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Abstract 6 

This paper compares the performance of common edge detectors and deep convolutional neural networks 7 

(DCNN) for image-based crack detection in concrete structures. A dataset of 19 high definition images 8 

(3420 sub-images, 319 with cracks and 3101 without) of concrete is analyzed using six common edge 9 

detection schemes (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and using 10 

the AlexNet DCNN architecture in fully trained, transfer learning, and classifier modes. The relative 11 

performance of each crack detection method is compared here for the first time on a single dataset. Edge 12 

detection methods accurately detected 53–79% of cracked pixels, but they produced residual noise in the 13 

final binary images. The best of these methods was useful in detecting cracks wider than 0.1 mm. DCNN 14 

methods were used to label images, and accurately labeled them with 99% accuracy. In transfer learning 15 

mode, the network accurately detected about 86% of cracked images. DCNN methods also detected much 16 

finer cracks than edge detection methods. In fully trained and classifier modes, the network detected cracks 17 

wider than 0.08 mm; in transfer learning mode, the network was able to detect cracks wider than 0.04 mm. 18 

Computational times for DCNN are shorter than the most efficient edge detection algorithms, not 19 

considering the training process. These results show significant promise for future adoption of DCNN 20 
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methods for image-based damage detection in concrete. To reduce the residual noise, a hybrid method was 21 

proposed by combining the DCNN and edge detectors which reduced the noise by a factor of 24.  22 

Keywords: Concrete, crack detection, deep learning, neural network, edge detection, image processing, 23 

vision-based, structural health monitoring 24 

1. Introduction 25 

At least a third of the more than 600,000 bridges in the United States include a concrete superstructure or 26 

wearing surface [1]. Routine inspections of concrete bridges are conducted periodically to assess overall 27 

condition and to identify surface cracking or other degradation [2]. Manned inspections of this type are 28 

costly, time consuming, and labor intensive [3] [4] [5]. Unmanned and autonomous inspections are a 29 

potentially viable alternative to manned inspections [5] [6] [7] [8] [9] [10]. Inspections performed by robots 30 

or unmanned aerial systems (UAS) are typically image-based, meaning that the inspection platform takes 31 

images that are then processed and/or reviewed by an inspector. Previous literature demonstrates several 32 

successful applications of image-based inspections to detect cracks [11, 12], spalls [13, 14], delaminations 33 

[14, 15, 16], and corrosion [17] in concrete bridges. 34 

Image-based inspections of this type can be performed in three general ways: Raw image inspection, image 35 

enhancement, or autonomous image processing. Raw image inspection means that the inspector views the 36 

images taken during the inspection without any additional processing [5, 18]. The number of images 37 

collected depends on a number of factors, but is commonly in the hundreds of thousands [5, 18]. Manual 38 

identification of flaws in such large images sets is time consuming and prone to inaccuracy due to inspector 39 

fatigue or human error. Enhanced image inspection refers to the use of some image processing algorithm 40 

to make it easier to identify flaws in inspection images. This is typically performed using one of several 41 

edge detection algorithms, which greatly magnify the visibility of cracks within images. In doing so, the 42 

aforementioned problems with inspector fatigue can be mitigated to some degree. Finally, autonomous 43 
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image processing refers to the use of an algorithm that detects cracks within images. This is typically 44 

accomplished using machine learning algorithms or other artificial intelligence schemes. 45 

This paper discusses the latter two approaches and compares their performance. Image enhancement 46 

methods includes the application of a variety of image processing techniques on visual images to detect 47 

cracks including but not limited to morphological operations [19], digital image correlation [20, 21], image 48 

binarization [22, 23], percolation model [24], wavelet transforms [25], and edge detectors [12] [27] [29]    49 

[33] [34]  [36] [37] [38] [36]. The autonomous approach for crack detection on the other hand requires a 50 

set of training images to learn the features of cracks. Similarly, several researchers have shown the 51 

feasibility of autonomous crack detection in visual images using combined image processing techniques 52 

and artificial neural networks [30, 40]. Deep convolutional neural networks (DCNNs) have been recently 53 

used for concrete crack detection [41, 42, 43].  54 

Despite the abundance of image-based crack detection studies, direct comparisons between these methods 55 

is a gap. Save two noteworthy exceptions, most research focuses on developing new methods for crack 56 

detection rather than comparing the performance of existing methods. Abdel-Qader et al. [27] compared 57 

the performance of the fast Haar transform, Fourier transform, Sobel filter, and Canny filter for crack 58 

detection in 25 images of defected concrete and 25 images of sound concrete. The fast Haar transform was 59 

the most accurate method, with overall accuracy of 86%, followed by the Canny filter (76%), Sobel filter 60 

