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A B S T R A C T

The use of existing component-based modeling frameworks for integrated water resources modeling is currently
hampered for some important use cases because they lack support for commonly used, topology-aware, spa-
tiotemporal data structures. Additionally, existing frameworks are often accompanied by large software stacks
with steep learning curves. Others lack specifications for deploying them on high performance, heterogeneous
computing (HPC) infrastructure. This puts their use beyond the reach of many water resources modelers. In this
paper, we describe new advances in component-based modeling using a framework called HydroCouple. This
framework largely adopts the Open Modeling Interface (OpenMI) 2.0 interface definitions but demonstrates
important advances for water resources modeling. HydroCouple explicitly defines standard and widely used
geospatial data formats and provides interface definitions to support simulations on HPC infrastructure. In this
paper, we illustrate how these advances can be used to develop efficient model components through a coupled
urban stormwater modeling exercise.

1. Introduction

The goal of integrated assessment in environmental and natural
resources management is to provide information within a decision
making context that brings together a broader set of domains, methods,
styles of study, and/or degrees of certainty than would typically char-
acterize a study of the same issue within the bounds of a single research
discipline (Parson, 1995; Laniak et al., 2013). In order to make the
complexity surrounding integrated assessment studies more tractable, a
need has also arisen to integrate computer models from diverse fields so
that scientists can conduct more holistic assessments. In particular, for
water resources specialists, the need for model integration arises fre-
quently because, although many individual hydrologic processes have
existing mathematical models that are able to simulate them under a
given set of circumstances, there is rarely a single model that can si-
mulate all of them at the different scales and complexities desired while
accounting for feedbacks between the various sub-processes for in-
tegrated assessment studies (Beven et al., 1980; Argent et al., 1999).
Selecting a particular hydrologic model requires a consideration of the
specific management challenges of concern, the spatial and temporal
scales of interest, model input data availability, and computing re-
quirements, among other considerations (Beven et al., 1980; Leavesley
et al., 2002; Argent, 2004; Voinov and Shugart, 2013; Chowdhury and

Eslamian, 2015; Clark et al., 2015). When a single model cannot meet
the needs of a modeling study, it is common for modelers to couple
elements of multiple models together to form a more holistic or accu-
rate representation of a water system. This coupling must not only be
considered as a technical exercise of stitching models together but must
also include semantic and conceptual harmonization between coupled
models (Janssen et al., 2011; Voinov and Shugart, 2013).

Although model developers in the earth systems and environmental
modeling field have used several approaches to couple models for their
integrated modeling efforts, the component-based modeling approach
is increasingly receiving more attention. This is because, in contrast to
monolithic approaches where models are compiled into a single code
base or executable unit, component-based model development promises
improved flexibility in the selection of the best available modeling
approach for each application domain and re-use of different models,
and more maintainable and extensible models (Fröhlich and Franz,
1999; Szyperski, 2002). The component-based modeling paradigm in-
volves the provision of interface definitions describing standard data
structures and functions that models must implement so that they can
be deployed independently to exchange information at runtime with
other models. Model developers across diverse fields who adopt these
interface definitions can develop models that can be coupled with other
models to simulate complex earth and environmental systems.
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Component-based modeling provides a natural avenue for experi-
menting with different model formulations since model components
can be removed and added to a composition in a “plug-and-play”
fashion.

Several component-based modeling frameworks and interface
standards with varying degrees of complexity and application domains
have been developed over the years. These include the Earth Systems
Modeling Framework (ESMF, Hill et al., 2004), Community Surface
Dynamics Modeling System (CSDMS, Peckham et al., 2013), the Object
Modeling System (OMS, David et al., 2002), and others. In the water
resources modeling arena, the Open Modeling Interface (OpenMI,
Moore and Tindall, 2005) definitions have been tested and used ex-
tensively (e.g., Smolders et al., 2008; Castronova and Goodall, 2009;
Goodall et al., 2011; Buahin and Horsburgh, 2015). The appeal of
OpenMI revolves around the fact that instead of providing a framework
that has an accompanying large and complicated software stack that is
beyond the expertise of many water resources modelers, the OpenMI
developers provide a set of standardized, programming language ag-
nostic interface definitions that can be adopted to develop model
components that can communicate with each other directly at runtime.
The OpenMI interface definitions are object oriented, with clear and
well-defined inheritance relationships. Another major advantage is that
the latest OpenMI 2.0 version has been adopted as an Open Geospatial
Consortium (OGC) standard (Vanecek and Moore, 2014), which means
that it has been reviewed and vetted by a large community of modelers.

Despite these attractive features, our experience using OpenMI re-
vealed a few areas where advancements to the interface definitions
would be useful, especially for water resources modeling applications.
First, while the OpenMI interface definitions are programming lan-
guage agnostic, the example interface definitions as well as software
development kits (SDK) provided by the OpenMI developers use the C#
and Java programming languages. These languages are compiled into

an intermediate bytecode before being translated into the native in-
structions of a target machine to be executed using a virtual machine
software infrastructure (i.e., Common Language Runtime (CLR) for C#
and Java Virtual Machine (JVM) for Java). Additionally, C# has tra-
ditionally been restricted to computers that run Windows operating
systems.

Conversely, many legacy model codes used in the water resources
modeling field, and in the earth systems and environmental modeling
field more generally, have been developed using programming lan-
guages like Fortran, C, and C++ because of the mature set of tools,
scientific libraries, and support for HPC simulations that are available
with these languages. Additionally, these programming languages are
employed for computational models because they are compiled directly
into native instructions for a target machine (i.e., natively compiled)
and, therefore, generally have lower memory footprints, faster perfor-
mance, and can be compiled on many operating systems. While the
advent of Just-In-Time (JIT) compilers has significantly improved the
performance of languages like C# and Java, natively compiled lan-
guages remain faster for many applications and remain the benchmark
for evaluating performance (Taboada et al., 2013). To convert legacy
codes written using natively compiled languages into components that
can be coupled loosely to other models, one needs to resolve the pro-
gramming language mismatch between the interface definitions and the
computational codes of these legacy models. Though there are ways to
bridge this programming language mismatch (e.g., using Platform In-
vocation Service for C# and Java Native Interface for Java), the costs of
marshalling data across this language divide can lead to increased
memory usage and increased time for individual simulations. We en-
countered and quantified these costs in a previous study where we
converted the Environmental Protection Agency's Stormwater Man-
agement Model (SWMM), which is written using the C programming
language into an OpenMI compliant component using the C# OpenMI
interface definitions for a spatial domain decomposition urban storm-
water coupling exercise (Buahin and Horsburgh, 2015).

Second, while the OpenMI specification provides interface defini-
tions for representing geometric primitives (e.g., points, lines, and
polygons) and their associated time varying data, these definitions lack
some of the more common geospatial dataset formats used by water
resources modelers (e.g., meshes, vector datasets, rasters, etc.). Also,
the geospatial interface definitions provided by the OpenMI specifica-
tion lack the topological relationship information that is important for
many water resources modeling applications. For instance, a hydrolo-
gist simulating flows in a river network will need to know which up-
stream tributaries flow into any selected river reach. These types of
topological relationships are not explicitly supported by the OpenMI 2.0
standard but can be implemented by extending the OpenMI standard.

Finally, like other earth systems and environmental modelers, hy-
drologic modelers often embark on experimental simulations where the
same model is executed multiple times with varied inputs (e.g., opti-
mization, uncertainty assessment, calibration, etc.). These types of si-
mulations fall into the so called “embarrassingly parallel” class of si-
mulations and benefit from using high-performance computing (HPC)
resources. Many research institutions provide access to computing
clusters comprised of heterogeneous hardware configurations of multi-
core Central Processing Units (CPU) as well as graphical processing
units (GPU) and Many Integrated Cores (MIC) architecture accelerators
that can be used for more efficient computations. However, the current
OpenMI standard provides little direction on how to take advantage of
these increasingly ubiquitous HPC infrastructures for more efficient
simulations.

The contribution of this paper is the presentation of a set of com-
ponent-based modeling interface definitions called HydroCouple and its
associated SDK and coupled model composition tools. HydroCouple
uses the OpenMI 2.0 interface definitions as its foundation but advances
new interface definitions to address the challenges enumerated in the
preceding paragraphs and others. We chose to build from OpenMI

Software Availability

Name of software: The software described in this paper includes
the HydroCouple component-based modeling interface
definitions, the HydroCouple software development kit
(SDK), and the HydroCoupleComposer component
coupling graphical user interface (GUI) and command
line interface (CLI). The two HydroCouple compliant
components we developed for this study include a two-
dimensional hydraulic model component called the
Finite Volume Hydrologic Model (FVHM) and a com-
ponent developed from the Environmental Protection
Agency’s Stormwater Management Model (SWMM)
code.

Developer: Caleb A. Buahin
Contact: Caleb A. Buahin; Address: 8200 Old Main Hill, Logan,

UT 84322-8200, USA; Email: caleb.buahin@usu.edu
Required hardware and software Any computer that runs the

Windows, Linux, or Macintosh operating system. The
performance of the SWMM and FVHM components
benefit from compilation with a compiler that supports
OpenMP (http://www.openmp.org). FVHM can be
compiled with the Message Passing Interface (MPI)
enabled. Compilation of all the software codes en-
umerated requires the Qt 5.7 framework (http://www.
qt.io).

Cost The HydroCouple interface definitions, software stack,
and model components in this manuscript are freely
available under the GNU Lesser General Public License
(LGPL) and can be downloaded from the HydroCouple
Github repository (https://github.com/hydrocouple).
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because it has been tested and used within the water resources mod-
eling domain and because it has recently been advanced as an OGC
standard.

