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18 Abstract

19 Common salvinia, Salvinia minima Baker (Salviniaceae), is a small, floating aquatic fern native to 

20 Central and South America that has invaded fresh water bodies in southeastern United States 

21 since the 1930s. We examined genetic variation across much of the introduced range of this 

22 species in the United States using codominant RAD-seq markers. Data from over 600 variable 

23 loci showed a reduction in heterozygosity from east to west in addition to a corresponding 

24 trend in assignment of samples to one of two genetic groups. Our data are consistent with 

25 previous published work and with the hypothesis that common salvinia had a single 

26 introduction on the east end of its current range in the United States. From there it migrated 

27 westward, losing genetic diversity during this spread. The data are also consistent with sexual 

28 reproduction, although we are unable to estimate the extent of this relative to asexual 

29 spreading. Future genetic work should include sampling from the native range to help 

30 determine the original sources of North American common salvinia.

31
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35 1. Introduction

36 Common salvinia, Salvinia minima Baker (Salviniaceae), is a small, floating aquatic fern native to 

37 Central and South America and is believed to be first introduced into wetland habitats in the 

38 southeastern United States in the late 1920s (Jacono et al., 2001). According to collection 

39 records, S. minima was probably first introduced into widely separated river drainages across 

40 the southeastern US starting in the 1930s (Jacono et al., 2001). Salvinia minima has been 

41 cultivated in greenhouse aquaria, backyard ponds, and pools as an ornamental plant since the 

42 late 1880s (Weatherby, 1921, 1937; Fernald, 1950).  Thus, introduction into natural areas likely 

43 occurred due to accidental (i.e. flooding) or intentional release.  Since its initial introductions in 

44 drainages west of the Florida panhandle, it has colonized rapidly into suitable habitats likely 

45 assisted by human movement including recreational watercrafts, but the spread is not as 

46 aggressive in the rest of Florida (Jacono et al., 2001).  This reduced invasiveness was attributed 

47 to the presence of the salvinia weevil, Cyrtobagous salvineae Calder & Sands which was 

48 documented in 68% of the Florida collections (Jacono et al., 2001). However, there is some 

49 question as to whether this is the same species as the C. salvineae that is found on the giant 

50 salvinia (S. molesta) in Brazil (Calder and Sands, 1985; Madeira et al., 2006; Russell et al., 2017).  

51 Salvinia minima can grow and spread rapidly asexually by fragmentation but can also reproduce 

52 sexually (De La Sota and Cassá De Pazos, 2001).  The base chromosome number in the genus is 

53 n = 9.  Salvinia minima is believed to be tetraploid (2n = 36) but hexaploids (possibly hybrid 

54 derivatives involving S. minima and S. sprucei Kuhn) have been identified near Manaus, Brazil 

55 (De La Sota and Cassá De Pazos, 2001). Two previous genetic studies from more than 10 years 

56 ago considered population variation along the Gulf Coast resulting in contrasting findings.  An 



57 isozyme study (Hauber and Lingam, unpub) found no variation among populations from Texas 

58 to Florida, whereas a study using dominant RAPD markers (Madeira et al., 2003) found 

59 considerable within and between population variation across the Southeast. Here we used a 

60 DNA sequencing approach that potentially captures thousands of codominant loci to examine 

61 genetic variation of introduced populations of S. minima. Our objectives are: 1) To test for 

62 multiple introductions of S. minima in thesSoutheastern United States, 2) To examine east -

63 west patterns of genetic variation, 3) To determine whether introduced populations are 

64 propagating asexually or if within-population variation suggests significant levels of sexual 

65 reproduction, and 4) To examine genetic evidence for recent or historical hybridization.  We 

66 also attempt to explain why different methods detect different levels of genetic variation.

67

68 2. Methods

69 2.1 Sampling

70 Salvinia minima samples were collected from southeastern (Orange County) Texas east along 

71 the US Gulf Coast to central (Marion County) Florida (Fig. 1).  Efforts were made to include sites 

72 where introductions were reported (Jacono et al., 2001). Salvinia molesta was also collected at 

73 four sites, in part, to control for possible adulterated samples of S. minima because immature S. 

