacting with Ni (111) surface to
make an effective interface. While both Ni layers in Ni (111) and Ni3N (001) form
hexagonal array, the nearest Ni–Ni distance in Ni3N (001) planes is ~8% longer
than its counterpart in Ni (111). Therefore, the Ni3N nanowire in the hybrid model
experiences compressive strain from Ni substrate. The two sides of the nanowire
correspond to N-terminated (110) surface of Ni3N.

The adsorption energy of hydrogen was defined as Eslab�H � Eslab þ 1
2EH2

� �
.

Zero-point energy and entropic corrections were included for calculating the Gibbs
free energy correlations (see Supplementary Information for more details). The
reaction pathway was simulated by the climbing image nudged elastic band
(CI-NEB) 80 and the dimer81 method.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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