(68%), and the Fourier transform (64%). he processing time was not considered in the analysis and the 61 

criteria for recoding true of false positives in the binary images were not clear. Lack of definition for metrics 62 

such as true positive has seen in the past studies. Mohan and Poobal [44] reviewed a number of edge 63 

detection techniques for visual, thermal, and ultrasonic images, but the information presented was from 64 

several studies that considered vastly different data sets, and so the results are not directly comparable. A 65 

comparison between two edge detectors, Canny and Sobel, and a convolutional neural network is done in 66 

[42]. However, the comparison was performed on four images. In addition, the edge detectors were used 67 

without pre-processing which is not a very common practice. Another shortcoming of the comparison in 68 



4 

 

[42] is the lack of accuracy definition of the edge detector results. This paper compares image processing 69 

and deep learning techniques together as a reference for future study. which includes a direct comparison 70 

of the performance of four common edge detection methods in the spatial domain (Roberts, Prewitt, Sobel, 71 

Laplacian of Gaussian) and two in the frequency domain (Butterworth and Gaussian) and an AlexNet-based 72 

DCNN in three modes of training (fully trained, transfer learning, and no-training) by applying them to an 73 

annotated dataset designated for crack detection.  74 

2. Dataset 75 

The dataset used in this study consisted of 100 images of concrete panels that simulated reinforced concrete 76 

bridge decks for the purpose of verifying various non-destructive testing. These panels were constructed 77 

previously in Systems, Materials, and Structural Health laboratory (SMASH Lab) at Utah State University. 78 

Images are collected with a 16 MP digital single lens reflex camera with 35 mm focal length and no zoom. 79 

The target was normal to the axis of the lens at a distance of approximately 0.5 m. The background 80 

illumination was in the range 400–1000 lx, as measured by a NIST traceable digital light meter purchased 81 

new just prior to measurement. The finest crack width was approximately 0.04mm and the widest was 82 

1.42mm. The original image size was 2592 × 4608 px and the field of view was approximately 0.3 × 0.55 83 

m. Images were stored as JPEG with average file size near 5 MB. In order to comply with the architecture 84 

of the DCNN, each original image was divided into 180 sub-images with size of 256 × 256 px. The sub-85 

images were labeled in two categories, 1,574 sub-images with cracks and 16,426 sub-images without 86 

cracks. Figure 1 illustrates the studied dataset with one example of high-resolution image, a sub-image 87 

labeled as C from the original image if it had a crack, and a sub-image labeled as U from the original image 88 

if it did not. For DCNN applications, this dataset was divided into training dataset, validation dataset, and 89 

testing dataset as shown in Table 1. The testing dataset was selected randomly from 100 original images. 90 

The images in this dataset are a portion of the bridge deck images of the structural defect dataset 91 

(SDNET2017 [45]). The sub-images in the testing dataset have also been segmented in the pixel-level as 92 

Cp and Up for semantic comparison where Cp stands for pixels with cracks and Up stands for sound pixels. 93 
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The results of the pixel-level segmentation on the testing dataset are presented in Table 2. In this table, the 94 

Cp ratio stands for the number of pixels in each image labeled as crack to total number of pixels in that 95 

image.  96 

3. Edge Detection 97 

In this paper, edge detection refers to the use of filters (edge detectors) in an image processing algorithm 98 

for the purpose of detecting or enhancing the cracks in an image such that they can be more easily and 99 

efficiently located within a large image dataset. Cracks in a two-dimensional (2D) image are classified as 100 

edges, and thus existing edge detection algorithms are likely candidates for crack identification. 2D images 101 

are represented mathematically by matrices (one matrix, in the case of greyscale images, or three matrices 102 

in the case of red/green/blue color images). An ideal edge is defined as a discontinuity in the greyscale 103 

intensity field. Crack detection algorithms can emphasize edges by applying filters in either the spatial or 104 

frequency domain. Edge detection algorithms purport to make manual crack detection more reliable. In 105 

general, such image processing algorithms follow three steps: (1) edge detection, (2) edge image 106 

enhancement, and (3) segmentation (sometimes called binarization or thresholding). Edge detection 107 

