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A B S T R A C T

Collection of high resolution, in situ data using environmental sensors is common in hydrology and other en-
vironmental science domains. Sensors are subject to drift, fouling, and other factors that can affect the quality of
the measurements and their subsequent use for scientific analyses. The process by which sensor data are re-
viewed to verify validity often requires making edits in post processing to generate approved datasets. This
quality control process involves decisions by technicians, data managers, or data users on how to handle pro-
blematic data. In this study, an experiment was designed and conducted where multiple participants performed
quality control post processing on the same datasets using consistent guidelines and tools to assess the effect of
individual technician on the resulting datasets. The effect of technician experience and training was also assessed
by conducting the same procedures with a group of novices unfamiliar with the data and compared results to
those generated by a group of experienced technicians. Results showed greater variability between outcomes for
experienced participants, which we attribute to novice participants' reluctance to implement unfamiliar pro-
cedures that change data. The greatest variability between participants' results was associated with calibration
events for which users selected different methods and values by which to shift results. These corrections resulted
in variability exceeding the range of manufacturer-reported sensor accuracy. To reduce quality control sub-
jectivity and variability, we recommend that monitoring networks establish detailed quality control guidelines
and consider a collaborative approach to quality control in which multiple technicians evaluate datasets prior to
publication.

1. Introduction

Collection of high resolution, in situ data using environmental
sensors is common in hydrology and many other environmental science
domains (Hart and Martinez, 2006; Pellerin et al., 2016; Rode et al.,
2016). Sensors are subject to drift, fouling, and other factors that can
affect the quality of the measurements and their subsequent use for
scientific analyses, particularly when sensors are deployed in aqueous
or other harsh environments where scaling, biological growth, or other
adverse conditions can occur (Campbell et al., 2013; Pastorello et al.,
2014; Wagner et al., 2006). Sensor datasets are typically subjected to
quality control (QC) post processing procedures to verify their validity
prior to use in scientific analyses. However, documentation of QC
procedures used by scientists in journal publications based on the data
often do not contain sufficient detail to permit reproducibility, and it is
also rare for both raw and quality controlled data to be shared so that
subsequent users can examine the degree to which the data had been

modified prior to analysis (Daly et al., 2005). The overall level of un-
certainty in observations made using in situ sensors is dependent not
only on the accuracy and precision of the sensor, but also on the sensor
deployment technique, environmental conditions, and the subsequent
procedures used to post-process the data (Gries et al., 2014; Wagner
et al., 2006).

Several studies have investigated and explored automated proce-
dures for detecting anomalies and problems in sensor datasets
(Dereszynski and Dietterich, 2007; Fiebrich et al., 2010; Hill et al.,
2009; Meek and Hatfield, 1994; Moatar et al., 2001; Shafer et al., 2000;
Sheldon, 2008; Taylor and Loescher, 2013; White et al., 2010). Once
identified, options for dealing with problematic data include removing
data from a time series of observations, retaining data with annotations,
setting the values of problematic observations to a “NoData” value, or
altering the data values based on algorithms that use adjacent data
values or patterns in data at other locations or of other variables
(Campbell et al., 2013; Horsburgh et al., 2015). These algorithms are
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typically good for plausibility checks of meteorological data, but are
less commonly implemented in water quality monitoring applications
where QC is more often a subjective process that requires judgement
from a technician whose job it is to post process the data (Daly et al.,
2005; ESIP EnviroSensing Cluster, 2014; Qu et al., 2016). Some post
processing can be automated, but for many scientists, research groups,
and technicians, the QC process is manual and time consuming, so
much so that it is not uncommon for scientists to hire undergraduate
students or other, less-experienced personnel to complete this work.

Ideally, given the same dataset and the same QC guidelines, mul-
tiple data QC technicians would make the same decisions in data post
processing. However, despite the development and implementation of
guidelines aimed to promote consistency (e.g., Jones et al., 2017), we
have faced ambiguity when performing post processing because it is not
always obvious which correction procedures should be applied. We
have also noticed inconsistencies between individuals performing QC
post processing. Technicians with the same level of training, using the
same input datasets and field notes, and using the same software tools
may produce different results. Furthermore, we have observed incon-
sistency in results produced by technicians that do not have the same
level of training or experience in field work, sensor deployment and
maintenance, data collection, and QC post processing. It is clear that
subjectivity in sensor data post-processing affects the overall quality
and comparability of finished data products, but the degree to which
this is the case has not been well described or quantified.

This study had two objectives. The first was to identify and quantify
the degree of subjectivity among technicians performing QC on en-
vironmental sensor datasets to better understand how results are af-
fected as multiple technicians participate in the QC process. The second
was to assess differences in the outcome of the QC procedure for novice
versus experienced technicians. To accomplish these objectives, an
experiment was designed where multiple participants performed QC
post processing on the same sensor datasets using a consistent set of
guidelines and software tools. The effect of technician experience and
training was assessed by conducting the same experiment with a group
of novices who were unfamiliar with the data and who had never
performed QC on environmental sensor data. Results from the novice
group were compared to those generated by the more experienced
technicians to quantify the impacts of individual technician and tech-
nician experience and report the observed degree of subjectivity in
sensor data post processing.

