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Abstract
A	 large	body	of	 evidence	 indicates	 that	 evolutionary	 innovations	of	 novel	 organs	
have	facilitated	the	subsequent	diversification	of	species.	Investigation	of	the	evolu-
tionary	history	of	such	organs	should	provide	important	clues	for	understanding	the	
basis	for	species	diversification.	An	Asian	natricine	snake,	Rhabdophis tigrinus,	pos-
sesses	a	series	of	unusual	organs,	called	nuchal	glands,	which	contain	cardiotonic	
steroid	 toxins	 known	 as	 bufadienolides.	Rhabdophis tigrinus	 sequesters	 bufadien-
olides	from	its	toad	prey	and	stores	them	in	the	nuchal	glands	as	a	defensive	mecha-
nism.	Among	more	than	3,500	species	of	snakes,	only	17	Asian	natricine	species	are	
known	to	possess	nuchal	glands	or	their	homologues.	These	17	species	belong	to	
three	nominal	genera,	Balanophis,	Macropisthodon,	and	Rhabdophis.	In	Macropisthodon 
and	Rhabdophis,	however,	species	without	nuchal	glands	also	exist.	To	infer	the	evo-
lutionary	history	of	the	nuchal	glands,	we	investigated	the	molecular	phylogenetic	
relationships	among	Asian	natricine	species	with	and	without	nuchal	glands,	based	
on	 variations	 in	 partial	 sequences	 of	 Mt-	CYB,	 Cmos,	 and	 RAG1	 (total	 2,767	bp).	
Results	 show	 that	 all	 species	with	 nuchal	 glands	 belong	 to	 a	 single	 clade	 (NGC).	
Therefore,	we	infer	that	the	common	ancestor	of	this	clade	possessed	nuchal	glands	
with	 no	 independent	 origins	 of	 the	 glands	within	 the	members.	 Our	 results	 also	
imply	that	some	species	have	secondarily	lost	the	glands.	Given	the	estimated	diver-
gence	 time	 of	 related	 species,	 the	 ancestor	 of	 the	 nuchal	 gland	 clade	 emerged	
19.18	mya.	Our	study	shows	that	nuchal	glands	are	fruitful	subjects	for	exploring	the	
evolution	of	novel	organs.	In	addition,	our	analysis	indicates	that	reevaluation	of	the	
taxonomic	status	of	the	genera	Balanophis	and	Macropisthodon	is	required.	We	pro-
pose	to	assign	all	species	belonging	to	the	NGC	to	the	genus	Rhabdophis,	pending	
further	study.
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1  | INTRODUC TION

In	the	20th	Century,	many	biologists	were	focused	on	commonali-
ties	among	taxa,	as	represented	by	studies	using	model	organisms	
(Alberts	et	al.,	2008).	On	the	other	hand,	appreciating	the	diversity	
of	life	and	its	evolutionary	origins	has	been	another	essential	pursuit	
in	biology	(Rosenzweig,	1995;	Whittaker,	1972).	Because	evolution	
of	novel	phenotypic	characters,	such	as	wings	of	birds	and	mammary	
glands	 of	 mammals,	 can	 facilitate	 the	 diversification	 of	 a	 lineage	
(Wagner	&	Lynch,	2010),	investigation	of	the	evolutionary	history	of	
such	novel	characters	can	provide	basic	information	that	clarifies	the	
processes	underlying	species	diversification.

Snakes	 (Serpentes)	 comprise	 a	 distinct	 monophyletic	 taxon	
within	 the	 Squamata	 (Pyron,	 Burbrink,	 &	Wiens,	 2013),	 including	
over	 3,500	 species	 that	 are	 distributed	 on	 all	 continents	 except	
Antarctica	 (Wallach,	 Williams,	 &	 Boundy,	 2014).	 In	 spite	 of	 their	
seemingly	uniform	appearance,	 snakes	exhibit	prominent	morpho-
logical	and	ecological	diversity	(Greene,	1997;	Lillywhite,	2014)	and	
have	 often	 evolved	 novel	 organs	 that	 serve	 particular	 ecological	
functions.	A	well-	known	example	of	a	novel	defensive	structure	 is	
the	rattle	of	rattlesnakes,	which	is	used	to	warn	potential	predators	
of	 the	 snakes’	 venomous	 bite	 (Greene,	 1997).	 The	 rattle	 evolved	
once	 in	 the	 ancestor	 of	 extant	 rattlesnakes	 (Castoe	 &	 Parkinson,	
2006;	Greene,	1997),	and	it	has	been	lost	secondarily	in	some	island	
populations,	where	selection	for	defense	is	reduced	in	the	absence	
of	mammalian	predators	(Martins,	Arnaud,	&	Murillo-	Quero,	2008;	
Rowe,	Farrell,	&	May,	2002).

The	nuchal	gland	system	is	another	example	of	a	novel	defensive	
structure	that	has	evolved	in	snakes	(Mori	et	al.,	2012).	Nuchal	glands	
were	originally	described	in	a	Japanese	natricine	snake,	Rhabdophis 
tigrinus	(Figure	1;	Nakamura,	1935).	The	organs,	which	superficially	
resemble	secretory	structures,	are	embedded	in	the	dermal	layer	of	
the	dorsal	skin	of	the	neck.	The	nuchal	glands	of	R. tigrinus	contain	
cardiotonic	 steroid	 toxins	 known	 as	 bufadienolides	 (Hutchinson	
et	al.,	2007),	which	are	sequestered	 from	toads	consumed	as	prey	
and	can	be	redeployed	as	a	defensive	mechanism	(Hutchinson	et	al.,	
2007).	The	glands	of	some	other	species	also	contain	bufadienolides	
(Mori	et	al.,	unpublished).	Ontogenetically,	the	nuchal	glands	are	of	
mesodermal	origin	(Fukada,	1958;	Mori	et	al.,	2012),	which	is	differ-
ent	from	any	other	skin	glands	of	terrestrial	vertebrates,	all	of	which	
arise	from	ectoderm	(Savitzky	et	al.,	2012).	The	glands	lack	a	secre-
tory	epithelium	and	consist	of	a	homogeneous	population	of	fluid-	
filled	cells	 surrounding	a	dense	aggregation	of	capillaries.	There	 is	

no	central	lumen	or	duct,	and	the	glands	simply	rupture	through	the	
skin	to	expel	their	fluid	contents	when	the	snake	is	under	predatory	
attack	(Mori	et	al.,	2012).

