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Abstract 
Studying the macroevolution of the songs of Passeriformes (perching birds) has proved 

challenging. The complexity of the task stems not just from the macroevolutionary and 

macroecological challenge of modelling so many species, but also from the difficulty in 

collecting and quantifying birdsong itself. Using machine learning techniques, we extracted 

songs from a large citizen science dataset, and then analysed the evolution, and biotic and 

abiotic predictors of variation in birdsong across 578 passerine species. Contrary to 

expectations, we found few links between life-history traits (monogamy and sexual 

dimorphism) and the evolution of song pitch (peak frequency) or song complexity (standard 

deviation of frequency). However, we found significant support for morphological constraints 

on birdsong, as reflected in a negative correlation between bird size and song pitch. We also 

found that broad-scale biogeographical and climate factors such as net primary productivity, 

temperature, and regional species richness were significantly associated with both the evolution 

and present-day distribution of bird song features. Our analysis integrates comparative and 

spatial modelling with newly developed data cleaning and curation tools, and suggests that 

evolutionary history, morphology, and present-day ecological processes shape the distribution 

of song diversity in these charismatic and important birds.  



 

 

Introduction 
Bird song is one of the most attractive dimensions of bird biodiversity, shaping our ecological 

soundscape (Pijanowski et al. 2011) and providing a tangible link between the evolutionary 

past and the ecological present. Recent methodological and empirical advances have provided 

new insights into the early diversification of birds (e.g., Jetz et al. 2012; Jarvis et al. 2014) and 

the (at least) two separate origins of learned bird song (Zhang et al. 2014), yet understanding 

the evolution of song structure itself has proven challenging (Read and Weary 1992; Brenowitz 

1997; Slabbekoorn and Smith 2002a; but see Greig et al. 2013; Gonzalez-Voyer  et al. 2013; 

Mason et al. 2014; Tietz et al. 2015; Tubaro and Mahler 1998; Weir et al. 2011, 2012). Several 

studies have modelled bird song within restricted clades (e.g., Ryan and Brenowitz 1985; Read 

and Weary 1992; Grant and Grant 1996; Price and Lanyon 2002), and proposed links between 

patterns of song diversity across temporal and spatial scales (Baker 2001), but there are 

remarkably few broad-scale empirical studies (notable exceptions include Weir et al. 2011; 

Tobias et al. 2014; Mason & Burns 2015).  Understanding broad patterns of song evolution and 

diversity could provide insights into the evolution of language, and complement the expanding 

literature on songbird neurobiology (e.g., Doupe and Kuhl 1999; Brainard and Doupe 2002). 

Male song is critical for successful mating, and so is likely under strong sexual selection 

(Nowicki and Searcy 2004; Wilkins et al 2013; but see Price 2015). For example, in oscines, 

song complexity may be an honest signal of mate quality (Mountjoy and Lemon 1996; 

Nowicki et al. 1998; Nowicki and Searcy 2004; Spencer et al. 2005; Leitão et al. 2006). 

Variation in bird song has the potential to serve as a form of prezygotic mating barrier (e.g., 

Haavie et al. 2004; Edwards et al. 2005; reviewed in Podos and Warren 2007) and thus could 

also drive diversification (Slabbekoorn and Smith 2002b; Forschler and Kalko 2007). For 

example, white crowned sparrows respond less to historically and geographically distant songs 

(Derryberry 2007, 2011), and songs of closely related species in sympatry are more dissimilar 



 

 

(Seddon 2005), highlighting the importance of birdsong in mate recognition and in maintaining 

reproductive cohesion. However, the evolution and diversity of birdsong is likely constrained 

by both bird ecology and physiology. 

Selection on species’ traits such as the morphology of the vocal tract (trachea, larynx, and 

syrinx; Podos et al. 2004), beak morphology (Herrel et al. 2005; Huber and Podos 2006; 

Derryberry et al. 2012), and body size (Seddon 2005; Cardoso 2010) could limit potential for 

song production. In addition, noisy or densely-vegetated environments may strongly affect 

song characteristics (Morton 1975; Hansen 1979; Ryan and Brenowitz 1985), although meta-

analytical evidence for such effects is weak (Boncoraglio and Saino 2007). Potential 

environmental drivers of song features are often highly predictable and conserved across 

habitat-types (e.g., Tobias et al. 2010; Francis et al. 2012). For example, dense vegetation 

limits the transmission of high frequencies, while the background noise in urban areas masks 

lower frequencies, selecting for songs with lower (e.g., Tobias et al. 2010) and higher 

(Slabbekoorn et al. 2007; Brumm and Naguib 2009; Luther and Derryberry 2012; Luther et al. 

2015) frequencies, respectively. Thus birdsong evolution is a product of complex interactions 

between multiple pressures on breeding system, morphology, and the physical habitat 

characteristics. 

We focus here on passerines, the perching birds. The passerines are an excellent study system 

for exploring the evolution of vocal communication due to their diversity, wide geographical 

distribution, and song complexity. Moreover, the two major sub-clades of passerines, the 

oscines and suboscines, differ in their song acquisition. Songs in oscines are typically learnt, 

whereas songs in suboscines are more often innate (Kroodsma and Miller 1996; Beecher and 

Brenowitz 2005; Touchton et al. 2014), potentially making the oscine clade more sensitive to 

rapidly changing ecological influences on song production (Rios-Chelen et al. 2012). In 



 

 

addition, the anatomy and neurology of the song system is known to differ between these 

clades, which could also lead to differential constraints on song evolution (Amador et al. 2008; 

Gahr 2000). 

A broad-scale analysis of passerine song requires simple metrics that can be quantified and 

compared among multiple and highly variable species. We examine the pitch of the loudest 

note in a song (the peak frequency) and the complexity of the song (measured as the standard 

deviation of the frequencies within a song). There are strong a priori expectations on how 

variation in these axes of song structure might capture the relative importance of bird 

physiology, life history and environment. For example, if morphological constraints shape song 

evolution, we might expect species that are smaller to have higher-pitched songs, and species 

in more complex habitats where sound transmission is more difficult (such as forests) to have 

lower-pitched songs. However, if song characteristics are driven primarily by sexual selection, 

we might expect life history traits such as mating system to be associated with greater male 

song complexity, as song is acting as a mechanism for female choice (e.g., Loffredo and Borgia 

1986).  Larger repertoire sizes of songs, one common measure of song complexity, are often 

associated with increased female-preference (Beecher and Brenowitz 2005).  However, female 

zebra finches, a species with single-song repertoires, prefer songs with lower variation in pitch 

(i.e., a lesser coefficient of variation in pitch; Woolley and Doupe 2008), and there is evidence 

that sexual selection can also drive the evolution of simpler songs whose quality is therefore 

easier to assess (e.g., Cardoso and Hu, 2011). Large, cross-species analyses with the same 

measure of complexity are thus necessary to unpick these contrasting, but not mutually 

exclusive, hypotheses about the role of life history traits and environment in determining bird 

song. 



 

 

Making use of a worldwide citizen science database of bird recordings (Xeno Canto; 

http://www.xeno-canto.org/), and modern machine learning techniques (Giannakopoulos 

2015), we present a synthetic analysis of broad evolutionary and spatial patterns of passerine 

birdsong. Using over 5,000 songs taken from 578 bird species, we find strong evidence for 

biogeographical constraint on the evolution and present-day distribution of birdsong, but 

limited evidence for influences of sexual selection or life-history traits.   

http://www.xeno-canto.org/


 

 

Material and Methods 
We evaluated the pitch and complexity of birdsong across passerines using one of the largest 

databases of birdsongs currently available and data on passerine biology, life history and 

geographical distribution. First, we constructed a series of phylogenetic regressions to examine 

correlations with key life history traits and environment, accounting for phylogenetic 

uncertainty by running models across the Bayesian posterior distribution of the bird tree of life. 

Second, we contrasted our phylogenetic regressions with a spatial analysis using the same suite 

of variables, but evaluating correlations across space. To account for unequal sampling of 

birdsong in Europe and the Neotropics, we repeated all analyses across all species (global), and 

separately for Old and New World species. We conduct separate analyses for life history traits 

and environmental variables to account for unequal distributions of data among species; we 

were able to find much less data for our life-history variables. The exception to this is body 

mass, for which data were readily available across most species and so, as a significant 

predictor of variation in birdsong metrics, was used in all models. 

Song download, cleaning, and measurement 

All available song data for passerines was downloaded from the Xeno-Canto database of 

birdsongs from around the world (http://www.xeno-canto.org/) with search criteria specifying 

the type of vocalization as “song”, quality “A” (i.e., the highest recording quality as rated by 

users), songs from males, confirmed visualization of the bird, and with no other bird species in 

the recording. While we cannot be certain that each recorder defined “song” in the same 

fashion, here our intention is to study the evolution of male bird vocalizations that advertise 

territory and/or for mates. We further emphasise that, while the meta-data entries for each song 

indicated they were sung by a male, we cannot guarantee that some of these recordings were 

not from females as females are also known to sing (see Tobias et al. 2016). When several 

http://www.xeno-canto.org/


 

 

recordings were available for the same species, we downloaded multiple files per species. R 

(version 3.1.3; R Core Team 2015; Supplementary Materials 1) and Ruby (https://www.ruby-

lang.org/; Supplementary Materials 2 and 3) code to download songs from Xeno Canto is 

available in the Supplementary Materials and online (https://github.com/willpearse/Xena). As 

reported in the results in more detail below, we downloaded an average of 10.26 songs per 

species. In the Supplementary Materials, we release the data on all songs we downloaded 

(Supplementary Materials 4), the subset of data we manually checked (see below; 

Supplementary Materials 5), and the meta-data for all downloads (Supplementary Materials 6). 

