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Special relativity, 3 
 

A few kinematic consequences of the Lorentz transformations 
 

How big is gamma?  The Lorentz transformations depend on the factor γ =
1
1− β 2

, where 

β =V c .  For macroscopic objects, β <<1 , so γ ≈1 .  It’s only for situations where V  
approaches c that γ  begins to take on values significantly different from 1.  Here’s a brief table 
(you should check the γ  values) indicating how this works: 

β  γ  
0 1 

0.1 1.005 
0.5 1.155 

0.75 1.512 
0.9 2.294 

0.99 7.089 
0.999 22.366 

For small β , γ  can usefully be approximated using the binomial expansion: 

γ = 1− β 2( )−1/2 ≈ 1+ (−1 2)(−β 2 ) = 1+ 1
2 β

2  (see the Appendix).  For example, the error in the 

approximation is less than 3% even for β = 0.5, and still only about 15% for β = 0.75.  (You 
should check these also.)  The Lorentz transformations  

′T = γ (T − βx)
′x = γ (x − βT )
′y = y
′z = z

 

reduce to Newtonian relativity when β  is small because (a) γ ≈1 , (b) the term βx  becomes 

small (as long as x  is not very large), and (c) the term βT = V
c
ct =Vt  stays finite.   

 
Simultaneity:  Note that the Lorentz transformations can equally well be written in terms of 
space and time differences: 

Δ ′T = γ (ΔT − βΔx)
Δ ′x = γ (Δx − βΔT )
Δ ′y = Δy
Δ ′z = Δz

 

In Newtonian relativity, if one inertial observer records two events occurring at the same time, so 
will any other inertial observer.  In Newtonian physics, simultaneity is absolute.  But, that’s not 
true in Einsteinian special relativity.  If O records two events occurring at the same time, 

� 

ΔT = 0 , 
but at different places along the x -axis, 

� 

Δx ≠ 0 , Oʹ′ records them as occurring at different times, 

� 

Δ ′ T = −γβΔx .  Note that if Δx > 0  then according to Oʹ′ the event at the greater x  occurs earlier 
than the event at the lesser x .   
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Time dilation:  Consider the time Δ ′T  between two events that happen at the same spatial 
place according to Oʹ′ (Δ ′x = Δ ′y = Δ ′z = 0 ).  This time interval can be thought of as the ticking 
of a clock at rest in the frame of Oʹ′, for example, or, if you think of the clock as an organism, the 
“biological time” between the two events.  It is termed the proper time along a straight worldline 
connecting the two events in question.  Using the Lorentz transformations we see that 
Δ ′x = Δ ′y = Δ ′z = 0  implies Δx = βΔT  and therefore Δ ′T = γ (1− β 2 )ΔT = ΔT / γ .  Thus, 
according to O the time that passes between the two events is 

� 

γΔ ′ T , which, because γ >1 , is 
bigger than Δ ′T .  In other words, O interprets the clocks of Oʹ′ to be running slowly.   
 
Example:  Muons are unstable particles that are produced at an altitude of about 20 km above 
the Earth by collisions between atmospheric atoms and cosmic rays.  Unstable particles decay 
at random times but have an average half-life—the time necessary for their probability of 
survival to decrease by a factor of ½.  Every half-life that passes decreases the survival 
probability by an additional factor of ½.  The half-life of a muon to an observer “attached” to it 
(i.e., it’s “rest frame”) is about 2.2x10–6 s.  Even if the average muon were traveling at the speed 
of light it would take about 20x103 m/3x108 m/s = 6.7x10–5 s to reach Earth from where it was 
produced; that’s about 30.4 half-lives, corresponding to a probability (1/2)(1/2)…(1/2) = 2–30.4 = 
7x10–10 of reaching Earth.  In other words, exceedingly few such muons would reach the surface 
of the Earth.  On the other hand, muons are detected at sea level with fair frequency.  The 
explanation is time dilation.  Muons travel with a speed of about 0.99c relative to the Earth, so to 
an observer attached to Earth a muon’s clock runs about 7.1 (from the table) times too slow.  
That means that the dilated half-life (according to Earth) is about 15.6x10–6 s and that the 
probability of reaching Earth is about 2–4.3, or about 5%. 
 