Nuchal	 glands	 and	 the	 structurally	 similar	 nucho-	dorsal	 glands	
(which	extend	the	full	length	of	the	body;	Smith,	1938)	are	currently	
known	 in	 17	 species	 of	 Asian	 Natricinae	 (Mori	 et	al.,	 2012;	Mori,	
Jono,	Ding,	et	al.,	2016).	Hereafter,	we	refer	to	all	such	structures	as	
nuchal	glands,	for	simplicity.	No	other	animals	have	been	reported	to	
possess	organs	similar	in	their	structural	details	to	the	nuchal	glands.	
The	 17	 species	 that	 possess	 such	 glands	 belong	 to	 three	 nominal	
genera,	Balanophis,	Macropisthodon,	 and	Rhabdophis.	 Interestingly,	
Macropisthodon	 and	 Rhabdophis	 also	 include	 species	 that	 do	 not	
have	nuchal	glands	(Table	1).	This	distribution	might	indicate	the	oc-
currence	of	(a)	multiple	independent	origins	of	these	unusual	organs,	
(b)	their	secondary	 loss,	and/or	 (c)	 improper	generic	assignment	of	
some	species.

To	infer	the	evolutionary	history	of	the	nuchal	glands,	we	inves-
tigated	 the	 molecular	 phylogenetic	 relationships	 among	 Eurasian	
natricine	species,	including	all	but	one	of	the	species	that	have	hith-
erto	been	reported	to	possess	such	glands	(Table	1).	Our	phylogeny	
is	based	on	partial	sequences	of	the	oocyte	maturation	factor	Mos	
(Cmos)	gene,	 the	recombination-	activating	gene	1	 (RAG1),	and	the	
mitochondrial	cytochrome	b	(MT-	CYB)	gene,	for	a	total	of	2.7	kbp.	
Several	recent	phylogenetic	studies	of	snakes	have	either	focused	on	
or	included	a	number	of	Asian	natricine	species	(Figueroa,	Mckelvy,	
Grismer,	 Bell,	 &	 Lailvaux,	 2016;	 Guo	 et	al.,	 2012,	 2014;	 Pyron,	
Kandambi	et	al.,	2013).	However,	no	previous	study	has	addressed	
the	 evolution	 of	 the	 nuchal	 glands.	 Furthermore,	 our	 sampling	 of	
species	and	populations	of	Macropisthodon	and	Rhabdophis	is	much	
greater	than	that	of	previous	studies.

K E Y W O R D S

Balanophis,	Macropisthodon,	molecular	phylogenetics,	Natricinae,	nuchal	glands,	Rhabdophis

F IGURE  1 The	snake,	Rhabdophis tigrinus,	in	a	defensive	
posture	is	directing	the	nuchal	glands	(NG)	toward	a	perceived	
threat
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Specifically,	our	main	purpose	was	to	answer	three	questions:	(a)	
Have	the	nuchal	glands	originated	only	once,	or	have	they	arisen	mul-
tiple	times	independently	among	natricine	snakes?	(b)	Do	the	species	
of	Macropisthodon	and	Rhabdophis	that	lack	such	glands	represent	the	
secondary	loss	of	those	structures?	(c)	Are	any	of	the	species	lacking	
nuchal	glands	incorrectly	assigned	to	Macropisthodon or Rhabdophis?

2  | MATERIAL S AND METHODS

A	total	of	122	sequences	of	natricine	snakes	and	three	sequences	
of	outgroup	taxa	were	used	for	phylogenetic	analyses	(Appendix	1).	
Of	those,	54	sequences	were	obtained	from	GenBank.	Because	our	

preliminary	analysis	suggested	that	the	sequence	data	for	Rhabdophis 
adleri	registered	in	GenBank	were	incorrectly	identified,	we	did	not	
use	the	GenBank	data	for	that	species.	The	other	68	sequences	were	
obtained	by	the	following	methods.

In	 each	 sample,	 total	DNA	was	 extracted	 from	 liver,	 skeletal	
muscle,	 or	 tail	 tips,	which	 had	 been	 preserved	 in	 99.5%	ethanol	
or	 in	 freezers,	 using	 the	DNeasy	Tissue	Kit	 (Qiagen).	 The	Cmos,	
RAG1,	 and	MT-	CYB	 regions	 were	 amplified	 with	 a	 PCR	 System	
GeneAmp	 2700	 Thermal	 Cycler	 (Applied	 Biosystems),	 using	 an	
Ex	 Taq	 Polymerase	 Kit	 (Takara	 Bio	 Inc.)	 and	 primers	 S77/S78	
for	 Cmos	 (Lawson,	 Slowinski,	 Crother,	 &	 Burbrink,	 2005),	 R13/
R18	 for	 RAG1	 (Groth	 &	 Barrowchlough,	 1999),	 and	 L14910/
H16064	for	MT-	CYB	(Burbrink,	Lawson,	&	Slowinski,	2000).	The	

Species Glands Source

Balanophis ceylonensis P Smith	(1938)

Macropisthodon flaviceps A/P Smith	(1938)

M. plumbicolor P Mori,	Jono,	Takeuchi,	Ding	et	al.	(2016)	and	Smith	
(1938)

M. rhodomelas P Smith	(1938)

M. rudis A Smith	(1938)	and	Takeuchi	and	Mori	(2012)

Rhabdophis adleri P Mori,	Jono,	Ding	et	al.	(2016)

R. akraios U Doria,	Petri,	Bellati,	Tiso	and	Pistarino	(2013)

R. angelii U Mori	et	al.	(2012)

R. auriculatus U Mori	et	al.	(2012)

R. barbouri U Mori	et	al.	(2012)

R. callichromus P Mori	et	al.	(2012)	and	Smith	(1938)

R. chrysargoides U Mori	et	al.	(2012)

R. chrysargos A Smith	(1938)

R. conspicillatus A Mori,	Jono,	Takeuchi	and	Das	(2016)

R. formosanus P Mori	et	al.	(2012)	and	Takeuchi,	Ota,	Oh	and	Hikida	
(2012)

R. guandongensis U Zhu,	Wang,	Takeuchi	and	Zhao	(2014)

R. himalayanus P Smith	(1938)

R. lateralis P Mori	et	al.	(2012)	and	Takeuchi	et	al.	(2012)

R. leonardi P Mori	et	al.	(2012)

R. lineatus U Mori	et	al.	(2012)

R. murudensis A/P Mori	et	al.	(2012),	Smith	(1938),	and	Steubing	and	
Lian	(2002)

R. nigrocinctus P Smith	(1938)

R. nuchalis P Mori	et	al.	(2012),	Mori,	Jono,	Takeuchi,	Ding	et	al.	
(2016),	and	Smith	(1938)

R. pentasupralabialis P Mori	et	al.	(2012)	and	Mori,	Jono,	Takeuchi,	Ding	
et	al.	(2016)

R. spilogaster A Smith	(1938)

R. subminiatus P Smith	(1938)

R. swinhonis A/P Mao	and	Chang	(1999)	and	Hsiang,	Li	and	Yang	(2009)

R. tigrinus P Mori	et	al.	(2012)	and	Nakamura	(1935)

Note.	Species	included	in	the	analyses	of	this	study	are	shown	by	bold.	P,	A,	and	U	indicate	present,	
absent,	and	unknown,	respectively.	Our	study	strongly	suggests	that	Balanophis	and	Macropisthodon, 
except	M. rudis,	belong	to	Rhabdophis.

