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Abstract Observations from lidars and satellites have shown that large neutral temperature increases and
decreases occur in the middle and low latitudes of the mesosphere and lower thermosphere region
during geomagnetic storms. Here we undertake first-principles simulations of mesosphere and lower
thermosphere temperature responses to storms using the Thermosphere Ionosphere Mesosphere
Electrodynamics General Circulation Model to elucidate the nature and causes of these changes. Temperature
variations were not uniform; instead, nighttime temperatures changed earlier than daytime temperatures, and
temperatures changed earlier at high latitudes than at low ones. Furthermore, temperatures increased in
some places/times and decreased in others. As the simulation behaves similar to observations, it provides an
opportunity to understand physical processes that drive the observed changes. Our analysis has shown
that they were produced mainly by adiabatic heating/cooling that was associated with vertical winds resulting
from general circulation changes, with additional contributions from vertical heat advection.

Plain Language Summary Both ground- and space-based observations have showed that storm
time temperature have strong variations in the mesosphere and lower thermosphere (MLT) region.
However, the possible physical mechanisms causing these storm time thermal responses have not been fully
understood. Therefore, in this paper, we use the Thermosphere Ionosphere Mesosphere Electrodynamics
General Circulation Model to investigate the possible mechanisms for the observed storm time temperature
changes in the MLT region. As the simulation behaves similar to observations, it provides an opportunity to
understand physical processes that drive the observed changes. By analyzing Thermosphere Ionosphere
Mesosphere Electrodynamics General Circulation Model results, we found storm time adiabatic
heating/cooling and vertical heat advection, both associated with changes in vertical winds, are the
MLT-dominant heating processes in the MLT region at middle latitudes. Horizontal heat advection and
radiative cooling also contribute to temperature changes, but they occur later than the other major
heating terms. At middle and low latitudes, MLT changes are first seen in the vertical winds, followed by
temperature changes; horizontal winds change later. The changes of vertical winds in the MLT region are
associated with those occurring at higher altitudes. There is no direct contribution of auroral Joule heating
and particle heating to the storm time MLT temperature changes at middle latitudes.

1. Introduction

During geomagnetic storms, the enhanced auroral precipitation and electric fields at high latitudes result in
strong Joule heating and ion drag, which, in turn, change neutral temperatures (Tn), composition, winds, and
ionospheric electron densities in the polar region. These changes are then transmitted globally to other
regions and altitudes through dynamic and chemical processes (Banks, 1977; Rees et al., 1983; Roble et al.,
1987). Storm effects on the upper thermosphere have been an area of active research and great
understanding of the physical processes driving these effects have been obtained (e.g., Fejer et al., 2017;
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Key Points:
• Both increases and decreases in

neutral temperature are seen at low
and middle latitudes in the
mesosphere and lower
thermosphere (MLT) region during
storms

• There is a time delay in storm time
MLT temperature changes; the onset
of the changes occurs first at night
and at higher latitudes

• The storm time temperature changes
at middle and low latitudes in the
MLT region are mostly caused by
adiabatic heating/cooling associated
with vertical wind variations
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Förster & Jakowski, 2000; Fuller-Rowell et al., 1994; Liu et al., 2016; Mendillo et al., 1972). However, assessing
storm effects on the mesosphere and lower thermosphere (MLT) region has been a challenge. The lack of
observations, combined with the complex physical and chemical processes that occur in this region, makes
it difficult to determine the nature and causes of possible storm time MLT changes.

