
1

Comparison of Deep Convolutional Neural Networks and Edge Detectors for 1

Image-Based Crack Detection in Concrete 2

Sattar Dorafshan1a, Robert J. Thomasb, Marc Maguirea 3

aDepartment of Civil and Environmental Engineering, Utah State University, Logan, UT, USA 4

bDepartment of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA 5

Abstract 6

This paper compares the performance of common edge detectors and deep convolutional neural networks 7

(DCNN) for image-based crack detection in concrete structures. A dataset of 19 high definition images 8

(3420 sub-images, 319 with cracks and 3101 without) of concrete is analyzed using six common edge 9

detection schemes (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and using 10

the AlexNet DCNN architecture in fully trained, transfer learning, and classifier modes. The relative 11

performance of each crack detection method is compared here for the first time on a single dataset. Edge 12

detection methods accurately detected 53–79% of cracked pixels, but they produced residual noise in the 13

final binary images. The best of these methods was useful in detecting cracks wider than 0.1 mm. DCNN 14

methods were used to label images, and accurately labeled them with 99% accuracy. In transfer learning 15

mode, the network accurately detected about 86% of cracked images. DCNN methods also detected much 16

finer cracks than edge detection methods. In fully trained and classifier modes, the network detected cracks 17

wider than 0.08 mm; in transfer learning mode, the network was able to detect cracks wider than 0.04 mm. 18

Computational times for DCNN are shorter than the most efficient edge detection algorithms, not 19

considering the training process. These results show significant promise for future adoption of DCNN 20

1 Corresponding author, Address: Department of Civil & Environmental Engineering

Utah State University, Logan, Utah 84322-4110. Tel: +1-435-757-3740

Email addresses: sattar.dor@aggiemail.usu.edu (S. Dorafshan), rthomas@clarkson.edu (R.J. Thomas),

m.maguire@usu.edu (M. Maguire)

2

methods for image-based damage detection in concrete. To reduce the residual noise, a hybrid method was 21

proposed by combining the DCNN and edge detectors which reduced the noise by a factor of 24. 22

Keywords: Concrete, crack detection, deep learning, neural network, edge detection, image processing, 23

vision-based, structural health monitoring 24

1. Introduction 25

At least a third of the more than 600,000 bridges in the United States include a concrete superstructure or 26

wearing surface [1]. Routine inspections of concrete bridges are conducted periodically to assess overall 27

condition and to identify surface cracking or other degradation [2]. Manned inspections of this type are 28

costly, time consuming, and labor intensive [3] [4] [5]. Unmanned and autonomous inspections are a 29

potentially viable alternative to manned inspections [5] [6] [7] [8] [9] [10]. Inspections performed by robots 30

or unmanned aerial systems (UAS) are typically image-based, meaning that the inspection platform takes 31

images that are then processed and/or reviewed by an inspector. Previous literature demonstrates several 32

successful applications of image-based inspections to detect cracks [11, 12], spalls [13, 14], delaminations 33

[14, 15, 16], and corrosion [17] in concrete bridges. 34

Image-based inspections of this type can be performed in three general ways: Raw image inspection, image 35

enhancement, or autonomous image processing. Raw image inspection means that the inspector views the 36

images taken during the inspection without any additional processing [5, 18]. The number of images 37

collected depends on a number of factors, but is commonly in the hundreds of thousands [5, 18]. Manual 38

identification of flaws in such large images sets is time consuming and prone to inaccuracy due to inspector 39

fatigue or human error. Enhanced image inspection refers to the use of some image processing algorithm 40

to make it easier to identify flaws in inspection images. This is typically performed using one of several 41

edge detection algorithms, which greatly magnify the visibility of cracks within images. In doing so, the 42

aforementioned problems with inspector fatigue can be mitigated to some degree. Finally, autonomous 43

3

image processing refers to the use of an algorithm that detects cracks within images. This is typically 44

accomplished using machine learning algorithms or other artificial intelligence schemes. 45

This paper discusses the latter two approaches and compares their performance. Image enhancement 46

methods includes the application of a variety of image processing techniques on visual images to detect 47

cracks including but not limited to morphological operations [19], digital image correlation [20, 21], image 48

binarization [22, 23], percolation model [24], wavelet transforms [25], and edge detectors [12] [27] [29] 49

[33] [34] [36] [37] [38] [36]. The autonomous approach for crack detection on the other hand requires a 50

set of training images to learn the features of cracks. Similarly, several researchers have shown the 51

feasibility of autonomous crack detection in visual images using combined image processing techniques 52

and artificial neural networks [30, 40]. Deep convolutional neural networks (DCNNs) have been recently 53

used for concrete crack detection [41, 42, 43]. 54

Despite the abundance of image-based crack detection studies, direct comparisons between these methods 55

is a gap. Save two noteworthy exceptions, most research focuses on developing new methods for crack 56

detection rather than comparing the performance of existing methods. Abdel-Qader et al. [27] compared 57

the performance of the fast Haar transform, Fourier transform, Sobel filter, and Canny filter for crack 58

detection in 25 images of defected concrete and 25 images of sound concrete. The fast Haar transform was 59

the most accurate method, with overall accuracy of 86%, followed by the Canny filter (76%), Sobel filter 60

(68%), and the Fourier transform (64%). he processing time was not considered in the analysis and the 61

criteria for recoding true of false positives in the binary images were not clear. Lack of definition for metrics 62

such as true positive has seen in the past studies. Mohan and Poobal [44] reviewed a number of edge 63

detection techniques for visual, thermal, and ultrasonic images, but the information presented was from 64

several studies that considered vastly different data sets, and so the results are not directly comparable. A 65

comparison between two edge detectors, Canny and Sobel, and a convolutional neural network is done in 66

[42]. However, the comparison was performed on four images. In addition, the edge detectors were used 67

without pre-processing which is not a very common practice. Another shortcoming of the comparison in 68

4

[42] is the lack of accuracy definition of the edge detector results. This paper compares image processing 69

and deep learning techniques together as a reference for future study. which includes a direct comparison 70

of the performance of four common edge detection methods in the spatial domain (Roberts, Prewitt, Sobel, 71

Laplacian of Gaussian) and two in the frequency domain (Butterworth and Gaussian) and an AlexNet-based 72

DCNN in three modes of training (fully trained, transfer learning, and no-training) by applying them to an 73

annotated dataset designated for crack detection. 74

2. Dataset 75

The dataset used in this study consisted of 100 images of concrete panels that simulated reinforced concrete 76

bridge decks for the purpose of verifying various non-destructive testing. These panels were constructed 77

previously in Systems, Materials, and Structural Health laboratory (SMASH Lab) at Utah State University. 78

Images are collected with a 16 MP digital single lens reflex camera with 35 mm focal length and no zoom. 79

The target was normal to the axis of the lens at a distance of approximately 0.5 m. The background 80

illumination was in the range 400–1000 lx, as measured by a NIST traceable digital light meter purchased 81

new just prior to measurement. The finest crack width was approximately 0.04mm and the widest was 82

1.42mm. The original image size was 2592 × 4608 px and the field of view was approximately 0.3 × 0.55 83

m. Images were stored as JPEG with average file size near 5 MB. In order to comply with the architecture 84

of the DCNN, each original image was divided into 180 sub-images with size of 256 × 256 px. The sub-85

images were labeled in two categories, 1,574 sub-images with cracks and 16,426 sub-images without 86

cracks. Figure 1 illustrates the studied dataset with one example of high-resolution image, a sub-image 87

labeled as C from the original image if it had a crack, and a sub-image labeled as U from the original image 88

if it did not. For DCNN applications, this dataset was divided into training dataset, validation dataset, and 89

testing dataset as shown in Table 1. The testing dataset was selected randomly from 100 original images. 90

The images in this dataset are a portion of the bridge deck images of the structural defect dataset 91

(SDNET2017 [45]). The sub-images in the testing dataset have also been segmented in the pixel-level as 92

Cp and Up for semantic comparison where Cp stands for pixels with cracks and Up stands for sound pixels. 93

5

The results of the pixel-level segmentation on the testing dataset are presented in Table 2. In this table, the 94