TABLE  1 A	species	list	for	the	three	
nominal	genera,	Balanophis,	
Macropisthodon,	and	Rhabdophis
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thermocycling	schedule	 for	 the	polymerase	chain	 reaction	 (PCR)	
was	identical	to	that	described	by	these	previous	studies.	Before	
sequencing,	unincorporated	primers	were	removed	from	the	PCR	
products	using	polyethylene	glycol	precipitation.	Cycle	sequenc-
ing	reactions	were	performed	with	the	Big	Dye	Terminator	Cycle	
Sequence	 Ready	 Reaction	Kit,	 version	 3.1	 (Applied	Biosystems),	
using	the	same	primers	as	for	PCR.	The	samples	purified	by	etha-
nol	precipitation	were	sequenced	with	a	3130xl	Genetic	Analyzer	
(Applied	Biosystems).	All	fragments	were	sequenced	for	both	for-
ward	and	reverse	sense.	We	assembled	them	using	the	GAP	4	pro-
gram	(Staden,	1996).

Using	CLUSTAL	X	(Thompson,	Gibson,	Plewniak,	Jeanmougin,	
&	 Higgins,	 1997),	 125	 sequences	 were	 aligned.	 Identical	 se-
quences	from	different	specimens	were	treated	as	single	units	so	
that	114	sequences	were	recognized.	To	 infer	the	phylogeny,	we	
employed	Maximum	 Likelihood	 (ML)	 using	 combined	 sequences	
(Cmos	+	RAG1	+	MT-	CYB)	 and	 Bayesian	 inference	 (BI)	 using	 the	
sequence	 of	 mitochondrial	 DNA	 (MT-	CYB).	 For	 both	 data	 sets,	
the	most	appropriate	pattern	of	sequence	evolution	was	selected	
by	 applying	 the	 Bayesian	 Information	 Criterion	 (BIC;	 Schwarz,	
1978),	using	MEGA5	(Tamura	et	al.,	2011).	We	set	the	rate	catego-
ries	of	discrete	gamma	rate	heterogeneity	as	eight	for	ML	and	BI.	
Reliability	of	 the	ML	 tree	was	 assessed	by	 calculating	bootstrap	
probability	 (BP;	 Felsenstein,	 1985),	with	 1,000	 replications.	 The	
BI	 tree	was	constructed	using	BEAST	version	1.8	 (Drummond	&	
Rambaut,	 2007),	 employing	 a	 single	Markov	 chain	Monte	 Carlo	
(MCMC)	 run	 for	 50	 million	 generations,	 sampled	 every	 1,000	
generations,	 and	 excluding	 the	 first	 5	 million	 generations	 as	
burn-	in.	 Convergence	 of	 the	 chains	 to	 the	 stationary	 distribu-
tion	was	checked	by	visual	inspection,	using	TRACER	version	1.6	
(Rambaut,	Suchard,	Xie,	&	Drummond,	2007).

To	 estimate	 divergence	 times,	we	 employed	Bayesian	 relaxed-	
clock	 dating,	 using	 BEAST	 version	 1.8.	 Because	 no	 fossils	 of	
Balanophis,	Macropisthodon,	 or	Rhabdophis	 are	 known,	we	 set	 the	
following	 calibration	 points:	 30	Mya	 (SD	=	0.115)	 at	 the	 crown	
of	natricine	 snakes,	22	Mya	 (SD	=	0.15)	 at	 the	 crown	of	 the	genus	
Natrix,	and	16	Mya	(SD	=	0.15)	at	the	crown	of	the	genus	Thamnophis 
(Guo	et	al.,	2012).

3  | RESULTS

The	 final	 alignment	 of	 three	 gene	 fragments	 consisted	 of	 2,767	
aligned	base	pairs.	Of	those,	787–1,149	bp	were	from	MT-	CYB	(114	
taxa),	259–689	bp	were	from	Cmos	(86	taxa),	and	855–929	bp	were	
from	RAG1	(21	taxa).	The	most	appropriate	model	under	the	BIC	was	
the	GTR	+	G	+	I	model	for	the	data	sets	of	both	the	ML	and	BI	trees.	

The	ML	and	BI	trees	were	almost	identical	in	topology.	The	ML	tree	
(−In	 L	=	−35078.3994)	 is	 shown	 in	 Figure	2.	 A	 consensus	 tree	 from	
the	ML	and	BI	analyses	is	shown	in	Figure	3,	along	with	the	BP	val-
ues	from	ML	and	the	posterior	probability	(PP)	value	from	BI	at	each	
node	(shown	only	for	BP	≥	70%	in	ML	and	PP	≥	0.90	in	BI).	The	main	
difference	between	the	ML	and	BI	trees	is	the	status	of	Rhabdophis 
chrysargos.	Unlike	the	ML	tree,	the	Bl	tree	supported	monophyly	of	
R. chrysargos	+	R. conspicillatus	+	3	species	of	Xenochrophis	(Figure	3a).

Monophyly	 of	 Natricinae	 was	 strongly	 supported	 by	 the	 PP	
value.	Within	this	subfamily,	monophyly	of	the	New	World	taxa	(the	
Thamnophiini),	 and	 the	 Old	World	 taxa	Natrix,	 Sinonatrix,	Hebius,	
and	 Amphiesma + Xenochrophis + Atretium + Rhabdophis	+	Macropisth 
odon	 (except	M. rudis)	+	Balanophis	 clades	 were	 highly	 supported.	
Of	 the	 latter	clade,	a	 subclade	of	Rhabdophis	 (except	R. chrysargos 
and	R. conspicillatus)	+	Macropisthodon	(except	M. rudis)	+	Balanophis 
was	separated	from	the	remainder	with	strong	support	(Figure	2b).	
The	 average	 estimated	 divergence	 time	 of	 this	 subclade	 was	
19.18	Mya	 (16.28–22.16	 in	 95%	 credible	 ranges).	 Hereafter,	 we	
refer	to	this	subclade	as	the	nuchal	gland	clade	(NGC).	Within	this	
clade,	 Macropisthodon plumbicolor	 first	 diverged	 from	 the	 other	
species.	 The	 latter	 include	 Rhabdophis subminiatus, R. muruden-
sis	+	Macropisthodon flaviceps,	R. himalayanus + Balanophis ceylonen-
sis, R. tigrinus	+	R. lateralis	+	R. formosanus,	and	a	large	group	including	
R. adleri	+	R. callichromus + R. nigrocinctus + R. swinhonis	+	R. guang-
dongensis	+	R. nuchalis	+	R. leonardi	+	R. pentasupralabialis	(with	>90%	
support	 in	 BP	 and/or	 0.9	 in	 PP).	 The	 latter	 clade	 comprises	 two	
subclades:	 R. adleri	+	R. callichromus + R. nigrocinctus	 and	 R. swin-
honis	+	R. guangdongensis	+	R. nuchalis	+	R. leonardi	+	R. pentasu-
pralabialis.	 Several	 nominal	 species	 exhibit	 substantial	 population	
structuring.	Rhabdophis subminiatus	 exhibits	 strong	 differentiation	
between	Laos/Vietnam	and	Thailand	samples,	and	R. nuchalis	con-
sists	of	a	number	of	population	segments	and	 is	paraphyletic	with	
respect	to	both	R. leonardi	and	R. pentasupralabialis.