A bout of singing from an individual bird can consist of multiple songs. We assessed each song 

separately, splitting sound recordings using the pyAudioAnalysis Support Vector Machine 

(SVM) approach (Giannakopoulos, 2015) trained on background noise within the sound files. 

Briefly, this approach uses the highest- and lowest- energy 10% segments of the recordings to 

train an SVM to detect regions of the recordings that contain birdsong, and then segment and 

extract them from the rest of the recording. This approach is commonly used to detect human 

speech on smartphones (e.g., “OK Google”, “Hey Siri”, or “Hey Cortana”), but to our 

knowledge this is the first time this approach has been applied to birdsong. Of the resulting 

song files, only those with a duration greater than one second were retained, removing calls or 

exceptionally short songs from the analysis. Once separated, individual song files were 

digitally filtered (removing sounds outside the range 0.3-8 kHz) and then analyzed using the 

seewave package (Sueur et al. 2008) in R. In total, we processed and segmented 5,933 

recordings. 

There are many potential sources of uncertainty that could affect any global analysis of 

birdsong, particularly one relying on an automated detection algorithm. These potential 

challenges include background noise, different recording standards, difficulty isolating the 

https://www.ruby-lang.org/
https://www.ruby-lang.org/
https://github.com/willpearse/Xena


 

 

start/end of a song, and differentiating between a song and a call. To verify that our pipeline 

was not biasing our results, we manually examined a subset of our data and report repeats of all 

spatial and PGLS analyses conducted across this subset (see below and Supplementary 

Materials 7 and 8, respectively). To do this, a random song segment was selected from each 

species and manually verified: if any excessive or variable background noise, such as another 

bird species, was detected, the file was discarded and a new random sample was analyzed. We 

performed manual verification by listening to the song segment and examining its spectogram 

by eye, and (as with the results we present here) used the seewave package (Sueur et al. 2008) 

to analyse the songs themselves. For 21 species (4.2%), we were unable to find a clean 

exemplar, usually due to having only one recording for the species. 

There are additional sources of error in our machine learning pipeline that we do not explicitly 

address. First, the meta-data on Xeno-Canto, like all data, is imperfect, and we cannot 

guarantee that a bird’s song was not misclassified as a call by its recorder. Second, the pipeline 

may merge songs and calls within a single recording. Those wishing to replicate our approach 

should be mindful of these limitations, which may be mitigated by careful manual curation of 

recordings.  In all science there is a trade-off between sample size and sample quality. Each 

investigator must decide for themselves whether the increase in sample size possible with 

automated approaches outweighs the potential decrease in sample quality in comparison with 

manual curation. 

To characterise song spectral structure, we used two measures of the central tendency of pitch: 

mean frequency (kHz) and peak frequency (the frequency at which the amplitude was highest). 

Mean and peak frequency were highly correlated (r = 0.906; p < 0.001); as mean frequency is 

more sensitive to varying frequency bands of background noise, we retained only peak 

frequency for further analysis. To assess song complexity, we evaluated seven alternative 



 

 

metrics: standard deviation of the frequency, inter-quartile range of the frequency, Renyi 

entropy, Shannon entropy, temporal entropy, spectrotemporal entropy, and total entropy (the 

product of the Shannon, Renyi, and temporal entropy). Measures of entropy calculate the 

information theoretic randomness of the spectral structure, with 0 being a pure tone and 1 being 

random noise, which is quantitatively similar to measuring the spread of the frequency, and 

thus it is unsurprising that all seven features measured are highly correlated (mean r = 0.457).  

We selected the standard deviation of the frequency as our proxy of song complexity for 

further analysis, again due to this measure’s robustness to varying frequency bands of 

background noise, and because the peak and standard deviation of frequency demonstrated the 

lowest correlation coefficients in the dataset (r5931=0.0015, p=0.91), and as such represent 

independent axes of song diversity. Having more unique notes and/or elements in a song would 

increase the standard deviation of frequency, making this an intuitive measure of biological 

complexity that is directly comparable across different bird songs. Further, since these metrics 

of song structure resemble those used widely in the birdsong research community (e.g., 

Deregnaucourt et al. 2005; Kirschel et al. 2009; Morton 1975), we were able to make strong a 

priori predictions on their expected variation across species in different environments. Other 

metrics of birdsong exist, and there is a wide variety of metrics that assess diversity, but peak 

and standard deviation of frequency are well suited to a study such as this as they are 

calculable, and directly comparable, across taxa. 

Figure 1 gives two examples of how the two song metrics we focus on here (peak and standard 

deviation of frequency) quantify song character. A critical component of our metrics is that, 

while we suggest they do measure pitch and complexity reasonably well, they do not measure 

information content directly. For example, were a bird to produce a song that was entirely 

random white noise, it could have a reasonably high standard deviation of frequency but, by 

virtue of being random, would communicate essentially no information (see Shannon 1948). 



 

 

We acknowledge this limitation of our study, and alternative metrics that capture information 

content (such as Shannon’s entropy, which, in our data, was correlated with the standard 

deviation of the frequency) could reveal different patterns. 

We averaged each metric across all songs for a species, providing a single estimate of peak and 

standard deviation of frequency per species. A variance decomposition analysis (following 

Crawley 2007) revealed that 68.8% and 58.5% of the variance in the peak and standard 

deviation of frequencies, respectively, is contained within these species-level aggregates. Thus 

these averages are fair representations of the underlying data. 

Life History Comparative Analyses 

To investigate the influence of morphological and life history traits on bird song, we 

aggregated data on body mass (using Wilman et al. 2014), sexual dimorphism and mating 

system (using Lislevand et al. 2007), and higher taxonomic membership (oscine vs suboscine). 

Sexual dimorphism was calculated as the ratio between male body mass (g) and female body 

mass (g). Mating system was coded as a binary variable with cooperative breeders and 

occasionally polygynous species (≤15% polygyny) considered monogamous, and mostly 

polygynous (>15% polygyny), polyandrous, and lek or promiscuous species considered non-

monogamous. Sexual dimorphism and mating system represent two independent proxies for 

the strength of sexual selection across species. Of the species for which we had song data, we 

obtained estimates of body mass for 537 species, sexual dimorphism for 209 species, and 

degree of monogamy for 129 species. We fit models across only those species for which we 

had complete data (103 species). 

Phylogenetic Generalized Least Squares (PGLS) regressions (Freckleton et al. 2002) were 

performed using the pgls function in caper version 0.5.2 for R (Orme 2013) with either peak 

frequency or standard deviation of the frequency as the response. Body mass, and sexual 



 

 

dimorphism were natural-log transformed prior to analysis. In all cases, the maximum 

likelihood estimate of Pagel’s λ (Pagel 1999) was used to correct for phylogenetic non-

independence during model-fitting. To account for uncertainty in the phylogeny (Bollback 

2005), each model was run over a random sample of 100 phylogenetic trees taken from the 

posterior distribution of the “Ericson All Species” bird phylogeny (Jetz et al. 2012). We report 

the mean (and standard deviation) values of all model coefficients across these phylogenies in 

the main text. Latin binomials were standardized to the Jetz et al. (2012) phylogeny. In the 

supplementary materials (8), we present qualitatively identical results from analyses using 

Pagel’s δ (Pagel 1999), which tests for accelerating rates of trait evolution and is equivalent to 

an Ornstein-Uhlenbeck model of constrained evolution with a single optimum (Uyeda et al. 

2015). We additionally repeated all analyses for the oscines and suboscines separately (also 

presented in Supplementary Materials 8). 

Biogeographic Comparative Analyses 

Ecological variation in geographic or environmental space can be explored using different, but 

comparable, methods that differ in the units of analysis (Gaston et al. 2008; Olalla-Tárraga et 

al. 2010). The first, referred to as a ‘cross-species’ or often ‘comparative’ approach, uses 

species as units of analysis and summarises environmental predictor information by averaging 

values within the geographic range of each species. The second, sometimes referred to as an 

‘assemblage’ approach, uses spatial cells as units of analysis, and ecological or trait 

information is summarised by averaging the values across the species found within each cell. 

While these approaches have specific advantages and disadvantages (for discussion see Adams 

and Church 2011; Morales-Castilla et al. 2013), both need to account for autocorrelation, either 

among species (phylogenetic non-independence in the ‘cross-species’ approach) or among 

spatial units (spatial non-independence in the ‘assemblage’ approach). Here we employ both 



 

 

methods as they can offer complementary perspectives. To take into consideration 

phylogenetic non-independence we used PGLS models (see above for details). To account for 

spatial non-independence we use spatial statistics. First, we inspected the significance of 

univariate relationships between the response variables (peak frequency and standard deviation 

of frequency) and predictors (mean annual temperature, net primary productivity, and species 

richness), adjusting the effective number of degrees of freedom following Dutilleul et al. 

(1993). We then checked for spatial autocorrelation in the residuals using Moran’s I; in the 

absence of residual autocorrelation, OLS regression model coefficients can be considered 

reliable (Bini et al. 2009). If significant spatial autocorrelation in the residuals was detected, we 

re-examined the regression coefficients assuming spatially explicit simultaneous autoregressive 

model (SAR, Cliff & Ord 1981) to ensure that models were not misspecified. 

Data on species’ continental breeding ranges were obtained for 496 species from Hawkins et al. 

(2007) and overlaid onto a global Behrmann equal-area grid, comprising 12,639 cells of ca. 