Temperature changes have been detected globally during strong storms in the MLT region (e.g., Biondi &
Meriwether, 1985; Fagundes et al., 1996; Von Savigny et al., 2007). Pancheva et al. (2007) showed a greater
than 25-K drop in temperature around 90 km. They suggested that the temperature changes might be
associated with a reduction of ozone, caused by energetic particle precipitation. Nesse Tyssøy et al. (2008,
2010) showed that Tn was increased above 90 km during a relatively strong storm event. They suggested that
Tn increase above 100 km was associated with auroral heating, which includes both precipitation particle
heating and Joule heating, whereas temperature changes below 100 km were not directly related to such
auroral heating. Fang et al. (2008) and Xu et al. (2013) further demonstrated that auroral heating effects on
temperature can penetrate down to the altitudes of ~105 km at high latitudes during storms. Researchers
also proposed that the temperature and dynamics within the polar cap region can be impacted by energetic
particle precipitation and Joule heating, which then lead to composition changes affecting atmospheric
heating and cooling rates, general circulation, and wave propagation and breaking (Sinnhuber et al., 2012).
Recently, Yuan et al. (2015), using Na lidar data, found that in the four geomagnetic storms of 17 April
2002, 6 November 2004, 8 May 2005, and 1 October 2012, there were large changes in midlatitude MLT
temperatures. A maximum nightly mean temperature increase of 44 K at 105 km was observed from the
Na lidar (41°N, 105°W) between 95 and 106 km during the 18 April 2002 storm. They also found that
temperature changes were correlated with the storm time depletion of thermospheric column density of
O/N2. Liu et al. (2018) studied the effects of the 2013 St. Patrick’s Day storm on MLT temperature using
satellite data. The storm time warming was larger than 15 K above 100 km and ~10 K below 100 km at middle
latitudes. They proposed that temperature changes might be related to the storm time variation in global
circulation caused by energy and momentum inputs in the auroral region.

Therefore, both ground- and space-based observations, although very limited, have shown that Tn can have
strong variations in the MLT region during storms. However, most of the previous studies are focused on the
direct effects of energetic particle precipitation through chemical processes. The possible physical
mechanisms that have been suggested for storm time Tn change, including Joule heating, energetic particle
precipitation, and general circulation, have not been fully and self-consistently examined in the context of
the global, coupled, mesosphere, thermosphere, and ionosphere system. Furthermore, the interplay between
various physical processes in the MLT region during storms is not fully understood, leaving the cause of storm
time global thermal response in the region unclear.

In this paper, we use the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model
(TIMEGCM; Roble & Ridley, 1994) to investigate the possible mechanisms for the storm time temperature
changes in the MLT region during the storm event of 17 April 2002. By diagnostically analyzing TIMEGCM
outputs, we have obtained new insights into the processes that cause the simulated MLT
temperature changes.

2. Model Simulations

The TIMEGCM is a three-dimensional global model that self-consistently simulates temperature, circulation,
dynamics, photoionization, electrodynamics, chemistry, and composition of Earth’s middle and upper
atmosphere. The model horizontal resolution is 2.5° × 2.5° in geographic latitude and longitude. The vertical
coordinate is pressure level with a resolution of one-fourth scale height. For the TIMEGCM runs in this paper,
the high-latitude ion convection pattern is specified by the Heelis model (Heelis et al., 1982) and is driven by
the 3-hr Kp index.

A diagnostic analysis of the TIMEGCM outputs has been carried out to investigate the possible physical
processes that cause temperature changes in the MLT region between the altitudes of 94–110 km during
the storm event of 17 April 2002 (Figure 1). Two TIMEGCM runs were performed: One was driven with the true
geophysical conditions, and the other by a constant Kp value of 3.0 for geomagnetically nondisturbed
conditions. The Kp value of 3.0 was chosen since it was the value between 00:00 and 06:00 UT for the
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conditions on 17 April 2002, just before the storm (top panels in Figure 1). The two model runs began with
exactly the same model history at 00:00 UT on 17 April. Thus, the difference between the two-model
results represents the impacts of the storm in the MLT region.