Cp ratio stands for the number of pixels in each image labeled as crack to total number of pixels in that 95

image. 96

3. Edge Detection 97

In this paper, edge detection refers to the use of filters (edge detectors) in an image processing algorithm 98

for the purpose of detecting or enhancing the cracks in an image such that they can be more easily and 99

efficiently located within a large image dataset. Cracks in a two-dimensional (2D) image are classified as 100

edges, and thus existing edge detection algorithms are likely candidates for crack identification. 2D images 101

are represented mathematically by matrices (one matrix, in the case of greyscale images, or three matrices 102

in the case of red/green/blue color images). An ideal edge is defined as a discontinuity in the greyscale 103

intensity field. Crack detection algorithms can emphasize edges by applying filters in either the spatial or 104

frequency domain. Edge detection algorithms purport to make manual crack detection more reliable. In 105

general, such image processing algorithms follow three steps: (1) edge detection, (2) edge image 106

enhancement, and (3) segmentation (sometimes called binarization or thresholding). Edge detection 107

involves the application of various filters in either the spatial or frequency domain to a grayscale image in 108

order to emphasize discontinuities. Edge image enhancement scales the image and adjusts contrast to 109

improve edge clarity. Segmentation transforms the enhanced edge image into a binary image of cracked 110

and sound pixels. 111

In the spatial domain, the convoluted image 𝑬 is the sum of the element-by-element products of the image 112

intensity 𝑰 and the kernel 𝑲 in every position in which 𝑲 fits fully in 𝑰. For 𝑰𝑀×𝑁 (image dimension 𝑀 × 𝑁) 113

and 𝑲𝑚×𝑛 (kernel size 𝑚 × 𝑛): 114

𝑬(𝑖, 𝑗) = ∑ ∑ 𝑰(𝑖 + 𝑘 − 1, 𝑗 + ℓ − 1)𝑲(𝑘, ℓ)𝑛
ℓ=1

𝑚
𝑘=1 (1) 115

6

𝑬 is of size (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1). Filters kernels may include 𝑥 and 𝑦 components (corresponding 116

to image spatial dimension in horizontal and vertical dimensions), 𝑲𝑥 and 𝑲𝑦, in which case the edge image 117

𝑬 is the hypotenuse of 𝑬𝑥 and 𝑬𝑦. 118

Four edge detector filters in the spatial domain were employed in this study: Roberts in 𝑥 and 𝑦 directions, 119

denoted as 𝑲𝑅𝑥 and 𝑲𝑅𝑦 in Eq. 2, Prewitt in 𝑥 and 𝑦 directions, denoted as 𝑲𝑃𝑥 and 𝑲𝑃𝑦 in Eq. 3, Sobel 120

in 𝑥 and 𝑦 directions, denoted as 𝑲𝑆𝑥 and 𝑲𝑆𝑦 in Eq. 4, and Laplacian-of-Gaussian (𝐿𝑜𝐺) denoted as 𝑲𝐿𝑜𝐺 121

in Eq. 5. A 10 × 10 𝐿𝑜𝐺 filter was employed here with standard deviation of 𝜎 = 2. 122

 𝑲𝑅𝑥 = [
1 0
0 −1

] 𝑲𝑅𝑦 = [
0 1

−1 0
] (2) 123

𝑲𝑃𝑥 = [
−1 0 1
−1 0 1
−1 0 1

] 𝑲𝑃𝑦 = [
1 1 1
0 0 0

−1 −1 −1
] (3) 124

𝑲𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] 𝑲𝑆𝑦 = [
1 2 1

 0 0 0
 −1 −2 −1

] (4) 125

𝑲𝐿𝑜𝐺 = ∇2(𝑮(𝑥, 𝑦)) =
𝑥2+𝑦2−2𝜎2

4𝜎4 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2) (5) 126

Edge detection in the frequency domain requires transformation of the spatial domain image 𝑰 into the 127

frequency domain image 𝑭 by fast Fourier transform (FFT). The edge image 𝑬 is the element-wise product 128

of the filter kernel 𝑲 and the frequency domain image 𝑭: 129

𝑬(𝑢, 𝑣) = 𝑲(𝑢, 𝑣) ⊙ 𝑭(𝑢, 𝑣) (6) 130

where 𝑢 and 𝑣 are the dimensions of the transformed image in the frequency domain. Two edge detector 131

filters in the frequency domain were employed in this study: Butterworth denoted as 𝑲𝐵 in Eq. 7 and 132

Gaussian denoted as 𝑲𝐺 in Eq. 8. 133

𝑲𝐵(𝑢, 𝑣) = 1 −
1

1+[
𝐷(𝑢,𝑣)

𝐷0
]

2𝑛 (7) 134

7

𝑲𝐺(𝑢, 𝑣) = 1 − 𝑒
−𝐷2(𝑢,𝑣)

2𝜎2 (8) 135

where 𝐷(𝑢, 𝑣) is the distance between the pixel (𝑢, 𝑣) and the origin of the frequency (the center of the 136

𝑀 × 𝑁 image) as defined by Eq. 8, 𝐷0 and 𝑛 are the user-defined parameters to define the order and cut-137

off frequency in the Butterworth filter; and 𝜎 is the user-defined parameter to define the standard deviation 138

of the Gaussian filter. 139

𝐷(𝑢, 𝑣) = √[𝑢 − (
𝑀

2
+ 1)]

2
+ [𝑣 − (

𝑁

2
+ 1)]

2
 (9) 140

and 𝑲𝐵, and 𝑲𝐺, are Butterworth and Gaussian filters. 141

The scaled edge image 𝑬𝑠𝑐 is 𝑬 scaled such that 0 ≤ 𝑬𝑠𝑐 ≤ 1. The enhanced edge image is then: 142

𝑬𝑒(𝑥, 𝑦) = [𝑬𝑠𝑐(𝑥, 𝑦) − min(𝑬𝑠𝑐)] [
2𝜎𝑬𝑠𝑐

max(𝑬𝑠𝑐)−min(𝑬𝑠𝑐)
] + 𝜇𝑬𝒔𝒄

 (10) 143

where min(𝑬𝑠𝑐), max(𝑬𝑠𝑐), 𝜎𝐸𝑠𝑐
, and 𝜇𝑬𝑠𝑐

 are minimum, maximum, standard deviation, and mean of the 144

scaled edge image, respectively. Edge enhancement is a crucial part of the proposed method by improving 145

the segmentation of pixels with cracks from the background pixels. Figure 2 shows an example of the effect 146

of edge enhancement on the final binary image of the proposed algorithm (Sobel edge detector). 147

The final binary image 𝑩 is constructed by segmentation, which assigns a value of one to all pixels in which 148

the intensity exceeds some threshold 𝑇 and a value of zero to all other pixels. In this study, a two level 149

binarization is introduced: the first is based on a pixel intensity threshold 𝑇1 in the enhanced edge image 150

and then based on an area connectivity threshold 𝑇2 on the binary image from the first level. The first 151

threshold operation filters the weak edges from the enhanced edge image (Eq. 11). By applying 𝑇1 the 152

strong edges in the enhanced edge image (80% or stronger than the maximum intensity, 0.8 max (𝐸𝑒)) are 153

preserved as cracks. At this point, the strong edges have been identified in the first binary image; however, 154

the surface roughness of the concrete can cause residual noise. 155

𝑇1 = 0.8 max (𝐸𝑒) (11) 156

8

In order to gain more effective segmentations, the morphological operation closing was carried out on the 157

first level binary image. Closing consists of a dilation followed by an erosion using an identical structuring 158

element for both operations (see Figure 3). The purpose of the closing operation is to unify possibly the 159

discrete parts of the crack in the first binary image. Structuring elements define the spatial domain on the 160

binary image in which the morphological operation will be carried out. Circle-shaped structuring elements 161

with generic dimensions were used to perform the closing operation. The radius of the structural element 162

was defined as the minimum Euclidean distance between the centroids of connected components in each 163

binary image. The closing operation on improved the results of each individual edge detector in terms of 164

true positives. Figure 4 shows an example where not applying the closing operation cause the LoG edge 165

detector to miss the more than half the crack after applying the second threshold operation. 166

The second binarization operation was designed to segment the cracks from the residual noises in the first 167

binary image based on the area of the connected components in the first level binary image (Eq. 12). The 168

connected area 𝐴𝑐(𝑥, 𝑦) is the number of contiguous pixels in a connected component, considering eight-169

neighbor connectivity. max(𝐴𝑐) is the area of the largest connected component in the first level binary 170

image. The idea for the area threshold is to control the noise in the final binary image as shown in Figure 5 171

for the results of the Gaussian high pass filter. 172

𝑇2 = max (𝐴𝑐) (12) 173

4. DCNN 174

Using direct image-processing techniques for concrete crack detection has several drawbacks. First, the 175

algorithms are tailored for certain images in the studied datasets which affects their performance on new 176

datasets. These algorithms may not be as accurate when tested on new datasets taken in more challenging 177

situations such as low lighting condition, presence of shadows, low quality cameras, etc. Second, the image 178

processing algorithms are often designed to aid the inspector in crack detection and still rely on human 179

judgement for final results [29]. One solution is using machine learning algorithms to analyze the inspection 180