10,000 km². Environmental data were obtained from several sources: mean annual temperature 

was extracted from WorldClim (BIO1; Hijmans et al. 2005), values of annual Net Primary 

Productivity (NPP) were extracted from Imhoff et al. (2004), and elevation was computed from 

GTOPO at the 30 arc-seconds resolution (data available at 

http://www.ngdc.noaa.gov/seg/cdroms/ged_iia/datasets/a13/fnoc.htm). In addition, we 

generated a separate layer representing total passerine species richness per cell (globally, not 

just those species retained in this analysis) as a proxy for biotic complexity/intensity. These 

environmental variables were either averaged across the geographic range of each species for 

the ‘cross-species’ analyses, or within each grid cell for the ‘assemblage’ analyses (for 

elevation, the 97.5th quantile was used as a proxy for the highest elevations within each grid 

cell, and the mean of these values across each species range was used for the cross-species 

analyses). Body size and the oscine/suboscine distinction were included as additional co-

http://www.ngdc.noaa.gov/seg/cdroms/ged_iia/datasets/a13/fnoc.htm


 

 

variates to account for the influence of morphology on birdsong characteristics, as preliminary 

results showed it was an important driver of birdsong and body size shows strong phylogenetic 

and geographic biases. All biogeographic data processing and analyses were performed with R 

package raster version 2.5-2 for R (Hijmans and van Etten 2015). We also repeated all analyses 

on the oscine and suboscine clades separately, and present those results in the Supplement 

(Supplementary Materials 8). 

We included net primary productivity (NPP) as a proxy of habitat complexity under the 

assumption that high primary production represents areas with increasingly dense and complex 

vegetation. Due to significant collinearity between NPP and mean species richness within 

species ranges, we ran separate PGLS models which included only one of these predictors at a 

time. However, because we believed species richness, independent of NPP,  may increase 

competition for acoustic space, imposing selective pressure on birds to produce increasingly 

complex songs to prevent signal interference from other species (Wilkins et al. 2013), we 

included both richness and NPP as a separate predictors in our assemblage-based models, 

where problems of collinearity were less. We included temperature in both cross-species and 

assemblage-based models as it is also thought important in structuring ecological relationships 

(Currie et al. 2004; Hawkins et al. 2003; Brown et al. 2004) and it demonstrates a strong 

latitudinal gradient.   



 

 

Results 
Of the ca. 5,100 passerine bird species for which we found phylogenetic data, we were able to 

download and extract song data for 578 (mean number of songs per species: 10.26, standard 

deviation: 16). We emphasise that the distribution of songs per species is right-skewed; our 

human-checked analyses of a single song per species suggest this unequal sampling does not 

bias our results. As described in the methods, our life history analyses are based on 103 

species, while our biogeographic analyses are based on 497 species. In total, we analysed data 

from 5,933 songs (details of the songs analysed are given in Supplementary Materials 6); their 

general distribution on the phylogeny is shown in Figure 2. We emphasise that our results are 

on a limited subset of the passerines (~10%; see also Supplementary Materials 10), and as such 

our analysis is far from a definitive analysis of the evolution of birdsong in this clade. To 

demonstrate robustness of our results we have fit multiple statistical models to each response 

variable, and highlight confidence intervals around each parameter in all results tables. We 

report tests for spatial auto-correlation within the assemblage-based models in Supplementary 

Materials 11. 

In the supplementary materials, we present two additional sets of analyses to examine the 

validity of our models. In the first (assemblage models in Supplementary Materials 7, PGLS 

models in Supplementary Materials 8,), we report models fit to a set of manually checked 

birdsongs (one per species). That these results are qualitatively identical to the results reported 

here suggests that (1) our machine learning pipeline has not biased our results and (2) variation 

in numbers of songs per species (see above) have not unduly affected our results. In the second 

set of analyses (PGLS models in Supplementary Materials 8, assemblage models in 8), we fit 

models to the oscine and sub-oscine passerines separately. As with the models we present here, 

these models support variation among the clades and, bar body mass (which varies between the 

clades), show qualitatively identical results to those we present here. 



 

 

Comparative (PGLS) analyses 

Results of the PGLS analyses using life history traits identified body mass as the single 

significant predictor of pitch (peak frequency), with larger bodied species having lower pitch 

(Table 1 and Figure 3). Pagel’s lambda was estimated at λ=0.024 ± 0.046, which indicates little 

phylogenetic signal in the residuals of the model. For models predicting song complexity 

(standard deviation of frequency), none of the included life-history trait predictors were 

significant (including body mass), although Pagel’s lambda was estimated as λ=0.772 ± 0.045 

indicating moderate to high phylogenetic signal in the residuals. 

PGLS models including biogeographic predictors again identified body mass as a significant 

predictor of pitch and additionally revealed suboscines as having, on average, significantly 

lower pitch than oscines (Table 1). However, none of the environmental variables were 

significant predictors of pitch either at the global scale or within Old or New World species 

when analyzed separately (Table 1). For song complexity, NPP was a significant positive 

predictor globally, and among both Old and New World species when analyzed separately. 

Body mass was a positive significant predictor of song complexity for New World species, but 

non-significant at the global scale and when Old world species were analyzed separately. When 

swapping NPP for estimates of mean number of species across the range (both of which were 

strongly correlated; see methods), we found similar trends, with more complex songs in 

environments characterised by higher species richness. 

Spatial (assemblage) analyses 

Results of analyses conducted at the assemblage level were not compromised by the effects of 

spatial autocorrelation (see online Supporting Information S3). Pitch and complexity showed 

clear geographical gradients, with higher pitch towards the poles and in mountainous regions, 

and with lower pitch in tropical regions, Africa, the Arabian Peninsula, and Australia (Fig. 3C). 



 

 

In contrast, while song complexity is greater in the tropics it did not show such a clear 

latitudinal trend within temperate regions (Fig. 3D). 

Species richness, together with two environmental variables (temperature and productivity) and 

body mass, explained ca. 50% variation in pitch both globally and for the Old World, and as 

much as 66% within the New World (Table 2). Temperature and productivity were consistently 

negatively associated with pitch, regardless of geographic context (Table 2), with lower pitch 

found in warm and productive environments (Fig. 4A-C). The relationship between pitch and 

species richness was more variable, showing a significant negative correlation only in the New 

World. This Old and New World difference is likely driven by patterns across Europe, where 

species tend to have moderate to high pitch and passerine richness is also high (see Fig. 3A). 

Assemblage-based models for song complexity had similar goodness-of-fit as the equivalent 

models for pitch, explaining over 40% of the variation in song complexity, but revealed a 

significant positive relationship with both NPP and temperature (Table 2; Fig. 4D-F), 

consistent with our cross-species analyses. Species richness was negatively correlated with 

song complexity at the global scale and within the Old World, but positively correlated within 

the New World (Table 2). 

We note that the subset of species we analysed is biased towards European and Neotropical 

passerine species, and thus does not capture well the geographic distribution of all passerines 

(Figs. 3A & B). However, we found no indication that either pitch or complexity varied with 

sampling completeness (compare Figs 3A & B with Figs 3C & D). 

Sensitivity analysis 

Re-analyses conducted on data subsetted to account for recording quality revealed qualitatively 

similar relationships (see online Supporting Information S3), and additionally suggest that 



 

 

biases in the spatial sampling of songs did not influence our results – for the assemblage level 

analyses results for both datasets were virtually identical.  



 

 

Discussion 

We explored the diversity of birdsong in passerines using one of the largest comparative 

datasets available, encompassing over 500 species in two major clades, the oscines and 

suboscines. There has been much interest in the evolution of bird song and song complexity, 

both within and across species (reviewed in Slabbekoorn and Smith 2002a; Podos et al. 2004; 

Podos and Warren 2007; Wilkins et al. 2013). Here we bring together data on key life history 

traits related to breeding systems (sexual dimorphism and mating system), body size, and 

species distributions, to examine evolutionary and spatial patterns in song pitch (peak 

frequency) and complexity (standard deviation in frequency). We find that body size alone can 

explain almost a third of the variation in pitch across passerines, irrespective of their 

geographic distribution (Old World versus New World). However, traits related to breeding 

system were not significant. In the New World, pitch was also negatively correlated with 

temperature: birds in colder regions had a higher pitch in their songs. When analysed 

separately, song complexity was independent of body size and traits related to breeding 

systems, but when taking into account environmental context we found that song complexity 

increased with environmental axes related to habitat complexity and with body size. Our results 

therefore indicate that birds with more complex songs tend to be larger and found within more 

complex landscapes. 

The relationships between body size and pitch, and the importance of habitat complexity in the 

evolution of bird song have been discussed previously (Wiley and Richards 1978; Ryan and 

Brenowitz 1985; Boncaraglio and Saino 2007; Derryberry et al. 2012); however, we are aware 

of only a few studies that have attempted to address these relationships across such broad 

geographic and taxonomic scales (see e.g. Cardoso 2010; Weir and Wheatcroft 2011; Weir et 

al. 2012). We additionally demonstrate the importance of phylogenetic history in shaping 



 

 

present day patterns of birdsong diversity, and thus the importance of controlling for 

phylogenetic non-independence when performing cross species comparisons. Significant 

phylogenetic structure in bird song has been alluded to previously, but again direct tests are 

sparse and often restricted to smaller clades (e.g., Price and Lanyon 2002; Cardoso and Mota 

2007; Seddon et al. 2008). Overall, our results provide further empirical evidence that aspects 

of passerine song are strongly subjected to evolutionary constraints. We emphasise, however, 

that we were only able to include approximately 10% of global passerines in our analyses; it is 

possible that patterns may change in the face of more data and, below, we argue that more data 

is required to truly disentangle differences between New and Old World passerines. 