Our familiarity with performing and observing QC post processing
results from experience with high frequency environmental data col-
lected by sensors in an ecohydrologic observatory monitoring Gradients
Along Mountain to Urban Transitions (GAMUT). This monitoring net-
work is part of Utah's iUTAH (innovative Urban Transitions and Arid-
region Hydrosustainability) project, a state-wide, multi-institutional,
multi-disciplinary effort. The sites, sensors, and methods used to design
and operate the GAMUT network, including detailed descriptions of QC
procedures, are documented by Jones et al., 2017.

2. Methods

2.1. Participant groups

Participants in this study were recruited to comprise two groups: no-
vices unfamiliar with QC and more experienced practitioners. We sought
to compare the two groups with the anticipation that experienced users'
processed results would converge toward a central tendency and that
novice users' processed results would be more outlying. The novice group
(n=15) primarily consisted of undergraduate students participating in a
summer undergraduate research experience. Additional novices included
mentors for the students within this group. None of the novices had per-
formed QC on environmental sensor data prior to participating in the
study and were not familiar with the QC process, although several of them
had participated in field data collection activities.

The experienced group (n= 13) consisted of participants who work
with environmental sensor data and perform QC as part of their full-
time job or as part of their active research. These participants included
full-time watershed field technicians, data managers, faculty, under-
graduate students, and graduate students, all of whom regularly work
with time-series sensor data and perform QC tasks as part of their re-
search work. All experienced participants had received formal and/or
informal training in performing QC on environmental sensor datasets,
although this training was not part of this study and was not standar-
dized across the participants. So, while we were able to recruit a
number of experienced participants, we were not able to standardize
the level of experience or training received by those in the experienced
group. According to self-reported experience relevant to this exercise
(Table 1), experienced participants were more proficient with com-
puting as well as more familiar with water quality data and fieldwork
than novice participants. Additional results and details of this survey
are discussed in subsequent sections (2.1, 3.1, 3.5).

2.2. Selected datasets

Three raw, continuously and simultaneously measured sensor da-
tasets were selected for this experiment from an in situ water quality
monitoring site in the Logan River at Mendon Road, near Logan, UT.
Measured variables included water temperature, specific conductance,
and pH recorded every 15min using a YSI/Xylem EXO2 multiparameter
water quality sonde (https://www.exowater.com/exo2) equipped with
a central wiper. Table 2 lists the specifications for the sensors used to
observe these three variables. These variables were chosen because they
are commonly sensed at aquatic monitoring sites and because they re-
present relatively well-known environmental phenomena understood
by both expert and novice participants. The duration of the input data
was limited to a period of one year (January 1, 2014 to December 31,
2014) to ensure that there would be significant and varied quality-re-
lated issues with the data that needed to be corrected and to balance the
time required for participants to complete the study.

During the period over which the data were collected, field main-
tenance was performed at the selected site on a monthly or bi-weekly
basis, depending on seasonal water quality. In general, regular main-
tenance site visits consisted of removing the water quality sonde to
observe its condition and clean the sensors if necessary, verifying that
the integrated wiper was functional, field calibration checks using
standard and traceable reference solutions, and recalibration of the
sensors as necessary. These procedures are typical of the type of
maintenance performed at aquatic monitoring sites. While these field
visits were part of a larger quality assurance plan designed to maximize
the quality of the raw data collected in the field, there were still issues
with the raw data that needed to be corrected in post processing.

A record of field maintenance, other activities, and notes related to
the selected site and variables was compiled over the year of interest.
Each participant was provided a copy of this record as a reference for
performing QC. This type of field record is essential when conducting
QC post processing because the selection of points for and the choice of
post processing edits is directly related to details about when site visits
were conducted, when sensors were out of the water, when calibrations

Table 1
Mean values of participants' responses to a survey regarding prior experience
and difficulty of this exercise. Responses are on a 1 (low) – 10 (high) scale.

Group Computing
experience

Familiarity
with water
quality data

Familiarity
with field
work

Difficulty of
exercise

Novice
(n= 15)

4.00 5.14 6.43 5.86

Experienced
(n= 13)

8.23 8.62 9.00 5.00
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or other maintenance actions were performed, and observations made
by technicians in the field. A copy of that record is shared with the
study dataset in the HydroShare system (Jones et al., 2018).

None of the participants were given information about the location
of the monitoring site at which the raw data were collected to ensure
that results were not biased by participants' prior knowledge of (or lack
of knowledge of) conditions at that site. The raw data used as the basis
of this study are published as part of the overall study dataset (Jones
et al., 2018).

2.3. Quality control process

Each participant was asked to perform QC post processing on the
three separate time series in the selected dataset using the Observations
Data Model (ODM) Tools software (Horsburgh et al., 2015). ODM Tools
was developed in Python as a graphical user interface for visualizing
and performing scripted quality control post processing of environ-
mental sensor time series data. The software interacts with a relational
database instance of the Observations Data Model (Horsburgh et al.,
2008) within which the data were stored.

