Age-specific estimates indicate potential deleterious capture effects and low survival of stocked juvenile Colorado Pikeminnow (Ptychocheilus lucius)

Scott R. Clark ${ }^{*}$, Mary M. Conner, Scott L. Durst, and Nathan R. Franssen

Scott R. Clark
*Department of Biology and Museum of Southwestern Biology, University of New Mexico, 167
Castetter Hall, Albuquerque, NM 87131, USA
Email: scottrclark2@gmail.com

Mary M. Conner
Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA

Scott L. Durst
San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, New Mexico Ecological Services Field Office, 2105 Osuna Road NE, Albuquerque, NM 87113, USA

Nathan R. Franssen

San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service, New Mexico Ecological Services Field Office, 2105 Osuna Road NE, Albuquerque, NM 87113, USA

Running head: Survival of Colorado Pikeminnow

Abstract

Hatcheries and stocking programs have become necessary to repatriate or augment populations of imperiled fishes worldwide. Over nearly two decades, millions of endangered juvenile Colorado Pikeminnow Ptychocheilus lucius have been stocked into the San Juan River (Colorado, New Mexico, and Utah); however, recruitment of these individuals to adult life stages (age ≥ 6) remains low. Using a mark-recapture data set collected from annual riverwide electrofishing efforts between 2003 and 2016, we investigated apparent survival and capture probabilities of stocked Colorado Pikeminnow to identify age-specific bottlenecks contributing to this lack of recruitment. With relatively high capture rates, which averaged between 0.34 and 0.39 for the first 2 years after an individual's first encounter, our results indicated that survival was consistently less than 0.25 for young age-groups (i.e., ages 1-3), and no appreciable increase in survival occurred until fish had been in the river for at least 3 years (i.e., age $\geq 4+$). Although age and capture effects were confounded for most age-groups, capture appeared to reduce apparent survival for age- 2 fish by approximately 50%. The confounding effects of age, a completely hatchery-origin population, and extensive environmental alterations to the San Juan River make it difficult to disentangle factors associated with this overall reduced juvenile survival.

Introduction
Native fishes worldwide are declining in response to anthropogenic alterations to their environments (Dudgeon et al. 2006; Jelks et al. 2008; Fullerton et al. 2010). To counter these declines, stocking programs developed to repatriate or augment declining populations have become increasingly common to avoid extinction (Seddon et al. 2007; Cochran-Biederman et al. 2015). Ideally, identifying and ameliorating the factors responsible for the initial declines will be requisite for species recovery; however, the immediate conservation concern for many species has forced the implementation of stocking activities to prevent further population declines (Shute et al. 2005). Although these programs can temporarily alleviate the threat of local extirpation or extinction, their roles and effectiveness in achieving long-term recovery (i.e., population selfsustainability) remain equivocal (Brown and Day 2002; Belk et al. 2008; Milot et al. 2013; Naslund and Johnsson 2014).

Quantifying the effectiveness of stocking efforts is imperative for assessing and adaptively managing these programs. Stocked individuals often suffer from low survivorship and limited recruitment (i.e., survival to reproductive maturity; Cochran-Biederman et al. 2015), which may be partially attributable to maladaptive behavioral, phenotypic, and genetic consequences associated with benign hatchery conditions or contemporary environmental conditions (Araki et al. 2007; Belk et al. 2008; Frankham 2008; Naslund and Johnsson 2014). If recruitment of stocked fishes does occur (i.e., growth to reproductive adults), repatriated individuals may respond differently to local environments compared to wild conspecifics, resulting in reduced viability of augmented populations (Chilcote 2003; Williamson et al. 2010). Because fish are often stocked as fry or juveniles, quantifying the mortality of young age-classes will be especially important for rapidly measuring the success of stocking programs.

Native fishes of the Colorado River basin have experienced dramatic declines over the last century due to high levels of anthropogenic disturbance (Minckley and Deacon 1968; Poff et al. 1997; Minckley et al. 2003; Olden et al. 2006). Extensive water development and habitat alterations (Minckley and Deacon 1968; Poff et al. 1997), coupled with the introduction of over 60 nonnative species (Olden et al. 2006), have driven declines and prompted managers to initiate hatchery augmentation efforts for several endangered species (Nesler et al. 2003; Schooley and Marsh 2007; Zelasko et al. 2010).

The federally protected Colorado Pikeminnow Ptychocheilus lucius is endemic to the Colorado River basin of western North America (USFWS 1967; Tyus 1991). This large-bodied, piscivorous cyprinid is highly migratory, exhibiting extensive seasonal movements (Osmundson et al. 1998; Durst and Franssen 2014), and utilizes a variety of habitats through ontogeny (Osmundson et al. 1998). Wild populations persist in the Colorado River and Green River subbasins (Colorado and Utah) upstream of Lake Powell (Utah and Arizona) in the upper Colorado River basin; however, in the San Juan River (Colorado, New Mexico, and Utah), a tributary of the Colorado River, annual stocking of age-0 individuals since the mid-1990s has been used to repatriate the historical population (Tyus et al. 1982; Platania et al. 1991). Despite these efforts, stocked fish are rarely observed 3 years after stocking; this, coupled with a life history that includes delayed sexual maturation (6 years of age; Vanicek and Kramer 1969), has resulted in the presence of few reproductive individuals in the river, thus limiting the population's sustainability.

Throughout the Colorado River basin, electrofishing via boats or rafts remains a common technique to monitor large-bodied endangered fishes through a capture-and-release methodology (Bestgen et al. 2007; Zelasko et al. 2010; Franssen and Durst 2014; Franssen et al. 2014). A
fundamental assumption implicit in the usefulness of this approach, however, is that mortality associated with the capture-and-release process is minimal. Furthermore, as the endangered fish recovery efforts in the upper Colorado River basin (Colorado, Green, and San Juan River subbasins) rely heavily on capture-and-release methods to monitor demographic parameters of endangered species (e.g., Bestgen et al. 2007; Zelasko et al. 2010; Franssen and Durst 2014; Franssen et al. 2014; Osmundson and White 2017), captured individuals are typically subjected to additional handling procedures (e.g., live-well containment, tagging, and length and mass measurements) that have the potential to negatively affect short- or long-term survival (Pollock and Pine 2007). While these activities are essential for monitoring the status of populations and recovery progress, their efficacy is contingent on minimizing detrimental population-level effects.

To investigate the recruitment limitations hindering Colorado Pikeminnow stocking efforts in the San Juan River, we assessed apparent survival (hereafter, "survival") and capture probabilities by using recaptures of marked individuals between 2003 and 2016. Although our specific aim was to quantify survival among age-classes (or age-groups), we also assessed variation in survival and capture rates annually, spatially, and across individual attributes. Furthermore, considering the spatially extensive and temporally intensive management and monitoring activities that are implemented annually in the San Juan River, we explored potential capture-related effects on the survival of Colorado Pikeminnow.