This manuscript represents a maturation of the core concepts and
interfaces presented in an earlier conference proceedings paper (Buahin
and Horsburgh, 2016), where we first described new spatiotemporal
data structures and interfaces for supporting parallelized experimental
simulations like calibration, optimization, and uncertainty assessment
within component-based modeling frameworks. In this paper, we ex-
tend the previous work by providing a more complete description of the
spatiotemporal data structures and topological relationships supported
by HydroCouple, by describing implementation of HydroCouple's in-
terface definitions and software development kit using C++, by in-
troducing HydroCouple's GUI for composing coupled models, and by
providing a detailed case study that demonstrates how HydroCouple's
new capabilities can be used in complex model coupling scenarios.

We also illustrate how these advancements can be used to convert
existing, legacy codes into model components and develop new ones
from scratch through a detailed modeling case study involving parallel
execution of coupled models having different dimensionality. We cou-
pled a one-dimensional (1D) hydraulic model developed from the
Environmental Protection Agency (EPA) Stormwater Management
Model (SWMM) and a two-dimensional (2D) hydraulic model that we
developed called the Finite Volume Hydrologic Model (FVHM). This
coupled urban stormwater modeling example illustrates how these
advancements can help usher more water resources modelers into the
HPC realm so that they can embark on more efficient simulations.

The remaining chapters of this manuscript are organized as follows.
In Section 2, we provide a review of existing component-based frame-
works with respect to their support for spatiotemporal data structures,
data exchange workflows, and support for simulations on HPC infra-
structure. In Section 3, we provide a discussion on the design of the
HydroCouple framework with respect to the three areas identified in
Section 2. We also describe tools provided to simplify the process of
developing new components and creating coupled model compositions.
In Section 4, we present the case study involving the coupling of 1D
hydraulic model component and a 2D component developed to re-
present an urban stormwater conveyance system. Through this appli-
cation we illustrate how the advancements we have implemented are
used.

2. Design of component-based modeling frameworks

The component-based modeling approach and its precursor, the
component-based software development approach, have their origins in
the object-oriented programming approach with its notions of re-use
through encapsulation, inheritance, and polymorphism. Components
are typically paired with software frameworks, and they serve to extend
the capabilities of frameworks, while frameworks provide an environ-
ment for executing components (Fröhlich and Franz, 1999). This con-
cept extends to model components and modeling frameworks in earth

systems and environmental modeling. For instance, CSDMS compo-
nents are executed within the Common Component Architecture Fast
Framework Example In Need of Everything (CCAFFEINE, Allan et al.,
2002). The definition of standard interfaces forms the basis of inter-
action between components and frameworks and between components
themselves by describing the assumptions they make about each other
(Fröhlich and Franz, 1999). The design of OpenMI deviates from other
approaches for developing component-based models by forgoing the
pairing of interface definitions for components with a software frame-
work. Instead, it prescribes interfaces that let components communicate
directly with each other independent of a framework. This design
choice was made to give more flexibility to component developers to
optimize the data exchange process between model components.

The interface definitions for components are specified in a number
of ways for different frameworks depending on the programming lan-
guages supported by the framework. Programming languages that were
developed primarily for object-oriented programming like C++, C#,
and Java have formal ways of specifying interfaces so that they can be
inherited and implemented with details of their functioning to create
framework compliant components. For example, C++ interfaces are
specified in header files as classes with only pure virtual functions. The
OpenMI interfaces for C# and Java are specified this way. On the other
hand, for component-based modeling frameworks that support lan-
guages like C and Fortran (e.g., ESMF and CSDMS), models are required
to register pointers to their standard functions with the framework.
These standard function pointers are then stored in virtual function
tables that can be accessed by other components to achieve the inter-
facing functionality. While the OMS framework was written using Java,
which is an object-oriented programming language, the OMS interfaces
are specified by marking classes, functions, and fields of a component
with standardized java annotations (e.g., @In, @Out, @Execute, etc.),
which serve as a form of syntactic metadata. Through Java's reflection
capabilities, annotated classes, fields, and functions can be accessed and
invoked at runtime.

The typical core interfaces defined for models in component-based
modeling frameworks are the initialize, run, and finalize (IRF) functions
(Syvitski et al., 2011). The initialize interface function is implemented
to instantiate the resources and inputs needed by a model for a
simulation. The run interface is responsible for performing the under-
lying computations of a model (e.g., performing a time-step). The fi-
nalize interface is implemented to dispose of the computational re-
sources used by the model (e.g., closing output file streams, de-
allocating memory, etc.). In addition to these core interfaces, models
also specify interfaces for the types of inputs and outputs that can be
consumed and shared with other components respectively. CSDMS at-
tempts to standardize these elements that are shared by various com-
ponent-based modeling frameworks by providing a core set of interface
definitions called the Basic Modeling Interface (BMI) definitions
(Peckham et al., 2013).

Table 1 summarizes the design considerations we identified for
component-based modeling frameworks and standards used in the earth

Table 1
Design considerations for component-based modeling frameworks.

Design Consideration Description

(1) Cross-platform support Can be compiled and executed on multiple operating systems
(2) Limit Framework Dependence Direct data exchange between components with minimal intervention from the underlying framework
(3) Language interoperability Developed using an efficient programming language that provides bindings with several of the programming languages

widely used in developing models
(4) Support for simulations on HPC infrastructure A framework that supports simulations that take advantage of increasingly ubiquitous of distributed and heterogenous

computing infrastructure with simple and transparent interfaces
(5) Support for standard spatiotemporal datasets Supports widely used open standards for representing geospatial datasets
(6) Flexible and customizable data exchange

workflows
Data exchange workflows that are flexible and customizable while minimizing the amount of coding needed to achieve
this flexibility and preventing code re-compilation

(7) Development, model composition, and
visualization tools

Provides comprehensive model development tools, coupled model compositions tools, and visualization tools to
minimize the expense of model development
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systems and environmental modeling arena. In the sections that follow,
we discuss three of these design considerations that we believe are
important areas where we identified opportunities for improvements to
be made. We focus on their support for spatiotemporal datasets, options
for data exchange workflows between components at runtime, and
support for simulations on HPC infrastructure. Given that OpenMI was
the base from which we built HydroCouple, we discuss how OpenMI is
designed with respect to these three areas and contrast it with the de-
sign of other component-based modeling frameworks. Limitations in
these three areas are impediments to using OpenMI and, more gen-
erally, component-based modeling in practice because important
geospatial data structures used by many models are not currently
supported, data exchange workflows are restrictive or require re-com-
pilation for each coupled model composition, and HPC simulations are
either complex or not supported at all by existing frameworks.

2.1. Definition of spatiotemporal data structures

The types of inputs that can be consumed and the outputs that can
be supplied by models in a component-based modeling framework are
typically organized as multi-dimensional arrays of data that can be
accessed using indexes along their respective dimensions (e.g., ESMF,
CSDMS, OpenMI). These inputs and outputs are often further abstracted
into domain specific types for many component-based modeling fra-
meworks. For instance, OpenMI provides a time-space input/output
specialization that associates geometric primitives including points,
polylines, polygons, and polyhedra with time varying data. For hy-
drologists, this could be used to a represent hydrologic feature like a
river network and its associated time varying flows.

In water resources modeling applications, these features are often
used for delineating a model's spatial domain and prescribing boundary
or input data for models - e.g., polygons for watershed boundaries,
polylines for alignments of rivers, river cross-sections, etc. Missing from
the OpenMI definitions is the topological information that provides the
spatial relationships between adjacent geometries. Yet, this information
is critical for many applications. For example, although the individual
cells of a two-dimensional computational grid used for a hydrodynamic
model of a reservoir may be represented by a list of polygons, the ad-
jacency information between cells that is needed to numerically ap-
proximate spatial gradients of variables are missing. On the other hand,
the CSDMS suite of tools for component-based modeling, which were
developed for ice, terrestrial, coastal, and marine applications as well as
ESMF, which was developed for global weather and climate predictions,
focus on providing interfaces for gridded datasets, including logically
rectangular, unstructured, and curvilinear grids in one, two, and three
dimensions. Explicit support for geospatial data types like those pro-
vided in OpenMI are, however, not supported.

2.2. Data exchange workflows

The model execution and data exchange workflow between com-
ponents in a component-based model composition is handled in a
variety of ways for different frameworks. ESMF requires a modeler to
write a driver program called an “AppDriver” that contains the “main”
routine for an ESMF application (Collins et al., 2005). This “AppDriver”
needs to be compiled for each application and is responsible for di-
recting the time-stepping and the data exchange between components.
The drawback with this approach is that a new driver needs to be
written and compiled for each composition. Therefore, a modeler will
have to be a programmer with the know-how and compilation tools to
compile the application, putting it out of reach for many water re-
sources modelers who are typically not expert programmers.

In contrast to ESMF, OMS provides a way for modelers to direct
model execution and data exchange between components externally.
This is accomplished by letting users write the business rules for a si-
mulation using a OMS prescribed domain specific language (DSL) spe-
cified in an external file (David et al., 2013). In contrast to a general-
purpose programming language, a DSL is a relatively simple specifica-
tion language dedicated to a particular problem domain, a particular
problem representation approach, and/or a particular solution tech-
nique (Deursen and Financial, 1997; Deursen et al., 2000; David et al.,
2013). The benefit of this setup is that model users are able to direct the
data exchange between components without recompiling the entire
code or being restricted to the in-built workflows provided by a com-
ponent-based modeling framework.