ODM Tools was selected as the software for this experiment because
it provides a graphical user interface and relatively straightforward
tools for performing the most common types of edits needed for post
processing the types of data we chose for this experiment. Users can
interactively select data to be edited on a plot or by using custom date
or value filters and then click buttons on the toolbar to shift data, in-
terpolate values, perform a drift correction, etc. A benefit of ODM Tools
is that it automatically records all data selections and edits to a Python
script. All participants saved and submitted their Python scripts, thus
creating a complete record of the changes made by each participant as
well as any comments they inserted into the Python script to annotate
their QC choices. ODM Tools is open source (https://github.com/
ODM2/ODMToolsPython) and can easily be installed on many dif-
ferent computers.

Participants in the novice group completed the experiment during a
single day in a computer lab on Utah State University's campus. Novices
met as a group and received a brief orientation on water quality,
aquatic sensors and data, and environmental conditions that may affect
observations via an oral presentation. Novices then received a 30-
minute demo of the functionality of ODM Tools to ensure that they
could operate the software to complete the experiment. Participants in
the novice group then conducted their post-processing in the lab.
Several instructors were present to answer participants' questions about
how to operate the software but did not address questions about whe-
ther corrections should be made, which corrections should be made, or
the extent to which a correction should apply in efforts to eliminate any
bias introduced by the instructors. Given that the experiment was
conducted with the novice group in a single session, these participants
were limited in the time they could spend on QC (approximately 3 h),
and most did not complete QC on all three time series.

Experienced participants were provided with the information
needed to connect to their own ODM database containing the study
data, and they completed the experiment independently on their own

time, on their own computers, in their own offices. Each of the ex-
perienced participants had already been trained in the use of the ODM
Tools software and had used the software extensively prior to the ex-
periment. Similar to the novice group, we did not answer questions that
may have introduced bias into experienced participants' decisions about
which corrections to implement. We did not control whether they
worked in single or multiple sessions. All experienced participants
performed QC to completion on all three time series. Experienced
participants reported spending 3–10 h on the exercise, with a median
duration of 4 h.

2.4. Exit survey

As a final step, participants were asked to complete an exit survey,
which was used to elicit information about their level of experience
related to computing and water quality data and field work (Table 1) as
well as their reactions to the exercise. This survey was developed using
the Qualtrics software, and participants completed it online. The results
of the survey can be explored at http://data.iutahepscor.org/surveys/
survey/QCEXP# and are also published as part of the dataset related to
this work (Jones et al., 2018).

2.5. Data management and analysis

To facilitate the experiment, multiple, replicate ODM databases
containing the raw observational data were created. Each participant
was assigned an individual ODM database, to which they connected,
completed post processing edits independently, and saved their pro-
cessed datasets. All of the processed data were subsequently collated
into a single ODM database to facilitate simpler queries and data access.
To simplify analysis, the data were exported into multiple comma-se-
parated text files, where each file contains all of the post-processed time
series for a single variable (e.g., temperature). Rows in these files re-
present the date and time of each observation, and each column cor-
responds to a single participant with the post processed data contained
in the table. This form of the data was used for the bulk of the visua-
lization and analysis reported below. All visualization and analyses
were performed in Matlab, and associated scripts are contained with the
published dataset (Jones et al., 2018).

Although the link between the final, post processed datasets and the
Python scripts created by the participants was maintained, the data
were anonymized to protect the identities of the study participants.
Each participant was assigned an arbitrary integer identifier at the
outset of the study. These identifiers are used in the final, anonymized
versions of the data used in this study, which are published in the
HydroShare data repository (Jones et al., 2018).

3. Results and discussion

Figs. 1-3 (panels a, d) show the results of QC performed by all
participants for temperature, pH, and specific conductance, respec-
tively. There is overlap between participants' results and the raw data,
and the full time scale makes it difficult to distinguish individual

Table 2
Specifications for the sensors measuring the variables used for this study (Xylem, 2012). Effective accuracy refers to the values applicable to the data used in this
study.

Variable Sensor Model Range Sensor Accuracy Effective Accuracy

Water
temperature

YSI EXO
599870–01

−5 to 35 °C:± 0.01 °C; 35 to 50 °C:± 0.05 °C ±0.01 °C

Specific
conductance

YSI EXO
599870–01

0 to 200
mS/cm

0–100 mS/cm:± 0.5% of reading or 0.001 mS/cm, whichever is greater; 100–200 mS/cm:±1% of reading ±2 μS/cm

pH YSI EXO
599795–02

0 to 14
pH units

± 0.1 pH units within± 10 °C of calibration temperature; ± 0.2 pH units for entire temperature range ±0.1 pH units
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results. Some excursions from the raw data are obvious as participants
made QC choices that deviated from the majority, but in most cases,
individual participants' responses obscure each other, an important
result indicating a high degree of agreement among them. Section 3.2
focuses on and illustrates periods for which there is greater deviation
between outcomes. To provide greater insight into results, these figures
also indicate the full range of outcomes as the difference between

maximum and minimum of all participants' results at each time stamp
(panels b, e), as well as the maximum number of agreeing participants
and corresponding number of outcomes at each time stamp (c, f). Re-
sults from these plots for experienced participants are summarized as
averages and proportions of the data in Table 3. As shown in Fig. 4, the
range of values for the average amount by which each participant
changed data from the original, raw data to the quality controlled