<A> Methods

<C>Study System.- The headwaters of the San Juan River emerge from the San Juan Mountains of southwestern Colorado and drain approximately $99,200 \mathrm{~km}^{2}$ of Colorado, New Mexico, Utah,
and Arizona before reaching Lake Powell (Carlson and Carlson 1982; Figure 1). Completion of Navajo Dam (river kilometer [RKM] 365) in 1962 impounded the upper San Juan River, thereby modifying the river's geomorphology and disrupting its natural flow regime. Channel morphology and complexity exhibit longitudinal and lateral variation between Navajo Dam and Lake Powell (RKM 0; Bliesner and Lamarra 2000; Franssen et al. 2015). The lower section of the river is largely canyon-bound, while the middle reaches exhibit substantial lateral complexity (channel braiding and secondary channels). The upper portion of the San Juan River has been severely impacted by anthropogenic activities and is channelized throughout (Franssen et al. 2015). Furthermore, declining water levels in Lake Powell have created a waterfall that limits upstream movements from the lake to the river (Durst and Franssen 2014). Consequently, these upstream and downstream barriers have limited the accessibility and quantity of available habitats, along with altering the timing and magnitude of peak flows in the San Juan River.
<C> Fish stocking, tagging, and sampling.- Stocking of Colorado Pikeminnow in the San Juan River was initiated in 1996, and the number of individuals stocked has been variable across years (Table 1). Age-0 Colorado Pikeminnow were stocked (Southwestern Native Aquatic Resources and Recovery Center, Dexter, New Mexico) between RKM 315.4 and RKM 268.1; due to their small size at stocking (1996-2016 annual mean $=55 \mathrm{~mm}$ TL; range $=24-85 \mathrm{~mm}$ TL; Furr 2017), the fish did not receive a PIT tag (12 mm ; Biomark, Inc.) until their first encounter in the field. We used raft mounted electrofishing units to recapture Colorado Pikeminnow during annual large-bodied fish monitoring and nonnative fish removal efforts between RKM 289.7 and 4.6. These sampling efforts consisted of two electrofishing rafts progressing in a downstream direction, sampling both shorelines and holding captured fish in live wells until live-well
capacity was reached or following a maximum of 4.8 RKM, whichever occurred first. Riverwide surveys for large-bodied fish were conducted annually in September or October and sampled three out of every four 1.6-RKM reaches. Annual nonnative fish removal efforts were spatially and temporally variable throughout the study period due to adaptive management activities carried out by the U.S. Fish and Wildlife Service (USFWS) San Juan River Basin Recovery Implementation Program (Table 1; Franssen et al. 2014). Captured fish were scanned for the presence of a PIT tag (unmarked fish received an implanted tag), measured (TL, mm), weighed (g), and returned to the river after capture.
<C> Apparent survival and capture probabilities.- We used a Cormack-Jolly-Seber openpopulation model (Cormack 1964; Jolly 1965; Seber 1965) in Program MARK (White and Burnham 1999) to estimate apparent survival (ϕ) and capture probability (p) of Colorado Pikeminnow captured between 2003 and 2016. We restricted our analyses to those years because Colorado Pikeminnow captures were highest during that time period. Encounter histories for each fish were constructed from captures of PIT-tagged individuals. We treated each year as an encounter interval and collapsed multiple captures of an individual within a year into a single capture in an individual's encounter history.
<C> Model structures and selection procedure.- As our primary interest was to investigate agespecific survival, we modeled ϕ and p as a function of first-encounter age (first captured at age 1 , 2, or 3+; modeled as groups) using known length-age relationships (Durst and Franssen 2014), along with the encounter date, to assign each individual to an age-group. A suite of candidate models was used to test whether ϕ and p of Colorado Pikeminnow age-groups varied through
time and were influenced by the additive effects of first-encounter size (TL and TL^{2}), residual weight (RW; residuals of log-transformed length-weight regression as a metric of body condition), and location (RKM; Table 2). The squared TL term was included to account for nonlinear size effects influencing estimates of ϕ and p. For instances in which weights were not recorded or in which discrepancies existed (204 [2.0\%] of individuals), we assigned those individuals the predicted weights estimated from the observed length-weight relationship ($\log _{10} \mathrm{~W}$ $\left.=3.054 \cdot \log _{10}[\mathrm{TL}]-5.289\right)$.

To reduce the total number of models considered and thus reduce computational time, we sequentially analyzed three sets of models (Table 2). First, we evaluated a series of time structures to assess temporal variation in ϕ and p-estimates across age-groups. For both ϕ and p, we modeled capture effects (C) over the first two time intervals with several models, including constant first- and second year effects with constant $(C 1+C 2)$ or time-varying $(C 1+C 2+t)$ subsequent annual variability (i.e., capture intervals after $C 1$ and $C 2$); time-varying first- and second-year effects with constant subsequent annual variation $(C 1 t+C 2 t)$; and time-varying first- and second-year effects with time varying subsequent annual variability ($C 1 t+C 2 t+t)$. We also constructed a fully time-variant annual model without capture effects (t) and a constant, time-invariant (.) model. Inclusion of the first and second time intervals allowed us to estimate some age-specific survival and capture effects (Supplementary Table S. 1 available in the online version of this article); however, sample sizes precluded us from assessing successive time intervals beyond the first two intervals. Furthermore, as age increased with the first and second time intervals (e.g., age-1 fish progressed to age 2 across the first two capture periods), we were unable to differentiate confounding effects of age and capture effects for all age-groups. All possible combinations of age and time structures were evaluated, and models were ranked using

Akaike's information criterion adjusted for small sample sizes $\left(\mathrm{AIC}_{c}\right)$. We tested the goodness of fit of the most complex model structure by using the median c-hat (c) procedure (Cooch and White 2011). We corrected and reweighted the final model set (quasi- $\mathrm{AIC}_{c}\left[\mathrm{QAIC}_{c}\right]$) based on the resultant c to account for a lack of fit due to overdispersion. We retained the highest-ranked time structures with reasonable support (those with a QAIC_{c} difference $\left[\Delta \mathrm{QAIC}_{c}\right]<2.0$ and an Akaike weight $\left[w_{i}\right]>10 \%$; Burnham and Anderson 2002); using the top model(s) for age and time effects, we then evaluated the influence of the individual covariates on both ϕ and p (TL, TL^{2}, RW, and RKM encountered). As covariates reflected data that were collected at an individual's first encounter, all individual covariates were only applied to the first time interval.

To further reduce computational time when assessing covariates, we employed a sequential approach to produce the most parsimonious ϕ and p structures (Nichols et al. 1997; Zelasko et al. 2010). Using the retained time structures (see Results below), we began by constructing the most complex p structure (highest-supported time structure and all individual covariates), which was held constant as we increased the complexity of the ϕ structure by successively adding covariates starting from a null model (highest-supported time structure but no individual covariates). In effect, this forced most of the variability to be captured in the p structure, which allowed us to better estimate the ϕ structure (Zelasko et al. 2010). After all possible ϕ structures were run, we retained the highest ranking ϕ structures and subsequently ran all possible combinations by increasing the complexity of the p structure in an identical manner. In the final model set, we used the time structure and covariate model(s) with the highest support to estimate capture and size (TL) effects on survival among age-groups (Table 2). To evaluate putative capture effects, we fitted models allowing the first- and second-year effects to vary among age-groups (Clt $+C 2 t \times \mathrm{AG}$). To estimate whether size (TL) had differential effects
across age-groups, we fitted models that constrained survival to be equal among age-groups ($\mathrm{TL}_{1=2=3}$) as well as models that allowed size effects to vary among age-groups (i.e., $\mathrm{TL} \times$ agegroup interaction). Models that included a unique effect of TL for age-3+ fish resulted in many inestimable parameters due to low sample sizes within this group; thus, we only fitted models that allowed for common effects of TL for ages 2 and 3+, differing from the effect for the age-1 group $\left(\mathrm{TL}_{1 \mid 2=3}\right)$. To account for uncertainty in assessing the most appropriate model(s) for interpretation, we used weighted model averaging based on w_{i} to quantify survival and capture estimates as well as covariates that were present in models with reasonable support (those with Δ QAIC $_{c}<2.0$ and $\left.w_{i}>10 \%\right)$. As our primary interest was in age-specific estimates, we used the real survival parameters (unique estimates for each year, time interval, and age-group combination) to calculate age-specific survival and capture probabilities for individuals of known age and more conservatively for age-groups (i.e., ages $3+$ and $4+$) in which discrete ages could not be identified (i.e., after the first and second time intervals).
<C>Capture effects of age 2 Colorado Pikeminnow.-To better understand the potential capture effects on known age-2 Colorado Pikeminnow, we used a series of generalized linear mixedeffects models (GLMM) to evaluate how the probability of future recapture (binary response variable) varied by the age at first encounter (i.e., age-2 fish tagged the previous year and recaptured the year of versus age-2 fish first captured the year of) and TL to control for size effects. We built four models using the singular, additive and interactive combinations of age at first encounter and TL. A fifth model (no fixed effects) was used as a null model and all models featured year as a random effect with a random intercept. Models were compared using AIC_{c} and
we interpreted models with a $\Delta \mathrm{AIC}_{c}$ less than 2.0 and a w_{i} greater than 10%. Models were fit using the "lme4" package (Bates et al. 2015) in R (R Core Team 2017).