9

images [46] [47]. Deep convolutional neural networks (DCNNs) are a type of feedforward artificial neural 181

networks which have revolutionized autonomous image classification and object detection in the past 5 182

years [48]. A DCNN uses a set of annotated, e.g. labeled, images for training and calculates the learning 183

parameters in the learning layers between the input and output layers thorough thousands to millions 184

iterations. 185

A number of architectures have been employed to create neural networks providing excellent accuracy on 186

open-source labeled datasets, such as ImageNet and MNIST, in the past 4 years [49] [50] [51]. Each 187

architecture includes a number of main layers. The main layers are composed of sub-layers. The total 188

number of layers defined in a software program, like MATLAB, to build an architecture is referred to as 189

“Programmable Layers” in this study. Krizhevsky [49] proposed one of the first architectures of a DCNN, 190

i.e. AlexNet. This architecture has 8 main layers (25 programmable layers) and was the winner of the image 191

classification competition in 2012 (ImageNet [52]). Szegedy et al. proposed another architecture called 192

GoogleNet with 22 main layers (144 programmable layers) and improved the accuracy by introducing 193

inception module in the learning layers which won the 2014 competition [53]. Deep residual learning neural 194

network, ResNet, was introduced in 2016 [54]. ResNet has 50 and 101 main layers (177 and 347 195

programmable layers) and was the winner of 2016 competition. 196

DCNNs have been used in vision-based structural health monitoring in recent years for crack detection 197

[42], road pavement cracks [55, 56], corrosion detection [57, 58], multi-damage detection [41, 59] structural 198

health monitoring [62]. Due to popularity of Unmanned Aerial Systems (UASs) for structural health 199

monitoring and bridge inspection [63] applications of DCNNs in UAS-assisted inspections has begun to 200

attract researchers for more robust non-contact damage detection [43, 64, 65]. 201

In general, DCNN architecture includes an input layer, learning layers, and an output layer [66]. The input 202

layer reads the image and transfers it to the learning layers. The learning layers perform convolution 203

operations, applying filters to extract image features. The output layer classifies the image according to 204

target categories using the features extracted in the learning layers. The neural network can be trained by 205

10

assigning target categories to images in a training dataset and modifying filter values iteratively through 206

back propagation until the desired accuracy is achieved. 207

DCNN can be used for crack detection in three ways: classification [42], localization [41], or segmentation. 208

The goal of classification is to label each image as cracked or sound. The training and validation datasets 209

comprise pre-classified cracked and sound images. The goal of localization is to determine bounding 210

coordinates that identify the location of a crack within an image. As before, the training and validation 211

datasets include both cracked and sound images, but the cracked images have bounding boxes drawn around 212

the location of the crack. The goal of segmentation is to classify each pixel as cracked or sound, and the 213

training and validation datasets comprise a very large number of pre-classified pixels. The computational 214

intensity of DCNN normally necessitates subdivision of images to reduce computational requirements. 215

The AlexNet DCNN architecture, illustrated in Figure 6 comprises five convolution layers (C1—C5), three 216

max pooling layers (MP1—MP3), seven nonlinearity layers using the rectified linear unit (ReLU) function 217

(ReLU1—ReLU7), two normalization layers (Norm1—Norm2), three fully connected layers (FC1—FC3), 218

two dropout layers (DP1—DP2), one softmax layer (SM), and one classification layer (CL). Each layer is 219

applied to the image using the convolution operation (Eq. 1). Figure 6 shows the architecture of the AlexNet 220

along with its corresponding filter number and size. The kernel values are determined iteratively through 221

training, but the size, number, and stride of the kernels are predetermined. The nonlinearity layers operate 222

on the result of each convolution layer through element-wise comparison. The ReLU function used for 223

nonlinearity is defined as the maximum value of zero and the input: 224

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 (13) 225

Following the non-linearity layer, a max pooling layer introduces a representative for a set neighboring 226

pixels by taking their maximum value. The max pooling layers are essential to reduce the computational 227

time and overfitting issues in the DCNN. After the max pooling layer, one or several fully connected layers 228

are used at the end of the architecture. The fully connected layer is a traditional multi-layer perceptron 229

11

followed by a softmax layer to classify the image. The mission of the fully connected layers is to connect 230

the information from the past layers together in way that the softmax layer can predict the results correctly 231

during the training process. The optimum combination is achieved from a process called backpropagation 232

algorithm (partial derivatives of the softmax layer output with respect to weights). The purpose of the 233

softmax layer is to ensure the sum of probabilities for all labels is equal to 1. In addition to these basic 234

layers, a DCNN also includes normalization, dropout, and classification layers. Normalization layer 235

normalizes the response around a local neighborhood to compensate with the possible unbounded 236

activations from the ReLu layer. The dropout layer is a probability-based threshold layer that filters 237

responses smaller than a threshold probability (50% is common). The classification layer is similar to the 238

fully connected layers. For detailed explanations of function of each layer and their interaction, readers can 239

refer to Reference [67] 240

Three modes are used for applying the network on the training dataset. The first mode is to Fully Train (FT) 241

the network from scratch (FT mode) on the training dataset. In this mode all the weights are assigned with 242

random numbers and the computed through iterations based on the training dataset. Obtaining an annotated 243

dataset for concrete cracks as big as ImageNet is not currently feasible. Even if a large concrete crack 244

dataset was available, training process from scratch could take days to complete on hardware with several 245

graphic processor units (GPUs), and would therefore be prohibitively time consuming. However, it is 246

possible to apply a previously trained network (pre-trained network) on a small dataset and obtain 247

reasonable accuracy [68]. Pre-trained networks can be applied on a new dataset in different ways [69]. 248

These methods are usually referred to as “domain adaptation” in the deep learning literature. One can use 249

an already trained DCNN on the ImageNet dataset as a classifier for new images. This type of domain 250

adaptation is referred to as Classifier (CL mode). In CL mode, only the last fully connected layer needs to 251

be altered to match the target labels in concrete dataset. The network then uses the pre-trained weights and 252

forms a classifier based on the training dataset. Note that no actual training happens when CL mode is used. 253

Another studied domain adoption method is to partially retrain a pre-trained network and modify the layers 254

12

according to a new dataset. This approach is called fine-tuning or transfer learning (TL mode). In the TL 255

mode, the network has to be re-trained since both classifier and weights have to be updated based on the 256

new dataset. In the TL mode, the weights of the lower-level layers (closer to the input image layer) are 257

preserved. These weights are computed from training on millions of images and consist of generic feature 258

extractors such as edge detectors. Therefore, the determined lower-level weights can be applied on any 259

dataset for feature extraction. On the other hand, the classifier layers (close to end of network) are more 260

sensitive to the training dataset and its labels. To adjust the network to the new dataset, the weights in the 261

high-level layers are updated through training on the new dataset. 262

5. Experimental Program 263

5.1. Computational Resources 264

All computations were performed on a desktop computer with 64-bit operating system, 32 GB memory, 265

and 3.40 GHz processor running a GeForce GTX 750 Ti graphics processing unit (GPU). Image processing 266

was performed in MATLAB. 267

5.2. Edge Detection 268

The testing dataset of 319 C and 3101 U sub-images was iteratively processed using each of the six edge 269

detection schemes discussed in Section 3. Unlike the past studies [30, 26, 62], the metrics to evaluate the 270

performance of each edge detector was defined very clearly on a pixel level. The final binary images were 271

compared to the ground truth. True positive (TP) is when the edge detector identified a pixel on the crack 272

pixels (Cp). False negative is when the edge detector did not identify a pixel on the crack pixels (Cp). True 273

negative (TN) is when the edge detector did not identify a pixel on the sound pixels (Up), and false positive 274

is when the edge detector identified a pixel on the sound pixels (Up). Note all comparisons were performed 275

on the final binary images produced by each edge detector. Figure 7 shows examples of how metrics are 276

calculated: (a) the original image is segmented into 1,582 Cp pixels (highlighted) and 63,954 Up pixels, (b) 277

the final binary image super imposed on the original image, Roberts edge detector, identified 2,276 Cp 278

13

pixels (highlighted) and 63,260 Up pixels, (c) 1,367 pixels in the final binary image were TP, (d) 215 pixels 279

in the final binary image were FN, (e) 63,046 pixels in the final binary image were TN, and (f) 909 pixels 280

in the final binary image were FP. The metrics in the Figure 7c through Figure 7f are shown in white. Note 281

that for U sub-images, TP and FN are meaningless and only TN and FP are recorded. 282

The team then rated each edge detection scheme in terms of true positive rate (TPR), true negative rate 283