4  | DISCUSSION

Although	 differing	 in	 some	 details,	 recent	molecular	 phylogenetic	
analyses	of	 the	Natricinae	 (Figueroa	et	al.,	 2016;	Guo	et	al.,	 2012,	
2014;	 Pyron,	 Burbrink	 et	al.,	 2013;	 Pyron,	 Kandambi	 et	al.,	 2013),	
including	ours,	agree	on	the	general	pattern	of	relationships	among	
the	major	lineages.	A	basal	dichotomy	separates	the	subfamily	into	
two	major	clades.	One	includes	the	entire	North	American	natricine	
fauna	 (the	 Thamnophiini)	 and	 its	 sister	 group,	 the	 Eurasian	 genus	
Natrix.	Those	two,	in	turn,	are	sister	to	a	clade	containing	the	Asian	
genera	Opisthotropis	and	Sinonatrix.	A	clade	containing	two	endemic	
Sri	Lankan	genera,	Aspidura	and	Haplocerus,	is	variously	recovered	as	

F IGURE  2 Maximum	likelihood	tree	(−In	L	=	−35078.3994)	based	on	the	combined	sequence	data	of	the	MT-	CYB,	Cmos,	and	RAG1	
genes	under	GTR	+	G	+	I.	Bootstrap	probabilities	are	provided	at	each	node.	Numerals	following	scientific	names	indicate	individual	codes	
(see	Appendix	1).	Status	of	nuchal	or	nucho-	dorsal	glands	of	our	three	focal	genera	(Rhabdophis, Macropisthodon, and Balanophis)	is	indicated	
by	blue	(present),	red	(absent),	purple	(present/absent),	and	green	(unknown;	see	also	Table	1).	The	photographs	have	been	digitally	modified	
for	clarity.	Photograph	of	Balanophis ceylonensis	by	Udaya	Chanaka
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R. pentasupralabialis_1

R. pentasupralabialis_2

R. pentasupralabialis_3

R. leonardi_1

R. leonardi_4

R. nuchalis_4

R. nuchalis_3

R. nuchalis_5

R. nuchalis_1

R. nuchalis_2

R. guangdongensis

R. swinhonis_1

R. swinhonis_2

R. nigrocinctus_3

R. nigrocinctus_1

R. nigrocinctus_2

R. callichromus_1

R. callichromus_2

R. adleri_1

R. adleri_2

R. formosanus_1

R. lateralis_1

R. lateralis_2

R. tigrinus_1

R. tigrinus_2

R. himalayanus_1

R. himalayanus_4

B. ceylonensis_1

B. ceylonensis_3

R. murudensis

M. flaviceps

R. subminiatus_1

R. subminiatus_4

R. subminiatus_2

R. subminiatus_3

M. plumbicolor_3

M. plumbicolor_1

M. plumbicolor_2

R. chrysargos

X. trianguligerus

R. conspicillatus

X. vittatus_1

X. maculatus

Atretium schistosum_2

Atretium schistosum_1

X. piscator_3

X. asperrimus_2

X. asperrimus_1

Atretium yunnanensis

X. flavipunctatus

X. piscator_1

X. piscator_2

Amphiesma stolatum_2

Amphiesma stolatum_1

Amphiesma stolatum_3

100

99

100

100

86

100

95

100

100

59

100

100

100

100

100

100

97

94

99

99

100

100

100

100

57

100

100

67

67

79

38

94

57

95

48

99

100

86

93

84

57

55

70

36

27

83

99

83

49

81

51

36

81

49

0.02

M. flaviceps

R. subminiatus

B. ceylonensis

R. pentasupralabialis

M. plumbicolor

(a)
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F I G U R E  2	Continued

Afronatrix anoscopus

Natriciteres olivacea

M. rudis_1

M. rudis_2

Trachischium monticola

Hebius vibakari_1

Hebius vibakari_2

Hebius atemporalis

Hebius craspedogaster

Hebius pryeri

Hebius ishigakiensis

Hebius octolineatus

Hebius khasiense

Aspidura guentheri

Haplocercus ceylonensis

Sinonatrix aequifasciata_1

Sinonatrix aequifasciata_2

Sinonatrix percarinata

Sinonatrix aequifasciata_3

Sinonatrix annularis

Opisthotropis guangxiensis

Opisthotropis lateralis

Opisthotropis cheni

Opisthotropis latouchii

Opisthotropis typica

Natrix tessellata_1

Natrix tessellata_2

Natrix tessellata_3

Natrix natrix_2

Natrix natrix_1

Natrix maura_1

Natrix maura_2

Natrix maura_3

Thamnophis ordinoides

Thamnophis couchii

Thamnophis marcianus

Thamnophis elegans

Thamnophis butleri

Thamnophis radix

Thamnophis cyrtopsis

Thamnophis godmani

Thamnophis sirtalis_2

Thamnophis sirtalis_1

Regina rigida_2

Regina rigida_1

Storeria dekayi

Thamnophis proximus

Nerodia floridana

Nerodia cyclopion

Regina grahami

Regina septemvittata

Nerodia rhombifer

Nerodia taxispilota

Nerodia erythrogaster

Nerodia sipedon

Nerodia fasciata

Sibynophis subpunctatus

Pseudoxenodon macrops_1

Pseudoxenodon macrops_2

99

100

100

100

100

100

98

100

100

64

70

62

100

97

91

96

68

94

89

69

9

26

98

2
27

92

100

100

96

41

99

100

47

72

69

31

34

100
43

99

57

19

25

99

77

91

14

70

6236

26

20

26

16

44

73

32

0.02

(b)
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sister	to	this	North	American–Eurasian	clade	(Pyron,	Burbrink	et	al.,	
2013;	Pyron,	Kandambi	et	al.,	2013)	or	as	the	most	basal	branch	of	
the	natricine	clade	(our	study,	but	with	weak	support).