Fig. 1. Results for water temperature for novice participants (a-c) and experienced participants (d-f). Processed results are shown by colored lines and the raw data as
a thicker black line (a, d). The range is the difference between the maximum and minimum values between participants at each time stamp (b, e). To determine the
total number of outcome values among participants and the maximum number of agreeing participants (c, f), results were rounded to 0.01° C, and equivalent results
between participants were binned at each time stamp.

Fig. 2. Results for all participants for pH. See Fig. 1 for panel descriptions. The range scale (b, e) cuts off large values resulting from errors in drift correction. To
determine the maximum number of agreeing participants and total number of outcomes at each time stamp (c, f), results were rounded to 0.01 pH unit.
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versions depended on variable and experience level.
As demonstrated by these plots and metrics, variation in the post

processed datasets from both participant groups in our experiment was
observed. There are nuances in the variability that relate to the parti-
cipant group (Section 3.1), the variable and associated QC practices
(Section 3.2), the relative significance compared to sensor accuracy
(Section 3.3), and ranges of summary statistics of the datasets for ex-
perienced participants (Section 3.4). We also describe results related to
participants' handling of problematic data values (Section 3.5), anno-
tations in QC scripts (Section 3.6), and errors in the QC process (Section
3.7).

3.1. Variation between participant groups

Contrary to our original research hypothesis, both overall variability
in the processed results (Figs. 1-3) and the degree of difference between

processed results and the raw data (Fig. 4b) were found to be greater for
the experienced group than the novice group. Based on observations
and discussions with participants, we conclude that participants in the
experienced group were more willing to alter raw data versus those in
the novice group. During the session with novice participants, we no-
ticed hesitancy to make changes to the data. As altering data is part of
typical QC practice, experienced participants were more comfortable
with making changes. We also found that drift corrections were per-
formed by all of the experienced participants, but only by a few of the
novice participants, indicating that novices were less willing to make
this kind of correction. This may reflect some degree of mis-
understanding of the drift correction procedure among novices or that
their perception of the need for drift correction is different than that of
the experienced group (see Section 3.6 for an example). This assessment
of novice versus experienced participants' processed data is limited
given that most novice participants did not complete QC on all variables
(n= 15 for temperature, n= 10 for pH, n= 3 for specific con-
ductance), and the results subsequently described focus on the out-
comes of the experienced participants.

The different attitudes between novice and experienced participants
is exhibited by results of one of the questions in the exit survey (Fig. 5).
When asked to identify the most challenging aspect(s) of the exercise, a
majority of experienced participants indicated that decision making
aspects presented the greatest barrier. Novice users, on the other hand,
more commonly indicated that unfamiliarity with the data and the
process was a primary challenge. However, experienced users did not
rate the overall difficultly of the exercise less than did novice users
(Table 1). Users familiar with QC recognize the challenge of making
decisions in altering datasets – underscoring our observation of the
subjective nature of the QC process.

3.2. Differences between variables: drift correction

There was greater agreement within and across both participant
groups for variables that do not undergo regular calibration in the field
and, therefore, do not need drift correction in post processing (e.g.,
temperature – Fig. 1, Table 3, and Fig. 4a). For temperature, all

Fig. 3. Results for all participants for specific conductance. See Fig. 1 for panel descriptions. To determine the maximum number of agreeing participants and total
number of outcomes at each time stamp (c, f), results were rounded to 1 μS/cm.

Table 3
Summary of agreement for experienced participants. To determine agreement
and number of outcomes, results were rounded to 0.01° C, 0.01 pH units, and
1 μS/cm.

Metric Temperature pH SpCond

Average of maximum number of agreeing
participants (n= 13)a

12.94 7.43 8.40

Average number of outcomes (n= 13)b 1.03 4.68 3.51

Percent of data where all participants agreedc 97.5% 12.4% 11.5%

Percent of data where the range of values was
within sensor accuracyd

99.4% 60.9% 17.9%

a Determined by calculating the highest number of agreeing participants at
each time stamp and averaging over the entire record.

b Determined by finding the total number of outcomes at each time stamp
and averaging over the entire record.

c Determined as the proportion of data in which all participants agreed on
outcomes.

d Determined by comparing the range of participant responses with the
manufacturer reported sensor accuracy (Table 2) at each time stamp.
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experienced participants agreed on 97.5% of the data, while for pH and
specific conductance, all experienced participants only agreed 11–13%
of time. This result was anticipated and underscores the importance of
technological measures such as automated wipers and anti-fouling
sensor coatings in extending the deployments of sensors affected by
biological growth and fouling. These preventative measures reduce the
impact of fouling on the measurements themselves, but also reduce the
uncertainty and subjectivity introduced during the quality control
process if drift corrections can be avoided.