 You might think that measurement of time dilation effects 
requires relative motions close to the speed of light, but time dilation 
for slowly moving clocks can be measured provided the clocks used 
are sufficiently accurate.  Recently, time dilation has been measured 
using new, trapped-ion clocks whose “ticks” are determined to about 
1 part in 1017.  The figure to the right shows experimental results 
comparing the clicking rate of a “stationary” clock with the reduced 
rate of one moving relative to it at speeds of a few m/s!  The solid 
curve is the prediction of special relativity.  (From: C.W. Chou, et al., 
Science 329, 1630-1633 (2010).) 
 
Length contraction:  Suppose in the frame of Oʹ′ there’s a stick lined up along the  ′x -axis 
that’s   L0  long (according to Oʹ′).  To correctly measure the length of the stick in O, the positions 
of the ends of the stick must be recorded at the same instant as the stick flies by.  These two 
events are simultaneous in O (but not in Oʹ′) with ΔT = 0  and Δx = L .  Using the Lorentz 
transformations we can write Δ ′x = γΔx = γ L .  Because the events happen at the ends of the 
stick according to Oʹ′, Δ ′x = L0 .  Thus, the length of the stick according to O is L = L0 γ .  
Again, γ >1 , so the stick’s length as measured by O is shorter than its rest length.  (Oʹ′ records 
that  Δ ′T = −βγ L , i.e., that the more positive end of the stick is marked before the less positive 
one.)  The length   L0  is called the proper length along a straight world line connecting the two 
events in question. 
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Example:  You might be puzzled by the previous example: a muon has to travel 20 km to get to 
Earth, but that would take over 30 half-lives, and so it appears to have very little chance of 
surviving the trip; on the other hand, according to the Earth observer, it only takes about 4 
lifetimes to get to Earth so chances of survival are not vanishingly small.  Which is it?  The 
answer lies in the fact that to the muon observer the distance Earth is from the muon when the 
muon is created is length contracted by a factor of 1 γ  = 1/7.1.  So instead of Earth having to 
travel 20 km to get to the muon, it only has to travel about 2.8 km (according to the muon 
observer).  Note that, to the muon observer Earth is traveling at a speed of 0.99c, so it only 
takes about 9.5x10–6 s to reach the muon (i.e., about 4.3 half-lives, thus finding the muon still 
alive with a probability of about 5% when it does so). 
 
Proper time is invariant:  Consider the combination of space and time intervals given by 
(Δτ )2 = (ΔT )2 − [(Δx)2 + (Δy)2 + (Δz)2 ] .  This looks kind of like the Pythagorean length of a vector 
in four dimensions, except for the minus sign in front of (Δx)2 + (Δy)2 + (Δz)2 .  Unlike 
Pythagorean length—which is always positive, (Δτ )2  can be positive (in which case it is said to 
be “time-like”), negative (“space-like”), or zero (“light-like”).  When (Δτ )2  equals zero, the two 
events can be connected by a light signal.  The Lorentz transformations were established to 
preserve the constancy of the speed of light for all observers.  Thus, two events with (Δτ )2 = 0  
in one inertial frame will have (Δτ )2 = 0  in any other.  It turns out that it doesn’t matter what 
(Δτ )2  is, its value is invariant under Lorentz transformation.  When (Δτ )2  > 0, its value is the 
square of the proper time along a straight world line connecting the two events because that is 
the value in a frame where the two events occur at the same place (i.e., where 
(Δx)2 + (Δy)2 + (Δz)2 = 0 ).  When (Δτ )2  < 0, (Δs)2 = −(Δτ )2  is the square of the proper length 
along a straight world line connecting the two events.   
 