The primary model execution and data exchange mechanism in
OpenMI is based on the pull-based pipe and filter architecture
(Buschmann, 1996). With this method, components exchange memory-
based data directly without an external data exchange workflow con-
troller using a “request and reply” mechanism (Gregersen et al., 2007).
The most downstream component in a composition is designated as the
controller/trigger for an entire simulation where it requests the data it
needs from upstream components that it is coupled to and waits for the
data it requests to be returned before proceeding with its computations.
Upstream components issue their own requests to their respective up-
stream components in a cascading fashion and wait to receive the data
they requested before performing their computations as illustrated in
Fig. 1. Data exchange between an input (defined by the IBaseInput in-
terface) and an output (defined by the IBaseOutput interface) can be
mediated by an adapter (defined by the IBaseAdaptedOutput interface)
that performs the necessary data transformations (e.g., temporal in-
terpolation, spatial interpolation, unit conversion, etc.) that are needed
to supply the correct requested data from one component to another.
Contextual adaptors are generated by a factory interface definition
called an IBaseAdaptedOutputFactory that uses the input and output that
are to be mediated as query variables to generate appropriate adaptors.

While the “request and reply” data exchange approach requires no
external data exchange controller and works for many applications, it
does not work for those compositions that have two or more down-
stream components as illustrated in Fig. 2. In Fig. 2, components D and
E are not executed since they are not involved in the request and reply
chain of the trigger component, A. Yet, there are circumstances where
they may be needed as part of a coupled model composition. For ex-
ample, component A might be a stream temperature model, B might be
a streamflow model, and E might be a contaminant transport model.
Both E and A need streamflow data from B, but E would never get
executed if A is the triggering component.

The OpenMI developers recognized that the pull-driven data ex-
change approach might be too restrictive for certain applications.
Therefore, they suggested a loop driven data exchange workflow where
the coupled system will loop over all components to let them check if
they need to take action before proceeding (Moore, 2010). The loop
approach has been included in the interface standard of OpenMI 2.0,
but the implementation for this loop driven approach is not provided as

Fig. 1. OpenMI “request and reply” data exchange mechanism. Component A is
the controller/trigger for the simulation.
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part of the OpenMI SDK. In contrast to ESMF and OMS, OpenMI may be
easier to use for non-expert programmers. However, the fact that the
request and reply mechanism used by OpenMI may not work for all
model compositions and the fact that the loop approach has not been
implemented in OpenMI's SDK means that OpenMI could be further
improved to meet additional use cases.

2.3. Support for simulations on HPC infrastructure

Increasingly, the complexity of the hydrologic modeling applica-
tions that modelers embark on requires that model execution be con-
ducted using distributed computing techniques on HPC infrastructure.
HPC infrastructure typically involves pooling of computational re-
sources from many computers with multi-core processors that are net-
worked together. ESMF was designed to support both data and task
parallelism on HPC infrastructure by making ESMF components the
very units of parallel execution to aid model developers in writing
highly efficient and scalable codes (Collins et al., 2005). A virtual
machine (VM) approach is adopted to abstract away the details un-
derlying model execution in HPC environments using the Message
Passing Interface (MPI) standard. Each component in an ESMF com-
position is assigned a single VM comprised of one or more persistent
execution threads (PET), where each PET is equivalent to a single MPI
process. A component may allocate its PETs to child components. Ad-
ditionally, a developer can employ fine grained, shared memory par-
allelism within a PET using OpenMP or other multi-threading ap-
proaches. Inter- and intra- VM communications are handled by the
framework in a fashion similar to MPI where data must be provided as
raw, language specific, one-dimensional, contiguous arrays.

OMS adopts a similar approach to ESMF to achieve parallelism by
making components themselves the units of parallel execution.
However, unlike ESMF, OMS only supports shared memory parallelism
applications using multi-threading, where each model component is
executed in its own separate thread. In contrast, OpenMI provides little
direction on how to take advantage of HPC resources for more efficient
simulations. For scenarios where a downstream component requests

input data from one or more upstream components, an OpenMI com-
ponent may make these requests using parallel threads in a multi-
threading environment for efficiency. However, this approach only
scales up to the number of upstream components that supply data to a
single component. Additionally, in a bidirectional data exchange sce-
nario between two coupled model components, A and B, OpenMI's re-
quest-reply data exchange mechanism forces a sequential execution of
the components involved. Component A requests the data it needs from
B. However, component B needs data from component A before it can
execute. To avoid an infinite recursion loop, component A provides an
estimate of the data requested by component B so that component B can
advance the computation. From a performance perspective, it may be
desirable to execute both model components concurrently using esti-
mates of data provided from the component that is coupled to them.

To the best of our knowledge, existing component-based modeling
frameworks lack support for automated parallel simulations for those
experimental evaluations that are “embarrassingly parallel” involving
executing the same coupled model instances repeatedly with varied
input parameters - e.g., automated parameter estimation and un-
certainty assessment (e.g., Blasone et al., 2008), optimization (e.g.,
Zhang, 2009), ensemble simulations (e.g., Komma et al., 2007), etc.
While, these types of applications can be currently undertaken within
existing component modeling frameworks, they can either only be
configured to run sequentially, require manual intervention, or require
writing code outside of the scope of a component-based modeling fra-
mework.

3. Design of the HydroCouple framework

To address the challenges discussed in the preceding sections, we
developed the HydroCouple component-based modeling interface spe-
cifications and associated software. HydroCouple builds on the
strengths of OpenMI while advancing new interface definitions to de-
liver standard spatiotemporal dataset interfaces with their associated
topological information and providing support for more efficient si-
mulations on HPC infrastructure. Like OpenMI, the HydroCouple in-
terface definitions are language agnostic. However, we implemented
the HydroCouple interface definitions using C++ because in addition
to the benefits enumerated in the previous sections (i.e., cross-platform
support, relatively lower memory footprints, mature set of tools and
scientific libraries, etc.), it also provides bindings with many pro-
gramming languages and serves as a good foundation for a framework
that seeks to integrate legacy model codes and support models
written using different programming languages. The interfaces for
HydroCouple have been provided in four C++ header files with about
1500 lines of code that provide the core interface definitions, a spatial
extension, a temporal extension, and a spatio-temporal extension. In the
following section, we discuss the key choices that were made in the
design of HydroCouple and the motivation behind them.

3.1. Types of HydroCouple components

The core interface definition of the OpenMI standard is the
IBaseLinkableComponent interface. This interface encapsulates the
computational engine of a model and defines the IRF interfaces. It is
also responsible for defining the types of inputs a component can
consume and the type of outputs a component can supply to other
components. In HydroCouple, the IBaseLinkableComponent interface has
been superseded by the IComponentInfo interface definition as the core
interface definition. This interface definition allows model developers
to provide details about a component including: documentation about
the formulations employed in the component, limitations of the com-
ponent, coupling configurations that can be employed, data transfor-
mation adaptors that can be employed, as well as details about the
coupling configurations and application scenarios for which the use of
the component is appropriate. Other details that can be specified

Fig. 2. Limitation of the OpenMI “request and reply” data exchange mechanism
for compositions with more than one downstream component.
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through this interface include: the name of the developer of the com-
ponent, contact information for the developer, classification of the
component to properly categorize component libraries in a GUI, and
component version. These details, which can be used by modelers to
seek further assistance are currently missing for components developed
for many frameworks leading to poor understanding about their cap-
abilities and their proper usage in component-based modeling appli-
cations. Preferably, these details should be specified in an external file
and read by the component at runtime for display purposes.

In contrast to OpenMI, which only allows a single component type,
instances of classes based on the IComponentInfo interface create
three types of specialized components. These specializations
include classes that are based on the IModelComponentInfo, the
IWorkflowComponentInfo, and the IAdaptedOutputFactoryComponentInfo
interfaces as shown in Fig. 3. Instances of classes based on the IM-
odelComponentInfo are responsible for creating instances of classes
based on the IModelComponent (Fig. 4) interface, which is equivalent to
the OpenMI specification's IBaseLinkableComponent. Instances of classes
based on the IAdaptedOutputFactoryComponentInfo interface are re-
sponsible for creating instances of a new component type based on the
IAdaptedOutputFactoryComponent interface (Fig. 4). This new interface
definition can be implemented as an independently deployable com-
ponent that is equivalent to OpenMI's IAdaptedOutputFactory interface
definition. However, unlike the OpenMI definition, it is not bound to
any particular component and can be reused between different models
to generate adaptors for data exchange mediation. Finally, instances of
classes based on the IWorkflowComponentInfo interface are responsible
for generating another new type of component based on the IWork-
flowComponent interface (Fig. 4) that is responsible for managing si-
mulations and the data exchange workflow between components. These
new component types have been added to HydroCouple to avoid the
duplicative work of developing new data exchange workflows and data
adaptors for each component or coupled modeling application when
using OpenMI and component-based modeling frameworks in general.
For example, a workflow component could be developed to auto-
matically discover the dependencies that exist between model compo-
nents and execute them in a sequence that ensures that all components
are able to obtain the data they require. A time series interpolation
adapter could be developed as an independently deployed component
that can be reused by different model component compositions. This
contrasts with the current OpenMI setup where an adaptor is bound to a
component and needs to be implemented for every model component
that needs to use it. This generalizes and formalizes this process so that
adaptors can be developed into components in their own right.