(TNR), accuracy (ACC), positive predictive value (PPV), negative predictive value (NPV), and F1 score, 284

defined as follows 285

𝑇𝑃𝑅 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) (14) 286

𝑇𝑁𝑅 = (
𝑇𝑁

𝑇𝑁+𝐹𝑃
) (15) 287

𝐴𝐶𝐶 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
) (16) 288

𝑃𝑃𝑉 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) (17) 289

𝑁𝑃𝑉 = (
𝑇𝑁

𝑇𝑁+𝐹𝑁
) (18) 290

𝐹1 = (
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
) (19) 291

In addition, missed crack width (MCW), and computational time (T) are also compared between different 292

edge detectors. MCW is defined as the coarsest crack that went undetected by a particular edge detection 293

scheme, as determined by crack width measurement using a crack width microscope with 0.02 mm 294

resolution. Computational time is defined as the average processing time for ten runs of a particular edge 295

detection scheme, normalized by the number of images (180 sub-images). 296

5.3. DCNN 297

Crack detection using DCNN was performed by classification of sub-images in the fully trained, transfer 298

learning, and classifier modes. A total of 12,809 sub-images (1,129 labeled C and 11,680 labeled as U), 299

14

were selected at random for inclusion in the training dataset, and 1,771 (125 labeled as C and 1,646 labeled 300

as U) were selected for the validation dataset. The remaining 3,420 sub-images (319 labeled as C and 3101 301

labeled as U) made up the testing dataset. 302

Batch size number and validation criterion determine the number of iterations in training process. Larger 303

batch sizes result in faster convergence, but batch size is limited by the available GPU memory. The selected 304

batch size was 10. The training dataset has 12,809 sub-images. Number of iterations to cover all sub-images 305

was simply calculated by dividing the total sub-images to the batch size, i.e. 1281 iterations. This number 306

of iterations is known as an epoch. A maximum of 30 epochs were considered for back propagation on the 307

network, meaning that the network performs as many 30 × 1281 = 38,430 iterations to finish the training. 308

The network was set to stop iterating once the accuracy in the validation dataset stopped improving in three 309

consecutive epochs. If the validation criterion is not met by the end of 30th epoch, more iterations cycles 310

should be considered for the training. 311

The network in each mode is used to classify the sub-images in the testing dataset and the results are 312

compared to the ground truth. TP is when the network correctly labeled a sub-image as C, and a FN when 313

the network failed to do so. A TN is when the network correctly labeled a sound sub-image as U and a FN 314

when the network labeled a sub-image as C in a sound sub-image. TPR, TNR, ACC, PPV, NPV, and F1 315

are calculated according to Eq. 14 through Eq. 19. T and MCW are evaluated in the same manner as the 316

edge detector approach except that the training time is not considered when calculating the T for DCNN. 317

6. Results and Discussion 318

6.1. Edge Detection 319

A summary of results for the six edge detectors applied on the C class and U class sub-images are shown 320

in Table 3 and Table 4, respectively. The metrics for comparison are shown Figure 8a in terms of TPR, 321

PPV, and in Figure 8b in terms of TNR, ACC, and NPV. The latter metrics were significantly affected by 322

the data imbalance between Cp and Up pixels. Nevertheless, the evaluated metrics in this paper are on the 323

15

pixel-level which makes the comparison unique compared to previous crack detection studies. LoG 324

produced the highest TPR with 76% followed by Sobel and Prewitt with 76% and 69%. In the spatial 325

domain, Robert edge detector produced lowest TPR, 53%, which was still higher that the TPRs produced 326

by frequency domain edge detector, where Butterworth detected 41% and Gaussian detected only 31% of 327

the crack pixels. LoG edge detector also produced the highest PPV, 60%, followed by Sobel and Prewitt 328

with 56% and 54%. Gaussian high pass filter had only 18% PPV which was the lowest among the studied 329

methods. F1 scores ranged from 23% in sub-images segmented by Gaussian high pass filter to 68% in sub-330

images segmented by LoG. Roberts and Gaussian high pass filter produced the lowest TNR values, 96% 331

and 97%, respectively and the lowest ACC, both 95%. As for NPV, the lowest values were 95% and 96% 332

when Gaussian and Butterworth edge detectors were used, respectively. Again LoG was the most accurate, 333

98%, and produced the highest TNR=99% and NVP=99.5%. The difference in metrics in Figure 8b is only 334

2%-4% but note that these metrics are affected by the gigantic class imbalance between Cp and Up pixels 335

(only 2% of the pixels were Cp). To see this difference better, percentage of reported FP pixels per sub-336

image, noise ratio (NR), for each edge detector is shown in Figure 8c. To calculate the noise ratio, first the 337

average FN for each method was calculated by dividing total number of FNs to the number of sub-images 338

in each class, 319 in C class, and 3101 in U class. The NR is then calculated as the average FNs divided by 339

total number of pixels in each sub-image, i.e. 256 × 256. 340

As seen for sub-images in C class NR values, 2.4% on average, were almost half of the ones in the U class, 341

5.3% on average. This is due to the fact that the proposed methodology for crack detection is based on the 342

assumption that there is a crack in the investigated image and it is the largest connected component in the 343

first level binary image. Therefore, noise and irrelevant objects are preserved in the final binary image in 344

U class as FN. In addition, the LoG edge detector produced the lowest NR values, 1.1% in the C class and 345

4.5% in the U class while Roberts and frequency domain detectors were the worst ones in both classes. 346

Factoring Roberts, overall the spatial domain edge detectors produced better binary images for crack 347

detection compared to frequency domain ones. The same trend can be seen for values of T in Table 3 and 348

16

Table 4 where the fastest method was LoG. Finally, LoG detected finer cracks than the rest of studied 349

method with MCW of 0.1 mm. Figure 9 shows an example of crack detection using different edge detectors 350

along with the original image and ground truth. LoG edge detector performed better than all the other 351

studied detectors in all considered metrics. 352

6.2. DCNN 353

6.2.1. Training and Validation 354

Figure 10 shows the achieved accuracy of the DCNN under fully trained and transfer learning during 355

training and validation. In fully trained mode, the validation criterion was met after 14 epochs (17934 356

iterations), which required 6,200 seconds processing time. The resulting validation accuracy was 97.50%. 357

In transfer learning mode, the validation criteria were met after 7 epochs (8967 iterations), which required 358

4,100 seconds processing time. In classifier mode, the classifier was constructed in 299 seconds and 359

achieved 98.1% accuracy on the validation dataset. 360

6.2.2. Testing 361

Table 5 summarizes the performance of DCNN crack detection in the testing dataset. In general, the DCNN 362

crack detection algorithms performed exceedingly well compared to the traditional detectors. In fully 363

trained mode, the algorithm scored 212 TPs out of 319 cracked sub-images and 3099 TNs out of 3,101 364

sound sub-images. In transfer learning mode, the algorithm scored more TPs but also scored more FPs. The 365

network in the CL mode performance in terms of TP and TN were in the middle of the FT and TL modes 366

(TP=267 and TF=52). 367

In all three cases, the accuracy matched or exceeded 97%. However, the TL mode had NPV=99%, F1=89%, 368

and ACC=98% which were the highest among the studied modes. The highest positive predictive value was 369

in the FT mode (PPV=99%) while TL mode produced only PPV=92%. The CL mode produced the highest 370

FPs which lead to the lowest NPV of 98% among the studied modes. The metrics are shown in Figure 11. 371

17

As seen the most tangible difference were observed in TPR, PPV, and F1 scores among different metrics 372

since they are more affected by the TPs and C class had considerably less sub-images. 373

The MCW for fully trained and classifier modes was 0.08 mm. In transfer learning mode, the missed crack 374

width was 0.04 mm. Figure 13 shows fully trained, transfer learning, and classifier DCNN results for a sub-375

image containing a 0.08 mm crack. As shown in the figure, the 0.08 mm crack was detected only in transfer 376

learning mode, and went undetected in fully trained and classifier modes. The computational time was 377

similar for all three DCNN modes were comparable (2.65-2.81 seconds per 180 sub-images). However, the 378

network in the FT mode required more time for training due to more performed iterations compared to the 379

TL mode, which was expected. In the authors experience, using an AlexNet-based network in TL mode can 380

be up to 50% less time-consuming than the FT mode on concrete image dataset [37, 39]. On the other hand, 381

the network on the CL mode has the advantage of not relying on the training and can be considered the 382

fastest way of testing the network on new datasets. The absence of training in CL mode, however, adversely 383

affected the TNR, ACC, and PPV of the network, which is also an expected outcome [37]. Transfer learning 384

mode was the most accurate and detected the finest cracks, but also took the longest computational time. 385