The	other	major	clade	of	natricines	is	almost	entirely	Asian,	the	
sole	exception	being	a	monophyletic	group	of	three	African	genera	
(Afronatrix, Natriciteres,	and	Lycognathophis,	the	latter	not	included	in	
our	analysis).	The	African	clade	is	variously	recovered	as	sister	to,	or	
embedded	within,	the	much	larger	Asian	radiation.	The	relationships	
among	the	Asian	taxa	display	varying	topologies	among	recent	anal-
yses,	as	taxon	sampling	within	this	group	has	improved.	Consistent	
with	other	recent	studies	(Guo	et	al.,	2014),	we	recover	a	monophy-
letic	 genus	Hebius,	 distant	 from	Amphiesma stolatum,	 as	 well	 as	 a	
polyphyletic	Xenochrophis,	some	related	to	Atretium	and	others	close	
to	Rhabdophis	 and	Macropisthodon.	 These	 results	 engender	 confi-
dence	in	our	analysis	of	the	relationships	within	the	NGC.

4.1 | Evolution of the nuchal glands

Our	results	show	that	all	species	that	possess	nuchal	glands	belong	
to	a	single,	strongly	supported	clade	(NGC).	Therefore,	based	on	the	

principle	of	parsimony,	we	 infer	 that	 the	common	ancestor	of	 this	
clade	possessed	nuchal	glands.	We	find	no	evidence	of	multiple,	in-
dependent	origins	of	the	glands.	Thus,	interspecific	differences	in	the	
distribution	and	morphology	of	the	glands,	such	as	the	occurrence	of	
nucho-	dorsal	glands	along	the	entire	length	of	the	body	in	M. plumbi-
color	and	several	species	of	Rhabdophis	(Mori,	Jono,	Ding	et	al.,	2016;	
Mori,	Jono,	Takeuchi,	&	Das,	2016;	Smith,	1938)	and	the	presence	
of	 elongate,	 nonsacculated	glands	 accompanied	by	 scaleless	 areas	
of	 skin	 in	M. rhodomelas	 (not	 included	 in	our	analysis),	M. flaviceps,	
and	B. ceylonensis	 (Smith,	1938),	are	considered	to	 represent	alter-
native	morphologies	that	arose	after	a	single	evolutionary	origin	of	
the	nuchal	gland	system.	Further	study	of	the	morphological	details	
is	needed	 to	 clarify	 the	process	of	 glandular	diversification	within	
this	clade.

Among	 species	 currently	 included	 in	 Rhabdophis	 and	
Macropisthodon,	 R. chrysargos,	 R. conspicillatus,	 and	 M. rudis	 have	
been	reported	to	lack	nuchal	glands	(Table	1;	Mori	et	al.,	2012;	Mori,	
Jono,	Takeuchi,	&	Das,	2016).	Macropisthodon rudis	is	only	distantly	
related	to	the	NGC	(see	below),	and	R. conspicillatus	and	R. chrysar-
gos	also	belong	to	clades	outside	the	NGC.	Thus,	the	absence	of	the	

F IGURE  3 Consensus	tree	based	on	ML	and	Bl	trees.	Bootstrap	probabilities	(BP)	from	the	maximum	likelihood	tree	(left)	and	posterior	
probabilities	(PP)	from	Bayesian	inference	(right)	are	shown	at	each	node	(shown	only	BP	≥	70%	and	PP	≥	0.90).	(a)	All	Natricinae	included	
in	our	analysis.	Species	of	our	three	focal	genera	(Rhabdophis,	Macropisthodon,	and	Balanophis)	are	indicated	in	bold.	(b)	Phylogenetic	
relationships	among	the	nuchal	gland	clade.	For	the	three	focal	genera,	P,	A,	and	U	after	the	OTU	indicate	present,	absent,	or	unknown	
condition,	respectively,	of	nuchal	or	nucho-	dorsal	glands	(see	also	Table	1)

R. chrysargos      (A)

83/–81/–

R. conspicillatus  (A)
X. trianguligerus
X. vittatus
X. maculatus

100/0.97

100/0.99

Xenochrophis and
Atretium
Amphiesma stolatum

91/0.98

81/0.93

Aspidura guentheri
Haplocercus ceylonensis

100/0.99 Macropisthodon rudis   (A)
Trachischium monticola

Hebius

Sinonatrix

Opisthotropis guanxiensis
Opisthotropis typica

Natrix

New World

Opisthotropis

99/0.99

99/0.91

73/–
100/0.99

77/0.95

99/0.98

100/1

Out groups

99/0.98

Afronatrix anoscopus
Natriciteres olivacea

–/0.96

–/1

Balanophis
Macropisthodon
Rhabdophis

R. pentasupralabialis  (P)

R. nuchalis  (P)

R. nuchalis  (P)

100/0.99

R. nuchalis  (P)

R. guangdongensis   (U)

R. swinhonis    (A/P)94/0.97

79/0.99

99/0.99

R. nigrocinctus    (P)
100/0.99

R. callichromus   (P)

R. adleri   (P)

100/0.99

100/0.9986/–

84/0.98

100/0.99

94/0.9997/0.99

R. formosanus   (P)

R. lateralis     (P)

R. tigrinus      (P)

100 /.99

100/0.99

100/1
70/0.99 R. himalayanus   (P)

B. ceylonensis    (P)

93/0.99 R. murudensis    (A/P)

M. flaviceps    (A/P)

R. subminiatus   (P)
100/0.99

100/0.99
M. plumbicolor   (P)

83/0.95

99/0.98

R. leonardi  (P)

–/0.94

100/0.99

100/0.99

99/0.99

(a) (b)
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nuchal	glands	 in	these	species	does	not	constitute	secondary	 loss.	
Rather,	it	appears	that	they	have	simply	retained	the	ancestral	con-
dition	of	the	absence	of	integumentary	defensive	glands.

Rhabdophis swinhonis	 has	 been	 reported	 to	 lack	 nuchal	 glands	
(Table	1;	Mao	&	Chang,	1999).	However,	 in	contrast	to	R. conspicill 
atus	and	R. chrysargos,	our	analysis	shows	that	this	species	occupies	
a	position	within	the	NGC.	This	strongly	suggests	that	R. swinhonis 
has	secondarily	lost	the	nuchal	glands.	However,	Hsiang,	Li,	and	Yang	
(2009)	noted	the	presence	of	nuchal	glands	 in	this	species.	 If	both	
observations	are	correct,	there	are	two	possible	interpretations:	ei-
ther	the	occurrence	of	intraspecific	variation	or	the	presence	of	two	
distinct	but	cryptic	species.	Whichever	is	true,	the	deeply	nested	po-
sition	of	R. swinhonis	within	the	NGC	implies	the	recent	or	ongoing	
secondary	loss	of	the	glands	in	at	least	some	populations.