3.2. HydroCouple spatiotemporal data structures interface definitions

In order to reduce the cost of converting legacy models into com-
ponents, it is important that the low-level geospatial data structures
that hydrologists widely use are made available in component-based
modeling frameworks. To achieve this goal, HydroCouple provides an
explicit implementation of the Open Geospatial Consortium's (OGC)
Simple Feature Access (SFA) specification (Herring, 2011). In addition
to providing interfaces to describe various types of geometries, the
advantage of implementing the OGC SFA is that it defines functions for
performing topological queries (e.g., checking for intersection between
features, checking if one feature touches another, etc.) and geospatial
operations (e.g., unions, buffering, symmetric difference, etc.) that are
useful in water resources modeling applications. For instance, an in-
tersection operation can be used between gridded precipitation output
from a weather forecast model and the boundary of a watershed in a
hydrologic model to estimate the fraction of each grid cell that con-
tributes precipitation flux to that watershed.

HydroCouple additionally prescribes interface definitions for var-
ious gridded dataset types for hydrodynamic and hydraulic modeling
applications as well as representing some other gridded dataset types
often utilized in the water resources area. For example, HydroCouple
explicitly defines an interface for multi-banded raster datasets that in-
cludes the number of raster grid cells, cell size, data type, no data value,
etc. This interface can be employed to represent various types of da-
tasets in models, including digital terrain models (DTM), aerial ima-
gery, time varying land use data, etc. In addition to this definition,
HydroCouple defines interfaces for cartesian, rectilinear, and curvi-
linear grids in two and three dimensions for hydraulic and hydro-
dynamics modeling applications. Time-varying data for these grids may
be associated with the nodes, faces/edges, and volume/area of their
individual cells. For networks, unstructured meshes, and polyhedra,
HydroCouple adopts the quad edge data structure proposed by (Guibas
and Stolfi, 1985). With this data structure, a directed edge stores the
complete topological information about the resulting polyhedra/net-
work by storing pointers to its left and right face polygons and its origin
and destination vertices.

These spatiotemporal interface definitions have been provided to
abstract away the details of the various types of the same data struc-
tures provided by various software libraries. For example, a raster da-
taset can be stored as a GeoTIFF file or a NetCDF file which are accessed
using different software libraries. This was done so that data can be
accessed within HydroCouple using common interfaces, regardless of
the underlying file format of the data. A companion SDK was also de-
veloped to enable reading and writing of spatiotemporal data to and

Fig. 3. UML diagram for the IComponentInfo interface.
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from files on disk using multiple file formats. Details of the im-
plementation of these interfaces within the SDK using existing libraries
are provided in subsequent sections.

3.3. HydroCouple data exchange workflow interface definitions

Following the OMS approach where the data-exchange workflow
can be specified externally, the IWorkflowComponentInfo interface de-
finition was introduced in HydroCouple as a way to provide modelers
with flexibility in prescribing the data exchange workflow in a com-
ponent-based application. For example, OpenMI currently supports
only the “request and reply” data exchange approach, whereas
HydroCouple adds the ability to create independent workflow compo-
nents that can execute using a loop-driven data-exchange approach
as well as others. This interface creates an instance of an
IWorkflowComponent that is responsible for keeping track of all com-
ponents involved in a simulation and coordinating their computations
and data exchange until the completion of a simulation. Just as the
IModelComponent interface has the IRF functions, we defined the
IWorkflowComponent with these same functions to enable initializing
the workflow component, updating components associated with
the workflow by asking them to perform their computations, and fi-
nalizing the components upon completion of a simulation. If the
IWorkflowComponent interface is not instantiated for a simulation, all
components must default to the original OpenMI “request and reply”
approach to data exchange. This new interface was added so that
modelers can directly control data exchange in a component-based
modeling simulation beyond the “request and reply” data exchange
mechanism provided by OpenMI. Like model components, a suite of
independently developed and deployed workflow components may be
developed so that model users are able to select and integrate the
workflows that are most suitable for their simulations.

3.4. HydroCouple on HPC infrastructure

HydroCouple supports parallelized, experimental simulations by in-
troducing a new interface definition called the ICloneableModelComponent
interface that inherits from the IModelComponent interface. This new in-
terface introduces a clone function that must be implemented for a com-
ponent to make a copy of itself. The clone function has been added so that
independent copies of a model instance can be made for parallelized si-
mulations. Details of the cloning approach are left up to the model com-
ponent developer. A parent model component keeps track of all of its child
clones, which can be accessed using the children function. Linkages with
other model components are left up to the caller of the clone function.
This cloning process may involve making a copy of the parent
ICloneableModelComponent class and initializing it with the same argu-
ments as the parent while making sure that outputs from the parent and
child do not conflict. An example optimization application of this cloning
feature is described in Buahin and Horsburgh (2016).

HydroCouple was designed to support simulations on HPC infra-
structure by supporting parallel simulations on both shared and dis-
tributed memory systems as well as providing support for simulations
that use general purpose computing on graphics processing units
(GPGPU). Support for distributed memory parallel computing was de-
signed using the Message Passing Interface (MPI) standard, while the
GPGPU parallelism was designed to support the Open Computing
Language (OpenCL) and Nvidia's CUDA framework. The clone function
described is only one of the ways to enable parallelism in HydroCouple.
Like OpenMI, HydroCouple provides interface definitions that must be
implemented by a model developer. Component developers must im-
plement all the MPI, OpenMP, or GPGPU functions that enable parallel
computations. The SDK we developed (Section 3.5) provides some re-
sources that can be used to help in the implementation of these func-
tionalities.

In designing HydroCouple's support for simulations on HPC

Fig. 4. UML diagram for the HydroCouple's new component types.
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platforms, we followed the original OpenMI design choice of limiting
the role of the framework in mediating the data exchange between
components. Along this line, HydroCouple applications adopt MPI for
coarse grained parallelism, where all components involved in a coupled
modeling application are initialized and coupled directly on the MPI
task/process with rank 0 (i.e., the master MPI Process 1) as illustrated
in Fig. 5. For components that support MPI, a user may partition the
remaining MPI processes to them to ensure the computational load is
balanced (Fig. 5). This is done by specifying the MPI ranks available to
each component in a coupled model application configuration file.
Frameworks like ESMF automatically map computational resources into
virtual machines that can be allocated to components for model ex-
ecution on HPC resources. While convenient in abstracting away the
complexity of computational resources available, it elevates the role the
framework plays in mediating the data exchange between components.
Additionally, getting up to speed with the large software code stack and
its accompanying complexity is beyond the expertise of many water
resources model developers. HydroCouple uses relatively few lines of
code and distributes HPC resources directly by dividing available MPI
ranks among components. Each component can group its allocated MPI
ranks into an MPI communicator that can be shared among the com-
ponent and its children. This approach can be more transparent for
users of shared HPC infrastructure that use job scheduling software like
Slurm and reduces the role of the framework.

Developers of components need not necessarily conduct their
computations on the master MPI process. Components initiated on the
master MPI process could be developed as proxy-stubs that serve as
pathways for communicating results computed on child components on
worker MPI processors. For example, in Fig. 5, the role of Component A,
which is initialized on the master MPI process to communicate directly
with Components B and C, may only involve collating computed results
from its worker components initialized on MPI processes 2, 3, and 4 and
sharing with other components. Once initialized, data sharing between
components on different MPI processes can be conducted using stan-
dard MPI calls. Components on the master MPI processes are re-
sponsible for issuing messages to components on the worker processes
to dispose themselves upon completion of a simulation. Fine grained
parallelism may be employed over the CPU cores allocated to each MPI

process using shared memory parallelism application programming
interfaces (APIs) like OpenMP.

Like MPI, GPGPU frameworks abstract away the complexity un-
derlying computing resources from users and present a single, virtual
interface for accessing the hardware. To ensure that GPGPU resources
are distributed efficiently between components, HydroCouple lets users
prescribe the GPGPU device as well as the maximum number of CUDA
blocks or OpenCL work groups each component can use on each MPI
process. This gives users flexibility to partition jobs to GPGPU devices in
a way that is tailored to the particular hardware layout on an HPC
system. This partitioning of computing resources can be accomplished
using job scheduling software like the Slurm Workload Manager that is
used on many high-performance computing centers’ systems.

3.5. HydroCouple composer and software development kit

In order to facilitate the development of components for
HydroCouple, we developed a SDK that implements many of the core
interfaces needed to develop a component as a software class that has
initialization arguments, exchangeable inputs, exchangeable outputs.
The SDK also implements the functions required to initialize a com-
ponent by reading and validating initialization arguments and functions
that describe the variables exchanged by component inputs and out-
puts. This enables model developers to focus on the computational
portions of their code, which are placed within the correct locations
inside the HydroCouple SDK classes. The core interfaces that have been
implemented as classes include those for describing and identifying
components and their inputs and outputs, the spatiotemporal domains
of these inputs and outputs, the variable types consumed and supplied
by these input and outputs, and the units of these variables. In HPC
environments, the SDK automatically groups processors allocated to a
component into a single private MPI communicator context so that
communication between the component and its workers do not conflict
with other components.

The SDK uses the Geospatial Data Abstraction Library (GDAL)
(Warmerdam, 2008) extensively to provide support for reading various
geospatial vector data formats (e.g., shapefiles, GeoJSON, GML, CAD,
KML, etc.) into objects defined by OGC's SFA that can then be accessed

Fig. 5. Example HydroCouple configuration on high performance heterogeneous computing infrastructure where each component is assigned a number of GPU
(blue) and CPU Core (red) resources.
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programmatically by model components. The SDK also enables writing
these objects to files on disk (e.g., for exporting model output). The
HydroCouple SDK also uses the GDAL library to provide similar support
for various raster dataset formats including the GeoTIFF, GRIB, SQLite,
JPEG, and HDF5 formats. Work is also underway to implement
the UGRID version 1.0 (http://ugrid-conventions.github.io/ugrid-
conventions) convention, which is a proposal for storing unstructured
mesh data in standard format using the Unidata Network Common Data
Form (NetCDF) file using the Climate and Forecast (CF) metadata
convention (Eaton et al., 2011) as a starting point.