Tn is calculated by solving the thermodynamic equation:

∂Tn
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¼ gez
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where t is the time and g is the gravitational acceleration. Cp is the specific heat per unit mass for constant
pressure, KT is the molecular thermal conductivity, H is the pressure scale height, KE is the eddy diffusion coef-
ficient, ρ is the atmospheric mass density, v!n is the horizontal velocity,W is the vertical wind velocity, R* is the
universal gas constant, and ¯m is the mean molecular mass. The terms on the right-hand side are the heat
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and horizontal advection (vn · ∇Tn), adiabatic heating/cooling (W
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), vertical heat advection (W ∂Tn

∂Z ), and

other heating and cooling processes (Q and L), including solar, chemical and Joule heating, and NO and
CO2 infrared radiative cooling. By comparing each term from those two runs, we obtain their relative impor-
tance for the simulated storm time temperature changes and therefore, understand the physical mechanisms
driving these changes.

Figure 1. (top row) Kp (black line) and Dst (blue line) between 17 and 23 April 2002: The black solid line shows the real Kp
during the storm, and the red line is a constant Kp value of 3.0 for nondisturbed conditions. The second to bottom
rows are the Tn differences at 60°N, 40°N, and 20°N from 94 to 110 km between TIMEGCM simulations driven by the real Kp
and by a constant Kp value of 3.0. The left column is for the longitude of 105°W where the storm began at 02:00 LT.
The right column is for the longitude of 30°E and the onset of the storm was at 11:00 LT. The red dashed lines indicate the
beginning of the geomagnetic storm.
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3. Results

Yuan et al. (2015) showed the storm effects on MLT temperatures during four storm events of 17 April
2002, 6 November 2004, 8 May 2005, and 1 October 2012 using the nocturnal Na lidar data at two close
midlatitude stations. They observed significant nighttime temperature enhancements in the lower
thermosphere during those storms, but the magnitude of the maximum temperature increase was
different for each storm. We carried out TIMEGCM simulations for all four storms and found that the results
are similar and consistent with observations. Here we show the results from one storm (17 April 2002) to
elucidate the physical mechanisms that cause the storm time MLT temperature changes in middle and
low latitudes.

The top panels in Figure 1 give the real Dst (blue line) and Kp values (black line) and a constant Kp value of 3.0
for geomagnetically nondisturbed conditions (red line) between 17 April 2002 and 23 April 2002. The
minimum of Dst was �149 nT. The gray areas represent the main phases of the storm (e.g., Balan et al.,
2014, 2017). The recovery periods began at 08:00 UT on 18 April and 09:00 UT on 20 April. When the storm
occurred at 09:00 UT, the 105°W longitude was at night (02:00 LT, left column), while the 30°E longitude
was in the daytime (11:00 LT, right column). For 105°W, Tn at 60°N began to decrease at 10:00 UT and the peak
value of Tn decrease was larger than 10 K above 100 km on 17 April. This particular location has a magnetic
latitude of 69°N, which was most likely inside the polar cap. This Tn decrease lasted for about 11 hr. Tn then
increased at all heights for most of the time from 20:00 UT on 17 April to the storm recovery phase at 15:00 UT
on 22 April, with a period of Tn decrease between ~10:00 and 22:00 UT on 19 April. High-latitude Tn began to
change when the main phases of the storm started. Tn at 40°N began to change at 09:20 UT on 17 April and
continued until 00:00 UT on 23 April. For most of the time, Tn increased and themaximum value of Tn increase
at 105 km was 20 K on day 17 April. Interestingly, there are two periods on 17 and 19 April, Tn decreased in
some height range. Small Tn decreases are also seen on 22 April. At low latitudes (20°N), Tn increased from
11:00 UT on 17 April to about 00:00 UT on 22 April. Tn changes had about 2-hr time delay compared with
the storm onset time. A Tn decrease occurred at higher altitudes on 22 April. The temperature enhancements
above ~105 km in the middle and low latitudes were both larger than 10 K. The temporal variations of Tn in
middle and low latitudes are similar, while differences do exist. For example, the cooling on 17 and 19 April in
middle and high latitudes was absent at low latitudes.