<A> Results

The full data set included a total of 10,365 individual Colorado Pikeminnow representing 11,401 captures between 2003 and 2016 (Table 1). Captures tended to be higher in the late summer and early fall compared to other seasons (Figure 2), and individuals were most often first encountered as age-1 $(n=5,413)$ or age- $2(n=4,400)$ fish, with substantially fewer individuals represented in the age-3+ group $(n=552)$. The majority of individuals were encountered once (92\%), few were captured twice (7\%), and individuals captured three or more times were rare (1%; range $=3-6$ encounters $)$. Size at first encounter ranged from 107 to 620 mm TL and varied minimally among years within age-groups, with the exception of age-3+ individuals (Figure 3). No apparent trends were observed among years or age-groups in RW. Spatially, individuals were encountered along the entire sampled reach; however, there was a slight trend of age-1 individuals captured at more upstream locations (Figure 3).

 Model Selection

Goodness-of-fit testing indicated slight overdispersion of the data $(c=1: 36, \mathrm{SE}=0.004$; 1,000 simulations); thus, the final candidate model set was adjusted prior to interpretation. Model selection of candidate time structures (i.e., no covariates) resulted in two top-ranking models $\left(\Delta \mathrm{QAIC}_{c}<2.0\right.$ and $\left.w_{i}>10 \%\right)$ that differed in their p structure (not shown). The highest-ranking time structure ($w_{i}=0.47$) featured annual variation over the first two time intervals and in subsequent time intervals $(C 1 t+C 2 t+t)$ for both ϕ and p . The second model $\left(\Delta \mathrm{QAIC}_{c}=1.86\right.$;
$\left.w_{i}=0.18\right)$ differed only in the p structure and featured annual variation over the first two time intervals but a constant p for all subsequent time intervals $(C 1 t+C 2 t)$. The final model set (covariates and age-group interactions included) resulted in three models (cumulative $w_{i}=0.50$) with reasonable support that included TL and $\mathrm{TL}^{2}(\phi)$, RW (ϕ and p), RKM (p), and the two competing time structures (Table 3). Only one covariate differed among the top models (RW was included in the ϕ portion of the third-best model); thus, we interpreted the parameter estimates from the more complex third model. However, qualitative comparison with the other two competing models resulted in a similar directionality and magnitude of model parameters.

 Apparent Survival Estimates

The most complex model was the third model, which resulted in 25 estimable parameters for apparent survival (Table 4). Survival parameters included an intercept (estimating survival for age-3+ individuals in 2016 subsequent to the first two time intervals); first time interval (C1t) and second time interval ($C 2 t$) effects across age-groups; annual variation; TL and TL^{2} interactions among age-groups; and RW. Estimated survival was similar among the three agegroups and was generally consistent throughout the study period, with the exception of 2007 and 2012, which exhibited substantially lower survival. First-encounter size (TL) had a positive effect on first-year survival rates of Colorado Pikeminnow; however, the extent of this effect varied by age-group (Table 4). The top models all featured a common size effect for age- 2 and age-3+ groups that was different from the effect for the age-1 group $\left(\mathrm{TL}_{1 \mid 2=3}\right)$. Size effects on first-year survival were minimal for age-1 fish; however, TL^{2} had a strong and positive effect on survival for the age- 2 and age- $3+$ groups, indicating a non-linear effect of size on first-year survival (Figure 4). Estimated effects of RW on survival were negligible (Table 4).

In total, 108 real survival parameters were possible; of these, 21 were inestimable due to low capture probabilities or small sample sizes (Figure 5). Age-specific estimates for individuals of known age revealed that survival was equal to or less than 0.25 during the first 3 years poststocking ($0.19,0.25$, and 0.22 for ages 1,2 , and 3 , respectively). Survival increased for age-4 individuals (0.53); however, confidence intervals overlapped those of younger age-classes (Table 5). Age-groups exhibited a similar trend, as mean survival was 0.17 and 0.60 for age- $3+$ and age4+ fish, respectively (Table 5).

 Capture Effects

Capture effects were confounded with age for most age-groups (e.g., our only survival estimates for age-1 fish came from captured individuals); however, we were able to evaluate the effect of capture for individuals that were of known age 2. These effects were interpreted using the second-year survival estimates on the age-1 group ($C 2 t_{\text {Age }} 1$ in Table 4) and the first-year effects from the age-2 group ($C 1 t_{\text {Age }}^{2}$). No individuals from the age-1 group were recaptured after the first two capture periods in 2005 and 2006; thus, we could only evaluate capture effects from 2007 to 2016 . On average, survival was approximately 50% lower (a 0.17 mean reduction in survival) for age-2 fish in the first year after capture compared to age- 1 fish in their secondyear after capture (Figure 6), suggesting that capture and handling effects measurably reduced survival.

We retained two GLMMs (logistic regression) with reasonable support ($\Delta \mathrm{AIC}_{c}<2.0 ; w_{i}$ $>10 \%$) predicting the recapture probability of known age- 2 fish. The highest-ranked model featured the additive effects of first-encounter age and $\operatorname{TL}\left(\Delta \mathrm{AIC}_{c}=0.0 ; w_{i}=0.61\right)$. Individuals that were first handled at age 1 displayed significantly higher recapture probabilities compared to
individuals that were first captured at age $2(\beta=-0.61, \mathrm{SE}=0.18)$, and TL was positively related to recapture probability ($\beta=0.75, \mathrm{SE}=0.33$; Figure 7). The second interpretable model ($\Delta \mathrm{AIC}_{c}$ $\left.=1.8 ; w_{i}=0.24\right)$ featured only first-encounter age and similarly indicated that fish first captured at age 1 displayed higher recapture probabilities than individuals that were first captured at age 2 $(\beta=-0.55, \mathrm{SE}=0.18)$.

Capture Probability Estimates

Capture probability was modeled with 19 parameters (Table 6) that included the same time-specific parameters (first- and second-year effects, annual variation) as those modeled for survival (but did not differ among age-groups) and also included RW and RKM. Capture probabilities were similar across age-groups and were consistent across years and among time intervals (Table 6). Mean capture probabilities averaged between 0.34 and 0.39 for the first two years postcapture ($C 1 t$ and $C 2 t$) and 0.31 in subsequent time intervals. Residual weight and RKM were negatively related to capture probability (Table 6), indicating more robust fish were less likely to be encountered and capture rates were higher in the downstream, canyon-bound reaches of the river. Age-specific estimates derived from real capture probability parameters (same as those modeled and retained for ϕ) resulted in similar capture rates for individuals of known ages and age-groups (Table 5; Figure 8).