Figure 13a through c show representative results for DCNN in fully trained, transfer learning, and classifier 386

modes, respectively. Since the objective is to find the cracks, sub-images in the U class are shaded and sub-387

images in the C class are shown clearly. Incorrectly labeled sub-images (FN and FP) are identified using a 388

box indicating such. 389

6.3. Comparison 390

As discussed before, the results presented in Table 3 and Table 4 for edge detectors and in Table 5 for 391

DCNNs are not directly comparable because DCNN results consider sub-images while edge detection 392

results were based on the pixels. However, comparison is possible since the same sub-images and metrics 393

were used to evaluate both approaches. These results are given in Table 6. 394

18

All of the methods tested here performed better on sound sub-images than on cracked sub-images (i.e., TN 395

> TF), and so the metric numbers skewed high. For example, only 32% of cracked pixels (Cp) were detected 396

using the Gaussian edge detection scheme. Nevertheless, since more than 97% of sound pixels were 397

correctly detected, the reported accuracy was ACC=95% which is misleading because the PPV for this edge 398

detector was only 18%, which shows its inefficiency. Several noteworthy results become apparent. First, 399

while the previous section claimed that there was no clear winner between DCNN in fully trained and 400

transfer learning modes, the true positive rate for transfer learning was 20% higher than for fully trained. 401

At the same time, the true negative rate for transfer learning was only one percent lower than for fully 402

trained. This, combined with smaller missed crack width and similar computation time requirements, make 403

transfer learning a clear winner among DCNN modes. F1 scores and PPV values were significantly for 404

DCNN in all modes were significantly greater than the edge detector techniques. 405

This analysis also shows that DCNN methods performed better at image based concrete crack detection 406

than any of the edge detection methods (expect for FT mode). The LoG edge detector exhibited the highest 407

true positive rate of all six edge detectors, accurately identifying nearly 79% of cracked pixels. LoG also 408

detected the finest cracks of any edge detector, with MCW of 0.1 mm. The TPR among DCNN methods 409

was about 86% and 84% in TL and CL modes, respectively, which was a significant improvement over 410

LoG. In addition, the TFR for the DCNN approach had superiority over the edge detectors due to the high 411

NR ratios (refer to Figure 8c). Furthermore, DCNN methods were able to detect finer cracks than edge 412

detectors. In fully trained and classifier modes, the MCW was 0.08 mm, a marginal improvement over LoG. 413

In transfer learning mode, the MCW was an impressive 0.04 mm. 414

Computational times also show the superiority of DCNN over edge detectors; computational time was 415

almost 50% less for the DCNNs over edge detectors. However, crack detection using DCNN requires time 416

for training (in FT and TL modes) and classifier construction (in CL mode), which are not taken into account 417

when reporting the computational time. The assumption is that, in the future, pre-trained DCNN will be 418

available for this purpose, so it is not necessarily appropriate to include training time in this comparison. In 419

19

fact, DCNN can be trained using a very large dataset with images of varying quality (e.g., resolution, 420

lighting condition, focus), making it more robust and applicable to most situations. Edge detectors are 421

typically manually tuned to maximize performance for a particular dataset or subset, diminishing their 422

robustness. 423

These results highlight the significant promise of DCNN methods for image based crack detection in 424

concrete. The evidence presented here shows that edge detection methods—which represent the current 425

state of practice—perform reasonably well. DCNN methods provide autonomous crack detection and 426

provide significant performance enhancements over edge detection schemes. The results presented here for 427

DCNN are only a preliminary step in the development of DCNN methods for concrete crack detection. 428

Future work will demonstrate the use of more advanced DCNN for the same problem in the hopes that more 429

advanced networks will provide even better crack detection performance. 430

The reader should note that the results presented here are for high quality images taken in good lighting and 431

free of vibration. The extension of these results to noncontact image-based inspection and damage detection 432

will require application of the same methods to images with imperfections resulting from poor lighting, 433

vibration, or other issues [43]. This work is ongoing, but the results presented here show promise for 434

autonomous crack detection in concrete structures using noncontact image-based methods. 435

Despite being recently introduced to structural health monitoring and inspection, DCNNs have improved 436

the vision-based structural defect detection. This study shows the superiority of an AlexNet DCNN over 437

traditional edge detectors for concrete crack detection. The performance of the network can be further 438

enhanced if more powerful architectures such as GoogleNet or RestNet are implemented for crack 439

detection. Unlike edge detectors, the DLCCNs can be used for any types of defect in structures, if enough 440

annotated images are available for training. Formation an annotated image dataset for structural defects, 441

such as ImageNet, is vital for further applications of DCNNs in structural engineering. With this dataset 442

available, new architectures can be developed to focus on finding a handful of structural defects instead of 443

1000 different objects, which will reduce the computational time associated with training process. In 444

20

addition, domain adaptation methods such as transfer learning, will be more effective if the network is 445

previously trained on the structural defects dataset. Improving the performance of domain adaptation 446

techniques makes real-time defect detection in robotic vision-based inspections feasible. In other words, a 447

pre-trained DCNN on the structural defect dataset, can be directly used to accurately classify new images 448

taken by an unmanned aerial system to different structural defects as the inspection is taking place. 449

7. Hybrid Crack Detector 450

Unless semantic networks are used for crack detection, edge detectors are still providing segmentation in 451

the pixel level. This information puts the edge detector in favor of the DCNN for fine monitoring and 452

measurements of cracks but creating the training dataset with classified pixels can be very time consuming 453

and challenging. On the other hand, the sole use of edge detectors has the disadvantage of residual noise or 454

non-crack objects misidentified as cracks. Even with the most effective edge detector, LoG, there was more 455

than 4% of TN (combined of FNs of the images in both C class and U class) which is 9,457,066 sound 456

pixels identified as cracks in the testing dataset. Figure 14 shows examples of TN (highlighted in red) in 457

the three C class sub-images after the final binary image from the LoG edge detector was super-imposed 458

on the original images. 459

Since the DCNN in FT mode provided such accurate classification for the U class sub-images, only two 460

cases of FP, the network was first used to label all the sub-images in U and C classes. No edge detector was 461

applied on the sub-images identified as U class by the network. The LoG edge detector was applied on the 462

rest of the images in the testing dataset. Combining the two approaches, number of FNs were reduced to 463

70% of the ones reported only by the LoG edge detector. This leads to an average reduction of the NR 464

values from 2.45% to 0.11%. 465

Using this technique also improved the overall performance of the of the edge detectors. As mentioned 466

before, the edge detectors performed better on the sub-images with cracks due the effect of second level 467

threshold which was the reason to evaluate their performance on C class and U class sub-images separately 468

21

in Table 3 and Table 4. However, PPV and F1 score metrics would be considerably lower if the both classes 469

were considered in calculating them. For the best edge detector, i.e. LoG, PPV=6% and F1=11% were 470

achieved when both classes were used. However, using the hybrid technique resulted in the almost the same 471

PPV and F1 score provided in Table 3 for the LoG since only C class images were analyzed (with exception 472

of two sub-images in the U class). 473

8. Conclusions 474

This paper presents a comparison of edge detection and DCNN algorithms for image based concrete crack 475

detection. The dataset consisted of 3420 sub-images of concrete cracks. Several common edge detection 476

algorithms were employed in the spatial (Roberts, Prewitt, Sobel, and LoG) and frequency (Butterworth 477

and Gaussian) domains. AlexNet DCNN architecture was employed in its fully trained, classifier, and fine-478

tuned modes. Edge detection schemes performed reasonably well. The best method—LoG—accurately 479

detected about 79% of cracked pixels and was useful in detecting cracks coarser than 0.1 mm. In 480

comparison, the best DCNN method—the network in transfer learning mode—accurately detected 86% of 481

cracked images and could detect cracks coarser than 0.04 mm. This represents a significant performance 482

enhancement over edge detection schemes and shows promise for future applications of DCNN for image 483

based crack detection in concrete. In addition, a methodology was proposed to reduce the FNs reports by 484

70% by applying the edge detectors only on sub-images not labeled as uncracked. In addition, a hybrid 485

crack detector was introduced which combines the advantages of both approaches. In the hybrid detector, 486

the sub-images were first labeled by the network in the fully trained mode. Since it produced the highest 487

TNR, the edge detector is not applied on the sub-images labeled as U (uncracked) by the network. This 488

technique reduced the noise ratio of the LoG edge detectors from 2.4% to 0.11% and has the similar effect 489

on the other edge detectors as well. 490

This study shows the superiority of an AlexNet DCNN over traditional edge detectors for concrete crack 491

detection. This superiority can be further improved when architectures such as GoogleNet or RestNet are 492

implemented for crack detection. DLCCNs are able to classify multiple defects if enough annotated images 493

22

are available for training. Formation an annotated image dataset for structural defects, such as ImageNet, 494

is vital for further applications of DCNNs in structural engineering. With this dataset available, new 495

architectures can be proposed to focus on finding structural defects instead of random objects, which will 496

reduce the computational time associated with training process. In addition, domain adaptation methods 497

such as transfer learning, will be more effective if the network is previously trained on the structural defects 498

dataset. Improving the performance of domain adaptation techniques makes real-time defect detection in 499

robotic vision-based inspections feasible. In other words, a pre-trained DCNN on the structural defect 500

dataset, can be directly used to accurately classify new images taken by an unmanned aerial system to 501

different structural defects as the inspection is taking place. 502

References 503

 504

[1] Federal Highway Administration, "National Bridge Inventory," FHWA, McLean, VA, 2017.

