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Special relativity, 5 
 

More relativistic dynamics: Conservation of momentum 
 

We have found that momentum will not be conserved for all 
observers using the classical definition of momentum.  Let’s examine 
conservation of classical momentum a little more closely.  Assume that 
as recorded in frame O two masses, m1  and m2 , with initial velocities u1  
and u2  in the x -direction, collide and that after the collision one mass, 
m3 , emerges with velocity u3 .  Make no assumption about m3 .  
Conservation of Newtonian momentum requires 

m1
dx1
dT

+ m2
dx2
dT

= m3
dx3
dT

 after substituting dx dT  for each u .  An s-t 

diagram, according to O, of events leading up to and after the collision is 
shown to the right.  In O, the positions of m1  are recorded at events A and B, of m2  at C and D, 
and of m3  at E and F.  Each pair of events is dT  apart in time.  The ratios of the respective dx s 
to dT  are the corresponding u s.   

 
Now, let’s switch to frame Oʹ′ traveling with velocity β  in the + x -direction.  Newtonian 

relativity requires that velocities transform according to the rule 
d ′x
d ′T

=
dx
dT

− β , because both O 

and Oʹ′ agree that d ′T = dT .  Thus, in Oʹ′ we have 

m1
d ′x1
dT

+m2
d ′x2
dT

= m1(
dx1
dT

− β )+m2 (
dx2
dT

− β ) and m3
d ′x3
dT

= m3(
dx3
dT

− β ) . 

Momentum will then be conserved in Oʹ′, i.e., the “and” can be replaced by an = sign, provided 
that (a) momentum is conserved in O and (b) m1 + m2 = m3 —that is, provided mass is also 
conserved.  The latter seems so obvious that it is rarely explicitly stated (this assumption is 
called Newton’s Zeroth Law of Motion by Frank Wilczek in The Lightness of Being, Basic Books, 
2008); indeed, in SR4 we just wrote down that m3 = 2m  for the sticking collision of two equal 
masses.  But, actually conservation of mass is a necessary complement to Newtonian 
momentum conservation.  Though dx  is different for different observers, dT  is the same, and 
it’s the d ′T  (which isn’t the same as dT ) in d ′x d ′T  that screws things up for special relativistic 
observers. 
 
  To address the latter problem we hypothesize that a better definition for momentum 
might be p = mdx dτ , where τ  is the proper time between events along the world line of mass 
m .  While dx  is different for different observers, dτ  is the same.  What is dτ ?  Two events 
separated by an infinitesimal time-like interval have an infinitesimal proper time difference 

defined by   dτ = (dT )2 − (dx)2 = dT 1− (dx dT )2 = dT 1− u2 .  Another observer will record 
different dx  and dT  values but will get the same dτ .  The stuff multiplying dT  in this 
expression looks a lot like a factor of 1 γ , which it exactly is if we switched to a frame at rest 
with respect to the traveling mass.  But, of course, our second observer Oʹ′ need not be that 
frame.  So we need to keep straight the γ  associated with switching between O and Oʹ′ and the 

 

m1 m2 

m3 

dT 

dT 

x 

T 

A C 

B D 

E 

F 
 

collision 
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factor   1 1− u2 .  Let’s call the latter  γ  (“gamma-twiddle”).  Plugging  dτ = dT γ  into our guess 
for p  yields 
 

  p = m γ u .      (1) 
 
Keep in mind that when measuring time in meters, velocity is dimensionless, so p  has 
dimensions of mass.  Of course, when u <<1 , p  just becomes the classical value, mu . 
 
 So, let’s see what the new definition does for conserving momentum.  Assume that in O 

m1
dx1
dτ1

+ m2
dx2
dτ 2

= m3
dx3
dτ 3

, where each dτ  is calculated for pairs of events such as A and B, and 

so forth in the s-t diagram above.  Now, switch to frame Oʹ′ moving as in our previous 
discussion.  For momentum to be conserved in the collision according to Oʹ′ it must be that 

m1
d ′x1
dτ1

+ m2
d ′x2
dτ 2

= m3
d ′x3
dτ 3

.  To see if it is, use the Lorentz transformation: d ′x = γ (dx − βdT ) .  