Consistency was observed in the post processed data from all ex-
perienced participants shortly after field visits and calibration events
when technicians were able to reference fixed calibration points (i.e.,
the values from all participants were nearly the same after each cali-
bration). However, as the time after a calibration event increased, so
did the range of post processed data from different technicians (Figs. 2
and 3 – panels e and f). This is a product of: 1) the choice by a

technician to perform a drift correction to close an offset in the raw data
caused by instrument drift and/or fouling, and 2) the technician's
choice of the offset value to use in the drift correction. A summary of
drift correction offsets implemented by experienced participants is
shown in Fig. 6. For any given calibration, approximately half of par-
ticipants opted to perform a drift correction. Offsets ranged as high as
18.9 μS/cm for specific conductance and 0.19 for pH. This is further
illustrated by the ranges in results (Figs. 2e and 3e) and the corre-
sponding disagreement in processed datasets (Figs. 2f and 3f).

To understand the source of this variability, it is important to be
familiar with the underlying process. A linear drift correction moves the
points prior to a calibration up or down by a specified offset and re-
gressively applies the correction to past values up to a selected point in
time, which typically corresponds to the previous cleaning or calibra-
tion (Horsburgh et al., 2015; Wagner et al., 2006). The most recent
point is shifted by the offset, the point associated with the previous

Fig. 4. Mean deviation from raw data for each participant organized by variable and experience level for (a) temperature, (b) pH, and (c) specific conductance.
Values were determined as the mean of the differences between raw and processed data at each stamp for each participant. Note that data that were set to the “no
data” value of −9999 were excluded from this analysis.

Fig. 5. Responses of participants to the question “What aspect of the exercise did you find the most challenging?” organized by experience level. Note that parti-
cipants' responses could include multiple aspects.
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calibration is not shifted at all, and each point in between is shifted
proportional to the time distance between calibration events. When it is
determined that a drift correction is to be performed, the technician
chooses the exact point on which the shift is made and selects an offset.
The values of offsets (the corrections illustrated in Fig. 6) may be es-
timated based on visual examination of the data, by calculating a value
based on the slope of the data points before and after calibration, or by
determining the error in the sensor reading observed in the calibration
check based on the difference between the pre and post calibration
readings. Because the field notes obtained for this exercise did not re-
port the pre and post calibration readings, and because it is the easiest
option, we conclude that most participants determined drift correction
offsets by visually assessing how the corrected data should appear re-
lative to post-calibration data.

Fig. 7 shows examples of two drift corrections performed by ex-
perienced participants. In these cases, most participants selected the
same point to initiate drift correction, but the offsets varied. Fig. 7a
corresponds to the pH calibration on October 1, 2014 for which 10 out
of 13 participants opted to make a drift correction, and Fig. 7b corre-
sponds to the specific conductance calibration on June 3, 2014 for
which 9 out of 13 participants opted to make a drift correction. In ex-
amining participants' scripts for these two cases, those that did not
perform a drift correction determined that it was more appropriate to:
1) interpolate erroneous data associated with the calibration and the
period that the sensor was out of the water, 2) set the same data to
−9999, or 3) leave the data unaltered. In all of these cases, a flag would
be applied to annotate the data with a descriptive qualifier. This in-
consistency in decision-making was observed for nearly all calibration
events in this study. Out of 28 calibration events (13 for pH, 15 for
specific conductance), only once did all participants decide to drift
correct (pH on June 3, 2014) and only once did all participants opt for
another method of data correction like linear interpolation (pH on July
10, 2014).

For both cases shown in Fig. 7, participants who elected to drift
correct agreed that the data prior to the calibration event should be

shifted down, presumably based on the pattern of data following the
calibration event, but there was not agreement on the degree of the
shift. In these particular examples, the selected offsets varied between
−0.068 to −0.03 for pH and− 7.62 to −5.4 μS/cm for specific con-
ductance. These discrepancies could be due to individual assessment of
which point following a calibration is the “true” calibrated reading.
When it is returned to ambient water, a sensor requires time to equi-
librate, and this can result in some spurious points following field
maintenance and calibration. The technician performing QC must make
a determination of the first valid point post-calibration, which then
influences the selection of the offset for the drift correction on the
preceding data. These examples are representative of other calibration
and drift correction occurrences in that there is broad disagreement
between participants (see Fig. 6 for comparison to other calibration
events). Rather than gravitating to a few consistent offsets (e.g., a bi-
modal distribution of results), or converging on a central tendency (e.g.,
a normal distribution), in these examples, participants' selected offsets
are evenly distributed over the range of results (e.g., a uniform dis-
tribution). Similar patterns of distribution for other events were ob-
served (data not shown).