[2] Federal Highway Administration, "National Bridge Inspection Standards (FHWA–FAPG 23 CFR

650C)," FHWA, McLean, VA, 2017.

[3] B. Chan, H. Guan, J. Jo and M. Blumenstein, "Tuwards UAV-based bridge inspection systems: A

reivew and an application perspective," Structural Monitoring and Maintenance, vol. 2, no. 3, p. 283–

300, 2015.

[4] C. H. Yang, M. C. Wen, Y. C. Chen and S. C. Kang, "An optimized unmanned aeiral system for

bridge inspection," in Proceedings of the Insternational Symposium on Automation and Robotics in

Construction, Vilnius, Lithuania, 2015.

[5] S. Dorafshan, M. Maguire, N. Hoffer and C. Coopmans, "Fatigue Crack Detection Using Unmanned

Aerial Systems in Under-Bridge Inspection," Idaho Transportation Department, Boise, ID, 2017.

23

[6] S. Dorafshan, M. Maguire, N. Hoffer and C. Coopmans, "Challenges in bridge inspection using small

unmanned aerial systems: Results and lessons learned," in Proceedings of the 2017 International

Conference on Unmanned Aircraft Systems, Miami, FL, 2017.

[7] N. Gucunski, S. H. Kee, H. M. La, B. Basily and A. Maher, "Delamination and concrete quality

assessment of concrete bridge decks using a fully autonomous RABIT platform," International

Journal of Structural Monitoring and Maintenance, vol. 2, no. 1, p. 19–34, 2015.

[8] R. S. Lim, H. M. Lag and W. Sheng, "A robotic crack inspectionand mapping system for bridge deck

maintenance," ICCC Transactions on Automation Science and Engineering, vol. 11, no. 2, p. 367–

378, 2014.

[9] N. Gucunski, S. H. Kee, H. La, B. Basily, A. Maher and H. Bhasemi, "Implementation of a fully

autonomous platform for assessment of concrete bridge decks RABIT," in Structures Congress 2015,

Portland, OR, 2015.

[10] S. Dorafshan and M. Maguire, "Bridge Inspection: Human Performance, Unmanned Aerial Vehicles

and Automation," Journal of Civil Strucutral Health monitoring, pp. 1-34, 2018.

[11] N. Metni and T. Hamel, "A UAV for bridge inspection: Visual servoing control law with orientation

limits," Automation in Construction, vol. 17, no. 1, p. 3–10, 2007.

[12] S. Dorafshan, M. Maguire and X. Qi, "Automatic Surface Crack Detection in Concrete Structures

using OTSU Thresholding and Morphological Operations (UTC 01-2016)," Utah Transportation

Center, Logan, UT, 2016.

[13] S. German, I. Brilakis and R. DesRoches, "Rapid entropy-based detection and properties

measurement of concrete spalling with machine vision for post-earthquake safety assessments,"

Advanced Engineering Informatics, vol. 26, no. 4, p. 846–858, 2012.

24

[14] K. Vaghefi, T. T. M. Ahlborn, D. K. Harris and C. N. Brooks, "Combined imaging technologies for

concrete bridge deck condition assessment," Journal of Performance of Constructed Facilities, vol.

29, no. 4, 2013.

[15] H. Sohn, D. Dutta, J. Y. Yang, M. DeSimio, S. Olson and E. Swenson, "Automated detection of

delamination and disbond from wavefield images obtained using a scanning laser vibrometer," Smart

Materials and Structures, vol. 20, no. 4, 2011.

[16] T. Omar and M. L. Nehdi, "Remote sensing of concrete bridge decks using unmanned aerial vehicle

infrared thermography," Automation in Construction, vol. 83, p. 360–371, 2017.

[17] A. Ellenberg, A. Kontsos, F. Moon and I. Bartoli, "Bridge related damage quantification using

unmanned aerial vehicle imagery," Structural Control and Health Monitoring, vol. 23, no. 9, p. 1168–

1179, 2016.

[18] S. Dorafshan, R. Thomas and M. Maguire, "Fatigue Crack Detection Using Unmanned Aerial

Systems in Fracture Critical," Journal of Bridge Engineering, 2018.

[19] M. R. Jahanshahi and S. F. Masri, "Adaptive vision-based crack detection using 3D scene

reconstruction for condition assessment of structures," Automation in Construction, vol. 22, pp. 567-

576, 2012.

[20] M. Hamrat, B. Boulekbache, M. Chemrouk and S. Amziane, "Flexural cracking behavior of normal

strength, high strength and high strength fiber concrete beams, using Digital Image Correlation

technique," Construction and Building Materials, vol. 106, pp. 678-692, 2016.

[21] A. Rimkus, A. Podviezko and V. Gribniak, "Processing digital images for crack localization in

reinforced concrete members," Procedia Engineering, vol. 122, p. 239–243, 2015.

25

[22] L. Li, Q. Wang, G. Zhang, L. Shi, J. Dong and P. Jia, "A method of detecting the cracks of concrete

undergo high-temperature," Construction and Building Materials, vol. 162, pp. 345-358, 2018.

[23] H. Kim, E. Ahn, S. Cho, M. Shin and S. H. Sim, "Comparative analysis of image binarization methods

for crack identification in concrete structures," Cement and Concrete Research, vol. 99, p. 53–61,

2017.

[24] T. Yamaguchi, S. Nakamuran, R. Saegusa and S. Hashimoto, "Image-based crack detection for real

concrete surfaces," IEEJ Transactions on Electrical and Electronic Engineering, vol. 3, no. 1, p. 128–

135, 2008.

[25] M. R. Taha, A. Noureldin, J. L. Lucero and T. J. Baca, "Wavelet transform for structural health

monitoring: a compendium of uses and features," Structural Health Monitoring, vol. 5, no. 3, pp. 267-

295, 2006.

[26] J. Kittler, R. Marik, M. Mirmehdi, M. Petrou and J. Song, "Detection of defects in colour texture

surfaces," in IAPR Workshop on Machine Vision Applications, Kawasaki, 1994.

[27] I. Abdel-Qader, P. Abudayyeh and M. E. Kelly, "Analysis of edge-detection techniques for crack

identification in bridges," Journal of Computing in Civil Engineering, vol. 17, no. 4, p. 255–263,

2003.

[28] I. Abdel-Qader, S. Pashaie-Rad, P. Abudayyeh and S. Yehia, "PCA-based algorithm for unsupervised

bridge crack detection," Advances in Engineering Software, vol. 37, no. 12, p. 771–778, 2006.

[29] J. K. Oh, G. Jang, S. Oh, J. H. Lee, B. J. Yi, Y. S. Moon, J. S. Lee and Y. Choi, "Bridge inspection

robot system with machine vision," Automation in Construction, vol. 18, no. 7, p. 929–941, 2009.

26

[30] H. Moon and J. Kim, "Intelligent crack detecting algorithm on the concrete crack image using neural

network," in Proceedings of the 28th International Symposium on Automation and Robotics in

Construction, Seoul, 2011.

[31] H. Wang, Z. Chen and L. Sun, "Image preprocessing methods to identify micro-cracks of road

pavement," Optics and Photonics Journal, vol. 3, no. 2, p. 99, 2013.

[32] P. Zheng, "Crack Detection and Measurement Utilizing Image-Based Reconstruction," MS Thesis.

Virginia Polytechnic Institute, Blacksburg, VA, 2014.

[33] R. S. Lim, H. M. La and W. Sheng, "A robotic crack inspection and mapping system for bridge deck

maintenance," IEEE Transactions on Automation Science and Engineering, vol. 11, no. 2, p. 367–

378, 2014.