Perhaps most surprising in our results is the lack of a significant difference between suboscine 

and oscine song complexity (Table 1). Oscines are songbirds, and so one would imagine their 

songs would be more complex. There are a number of life history and biogeographic factor that 

affect birdsong and which vary across these two clades, by including these variables in our 

model, we may have thus explained much of the variation in song that otherwise distinguishes 

them. Ultimately, however, (P)GLS analyses such as ours may not be sensitive to 

‘phylogenetic natural history’ questions of the kind that contrast the evolution of large clades 

(see Uyeda et al., 2017). Equally, as discussed in the methods, our analyses focus on 

complexity and not information content. Perhaps oscines’ more musical vocalizations are not 

much more variable, but are more melodic – a component of song we do not assess here. 

Life history and body size 

Birdsong is often linked to sexual dimorphism (Nottebohm and Arnold 1976; Arnold 1992; Gil 

and Gahr 2002; Seddon et al. 2013, Price 2015), and so it is surprising to see no link between 

size-dimorphism and pitch or song complexity. However, size-dimorphism does not solely 

reflect sexual selection or female choice (Blondel et al. 2002; Székely et al. 2007); and while 



 

 

size-dimorphism can be associated with mating system and parental care, plumage-colour 

dimorphism often better reflects female choice (Owens and Hartley 1998). While our data also 

does not support a link between monogamy and birdsong, it is possible that variation among 

individuals within species confounds results. For example, polygyny, while represented in our 

data as obligate, is often facultative (Lislevand et al. 2007), and we are ignorant of the mating 

syndromes of our sampled individuals. Perhaps most critically, it is possible that mating system 

and environmental conditions could interact; males may be sexually selected for clearer, less 

complex signals within dense vegetation, which we were not able to address due to a lack of 

data overlap between life history and biogeographic data. It also remains possible that the 

standard deviation of frequencies did not adequately capture variation in song complexity; if 

so, more work is needed to define metrics that are comparable and definable across diverse 

taxa and song types. 

Contrasting with the null relationships found with mating system, we show a strong negative 

correlation between body mass and pitch (peak frequency). Across many species the lowest 

possible frequency for vocalisation reflects fundamental biomechanical limitations of body size 

(Fletcher 2004; Huber and Podos 2006); our results supporting this relationship are therefore 

reassuring, if not unexpected. That we found mixed relationships between body size and song 

complexity (standard deviation of frequency) is perhaps more surprising; birds with larger 

beaks (beak size is strongly correlated with body size; Benkman 1991; Symonds and Tattersall, 

2010) have a lower song pace (Derryberry et al. 2012), although slower song pace does not 

necessarily imply a less complex song. The lack of a significant association between body mass 

and song complexity in the Old World perhaps reflects a better sampling of New World birds 

in our analyses. 



 

 

Biogeography: habitat complexity, temperature, and species richness 

We found that environment was generally a stronger predictor of variation in bird song than 

our measures of bird morphology (excluding body size) and life history. Birdsong is often used 

for communication with conspecifics at long distances of 50 - 200 m (Wiley and Richards 

1982), and there are obvious fitness advantages derived from effective transmission of vocal 

signals. To be heard by conspecifics, a song may therefore have to travel long distances with 

little attenuation, but also remain distinct from songs of other species to allow identification of 

conspecifics. In nature, environmental factors, such as habitat structure, competing noise, and 

atmospheric conditions, can have large influence on song transmission (Brumm and Naguib 

2009). Sound attenuation depends predominantly on frequency, with lower frequencies 

propagating further distances due to decreased absorption by molecular vibrations (Wiley and 

Richards 1978, Wiley 2009). Different frequencies are absorbed, reflected, and refracted by 

different sized objects in their path (Wiley and Richards 1978). In a meta-analysis of bird song 

and habitat complexity, Boncoraglio and Saino (2007) reported that complex habitats select 

against higher frequencies, albeit weakly. We revisited these relationships in our data. 

In our cross-species analyses we found that pitch was significantly predicted by body mass and 

membership of either the oscine or suboscine clade (as also found by Seddon 2005 and others). 

The oscine and suboscine clades can be distinguished on the basis of their vocal tract anatomy 

(Suthers, 2004), and so these results emphasise the potential importance of morphology in 

shaping the evolution of song. Equally, however, oscines generally learn their songs while 

suboscines do not (Touchton et al. 2014), and so it is possible that this pitch change is 

associated with song learning. Below we also discuss how differing environmental affinities 

might affect the clades’ song pitch and complexity. We do not find important differences in the 

phylogenetic signal (phylogenetic signal is greater in the suboscines, but still greater than 0 in 



 

 

both clades) of our song metrics in these clades (Supplementary Materials 8), which is 

consistent with (but does not prove) similar degrees of evolutionary constraint between the two 

clades. However, assemblage-based models identified robust negative relationships between 

pitch and both NPP and temperature. These results support similar findings at smaller scales 

suggesting that lower pitches are more often found in complex or closed environments—the 

Acoustic Adaptation Hypothesis—(Blumenrath and Dabelsteen 2004; Boncoraglio and Saino 

2007, Tobias et al. 2010). Differences between cross-species and assemblage-based models 

might reflect either how data were aggregated in each method, or perhaps indicate species 

sorting across the landscape independent of evolutionary history, which we discuss further 

below. 

We do find differences in the magnitude (and, in some cases, sign; see Supplementary 

Materials 7 and 8) of coefficients for life-history and biogeographic traits between oscines and 

suboscines. We are, however, reticent to ascribe too much importance to these differences. The 

subsoscines are restricted to the New World, and as such apparent differences in response to 

environment may be artefacts of the environments to which they are exposed. For example, 

suboscines experience a more limited range of environmental conditions, and so we have less 

data to assess their responses to environmental gradients. Equally, true differences in habitat 

affinity (such as suboscines being more prevalent in dense forest) could lead to spurious clade-

level differences by virtue of the impact of the drivers we have already identified on birdsong. 

In both cross-species and assemblage-based analyses we showed song complexity increased 

with NPP and temperature (see Fig. 4). If NPP is positively associated with habitat complexity, 

as we suggest above, these results differ somewhat to previous work pointing towards lower 

song complexity in more complex environments. For example, Irwin (2000), found increased 

song complexity at high latitudes, and Weir and Wheatcroft (2010) showed greater rates of 



 

 

increase in syllable diversity (increased complexity) at high latitudes. This trend was also 

supported by the meta-analysis of Boncoraglio and Saino (2007), which provided some 

evidence that song complexity decreases with environmental heterogeneity and habitat 

complexity. It is possible, therefore, that our measure of NPP might be a better indicator of 

local species richness (e.g., Rosenzweig 1995; Mittelbach et al. 2001), and that increased song 

complexity is driven more by increased competition for acoustic signal space (Nelson and 

Marler 1990; Brumm and Naguib 2009). Whilst we attempted to disentangle the effect of NPP 

from species richness in our assemblage analyses, results were sensitive to the data subset 

examined, and the resolution of our species richness data, which is derived from overlaying 

range-maps, may be insufficient to reliably differentiate between the two predictors. This, 

perhaps, explains the tendency of the sign of the association between our predictor variables 

and species richness to switch (positive or negative) when modelled in the Old and New 

World. Further, these switches could be related to a relative lack of tropical species within the 

Old World in our dataset (see Fig. 3A). 

In keeping with our life history analyses, we also found that complexity was significantly 

positively correlated with body mass in the new world at the cross-species level, perhaps 

reflecting a link between increased neural capacity (larger birds tend to have larger brains) and 

greater song repertoires (Garamszegi et al. 2004). That a similar relationship was not apparent 

in the Old World might reflect differences in sampling or clade differences between oscines 

and suboscines, which differ in their mode of song acquisition (Kroodsma and Miller 1996; 

Beecher and Brenowitz 2005). Interestingly, song complexity increases with decreasing 

average body size at the assemblage level, both in the New and Old world (see Appendix S3 in 

Supporting Information). Nevertheless, we caution that body size and environmental conditions 

are often correlated in birds (e.g., Bergmann’s rule; Meriri & Dayan 2003), and we do not have 

the data to definitively disentangle these two potential drivers of birdsong. 



 

 

Contrasting spatial and phylogenetic patterns and approaches 

We explored two separate analytical frameworks, evaluating relationships across species whilst 

controlling for species evolutionary relationships, and across space taking into consideration 

spatial autocorrelation. By integrating over these frameworks it is possible to gain new insights 

that neither method alone is able to provide (Freckleton and Jetz 2009; Safi and Pettorelli 2010; 

Olalla-Tárraga et al. 2010; Adams and Church 2011). While consistent patterns in both 

approaches would suggest strong evidence for the underlying hypothesis, different patterns 

between ‘cross-species’ and ‘assemblage’ analyses can help identify new processes or potential 

biases. For example, both approaches identified negative associations between song pitch and 

environmental predictors (temperature and productivity) but they were only significant in the 

spatial approach. Both methods also detected a positive association between song complexity 

and productivity, but this was only significant for the New World in the cross-species analysis. 

That the two methods differed in significant predictors might, in part, reflect sampling biases in 

the taxonomic and spatial coverage of included passerine species:  most of the Old World 

passerine species in our dataset are found in Europe; the tropical latitudes are under-sampled 

thus shortening both the temperature and productivity gradients in this geographic region. 

Both approaches have strengths but also limitations. Cross-species analyses may, but need not 

necessarily (see Ives et al. 2007; Ives & Helmus 2011), over-simplify spatial data by 

summarizing them to a single measure for each species (Morales-Castilla et al. 2013). In turn, 

assemblage-based analyses can inflate effect sizes and overlook how the evolutionary 

relationships among species may have left an imprint on their spatial distributions (Freckleton 

et al. 2002; Freckleton and Jetz, 2009). We emphasise here how the two approaches may 

provide complementary information, and encourage their joint use: our assemblage-based 

results suggest that factors such as NPP and species richness are likely affecting birdsong, but 



 

 

their lack of significance in the cross-species analysis suggests that more work is needed to 

both confirm this and disentangle the influence of these factors. Recent efforts suggest 

potential for combined approaches (e.g., Freckleton and Jetz, 2009; Morales-Castilla et al. 