Example:  In the previous example, we found that the muon observer reckons the time lapse 
between events A (muon creation) and B (muon and Earth coincide) to be about 9.5x10–6 s.  
Because the two events happen at the same place in space (i.e., at the muon) according to the 
muon observer, 9.5x10–6 s is the proper time between the events.  For an observer fixed to 
Earth, however, event A occurs at an altitude of 20.0 km, while event B is the muon (traveling at 
0.99c) reaching Earth.  To the Earth observer this occurs 6.73x10–5 s later.  The latter 
corresponds to 20.2x103 m, as measured in meters. Thus, according to the Earth observer the 
proper time between A and B is (Δτ )2 = (20.2x103m)2 − (20x103m)2 = 8.1x106m2 .  The interval 
between A and B is time-like.  The proper time according to the Earth observer is the square 
root of (Δτ )2 , which, after dividing by c yields about 9.5x10-6 s.  This is exactly the proper time 
(in s) the muon observer records for the same two events. 
 
Doppler shift for light:  Suppose that light is continuously emitted from 
the origin of O and that event A corresponds to the emission of a crest in 
the associated electric field.  The next crest is emitted at event B, TB 
later, according to O.  The second crest reaches Oʹ′ at event C, whose 
space and time coordinates are (βTC,TC )  according to O. These facts 
are summarized in the s-t diagram to the right.  Since the light from B to 
C covers the same distance as time, 

� 

TC = TB + βTC  or 

� 

TC = TB /(1− β) .  
Using the Lorentz transformation we can write 

 T T′ 

x 

C 

B 

A βTC 

TC 
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′TC = γ (TC − βxC ) = γ ( TB
1− β

− β 2 TB
1− β

) = γ 1− β 2

1− β
TB =

1+ β
1− β

TB .  Note that when time is 

measured in meters, the relation c = λ f  becomes λ = T , where here T  is the period of the light 
wave (in meters).  Because ′TC  is the period of the light according to Oʹ′ (the “detector”) and TB  

is the period according to O (“the emitter”) we find 
  
λd =

1+ β
1− β

λe .  Since Oʹ′ is moving away from 

the source ( β > 0 ), Oʹ′ observes the light to have a longer wavelength than does O; that is, Oʹ′ 
observes the light to be “red-shifted.”  This red shift is essentially due to time dilation, and is 
called the Doppler shift.  If Oʹ′ were moving toward the source the sign of β  would be flipped, 
and the light would appear to be “blue-shifted.”  
 
Example:  Suppose a red (650 nm) laser beam is directed from Earth toward the muon in the 
previous examples.  What “color” will the muon detect?  Since Earth approaches the muon with 
a velocity  

β = −0.99 , 
!  
λd =

1− 0.99
1+ 0.99

(650nm) = 46nm .  The muon observes the laser emitting soft X-rays.  

Incidentally, this is a cautionary tale for space travelers who would like to travel near the speed 
of light: even the long wave cosmic microwave photons would be blue-shifted to dangerously 
short wavelength gamma rays! 
 
The “twin paradox”:  The story associated with this famous puzzle is: twin X leaves Earth, 
travels at speed β  until reaching Alpha Centauri, then immediately turns around and comes 
back home, again at speed β .  On return, twin Y, who stays on Earth, says that because X was 
moving at high speed, X is younger than Y’s recorded time by a factor of 1 γ  (due to time 
dilation).  X counters by saying, No, it was Y who was moving, so Y is younger than X’s 
recorded time by a factor of 1 γ  (due to time dilation).  This apparent paradox is often 
“resolved” by saying that X is not attached to a single inertial observer (X accelerates at the turn 
around point) and therefore is not entitled to use the Lorentz transformations.  Consequently, 
only Y gets to do the calculation and it must be that X really is the younger twin.  While this turns 
out to be true, a more careful treatment of this situation produces a new and important piece of 
physics. 
 