<A> Discussion

Our results indicated persistently low survivorship of stocked juvenile Colorado
Pikeminnow through the first 3 years post-stocking, which has limited the numbers of recruited adults in the San Juan River. As far as we know, these are the first empirically based survival
estimates for these age-classes of Colorado Pikeminnow. Although size disparities limit comparisons of survival estimates with other studies (Osmundson and Burnham 1998; Bestgen et al. 2007), some comparisons within overlapping portions of the size distributions were possible. At the overlapping sizes of fish ($\sim 350 \mathrm{~mm} \mathrm{TL}$), survival of Colorado Pikeminnow in the San Juan River was approximately 25% lower than estimates (2000-2003) for those in the Green River subbasin of the Colorado River basin (estimated from Figure 4 in Bestgen et al. 2007). However, as individuals reached 450 mm and larger sizes, survival estimates were comparable between the basins, further suggesting relatively low juvenile survival in the San Juan River. Although temporal variability in recruitment may be expected for long-lived fishes (Osmundson and White 2017), estimated survival across age-groups of stocked Colorado Pikeminnow in the San Juan River has remained consistent throughout the last two decades. Given these results, identifying and ameliorating the factors that limit recruitment of Colorado Pikeminnow across the Colorado River basin will constitute a major challenge for managers to secure recovery of the species.

Size at first encounter had interactive effects with age on the survival of Colorado Pikeminnow. First-year post-capture survival was influenced by size at encounter, and this was especially apparent for larger individuals. As size generally correlates with increased survival of stocked fish (Justice et al. 2009; Zelasko et al. 2010), the relatively constant survival rates across ages 1-3 were surprising given that Colorado Pikeminnow stocked into the San Juan River tend to be longer at a given age compared to their wild counterparts in the upper Colorado River basin (Durst and Franssen 2014). A possible explanation may be related to deleterious capture effects that appeared to intensify for moderately sized individuals. Although capture effects were confounded with age for most age-group comparisons, we were able to directly test these effects
for known age-2 individuals. Survival was substantially lower for fish that were first captured at age 2 compared to age- 2 fish that were first handled at age 1 . In addition, lower survival of age$3+$ fish after the first year of capture compared to age-1 and age- 2 fish provides further evidence of seemingly detrimental capture effects. Survival rebounded during the second year after capture for the age-1 and age-3+ groups; however, capture effects appeared to linger for individuals that were initially captured at age 2 , suggesting that this size-class/age-class was the most vulnerable to deleterious capture effects. Although the exact mechanisms contributing to these capture effects are unclear, the results suggest that factors associated with capture stress, such as electrofishing (Dalbey et al. 1996; Nielsen 1998), handling/tagging (Bateman and Gresswell 2006; Ficke et al. 2012), live-well housing (Schramm et al. 2006), and environmental conditions (Schramm et al. 2010), have the potential to affect the survival of Colorado Pikeminnow in the San Juan River.

Bestgen et al. (2007) found no evidence to support increased mortality associated with electrofishing and capture of Colorado Pikeminnow in the Green River subbasin. Our data also indicated that lower survival rates in the San Juan River were not limited to electrofishing, and the intensity and timing of sampling activities in the San Juan River could explain some of the discrepancies in potential capture effects between studies. First, annual sampling efforts in the San Juan River are spatially extensive (78% of the river sampled) and intensive (multiple seasonal passes), reflected in the relatively high capture probabilities compared to those reported in other studies (Osmundson and Burnham 1998; Bestgen et al. 2007). Perhaps more importantly, our age-specific capture probabilities suggest that a large proportion of the population is likely being handled between ages 1 and 3, ages during which minimal increases in survival were observed, indicating that the survival results were more likely related to stress
associated with the timing of handling activities. The higher return rates of age-2 Colorado Pikeminnow first handled at age 1 provide evidence that these effects are not exclusively related to electrofishing, as these individuals were exposed to repeated electrofishing and handling effects in successive years. Because the observed capture effects were most prominent after an individual's first encounter, we cannot rule out effects related to PIT tag implantation. However, we think these effects have likely been intensified by the magnitude and timing (seasonality) of annual sampling efforts within the San Juan River. In contrast to the targeted spring sampling utilized in the Green River subbasin (Bestgen et al. 2007), Colorado Pikeminnow are captured nearly year-round in the San Juan River, with a disproportionately higher number of individuals captured throughout the summer and fall. Water (and live-well) temperatures are considerably warmer during these months, which could result in increased physiological stress and mortality (Schramm et al. 2010). Although these capture-related effects appear to be limiting the survival of stocked Colorado Pikeminnow in the San Juan River, identifying the relative impact of the individual capture components, and mitigating their effects, will likely necessitate future evaluations.

In addition to capture effects, apparent survival of juvenile Colorado Pikeminnow was likely affected by individuals leaving the study area. Long-distance seasonal movements (Tyus and McAda 1984; Tyus 1991; Durst and Franssen 2014) and tributary usage have been documented (Fresques et al. 2013; Cathcart et al. 2015). Substantial downstream movements in the San Juan River are especially problematic because individuals traversing the large waterfall at the confluence of Lake Powell fare poorly-and, more importantly, are likely restricted from returning to the river (Durst and Francis 2016; Francis et al. 2017). Although emigration rates are unknown, substantial downstream winter movements and captures of individuals in Lake Powell
(Durst and Francis 2016) indicate that a considerable proportion of stocked fish may be leaving the system (Durst and Franssen 2014). Similarly, it is conceivable that individuals may be actively avoiding the electrofishing gear during the first time interval after capture. Although we think this unlikely based on the relatively high and consistent capture probabilities, fish in the San Juan River are exposed to a considerable amount of annual electrofishing effort, and behavioral avoidance of the electrofishing rafts is possible. A number of stationary PIT antennas is currently positioned throughout the upper reaches of the San Juan River and tributaries and may help to provide insight into the extent of this behavior.

Future Directions and Management Implications

Survival showed no appreciable increases until age 4, indicating that the size or age of fish greater than age 3 coincided with release from an apparent constraint on survival. Our agespecific capture probabilities indicate that a large proportion of stocked Colorado Pikeminnow are likely being subjected to capture, tagging, and handling stress during their first 3 years in the river. Although we acknowledge that the exact mechanisms driving the observed capture effects are currently unclear, these effects do appear to be contributing to the consistently low survival of age-1-3 Colorado Pikeminnow in the San Juan River. As a first step to reduce capture-related stress, the USFWS San Juan River Basin Recovery Implementation Program has ceased the capture and handling of Colorado Pikeminnow during warmer months and will rely solely on annual large-bodied monitoring efforts to obtain demographic information. While this will effectively reduce future capture probability estimates and the number of tagged fish in the river, we are optimistic that reducing the handling frequency will boost juvenile survival. As fieldbased monitoring activities often preclude the ability to use traditional control treatments
(Pollock and Pine 2007), differentiating the relative contributions of the individual components that constitute a capture and handling event will likely rely on future experimental approaches.