3.3. Comparison to sensor accuracy

To put the scale of participants' processed results into perspective,
the observed variability was compared to the manufacturer's reported
sensor accuracy (Table 2) to assess whether the discrepancies are within
these bounds. The manufacturer's reported accuracy was used as a
conservative benchmark given that uncertainty of the field-measured
values is likely higher than the accuracies reported by the manu-
facturer, which are determined in the laboratory under optimal con-
ditions (e.g., Thoma et al. (2012) report lower instrument variability for
temperature, pH, and specific conductance in laboratory than in field
tests, and for these variables, the United States Geological Survey
(USGS) criteria for “excellent” accuracy rating exceed the manu-
facturer-reported accuracies (Wagner et al., 2006)). Furthermore,

Fig. 6. Drift correction offsets selected by experienced participants for pH (a) and specific conductance (b). Bars represent the number of participants opting to drift
correct (out of a total of 13). Box and whisker plots represent the range of offset values selected. Shaded bars indicate calibration events for which the range of
participants' correction values were within manufacturer-reported sensor accuracy (0.01 for pH and 2 μS/cm for specific conductance).
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actual uncertainties may vary (e.g., over time) and may be dependent
on conditions, whereas the manufacturer's reported accuracy is a
standardized metric.

For temperature, the average deviation from raw data by experi-
enced participants was well within the± 0.01° C range (Fig. 4a), and
the range of outcomes between participants was within± 0.01° C for
99.4% of all data values (Table 3). For pH, the average deviation from
raw data was within the sensor accuracy of± 0.1 (Fig. 4b) for all ex-
perienced participants. The ranges of pH drift correction offsets selected
by experienced participants (Fig. 6) were greater than±0.1 for 4 out of
13 calibrations, resulting in a range of outcomes within±0.1 for 60.9%
of all data values (Table 3). We observed a similar pattern for specific
conductance, though the range of processed results more commonly
exceeded reported sensor accuracy, which we determined to be±2 μS/
cm based on the range of data used in this study. The average deviation
from the raw data (Fig. 4c) was within sensor accuracy. However, as
shown in Fig. 6, the differences between experienced participants' re-
sults were outside of the range of sensor accuracy for 6 out of 15 ca-
librations, and these changes propagated through the data so that the
range of outcomes was within 2 μS/cm for only 17.9% of the data
(Table 3).

To summarize, the degree to which the range of outcomes was
within the range of sensor accuracy was found to differ for each vari-
able (Table 3: 99.4% for temperature, 60.9% for pH, and 17.9% for

specific conductance). The greatest differences in the processed data
from different technicians occurred at points of calibration, many of
which were outside the ranges of sensor accuracy (Fig. 6). This result is
somewhat expected given that the manufacturer-reported accuracies
assume a recently calibrated sensor. Because the interval between ca-
librations in the experiment was typically 2 weeks, it is reasonable to
assume that the actual range of sensor accuracy that could be achieved
in the field is considerably larger than what is reported by the manu-
facturer (Thoma et al., 2012; Wagner et al., 2006).

3.4. Comparison of summary statistics

To provide additional context to the variability between users and
impact on the resulting datasets, we calculated summary statistics for
each variable and report the ranges across all participants (Table 4). For
most of these metrics, the ranges for temperature and pH were similar
for all statistics and were lower than the manufacturer reported accu-
racy. However, there are a few exceptions. The range for the 75th
percentile of temperature (0.23° C) is outside of the manufacturer's
accuracy (± 0.1° C), but still within the USGS criteria for “Excellent”
accuracy rating (± 0.3° C), and the ranges for the minimum and
maximum of pH exceed both standards. For specific conductance, the
ranges are all outside of the manufacturer reported accuracy (± 2 μS/
cm) though many are within the USGS “Excellent” criteria (3% or
12 μS/cm).

For pH and specific conductance, the central tendencies exhibit a
lower range across participants than do the ranges at the extremes.
Artifacts of errors made by participants (described in Section 3.7) are
exhibited in the minimum and maximum, but do not affect the central
tendencies and percentiles. The ranges of these statistics show that the
variability of results between participants may be small enough to be
neglected for many purposes, though egregious mistakes have outsized
effects. For calculations that are made based on these data, such as
mean annual temperature or percent exceedance of water quality cri-
teria, the differences between participants' results are likely not great
enough to be meaningful in the assessment of compliance or to add
uncertainty in the determination of a summary statistic.

Fig. 7. Examples of calibration and drift correction by experienced participants for (a) pH and (b) specific conductance. Colored lines represent the QC results for
individual participants, and the raw data is represented by a thick black line.

Table 4
Ranges of summary statistics for experienced participants.