involves the application of various filters in either the spatial or frequency domain to a grayscale image in 108 

order to emphasize discontinuities. Edge image enhancement scales the image and adjusts contrast to 109 

improve edge clarity. Segmentation transforms the enhanced edge image into a binary image of cracked 110 

and sound pixels. 111 

In the spatial domain, the convoluted image 𝑬 is the sum of the element-by-element products of the image 112 

intensity 𝑰 and the kernel 𝑲 in every position in which 𝑲 fits fully in 𝑰. For 𝑰𝑀×𝑁 (image dimension 𝑀 × 𝑁) 113 

and 𝑲𝑚×𝑛 (kernel size 𝑚 × 𝑛): 114 

𝑬(𝑖, 𝑗) = ∑ ∑ 𝑰(𝑖 + 𝑘 − 1, 𝑗 + ℓ − 1)𝑲(𝑘, ℓ)𝑛
ℓ=1

𝑚
𝑘=1      (1) 115 
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𝑬 is of size (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1). Filters kernels may include 𝑥 and 𝑦 components (corresponding 116 

to image spatial dimension in horizontal and vertical dimensions), 𝑲𝑥 and 𝑲𝑦, in which case the edge image 117 

𝑬 is the hypotenuse of 𝑬𝑥 and 𝑬𝑦. 118 

Four edge detector filters in the spatial domain were employed in this study: Roberts in 𝑥 and 𝑦 directions, 119 

denoted as 𝑲𝑅𝑥 and 𝑲𝑅𝑦 in Eq. 2, Prewitt in 𝑥 and 𝑦 directions, denoted as 𝑲𝑃𝑥 and 𝑲𝑃𝑦  in Eq. 3, Sobel 120 

in 𝑥 and 𝑦 directions, denoted as 𝑲𝑆𝑥 and 𝑲𝑆𝑦 in Eq. 4, and Laplacian-of-Gaussian (𝐿𝑜𝐺) denoted as 𝑲𝐿𝑜𝐺 121 

in Eq. 5. A 10 × 10 𝐿𝑜𝐺 filter was employed here with standard deviation of 𝜎 = 2.  122 

             𝑲𝑅𝑥 = [
1 0
0 −1

]                𝑲𝑅𝑦 = [
0 1

−1 0
]     (2) 123 

𝑲𝑃𝑥 = [
−1 0 1
−1 0 1
−1 0 1

]   𝑲𝑃𝑦 = [
1 1 1
0 0 0

−1 −1 −1
]    (3) 124 

𝑲𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]   𝑲𝑆𝑦 = [
1 2 1

   0    0    0
  −1   −2   −1

]   (4) 125 

𝑲𝐿𝑜𝐺 = ∇2(𝑮(𝑥, 𝑦)) =
𝑥2+𝑦2−2𝜎2

4𝜎4 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )     (5) 126 

Edge detection in the frequency domain requires transformation of the spatial domain image 𝑰 into the 127 

frequency domain image 𝑭 by fast Fourier transform (FFT). The edge image 𝑬 is the element-wise product 128 

of the filter kernel 𝑲 and the frequency domain image 𝑭: 129 

𝑬(𝑢, 𝑣) = 𝑲(𝑢, 𝑣) ⊙ 𝑭(𝑢, 𝑣)        (6) 130 

where 𝑢 and 𝑣 are the dimensions of the transformed image in the frequency domain. Two edge detector 131 

filters in the frequency domain were employed in this study: Butterworth denoted as 𝑲𝐵 in Eq. 7 and 132 

Gaussian denoted as 𝑲𝐺 in Eq. 8.  133 

𝑲𝐵(𝑢, 𝑣) = 1 −
1

1+[
𝐷(𝑢,𝑣)

𝐷0
]

2𝑛        (7) 134 
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𝑲𝐺(𝑢, 𝑣) = 1 − 𝑒
−𝐷2(𝑢,𝑣)

2𝜎2         (8) 135 

where 𝐷(𝑢, 𝑣) is the distance between the pixel (𝑢, 𝑣) and the origin of the frequency (the center of the 136 

𝑀 × 𝑁 image) as defined by Eq. 8, 𝐷0 and 𝑛 are the user-defined parameters to define the order and cut-137 

off frequency in the Butterworth filter; and 𝜎 is the user-defined parameter to define the standard deviation 138 

of the Gaussian filter.   139 

𝐷(𝑢, 𝑣) = √[𝑢 − (
𝑀

2
+ 1)]