In addition to the SDK, we developed the HydroCouple Composer
graphical user interface (GUI) to provide model developers with a

visual environment for composing coupled model configurations
(Fig. 6). The HydroCouple Composer software displays all available
model component libraries and allows users to drag and drop them onto
to a graphical palette. Coupled model compositions are specified
through a configuration file that lists the model components and their
connection nodes as well as the workflow and adaptor components that
are utilized. Each model component can be initialized using an in-
itialization file that contains parameters specific to the component.
Alternatively, components can be initialized using instances of a class
based on the IArgument interface that are created in memory. After a
component is initialized, compatible outputs and inputs from other
components can be coupled interactively. Compatibility for coupling is

Fig. 6. HydroCouple Composer GUI: (a) coupled model composition canvas; (b) geospatial data visualization canvas.
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determined by a function called canConsume on an instance of the input
class that is to be coupled that is called when a model user tries to
create a link between and input and an output. This function returns
true or false indicating whether the coupling is valid based on business
rules defined by the component developers. Selecting an existing con-
nection between an input and output displays the available contextually
relevant adaptors that can be inserted to mediate data exchange. For
example, when a connection between time series input and output is
selected, only time series related adaptors will be available for selection
in the HydroCouple Composer GUI.

HydroCouple Composer is responsible for partitioning computing
resources to model components based on a user's specifications in the
configuration file and launches simulations. Example configuration files
can be accessed in the HydroCouple GitHub repository (see Software
Availability section). The HydroCouple Composer also monitors the
progress of simulations and displays them to a user, logs messages from
components, and provides rudimentary visualization capabilities
(Fig. 6) for the standardized spatiotemporal inputs and outputs of
model simulations. Finally, when the executable of the HydroCouple
composer is launched using predefined command line arguments, it
doubles as a command line interface for launching simulations on HPC
resources. In Fig. 6, model components are shown as squares, connec-
tions between components are shown as directed arrows, inputs are
shown as blue circles, and outputs are depicted as red circles.

4. Case study: coupling a 1D and a 2D hydraulic model using
HydroCouple

In order to illustrate how HydroCouple's new interfaces facilitate the
development of components and more efficient simulations, we applied
them to couple a 1D hydraulic model component that simulates flow
through pipes, culverts, inlets, outfalls, and other urban stormwater in-
frastructure with a 2D hydraulic model component that simulates flow in
rivers, canals, and overland areas. The 1D hydraulic model component
was developed using the EPA's SWMM model, while the 2D model

component is a new formulation we developed called the Finite Volume
Hydrologic Model (FVHM). These two models were specifically chosen
to illustrate: 1) how the HydroCouple interface definitions and SDK can
be used to convert legacy models into components; 2) how to develop
new components from scratch; 3) how to handle the potential coupling
configurations across models having differing dimensionality (i.e., 1D
versus 2D); and 4) how coupled model components can be executed in
parallel on HPC environments for more efficient simulations.

This particular type of 1D-2D hydraulic model coupling is widely
implemented in the water resources modeling field because the trade-
offs between 1D and 2D hydraulic models complement each other. 1D
models are appropriate for simulating flows accurately and efficiently
in channels, pipes, and other conduits with well-defined shapes.
Although 1D hydraulic models are generally more computationally ef-
ficient, they are unable to accurately simulate lateral movement of
flood waves into the floodplain, and they incorporate topography and
bathymetry using cross-section profiles at various sections along the
length of a river/pipe whose placements are relatively subjective
(Samuels, 1990; Hunter et al., 2007). On the other hand, 2D hydraulic
models are more suitable for simulating landscape processes and
overland flows, albeit at a generally higher computational expense.
Many urban hydrologic modeling scenarios (e.g., stormwater runoff,
flooding, design of green infrastructure, and assessment of stormwater
best management practices) require accurate representations of both
the drainage network and the urban landscape, making a 1D-2D hy-
draulic model coupling ideal for simulating these scenarios. The 1D-2D
coupled model discussed in this manuscript was developed for a sub-
catchment in the City of Logan, Utah. To illustrate the benefits of using
HPC resources, we evaluated the simulation time speed up as more
computational cores were allocated to the coupled model.

4.1. Study area

The City of Logan's stormwater conveyance system has its founda-
tions in agricultural canals developed at the founding of the City to

Fig. 7. 1D-2D coupled model boundaries.
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divert irrigation water from the Logan River for farming. As the Logan
River flows westwards through Cache Valley, it is diverted at various
locations along its length into these unlined canals that flow northward.
These same canals serve as the primary conduits for stormwater con-
veyance, with many of the City's stormwater outfalls piped directly into
them. The boundary for the 5.81 km2 area we used for our modeling
study encompasses the area that drains into one such canal called the
Northwest Field canal (Fig. 7).

4.2. SWMM model development

The SWMM code solves the 1D dynamic, diffusive, or kinematic
wave equations for flows and water surface elevations over a network
of conduits (i.e., pipes, canals, and rivers) and sub-catchments con-
nected together at their endpoints by nodes (i.e., junctions, outfalls,
storage units, and flow dividers) (Rossman, 2006).

We developed the SWMM HydroCouple Component from the EPA
SWMM source code by modifying the code to expose those boundary
data that are needed for coupling including the inflows, outflows, and
water surface elevations at the inlets and outlets of the stormwater
conveyance system. In developing the SWMM HydroCouple compo-
nent, we employed the HydroCouple network interface definition to
represent the network of SWMM nodes connected together by conduits.
The benefit of this is that the inflows and outflows as well as water
surface elevation data that the SWMM component supplies to compo-
nents coupled to it provide the topological information that is needed to
traverse the entire stormwater conveyance system.

Developing this component required knowledge of C/C++ so that
we could modify the SWMM code, which was written in C and then
recompile it into a compliant component. This process would be similar
for other models, but, in general, the level of effort required to develop
a component is subjective. It depends on the programming skill of the
developer, the degree of understanding about the model being
wrapped, and the complexity of the model component being developed.

The SWMM model code has been parallelized in many sections to
improve performance using OpenMP as described by Burger et al.
(2014). The parallelism introduced in SWMM is a shared memory type
of parallelism (i.e., it uses a single MPI process but scales with number
of cores allocated to the MPI process). This feature served as the basis
for our investigation of the performance of the coupled model as more
CPU resources were added.

We developed the SWMM model instance using detailed survey data
of sizes for stormwater pipes, inlets, and outfalls provided in shapefile
format by Logan City. The conduit diameters ranged from 0.30 to
1.38m, with lengths ranging from 0.5 to 390m. This dataset resulted in
a SWMM model with 1769 conduits, 2093 junction inlets, and 138
outfalls. We executed the SWMM model using SWMM's adaptive time-
step option with a minimum timestep of 0.01 s and a maximum time
step of 5 s. A maximum number of 20 iterations was selected for each
time-step.

4.3. FVHM model development

FVHM was developed to solve the shallow water equations over an
unstructured triangular irregular network (TIN) mesh using an implicit
finite volume method. Details for the formulations and hydrologic
process representations used are provided in Appendix A. In the context
of this case study, FVHM was developed to simply route flows in riv-
erine and overland areas without many of the hydrologic processes that
are typically represented in hydrologic models (e.g., infiltration, eva-
potranspiration, etc.). However, FVHM fully exposes the geospatial data
structures needed to demonstrate how different configurations can be
used to couple 1D and 2D models and run them on HPC. We purpose-
fully developed FVHM for this case study to focus on the model cou-
pling data structures and configurations without the complexity in-
troduced by representing many hydrologic processes in the 2D model

component. Because the hydrologic processes represented in the 2D
model are independent of the data structures and coupling configura-
tion, the techniques we demonstrate here are generalizable to 2D
models that include more detailed hydrologic process representations.
Given that our 2D model does not represent processes like infiltration,
the model configuration presented here represents a worst-case sce-
nario simulation and is a useful exercise for evaluating the performance
of the stormwater infrastructure under a high intensity rainfall event.

In developing the FVHM model, we directly utilized the data
structures provided as part of the HydroCouple interface definitions.
For example, the computational mesh used in FVHM adopts a TIN in-
terface definition with its associated quad-edge data structure. For
creating boundary conditions, the geometry interfaces prescribed by
the OGC SFA specification were adopted. For instance, polygons were
used to demarcate the area where precipitation inputs apply. Polylines
were used to define the mesh edge boundaries where inflows and
outflow apply. The implementations of these interfaces and the file
input and output implementations provided by the HydroCouple SDK
simplified the model development process by allowing us to focus on
the computational parts of the code we were actually interested in.

We were also able to use the capabilities of HydroCouple to enable
parallelism in executing the model. FVHM uses both fine and coarse-
grained parallelism in its code. Fine grained parallelism using OpenMP
is employed in several areas in looping over each of the computational
cells to calculate spatial gradients of water surface elevations and ve-
locities, friction, and to apply boundary conditions. Since FVHM uses an
implicit time marching scheme, systems of linear equations need to be
solved at each time step to compute velocities and water surface ele-
vations for each cell. FVHM uses the hypre software library (Falgout
and Yang, 2002), which solves large, sparse linear systems of equations
on massively parallel computers. FVHM partitions the system of equa-
tions it solves at every time step into smaller chunks to be solved in
different MPI processes using the hypre library.