Tn at (60°N, 30°E) began to increase at 15:00 UT (17:00 LT) on 17 April. Unlike the case at 105°W, Tn decrease,
with respect to the quiet-time Tn, was small and short lived at this longitude. Tn variations were larger than 5 K
above 100 km from 17 to 20 April. Tn changes at middle (40°N) and low latitudes (20°N) were also delayed by
about 1 and 2 hr compared with those at high-latitude (60°N). Tn enhancements were larger than 20 K at 40°N
and 15 K at 20°N above 105 km during the period of 17–20 April. At both longitudes, Tn increases at middle
latitudes were in general larger than those at low latitudes. The time delay of temperature changes increases
with decreasing latitudes.

In the left column of Figure 1, the storm began at local night, whereas in the right column, the storm
commenced in the local daytime. Tn changes at night occurred earlier than those in the daytime after storm
onset. When the storm started at 9:00 UT, the nighttime Tn at 40°N had an immediate response in ~20 min.
Whereas, the daytime temperature changes at 40°N occurred at 11:00 LT, which represented a delay of 6 hr
from the storm onset. Tn at 30°E began to increase when the region was close to dusk. Thus, the time of
temperature response varies with local time.

In the top panel of Figure 2a, Tn enhancements increased with altitude, about 5 K at 105 km and 20 K at
110 km. Moreover, the storm-induced Tn depletion penetrated down to lower altitudes: A Tn change of
�5 K can be seen at 94 km between 15:00 and 17:00 UT. Obvious changes in vertical winds occurred at
09:00 UT on 17 April, the storm time winds were more downward at that time. As the differential vertical
winds turned from negative/downward to positive/upward at about 11:30 UT, Tn difference reached its
maximum values, it then became smaller and negative at 13:30 UT, and attained a minimum value at
16:00 UT, when the differential vertical winds turned from upward to downward. The vertical wind variations
occurred down to altitudes as low as 94 km. When the vertical winds became more downward (the
differential vertical winds [storm quiet] were negative), Tn differences increased. When they were positive,
Tn differences began to decrease. This pattern continued throughout the entire storm period (top two
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panels in Figure 2b). This indicates that storm time changes in vertical winds have a strong influence on the
behavior of MLT temperatures.

The third panel in Figure 2a shows that large variations of zonal winds occurred at 10:00 UT. Obvious meri-
dional wind changes can also be seen at 09:20 UT (fourth panel). The changes in zonal winds were larger than
those of meridional winds. The changes in Tn, horizontal winds, and the peaks of these changes, appear to be
later than those of vertical winds after the storm onset from 09:00 UT to 12:00 UT. Note that the occurrence
time of zonal wind differences was similar to that of the Tn changes.

Figure 2. (from top to bottom) Differences of temperature, vertical winds, zonal winds, meridional winds, and NO mass
mixing ratio from (a) 0:00 UT to 24:00 UT on 17 April and (b) 17 to 23 April 2002 from 94 to 110 km at the location of
(40°N, 105°W).
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Radiative cooling in the MLT region is related to NO and CO2 mass mixing ratio (mmr). The correlation
between NO mmr and radiative cooling is much higher than that between CO2 mmr and radiative cooling.
Thus, we just show NO mmr (bottom panels) in Figure 2. NO mmr began to increase at 09:40 UT on 17
April when Tn changed. For most of the time, NO mmr increased, except on 17 April, when NO mmr
decreased between 100 and 110 km. The time of decrease coincided with that of Tn decrease. NO mmr
increase was small until 02:00 UT of 18 April. This increase lasted until 00:00 UT on 23 April. When the tem-
perature recovered at about 18:00 UT on 21 April, NO mmr still remained enhanced due to its long lifetime
(Richards, 2004). It appears that there is not obvious correlation between the trend of NO mmr changes
and those of Tn and wind variations after 18 April.

4. Discussion

To understand the mechanisms that cause the storm time MLT temperature changes at middle latitudes,
we plot the terms in equation (1) near the lidar station (40°N, 105°W) in Figure 3. The total heating rate
(Figure 3a) is the sum of all heating and cooling terms. Figure 3 also shows the differences of five most
important terms at the location. The rest of the terms (not shown) contribute negligibly to the overall
energy budget.