2
+ [𝑣 − (

𝑁

2
+ 1)]

2
      (9) 140 

and 𝑲𝐵, and 𝑲𝐺, are Butterworth and Gaussian filters.  141 

The scaled edge image 𝑬𝑠𝑐 is 𝑬 scaled such that 0 ≤ 𝑬𝑠𝑐 ≤ 1. The enhanced edge image is then: 142 

𝑬𝑒(𝑥, 𝑦) = [𝑬𝑠𝑐(𝑥, 𝑦) − min(𝑬𝑠𝑐)] [
2𝜎𝑬𝑠𝑐

max(𝑬𝑠𝑐)−min(𝑬𝑠𝑐)
] + 𝜇𝑬𝒔𝒄

    (10) 143 

where min(𝑬𝑠𝑐), max(𝑬𝑠𝑐),  𝜎𝐸𝑠𝑐
, and 𝜇𝑬𝑠𝑐

 are minimum, maximum, standard deviation, and mean of the 144 

scaled edge image, respectively. Edge enhancement is a crucial part of the proposed method by improving 145 

the segmentation of pixels with cracks from the background pixels. Figure 2 shows an example of the effect 146 

of edge enhancement on the final binary image of the proposed algorithm (Sobel edge detector). 147 

The final binary image 𝑩 is constructed by segmentation, which assigns a value of one to all pixels in which 148 

the intensity exceeds some threshold 𝑇 and a value of zero to all other pixels. In this study, a two level 149 

binarization is introduced: the first is based on a pixel intensity threshold 𝑇1 in the enhanced edge image 150 

and then based on an area connectivity threshold 𝑇2 on the binary image from the first level. The first 151 

threshold operation filters the weak edges from the enhanced edge image (Eq. 11). By applying  𝑇1 the 152 

strong edges in the enhanced edge image (80% or stronger than the maximum intensity, 0.8 max (𝐸𝑒)) are 153 

preserved as cracks. At this point, the strong edges have been identified in the first binary image; however, 154 

the surface roughness of the concrete can cause residual noise.  155 

𝑇1 =  0.8 max (𝐸𝑒)          (11) 156 



8 

 

In order to gain more effective segmentations, the morphological operation closing was carried out on the 157 

first level binary image. Closing consists of a dilation followed by an erosion using an identical structuring 158 

element for both operations (see Figure 3). The purpose of the closing operation is to unify possibly the 159 

discrete parts of the crack in the first binary image. Structuring elements define the spatial domain on the 160 

binary image in which the morphological operation will be carried out. Circle-shaped structuring elements 161 

with generic dimensions were used to perform the closing operation. The radius of the structural element 162 

was defined as the minimum Euclidean distance between the centroids of connected components in each 163 

binary image. The closing operation on improved the results of each individual edge detector in terms of 164 

true positives. Figure 4 shows an example where not applying the closing operation cause the LoG edge 165 

detector to miss the more than half the crack after applying the second threshold operation.  166 

The second binarization operation was designed to segment the cracks from the residual noises in the first 167 

binary image based on the area of the connected components in the first level binary image (Eq. 12). The 168 

connected area 𝐴𝑐(𝑥, 𝑦) is the number of contiguous pixels in a connected component, considering eight-169 

neighbor connectivity. max(𝐴𝑐) is the area of the largest connected component in the first level binary 170 

image. The idea for the area threshold is to control the noise in the final binary image as shown in Figure 5 171 

for the results of the Gaussian high pass filter.  172 

𝑇2 = max (𝐴𝑐)          (12) 173 

4. DCNN 174 

Using direct image-processing techniques for concrete crack detection has several drawbacks. First, the 175 

algorithms are tailored for certain images in the studied datasets which affects their performance on new 176 

datasets. These algorithms may not be as accurate when tested on new datasets taken in more challenging 177 

situations such as low lighting condition, presence of shadows, low quality cameras, etc. Second, the image 178 

processing algorithms are often designed to aid the inspector in crack detection and still rely on human 179 

judgement for final results [29]. One solution is using machine learning algorithms to analyze the inspection 180 
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images [46] [47]. Deep convolutional neural networks (DCNNs) are a type of feedforward artificial neural 181 

networks which have revolutionized autonomous image classification and object detection in the past 5 182 

years [48]. A DCNN uses a set of annotated, e.g. labeled, images for training and calculates the learning 183 

parameters in the learning layers between the input and output layers thorough thousands to millions 184 

iterations.  185 

A number of architectures have been employed to create neural networks providing excellent accuracy on 186 

open-source labeled datasets, such as ImageNet and MNIST, in the past 4 years [49] [50] [51]. Each 187 

architecture includes a number of main layers. The main layers are composed of sub-layers. The total 188 

number of layers defined in a software program, like MATLAB, to build an architecture is referred to as 189 