For the FVHM model instance, we developed its computational
mesh using sub-meter, high resolution light detection and ranging
(LIDAR) data collected in 2005. This dataset was supplemented with
the 10-m elevation data from the United States Geological Survey's
(USGS) 3D Elevation Program. The mesh contained 44861 cells with
sizes ranging from 0.1 to 18900m2. This range of cell areas was the
result of refining the model mesh along the canal where we were in-
terested in evaluating in more detail and coarsening the mesh in the
upstream overland areas where we were only interested in estimating
runoff. For the boundary conditions, a 30-min resolution, time varying
precipitation time series for the nearest rain gauge was developed using
the 25-year, 24-h design storm totaling 61.2 mm and the Natural
Resources Conservation Service (NRCS) Type-II (Cronshey, 1986)
rainfall distribution curve. This storm is the prescribed storm for de-
signing urban stormwater infrastructure in Logan, thus, is a useful test
for the coupled model. For diversion flow from the Logan River into the
Northwest Field canal, we applied the maximum legally allowable ir-
rigation diversion of 1.351m3/s for the entire duration of the storm to
evaluate worst case inundation conditions (e.g., an intense storm during
a time where the canal was full of irrigation water). We executed the
FVHM model using the adaptive time step option with a minimum
timestep of 0.01 s and a maximum time step of 5 s. A maximum number
of iterations of 200 was specified for the for each time step.

4.4. 1D-2D model coupling configurations

In coupling SWMM and FVHM, we adopted different coupling
configurations depending on the relationship between the water levels
in the coupling cell of the FVHM model, water level in the coupling
inlet or outfall/outlet of the SWMM model, ground surface elevation at
the coupling interface, and the invert elevations of coupling inlets or
outfalls/outlets in the SWMMmodel (Fig. 8). For all cases, we adopted a
bi-directional exchange of boundary condition data at the coupling
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node interfaces between the two models. This bi-directional data ex-
change proceeds by passing the water surface elevation from the FVHM
model to the SWMM model and then passing outflows from the SWMM
model to the FVHM model.

For the case where the water surface elevation Zm of an inlet in the
1D model is less than the bottom elevation of its overlying cell in the 2D
model Zs and the water depth in the 2D cell is greater than wA /in
(Fig. 10a), the free weir equation (Equation (1)) was used to estimate
discharge into the inlet:

= −Q c w g Z Z2 ( )sw w
3
2 (1)

where Q is the discharge into the inlet, cw is the weir discharge coef-
ficient, w is the weir crest width, g is acceleration due to gravity, Zw is
the water surface elevation in the overlying 2D cell, and Ain is area of
the inlet opening. If the water depth in the 2D cell is greater than wA /in
(Fig. 10b), the orifice equation (Equation (2)) is used:

= −Q c A g Z Z2 ( )sO in w
1
2 (2)

where cO is the orifice discharge coefficient. The discharges are com-
puted in the 1D model and added as sinks in the continuity equation of
the 2D cell and as sources to the inlet of the 1D model.

For the case where an inlet node of the 1D model is completely
submerged by the water in the 2D model (Fig. 10c), the water level in
the corresponding 2D cell is set as the water level in the receiving inlet
of the SWMM model. The resulting surcharge or inflow values for the
inlet are then applied as a sink/source term in the continuity equation
of the 2D cell.

4.5. Performance of various HPC configurations

We executed the coupled model on up to 10 HPC nodes/MPI pro-
cesses to evaluate the benefits of devoting more computing resources.
Fig. 9 shows maximum inundation depths for each cell computed for
the entire duration of the simulation.

The results of the experiment comparing the relative speed up as the
number of MPI processes are increased to the optimal, linear speed up
desired are shown in Fig. 10. Despite the rudimentary parallelism in-
troduced into the FVHM model, the results show up to a 5 times
speedup with 10 HPC nodes. Different models and different coupling
configurations may achieve different levels of speedup, but this de-
monstration illustrates the capabilities of HydroCouple to enable si-
mulations on HPC.

5. Discussion

In our search of the literature related to OpenMI, we found nu-
merous papers examining the mechanics for developing OpenMI com-
ponents and applying them to hypothetical or real-world model cou-
pling scenarios, assessing the performance models that are coupled
using OpenMI, and the interoperability of OpenMI with other modeling
frameworks, hydrologic information systems, and web-services tech-
nologies. For example, Elag et al. (2011) assessed the mass-balance
errors of a hypothetical coupling scenario involving the coupling of
simplified solute transport models including a surface and a sediment
media model that were temporally misaligned. Bulatewicz et al. (2010)
successfully coupled agricultural, groundwater, and economic models
to evaluate the impacts of alternative water use policies for a major
aquifer in the US. Goodall et al. (2011) and Castronova et al. (2013)
demonstrated the service-oriented modeling paradigm, where remote
models were coupled using web-services technologies like the OGC's
Web Processing Service (WPS) protocol. We found it encouraging that
OpenMI has been used for a variety of modeling use cases, which fur-
ther supports our decision to do this work in the context of OpenMI.

However, we found relatively few studies that specifically focused
on the architectural design of OpenMI and its advantages and draw-
backs. Lloyd et al. (2011) assessed the degree of “framework inva-
siveness” of OpenMI and other component-based modeling frameworks
using a single modeling use case across multiple frameworks. They
defined “framework invasiveness” as the degree of dependency be-
tween a modeling framework implementation and its associated
models. OpenMI showed a moderate degree of “framework invasive-
ness” when compared to OMS, which was lower, and ESMF, which was
higher. However, there was some subjectivity in the implementation of
the model components that were coupled across the various frame-
works, and their study used the older OpenMI 1.4 Version.

Knapen et al. (2013) examined the suitability of using OpenMI as a
model integration platform across disciplines through a workshop that
was organized to solicit feedback from both software developers and
model application specialists. In addition to identifying all the benefits
of using OpenMI we enumerated above, they identified the following as
areas where improvements could be made: 1) provision of data analysis
and visualization tools, 2) support for multi-threaded executions, 3)
programming language bridges, 4) support for standard spatiotemporal
data structures, 5) semantic integration, and 6) support for models
outside of the hydrologic modeling realm. It must be noted that this
assessment was also conducted using the older OpenMI Version 1.4. The
newer OpenMI Version 2.0 addresses some of these challenges in-
cluding the provision of interfaces that make it easier to integrate se-
mantics and support for models outside of the hydrological modeling

Fig. 8. 1D-2D Model interaction scenarios: (a) 1D Inlet water surface elevation (Zm) less than 2D cell bottom elevation (Zs) and 2D cell water depth less than Ain/w;
(b) 1D Inlet water surface elevation (Zm) less than 2D cell bottom elevation (Zs) and 2D cell water depth greater than Ain/w; (c) 1D Inlet water surface elevation (Zm)
greater than 2D cell bottom elevation (Zs); (d) Water surface elevation of 2D coupling cell (Zw) less than outfall invert elevation (Zi) of 1D model; (e) Water surface
elevation of 2D cell greater than outfall invert elevation of 1D cell (Zi).
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realm. The work presented in this paper addresses some of the re-
maining challenges highlighted in the workshop discussed by Knapen
et al. (2013) as well as those we encountered in our use of OpenMI.

HydroCouple's interface definitions and associated software tools
build on the strengths of the OpenMI 2.0 standard by advancing inter-
face definitions to better facilitate water resources modeling applications
and data structures that have heretofore been missing in existing com-
ponent-based frameworks. These interfaces include new topologically
aware geospatial data structures based on widely accepted standards like

the OGC SFA specification, customizable data exchange workflows, and
support for parallelized simulations on HPC infrastructure.

While the HydroCouple interface definitions are programming lan-
guage agnostic, we implemented them using C++ to ensure that the
code can be compiled on most operating systems. Another benefit of C+
+ is that, unlike C#, it has no dependency on a framework like.NET,
which can play a role when installing model compositions on compu-
tational resources or on different operating systems. Compositions can be
compiled in such a way that installation of the software involves copying

Fig. 9. Map of maximum inundation depths for the simulation period.

Fig. 10. Relative speed up in simulation time for increases in the number MPI processes.
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the executable, dynamic link libraries, and additional files involved in a
modeling application, which does not require administrative privileges.
Additionally, the C++ HydroCouple implementation provides a way to
avoid the data marshalling costs that often arise when legacy models are
wrapped for component-based modeling frameworks using interpreted
languages. C++ provides direct memory access to data for models de-
veloped using languages like C and Fortran, which have traditionally
been used for model development because of their efficiency. This helps
address the design considerations 1, 2, and 3 identified in Table 1 for
component-based modeling frameworks. Existing OpenMI components
developed by wrapping legacy models can be ported to HydroCouple
components with minimal effort since HydroCouple adopts most of the
OpenMI data structures and concepts. Additionally, HydroCouple pro-
vides explicit implementations of standard geospatial dataset formats
and associated topological information that are missing from existing
component-based modeling frameworks. These data structures are
widely employed for delineating model domains and prescribing
boundary conditions in many water resources modeling applications
(i.e., design consideration 5 in Table 1).

In addition to better facilitating “embarrassingly parallel” experi-
mental simulations within component-based modeling frameworks
through the addition of functions that create independent copies of
model instances, HydroCouple allows users to partition available HPC
computing resources in a way that is transparent to model components
(i.e., design consideration 4 in Table 1). The 1D-2D coupled hydraulic
modeling example described illustrates the performance benefits to be
gained, especially in the hydrologic modeling community by moving
into the HPC arena. This application was developed to test the model
code and also serve as an example of how to develop new model com-
ponents for HydroCouple. The model is shared in the GitHub repository
(https://github.com/hydrocouple/fvhmcomponent/examples).