74 molesta can be confused with S. minima in the field.  Every attempt was made to collect 

75 individuals that appeared healthy and separated by >10 m from subsequent samples.  This was 

76 true for both S. minima and S. molesta.  Most collections were made fresh and kept in in situ 

77 water until DNA extractions. The exceptions were populations 475-481 (Supplementary Table 

78 1), which were collected and stored in silica.  Fresh specimens were rinsed in deionized water 



79 and forceps were used when needed to remove occasional invertebrates, duckweed and 

80 biofilm.  Approximately 0.1g of the healthiest appearing leaflets were excised from the leaf axis 

81 for extraction.  

82

83 2. 2 DNA extraction and Genomic DNA library preparation

84 Genomic DNA was extracted using the CTAB method from Neubig et al. (2014). Extractions 

85 were assessed for quality and quantity by visualization on a 1% agarose gel and a NanoDrop 

86 instrument (Thermo Scientific, Wilmington, MA). The genomic library was made with a double 

87 digestion restriction site-associated DNA sequencing (ddRADseq) protocol (Gompert et al., 

88 2012; Parchman et al., 2012), using EcoR1 and Mse1 to fragment the genomic DNA. Fragments 

89 were ligated to barcoded (indexed) oligonucleotides (with barcodes unique to each individual) 

90 on the EcoRI ends of the fragments. Samples were then PCR-amplified using iproof high-fidelity 

91 DNA polymerase (New England Biolabs) with primers that overlap the ligated oligonucleotides. 

92 All fragments were first mixed with only one other (barcoded) individual, which then were 

93 further amplified in duplicate to reduce stochastic variation in PCR amplification, before final 

94 pooling of all barcoded samples. The library was then reduced to fragments in the size range of 

95 250-350 bp using a Blue Pippin (Sage Science, Beverly, MA). Quality and quantity were further 

96 verified using TapeStation 2200 (Agilent Technologies). The size-selected, multiplexed samples 

97 were run on a single lane of Illumina HiSeq 2500 with 100bp single-end sequencing at Genomic 

98 Sequencing and Analysis Facility at the University of Texas at Austin (GSAF).

99

100 2. 3 Data processing



101 Raw Illumina reads were processed with ipyrad v.0.5.15 (Eaton, 2014). This process was carried 

102 out twice, with the first round using the entire dataset of 96 samples (including S. molesta 

103 samples) to identify low-coverage and failed reads that should be removed from further 

104 analyses, as well as to verify replication for quality control. The second round of analysis was 

105 performed on a reduced dataset of 63 S. minima individuals and 15 S. molesta, and included a 

106 more stringent filtering to remove possible duplicated loci, loci with low coverage, and loci that 

107 were not in at least 70% of samples. All raw DNA sequence data plus every detail of the data 

108 processing steps and parameters used are available on Digital Commons 

109 (https://doi.org/10.15142/T3VK80). Using ipyrad, samples are first demultiplexed and quality 

110 filtered. Within-sample clusters are generated using USEARCH (Edgar, 2010), and reads are 

111 aligned using MUSCLE (Edgar, 2004). Error rate and heterozygosity are then estimated, and 

112 consensus bases are called and filtered. Finally, clusters were generated across samples, and 

113 filters are applied to the resulting data, generating a number of genotype output formats. Due 

114 to the lack of a reference genome, ipyrad assembled the data de novo using vsearch (Enns et 

115 al., 1990). The clustering threshold was set to 90% sequence similarity. 

116

117 2. 4 Analyses

118 We confirmed genetic differentiation of S. minima from S. molesta using a neighbor-joining (NJ) 

119 tree using adegenet (Jombart, 2008).  Because introduced species often have reduced genetic 

120 variation, we next used two different methods to identify natural genetic clusters. If both 

121 methods converge, we can have more confidence in our inferences. These methods used are 

122 Discriminant Analysis of Principal Components (DAPC; Jombart and Collins, 2015) using 



123 adegenet 2.0.1 in R, and STRUCTURE 2.3.4 (Pritchard et al., 2000; Falush et al., 2003; Falush et 

124 al., 2007; Hubisz et al., 2009). In both analyses, individuals were treated independently from 

125 each other, without any predefined associations due to geographic proximity. 

126 DAPC is a multivariate analysis that builds on the strengths of Principal Component 

127 Analysis (PCA) and Discriminant Analysis (DA), where genetic structure among individuals is 

128 determined such that within-group variation is minimized while between-group variation is 

129 maximized. A k-means algorithm is also used to infer genetic clusters and a statistical measure 

130 of goodness of fit using Bayesian Information Criterion (BIC) taken across the number of 

131 clusters to infer the optimal number of clusters and individual assignment to each cluster. 

