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Abstract: The up-conversion process is extensively studied because of its wide variety of 
applications such as bioimaging, energy harvesting, and optical sensors. However, the optical 
conversion efficiency is still relatively low and needs to be improved. Therefore, this paper 
introduces a detailed study of improving the up-conversion emission efficiency through 
adding plasmonic metallic nanostructures to the up-conversion optical centers. Our idea is to 
couple the optical plasmonic resonance with the visible emission of the optical centers under 
IR excitation. The optical centers are erbium ions hosted by fluoride low-phonon 
environment. Our calculations consider most possible transitions that can occur between the 
optical centers; tri-valent erbium ions, through Judd-Ofelt analysis. In addition, the effect of 
changing some parametric values is discussed, such as irradiance, and multi-phonon 
relaxations, to show their optimum values which correspond to best quantum yield efficiency. 
By increasing the diameter of added gold nanoparticles (Au NPs), the probability of 
occupation has been increased, and consequently, both the luminescence and up-conversion 
efficiency have been increased. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Optical up-conversion process has been studied over the last two decades to convert low-
photon optical signal such as infra red (IR) to higher photon energies such as visible light. 
This conversion is applied in wide variety of applications such as optical sensors, energy 
harvesting, medical treatment, and bioimaging [1–14]. Rare earth tri-valent lanthanide ions 
are extensively used as optical up-conversion materials. Out of these optical lanthanides, 
erbium is one of the most efficient optical center for up-conversion process, due to its stable 
levels which can be excited by wide range of IR pumping wavelengths such as 780, 980, and 
1550nm [15–18]. The erbium ions optical centers are recommended to be hosted by relatively 
low-phonon material for minimum optical losses during up-conversion process. One of the 
most famous hosts is sodium yttrium fluoride, NaYF4, due to its relatively low phonon energy 
of the crystalline lattice compared to other hosts for erbium [19–21]. Regarding the analysis 
of optical up-conversion process, both experimental and analytical studies have been recently 
presented for erbium-doped-NaYF4 under ~1520nm photon laser excitation via three-photon 
absorption based on Einstein coefficients in solar cell applications [22]. However, there is still 
a need of studying the same material under other excitation sources such as 780nm or 980nm 
via two-photon absorption mechanism, which is used in different sensing and medical 
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applications. Moreover, the role of plasmonic NPs in enhancing the up-conversion efficiency 
is still lacking within both detailed theoretical calculations and physical interpretation. 

Moving in details to the transitions mechanisms of excited electrons in up-conversion 
process, the erbium electrons can occupy the excited states by two main mechanisms; ground 
state absorption (GSA) followed by excited state absorption (ESA) due to at least two-photon 
excitation, and energy transfer up-conversion (ETU). The last ETU process represents the 
interactions of electric dipole-dipole and the corresponding population of excited states [22–
24]. ETU mechanism can be categorized in two sub-processes; energy transfer (ET) process 
from an excited ion to another one, while the second one is cross relaxation (CR) process 
related to the losses caused by the reversal of ET. In addition to the previously 
aforementioned main processes, there are other processes which influence both up-conversion 
transitions and corresponding efficiency such as multi-phonon relaxation (MPR) of nan-
radiative excited electron relaxation, spontaneous emission (SPE) with no other depopulation 
transition, and stimulated emission (STE). 

At variable excitation IR wavelengths, the up-conversion mechanisms are the same but 
the transitions differ. In this paper, we are focusing on 780nm excitation due to their different 
applications in sensors and biomedicine. Both laser photon excitations and the corresponding 
transitions are shown in Fig. 1 [24]. GSA process takes place after pumping Er3+ ions by the 
first photon, and then the excited ion is transferred from 4I15/2 (ground state) to populate 4I9/2 
level. Some electrons can make some relaxation to either4I11/2 or 4I13/2 levels. Second photon 
can be responsible for ESA transition between Er3+ ions to excited ions from 4I11/2 level to 
populate either4F3/2levelor2H11/2 by excited ions from 4I13/2 level. ETU transition mechanism 
can have two possibilities; first one is from4I11/2 to 4I15/2 level, as the acceptor ions gain 
excitation of electrons from 4I11/2 to 4F7/2.While for the other second ETU process, acceptor 
ions transfer from 4I13/2 to occupy 4F9/2 followed by a relaxation from4I11/2 to 4I15/2 levels. All 
MPR processes are assumed to be non-radiative transitions. Our contribution in this paper is 
to introduce a theoretical study under near IR excitation wavelengths via two-photon 
absorption. Then, it will be shown the main parameters that affect emission quantum yield 
efficiencies with and without the added plasmonic nanostructure; gold nanoparticles (Au 
NPs). 