(Here γ  is the coefficient necessary to get from O to Oʹ′, not the mass’s  γ .)  In O, dT  is the 
same for all event pairs.  Consequently,  

m1
d ′x1
dτ1

+ m2
d ′x2
dτ 2

= γ [m1
dx1
dτ1

+ m2
dx2
dτ 2

− β(m1
dT
dτ1

+ m2
dT
dτ 2

)] and m3
d ′x3
dτ 3

= γ (m3
dx3
dτ 3

− βm3
dT
dτ 3

)  

So momentum is conserved according to Oʹ′ provided that (a) momentum is conserved 

according to O, and (b) m1
dT
dτ1

+ m2
dT
dτ 2

= m3
dT
dτ 3

.  Remembering that  dτ = dT γ , the latter 

expression becomes 
 

 m1 γ 1 + m2 γ 2 = m3 γ 3 . 
 

This expression is similar to the requirement that mass has to be conserved for Newtonian 
momentum conservation to hold.  But, note the presence of the gamma-twiddle factors; this is 
not simply conservation of mass—though it reduces to it when the gamma-twiddles are all close 
to 1.  What is this new and extremely important piece of physics? 
 
Force and the work-energy theorem 
 
 To answer this question, we explore what implication the new definition of momentum 
has for the concept of force.  We would like to apply a force to m  for a bit of time dt , then, as in 

Newtonian physics, set F = dp
dt

, where p  is the correct relativistic momentum measured in 

conventional units.  Supposing this is valid (it certainly is when the speed of m  is <<  c ), we can 
ask, what work does F  do when m  is displaced, starting from rest, through dx = vdt ?  Thus, 

 
W = Fd ′x =

′x =0

x

∫
dp
d ′t′x =0

x

∫ vd ′t = c2 ′u d(m ′γ ′u )
′u =0

u

∫ = mc2 γ −1( )  (in conventional units).  Now, classically the 

Work-Energy Theorem says that the work done by a force acting on m  in this way raises m ’s 
kinetic energy from 0 to KC , where KC  is kinetic energy in conventional units (joules, for 
example).  So, should we write KC = mc2 ( γ −1) ?  Recall that we have previously argued that for 
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small u ,  γ −1= 1 1− u2 −1≈ 1
2 u

2 , so, remembering that u = v c , this leads to KC ≈ 1
2 mv

2 —the 
usual Newtonian form—when v << c .  Therefore, it is reasonable to state that the relativistic 
kinetic energy is 
 

 KC = mc2 ( γ −1) .     (2) 
 
Equation (2) implies  KC +mc

2 = m γ c2 , where mc2  is defined as the mass’s rest energy (in J; this 
is Einstein’s famous mass-energy equivalence, “ E = mc2 ”). 
 
Example:  In SI units the electron mass is 9.1x10-31 kg.  The electron rest energy is (9.1x10-31 
kg)x(3x108 m/s)2 = 8.2x10-14 J.  It is often more useful to express this energy in electron volts 
(eV), where 1 eV = 1.6x10-19 J.  In these units the electron rest energy is 5.11x105 eV (about 0.5 
MeV).  Usually, when discussing properties of particles, such as electrons, one quotes mass in 
units of eV/c2 (or MeV/c2 (millions of eV) or even GeV/c2 (billions of eV), or, more casually (and 
in the spirit of taking the speed of light to be 1), just (M or G) eV.  Thus, the electron mass is 
often stated as about 0.5 MeV.  (Neutrons and protons weigh almost 2000 times more than an 
electron so their mass is about 1 GeV.) 
 
The quantity  m γ c

2  is the freely moving mass’s total energy (in J).   
 