“Programmable Layers” in this study. Krizhevsky [49] proposed one of the first architectures of a DCNN, 190 

i.e. AlexNet. This architecture has 8 main layers (25 programmable layers) and was the winner of the image 191 

classification competition in 2012 (ImageNet [52]). Szegedy et al. proposed another architecture called 192 

GoogleNet with 22 main layers (144 programmable layers) and improved the accuracy by introducing 193 

inception module in the learning layers which won the 2014 competition [53]. Deep residual learning neural 194 

network, ResNet, was introduced in 2016 [54]. ResNet has 50 and 101 main layers (177 and 347 195 

programmable layers) and was the winner of 2016 competition.  196 

DCNNs have been used in vision-based structural health monitoring in recent years for crack detection 197 

[42], road pavement cracks [55, 56], corrosion detection [57, 58], multi-damage detection [41, 59] structural 198 

health monitoring [62]. Due to popularity of Unmanned Aerial Systems (UASs) for structural health 199 

monitoring and bridge inspection [63] applications of DCNNs in UAS-assisted inspections has begun to 200 

attract researchers for more robust non-contact damage detection [43, 64, 65].  201 

In general, DCNN architecture includes an input layer, learning layers, and an output layer [66]. The input 202 

layer reads the image and transfers it to the learning layers. The learning layers perform convolution 203 

operations, applying filters to extract image features. The output layer classifies the image according to 204 

target categories using the features extracted in the learning layers. The neural network can be trained by 205 
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assigning target categories to images in a training dataset and modifying filter values iteratively through 206 

back propagation until the desired accuracy is achieved.  207 

DCNN can be used for crack detection in three ways: classification [42], localization [41], or segmentation. 208 

The goal of classification is to label each image as cracked or sound. The training and validation datasets 209 

comprise pre-classified cracked and sound images. The goal of localization is to determine bounding 210 

coordinates that identify the location of a crack within an image. As before, the training and validation 211 

datasets include both cracked and sound images, but the cracked images have bounding boxes drawn around 212 

the location of the crack. The goal of segmentation is to classify each pixel as cracked or sound, and the 213 

training and validation datasets comprise a very large number of pre-classified pixels. The computational 214 

intensity of DCNN normally necessitates subdivision of images to reduce computational requirements.   215 

The AlexNet DCNN architecture, illustrated in Figure 6 comprises five convolution layers (C1—C5), three 216 

max pooling layers (MP1—MP3), seven nonlinearity layers using the rectified linear unit (ReLU) function 217 

(ReLU1—ReLU7), two normalization layers (Norm1—Norm2), three fully connected layers (FC1—FC3), 218 

two dropout layers (DP1—DP2), one softmax layer (SM), and one classification layer (CL). Each layer is 219 

applied to the image using the convolution operation (Eq. 1). Figure 6 shows the architecture of the AlexNet 220 

along with its corresponding filter number and size. The kernel values are determined iteratively through 221 

training, but the size, number, and stride of the kernels are predetermined. The nonlinearity layers operate 222 

on the result of each convolution layer through element-wise comparison. The ReLU function used for 223 

nonlinearity is defined as the maximum value of zero and the input: 224 

𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

         (13) 225 

Following the non-linearity layer, a max pooling layer introduces a representative for a set neighboring 226 

pixels by taking their maximum value. The max pooling layers are essential to reduce the computational 227 

time and overfitting issues in the DCNN. After the max pooling layer, one or several fully connected layers 228 

are used at the end of the architecture. The fully connected layer is a traditional multi-layer perceptron 229 