 First, let’s resolve the paradox the “proper” way.  The s-t 
diagram to the right shows: (a) X leaves Earth at event A in frame Oʹ′; 
(b) another frame, Oʹ′ʹ′, heads toward Earth leaving from event B at the 
same time, according to O, as event A; (c) Oʹ′ gets to Alpha Centauri at 
event C and X immediately switches to frame Oʹ′ʹ′ (suffering in the 
process a harrowing acceleration); (d) Oʹ′ʹ′ arrives at Earth at event D.  
Suppose the velocity of Oʹ′ relative to Earth is β  and of Oʹ′ʹ′ relative to 
Earth is −β .  Suppose also that the distance from Earth to Alpha 
Centauri, according to O, is  L .  According to O, it takes X an amount of 
time equal to L β  to get to C.  Y’s biological time between events A and D is therefore 2L β , 
the proper time along the straight world line from A to D.  Because s-t intervals are invariant, Oʹ′ 
and Oʹ′ʹ′ must deduce the same proper time for that world line.  The biological time for X, on the 
other hand, can be calculated by adding two proper times: O reckons the proper time from A to 

 

x 

T 
D 

C 

B A 

I 

II 

SI 

SII 

L 

L/β 

2L/β 
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C to be 
L
β

⎛
⎝⎜

⎞
⎠⎟

2

− L2 = L
βγ

 (the same as Oʹ′) and 
L
β

⎛
⎝⎜

⎞
⎠⎟

2

− L2 = L
βγ

 from C to D (the same as 

Oʹ′ʹ′).  Thus, X’s biological time from A to C to D must be 2L βγ , less than Y‘s by a factor of 1 γ , 
and all observers agree on that.  Incidentally, this raises an interesting point: the proper time 
between two events depends on the sequence of straight world lines connecting them, with the 
maximum elapsed proper time being along a single straight, connecting world line. 
 
 But this isn’t the new piece of physics, yet.  To see what that is, let’s consider X’s story.  
According to X, Alpha Centauri is only L γ  away from Earth (because of length contraction) 
and it initially travels toward X at speed β ; consequently the time elapsed for X to get to from A 
to C must be L (βγ ) .  On the other hand, X knows Y’s clock is running slowly by a factor of 1 γ , 
so the time Y records when X is at C must be L (βγ 2 ) , according to X.  That’s the time denoted 
by I in the s-t diagram above.  Since it takes the same amount to get back home from C, X 
concludes to have aged by 2L (βγ )  between A and D, but, X asks, shouldn’t Y have aged by 
even less, namely, 2L (βγ 2 )  (i.e., I + II).  (That’s the supposed “paradox.”)  Y, a faithful believer 
in s-t diagrams, responds, “X, you knucklehead, you’ve left out the bold interval of time on the 
diagram.  I (that is, Y) obviously aged (by an amount   2L β − 2L (βγ 2 ) = 2Lβ ) while you 
transferred from Oʹ′ to Oʹ′ʹ′!”  In fact, that’s right.  The new piece of physics is this: the abrupt 
acceleration of X at C makes a piece of spacetime unobservable to X!  
 
 
 
Appendix: The binomial expansion 
 
 A binomial is a sum of two terms raised to a power: (X +Y )p .  If we set Z = X +Y  and 
f (Z ) = (X +Y )p , then a Taylor expansion of f (Z )  around Y = 0  yields 
f (Z ) = f (X)+ 1

1!Y ⋅ ′f (X)+ 1
2!Y

2 ⋅ ′′f (X)+ ...+ 1
n!Y

n ⋅ f [n](X)+ ...  (the ′f s are derivatives of f (Z )  
evaluated at Z = X ).  This is equivalent to (X +Y )p = X p + pYX p−1 + 1

2 p(p −1)Y
2X p−2 + ... .  This 

expansion is very useful for obtaining approximate values when X >>Y  and often only the first 
two terms are necessary, namely, (X +Y )p ≈ X p + pYX p−1 .   
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