 Note that when u =1 , γ =1 1− u2  blows up.  Photons travel at the speed of light and 
experiments show they carry finite kinetic energy and momentum: in conventional units, 
E = hc λ  and p = E c , where h  is Planck’s constant and hc  = 1240 eV-nm (where 1 eV = 
1.6x10–19 J).  If photons had finite rest mass, both E  and p  would be infinite.  Thus, it must be 
that m  for a photon (or any particle traveling at the speed of light) is zero such that the product 
m γ  is E c2  (in conventional units, and just E  when c = 1).  Because γ  blows up as u  
approaches 1, no particle with rest mass can be accelerated to the speed of light: it would take 
an infinite amount of work.  Thus, luxons remain luxons (until they are “destroyed”), and 
tardyons remain tardyons.  (We’ve argued previously any tachyons probably can’t interact with 
slowly moving matter.  But tachyons have another problem: for them γ  is imaginary!  Imaginary 
energy and momentum?  Hmm.) 

 
 We can now interpret the extra condition,  m1 γ 1 + m2 γ 2 = m3 γ 3 , for all observers to agree 
on momentum conservation.  Multiply through by c2  and find that momentum will be 
conserved in all frames if the total energy of the freely moving particles is as well!  In 
other words, conservation of momentum and conservation of energy are intimately part of the 
same general law: conservation of energy-momentum.  So relativity not only mixes space and 
time, it also mixes energy and momentum.  All of this results from the fact that all inertial 
observers measure the speed of light to be the same.  This is the second example of how 
symmetry and dynamics are intertwined. 
 
Example:  Suppose m  traveling with initial velocity u0  collides with a second m , initially at rest.  
After the collision, the two stick together and travel away with velocity u f .  We write  

 
m γ 0u0 = M γ f u f  

for conservation of momentum and 
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m γ 0 +m = M γ f  

for conservation of energy.  Combining the two equations yields  

 

u f = u0
γ 0
γ 0 +1

M = m
γ 0u0
γ f u f

 

For example, suppose u0  = 0.8.  Then  γ 0  = 1.667, u f  = 0.5, 
 
γ f  = 1.155, and M  = 2.309m .  In 

other words, u f u0  = 0.625, NOT the Newtonian value of 0.5, while M  > 2m .   

 
How come, in the example, M  is greater than 2m ?  Well, the initial kinetic energy in the 

example is  m( γ 0 −1)  = 0.667m , while the final kinetic energy is 
 
M ( γ f −1)  = 0.358m , that is, 

0.309m  is lost.  But, that’s just the difference between M  and 2m .  The lost kinetic energy 
shows up as an effective gain in the system’s mass.  This is consistent with  

 
mbody = K +U +mparticles( )∑     (3a) 

or in conventional units 

  mbodyc
2 = (KC +UC + mc2 )∑ ,    (3b) 

The sum in (3a) or (3b) is over all of the body’s internal particles and includes their (internal) 
energies of motion and interaction (i.e.,  U  or  UC ), as well as their rest energies.  The mass of a 
composite body is not simply the sum of the rest masses of the particles from which it is made.   
 
Example:  The mass of a proton is 1.0078 (in atomic mass units), the mass of a neutron is 
1.0087, but the mass of a deuteron (one proton bound to one neutron) is 2.0141 not 
1.0078+1.0087 = 2.0165 as when the neutron and proton are far apart and presumably not 
interacting.  The fact that the deuteron is less massive than its constituent particles means that 
the sum of K +U  for the constituents is < 0 when the neutron and proton are close.  While K  is 
always positive, U  can have either sign—in this case, apparently negative.   
 
Contrast this situation with that of the proton—also a composite body.  A proton consists of two 
up quarks and one down quark.  The estimated masses of the individual quarks are about 0.004 
and 0.008, respectively, meaning that the rest energies of the constituent quarks give rise 
to a just a few percent of the observed proton mass.  It must be that the sum of K +U  for 
the constituents is > 0 when the quarks are close, and even more positive when they are farther 
apart—otherwise they wouldn’t stay close!  Unlike neutrons and protons, quarks actually interact 
more strongly the farther apart they are.  That’s an interesting story for a bit later. 
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