Intraspecific	variation	in	the	presence	of	the	nuchal	glands	also	
has	been	described	in	R. murudensis	and	M. flaviceps	(Table	1;	Smith,	
1938;	Mori	et	al.,	2012).	In	our	analysis,	both	species	are	recovered	
within	the	NGC.	Therefore,	as	with	R. swinhonis,	 the	nuchal	glands	
of	R. murudensis	 and	M. flaviceps,	 if	 accurately	described	 in	 the	 lit-
erature,	might	be	in	a	transitional	stage	of	secondary	loss	or	these	
nominal	species	may	contain	closely	related	cryptic	species.

We	 estimate	 that	 the	 common	 ancestor	 of	 the	 NGC	 arose	
19.18	Mya.	 This	 is	 only	 slightly	 later	 than	 the	 date	 of	 23–24	Mya	
shown	by	Guo	 et	al.	 (2012,	 Figure	2)	 for	 the	 origin	 of	Rhabdophis,	
suggesting	 that	 nuchal	 glands	 arose	 at	 or	 soon	 after	 the	 origin	 of	
this	genus.

4.2 | Taxonomy

Our	 analysis	 requires	 a	 reevaluation	 of	 the	 taxonomic	 status	 of	
the	 genera	 Balanophis	 and	Macropisthodon.	 The	 validity	 of	 the	
monotypic	genus	Balanophis	(Smith,	1938)	has	been	controversial.	
Malnate	(1960)	recognized	the	species	as	Rhabdophis ceylonensis,	
and	McDowell	(1961)	supported	his	position.	Figueroa	et	al.	(2016)	
found	the	species	nested	within	Rhabdophis,	as	sister	to	R. hima-
layanus,	and	despite	stating	 in	the	text	 (p.	21)	that	they	declined	
to	synonymize	the	genera,	they	recognized	the	species	as	R. cey-
lonensis	 in	 their	 figure	7a.	 Our	 analysis	 also	 strongly	 supports	 a	
sister	relationship	between	B. ceylonensis	and	R. himalayanus,	and	
thus,	we	 formally	 propose	 that	Balanophis	 be	 synonymized	with	
Rhabdophis.

Our	 analysis	 includes	 three	 of	 the	 four	 currently	 recog-
nized	 species	 of	Macropisthodon	 (Wallach	 et	al.,	 2014),	 no	 two	
of	 which	 are	 recovered	 as	 each	 other’s	 closest	 relative.	 When	
the	genus	was	described	by	Boulenger	 (1893),	most	other	natri-
cine	snakes	were	treated	as	members	of	 the	genus	Tropidonotus. 
Stejneger	 (1907)	 placed	Tropidonotus	 in	 the	 genus	Natrix,	 where	
it	remained	until	Malnate	(1960)	divided	Natrix	sensu	lato	into	six	
genera,	 resurrecting	 Rhabdophis	 Fitzinger,	 1843.	 Malnate	 sug-
gested	 that	Macropisthodon	might	 later	 prove	 not	 to	 be	 distinct	
from	Rhabdophis,	but	the	overreliance	on	characters	of	the	max-
illary	 dentition	 had	 precluded	 its	 earlier	 inclusion	 in	Natrix	 and	
presumably	 influenced	 Malnate’s	 decision	 to	 retain	 the	 genus.	

In	our	 analysis,	 the	 type	 species	of	Macropisthodon,	M. flaviceps,	
is	 strongly	 supported	 as	 sister	 to	 R. murudensis.	 Figueroa	 et	al.	
(2016)	show	the	fourth	species,	M. rhodomelas,	nested	well	within	
Rhabdophis.	 Therefore,	 we	 synonymize	 Macropisthodon	 with	
Rhabdophis.	 Thus,	 it	 is	 presently	 reasonable	 to	 include	 all	 spe-
cies	belonging	to	the	NGC	within	Rhabdophis,	the	type	species	of	
which	is	R. subminiatus.	However,	partitioning	of	this	morphologi-
cally	diverse	clade	should	be	considered	in	the	future.

The	 divergent	 position	 of	 Macropisthodon rudis,	 which	 lacks	
nuchal	glands	and	 is	 recovered	as	distant	from	the	NGC,	supports	
the	 resurrection	 of	 the	 monotypic	 genus	 Pseudoagkistrodon	 (Van	
Denburgh	 1909),	 as	 suggested	 by	Wallach	 et	al.	 (2014).	 Although	
recent	studies	have	differed	in	the	exact	placement	of	this	species	
(Guo	et	al.,	2012,	2014),	no	analysis	with	sufficient	taxon	sampling	
of	Asian	natricines	has	placed	it	close	to	Rhabdophis.	The	taxonomic	
status	of	“R”. conspicillatus	and	“R”. chrysargos,	which	lie	just	outside	
the	NGC,	remains	to	be	determined.

Our	 analysis	 suggests	 that	 Rhabdophis	 contains	 several	 unde-
scribed	 species.	 Substantial	 genetic	 divergence	 occurs	 within	 R. 
nigrocinctus, R. swinhonis, R. nuchalis,	and	especially	R. subminiatus. 
A	comprehensive	analysis	of	this	complex	subclade,	 including	both	
morphological	and	molecular	studies,	will	be	necessary	before	this	
group	can	be	reliably	partitioned.

5  | CONCLUSIONS

Our	analysis	 indicates	that	 the	nuchal	and	nucho-	dorsal	glands,	as	
a	group,	have	evolved	only	once	among	Asian	natricine	snakes.	The	
absence	of	the	nuchal	glands	in	some	nominally	congeneric	species,	
such	as	M. rudis, R. conspicillatus,	and	R. chrysargos,	reflects	old	clas-
sifications	based	on	phenetic	analysis	of	morphological	characters.	
All	of	 those	species	 lie	outside	the	single	clade	that	possesses	the	
defensive	glands.	However,	 a	 few	 species	within	 the	nuchal	 gland	
clade	(M. flaviceps, R. murudensis,	and	R. swinhonis)	may	represent	a	
transitional	stage	in	the	secondary	loss	of	the	glands.	Clarification	of	
the	developmental	origin	of	these	unique	organs	is	likely	to	provide	
insight	 into	how	these	neomorphic	structures	have	arisen,	diversi-
fied,	 and	may	 subsequently	be	disappearing	 in	 a	 few	species.	The	
nuchal	glands	are	fruitful	subjects	for	investigating	the	evolution	of	
novel	biological	systems	that	involve	the	complex	interplay	of	mor-
phology,	physiology,	ecology,	and	behavior.
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A P P E N D I X   1
Accession numbers and their localities (countries) for all DNA sequence data used in the phylogenetic analyses in this study. Individuals 
with an asterisk indicate identical sequences within the species, and thus have the same accession number. Names (and No.) in the species 
column correspond to those shown in Figure 1