Depending on the magnitude of capture effects at the population level, we recognize that our ability to estimate the true survival of Colorado Pikeminnow stocked into the San Juan River may be obscured. Until we can identify and minimize these detrimental capture effects, efforts to determine the underlying factors responsible for the initial population declines are limited. Anthropogenic alterations have resulted in substantial biotic (e.g., nonnative predators; Franssen et al. 2014; Pennock et al. 2018) and abiotic (e.g., altered flow regime; Propst and Gido 2004; Gido and Propst 2012) changes that have modified the quality and availability of habitats in the San Juan River (Franssen et al. 2015); however, any confounding capture-induced mortality should similarly be minimized. Furthermore, it is unclear whether naturally spawned Colorado Pikeminnow in the San Juan River will have similar survival rates compared to stocked individuals, but a spawning adult population will be requisite before we can make this assessment. Augmentation efforts have resulted in a relatively small number of adult Colorado Pikeminnow in the San Juan River (Schleicher 2017), and natural levels of spawning and recruitment are minimal and infrequent (Farrington et al. 2017; Zeigler and Ruhl 2017). Therefore, our ability to boost adult population sizes in the San Juan River is limited to improving the survival of stocked Colorado Pikeminnow, at least until natural recruitment becomes more robust. Nonetheless, reliance on hatchery supplementation will not result in the species' recovery if the underlying factors responsible for low natural recruitment-whether the mechanisms are anthropogenic or natural-are not ameliorated. Although hatchery-reared individuals are often required to repatriate extirpated populations, difficult questions remain about the conflict between the necessity of stocking to bolster numbers and the potential
deleterious effects of continued augmentation and monitoring activities focused on recovering populations.

<A> Acknowledgments

We thank the staff from U.S. Fish and Wildlife Service Colorado River Fishery Project (Grand Junction, CO), U.S. Fish and Wildlife Service New Mexico Fish and Wildlife Conservation Office (Albuquerque, NM), New Mexico Department of Game and Fish (Santa Fe, NM), Utah Division of Wildlife Resources (Moab, UT), Navajo Nation Department of Fish and Wildlife (Window Rock, AZ), and American Southwest Ichthyological Researchers (ASIR; Albuquerque, NM) for field work. Funding for this work was provided through authorizing legislation for the San Juan River Basin Recovery and Implementation Program and administered by U.S. Bureau of Reclamation (Salt Lake City, UT). This article reflects the views of the authors and does not necessarily reflect the views of the U.S. Fish and Wildlife Service.

<A> References

Araki, H, B. Cooper, and M. S. Blouin. 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100-103.

Bateman, D. S., and R. E. Gresswell. 2006. Survival and growth of age-0 Steelhead after surgical implantation of 23-mm passive integrated transponders. North American Journal of Fisheries Management 26:545-550.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48.

Belk, M. C., L. J. Benson, J. Rasmussen, and S. L. Peck. 2008. Hatchery-induced morphological variation in an endangered fish: a challenge for hatchery-based recovery efforts. Canadian Journal of Fisheries and Aquatic Sciences 65:401-408.

Bestgen, K. R., J. A. Hawkins, G. C. White, K. D. Christopherson, J. M. Hudson, M. H. Fuller, D. C. Kitcheyan, R. Brunson, P. Badame, G. B. Haines, J. A. Jackson, C. D. Walford, and T. A. Sorensen. 2007. Population status of Colorado Pikeminnow in the Green River Basin, Utah and Colorado. Transactions of the American Fisheries Society 136:13561380.

Bliesner, R., and V. Lamarra. 2000. Hydrology, geomorphology and habitat studies. KellerBliesner Engineering and Ecosystems Research Institute, San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Brown, C., and R. L. Day. 2002. The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish and Fisheries 3:79-94.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodal inference: a practical information-theoretic approach, $2^{\text {nd }}$ edition. Springer-Verlag, New York.

Carlson, C. A., and E. M. Carlson. 1982. Review of selected literature on the upper Colorado River system and its fishes. Pages 1-8 in W. H. Miller, H. M. Tyus and C. A. Carlson, editors. Fishes of the upper Colorado River system: present and future. American Fisheries Society, Western Division, Bethesda, Maryland.

Cathcart, C. N., K. B. Gido, and M.C. McKinstry. 2015. Fish community distributions and movements in two tributaries of the San Juan River, USA. Transactions of the American Fisheries Society 144:1013-1028.

Chilcote, M. W. 2003. Relationship between natural productivity and the frequency of wild fish in mixed spawning populations of wild and hatchery Steelhead (Oncorhynhus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 60:1057-1067.

Cochran-Biederman, J. L., K. E. Wyman, W. E. French, and G. L. Loppnow. 2015. Identifying correlates of success and failure of native freshwater fish reintroductions. Conservation Biology 29:175-186.

Cooch, E., and G. C. White. 2011. Program MARK: a gentle introduction. http://www.phidot.org/software/mark/docs/book/

Cormack, R. M. 1964. Estimates of survival from the sighting of marked animals. Biometrika 51:429-438.

Dalbey, S. R., T. E. McMahon, and W. Fredenberg. 1996. Effect of electrofishing pulse shape and electrofishing-induced spinal injury on long-term growth and survival of wild Rainbow Trout. North American Journal of Fisheries Management 16:560-569.

Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. Pricur-Richard, D. Soto, M. L. J. Stiassny, and C. A. Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81:163-182.

Durst, S. L., and T. A. Francis. 2016. Razorback Sucker transbasin movement through Lake Powell, Utah. Southwestern Naturalist 61:60-63.

Durst, S. L., and N. R. Franssen. 2014. Movement and growth of juvenile Colorado Pikeminnows in the San Juan River, Colorado, New Mexico, and Utah. Transactions of the American Fisheries Society 143:519-527.

Farrington, M. A., R. K. Dudley, J. L. Kennedy, S. P. Platania, and G. C. White. 2017. Colorado Pikeminnow and Razorback Sucker larval fish survey in the San Juan River during 2016. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Ficke, A. D., C. A. Myrick, and M. C. Kondratieff. 2012. The effects of PIT tagging on the swimming performance and survival of three nonsalmonid freshwater fishes. Ecological Engineering 48:86-91.

Francis, T. A., D. S. Elverud, B. J. Schleicher, D. W. Ryden, and B. Gerig. 2017. San Juan River arm of Lake Powell Razorback Sucker (Xyrauchen texanus) survey: 2012. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Frankham, R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17:325-333.

Franssen, N. R., and S. L. Durst. 2014. Prey and non-native fish predict the distribution of Colorado Pikeminnow (Ptychocheilus lucius) in a south-western river in North America. Ecology of Freshwater Fish 23:395-404.

Franssen, N. R., J. E. Davis, D. W. Ryden, and K. B. Gido. 2014. Fish community responses to mechanical removal of nonnative fishes in a large southwestern river. Fisheries 39:352363.

Franssen, N. R., E. I. Gilbert, and D. L. Propst. 2015. Effects of longitudinal and lateral stream channel complexity on native and nonnative fishes in an invaded desert stream. Freshwater Biology. 60:16-30.

Fresques, T. D., R. C. Ramey, and G. J. Dekleva. 2013. Use of small tributary streams by subadult Colorado Pikeminnow (Ptychocheilus lucius) in Yellow Jacket Canyon, Colorado. Southwestern Naturalist 58:104-107.

Fullerton, A.H., K. M. Burnett, E. A. Steel, R. L. Flitcroft, G. R. Pess, B. E. Fiest, C. E. Torgersen, D. J. Miller, and B. L. Sanderson. 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater Biology 55:2215-2237.

Furr, D. W. 2017. San Juan River Razorback Sucker (Xyrauchen texanus) and Colorado Pikeminnow (Ptychocheilus lucius) population augmentation: 2016. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Gido, K. B., and D. L. Propst. 2012. Long-term dynamics of native and nonnative fishes in the San Juan River, New Mexico and Utah, under a partially managed flow regime. Transactions of the American Fisheries Society 141:645-659.