2013; Kaldhusdal et al. 2015) that were, unfortunately, not computationally tractable in our 

case, but nonetheless offer exciting possibilities for the future.  

Data quality and processing 

Descriptions of species traits’ and distributions across global scales offer powerful insight into 

the processes that shape diversity. By necessity, such macro-scale analyses are often based on 

noisy or coarse data; nonetheless, their synthesis across species and geographic scales can 

stimulate the formulation of novel hypotheses and theory. Our analyses used citizen science 

data on bird song from the Xeno-Canto database (http://www.xeno-canto.org/). This 

remarkable database represents one of the largest single sources of bird song globally. Working 

with data from Xeno-Canto is particularly challenging due to problems associated with: (1) 

species identification and the potential for intra-specific variation, and (2) recording conditions, 

but we believe our results are robust for the following reasons. (1) Our species-level estimates 

explain ~68% and ~58% of the total variance in peak and standard deviation of frequency, 

respectively. This suggests both that ignoring intra-specific variation is a reasonable 

simplification, and that species identifications are likely consistent (even if not always correct). 

(2) Local environmental conditions like weather and humidity affect sound recordings, which 

(despite our use of only the highest-quality of recordings) could confound our analyses. That 

we detect the expected relationship between body mass and frequency (see Figure 3 and Table 

1; Fletcher 2004; Derryberry et al. 2012) suggests we retain the power to detect ecologically 

relevant signal in our data.  

http://www.xeno-canto.org/


 

 

To ensure that our machine learning pipeline did not introduce additional bias to our analysis, 

we repeated our analysis on a manually verified subset of the data, in which we found 

qualitatively identical relationships. Our use and release of open source software allows others 

to easily replicate our analyses and make different choices with regard to data quality and 

inclusion. We hope that, in the future, others will improve upon what we acknowledge is very 

much a first-pass attempt at automated recognition of birdsong from noisy but readily available 

data. 

Summary 

We find that environmental factors and body mass are stronger drivers of bird song pitch and 

complexity than life history traits representing sexual dimorphism or mating strategy. The 

ability for a song to be heard and recognized by conspecifics is shaped by the biotic and abiotic 

environment, and these constraints may therefore be more important in determining global 

patterns of bird song diversity, than mating strategy (Tobias et al. 2010). We suggest that songs 

increase in complexity with increasing intensity of biotic interactions and/or habitat complexity 

(measured through primary productivity) both across species and in space. It is our hope that, 

by providing tools to make use of citizen science data, our study will facilitate further analyses 

of bird song diversity and evolution.  



 

 

Literature Cited 

Adams, D. C., and J. O. Church. 2011. The evolution of large-scale body size clines in 

Plethodon salamanders: Evidence of heat-balance or species-specific artifact? Ecography 

34:1067–1075. 

Amador, A., F. Goller, and G. B. Mindlin. 2008. Frequency modulation during song in a 

suboscine does not require vocal muscles. J. Neurophysiol. 99:2383–2389. 

Arnold, A. P. 1992. Developmental plasticity in neural circuits controlling birdsong: sexual 

differentiation and the neural basis of learning. J. Neurobiol. 23:1506–1528. 

Baker, M. C. 2001. Bird song research: the past 100 years. Bird Behav. 14:3–50. 

Beecher, M. D., and E. A. Brenowitz. 2005. Functional aspects of song learning in songbirds. 

Trends Ecol. Evol. 20:143–149. 

Benkman, C. W. 1991. Predation, seed size partitioning and the evolution of body size in seed-

eating finches. Evol. Ecol. 5:118–127. 

Bini, L. M., J. A. F. Diniz-Filho, T. F. L. V. B. Rangel, T. S. B. Akre, R. G. Albaladejo, F. S. 

Albuquerque, A. Aparicio, M. B. Araújo, A. Baselga, J. Beck, M. I. Bellocq, K. Böhning-

Gaese, P. A. V. Borges, I. Castro-Parga, V. K. Chey, S. L. Chown, P. de Marco Jr, D. S. 

Dobkin, D. Ferrer-Castán, R. Field, J. Filloy, E. Fleishman, J. F. Gömez, J. Hortal, J. B. 

Iverson, J. T. Kerr, W. D. Kissling, I. J. Kitching, J. L. Leön-Cortés, J. M. Lobo, D. Montoya, 

I. Morales-Castilla, J. C. Moreno, T. Oberdorff, M.  Á. Olalla-Tárraga, J. G. Pausas, H. Qian, 

C. Rahbek, M. Á. Rodríguez, M. Rueda, A. Ruggiero, P. Sackmann, N. J. Sanders, L. C. 

Terribile, O. R. Vetaas, and B. A. Hawkins. 2009. Coefficient shifts in geographical ecology: 

an empirical evaluation of spatial and non-spatial regression. Ecography  32:193–204.  



 

 

Blondel, J., P. Perret, M. C. Anstett, and C. Thébaud. 2002. Evolution of sexual size 

dimorphism in birds: test of hypotheses using blue tits in contrasted Mediterranean habitats. J. 

Evol. Biol. 15:440–450. 

Blumenrath, S., and T. Dabelsteen. 2004. Degradation of great tit (Parus major) song before 

and after foliation: implications for vocal communication in a deciduous forest. Behaviour 

141:935–958. 

Bollback, J. 2005. Posterior mapping and predictive distributions. Pp. 189–203 in R. Nielsen, 

ed. Statistical methods in molecular evolution. Springer-Verlag, New York, NY. 

Boncoraglio, G., and N. Saino. 2007. Habitat structure and the evolution of bird song: a meta-

analysis of the evidence for the acoustic adaptation hypothesis. Funct. Ecol. 21:134–142. 

Brainard, M. S., and A. J. Doupe. 2002. What songbirds teach us about learning. Nature 

417:351–358. 

Brenowitz, E. A. 1997. Comparative approaches to the avian song system. J. Neurobiol. 

33:517–531. 

Brown, J. H., J. Gillooly, A. P. Allen, V. M. Savage, and G. West. 2004. Toward a metabolic 

theory of ecology. Ecology 85:1771–1789. 

Brumm, H., and M. Naguib. 2009. Environmental acoustics and the evolution of bird song. 

Advances in the Study of Behavior 40:1-33. 

Cardoso, G. C. 2010. Loudness of birdsong is related to the body size, syntax and phonology of 

passerine species. J. Evol. Biol. 23:212–219. 



 

 

Cardoso, G. C., and P. G. Mota. 2007. Song diversification and complexity in canaries and 

seedeaters (Serinus spp.). Biol. J. Linn. Soc. 92:183–194. 

Cardoso, G. C., and Y. Hu. 2011. Birdsong performance and the evolution of simple (rather 

than elaborate) sexual signals. American Naturalist 178:679–686. 

Crawley, M. 2007. The R Book. Wiley, Chichester, UK. 

Currie, D. J., G. G. Mittelbach, H. V. Cornell, R. Field, J. F. Guégan, B. A. Hawkins, D. M. 

Kaufman, J. T. Kerr, T. Oberdorff, E. O’Brien, and J. R. G. Turner. 2004. Predictions and tests 

of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7:1121–

1134. 

Derégnaucourt, S., P. P. Mitra, O. Fehér, C. Pytte, and O. Tchernichovski. 2005. How sleep 

affects the developmental learning of bird song. Nature 433:710–6. 

Derryberry, E. P. 2007. Evolution of bird song affects signal efficacy: an experimental test 

using historical and current signals. Evolution 61:1938–1945. 

Derryberry, E. P. 2011. Male response to historical and geographical variation in bird song. 

Biol. Lett. 7:57–59. 

Derryberry, E. P., N. Seddon, S. Claramunt, J. A. Tobias, A. Baker, A. Aleixo, and R. T. 

Brumfield. 2012. Correlated evolution of beak morphology and song in the neotropical 

woodcreeper radiation. Evolution 66:2784–2797. 

Doupe, A. J., and P. K. Kuhl. 1999. Bird song and human speech: common themes and 

mechanisms. Annu. Rev. Neurosci. 22:567–631. 



 

 

Dutilleul, P., P. Clifford, S. Richardson, and D. Hemon. 1993. Modifying the t Test for 

assessing the correlation between two spatial processes. Biometrics 49:305–314. 

Edwards, S. V., S. B. Kingan, J. D. Calkins, C. N. Balakrishnan, W. B. Jennings, W. J. 

Swanson, and M. D. Sorenson. 2005. Speciation in birds: genes, geography, and sexual 

selection. Proc. Natl. Acad. Sci. U. S. A. 102(Suppl.):6550–6557. 

Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15. 

Fletcher, N. H. 2004. A simple frequency-scaling rule for animal communication. J. Acoust. 

Soc. Am. 115:2334–2338. 

Förschler, M. I., and E. K. V. Kalko. 2007. Geographical differentiation, acoustic adaptation 

and species boundaries in mainland citril finches and insular Corsican finches, superspecies 

Carduelis [citrinella]. J. Biogeogr. 34:1591–1600. 

Francis, C. D., N. J. Kleist, C. P. Ortega, and A. Cruz. 2012. Noise pollution alters ecological 

services: enhanced pollination and disrupted seed dispersal. Proc. R. Soc. B. 279:2727–35. 

Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative 

data. Am. Nat. 160:712–726. 

Freckleton, R. P., and W. Jetz. 2009. Space versus phylogeny: disentangling phylogenetic and 

spatial signals in comparative data. Proc. R. Soc. B. 276:21–30. 