Figure 3 shows that adiabatic heating/cooling and vertical heat advection are the dominant heating terms.
The variations of these two terms were similar, and they responded to the storm almost immediately at
the storm onset. Note that the two major heating terms, which are related to vertical winds, changed first
in the region, when the storm began (cf. Figure 2a). When the wind circulation at high altitude is modulated
by a storm, the change in the circulation expands toward lower latitudes, producing divergent and conver-
gent flow at lower latitudes. The corresponding variations in vertical winds can be either upward or down-
ward. If the vertical wind is downward, adiabatic heating occurs and vertical heat advection increases

Figure 3. Differences of heating terms: (a) total heating, (b) adiabatic heating/cooling, (c) vertical heat advection, (d) hor-
izontal heat advection, (e) radiative cooling, and (f) Joule heating at the location of (40°N, 105°W).
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when the temperature gradient increases with altitude. Consequently, the storm time total heating increases
and temperature is enhanced. In contrast, when the vertical winds are upward, temperature decreases due to
adiabatic cooling and vertical heat advection decreases.

Figure 4 illustrates the distributions of the sum of the twomajor heating terms (adiabatic heating/cooling and
vertical heat advection, Figure 4a) and vertical winds (Figure 4b) from 03:00 to 24:00 UT on the storm day of
17 April at 105 km. The red cross indicates the location of the lidar station (40°N, 105°W). When the differential
vertical winds were negative or downward (~0.03 m/s at 105 km) at 11:00 UT on 17 April, the effects of the
two major heating terms were positive (~60 K/day at 105 km) at the location, which led to a temperature
change of about 5 K from 09:00 to 12:00 UT at the beginning of the storm. Three hours later at 15:00 UT,
the differential vertical winds changed from negative/downward to positive/upward. The effects of the
two major heating terms were cooling (negative). Therefore, adiabatic heating/cooling and vertical heat
advection are the results of vertical wind changes and the main causes of Tn variations.

Horizontal heat advection (Figure 3d) is associated with horizontal winds, and the horizontal gradient of Tn. It
was relatively small and changed later than the two major heating terms. It is opposite to the temperature
changes associated with vertical winds, transports heat into/out of low/high temperature regions, and con-
tributes to the total changes of heating during the storm. When Tn changes, local horizontal winds begin

Figure 4. Differences of (a) adiabatic heating/cooling + vertical heat advection and (b) vertical winds at 105 km from 3:00
UT to 24:00 UT on 17 April 2002 in 3-hr intervals. The red crosses give the location of (40°N, 105°W).
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to converge/diverge due to the changes of horizontal pressure gradient. Thus, variations of horizontal heat
advection related to horizontal winds tend to reduce temperature changes.

Radiative cooling acts to lower the temperature. It depends on both NO and CO2 mmr and temperature
changes. However, storm time changes in radiative cooling are mostly associated with NO variations, as
CO2 does not change greatly during storms. The significant variations in radiative cooling, which are caused
by temperature variations and the enhancement in NO mmr during the storm, appeared at 19:00 UT on 17
April, much later than the changes in other heating terms. NO cooling becomes large when large changes
in temperature occur and NO cooling acts as a thermostat or a refrigerator to prevent temperature from
further enhancements. Note that, when temperature increase vanished near 21:00 UT on 21 April, the change
of radiative cooling almost disappeared (Figure 3e) at the same time although NO mmr was still
enhanced (Figure 2b).