132 STRUCTURE uses a Bayesian clustering approach that first randomly assigns individuals 

133 to pre-determined groups (K groups): S. minima was tested against 2 through 6 groups, while S. 

134 molesta was tested across 1 through 4 groups. A Markov Chain Monte Carlo (MCMC) 

135 estimation is applied wherein individuals are re-assigned to each group based upon variant 

136 frequency estimates. In our analyses, we used a burn-in of 500,000 followed by 1,000,000 

137 iterations with 50 replicates for each of the tested K groups. For each K group tested, a 

138 population Q-matrix is formed for each of the 50 replicates, which shows the average individual 

139 membership coefficient to each cluster. To determine the "optimal" K value from the 

140 STRUCTURE output, we implemented STRUCTURE HARVESTER (Earl and vonHoldt, 2012). This 

141 web-based program processes STRUCTURE results across all tested K groups, and performs the 

142 Evanno method (Evanno et al., 2005) for detecting the optimal number of K groups that best fit 

143 the dataset. Note that the Evanno method does not always select the optimal K groups, most 

144 notably if the best group is K=1. Therefore, we also assessed the effect of number groups (K) 



145 using a graphical representation resulting from CLUMPAK (Kopelman et al., 2015), which 

146 implemnts STRUCTURE HARVESTER (Earl and vonHoldt, 2012), CLUMPP (Jakobsson and 

147 Rosenberg, 2007), and DISTRUCT (Rosenberg, 2004). Detailed output is shown in our data 

148 analyses on Digital Commons (https://doi.org/10.15142/T3VK80). Observing the STRUCTURE 

149 patterns as K groups increases, one can assess whether adding each group provides additional, 

150 meaningful structure to the data rather than mirroring the structure that is already there. After 

151 selecting the optimal K group, we visualized both the DAPC and STRUCTURE results using a 

152 custom python script.

153 We further examined the relationship of longitude with both cluster assignment and 

154 heterozygosity using linear regression. Levels of genetic variation were explored by examining 

155 patterns of heterozygosity across loci and individuals. Details for all analyses are available on 

156 Digital Commons (https://doi.org/10.15142/T3VK80)

157

158 3. Results

159 Initial analyses with both S. molesta and S. minima samples were quality-filtered with very low 

160 stringency to maintain as many loci as possible that are shared across the two species. Eight 

161 samples were considered failures due to extremely low sample coverage. Unfortunately, most 

162 of these were from herbarium specimens from the native range of S. minima. After filtering, we 

163 retained 88 samples with 21,059 loci. Distinct genetic differentiation between S. minima and S. 

164 molesta was confirmed using the NJ tree (not shown). Collection population 461 included 9 

165 individuals of S. molesta, and a single of S. minima, confirmed by both the NJ tree and DAPC 

166 cluster assignment. Individual 465_2 was a far outlier as observed in a scatter plot of the DAPC 



167 results. Subsequent analyses focused on S. minima, with select comparisons to S. molesta, but 

168 always treating the species separate and with their own loci.

169 After data quality filtering the S. minima dataset, we retained 687 SNP loci across 63 

170 individuals. DAPC results showed two genetic groups across S. minima with 100%, or nearly so, 

171 assignment to one group or the other (Fig. 2). From STRUCTURE, plots of the optimal 

172 alignment(s) from CLUMPP for each K group clearly show that there is either a single genetic 

173 cluster, or two. Where K=2, CLUMPP resulted in two main alignments in which 23 of the 50 

174 STRUCTURE replicates resulted in two distinctly separated genetic groups which were similar to 

175 that observed in DAPC. Whereas DAPC assigned individuals exclusively, or nearly so, to one 

176 cluster or the other, STRUCTURE revealed samples with lower individual assignment to each of 

177 the two clusters. However, the majority assignment in STRUCTURE was to the same cluster as in 

178 DAPC (Fig. 2). This probability cluster assignment from STRUCTURE/CLUMPP was used to 

179 further examine their cluster relationship with geography. The proportion of individuals 

180 assigned to cluster 1 was regressed against the longitude positions. We detected a positive 

181 relationship with a slope of 0.04218, an intercept of 4.21, r = 0.3895, and p = 0.0016 (Fig. 3), 

182 indicating that a null hypothesis of no relationship should probably be rejected. Furthermore, 