Statistic Temperature pH SpCond

Minimum −0.04 – –0.04 (0.00) 5.09a–7.63 (2.53) 288.1a–305.0 (16.9)
25th Percentile 5.33–5.43 (0.10) 8.03–8.07 (0.04) 410.2–421.3 (11.1)
Median 8.60–8.64 (0.04) 8.14–8.16 (0.02) 437.2–441.2 (4.0)
Mean 9.23–9.34 (0.11) 8.05–8.15 (0.10) 430.4–438.8 (8.4)
75th Percentile 12.58–12.81 (0.23) 8.25–8.28 (0.03) 454.8–462.7 (7.9)
Maximum 22.94–22.94 (0) 8.59–8.87 (0.28) 639.8–655.5 (15.7)

a A single participant's results included values of 0, which was clearly an
erroneous outlier, so it was excluded from the range determination.
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3.5. Handling spurious data

Another aspect for which discrepancies were found among partici-
pants' post processed data was in removal of questionable data values.
Inconsistency was observed both in which values were deemed to be
questionable and subsequently removed and in the procedure used to
remove these data. Some participants removed what they considered to
be obviously bad data from the corrected record while other partici-
pants set problematic values to a “No Data” value (−9999) and then
added qualifier flags to note issues with the data (e.g., “sensor mal-
function”). Experienced participants set more data to “No Data” and/or
deleted more data than did novice participants (Table 5), demon-
strating novice participants' reluctance to change data as well as a lack
of consistency between implementation of QC practices. In general,
participants implemented only one of these procedures for handling
spurious data for all series. The guidance explicitly provided to novice
participants was to set data to −9999 and add flags; therefore, essen-
tially no participants in this group deleted data (Table 5). Our as-
sumption was that experienced participants would follow this same
guidance; however, because we did not remind everyone in this group
about this protocol, some experienced participants opted to remove
values from the corrected record in lieu of setting data to −9999.

3.6. Details in QC script

In addition to reviewing processed data, the level of detail of an-
notations that participants included (or did not include) in their QC
scripts was examined to document their decisions and actions related to
QC. Discrepancies were found in the degree to which participants added
commentary to their data editing Python scripts. The level of detail in
script comments was rated as Low (little to no comments), Medium
(user documented actions without detail), and High (comment details
provide insight into decision making). We anticipated that experienced
participants would include more verbose and descriptive comments
than novice participants; however, the differences between novice and
experienced participants was not significant (Fig. 8) according to the

chi-square test (Jones et al., 2016). The practice of making comments in
scripts was described in the orientation with novice participants, but we
did not have high expectations for implementation. However, some
novice participants included significant detail in their scripts. Though
this practice is a regular and recommended part of our QC workflow,
there is obviously variation in how fully participants implement com-
menting.

Though ancillary to actual processed results, comments in scripts
generated by participants can provide insight into QC decisions and are
important when scripts are reviewed to trace or reproduce the QC
process. The level of detail in comments and annotations in the scripts
affects the reproducibility of results. If comments are included, data
users and QC technicians may better understand the decision-making
process - such as the rationale for selection of a particular offset for drift
correction.

3.7. Errors in the QC process

In reviewing results, we noted several participants who made what
we consider egregious mistakes in their quality control decisions. In one
case (Fig. 9a) a novice user decided to drift correct temperature data.
We assume that this choice was made to close the data gap associated
with a disconnected sensor during the September 16, 2014 calibration;
however, there are no comments in the script to confirm. In this in-
stance, all other users interpolated this short gap and added a qualifier
to flag the period. We conclude that this participant either did not
understand the scenarios in which drift correction is an appropriate QC
procedure (i.e., for sensors that undergo regular calibration) or lacked
familiarity with the QC software and mistakenly selected the drift
correction button rather than another function.

Results showed that experienced quality control technicians are not
immune to mistakes in the QC process. In one case (Fig. 9b), an experi-
enced participant applied an offset of−3 to correct a pH calibration. This
was clearly an error, and we speculate that the participant intended to
apply a− 0.3 offset to the drift correction given that the average offset
applied by other participants for this calibration was −0.23. (Note that a
similar error was observed (not shown) for a novice user choosing an
unexpectedly large offset while drift correcting pH.) In another instance
(not shown), an experienced participant incorrectly set the dates for all
linear drift corrections. Instead of setting the starting point of the cor-
rection after the previous calibration, this participant set all corrections to
begin January 1, 2014. These examples underscore the need for careful
training and data review, particularly among those less familiar with QC,
but also for experienced technicians. Furthermore, these erroneous deci-
sions may influence the results reported in Section 3.3 – excluding these
data would have provided a tighter range of results that might have been
more fully within sensor accuracy.

Table 5
Quantification of procedures selected by participants for handling spurious
data. Percentages are averages of the proportion of data that was handled by
either deletion or setting to −9999 across the participants in each group.

Group Procedure Temperature pH SpCond

Experienced −9999 1.62% (n=13) 7.35% (n=13) 1.85% (n=13)
Novice −9999 1.01% (n=15) 3.53% (n=10) 1.15% (n=3)
Experienced Deleted 0.14% (n=13) 0.41% (n=13) 0.13% (n=13)
Novice Deleted 0.00% (n=15) 0.02% (n=10) 0.00% (n=3)

Fig. 8. Determination of level of detail of comments in participants' QC scripts organized by experience level.
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4. Recommendations

This experiment revealed variability in processed datasets resulting
from several aspects of QC for which improvements could be made.
Though it is likely that QC on these types of data will retain elements of
subjectivity, steps can be taken to improve consistency between users.
Many discrepancies between users' processed results could be avoided
by implementing more specific guidelines that are clearly commu-
nicated to all technicians. For example, the differences between hand-
ling periods of spurious data could be eliminated by consistently ap-
plying QC guidelines. Despite our best efforts to establish these
guidelines in our own monitoring network, it is difficult to adequately
document the range of decisions that technicians face when performing
QC. Therefore, we also recommend that monitoring networks provide
ongoing training and discussion for technicians to familiarize and re-
inforce the application of QC protocols to real data and to bolster
consistency in the application of guidelines between practitioners. The
short training session provided to novices in this exercise was in-
sufficient, and even some experienced technicians made what we might
consider “novice” mistakes.