Fig. 1. Tri-valent erbium ions possible transitions under 780nm optical excitation. 

2. Mathematical modeling

In this section, plasmonic mechanism has been analyzed in details to drive the enhancement 
in electric field due to the existence of plasmonic nanoparticles (NPs). Then, the up-
conversion process is presented in mathematical model based on Einstein coefficients; Aif. 
Hence, the enhancement of up-conversion efficiency due to added plasmonic NPsis 
presented. 

Vol. 26, No. 19 | 17 Sep 2018 | OPTICS EXPRESS 25493 



2.1 Plasmonic mechanism 

Here it is introduced a complete study about the metal spherical surface and its impact on a 
single dipole emitter. The decay rates for emitting dipoles close to metal NPs are discussed. 
Furthermore, the localized field enhancement is presented in the vicinity of nano-metallic 
surface. 

According to the exact electrodynamical theory, consider an atom as a single dipole with 
dipole moment µ is situated at distance r from the center of a metallic NP that has radius R, 
and permittivity ' '' s s siε ε ε= +  laid in a background medium of permittivity εm  [25]. Two 

different cases must be considered [26]. The first case (radial dipole orientation, PPOL); in 
which the direction of dipole moment is parallel to the surface of the NP. Meanwhile, in the 
other case (tangential dipole orientation, SPOL), the direction of the dipole is directed normal 
to the surface. 

For easier calculations of the decay rates, the polarizability ( )α ω  of the metallic

nanoparticle should be expressed [27,28]: 
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The expression of the normalized decay rates can be found. For PPOL ( ⊥ ), we have [27] 
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On the other hand, for SPOL (∥), we have [27]: 
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where  ,  and rad nonradγ γ  are the normalized radiative and non-radiative decay rates, 

respectively, and the wave number /mk cε ω=  of emitted photon and c is the speed of 

light.Using metal nanospheres resonance, a high local filed intensity is produced. This high 
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field leads from the electric field confinement as a result of interaction of electrons and the 
incident field. According to the particle size and the surrounding media, we can control the 
resonance peak where a red shift is observed according to larger particle’s radius. Such field 
can be used for enhancement the nonlinear nature of different processes. In normal 

photoluminescence, a linear relation with square of electric field enhancement 
2

E / Eo  is 

followed. On the contrary in UC, the field can be described by the relative enhancement 
factor Eγ  which is linear proportional to 2-Nth power of electric field ratio because the UC is 

a two or a multi-photon process [29–31].By using certain excitation region, Eγ  can be 

expressed as [29,30]: 

2N

E
o

E

E
γ = (9)

whereEis the electric field at a certain position in the vicinity of metallic surface, 0E  is the 

electric field in the absence of the NPs and N is the number of required photons for 
population. The angle-averaged local electric field enhancement factor is represented as [32] 
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where  ,l la b  are the Mie coefficients of the metal nanosphere that derived in details in 

[33].The Mie coefficients of the metal spheres are given as: 
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where jψ , jζ are Riccati_Bessel functions, /s mm ε ε= √ √ , v ka=  and maω = . Moreover, 

bothfunctions ( )1
l rg x ) and ( )2

l rg x  are given by [32]: 
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where rx kr=  and  lh  is the spherical Hankel function.There are different methods for 

modeling the dielectric constant of the metallic NPs, sε  [34]. In our model, Drude-critical 

pointsmodel is used as follows 
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where ∞ε  stands for the permittivity at  ω ∞= , ωp is the plasma frequency γ  is damping 

coefficient, and P stands for the total number of the oscillators [35]. The typical values of 
used parameters would be shown later in Table 1. 
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2.2 Up-conversion modeling 

The main parameter of UC mathematical model is Einstein coefficient, Aif, which is defined 
as the inverse of the radiative lifetime and correlated to calculations of transitions 
probabilities. The mathematical expression of Aif is [22]: 

4 2 2 2

3

64 ( 2)

93 (2 1)if

e n n
A S

j

π
λ

+=
+

(16)

where e is the electron charge, λ is central wavelength according to a transition from initial 
state ‘i' to a final state ‘f’,  is the reduced Planck’s constant, j is the total angular momentum 

quantum number of the initial state, n is the refractive index(equals )mε√ ), and S is the 

electric dipole line strengths between all transitions, which is given by [22,36]: 
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where iΩ are the intensity parameters and ( ) 2[ ]iU are doubly reduced matrix elements related to

the ionic transition from ground state, jto higher energy level, j’, undergoing the photon 
excitation. These parameters were calculated by Judd-Ofelt and found in a previous research 
as shown in ref [36]. In a related parameter, occupation rate of change .