Jelks, H. L., S. J. Walsh, N. M. Burkhead, S. Contreras-Balderas, E. Diaz-Pardo, D. A. Hendrickson, J. Lyons, N. E. Mandrak, F. McCormick, J. S. Nelson, S. P. Platania, B. A. Porter, C. B. Renaud, J. J. Schmitter-Sabo, E. B. Taylor, and M. L. Warren Jr. 2008. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33:372-407.

Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52:225-247.

Justice, C., B. J. Pyper, R. C. P. Beamesderfer, V. L. Paragamian, P. J. Rust, M. D. Neufold, and S. C. Ireland. 2009. Evidence of density- and size-dependent mortality in hatchery-reared juvenile White Sturgeon (Acipsenser transmontanus) in the Kootenai River. Canadian Journal of Fisheries and Aquatic Sciences 66:802-815.

Milot, E., C. Perrier, L. Papillon, J. J. Dodson, and L. Bernatchez. 2013. Reduced fitness of Atlantic Salmon released in the wild after one generation of captive breeding. Evolutionary Applications 6:472-485.

Minckley, W. L., and J. E. Deacon. 1968. Southwestern fishes and the enigma of "endangered species". Science 159:1424-1432.

Minckley, W. L., P. C. Marsh, J. E. Deacon, T. E. Dowling, P. W. Hedrick, W. J. Matthews, and G. Mueller. 2003. A conservation plan for native fishes of the lower Colorado River. BioScience 53:219-234.

Naslund, J., and J. I. Johnsson. 2014. Environmental enrichment for fish in captive environments: effects of physical structures and substrates. Fish and Fisheries. 17:1-30.

Nesler, T. P., K. Christopherson, J. M. Hudson, C. W. McAda, F. Pfeifer, and T. E. Czapla. 2003. An integrated stocking plan for Razorback Sucker, Bonytail, and Colorado Pikeminnow for the Upper Colorado River Endangered Fish Recovery Program. Upper Colorado River Endangered Fish Recovery Program, U.S. Fish and Wildlife Service.

Nichols, J. D., J. E. Hines, and P. Blums. 1997. Tests for senescent decline in annual survival probabilities of Common Pochards, Aythya ferina. Ecology 78:1009-1018.

Nielsen, J. L. 1998. Scientific sampling effects: electrofishing California's endangered fish populations. Fisheries 23:6-12.

Olden, J. D., N. L. Poff, and K. R. Bestgen. 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River basin. Ecological Monographs 76:25-40.

Osmundson, D. B., and K. P. Burnham. 1998. Status and trends of the endangered Colorado Squawfish in the upper Colorado River. Transactions of the American Fisheries Society 127:957-970.

Osmundson, D. B., and G. C. White. 2017. Long-term mark-recapture monitoring of a Colorado Pikeminnow Ptychocheilus lucius population: assessing recovery progress using demographic trends. Endangered Species Research 34:131-147.

Osmundson, D. B., R. J. Ryel, M. E. Tucker, B. D. Burdick, W. R. Elmblad, and T. E. Chart. 1998. Dispersal patterns of subadult and adult Colorado Squawfish in the upper Colorado River. Transactions of the American Fisheries Society 127:943-956.

Pennock, C. A., S. L. Durst, B. R. Duran, B. A. Hines, C. N. Cathcart, J. E. Davis, B. J. Schleicher, and N. R. Franssen. 2018. Predicted and observed responses of a nonnative Channel Catfish population following managed removal to aid the recovery of endangered fishes. North American Journal of Fisheries Management doi:10.1002/nafm. 10056

Platania, S. P., K. B. Bestgen, M. A. Moretti, D. L. Propst, and J. E. Brooks. 1991. Status of Colorado Squawfish and Razorback Sucker in the San Juan River, Colorado, New Mexico, and Utah. Southwestern Naturalist 36:147-150.

Poff, N. L., J. D. Allan, M. B. Bain, J. A. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. BioScience 47:69-784.

Pollock, K. H., and W. E. Pine. 2007. The design and analysis of field studies to estimate catch-and-release mortality. Fisheries Management and Ecology 14:1-8.

Propst, D. L., and K. B. Gido. 2004. Responses of native and nonnative fishes to natural flow regime mimicry in the San Juan River. Transactions of the American Fisheries Society 133:922-931.

R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Schleicher, B. J. 2017. Long term monitoring of sub-adult and adult large-bodied fishes in the San Juan River: 2016. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Schooley, J. D., and P. L. Marsh. 2007. Stocking of endangered Razorback Suckers in the Lower Colorado River basin over three decades: 1974-2004. North American Journal of Fisheries Management 27:43-51.

Schramm, H. L. Jr., A. R. Walters, J. M. Grizzle, B. H. Beck, L. A. Hanson, and S. B. Rees. 2006. Effects of live-well conditions on mortality and Largemouth Bass virus prevalence in Largemouth Bass caught during summer tournaments. North American Journal of Fisheries Management 26:812-825.

Schramm, H. L. Jr., B. Vondracek, W. E. French, and P. D. Gerard. 2010. Factors associated with mortality of Walleyes and Saugers caught in live-release tournaments. North American Journal of Fisheries Management 30:238-253.

Seber, G. A. F. 1965. A note on the multiple recapture census. Biometrika 52:249-259.
Seddon, P. J., D. P. Armstrong, and R. F. Maloney. 2007. Developing the science of reintroduction biology. Conservation Biology 21:303-312.

Shute, J. R., P. L. Rakes, and P. W. Shute. 2005. Reintroduction of four imperiled fishes in Abrams Creek, Tennessee. Southeastern Naturalist 4:93-110.

Tyus, H. M. 1991. Ecology and management of Colorado Squawfish. Pages 379-402 in W. L. Minckley and J. E. Deacon, editors. Battle against extinction: native fish management in the American West. University of Arizona Press, Tucson, Arizona.

Tyus, H. M., and C. W. McAda. 1984. Migration, movements and habitat preferences of Colorado Squawfish, Ptychocheilus lucius, in the Green, White and Yampa rivers, Colorado and Utah. Southwestern Naturalist 29:289-299.

Tyus, H. M., R. D. Burdick, R. A. Valdez, C. M. Haynes, T. A. Lytle, and C. R. Berry. 1982. Fishes of the upper Colorado River basin: distribution, abundance, and status. Pages 1270 in W. H. Miller, H. M. Tyus and C. A. Carlson, editors. Fishes of the upper Colorado River system: present and future. American Fisheries Society, Western Division, Bethesda, Maryland.

USFWS (U.S. Fish and Wildlife Service). 1967. Native fish and wildlife: endangered species. Federal Register 32:48:4001.

Vanicek, C. D., and R. H. Kramer. 1969. Life history of the Colorado Squawfish, Ptychocheilus lucius, and the Colorado Chub, Gila robusta, in the Green River in Dinosaur National Monument, 1964-1966. Transactions of the American Fisheries Society 98:193-208.

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120-S139.

Williamson, K. S., A. R. Murdoch, T. N. Pearsons, E. J. Ward, and M. J. Ford. 2010. Factors influencing the relative fitness of hatchery and wild spring Chinook Salmon (Oncorhynchus tshawytscha) in the Wenatchee River, Washington, USA. Canadian Journal of Fisheries and Aquatic Sciences 67:1840-1851.

Zeigler, M. P., and M. E. Ruhl. 2017. Small-bodied fishes monitoring in the San Juan River: 2016. San Juan River Basin Recovery Implementation Program, U.S. Fish and Wildlife Service.

Zelasko, K. A., K. R. Bestgen, and G. C. White. 2010. Survival rates and movement of hatcheryreared Razorback Suckers in the Upper Colorado River basin, Utah and Colorado. Transactions of the American Fisheries Society 139:1478-1499.