Gahr, M. 2000. Neural song control system of hummingbirds: comparison to swifts, vocal 

learning (songbirds) and nonlearning (suboscines) passerines, and vocal learning (budgerigars) 

and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J. Comp. Neurol. 426:182-

196. 



 

 

Garamszegi, L. Z., and A. P. Møller. 2004. Extrapair paternity and the evolution of bird song. 

Behav. Ecol. 15:508–519. 

Gaston, K. J., S. L. Chown, and K. L. Evans. 2008. Ecogeographical rules: elements of a 

synthesis. J. Biogeogr. 35:483–500. 

Giannakopoulos, T. 2015. pyAudioAnalysis: an open-source Python library for audio signal 

analysis. PLoS One 10:e0144610. 

Grant, B. R., and P. R. P. Grant. 1996. Cultural inheritance of song and its role in the evolution 

of Darwin’s finches. Evolution 50:2471–2487. 

Greig, E. I., J. J. Price, and S. Pruett-Jones. 2013. Song evolution in Maluridae: influences of 

natural and sexual selection on acoustic structure. Emu 113:270. 

Haavie, J., T. Borge, S. Bures, L. Z. Garamszegi, H. M. Lampe, J. Moreno, A. Qvarnström, J. 

Török, and G. P. Sætre. 2004. Flycatcher song in allopatry and sympatry - convergence, 

divergence and reinforcement. J. Evol. Biol. 17:227–237. 

Hansen, P. 1979. Vocal learning: its role in adapting sound structures to long-distance 

propagation, and a hypothesis on its evolution. Anim. Behav. 27:1270–1271. 

Hawkins, B. A., E. E. Porter, and J. A. F. Diniz-Filho. 2003. Productivity and history as 

predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623. 

Hawkins, B. A., J. A. F. Diniz‐Filho, C. A. Jaramillo, and S. A. Soeller. 2007. Climate, niche 

conservatism, and the global bird diversity gradient. Am. Nat. 170:S16–S27. 



 

 

Herrel, A., J. Podos, S. K. Huber, and A. P. Hendry. 2005. Bite performance of beak for the 

evolution Darwin’s finches: implications for the evolution of beak shape. Funct. Ecol. 19:43–

48. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high 

resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978. 

Hijmans, R. J., and J. van Etten. 2015. Raster: geographic data analysis and modeling, R 

package version 2.5-2. 

Huber, S. K., and J. Podos. 2006. Beak morphology and song features covary in a population 

of Darwin’s finches (Geospiza fortis). Biol. J. Linn. Soc. 88:489–498. 

Ives, A., Midford, P., & Garland, T., Jr. (2007). Within-species variation and measurement 

error in phylogenetic comparative methods. Systematic Biology, 56(2), 252. 

Ives, A. R., & Helmus, M. R. (2011). Generalized linear mixed models for phylogenetic 

analyses of community structure. Ecological Monographs, 81(3), 511-525. 

Imhoff, M., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss, and W. T. Lawrence. 2004. Global 

patterns in human consumption of net primary production. Nature 429:870–873. 

Jarvis, E. D., S. Mirarab, A. J. Aberer, B. Li, P. Houde, C. Li, S. Y. W. Ho, B. C. Faircloth, B. 

Nabholz, J. T. Howard, A. Suh, C. C. Weber, R. R. da Fonseca, J. Li, F. Zhang, H. Li, L. Zhou, 

N. Narula, L. Liu, G. Ganapathy, B. Boussau, M. S. Bayzid, V. Zavidovych, S. Subramanian, 

T. Gabaldón, S. Capella-Gutiérrez, J. Huerta-Cepas, B. Rekepalli, K. Munch, M. Schierup, B. 

Lindow, W. C. Warren, D. Ray, R. E. Green, M. W. Bruford, X. Zhan, A. Dixon, S. Li, N. Li, 

Y. Huang, E. P. Derryberry, M. F. Bertelsen, F. H. Sheldon, R. T. Brumfield, C. V Mello, P. V 

Lovell, M. Wirthlin, M. P. C. Schneider, F. Prosdocimi, J. A. Samaniego, A. M. V. Velazquez, 



 

 

A. Alfaro-Núñez, P. F. Campos, B. Petersen, T. Sicheritz-Ponten, A. Pas, T. Bailey, P. 

Scofield, M. Bunce, D. M. Lambert, Q. Zhou, P. Perelman, A. C. Driskell, B. Shapiro, Z. 

Xiong, Y. Zeng, S. Liu, Z. Li, B. Liu, K. Wu, J. Xiao, X. Yinqi, Q. Zheng, Y. Zhang, H. Yang, 

J. Wang, L. Smeds, F. E. Rheindt, M. Braun, J. Fjeldsa, L. Orlando, F. K. Barker, K. A. 

Jønsson, W. Johnson, K.-P. Koepfli, S. O’Brien, D. Haussler, O. A. Ryder, C. Rahbek, E. 

Willerslev, G. R. Graves, T. C. Glenn, J. McCormack, D. Burt, H. Ellegren, P. Alström, S. V 

Edwards, A. Stamatakis, D. P. Mindell, J. Cracraft, E. L. Braun, T. Warnow, W. Jun, M. T. P. 

Gilbert, and G. Zhang. 2014. Whole-genome analyses resolve early branches in the tree of life 

of modern birds. Science 346:1320–1331.  

Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity 

of birds in space and time. Nature 491:444–8. 

Kaldhusdal, A., R. Brandl, J. Müller, L. Möst, and T. Hothorn. 2015. Spatio-phylogenetic 

multispecies distribution models. Methods Ecol. Evol. 6:187–197. 

Kirschel, A. N. G., D. T. Blumstein, and T. B. Smith. 2009. Character displacement of song 

and morphology in African tinkerbirds. Proc. Natl. Acad. Sci. U. S. A. 106:8256–8261. 

Kroodsma, D. E., and E. Miller. 1996. Ecology and evolution of acoustic communication in 

birds. Cornell University Press, New York, NY. 

Leitão, A., C. ten Cate, and K. Riebel. 2006. Within-song complexity in a songbird is 

meaningful to both male and female receivers. Anim. Behav. 71:1289–1296. 

Lislevand, T., J. Figuerola, and T. Székely. 2007. Avian body sizes in relation to fecundity, 

mating system, display behaviour, and resource sharing. Ecology 88:1605. 



 

 

Loffredo, C. A., and G. Borgia. 1986. Sexual selection, mating systems, and the evolution of 

avian acoustical displays. Am. Nat. 128:773–794. 

Luther, D. A., J. Phillips, and P. Elizabeth. 2015. Not so sexy in the city : urban birds adjust 

songs to noise but compromise vocal performance. Behav. Ecol. 00:1–9. 

Luther, D. A., and E. P. Derryberry. 2012. Birdsongs keep pace with city life: changes in song 

over time in an urban songbird affects communication. Anim. Behav. 83:1059–1066. 

Mason, N. A., A. J. Shultz, and K. J. Burns. 2014. Elaborate visual and acoustic signals evolve 

independently in a large, phenotypically diverse radiation of songbirds. Proceedings of the 

Royal Society B: Biological Sciences 281: 20140967. 

Mason NA, Burns KJ. The effect of habitat and body size on the evolution of vocal displays in 

Thraupidae (tanagers), the largest family of songbirds. Biol J Linn Soc. 2015;114(3):538-51. 

Meiri, S., & Dayan, T. (2003). On the validity of Bergmann's rule. Journal of biogeography, 

30(3), 331-351. 

Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. 

R. Willig, S. I. Dodson, and L. Gough. 2001. What is the observed relationship between 

species richness and productivity. Ecology 82:2381–2396. 

Morales-Castilla, I., M. Á. Rodríguez, R. Kaur, and B. A. Hawkins. 2013. Range size patterns 

of New World oscine passerines (Aves): insights from differences among migratory and 

sedentary clades. J. Biogeogr. 40:2261–2273. 

Morton, E. S. 1975. Ecological sources of selection on avian sounds. Am. Nat. 109:17–34. 



 

 

Mountjoy, D. J., and R. E. Lemon. 1996. Female choice for complex song in the European 

starling: a field experiment. Behav. Ecol. Sociobiol. 38:65–71. 

Nelson, D. A., and P. Marler. 1990. The perception of bird song and an ecological concept of 

signal space. Pp. 443–478 in M. Stebbins, and W. C. Berkley, eds. Comparative perception: 

complex signals, vol. 2. John Wiley & Sons, Oxford, UK. 

Nottebohm, F., and A. P. Arnold. 1976. Sexual dimorphism in vocal control areas of the 

songbird brain. Science 194:211–213. 

Nowicki, S., S. Peters, and J. Podos. 1998. Song learning, early nutrition and sexual selection 

in songbirds. Am. Zool. 38:179–190. 

Nowicki, S., and W. A. Searcy. 2004. Song function and the evolution of female preferences: 

why birds sing, why brains matter. Ann. N. Y. Acad. Sci. 1016:704–723. 

Olalla-Tárraga, M. Á., L. M. Bini, J. A. F. Diniz-Filho, and M. Á. Rodríguez. 2010. Cross-

species and assemblage-based approaches to Bergmann’s rule and the biogeography of body 

size in Plethodon salamanders of eastern North America. Ecography 33:362–368. 

Orme, D., R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz, N. Isaac, and W. Pearse. 2013. The 

caper package: comparative analysis of phylogenetics and evolution in R. R Package version 

0.5.2. 

Owens, I. P. F., and I. R. Hartley. 1998. Sexual dimorphism in birds: why are there so many 

different forms of dimorphism? Proc. R. Soc. B Biol. Sci. 265:397–407. 

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–884. 