183 we estimated heterozygosity for S. minima, across loci (mean 0.153; S.E. 0.006; Fig. 4) and 

184 across individuals (mean 0.144; S.E. 0.022; Fig. 5). The general patterns are consistent with 

185 typical distributions for neutral loci (Nei et al., 1976). We also performed a linear regression 

186 analysis of heterozygosity (of individuals) on longitude (Fig 6). The relationship was significant, 

187 with a slope of 0.002, intercept of 0.334, r = 0.258, and p = 0.041. This provides some evidence 

188 that heterozygosity is higher in the eastern end of the range. We do not have data from native 



189 range, but the levels of heterozygosity detected here are consistent with sexual reproduction in 

190 the introduced range of S. minima. If populations were spreading only via asexual cloning, then 

191 heterozygosity would remain the same. With asexual reproduction of related individuals, 

192 heterozygosity is expected to drop each generation. Thus, the east-to-west drop in 

193 heterozygosity is consistent with sexual reproduction at some point since introduction. 

194 We also provide a neighbor-joining tree of individuals based on genetic distance (Figure 

195 7) depicting relationships among samples in this study.

196 The S. molesta dataset was filtered to 15 individuals and 461 loci. Both DAPC and 

197 STRUCTURE resulted in a single genetic cluster. Estimated heterozygosity across loci for S. 

198 molesta (mean 0.1669; S.E. 0.0078) was similar to that observed in S. minima.

199

200 4. Discussion

201 Our analysis of over 600 co-dominant genetic markers revealed more variation in Salvinia 

202 minima than in a previous (unpublished) isozyme study. Our results are consistent with the 

203 patterns of variation detected using dominant RAPD markers (Madeira et al., 2003). The two 

204 analyses (DAPC and STRUCTURE) we used to examine genetic structure indicated two genetic 

205 clusters and it is possible that these represent separate introductions. However, it is probably 

206 more likely that the pattern is caused by introduction in the eastern end of the range with loss 

207 of variation during westward migration. This hypothesis is also supported by the reduction in 

208 heterozygosity in the west end of the range of S. minima. 

209 Because we have no strong evidence for more than one introduction, we cannot fully 

210 address our initial goal of determining if there has been hybridization between diverse 



211 introduced populations. During some plant invasions, multuple introductions can result in an 

212 increase in genotypic variation by hybridization and recombination between invasive genotypes 

213 (Lavergne and Molofsky, 2007). Such hybridization can overcome the effects of genetic 

214 bottlenecks associated with invasions. We detected no such patterns for S. minima.

215 Depicting relationships among individuals based on variation at polymorphic markers is 

216 inherently challenging. Tree figures and even 2- and 3-dimentional PCA depictions can miss 

217 underlying genetic structure within genomes. These problems are exacerbated when 

218 comparing samples that are in the introduced range of a species in which levels of variation are 

219 likely reduced. Our approach, involving large numbers of codominant markers, was aimed to 

220 increase the chances of detecting multiple origins, and we find no strong evidence for more 

221 than a single origin of S. minima in the regions where we sampled. 

222 We suspect that the lack of variation in the isozyme study is a function of reduced 

223 variation at the protein level compared to DNA in general (Kreitman, 1983; Casillas and 

224 Barbadilla, 2017) and because isozymes target important metabolic genes, whereas RAPD and 

225 ddRAD-seq use nonspecific genomic regions.

226 We detected moderate levels of heterozygosity and nucleotide variation that are 

227 consistent with some sexual reproduction. Furthermore, variation in heterozygosity across 

228 individuals provides further evidence that sexual reproduction is occurring in the introduced 

229 range. This contrasts with the assumption that S. minima is sterile and spreads only via clonal 

230 reproduction (Jacono et al., 2001; Morgan, 2009). Still, sexual reproduction may indeed be rare, 

231 and, if we are examining the descendants of a single introduction then even sexual 

232 reproduction is not going to generate much additional variation, only new combinations of 



233 standing genetic variation. We did not perform genotype frequency analysis because sample 

234 sizes are small and because failure to fit random mating patterns of genotypes can be 

235 confounded in populations of an introduced species (where matings would likely be among 

236 relatives) and a plant that spreads clonally. Some of the interesting questions that have 

237 emerged from this study are: 1) Is there more support for sexual propagation and, if so, how 

238 common is it? 2) How is it that, except for the east to west migration, there does not appear to 

239 be any evidence of distribution of genetic variation by distance? 3) How does variation in the 