The SDK and HydroCouple Composer model coupling GUI environ-
ment facilitate the development of components that use HydroCouple
(i.e., design consideration 7 in Table 1). The SDK implements the core
HydroCouple interfaces as well as spatiotemporal datasets and their file
input and output operations so that the costs of converting existing
models into components and in developing new models are reduced. The
HydroCouple Composer GUI allows users to interactively select and
couple models, launch simulations, monitor simulations, and visualize
results of simulations on a single desktop or on HPC systems.

6. Conclusions

We advanced these new HydroCouple interface definitions in hopes
that they can be considered for inclusion in future versions of the
OpenMI standard. While we developed HydroCouple based on the les-
sons we learned using OpenMI so that it addresses the drawbacks we
encountered, we understand that it may not completely support the
wide array of simulation types undertaken by water resources modelers
and the wider earth systems modeling community in general. While we
have used the name “HydroCouple” to describe the software presented
in this paper and have described it in terms of water resources modeling
applications, the advancements introduced in this manuscript are also
applicable to other earth systems modeling fields.

We envision the continued improvement of the interfaces prescribed

through HydroCouple as a community effort and have, therefore,
shared the interface definitions, HydroCouple Composer GUI, as well as
all the components we have developed so far in a transparent manner in
a publicly accessible source code repository (https://github.com/
hydrocouple). Through this repository, users can contribute new
HydroCouple components and improvements to the HydroCouple in-
terfaces definitions, its associated software, and available components
back to the repository for the benefit of the larger component-based
modeling community. We have also communicated the advancements
we have implemented to the OpenMI Association so that they can be
considered for inclusion in future versions of the OpenMI standard.

Unlike their atmospheric modeling counterparts who have had a
long history of executing their models on HPC infrastructure, most
water resources modeling practitioners have traditionally executed
their models on single desktop machines. There is, however, an in-
creasing recognition that HPC is needed to tackle challenging problems
such as simulating the interaction of land surface hydrologic processes
with the atmosphere at the global scale, evaluation of different model
structures, and uncertainty assessment. HydroCouple supports this di-
rection by prescribing interface definitions that allow users to partition
CPU and GPGPU computing resources among components for more
efficient simulations.

The proliferation of many component-based modeling frameworks
has made it difficult to fully achieve their promises of reusability and
ability to conduct more holistic modeling evaluations. While
HydroCouple does not fully address this challenge, it is not a completely
new effort developed from scratch as so many other proposed compo-
nent-based modeling frameworks. As much as was possible, it builds on
the core concepts and interface definitions used in the widely cited
OpenMI standard and, therefore, makes translating the many existing
OpenMI components into HydroCouple components and vice-versa re-
latively inexpensive. For example, the SWMM component described in
this manuscript was adapted from one originally developed for our
previous OpenMI application described in Buahin and Horsburgh
(2015). It is clear that in order to avoid the challenge of over pro-
liferation of component-based modeling frameworks, framework in-
teroperability needs to be a priority among component-based modeling
practitioners. Many component-based modeling frameworks share
common characteristics (e.g., the specification of IRF interfaces). These
common characteristics can be used as leverage to create components
that are able to use different frameworks. HydroCouple supports this
goal by providing framework and programming language independent
interface definitions. Furthermore, work is ongoing to create a wrapper
component that automatically wraps components that implement the
CSDMS BMI interface definitions so that they can be coupled to other
models within the HydroCouple framework.
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Appendix A. FVHM HydroCouple Component Model Formulation

The FVHM HydroCouple model solves the shallow water equations (SWE) (Equations (A.1) and (A.2)) using the finite volume approximation over
a triangular irregular network mesh:

∂
∂

+ ∇⋅
→

=
ζ
t

hV q( ) (A.1)
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where ζ is the water surface elevation; t is time; h is the water depth;
→
V is the velocity vector; q is the sum of external fluxes; g is the acceleration

due to gravity; τb is the bed shear stress (friction) vector; ρ is water density; Γ is the sum of the kinematic ν( ) and eddy viscosities ν( )t ; and F is the
vector sum of external forces. The bed shear stress is calculated using the Manning's roughness equation shown in Equation (3):
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where n is the Manning's roughness coefficient and u and v are the velocities in the x and y direction respectively. The FVHM component was
developed to especially handle hydrologic modeling applications that often involve prolonged periods of dry spells with non-existent or small water
depths, which is necessary to simulate areas with climate comparable Utah and the intermountain western U.S.

The finite volume approximation estimates the average value of a conserved quantity in an arbitrarily shaped control volume using an integral
version of partial differential shallow water equations. The theorem underlying the finite volume method is Gauss's divergence theorem (Equation
(4)), which may be interpreted physically as the integral of the divergence of a vector (i.e., a) in a control volume (i.e., CV) is equal to the sum of the
components of the vector normal (i.e., n) to surfaces of area of the control volume (i.e., A) (Versteeg and Malalasekera, 2007).

∫ ∫∇⋅ = ⋅V Aa n a( ) d d
ACV (A.4)

To illustrate how the Gauss theorem is used in the derivation of the finite volume numerical approximations for the shallow water equations in
the FVHM Component, we apply it to the transport of velocity

→
V in the control volume P surrounded by neighboring control volumes N1, N2, and N3

as depicted in Fig. A1. In Fig. A1, a, b, and c represent the nodes of the triangle for the control volume P; ∇η, eη, en, C and represent the length, unit
vector, unit normal vector, and centroid of the common edge between control volume P and its neighboring control volume N1, respectively; ∇ξ and
eξ represent the length and unit vector for the distance between the centroids of the control volumes P and N1 respectively; and rPC and rCN represent
the vector distances between the centroids of the control volumes P and N1 with the centroid C of their common edge respectively.

Fig. A.1. Control volume P surrounded by neighboring control volumes N1, N2, and N3.
In FVHM, the collocated grid arrangement used by several investigators including Peric (1985) and Lai (2009) is adopted. This grid arrangement

involves calculating the control volume velocities, depths, and water surface elevations at the centroid of each control volume. Applying the Gauss
theorem to the momentum conservation equations yields Equation (5).
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where A is the area of the control volume. The numerical approximations for the terms in Equation (5) are as follows:
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∫ =Fh A FhAd
A (A.9)

where the superscript n+1 and n represents the current timestep and the previous timestep respectively, and Δt is the current timestep.
The water surface elevation spatial gradients ∂

∂
ζ
x
, ∂

∂
ζ
y
, and all spatial gradients in FHVM are estimated using the least-squares gradient re-

construction approach from cell centered values of neighboring cells in the previous time step/previous iteration. Referring to Fig. A1, the water
surface elevation of a neighboring cell N (i.e., ζN) surrounding cell P can be estimated from the water surface gradient at P using Equation (10):
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where ΔxPN and ΔyPN represent the distances in the x and y directions from the centroid of the control volume P to the centroid of the neighboring
control volume N. Assembling Equation (10) for all neighboring cells into a linear system of equations yields Equation (11), which is solved using the
QR decomposition method in FVHM.
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The derivation of the numerical approximations of the more complex diffusion and advection terms in the momentum equation are provided in
the following sections.

A.1. Discretization of the Diffusion Term

The diffusion term in the momentum equation is discretized as follows:
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where Γc and hc are the viscosity and the water depth at the centroid of the common edge between the control volume P and it neighboring cell.
These values are estimated using gradients calculated from the gradients derived from the least-squares gradients reconstruction method described
earlier.

It can be shown from trigonometry as detailed in Versteeg and Malalasekera (2007) that the direct gradient and cross diffusion terms of Equation
(A.12) for each neighboring cell can be represented by Equation (A.13):
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where
→
VP and

→
VN are the cell velocities for P and N respectively, and

→
Vb and

→
Va are cell P's interpolated nodal velocities for the shared edge between

cells P and N.
Two approaches are available in FVHM for computing the cell turbulent eddy viscosity. The first is the parabolic eddy viscosity model (Equation

(A.14)):

=ν c U ht t * (A.14)

where ct is theoretically equal to κ
6
, with κ being the von Kármán constant (Wu et al., 2014). The second eddy viscosity model is the Smagor-

insky–Lilly model (Smagorinsky, 1963) shown in Equation (A.15):
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where cs is the Smagorinsky constant, with values that are usually between 0.1 and 0.2.