 

 

Pijanowski, B. C., A. Farina, S. H. Gage, S. L. Dumyahn, and B. L. Krause. 2011. What is 

soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol. 

26:1213–1232. 

Podos, J., S. K. Huber, and B. Taft. 2004. Bird song: the inferface of evolution and mechanism. 

Annu. Rev. Ecol. Evol. Syst. 35:55–87. 

Podos, J., and P. S. Warren. 2007. The evolution of geographic variation in birdsong. Adv. 

Study Behav. 37:403–458. 

Price, J. J. 2015. Rethinking our assumptions about the evolution of bird song and other 

sexually dimorphic signals. Front. Ecol. Evol. 3:1–6. 

Price, J. J., and S. M. Lanyon. 2002. Reconstructing the evolution of complex bird song in the 

oropendolas. Evolution 56:1514–1529. 

R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/.  

Read, A., and D. Weary. 1992. The evolution of bird song: comparative analyses. Philos. 

Trans. R. Soc. Lond. B Biol. Sci. 338:165–187. 

Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other 

things). Methods Ecol. Evol. 3:217–223. 

Revell, L. J. 2013. Two new graphical methods for mapping trait evolution on phylogenies. 

Methods Ecol. Evol. 4:754–759. 



 

 

Ríos-Chelén, A. A., C. Salaberria, I. Barbosa, C. M. Garcia, and D. Gil. 2012. The learning 

advantage: bird species that learn their song show a tighter adjustment of song to noisy 

environments than those that do not learn. J. Evol. Biol. 25:2171–2180. 

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, 

Cambridge, UK. 

Ryan, M. J., and E. A. Brenowitz. 1985. The role of body size, phylogeny, and ambient noise 

in the evolution of bird song. Am. Nat. 126:87–100. 

Safi, K., and N. Pettorelli. 2010. Phylogenetic, spatial and environmental components of 

extinction risk in carnivores. Glob. Ecol. Biogeogr. 19:352–362. 

Seddon, N. 2005. Ecological adaptation and species recognition drives vocal evolution in 

Neotropical suboscine birds. Evolution 59:200-215. 

Seddon, N., R. M. Merrill, and J. A. Tobias. 2008. Sexually selected traits predict patterns of 

species richness in a diverse clade of suboscine birds. Am. Nat. 171:620–631. 

Seddon, N., Botero, C. A., Tobias, J. A., Dunn, P. O., MacGregor, H. E., Rubenstein, D. R., ... 

& Safran, R. J. (2013). Sexual selection accelerates signal evolution during speciation in birds. 

In Proc. R. Soc. B (Vol. 280, No. 1766, p. 20131065). The Royal Society. 

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical 

Journal. 27 (3): 379–423. 

Slabbekoorn, H., and T. B. Smith. 2002a. Bird song, ecology and speciation. Philos. Trans. R. 

Soc. Lond. B Biol. Sci. 357:493–503. 



 

 

Slabbekoorn, H., and T. B. Smith. 2002b. Habitat-dependent song divergence in the little 

greenbul: an analysis of environmental selection pressures on acoustic signals. Evolution 

56:1849–1858. 

Slabbekoorn, H., P. Yeh, and K. Hunt. 2007. Sound transmission and song divergence : a 

comparison of urban and forest acoustics. Condor 109:67–78. 

Spencer, K. A., J. H. Wimpenny, K. L. Buchanan, P. G. Lovell, A. R. Goldsmith, and C. K. 

Catchpole. 2005. Developmental stress affects the attractiveness of male song and female 

choice in the zebra finch (Taeniopygia guttata). Behav. Ecol. Sociobiol. 58:423–428. 

Sueur, J., S. Pavoine, O. Hamerlynck, and S. Duvail. 2008. Rapid acoustic survey for 

biodiversity appraisal. PLoS One 3:e4065. 

Suthers, R. A. (2004). How birds sing and why it matters. Nature’s music: the science of 

birdsong. Elsevier Academic Press, San Diego, 272-295. 

Symonds, M. R. E., and G. J. Tattersall. 2010. Geographical variation in bill size across bird 

species provides evidence for Allen’s rule. Am. Nat. 176:188–197. 

Székely, T., T. Lislevand, and J. Figuerola. 2007. Sexual size dimorphism in birds. Pp. 27–37 

in D. J. Fairbairn, W. U. Blanckenhorn, and T. Szekely, eds. Sex, size and gender roles. Oxford 

University Press, Oxford, UK. 

Tietze, D. T., J. Martens, B. S. Fischer, Y. H. Sun, A. Klussmann-Kolb, and M. Päckert. 2015. 

Evolution of leaf warbler songs (Aves: Phylloscopidae). Ecology and Evolution 5: 781–798. 

Tobias, J. A., J. Aben, R. T. Brumfield, E. P. Derryberry, W. Halfwerk, H. Slabbekoorn, and 

N. Seddon. 2010. Song divergence by sensory drive in Amazonian birds. Evolution 64:2820–

2839. 



 

 

Tobias JA, Cornwallis C, Derryberry EP, Claramunt S, Brumfield RT, Seddon N. Species 

coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature. 2014. 

Tobias, J. A., Sheard, C., Seddon, N., Meade, A., Cotton, A. J., & Nakagawa, S. (2016). 

Territoriality, social bonds, and the evolution of communal signaling in birds. Frontiers in 

Ecology and Evolution, 4, 74. 

Touchton JM, Seddon N, Tobias JA. Captive Rearing Experiments Confirm Song 

Development without Learning in a Tracheophone Suboscine Bird. PLoS ONE. 

2014;9(4):e95746. 

Tubaro, P., and B. Mahler. 1998. Acoustic frequencies and body mass in New World doves. 

The Condor 100:54–61. 

Uyeda, J. C., Caetano, D. S., & Pennell, M. W. (2015). Comparative analysis of principal 

components can be misleading. Systematic biology, syv019. 

Uyeda, J. C., Zenil-Ferguson, R., & Pennell, M. W. (2017). Rethinking phylogenetic 

comparative methods. bioRxiv, 222729. 

Weir, J. T., and D. Wheatcroft. 2011. A latitudinal gradient in rates of evolution of avian 

syllable diversity and song length. Proc. R. Soc. Lond. B Biol. Sci. 278:1713–1720. 

Weir, J. T., D. J. Wheatcroft, and T. D. Price. 2012. The role of ecological constraint in driving 

the evolution of avian song frequency across a latitudinal gradient. Evolution 66:2773–2783. 

Wiley, R. H. 2009. Signal transmission in natural environments. Encycl. Neurosci. 8:827–832. 

Wiley, R. H., and D. G. Richards. 1978. Physical constraints on acoustic communication in the 

atmosphere: implications for the evolution of animal vocalizations. Behav. Ecol. Sociobiol. 

3:69–94. 



 

 

Wiley, R. H., and D. G. Richards. 1982. Adaptations for acoustic communication in birds: 

sound transmission and signal detection. Pp. 132–181 in E. H. Kroodsma, and D.E. Miller, eds. 

Acoustic communication in birds, vol. 1. Academic Press, New York, NY. 

Wilkins, M. R., N. Seddon, and R. J. Safran. 2013. Evolutionary divergence in acoustic signals: 

causes and consequences. Trends Ecol. Evol. 28:156–166. 

Wilman, H., J. Belmaker, J. Simpson, C. de la Rosa, M. M. Rivadeneira, and W. Jetz. 2014. 

EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 

95:2027–2027. 

Woolley, S. C., & Doupe, A. J. (2008). Social context–induced song variation affects female 

behavior and gene expression. PLoS Biology, 6(3): e62. 

Zhang, G., C. Li, Q. Li, B. Li, D. M. Larkin, C. Lee, J. F. Storz, A. Antunes, M. J. Greenwold, 

R. W. Meredith, A. Ödeen, J. Cui, Q. Zhou, L. Xu, H. Pan, Z. Wang, L. Jin, P. Zhang, H. Hu, 

W. Yang, J. Hu, J. Xiao, Z. Yang, Y. Liu, Q. Xie, H. Yu, J. Lian, P. Wen, F. Zhang, H. Li, Y. 

Zeng, Z. Xiong, S. Liu, L. Zhou, Z. Huang, N. An, J. Wang, Q. Zheng, Y. Xiong, G. Wang, B. 

Wang, J. Wang, Y. Fan, R. R. da Fonseca, A. Alfaro-Núñez, M. Schubert, L. Orlando, T. 

Mourier, J. T. Howard, G. Ganapathy, A. Pfenning, O. Whitney, M. V Rivas, E. Hara, J. Smith, 

M. Farré, J. Narayan, G. Slavov, M. N. Romanov, R. Borges, J. P. Machado, I. Khan, M. S. 

Springer, J. Gatesy, F. G. Hoffmann, J. C. Opazo, O. Håstad, R. H. Sawyer, H. Kim, K.-W. 

Kim, H. J. Kim, S. Cho, N. Li, Y. Huang, M. W. Bruford, X. Zhan, A. Dixon, M. F. Bertelsen, 

E. Derryberry, W. Warren, R. K. Wilson, S. Li, D. A. Ray, R. E. Green, S. J. O’Brien, D. 

Griffin, W. E. Johnson, D. Haussler, O. A. Ryder, E. Willerslev, G. R. Graves, P. Alström, J. 

Fjeldså, D. P. Mindell, S. V Edwards, E. L. Braun, C. Rahbek, D. W. Burt, P. Houde, Y. 

Zhang, H. Yang, J. Wang, E. D. Jarvis, M. T. P. Gilbert, and J. Wang. 2014. Comparative 



 

 

genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–

1320.  