Species Individual No. Country

Accession no. of GenBank

ReferencesCyt.b C- mos Rag- 1

Afronatrix anoscopus ROM19842 Liberia AF420073 AF471123 EU402832 Lawson	et	al.,	2005,	de	Queiroz,	
Lawson,	and	Lemos-	Espinal	
2002,	and	Wiens	et	al.	(2008)

Amphiesma stolatum_1 HT0548 China LC325319 LC325765 – This	study

Amphiesma stolatum_2 HT0798 Sri	Lanka LC325347 LC325793 LC326030 This	study

Amphiesma stolatum_3 GP2213 China KJ685693 KJ685643 KJ685585 Guo	et	al.	(2014)

Aspidura guentheri RAP0437 Sri	Lanka KC347472 KC347380 KC347418 Pyron,	Kandambi	et	al.	(2013)

Atretium schistosum_1 HT0799 Sri	Lanka LC325348 LC325794 – This	study

Atretium schistosum_2 – Sri	Lanka KC347487 KC347383 KC347421 Pyron	Kandambi	et	al.	(2013)

Atretium yunnanensis GP842 China JQ678448 JQ281787 KJ685602 Guo	et	al.	(2014)

Balanophis ceylonensis_1 HT0785 Sri	Lanka LC325339 LC325785 LC326026 This	study

Balanophis ceylonensis*_2 HT0786 Sri	Lanka LC325339 – – This	study

Balanophis ceylonensis_3 HT0787 Sri	Lanka LC325340 LC325786 – This	study

Haplocercus ceylonensis RS145 Sri	Lanka KC347478 KC347401 KC347438 Pyron,	Kandambi	et	al.	(2013)

Hebius atemporale HT0550 China LC325320 LC325766 – This	study

Hebius craspedogaster HT0801 China LC325350 LC325796 – This	study

Hebius ishigakiensis HT0800 Japan LC325349 LC325795 – This	study

Hebius khasiense HT0679 Vietnam LC325327 LC325773 – This	study

Hebius octolineatus HT0586 China LC325321 LC325767 – This	study

Hebius pryeri HT0340 Japan LC325312 LC325758 – This	study

Hebius vibakari_1 HT0274 Japan LC325309 LC325755 – This	study

Hebius vibakari_2 HT0277 Japan LC325310 LC325756 – This	study

Macropisthodon flaviceps HT0809 Malaysia LC325355 LC325801 – This	study

Macropisthodon 
plumbicolor_1

HT0782 Sri	Lanka LC325336 LC325782 LC326025 This	study

Macropisthodon 
plumbicolor_2

HT0783 Sri	Lanka LC325337 LC325783 – This	study

Macropisthodon 
plumbicolor_3

HT0784 Sri	Lanka LC325338 LC325784 – This	study

Macropisthodon rudis_1 HT0339 China LC325311 LC325757 LC326016 This	study

Macropisthodon rudis_2 GP1266 China JQ687452 JQ687434 KJ685566 Guo	et	al.	(2014)

Natriciteres olivacea – Congo AF471058 AF471146 – Lawson	et	al.	(2005)

Natrix maura_1 – Spain AY866530 – – Guicking,	Lawson,	Joger	and	
Wink	(2006)

Natrix maura_2 – Tunisia AY487682 – – Guicking,	Joger	and	Wink	
(2008)

Natrix maura_3 – Italy AY487683 – – Guicking	et	al.	(2008)

Natrix natrix_1 – Spain AY866536 – – Guicking	et	al.	(2006)

Natrix natrix_2 – France AY866537 – – Guicking	et	al.	(2006)

Natrix tessellata_1 – Iran AY487574 – – Guicking	et	al.	(2006)

Natrix tessellata_2 – Iran AY487575 – – Guicking,	Joger	and	Wink	
(2009)
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Natrix tessellata_3 – Bulgaria AY866533 – – Guicking	et	al.	(2006)

Nerodia cyclopion – USA AF402909 – – Alfaro	and	Arnold	(2001)

Nerodia erythrogaster – USA AF402912 – – Alfaro	and	Arnold	(2001)

Nerodia fasciata – USA AF402910 – – Alfaro	and	Arnold	(2001)

Nerodia floridana – USA AF402911 – – Alfaro	and	Arnold	(2001)

Nerodia rhombifer – USA AF402915 – – Alfaro	and	Arnold	(2001)

Nerodia sipedon – USA AF402913 – – Alfaro	and	Arnold	(2001)

Nerodia taxispilota – USA AF402914 – – Alfaro	and	Arnold	(2001)

Opisthotropis cheni GP383 China GQ281779 JQ687441 KJ685595 Guo	et	al.	(2012)

Opisthotropis guangxiensis GP746 China GQ281776 JQ687447 – Guo	et	al.	(2012)

Opisthotropis lateralis GP646 China GQ281782 JQ687445 – Guo	et	al.	(2012)

Opisthotropis latouchii GP647 China GQ281783 JQ687446 – Guo	et	al.	(2012)

Opisthotropis typica HT0794 Malaysia LC325343 LC325789 LC326028 This	study

Pseudoxenodon macrops 
(Out	group)_1

HT0646 China LC325323 LC325769 – This	study

Pseudoxenodon macrops 
(Out	group)_2

HT0802 Malaysia LC325351 LC325797 – This	study

Regina grahami – USA AF402918 – – Alfaro	and	Arnold	(2001)

Regina rigida_1 – USA AF402919 – – Alfaro	and	Arnold	(2001)

Regina rigida_2 CAS:HERP:165994 USA AF471052 AF471120 – Lawson	et	al.	(2005)

Regina septemvittata – USA AF402917 – – Alfaro	and	Arnold	(2001)

Rhabdophis adleri_1 HT0831 China LC325356 LC325802 – This	study

Rhabdophis adleri_2 HT0832 China LC325357 LC325803 – This	study

Rhabdophis callichromus_1 HT0654 Vietnam LC325324 LC325770 – This	study

Rhabdophis callichromus_2 HT0674 Vietnam LC325325 LC325771 LC326020 This	study

Rhabdophis chrysargos HT0342 Malaysia LC325313 LC325759 LC326017 This	study

Rhabdophis conspicilatus HT0791 Malaysia LC325342 LC325788 LC326027 This	study

Rhabdophis formosanus_1 HT0033 Taiwan LC325304 LC325750 – This	study

Rhabdophis 
formosanus*_2

HT0031 Taiwan LC325304 – – This	study

Rhabdophis formosanus*_3 HT0030 Taiwan LC325304 – – This	study

Rhabdophis 
guangdongensis

SYSr000018 China KF800930 KF800920 – Zhu	et	al.	(2014)