Year	Stocked	Age 1	Age 2	Age 3+	Sampling Effort (hrs)
1996	100,000	-	-	-	-
1997	116,878	-	-	-	-
1998	10,571	-	-	-	-
1999	500,000	-	-	-	-
2000	105,000	-	-	-	-
2001	-	-	-	-	-
2002	210,364	-	-	-	-
2003	175,928	$73(0.05)$	$1(0)$	$3(0.33)$	616.2
2004	280,000	$148(0.03)$	$119(0.02)$	$1(1.00)$	624.2
2005	302,270	$140(0.04)$	$219(0.04)$	$12(0.08)$	579.9
2006	313,854	$388(0.03)$	$176(0.08)$	$42(0.02)$	617.2
2007	475,790	$266(0.10)$	$124(0.09)$	$14(0.21)$	506.1
2008	270,234	$381(0.09)$	$205(0.20)$	$31(0.23)$	$1,199.3$
2009	468,000	$890(0.13)$	$449(0.12)$	$36(0.14)$	$1,256.6$
2010	$214,470 *$	$1,034(0.09)$	$1,053(0.13)$	$36(0.31)$	$1,166.2$
2011	426,588	$545(0.05)$	$871(0.02)$	$177(0.04)$	$1,180.4$
2012	395,640	$648(0.06)$	$439(0.07)$	$38(0.13)$	$1,090.0$
2013	439,264	$415(0.07)$	$352(0.05)$	$59(0.08)$	$1,073.5$
2014	393,442	$193(0.11)$	$191(0.16)$	$39(0.28)$	1235.3
2015	402,087	$302(0.06)$	$201(0.10)$	$64(0.09)$	1110.3
2016	432,443	-	-	-	842.5

Table 1. The numbers of age-0 Colorado Pikeminnow stocked annually since 1996 and the number of individuals first encountered in each age-group during 2003 and 2015 used to estimate apparent survival and capture probabilities. The proportion of individuals recaptured in any subsequent year are in parentheses. Annual river-wide electrofishing effort (hours) are presented in the final column.

* overwintered in hatchery and released in early 2011.

Table 2. Model structures used to test hypotheses related to age, time, individual covariates and capture effects on survival and

Time structure	Covariates	Capture and size (TL) survival effects
1) No time variation (.)	1) Null (time only)	1) Capture effects differ by age-group
2) Constant time variation in first two time intervals;	2) TL	$(C 1(t)+C 2(t) \times \mathrm{AG})$; and size effects
constant subsequent time variation $(C 1+C 2)$	3) RW	equal across age-groups (TL $(1=2=3+))$
3) Annual time variation in first two time intervals	4) RKM	2) Capture effects differ by age-group
constant subsequent time variation $(C 1 t+C 2 t)$	5) $\mathrm{TL}+\mathrm{RW}$	$(C 1(t)+C 2(t) \times \mathrm{AG})$; and size effects
4) Constant time variation in first two time intervals;	6) TL+RKM	different for age- group and equal for
subsequent annual time variation $(C 1+C 2+t)$	7) $\mathrm{RW}+\mathrm{RKM}$	age-groups 2 and $3+(\mathrm{TL}(1 \mid 2=3+))$
5) Annual time variation in first two time intervals	8) $\mathrm{TL}+\mathrm{RW}+\mathrm{RKM}$	
subsequent annual time variation $(C 1 t+C 2 t+t)$		
6) Annual time variation (t)		

Table 3. Cormack-Jolly-Seber open population models used to estimate apparent survival (ϕ) and capture probabilities (p) of Colorado
Pikeminnow captured in the San Juan River between 2003 and 2016. The top ten models ranked by quasi Akaike's Information
Criterion adjusted for small samples sizes ($\mathrm{QAIC}_{\mathrm{c}} ; \hat{c}=1.36$), which accounts for overdispersion of the data, are presented. Models with Δ QAIC $_{c}<2.0$ and $w_{i}>10 \%$ were interpreted. Model parameters included first and second year variation over time varying by age-groups ($C 1 t+C 2 t \times A G)$, subsequent time variation (t), total length (TL and TL^{2}), residual weight (RW) and river kilometer (RKM) at first encounter.

Model	QAIC ${ }_{\text {c }}$	$\Delta \mathrm{QAIC}_{c}$	w_{i}	Model Likelihood	K	Deviance
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}^{2}{ }_{(1 \mid 2=3+)}\right) \mathrm{p}(C l t+C 2 t+\mathrm{RW}+\mathrm{RKM})$	5684.14	0.00	0.23	1.00	42	5599.82
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}_{(1 \mid 2=3+)}^{2}\right) \mathrm{p}(C l t+C 2 t+t+\mathrm{RW}+\mathrm{RKM})$	5684.92	0.78	0.16	0.68	41	5602.61
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}^{2}(1 \mid 2=3+)+\mathrm{RW}\right) \mathrm{p}(C 1 t+C 2 t+\mathrm{RW}+\mathrm{RKM})$	5685.67	1.53	0.11	0.46	43	5599.33
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}^{2}{ }_{(1 \mid 2=3+)}+\mathrm{RKM}\right) \mathrm{p}(C 1 t+C 2 t+\mathrm{RW}+\mathrm{RKM})$	5685.94	1.81	0.09	0.41	43	5599.61
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}^{2}(1 \mid 2=3+)+\mathrm{RKM}\right) \mathrm{p}(C 1 t+C 2 t+t+\mathrm{RKM})$	5685.99	1.85	0.09	0.40	41	5603.69
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}_{(1 \mid 2=3+)}^{2}+\mathrm{RW}\right) \mathrm{p}(C 1 t+C 2 t+t+\mathrm{RW}+\mathrm{RKM})$	5686.44	2.30	0.07	0.32	42	5602.12
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1 \mid 2=3+)}+\mathrm{TL}^{2}(1 \mid 2=3+)+\mathrm{RKM}\right) \mathrm{p}(C 1 t+C 2 t+t+\mathrm{RW}+\mathrm{RKM})$	5686.93	2.80	0.06	0.25	42	5602.61
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1=2=3+)}+\mathrm{TL}^{2}(1=2=3+)\right) \mathrm{p}(C 1 t+C 2 t+\mathrm{RW}+\mathrm{RKM})$	5687.29	3.15	0.05	0.21	40	5607.00
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}_{(1=2=3+)}+\mathrm{TL}^{2}(1=2=3+)\right) \mathrm{p}(C 1 t+C 2 t+t+\mathrm{RW}+\mathrm{RKM})$	5688.12	3.98	0.03	0.14	39	5609.84
$\phi\left(C 1 t+C 2 t \times \mathrm{AG}+t+\mathrm{TL}(1=2=3+)+\mathrm{TL}_{(1=2=3+}^{2}+\mathrm{RKM}\right) \mathrm{p}(C 1 t+C 2 t+t+\mathrm{RKM})$	5688.39	4.25	0.03	0.12	39	5610.11