A.2. Discretization of the Advection Term

Following Lai (2009), the advection term in the momentum equation is discretized as follows:
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where the superscript n+1,# refers to the previous iteration for the current timestep; Vc is the normal velocity to the current edge at its centroid,
where a positive value indicates an outward flow from the control volume and a negative value indicates inflow into the control volume; and

→
Vc is the

velocity vector at the centroid of the current edge that is to be calculated at the current timestep.
→
Vc is estimated as a function of the velocity of the current cell P and its neighboring upstream and downstream cell velocities using Equation

(A.17):

→
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2
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where
→
VD is the velocity of the control volume downstream of the current cell P, and ψ r( ) is a flux limiting function of r. The variable r is the upwind
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ratio of consecutive gradients of velocity defined using Equation (A.18):
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where
→
VU is the velocity of the control volume upstream of the current cell P. Equation (A.17) assumes that the centroid of the edge C is equidistant

from the centroids of the bounding control volumes, hence the multiplication factor 0.5. However, for unstructured grids this may not be true.
Therefore, an inverse distance interpolation weighting factor L is applied in Equation (A.19) instead of the 0.5 as recommended by (Denner and van
Wachem, 2015):
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Assuming the direction of flow is from P to N1, it is easy to locate the downstream control volume with velocity
→
VD in Figure A1 that is to be used

in calculating r . However, finding the upstream control volume
→
VU is not straightforward. To overcome this challenge, Darwish and Moukalled

(2003) derived Equation (A.20) for calculating r :
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where rPN is the vector distance between the centroids of the control volumes P and N.
Using ψ r( ) =0 leads to the edge velocity being the same as the cell velocity representing the upwind differencing scheme. While the upwind

differencing scheme is stable and results in smooth solutions, it is only first-order accurate. ψ r( ) =1 represents the central differencing scheme,
which, while second-order accurate, can lead to spurious oscillations with problems that exhibit sharp discontinuities in velocities as is common with
higher-order schemes. To obtain stable and non-oscillatory solutions for higher-order schemes, the function ψ r( ) must be monotonicity-preserving.
Monotonicity-preserving schemes ensure that solutions do not create local extrema. Additionally, the value of a local minimum must be non-
decreasing and the value of a local maximum must be non-increasing (Versteeg and Malalasekera, 2007). Monotonicity-preserving schemes have a
property that the total variation (TV) (i.e., Equation (A.21)) of the discrete solutions should be total variation diminishing (TVD). TVD schemes are
characterized with TV values that decrease with time as shown in Equation (A.22).
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≤+TV u TV u( ) ( )n n1 (A.22)

Sweby (1984) provides the necessary and sufficient conditions for ψ r( ) to be TVD in terms of a relationship between r and ψ r( ). Several ψ r( )
functions that meet these conditions are provided in FVHM, including those shown in Table A.1.

Table A.1
TVD flux limiter functions.

Name Limiter function rψ ( ) Source

Van Leer +
+

r r
r1

van Leer (1974)

Van Albada +
+

r r
r1

2
2

van Albada et al. (1982)

UMIST ⎡⎣ ⎤⎦
+ +( )min rmax 0, 2 , , , 2r r1 3
4

3
4

Lien and Leschziner (1994)

QUICK ⎡⎣ ⎤⎦
+( )min rmax 0, 2 , , 2r3
4

Leonard (1988)

Min-Mod ⎧
⎨⎩

>
≤

r if r
if r

min( , 1)
0

0
0

Roe (1985)

A.3. Pressure Velocity Coupling

The discretization for the momentum equations provided can be organized into a linearized system of equations for all control volumes based on
the control volume center values and can be solved implicitly for new velocities using Equation (A.23):
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(A.23)

where aP is the coefficient of the velocity of the current cell P, aN are the coefficients of the neighboring cells, and
→
S is the sum of the external forces

and constants acting on the control volume. We seek to solve Equation (A.23) for control volume velocities as well the water surface elevations. The
momentum equation is non-linear because it involves the multiplication of two velocity terms. Additionally, for incompressible flows, cell velocities
and pressures are coupled in a non-linear fashion through the momentum and continuity equations. In FVHM, the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE; Patankar and Spalding, 1972) or alternatively SIMPLE-Consistent (SIMPLEC; Doormaal and Raithby, 1984) iterative
solution procedures are adopted to deal with these nonlinearities.

First, it is important to note that in the collocated grid arrangement, where velocities and water surface elevation values are estimated for the
centroid of each control volume, a highly non-uniform water surface elevation field can act like a uniform field when the gradients of the water
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surface elevation fields are calculated numerically. This may lead to the well-known “checker-board” pressure field effect, which, in turn, leads to
non-physical results (Versteeg and Malalasekera, 2007). To overcome this problem, Rhie and Chow (1983) proposed the momentum interpolation
equation shown in Equation (A.24) to calculate the edge normal velocity Vc:
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The SIMPLE and SIMPLEC iterative solution procedure begins by using the initial or previous iteration water surface elevation values ∗ζ to solve
the momentum equation (i.e., Equation (A.23)), for an intermediate velocity field

→∗
V as shown in Equation (A.25).
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Since the initial water surface elevation used is a guess from the previous iteration or time step, the computed velocities are likely not correct. A
water surface elevation ′ζ that corrects the water surface elevation ∗ζ is, therefore, defined as shown in Equation (A.26). Similarly, a new velocity

→′V
that corrects the calculated intermediate velocity

→∗
V is also defined.
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Subtracting Equation (A.25) from 23 yields:
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The velocity correction is then calculated from Equation (A.28) as:
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Ignoring the minor terms in Equation (A.29) and inserting it into Equation (A.27) yields:
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The velocities estimated in Equation (A.25) do not satisfy the continuity equation. Therefore, the water surface elevation correction equation
(i.e., Equation (A.26)) and the correction velocity equation (i.e., Equation (A.30)) are used in the continuity equation to derive the water surface
elevation correction values ′ζ . These computations form the basis for the SIMPLE method. To illustrate it, we derive the finite volume approximation
of the continuity equation as:
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where q represents external inflows. Inserting the water surface elevation correction equation and the Rhie-Chow interpolated control volume edge
velocities from the velocity correction equation into the continuity equation yields:
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In the SIMPLEC method, the minor terms ignored in Equation (A.30) are included in the continuity equation to estimate that water surface
elevation correction values.

To recap, for each time step, the solution process begins by using the initial or previous iteration values of water surface elevations and velocities
to calculate intermediate velocity values

→∗
V for each control volume. The water surface correction equation (Equation (A.32)) is then solved to

obtain correction values ′ζ for each control volume. The water surface values and velocities are then corrected using Equations 26 and 27, re-
spectively. If convergence is not achieved, the whole process is repeated.

All the systems of equations generated by FVHM are solved using the algebraic, multigrid, preconditioned, generalized, minimal residual method
(GMRES) from the hypre software library (Falgout and Yang, 2002), which solves large, sparse linear systems of equations on massively parallel
computers. Even though the Courant-Friedrichs-Lewy (CFL) condition for stability does not apply for the implicit time-marching approach adopted in
FVHM, the use of an excessively large time step can lead to inaccurate estimates (Durran, 2013). An adaptive time step approach was, therefore,
adopted using a user specified maximum Courant number as a controlling variable. The time step at the beginning of each iteration is estimated by
dividing the maximum user specified Courant number (Co) by the maximum Courant number for the control volumes at the current time step as
shown in Equation (A.33).

=
∑( )

t CΔ o
Outgoing fluxes

Volume max (A.33)
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A.4. Wetting and Drying

Tracking of the wetting front at the boundaries between wet and dry cells in hydraulic models is important because of the numerical instabilities
that would arise from the unrealistically high velocities that would be calculated by dividing volumetric fluxes by the small water depths in dry cells
(Kim et al., 2012). Many approaches have been proposed for the proper treatment of wetting and drying cells in hydraulic models, including the thin
film, element removal, depth extrapolation, and negative depth algorithms as discussed by (Medeiros and Hagen, 2013). A common feature for the
treatment of wetting and drying cells in many hydraulic models involves first classifying cells as wet, partially wetted, or dry depending on the
number of cell nodes that are submerged. A wet cell has a water surface elevation that submerges all the nodes of the cell by a certain small threshold
value (e.g., 1e-7 m). A partially wetted cell has a water surface elevation that submerges at least one node of a cell by a certain small threshold value.
A dry cell has a water surface elevation that does not submerge any of the nodes of a cell. For each time step, the momentum equations are only
solved for wet cells, and velocities for dry cells are set to zero. Velocities and water surface elevations for partially submerged cells are then
extrapolated from neighboring wet cells.

The application of this approach to hydrological simulations that solve the full dynamic wave model, however, introduces some challenges.
Hydrological simulations often involve long periods with small or no runoff generation. Additionally, hydrological models often involve large areas.
Coarse and often steeply sloped computational cells are often employed for computational efficiency. This leads to the frequent occurrence of
partially wetted cells that cause a no-flow phenomenon where water is unable to leave a cell because of ponding in the lowest corner of a cell where
the water surface elevation is below the two nearest cell edge midpoints (Begnudelli et al., 2006; Kim et al., 2012; Warnock et al., 2014). Also, the
typical assumption made in many hydraulic models that the water surface elevation at the centroid is equal to the water depth plus the elevation of
the centroid of the cell does not hold for partially wetted cells. To address this challenge, we adopted the volume-free surface relationship (VFR)
proposed by Begnudelli and Sanders (2006) in FVHM to deal with partially wetted cells. The VFR relationship makes a distinction between the free
water surface elevation at the centroid and the depth at the centroid by assuming sheet-flow for partially wetted cells. This is done by calculating the
flow depth as a ratio between the fluid volume in the cell and the area of the cell. The VFR approach provides equations to quickly transform water
surface elevation to depths and vice versa for triangular cells to support modeling.

In FVHM, the momentum equations are solved for wet cells and partially wetted cells with depths above a specified threshold while setting
velocities for dry cells to zero. The mass balance equations are then solved for all cells in the model domain.

A.5. FVHM Component Verification

The FVHM component was verified using test problems 1 and 6 from (MacDonald, 1996). Problem 1 involves subcritical flow through a channel
with a rectangular cross-section. Problem 6 involves flow through a channel with a rectangular cross-section where there is a transition from
subcritical flow to critical flow and then a hydraulic jump (i.e., transcritical) near the end of a channel. The attributes for the two test problems are
shown in Table A.2.

Table A.2
Properties for (MacDonald, 1996) test problems.

Problem Channel Width (m) Channel Length (m) Manning's Roughness (n) Inlet Flow (m3/s) Outlet Water Surface Elevation (m)

1 10 1000 0.03 20 0.800054
6 10 150 0.03 20 1.700225

Fig. A.2. Comparison of analytical results from MacDonald (1996) test problems with FVHM.
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