Rhabdophis himalayanus_1 HT0847 China LC325299 LC325746 LC326011 This	study

Rhabdophis 
himalayanus*_2

HT0848 China LC325299 – – This	study

Rhabdophis 
himalayanus*_3

HT0849 China LC325299 – – This	study

Rhabdophis himalayanus_4 CAS224420 Myanmar KF800929 KF800919 – Zhu	et	al.	(2014)

Rhabdophis lateralis_1 HT0855 China LC325302 – – This	study

Rhabdophis lateralis_2 GP613 China JQ687444 GQ281785 KJ685600 Guo	et	al.	(2014)

Rhabdophis leonardi_1 HT0851 China LC325300 LC325747 LC326012 This	study

Rhabdophis leonardi*_2 HT0852 China LC325300 – – This	study

Rhabdophis leonardi*_3 HT0853 China LC325300 – – This	study

Rhabdophis leonardi_4 RDQ200905367 China KF800932 KF800922 – Zhu	et	al.	(2014)
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info:ddbj-embl-genbank/KF800922
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Rhabdophis murudensis HT0788 Malaysia LC325341 LC325787 – This	study

Rhabdophis nigrocinctus_1 HT0253 Thailand LC325307 LC325753 LC326015 This	study

Rhabdophis nigrocinctus_2 HT0343 Thailand LC325314 LC325760 – This	study

Rhabdophis nigrocinctus_3 HT0845 China LC325298 – – This	study

Rhabdophis nuchalis_1 HT0701 China LC325333 LC325779 LC326022 This	study

Rhabdophis nuchalis_2 HT0803 China LC325352 LC325798 – This	study

Rhabdophis nuchalis_3 HT0807 China LC325353 LC325799 LC326031 This	study

Rhabdophis nuchalis_4 HT0854 China LC325301 LC325748 – This	study

Rhabdophis nuchalis_5 SICAU090001 China KF800925 KF800935 – Zhu	et	al.	(2014)

Rhabdophis 
pentasupralabialis_1

HT0699 China LC325331 LC325777 – This	study

Rhabdophis 
pentasupralabialis_2

HT0700 China LC325332 LC325778 LC326021 This	study

Rhabdophis 
pentasupralabialis_3

HT0808 China LC325354 LC325800 – This	study

Rhabdophis subminiatus_1 HT0267 Laos LC325308 LC325754 – This	study

Rhabdophis subminiatus_2 HT0344 Thailand LC325315 LC325761 – This	study

Rhabdophis subminiatus_3 HT0345 Thailand LC325316 LC325762 – This	study

Rhabdophis subminiatus_4 HT0680 Vietnam LC325328 LC325774 – This	study

Rhabdophis swinhonis_1 HT0021 Taiwan LC325303 LC325749 – This	study

Rhabdophis swinhonis_2 HT0717 Taiwan LC325334 LC325780 LC326023 This	study

Rhabdophis swinhonis*_3 HT0716 Taiwan LC325334 – – This	study

Rhabdophis swinhonis*_4 HT0718 Taiwan LC325334 – – This	study

Rhabdophis swinhonis*_5 HT0719 Taiwan LC325334 – – This	study

Rhabdophis tigrinus_1 HT0098 Japan LC325305 LC325751 LC326013 This	study

Rhabdophis tigrinus_2 HT0177 Japan LC325306 LC325752 LC326014 This	study

Sibynophis subpunctatus 
(Out	group)

RAP0491 Sri	Lanka KC347471 KC347411 KC347449 Pyron,	Kandambi	et	al.	(2013)

Sinonatrix aequifasciata_1 HT0678 Vietnam LC325326 LC325772 – This	study

Sinonatrix aequifasciata_2 HT0681 Vietnam LC325329 LC325775 – This	study

Sinonatrix aequifasciata_3 GP357 China JQ687430 JQ687440 – Guo	et	al.	(2012)

Sinonatrix annularis GP889 China JQ687431 JQ687449 KJ685604 Guo	et	al.	(2012,	2014)

Sinonatrix percarinata GP956 China JQ687433 JQ687451 KJ685607 Guo	et	al.	(2012,	2014)

Storeria dekayi CAS:HERP:196039 USA AF471050 AF471154 – Lawson	et	al.	(2005)

Thamnophis butleri – USA AF402923 – – Alfaro	and	Arnold	(2001)

Thamnophis couchii – USA AF402936 – – Alfaro	and	Arnold	(2001)

Thamnophis cyrtopsis – USA AF402924 – – Alfaro	and	Arnold	(2001)

Thamnophis elegans – USA AF402925 – – Alfaro	and	Arnold	(2001)

Thamnophis godmani – Mexico AF420135 – – Alfaro	and	Arnold	(2001)

Thamnophis marcianus – USA AF402926 – – Alfaro	and	Arnold	(2001)

Thamnophis ordinoides – USA AF402927 – – Alfaro	and	Arnold	(2001)

Thamnophis proximus – – AF402928 – – Alfaro	and	Arnold	(2001)

Thamnophis radix – USA AF402934 – – Alfaro	and	Arnold	(2001)

Thamnophis sirtalis_1 – – AF402929 – – Alfaro	and	Arnold	(2001)
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Thamnophis sirtalis_2 – – AF402930 – – Alfaro	and	Arnold	(2001)

Trachischium monticola GP1487 China JQ687428 JQ687435 KJ685570 Guo	et	al.	(2012,	2014)

Xenochrophis 
asperrimus_1

HT0797 Sri	Lanka LC325346 LC325792 – This	study

Xenochrophis 
asperrimus_2

– Sri	Lanka KC347480 KC347414 KC347451 Pyron,	Kandambi	et	al.	(2013)

Xenochrophis 
flavipunctatus

HT0682 Vietnam LC325330 LC325776 – This	study

Xenochrophis maculatus HT0720 Malaysia LC325335 LC325781 LC326024 This	study

Xenochrophis piscator_1 HT0347 Thailand LC325317 LC325763 LC326018 This	study

Xenochrophis piscator_2 HT0371 Vietnam LC325318 LC325764 – This	study

Xenochrophis piscator_3 HT0796 Sri	Lanka LC325345 LC325791 – This	study

Xenochrophis 
trianguligerus

HT0795 Malaysia LC325344 LC325790 LC326029 This	study

Xenochrophis vittatus_1 HT0615 Indonesia LC325322 LC325768 LC326019 This	study

Xenochrophis vittatus*_2 HT0527 Indonesia LC325322 – – This	study
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