pn  I s correlated to the 

relative occupation matrix pn  through the matrices of different transition mechanisms as 

follows 

. [ ]p GSA ESA SPE STE MPR p ETn M M M M M n M= + + + + + (18)

where MGSA, MESA, MSTE, MSPE and MMPR are matrices which describe GSA, ESA, STE, SPE, 
and MPR transitions, respectively. MET is a matrix describing the ETU.A complete analysis of 
rate equation model including all matrices structure was discussed before in [37, 38].The 
transition probabilities of the discussed processes, except MPR, are presented as functions of 
the Einstein coefficients. Then, the UC luminescence, 1 fLum  from a higher level’f’ to the 

ground level’1’is described by [37]: 

1 , 1f p f fL n A= (19)

Regarding the UC efficiency, ,UCη for a certain transition, it can be calculated through the

ratio between the emitted photons from excited levels by both SPE process and the stimulated 
absorbed photons, which can be mathematically described as follow [37] 

.,

., / ( , ) , ( , )

oc i if
UC

oc i GSA ESA f i p f STE i f

n A

n M n M
η =
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(20)

where .,oc in  is a relative occupation, MGSA/ESA is the transition probabilities of GSA and ESA, 

and STEM  is the transition probabilities of STE. In case of 780 nm excitation, GSA/ESA 

probabilities are described together in the following matrix of Eq. (21), based on possible 
transitions from 4I15/2 to 4I9/2, from 4I11/2 to

4F3/2, and from 4I13/2 to 2H11/2. 
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where γ1 and γ2 are damping factors representing the lower probability of the stimulated 
processes due to the energy mismatch between the transitions, while gi is the degeneracy of 
the energy level i which has range from 1 to 9 according to the erbium metastable energy 
level [23]. STE matrix is the inverse process of GSA and ESA, which can be represented as 
follows in Eq. (22) under 780 nm excitation. 
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3.3 Plasmonic effect on the up-conversion process 

In this section, the interaction between spherical metallic NPs with UC model is considered to 
improve the overall efficiency and luminescence. Considering an N-photon nonlinear UC 
process, the strength of UC local enhancement factor is proportional to 2-Nth power of local 
optical field, so theoretically the local enhancement factor of electric field, Eγ  has been added 

to transition probabilities as shown in both Eqs. (23) and 24to modulate all stimulated 
process, i.e (GSA, ESA, and STE). The modified probability of GSA/ESA can be presented 
as [39,40] 

3 2
/ /

, 2
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if plasmon E v if E
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W W I A

h

πγ γ
ω
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where GSA/ ESAW  is the GSA/ESA probability without added metal NPs. Meanwhile, the 
corresponding probability of STE can be expressed as follows [39,40] 

3 2

, 2

2
.STE STE

if plasmon E v if E
ex

n c
W W I A

h

πγ γ
ω

= =  (24)

Also, an enhancement factor for radiative transition ,if radγ can be represented due to the

interaction between metallic plasmonic particles. This factor effects on the probability of SPE 
is for every transition from initial level, i, to final level, f [39,40] 

, .SPE
if if rad ifW Aγ= (25)

On the contrary, there is another source of non-radiative losses, which has been grown up 
due to the transfer of energy from (Er3+) ions to the metal NP. This factor is ,if nonradγ which

would be also evaluated forthe required transitions from initial level, i, to final level, f. The 
probability of this loss can be represented as [39,40] 

, .loss
if if nonrad ifW Aγ= (26)

Then, the ordinary differential equations are solved again, and the probabilities of 
occupation levels are determined assuming that the plasmonic NPs have negligible influence 
on energy transfer and multi-phonon relaxation processes. The new values of np would be 
used to evaluate the green and the red emission luminescence and efficiencies. 

Table 1 shows the values of the used parameters in up-conversion modeling based on 
other literature [41]. We used initial values for most of these parameters and then in the next 
sections, we will discuss the effect of varying these values on the efficiency. Refractive index; 
n = 1.5, was used as an average value between the possible values of n from 1.48 to 1.52 [40, 
42].We are assuming that all parameters and analysis are carried out at room temperature as 
well as the analysis of the plasmonic NPs. 