The greatest periods of discrepancy in processed datasets followed
calibration events. To minimize inconsistencies, greater specificity in
QC protocols is recommended. For example, data managers and tech-
nicians should determine the duration after which the sensor has
equilibrated to ambient conditions and valid measurements are being
made. This may involve a laboratory experiment, a review of numerous
past calibration events, and/or consultation with sensor manufacturers.
Implementing a standard post-calibration equilibration period will
eliminate inconsistencies in the determination of a valid point after
calibration, resulting in less variability in linear drift correction offsets.
To further narrow the selection of offsets, more detailed field notes
regarding pre and post calibration values and the timing of returning
sensors to ambient conditions are recommended. For example, the
USGS standard practice is to use pre and post calibration values to set
drift correction offsets, though this assumes isolation of drift due to
calibration from drift caused by sensor fouling and resolved by sensor
cleaning (Wagner et al., 2006).

Variability in different technicians' QC results may not be significant

in interpreting finalized data if it is within the range of sensor accuracy.
However, it does contribute to the overall uncertainty of the observa-
tions. If very accurate measurements are important for a given appli-
cation, a collaborative process supporting QC decisions is suggested.
Results reported here corroborate the recommendations of the USGS,
which require review of corrected datasets for “completeness and ac-
curacy” by two professionals in addition to the original hydrographer
(Wagner et al., 2006). Indeed, in other domains, thorough reviews and
a team-based process have been recommended to improve the quality
of assessments (Banghart et al., 2016), and a distributed and federated
approach was found to improve consistency of modeling results
(Stockhause et al., 2012). In one case within hydrology, Neal et al.
(2013) report collaborative data processing based on multiple, expert
opinions as “lively and sustained discussion.” Multiple technicians re-
viewing data could lead to developing consensus about each instance of
a QC procedure, which would reduce subjectivity and result in more
consistent results. In the current QC workflow for the GAMUT network,
QC work and scripts by less experienced technicians are reviewed and
data are saved by the most experienced technician in each watershed;
however, not all processed data is reviewed consistently, and most data
are not reviewed at the level of granularity to consider a range of
possible offsets for linear drift corrections. Data review also helps en-
sure that egregious mistakes are identified, avoiding situations like
those described in Section 3.6.

Although QC evaluation by multiple technicians at a granular level
could reduce the variability observed in this study, it is acknowledged that
this level of review may not be feasible for all applications, and it may even
be more detailed than what is recommended by the USGS. Scientists aim to
produce the best data possible, but the potential improvement in results
may not be significant enough to warrant the time and resources that
collaborative QC and detailed review would require. Depending on the
required level of data quality, performance of fine scale QC by a trained
technician under specific QC guidelines followed by review by another
trained technician to assess that data meet general guidelines should gen-
erate processed datasets that meet the needs for most scientific studies. In
lieu of review by two separate technicians, a single technician might per-
form QC and then re-review data in the full context of the raw data as well
as data from other sensors and other monitoring stations.

Fig. 9. Examples of QC errors performed by a novice participant on a temperature (a) and an experienced participant on pH (b).
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5. Conclusions

This study examined the results of individual participants per-
forming QC on identical datasets of raw, high frequency water quality
data using consistent tools and guidelines. Two groups comprised of
novice and experienced participants were included to examine whether
results differed based on fluency with these types of data and with QC
procedures. Despite expectations that experienced participants would
produce more consistent results and that novice participants would
make more errors in performing QC, there was greater variability in
experienced participants' processed results than those of novices. We
conclude that novices' unfamiliarity with QC procedures resulted in
hesitancy to alter data.

The periods of greatest discrepancy followed field calibration events
that necessitated drift corrections in the QC process. As a result, there
was little variability in the processed datasets of variables that do not
undergo calibrations. We found that, depending on the observed vari-
able, the variability was within the range of sensor accuracy, but for
those periods associated with calibration events, the discrepancies re-
sulting from the QC process exceeded sensor accuracy to a varying
degree. To improve consistency, clarifying QC guidelines and protocols
and thoroughly training technicians is recommended. Implementing a
collaborative QC process is also suggested wherein the changes in-
troduced by QC for sensitive periods are reviewed for cases where
highly accurate data are required. Because of the resources demanded
by review and collaboration, in determining QC workflows, scientists
should look to balance the level of review with the potential im-
provements in processed data quality and precision.
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