11 

 

followed by a softmax layer to classify the image. The mission of the fully connected layers is to connect 230 

the information from the past layers together in way that the softmax layer can predict the results correctly 231 

during the training process. The optimum combination is achieved from a process called backpropagation 232 

algorithm (partial derivatives of the softmax layer output with respect to weights). The purpose of the 233 

softmax layer is to ensure the sum of probabilities for all labels is equal to 1. In addition to these basic 234 

layers, a DCNN also includes normalization, dropout, and classification layers. Normalization layer 235 

normalizes the response around a local neighborhood to compensate with the possible unbounded 236 

activations from the ReLu layer. The dropout layer is a probability-based threshold layer that filters 237 

responses smaller than a threshold probability (50% is common). The classification layer is similar to the 238 

fully connected layers. For detailed explanations of function of each layer and their interaction, readers can 239 

refer to Reference [67]  240 

Three modes are used for applying the network on the training dataset. The first mode is to Fully Train (FT) 241 

the network from scratch (FT mode) on the training dataset. In this mode all the weights are assigned with 242 

random numbers and the computed through iterations based on the training dataset. Obtaining an annotated 243 

dataset for concrete cracks as big as ImageNet is not currently feasible. Even if a large concrete crack 244 

dataset was available, training process from scratch could take days to complete on hardware with several 245 

graphic processor units (GPUs), and would therefore be prohibitively time consuming. However, it is 246 

possible to apply a previously trained network (pre-trained network) on a small dataset and obtain 247 

reasonable accuracy [68]. Pre-trained networks can be applied on a new dataset in different ways [69]. 248 

These methods are usually referred to as “domain adaptation” in the deep learning literature. One can use 249 

an already trained DCNN on the ImageNet dataset as a classifier for new images. This type of domain 250 

adaptation is referred to as Classifier (CL mode). In CL mode, only the last fully connected layer needs to 251 

be altered to match the target labels in concrete dataset. The network then uses the pre-trained weights and 252 

forms a classifier based on the training dataset. Note that no actual training happens when CL mode is used. 253 

Another studied domain adoption method is to partially retrain a pre-trained network and modify the layers 254 
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according to a new dataset. This approach is called fine-tuning or transfer learning (TL mode). In the TL 255 

mode, the network has to be re-trained since both classifier and weights have to be updated based on the 256 

new dataset. In the TL mode, the weights of the lower-level layers (closer to the input image layer) are 257 

preserved. These weights are computed from training on millions of images and consist of generic feature 258 

extractors such as edge detectors. Therefore, the determined lower-level weights can be applied on any 259 

dataset for feature extraction. On the other hand, the classifier layers (close to end of network) are more 260 

sensitive to the training dataset and its labels. To adjust the network to the new dataset, the weights in the 261 

high-level layers are updated through training on the new dataset. 262 

5. Experimental Program 263 

5.1. Computational Resources 264 

All computations were performed on a desktop computer with 64-bit operating system, 32 GB memory, 265 

and 3.40 GHz processor running a GeForce GTX 750 Ti graphics processing unit (GPU). Image processing 266 

was performed in MATLAB.  267 

5.2. Edge Detection 268 

The testing dataset of 319 C and 3101 U sub-images was iteratively processed using each of the six edge 269 

detection schemes discussed in Section 3. Unlike the past studies [30, 26, 62], the metrics to evaluate the 270 

performance of each edge detector was defined very clearly on a pixel level. The final binary images were 271 

compared to the ground truth. True positive (TP) is when the edge detector identified a pixel on the crack 272 

pixels (Cp). False negative is when the edge detector did not identify a pixel on the crack pixels (Cp). True 273 

negative (TN) is when the edge detector did not identify a pixel on the sound pixels (Up), and false positive 274 

is when the edge detector identified a pixel on the sound pixels (Up). Note all comparisons were performed 275 

on the final binary images produced by each edge detector. Figure 7 shows examples of how metrics are 276 

calculated: (a) the original image is segmented into 1,582 Cp pixels (highlighted) and 63,954 Up pixels, (b) 277 

the final binary image super imposed on the original image, Roberts edge detector, identified 2,276 Cp 278 
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pixels (highlighted) and 63,260 Up pixels, (c) 1,367 pixels in the final binary image were TP, (d) 215 pixels 279 

in the final binary image were FN, (e) 63,046 pixels in the final binary image were TN, and (f) 909 pixels 280 

in the final binary image were FP. The metrics in the Figure 7c through Figure 7f are shown in white. Note 281 

that for U sub-images, TP and FN are meaningless and only TN and FP are recorded.  282 

The team then rated each edge detection scheme in terms of true positive rate (TPR), true negative rate 283 