[34] J. W. Kim, S. B. Kim, J. C. Park and J. W. Nam, "Development of crack detection system with

unmanned aerial vehicles and digital image processing," in Advances in Structural Engineering and

Mechanics (ASEM15), Incheon, 2015.

[35] S. Sankararinivasan, E. Balasubramanian, K. Karthik, U. Chandrasekar and R. Gupta, "Health

monitoring of civil structures with integrated UAV and image processing system," Procedia

Computer Science, vol. 54, p. 508–515, 2015.

[36] A. M. A. Talab, Z. Huang, F. Xi and L. HaiMing, "Detection crack in image using Otsu method and

multiple filtering in image processing techniques," Optik-International Journal for Light and

Electron Optics, vol. 127, no. 3, p. 1030–1033, 2016.

[37] S. Dorafshan, M. Maguire and M. Chang, "Comparing automated image-based crack detection

techniques in spatial and frequency domains," in Proceedings of the 26th American Society of

Nondestructive Testing Reseach Symposium, Jacksonville, FL, 2017.

27

[38] S. Dorafshan and M. Maguire, "Autonomous detection of concrete cracks on bridge decks and fatigue

cracks on steel members," in Digital Imaging 2017, Mashantucket, CT, 2017.

[39] Y. Noh, D. Koo, Y. M. Kang, D. Park and D. Lee, "Automatic crack detection on concrete images

using segmentation via fuzy C-means clustering," in Proceedings of the 2017 International

Conference on Applied System Innovation, Sapporo, 2017.

[40] G. K. Choudhary and S. Dey, "Crack detection in concrete surfaces using image processing, fuzzy

logic, and neural networks," in In 2012 IEEE Fifth International Conference on Advanced

Computational Intelligence (ICACI), , Nanjing, China, 2012.

[41] Y. J. Cha, W. Choi, G. Suh, S. Mahmoudkhani and O. Büyüköztürk, "Autonomous Structural Visual

Inspection Using Region‐Based Deep Learning for Detecting Multiple Damage Types," Computer‐

Aided Civil and Infrastructure Engineering., 2017.

[42] Y. J. Cha, W. Choi and O. Büyüköztürk, "Deep Learning‐Based Crack Damage Detection Using

Convolutional Neural Networks," Computer‐Aided Civil and Infrastructure Engineering, vol. 32, no.

5, pp. 361-378, 2017.

[43] S. Dorafshan, C. Coopmans, R. J. Thomas and M. Maguire, "Deep Learning Neural Networks for

sUAS-Assisted Structural Inspections: Feasibility and Application," in ICUAS 2018, Dallas, TX,

2018.

[44] A. Mohan and S. Poobal, "Crack detection using image processing: A critical review and analysis,"

Alexandria Engineering Journal, vol. In press., 2017.

[45] M. Maguire, S. Dorafshan and R. Thomas, "SDNET2018: A concrete crack image dataset for machine

learning applications," Utah State Universiy, Logan, 2018.

28

[46] M. O’Byrne, F. Schoefs, B. Ghosh and V. Pakrashi, "Texture analysis based damage detection of

ageing infrastructural elements," Computer‐Aided Civil and Infrastructure Engineering, vol. 28, no.

3, pp. 162-177, 2013.

[47] L. Wu, S. Mokhtari, A. Nazef, B. Nam and H. B. Yun, "Improvement of crack-detection accuracy

using a novel crack defragmentation technique in image-based road assessment," Journal of

Computing in Civil Engineering, vol. 30, no. 1, 2014.

[48] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural networks, vol. 61, pp. 85-

117, 2015.

[49] A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional neural

networks," Advances in neural information processing systems , pp. 1097-1105, 2012.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov and A. ... & Rabinovich, "Going

deeper with convolutions," CVPR, 2015.

[51] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," Proceedings of

the IEEE conference on computer vision and pattern recognition, 770-778.

[52] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and L. Fei-Fei, "Imagenet: A large-scale hierarchical

image database," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami,

FL, 2009.

[53] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in IEEE

conference on computer vision and pattern recognition, Seattle. WA, 2016.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov and A. ... Rabinovich, "Going deeper

with convolutions," in CVPR, 2015.

29

[55] L. Zhang, F. Yang, Y. D. Zhang and Y. J. Zhu, "Road crack detection using deep convolutional neural

network," in Image Processing (ICIP), 2016 IEEE International Conference on, 2016.

[56] A. Zhang, K. C. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu, J. Q. Li and C. Chen,

"Automated Pixel‐Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep‐Learning

Network," Computer‐Aided Civil and Infrastructure Engineering, vol. 32, no. 10, pp. 805-819, 2017.

[57] F. C. Chen and M. R. Jahanshahi, "NB-CNN: Deep Learning-based Crack Detection Using

Convolutional Neural Network and Naïve Bayes Data Fusion," IEEE Transactions on Industrial

Electronics, 2017.

[58] D. J. Atha and M. R. Jahanshahi, " Evaluation of deep learning approaches based on convolutional

neural networks for corrosion detection," Structural Health Monitoring, p. 1475921717737051, 2017.

[59] S. S. Kumar, D. M. Abraham, M. R. Jahanshahi, T. Iseley and J. Starr, "Automated defect

classification in sewer closed circuit television inspections using deep convolutional neural

networks," Automation in Construction, vol. 91, pp. 273-283, 2018.

[60] D. Feng and M. Q. Feng, "Identification of structural stiffness and excitation forces in time domain

using noncontact vision-based displacement measurement," Journal of Sound and Vibration, vol. 406,

pp. 15-28, 2017.

[61] D. Feng and M. Q. Feng, "Computer vision for SHM of civil infrastructure: From dynamic response

measurement to damage detection–A review," Engineering Structures, vol. 156, pp. 105-117, 2018.

[62] Y. Bao, Z. Tang, H. Li and Y. Zhang, "Computer vision and deep learning–based data anomaly

detection method for structural health monitoring," Structural Health Monitoring, p.

1475921718757405, 2018.

30

[63] S. Dorafshan, R. Thomas, M. Maguire and C. Coopmans, "A Practitioner’s Guide to Small Unmanned

Aerial Systems for Bridge Inspection," in ICUAS18, Dallas, TX, 2018.

[64] D. Kang and Y. J. Cha, "Autonomous UAVs for Structural Health Monitoring Using Deep Learning

and an Ultrasonic Beacon System with Geo‐Tagging," Computer‐Aided Civil and Infrastructure

Engineering, 2018.

[65] D. Kang and Y. J. Cha, "Damage detection with an autonomous UAV using deep learning," in Sensors

and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 (Vol. 10598,

p. 1059804). International Society for Optics and Photonics, Denver, CO, 2018.

[66] V. Dumoulin and F. Visin, "A guide to convolution arithmetic for deep learning," arXiv preprint

arXiv:1603.07285..

[67] Fei-Fei L., J. J and Y. S., Stanford University, 2017. [Online]. Available: http://cs231n.stanford.edu/.

[Accessed 21 03 2018].

[68] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues and R. M. ... Summers, "Deep convolutional

neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer

learning," IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1285-1298, 2016.

[69] Z. Li and D. Hoiem, " Learning without forgetting," IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017.

[70] S. Dorafshan, R. Thomas and M. Maguire, "Image Processing Algorithms for Vision-based Crack

Detection in Concrete Structures," Advanced Concrete Technology, 2018.

[71] S. Dorafshan, C. Coopmans, R. Thomas and M. Maguire, "Deep Learning Neural Networks for

sUAS-Assisted Structural Inspections: Feasibility and Application," in ICUAS2018, Dallas, 2018.