Table 1. Parameters used in this model 
Parameter Value

Spectral frequency interval for illumination 
1

w (s )
−Δ  [22] 

10
8.1 10×

3
Er

+
 ion concentration 

3

0
N  (cm )

−
 [22] 

20
1.34 10×

Distance between 
3

Er
+

 ionsdEr_Er(nm) [22] 
0.9 

Refractive index (n) [40] 1.5 
Irradiance I (W.m−2) 1000 
Damping factors [22] 

1γ  1.0 

2γ
0.5 

3γ
0.8 

Degeneracies value [43] 
g1 8
g2 7
g4 5
g7 2
g8 2
g9 2

MPR constants 
1

MPR
W (s )

−
 [22] 

8
10

k 
1

(J )
− 20

2.15 10×
Energy overlap integral [22] 

ET1
K (J−1) 18

8 10×

ET 2
K  (J−1) 18

1 10×

Distance between 
3

Er
+

 ion and gold 
dGold Er(nm) 

40 
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3. Results and discussions

3.1 Field enhancement and cross sections 

Here, the field enhancement of Au NPs close to Er+3ions is shown with different radius to 
achieve the ultimate efficiency of UC process. In addition, the corresponding scattering cross 
section area is presented to explain the behavior of plasmon resonance as shown in Fig. 2. 

Fig. 2. The scattering cross sections area for Au particles with different diameters (a) D = 
60nm,(b) D = 140nm, and (c) D = 200nm. 

It is worthy to mention that for larger NPs, the resonance peaks are shifted for larger 
wavelength, which closer to the excitation wavelength. In our case the peak is shifted from 
562nm to 866.7nm of D = 60nm, and 200nm, respectively. 

Figure 3 shows the field enhancement factor, Eγ  averaged over the solid angle as a 

function of the wavelength. As seen in Fig. 3, the peak of Eγ  is also shifted to higher 

wavelength when the spherical radius is increased. At λ=780 nm which is the wavelength of 
the pump photon, Eγ 101.4, 373.7,  and 557.3=  according to the used radius which are D = 

60nm, 140 nm and 200 nm, respectively. The plasmonic effect is evident through the large 
values of this field that used to fulfill a considerable improvement in UC luminescence. This 
is because the UC process is always two or more photon absorption, which leads to a 
proportionality 2-Nth power. 
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Fig. 3. Field enhancement ratio for Au particle (a) D = 60nm, (b) D = 140nm, and (c) D = 
200nm. 

Meanwhile, for every required transition from initial level, i to final level, f, the 
normalized spontaneous radiative decay rate, radγ  and the non-radiative decay rates, nonradγ
decay rates are calculated. As a result of dipole orientation, radγ and nonradγ could be

averaged over the different two orientations with different weight. For reducing the bad 
influence of the non-radiative losses, which lead to a heat production in Au NPs and slipping 
in the UC luminescence and efficiency, a proper distance should be guaranteed between Au 
NPs and trivalent ions [27]. 

3.2 Effect of Au NPs on UC luminescence and efficiency 

After employing the previous mentioned parameters with certain irradiance, the rate equation 
is solved again to calculate the occupation of every level. 2H11/2, 

4S3/2and 4F9/2levels’ 
occupation is calculated and showed in Fig. 4. At the start of the operation without any source 
of excitation, the ground state is completely occupied and the others are empty. 
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Fig. 4. The occupation change of different levels in both absence and presence of Au NPs with 
different radii close to Er ions as a function of time (a) 4S3/2, (b) 4F9/2

,and (c) 2H11/2. 

However, with 780 excitation, the higher level is gradually inclined before leveling off is 
occurred after approximately 40ms.It is clear that the electron population experienced a 
significant growth when applying the plasmonic resonance. Regarding the Diameter of 200 
nm, 2H11/2, 

4S3/2 and 4F9/2 levels witnessed a dramatically enhancement, which is 37.5 10× , 
315 10× , and 319.3 10× , respectively. We notice that as the diameter increases, the 

enhancement factor becomes larger, and then the level populations increase, which rise both 
UC efficiency and luminescence. 

Figure 5 shows various levels’ luminescence emission versus time with adding Au NPs 
with different radii. As shown in Fig. 5, at saturation time 40ms the relative luminescence for 
2H11/2 is found to be 32.2 10× , 35.1 10× , and 39.1 10×  for diameter 60 nm, 140 nm, and 200 

nm, respectively. While for 4S3/2, the luminescence increases with 33.1 10×  fold for D = 

60nm, 3 9.1 10×  fold for D = 140nm, and 313.1 10×  fold for D = 200 nm. In addition, the 

relative luminescence of 4F9/2level is noticed to be 33.3 10× , 312.7 10× , and 322.7 10×  for 
diameters 60nm, 140nm, and 200nm, respectively. 
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Fig. 5. The luminescence using different radii of Au NPs versus time of different levels (a) 
4S3/2, (b) 4F9/2, and (c) 2H11/2. 