Parameter	Beta	SE	Lower CI	Upper CI
Intercept	5.020	3.557	-1.952	11.993
Age 1	-4.847	3.448	-11.605	1.912
Age 2	-3.463	3.455	-10.236	3.310
$C 1 t_{\text {Age 1 }}$	-1.089	0.352	-1.780	-0.399
$C 2 t_{\text {Age 1 }}$	-0.231	0.440	-1.092	0.631
$C 1 t_{\text {Age 2 }}$	-2.651	0.321	-3.280	-2.022
$C 2 t_{\text {Age 2 }}$	-2.293	0.390	-3.058	-1.528
$C 1 t_{\text {Age } 3+}$	-6.968	3.471	-13.771	-0.164
$C 2 t_{\text {Age 3+ }}$	-4.346	3.599	-11.400	2.707
2004	-0.171	1.411	-2.936	2.595
2005	-1.444	0.936	-3.278	0.391
2006	-1.079	0.783	-2.613	0.455
2007	-1.367	0.656	-2.653	-0.081
2008	-0.215	0.642	-1.473	1.042
2009	-0.302	0.609	-1.495	0.891
2010	-0.120	0.608	-1.312	1.072
2011	-0.427	0.590	-1.583	0.728
2012	-1.585	0.608	-2.777	-0.393
2013	-0.701	0.625	-1.927	0.525
2014	-0.832	0.643	-2.092	0.428
2015	0.190	0.645	-1.075	1.455
TL $_{\text {Age }} 1$	-0.361	0.522	-1.385	0.663
TL $_{\text {Age } 1}$	-0.678	0.447	-1.554	0.198
TL $_{\text {Age } 2=3+}$	0.016	0.149	-0.275	0.308
TL 2	Age $2=3+$	0.155	0.053	0.051
RW	0.058	0.074	-0.087	0.258
				0.202

Table 4. Parameter estimates, standard error, lower and upper 95\% CI used to predict apparent

	Apparent Survival	Capture Probability
Known age	$0.19(0.10-0.37)$	$0.31(0.16-0.55)$
1	$0.25(0.15-0.39)$	$0.37(0.21-0.60)$
2	$0.22(0.12-0.36)$	$0.42(0.24-0.63)$
3	$0.53(0.33-0.72)$	$0.42(0.19-0.68)$
4		
Age-group	$0.17(0.09-0.32)$	$0.32(0.17-0.56)$
$3+$	$0.60(0.39-0.79)$	$0.35(0.20-0.55)$
$4+$		

Table 5. Mean age-specific survival estimates (ϕ) and capture probabilities (p) of Colorado Pikeminnow during 2003-2016. Values in parentheses represent 95\% CIs around each agespecific estimate.

Parameter	Beta	SE	Lower CI	Upper CI
Intercept	-0.965	0.234	-1.424	-0.506
Age 1	-0.264	0.310	-0.872	0.344
Age 2	0.106	0.268	-0.420	0.631
C1t	0.244	0.617	-0.966	1.453
C2t	0.261	0.608	-0.931	1.452
2004	-0.776	1.400	-3.520	1.967
2005	-0.916	1.140	-3.150	1.317
2006	-0.521	0.940	-2.364	1.321
2007	0.580	0.787	-0.962	2.122
2008	-0.084	0.700	-1.455	1.287
2009	1.001	0.673	-0.319	2.321
2010	0.266	0.650	-1.008	1.539
2011	1.011	0.638	-0.240	2.262
2012	0.021	0.665	-1.282	1.324
2013	0.154	0.674	-1.167	1.475
2014	0.152	0.708	-1.237	1.540
2015	0.119	0.658	-1.171	1.409
RW	-0.226	0.115	-0.450	-0.001
RKM	-0.336	0.102	-0.535	-0.136

Table 6. Parameter estimates, standard error, lower and upper 95\% CI for detection probability

668

List of Figures

Figure 1. Map of the San Juan River where apparent survival (ϕ) and capture probabilities (p) were assessed for stocked Colorado Pikeminnow. RKM 0 denotes the waterfall at the confluence of Lake Powell, RKM 289.7 designates the upstream boundary of the sampling reach and Navajo Dam exists at RKM 365. The shaded region between RKM 315.4 and 268.1 represents the reach of stocking during 2003-2016.

Figure 2. Monthly total first encounter captures of Colorado Pikeminnow (bars) and mean (± 1 SD) temperature (${ }^{\circ} \mathrm{C}$; symbols) between 2003 and 2016. Temperature data were obtained from the San Juan River USGS gage station 09379500 near Bluff, UT.

Figure 3. Annual summary plots of individual first encounter covariates (TL, residual weight, river kilometer; columns) across age-groups (rows). Box plots show medians (vertical lines), $25^{\text {th }}-75^{\text {th }}$ percentiles (boxes), $10^{\text {th }}-90^{\text {th }}$ percentiles (whiskers), and $5^{\text {th }}$ and $95^{\text {th }}$ percentiles (dots). Sample sizes are reported in Table 2.

Figure 4. Relationship between apparent survival (ϕ) and first encounter total length (TL, mm) of age $1(107-205 \mathrm{~mm})$ and age 2 and $3+(209-620 \mathrm{~mm})$ Colorado Pikeminnow averaged ($\pm 95 \%$ CI) across years. The break in the lines separates age 1 from ages 2 and $3+$.

Figure 5. Real survival parameters (ϕ) across study years and survival time intervals (panels) used to calculate age-specific survival estimates for Colorado Pikeminnow (reported in Table 5). Survival intervals included the first time interval (upper panel), second time interval (middle
panel) and subsequent time intervals (post first or second time intervals, lower panel; see Table S1). Fish are shaded according to known age (closed symbols) and age-groups (open symbols). Some parameters could not be estimated due to low capture probabilities or sample sizes.

Figure 6. Survival parameters (ϕ) used to assess capture effects of age 2 fish. For this age-group, survival was, on average, 50% lower the for individuals first encountered at age 2 (closed symbols) compared to the fish that were first encountered at age 1 (grey symbols).

Figure 7. Relationship between total length (TL, mm) and probability of future recapture ($\pm 95 \%$ CI) for Colorado Pikeminnow first captured as age 1 (grey lines; with subsequent capture as age 2) and individuals first captured as age 2 (black lines).

Figure 8. Real capture probabilities (p) across study years and time intervals (panels) used to calculate age-specific capture probabilities for Colorado Pikeminnow. Time intervals included the first time interval (upper panel), second time interval (middle panel) and subsequent time intervals (post first or second time intervals, lower panel). Fish are shaded according to known age (closed symbols) and age-groups (open symbols).

Fig. 1.

Fig. 2.

713

Fig. 3.

716 Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

725
726

| | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 1 | 14 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2004 | | 2 | 15 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2005 | | | 3 | 16 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2006 | | | | 4 | 17 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2007 | | | | | 5 | 18 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2008 | | | | | | 6 | 19 | 31 | 32 | 33 | 34 | 35 | 36 |
| 2009 | | | | | | | | 20 | 32 | 33 | 34 | 35 | 36 |
| 2010 | | | | | | | | 8 | 21 | 33 | 34 | 35 | 36 |
| 2011 | | | | | | | | | | 22 | 34 | 35 | 36 |
| 2012 | | | | | | | | | 10 | 23 | 35 | 36 | |
| 2013 | | | | | | | | | | 11 | 24 | 36 | |
| 2014 | | | | | | | | | | 12 | 25 | | |
| 2015 | | | | | | | | | | | | | |

Table S1. Representation of the ϕ time structure $(C 1 t+C 2 t+t)$ receiving the highest support in the final model set. Numbers correspond to unique survival and capture probability estimates across sampled years. The first diagonal (dark grey) represents the first time interval (capture effect Cl t; allowing for annual variability), the second diagonal (white) represents the second time interval (capture effect $C 2 t$), and the remaining cells (light grey) correspond to the 'time' (t) component of the model structure. These estimates correspond to the apparent survival and capture probability estimates presented in figures 5 and 8 (panels match matrix diagonals). A total of six matrices (ϕ and p for all three age-groups) were evaluated in each model.