 505

31

 506

 507

32

List of Figures 508

Figure 1 Illustration of the dataset .. 34 509

Figure 2 The effect of edge enhancement on the final image of the edge detectors, Sobel, (a) original image, 510

(b) final binary image superimposed on the original image (b) without the edge enhancement, (c) with the 511

edge enhancement ... 35 512

Figure 3 Closing operation illustration (a) first level binary image, (b) dilation, and (c) erosion using a disk 513

structuring element with diameter of 4 px. (LoG edge detector was used). ... 36 514

Figure 4 Crack in the (a) ground true, 1391 px, (b) without the closing operation 391 px correct detection 515

(c) with closing operation 1215 px correct detection (LoG edge detector) .. 37 516

Figure 5 Crack in the (a) ground true, 2325 px, (b) without second level threshold operation 3672 pixels 517

false detection (c) with second level threshold operation: 214 px false detection (results of the Gaussian 518

edge detector in the frequency domain) .. 38 519

Figure 6. AlexNet DCNN architecture ... 39 520

Figure 7. Examples of metric, (a) ground truth, Cp=1,582 px, Up=63,954 px, (b) final binary image using 521

Roberts edge detector, Cp=2276 px, Up=63,260 px (c) TP=1367 px, (d) FN=215 px, (e) TN=63,045 px, (f) 522

FP=909 px. .. 40 523

Figure 8 Results of the studied edge detectors on the sub-images in the C class (a) TRP, PPV, and F1 (b) 524

TNR, ACC, and NPV, (c) NR in C and U classes. ... 41 525

Figure 9 An example of edge detector performance on a 0.02 mm crack (a) original image, (b) GT=1145 526

px, (c) Roberts, TPR=39% (d) Prewitt, TPR=60%, (e) Sobel, TPR=55%, (f) LoG, TPR=71%, (g) 527

Butterworth, TPR=38%, (h) Gaussian, TPR=17% ... 42 528

Figure 10. DCNN accuracy during training and validation ... 43 529

Figure 11 Metrics for the DCNN in FT, TL, and CL modes .. 44 530

Figure 12. DCNN results for a crack of width 0.08 mm: (a) FT mode, (b) TL mode, and (c) CL mode .. 45 531

33

Figure 13. Results of (a) fully trained DCNN crack detection, (b) transfer learning DCNN, and (c) classifier 532

DCNN for crack detection on the original full scale images in the testing dataset 47 533

Figure 14 Examples of FNs in the U class images (a) non-crack edge, (b) different surface finish, (c) noise 534

due to the coarse concrete surface ... 48 535

Figure 15 Combination of DCNN and edge detectors (a) the superimposed image with crack using LoG on 536

all sub-images, (b) the superimposed image with crack without using LoG on U class sub-images, (c) the 537

superimposed image without crack using LoG on all sub-images, (d) the superimposed image without crack 538

without using LoG on U class sub-images. ... 49 539

 540

List of Tables 541

Table 1. Number of cracked and sound sub-images in training, validation, and testing datasets 50 542

Table 2. Number of Cp and Up pixels in the testing dataset .. 51 543

Table 3. Summary of edge detector performance on sub-images in the C class .. 52 544

Table 4 Summary of edge detector performance on sub-images in the U class ... 53 545

Table 5. Summary of DCNN results .. 54 546

Table 6. Comparison of DCNN and edge detection performance considering sub-images 55 547

 548

34

 549

Figure 1 Illustration of the dataset 550

 551

35

 552

(a) (b) (c)

Figure 2 The effect of edge enhancement on the final image of the edge detectors, Sobel, (a) original 553

image, (b) final binary image superimposed on the original image (b) without the edge enhancement, (c) 554

with the edge enhancement 555

 556

36

(a) (b) (c)

Figure 3 Closing operation illustration (a) first level binary image, (b) dilation, and (c) erosion using a 557

disk structuring element with diameter of 4 px. (LoG edge detector). 558

 559

37

(a) (b) (c)

Figure 4 Crack in the (a) ground truth, 1391 px, (b) without the closing operation 391 px correct 560

detection (c) with closing operation 1215 px correct detection (LoG edge detector) 561

 562

38

(a) (b) (c)

Figure 5 Crack in the (a) ground truth, 2325 px, (b) without second level threshold operation 3672 pixels 563

false detection (c) with second level threshold operation: 214 px false detection (Gaussian edge detector) 564

 565

39

 566

Figure 6. AlexNet DCNN architecture 567

 568

 569

 570

40

 571

(a) (b) (c)

(d) (e) (f)

Figure 7. Examples of metric, (a) ground truth, Cp=1,582 px, Up=63,954 px, (b) final binary image using 572

Roberts edge detector, Cp=2276 px, Up=63,260 px (c) TP=1367 px, (d) FN=215 px, (e) TN=63,045 px, 573

(f) FP=909 px (Robersts edge detector) 574

 575

41

(a) (b) (c)

Figure 8 Results of the studied edge detectors on the sub-images in the C class (a) TRP, PPV, and F1 (b) 576

TNR, ACC, and NPV, (c) NR in C and U classes. 577

 578

0.00

0.20

0.40

0.60

0.80

1.00

TPR TNR ACC PPV NPV F1

Roberts Prewitt

Sobel LoG

Butterworth Gaussian

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

TNR ACC NPV

Roberts Prewitt
Sobel LoG
Butterworth Gaussian

0

2

4

6

8

NR (C) NR (U)

Roberts Prewitt
Sobel LoG
Butterworth Gaussian

42

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9 An example of edge detector performance on a 0.02 mm crack (a) original image, (b) GT=1145 579

px, (c) Roberts, TPR=39% (d) Prewitt, TPR=60%, (e) Sobel, TPR=55%, (f) LoG, TPR=71%, (g) 580

Butterworth, TPR=38%, (h) Gaussian, TPR=17% 581

 582

 583

43

 584

 585

Figure 10. DCNN accuracy during training and validation 586

 587

0 5 10 15

80

85

90

95

100

0 5000 10000 15000 20000

Epoch

A
cc

u
ra

cy
 (

%
)

Iteration

FT mode-Training

TL mode-Training

FT mode-Validation

TL mode-Validation

44

 588

Figure 11 Metrics for the DCNN in FT, TL, and CL modes 589

 590

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

TPR TNR ACC PPV NPV F1

FT TL CL

45

(a) (b) (c)

Figure 12. DCNN results for a crack of width 0.08 mm: (a) FT mode, (b) TL mode, and (c) CL mode 591

 592

46

 593

(a)

(b)

47

(c)

Figure 13. Results of (a) fully trained DCNN crack detection, (b) transfer learning DCNN, and (c) 594

classifier DCNN for crack detection on the original full scale images in the testing dataset 595

 596

48

 597

(a) (b) (c)

Figure 14 Examples of FNs in the U class images (a) non-crack edge, (b) different surface finish, (c) 598

noise due to the coarse concrete surface 599

 600

49

(a) (b)

(c) (d)

Figure 15 Combination of DCNN and edge detectors (a) the superimposed image with crack using LoG 601

on all sub-images, (b) the superimposed image with crack without using LoG on U class sub-images, (c) 602

the superimposed image without crack using LoG on all sub-images, (d) the superimposed image without 603

crack without using LoG on U class sub-images. 604

 605

50

Table 1. Number of cracked and sound sub-images in training, validation, and testing datasets 606

Dataset No of Original Images C U Total

Training
81

1129 11680 12809

Validation 125 1646 1771

Testing 19 319 3101 3420

 607

51

Table 2. Number of Cp and Up pixels in the testing dataset 608

Dataset Cp Up Cp Ratio (%)

im1 18835 11777645 0.16

im2 13952 11782528 0.12

im3 67548 11728932 0.57

im4 13472 11783008 0.11

im5 46192 11750288 0.39

im6 46372 11750108 0.39

im7 46658 11749822 0.40

im8 37572 11758908 0.32

im9 42675 11753805 0.36

im10 88321 11708159 0.75

im11 2693 11793787 0.02

im12 1264 11795216 0.01

im13 3336 11793144 0.03

im14 0 11796480 0.00

im15 5995 11790485 0.05

im16 4203 11792277 0.04

im17 0 11796480 0.00

im18 4953 11791527 0.04

im19 1304 11795176 0.01

 609

52

 610

 611

Table 3. Summary of edge detector performance on sub-images in the C class 612

Domain
Edge

Detector
TPR TNR ACC PPV NPV F1

MCW

(mm)
T (s)

Spatial

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.15

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.13

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.64

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.79

Frequency

Butterworth 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.76

Gaussian 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.70

 613

 614

53

Table 4 Summary of edge detector performance on sub-images in the U class 615

Domain Edge Detector TNR T (s)

Spatial

Roberts 0.93 5.46

Prewitt 0.95 4.71

Sobel 0.95 4.83

LoG 0.95 4.05

Frequency
Butterworth 0.95 5.98

Gaussian 0.93 5.86

 616

 617

54

 618

Table 5. Summary of DCNN results 619

Mode TP FN TN FP TPR TNR ACC PPV NPV F1
MCW

(mm)

Time

(s)

FT 212 107 3099 2 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65

TL 275 44 3077 24 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81

CL 267 52 3034 67 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75

 620

 621

55

Table 6. Comparison of DCNN and edge detection performance considering sub-images 622

Method TPR TNR ACC PPV NPV F1
MCW

(mm)

Time

(s)

D
C

N
N

 FT mode 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65

TL mode 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81

CL mode 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75

E
d

g
e

D
et

ec
to

r

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.30

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.42

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.74

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.92

Gaussian 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.87

Butterworth 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.78

 623

 624

56

 625

 626