240 native range compare with that in the introduced populations?  Selecting a few populations 

241 from both the western and eastern ends of the introduced range, and collecting larger samples 

242 at these sites would allow for a genotype frequency analysis to test for sexual reproduction and 

243 better assess population genetic structure.  Future work on common salvinia in the native range 

244 and comparison with the complete introduced range populations would enable inference as to 

245 the origin of introduced populations. Samples we obtained from the native range unfortunately 

246 exhibited low sample coverage and could not be included in the analysis.  This might be due to 

247 poor preservation of herbarium specimens.  Aquatic species require special attention to higher 

248 than normal silica to specimen ratio. Extracting DNA from fresh specimens collected across the 

249 native range of South America would be a more reliable strategy.  Here we find that S. minima 

250 had a single origin in southeastern part of its introduced range in USA, and subsequently moved 

251 westward. We find evidence of sexual reproduction and maintenance of moderate levels of 

252 genetic variation.  

253
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Figure legends

Figure 1. Map of sampling locations for Salvinia minima and S. molesta in southeastern United 

States. Colours denote STRUCTURE assignment at K=3: green = cluster 1; blue = cluster 2; 

magenta = cluster 3 (S. molesta). 

Figure 2. Results of Structure analysis (top panel) and DAPC (bottom panel) of S. minima, for 

two genetic clusters (K = 2). Green = cluster 1; blue = cluster 2.

Figure 3. Scatter plot of proportion of sample clustering with cluster 1 as a function of longitude

Figure 4. The distribution of mean heterozygosity across loci for S. minima.

Figure 5. The distribution of mean heterozygosity across individuals for S. minima.

Figure 6. Linear regression analysis of heterozygosity (of individuals) on longitude.

Figure 7. Neighbor-joining tree of individuals of S. minima. Colours denote genetic assignment 

based on STRUCTURE at K = 2. Green = cluster 1; blue = cluster 2.
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Supplementary Table 1. Locality data for samples of Salvinia collected

No. Species Vicinity or collection MGRS Longitude Latitude County State Country

454 S. minima Lafitte 15RYP4673966692 -90.43161 30.40705 Tangipahoa Parish Louisiana USA

456 S. minima Paradis 15RYP4829508439 -90.42908 29.88157 Saint Charles Parish Louisiana USA

457 S. minima Kraemer 15RYP3275602547 -90.59113 29.83148 Lafourche Parish Louisiana USA

458 S. minima Jefferson 15RYP7384217364 -90.16254 29.9566 Jefferson Parish Louisiana USA

461 S. molesta S. of Romere Pass 16RBT8225638232 -89.24077 29.25421 Plaquemines Parish Louisiana USA

465 S. minima Franklin 15RXN4623093775 -91.48747 29.76564 Saint Mary Parish Louisiana USA

466 S. minima Orange 15RVP2994231386 -93.72719 30.1117 Orange County Texas USA

467 S. minima Mobile 16RDU0699094023 -87.97098 30.67533 Baldwin County Alabama USA

469 S. minima Lake Tallequin 16RGU3799671081 -84.52154 30.44838 Leon County Florida USA

470 S. molesta S. of Romere Pass 16RBT8225638232 -89.24077 29.25421 Plaquemines Parish Louisiana USA

471 S. molesta Venetian Isles 16RBU2871329527 -89.81411 30.0668 Orleans Parish Louisiana USA

472 S. molesta Wallace Lake 15SVR3293576352 -93.71251 32.32201 Caddo Parish Louisiana USA

474 S. molesta Cross Lake 15SVR1243998972 -93.93234 32.52463 Caddo Parish Louisiana USA

475 S. minima Pryer 5291 16PFS8179843964 -85.33963 10.3444 Guanacaste Costa Rica

476 S. minima Cult. Pryer 2364 Buenos Aires Argentina



477 S. minima Parana, Brazil; Cordeiro & Pereira 1531 Brazil

478 S. minima Sanders 9743 16QBF5431498765 -89.33333 18.96666 Quintana Roo Mexico

479 S. minima TJ Killeen 6824 20LNJ6663867789 -62.38084 -14.76306 Santa Cruz Bolivia

480 S. minima Jacono 88924 17RMN1248149838 -81.90181 29.3747 Marion County Florida USA

481 S. minima Jacono 890 17RLN6000087613 -82.44731 29.71077 Alachua County Florida USA
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