When storms occur, a large amount of solar wind energy is injected into the upper atmosphere at high
latitudes. The storm time enhanced ion-neutral collisions and particle precipitation lead to significant Joule
heating and particle heating and raise the upper atmospheric temperature in the vicinity of the auroral oval.
However, since the lidar station (40°N, 105°W) is subauroral for this storm, Joule heating and particle heating
should not have a strong direct impact on temperature at the location. On the other hand, during periods of
very strong magnetic activity, the auroral oval can be greatly expanded and this location can become inside
the oval, as can be seen in Figure 3f. Joule heating occurred at this location at 18:00 and 24:00 UT on 17 April,
and 03:00 UT on 20 April, when Kp was above 7. An enhancement in the Joule heating rate of ~10 K/day
occurred near 107 km during those periods. However, compared with other heating terms, Joule heating
at this location in the MLT region was relatively weak, its major effects should occur at higher altitudes and
latitudes. Therefore, Joule heating cannot be the major direct source for the storm time temperature changes
seen in the lower latitudes in the MLT region. This result is consistent with previous studies (e.g., Sinnhuber
et al., 2012).

Equatorward of the auroral oval, Joule heating and particle heating are not present to heat the atmosphere
directly. Thus, there is a fundamental question that needs to be addressed: What are the physical processes
that lead to the observed storm time MLT temperature changes at low and middle latitudes (e.g., Liu et al.,
2018; Yuan et al., 2015)? The storm-enhanced electric fields drive a strong ion motion at high latitudes. The
large differential motion between the ions and neutrals cause enhanced Joule heating and ion drag, which
then drive large changes in Tn and winds in the upper thermosphere (e.g., Huang et al., 2012; Jee et al.,
2008). Large latitudinal pressure gradient caused by Tn increases drives a large equatorward meridional
circulation at higher altitudes (e.g., Johnson et al., 1987; Kunitake & Schlegel, 1991; Nozawa & Brekke,
1995; Rees, 1972). The enhanced nighttime meridional winds inside the polar cap experience less resistance
or ion drag outside the auroral region due to low electron densities, and thus, wind changes can be easily
transmitted to lower latitudes at night (Burns et al., 1991; Richmond et al., 2003; Tsuda et al., 2009; Zhang &
Shepherd, 2000). During the daytime, Tn is high at lower latitudes due to solar heating, the pressure
gradient forcing between high and middle latitudes is in the opposite direction to that generated by
high-latitude Joule heating and thus tends to balance out, leading to relatively smaller storm time wind
changes. It is thus difficult to transfer heat from high latitudes to lower latitudes by winds in the daytime,
and temperatures do not change much until after about local dusk (Burns et al., 1995). Thus, storm time
temperature variations at lower latitudes depend on local time. Nighttime temperature changes occur faster
than those in the daytime. If a storm starts in the local daytime, temperature changes at lower latitudes in
the MLT region may not occur until the local time is near dusk. When high-latitude wind circulation is
modulated by a storm and the wind disturbance is transmitted toward lower latitudes, vertical winds in
the lower latitudes are changed and can be more downward/upward. Heat is then transferred from higher
altitudes into the MLT region by the effects of adiabatic heating/cooling and vertical heat advection. This
process is evident in Figure 2: Vertical wind variations occurred prior to the temperature variations at the
same height.

5. Conclusion

In this paper, TIMEGCM simulations have been used to study the effects of geomagnetic storms on MLT tem-
peratures at middle and low latitudes. By diagnostically analyzing TIMEGCM outputs in the MLT region during

10.1029/2018GL078968Geophysical Research Letters

LI ET AL. 8



the 17 April 2002 storm event, we have reached the following conclusions: (1) Both temperature increases
and decreases can occur during the storms in the MLT region at low and middle latitudes. (2) The storm time
MLT temperature variations depend on local time. Nighttime temperature changes occur faster than those in
the daytime. When a storm begins in local daytime, temperature changes at middle and low latitudes may
not occur until near dusk. (3) The time delay of temperature changes increases with decreasing latitudes.
(4) Adiabatic heating/cooling and vertical heat advection, both associated with changes in vertical winds,
are the dominant heating processes at middle and low latitudes in the MLT region during storms. (5)
Storm time horizontal heat advection and radiative cooling also contribute to MLT temperature changes at
middle and low latitudes. (6) There is no direct contribution of Joule heating and particle heating to the storm
time temperature changes equatorward of the auroral oval in the MLT region.
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