  



 

 

 

Tables 
Table 1. Comparative analysis of bird song, controlling for phylogenetic non-independence 

using Phylogenetic Generalised Least Squares. All values are reported as mean value for each 

parameter (estimate, standard error, etc.) ± the standard deviation of that parameter across all 

100 bootstrap phylogenies. Note that all the suboscines in our analysis are restricted to the New 

World, thus we could not compare the oscine and suboscine clades in the Old World analyses. 

   

  

  

 Frequency peak 
    

 

 Frequency std. dev. 
  

   Estimate 

Std. 

Error Pr(>|t|) 

R²adj 

(%) λ  Estimate 

Std. 

Error Pr(>|t|) R²adj λ 

Life history 

traits: 

global Intercept 

6.606 ± 

0.077 

 

0.858 ± 

0.039 

 

0.000 ± 

0.000 

 

4.291 ± 

0.0236 

0.024 

± 

0.046  

1072.071 

± 21.519 

156.764 

± 6.189 

0.000 ± 

0.000 

22.591 

± 0.772 

0.772 

± 

0.045 

 
Log(body 

mass) 

-0.831 ± 

0.012 

0.161 ± 

0.002 

 

0.000 ± 

0.000 

   

29.429 ± 

0.819 

43.09 ± 

0.239 

0.496 ± 

0.009 

  

 
Sexual 

dimorphism 

1.311 ± 

0.107 

0.915 ± 

0.009 

 

0.158 ± 

0.034 

   

501.405 ± 

3.096 

297.497 

± 0.343 

0.095 ± 

0.002 

  

 Monogamy 

0.487 ± 

0.021 

0.276 ± 

0.003 

0.081 ± 

0.013    
62.173 ± 

9.609 

86.936 

± 0.116 

0.479 ± 

0.071   

 Suboscine 

-1.547 ± 

0.063 

1.016 ± 

0.054 

0.132 ± 

0.020 
   

203.112 ± 

13.676 

123.838 

± 

11.762 

0.11 ± 

0.062 
  

             

Biogeographic 

traits: 

global Intercept 

6.312 ± 

0.066 

0.585 ± 

0.024 

0.000 ± 

0.000 

3.000 ± 

0.122 
0.122 

± 

0.050  

1089.834 

± 28.728 

125.835 

± 

13.818 

0.000 ± 

0.000 11.704 

± 0.373 

0.373 

± 

0.038 

 
Log(body 

mass) 

-0.685 ± 

0.007 

0.087 ± 

0.001 

0.000 ± 

0.000 
 

  
20.709 ± 

1.923 

23.09 ± 

0.475 

0.372 ± 

0.052   

 NPP 

0.000 ± 

0.000 

0.000 ± 

0.000 

0.849 ± 

0.038 
 

  
0.332 ± 

0.005 

0.088 ± 

0.001 

0.000 ± 

0.000   

 TEMP 

0.000 ± 

0.000 

0.001 ± 

0.000 

0.837 ± 

0.045 
 

  
0.164 ± 

0.024 

0.214 ± 

0.001 

0.447 ± 

0.062   

 Suboscine 

-1.284 ± 

0.059 

0.579 ± 

0.024 

0.027 ± 

0.004 
 

  

2.889 ± 

24.087 

109.191 

± 

22.104 

0.834 ± 

0.198 
  

 
Old World 

(contrast) 
0.004 ± 

0.017 

0.221 ± 

0.004 

0.952 ± 

0.040 
 

  
122.250 ± 

3.270 

107.781 

± 1.117 

0.257 ± 

0.011   

 
New and Old 

(contrast) 
0.452 ± 

0.013 

0.384 ± 

0.002 

0.240 ± 

0.014 
 

  
140.879 ± 

4.802 

55.946 

± 3.31 

0.014 ± 

0.006   



 

 

             

Biogeographic 

traits: 

Old 

World Intercept 

6.709 ± 

0.065 

0.631 ± 

0.027 

0.000 ± 

0.000 

2.878 ± 

0.122 

0.122 

± 

0.033  

1388.344 

± 15.766 

122.087 

± 6.889 

0.000 ± 

0.000 

17.589 

± 0.607 

0.607 

± 

0.049 

  

Log(body 

mass) 

-0.808 ± 

0.009 

0.118 ± 

0.002 

0.000 ± 

0.000    
-39.019 ± 

1.621 

29.486 

± 0.435 

0.188 ± 

0.015   

  NPP 

0.000 ± 

0.000 

0.001 ± 

0.000 

0.491 ± 

0.071    
0.344 ± 

0.012 

0.14 ± 

0.001 

0.015 ± 

0.003   

  Temperature 

0.000 ± 

0.000 

0.001 ± 

0.000 

0.618 ± 

0.056    
0.190 ± 

0.025 

0.251 ± 

0.001 

0.451 ± 

0.053   

             

Biogeographic 

traits: 

New 

World Intercept 

6.045 ± 

0.004 

0.447 ± 

0.023 

0.000 ± 

0.000 

7.066 ± 

0.002 

0.002 

± 

0.011  

891.853 ± 

5.898 

126.984 

± 3.039 

0.000 ± 

0.000 

19.458 

± 0.003 

0.003 

± 

0.028 

  

Log(body 

mass) 

-0.550 ± 

0.003 

0.114 ± 

0.001 

0.000 ± 

0.000    
79.571 ± 

1.046 

32.337 

± 0.089 

0.015 ± 

0.002   

  NPP 

0.000 ± 

0.000 

0.000 ± 

0.000 

0.908 ± 

0.007    
0.254 ± 

0.003 

0.105 ± 

0.000 

0.017 ± 

0.001   

  Temperature 

-0.001 ± 

0.000 

0.001 ± 

0.000 

0.420 ± 

0.010    
0.194 ± 

0.002 

0.348 ± 

0.000 

0.579 ± 

0.003   

 Suboscine 

-1.111 ± 

0.003 

0.215 ± 

0.038 

0.001 ± 

0.005    
73.591 ± 

2.031 

61.688 

± 7.579 

0.232 ± 

0.058   

  

 

 

  



 

 

Table 2. Assemblage-based analyses of bird song complexity (n=496). OLS models for species 

peak frequency and species standard deviation of frequency globally, and separately in the 

New World and the Old World. 

 

   Frequency peak  Frequency std. dev. 

    Estimate 

Std. 

Error Pr(>|t|) R²adj  Estimate 

Std. 

Error Pr(>|t|) R²adj 

Global Intercept 0.029 0.006 0.000 0.514  0.040 0.005 0.000 

0.439 

 Species richness 0.201 0.006 0.000   -0.241 0.006 0.000  

 Primary Productivity -0.210 0.007 0.000   0.430 0.007 0.000  

 Annual Temperature -0.451 0.007 0.000   0.064 0.007 0.000  

 Body mass -0.123 0.006 0.000   -0.209 0.006 0.000  

           

New 

World Intercept 0.000 0.009 1.000 0.668  0.000 0.012 1.000 0.424 

 Species richness -0.067 0.015 0.000   0.140 0.020 0.000  

 Primary Productivity -0.346 0.020 0.000   0.326 0.027 0.000  

 Annual Temperature -0.574 0.017 0.000   0.188 0.022 0.000  

 Body mass -0.302 0.011 0.000   -0.095 0.014 0.000  

           

Old 

World Intercept 0.040 0.007 0.000 0.495  0.050 0.006 0.000 0.500 

 Species richness -0.010 0.007 0.147   -0.092 0.006 0.000  

 Primary Productivity -0.197 0.008 0.000   0.386 0.007 0.000  

 Annual Temperature -0.487 0.008 0.000   0.144 0.007 0.000  

 Body mass -0.131 0.007 0.000   -0.205 0.007 0.000  

 

  



 

 

 

Figure captions  
 

Figure 1.  Two example spectrograms from birds in the analysis.  Time is on the horizontal 

axis, and frequency is on the vertical axis.  Color indicates intensity, from blue (silence) to red 

(loudest).  Arrows indicate the peak frequency (i.e., the height of the darkest red location).  

White vertical bars indicate the SD of the frequency (i.e., how much vertical spread there is in 

frequency across the song).  The bird in the top row produces a song that covers a lower range 

of frequencies than the bird on the bottom row.  

Figure 2. Peak frequency (kHz) and standard deviation of frequency mapped as continuous 

characters on a single posterior phylogeny from Jetz et al. (2012). Maximum likelihood 

estimation of the states at internal nodes was performed using the contrasts algorithm described 

by Felsenstein (1985) as implemented by the function contMap (Revell 2013) in the R package 

“phytools” (Revell 2012). Images from phylopic.org (under Creative Commons license). Note 

that estimates of phylogenetic signal (Pagel’s λ; Pagel 1999) are given in Table 1 once body 

size, which we argue in the text and Table 1 is a driver of peak frequency, has been controlled 

for. 

Figure 3.  Scatterplot of peak frequency (kHz) as a function of body mass (g). Points are 

individual species estimates coloured by clade membership (Oscine or Sub-oscine). Regression 

lines are taken from the estimates in Table 1; the tendency for sub-oscines and larger-bodied 

birds to have a lower peak frequency of song can be seen. 

Figure 4. Geographic patterns in species richness for the 496 passerine species included in the 

biogeographic analyses (A) in comparison with global species richness of 4150 species of 



 

 

continental passerine species (B). Variation in our metrics of birdsong pitch (mean peak 

frequency) (C) and complexity (mean standard deviation of the frequency) (D) are also shown.  

Figure 5. Scatterplots showing univariate assemblage-based relationships between mean peak 

frequency and mean annual temperature at the global scale with all explanatory variables in the 

spatial (assemblage) analyses. Lowess regression lines are shown in grey; points are semi-

transparent to give an impression of density. Relationships between these variables in the Old 

and New World are shown in Supplementary Materials 9. 
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