The UC efficiency depends on different parameters such as irradiance, which is presented 
in Fig. 6. Meanwhile, the impact of the Au NPs on UC efficiency is also clarified. As 
explained before, raising the irradiance intensity increases the red and green efficiency. 
Regarding the green emission, what stands out from the graph is that at the standard 
irradiance I = 1000 W/m2the efficiency is enhanced from 0.73% to 8.9%, 11.2% and 13.4% 
that corresponding to 12.17-fold, 15.3-fold and 18.35-fold for diameter 60nm, 140nm, and 
200nm, respectively. On the other hand, it is clearly to see that the efficiency is improved 
from 0.047 to 0.37 for D = 60 nm, 0.46 for D = 140nm and 0.632 for D = 200nm of red one. 

As mentioned in mathematical model, for MPR process, ΔEif, WMPR and k are the main 
parameters that affect the transition probability [37]. Both WMPR and k are considered a 
material constant, which depend on host material’s parameters. The WMPR represents the 
probability of sequential phonon transitions between different energy levels while k is 
required number of phonons for bonding the energy levels. Figure 7 shows the influence of 
MPR processes on UC efficiency. As shown in Fig. 7(a), at low k values, increasing k results 
in a decrease in the efficiencies because the 2H11/2, 

4S3/2and 4F9/2 depopulation decrease while, 
at high k values, growing k causes all the MPR transitions decreases. This leads to a decrease 
in the population of 2H11/2, 

4S3/2 and 4F9/2 from higher levels, which consequently experienced 
a decrease in the efficiencies. In contrast, In Fig. 7(b), it is obvious that the influence of WMPR 
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is comparable but opposite to that of k. As expected, approximately, there are no effect on 
efficiencies in case of using Au NPs owing to the fact that the metal NPs have potential only 
on stimulated and spontaneous process. 

Fig. 6. UC efficiency verse irradiance in the absence and presence of Au NPs in proximity to 
Er ions for both emissions of (a) red, and (b) green. 

Fig. 7. The changing of green and the red efficiencies in the absence and presence of Au NPs 
with different radii according to the variation of (a) KMPR, and (b) WMPR. 
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On the other hand, the distance between Au NPs and Er+3 ions has a great effect on the up-
conversion efficiency. Figure 8 depicts the effect of changing the distance dGold-Er on our 
system of Au NPs with diameter 60nm and n = 1.5 of the surrounding medium .With regard 
to Fig. 8(a), it is clear that all decay rates either radiative or non-radiative witness a decline as 
distance increases. At the beginning, the non-radiative decay rate, nonradγ  is higher than the 

radiative decay rate radγ until certain point at~27 nm, then the figure experiences an opposite

behavior before leveling off. Consequently, it is obvious that the red and green efficiencies 
begin with small values then witness an increase before a gradual falling after ~at 25nm until 
reach almost saturation level as shown in Fig. 8(b). 

Fig. 8. The influence of changing the distance between Au NPs and Er ions dGold_Eron(a) Decay 
rates, and (b) Both green and red efficiencies for diameter D = 30nm and irradiance 1000 
W/m2. 

4. Conclusion

This paper presents the impact of plasmonic NPs on improving the quantum efficiency of 
optical up-conversion (UC) process. Au NPs have been added to erbium-doped-NaYF4NPs 
and then the whole material is analytically studied using Judd-Ofelt mechanism under near IR 
excitation. Firstly, general expressions of optical field enhancement, decay rates and their 
effects on transitions probability are studied due to the optical coupling between the 
plasmonic resonance and the emission of UC host. Then, the rate equation model that 
describes the UC is developed and correlated to the results for the spherical NPs. The 
simulations show the enhancement of occupation probability, luminescence, and up-
conversion efficiency with added Au NPs. The increase of Au NPs diameters increase both 
plasmonic resonance wavelength and the bandwidth of plasmonic resonance spectrum, which 
lead to a better optical coupling with both up-conversion excitation and emission of erbium-
doped fluoride host. This work can enhance the applications of UC nanomaterials in different 
medical, sensing and energy disciplines. 
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