(TNR), accuracy (ACC), positive predictive value (PPV), negative predictive value (NPV), and F1 score, 284 

defined as follows  285 

𝑇𝑃𝑅 = (
𝑇𝑃

𝑇𝑃+𝐹𝑁
)         (14) 286 

𝑇𝑁𝑅 = (
𝑇𝑁

𝑇𝑁+𝐹𝑃
)         (15) 287 

𝐴𝐶𝐶 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
)         (16) 288 

𝑃𝑃𝑉 = (
𝑇𝑃

𝑇𝑃+𝐹𝑃
)         (17) 289 

𝑁𝑃𝑉 = (
𝑇𝑁

𝑇𝑁+𝐹𝑁
)         (18) 290 

𝐹1 = (
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
)         (19) 291 

In addition, missed crack width (MCW), and computational time (T) are also compared between different 292 

edge detectors. MCW is defined as the coarsest crack that went undetected by a particular edge detection 293 

scheme, as determined by crack width measurement using a crack width microscope with 0.02 mm 294 

resolution. Computational time is defined as the average processing time for ten runs of a particular edge 295 

detection scheme, normalized by the number of images (180 sub-images).  296 

5.3. DCNN 297 

Crack detection using DCNN was performed by classification of sub-images in the fully trained, transfer 298 

learning, and classifier modes. A total of 12,809 sub-images (1,129 labeled C and 11,680 labeled as U), 299 
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were selected at random for inclusion in the training dataset, and 1,771 (125 labeled as C and 1,646 labeled 300 

as U) were selected for the validation dataset. The remaining 3,420 sub-images (319 labeled as C and 3101 301 

labeled as U) made up the testing dataset.  302 

Batch size number and validation criterion determine the number of iterations in training process. Larger 303 

batch sizes result in faster convergence, but batch size is limited by the available GPU memory. The selected 304 

batch size was 10. The training dataset has 12,809 sub-images. Number of iterations to cover all sub-images 305 

was simply calculated by dividing the total sub-images to the batch size, i.e. 1281 iterations. This number 306 

of iterations is known as an epoch. A maximum of 30 epochs were considered for back propagation on the 307 

network, meaning that the network performs as many 30 × 1281 = 38,430 iterations to finish the training. 308 

The network was set to stop iterating once the accuracy in the validation dataset stopped improving in three 309 

consecutive epochs. If the validation criterion is not met by the end of 30th epoch, more iterations cycles 310 

should be considered for the training.  311 

The network in each mode is used to classify the sub-images in the testing dataset and the results are 312 

compared to the ground truth. TP is when the network correctly labeled a sub-image as C, and a FN when 313 

the network failed to do so. A TN is when the network correctly labeled a sound sub-image as U and a FN 314 

when the network labeled a sub-image as C in a sound sub-image. TPR, TNR, ACC, PPV, NPV, and F1 315 

are calculated according to Eq. 14 through Eq. 19. T and MCW are evaluated in the same manner as the 316 

edge detector approach except that the training time is not considered when calculating the T for DCNN.    317 

6. Results and Discussion 318 

6.1. Edge Detection 319 

A summary of results for the six edge detectors applied on the C class and U class sub-images are shown 320 

in Table 3 and Table 4, respectively. The metrics for comparison are shown Figure 8a in terms of TPR, 321 

PPV, and in Figure 8b in terms of TNR, ACC, and NPV. The latter metrics were significantly affected by 322 

the data imbalance between Cp and Up pixels. Nevertheless, the evaluated metrics in this paper are on the 323 



15 

 

pixel-level which makes the comparison unique compared to previous crack detection studies. LoG 324 

produced the highest TPR with 76% followed by Sobel and Prewitt with 76% and 69%. In the spatial 325 

domain, Robert edge detector produced lowest TPR, 53%, which was still higher that the TPRs produced 326 

by frequency domain edge detector, where Butterworth detected 41% and Gaussian detected only 31% of 327 

the crack pixels. LoG edge detector also produced the highest PPV, 60%, followed by Sobel and Prewitt 328 

with 56% and 54%. Gaussian high pass filter had only 18% PPV which was the lowest among the studied 329 

methods. F1 scores ranged from 23% in sub-images segmented by Gaussian high pass filter to 68% in sub-330 

images segmented by LoG. Roberts and Gaussian high pass filter produced the lowest TNR values, 96% 331 

and 97%, respectively and the lowest ACC, both 95%. As for NPV, the lowest values were 95% and 96% 332 

when Gaussian and Butterworth edge detectors were used, respectively. Again LoG was the most accurate, 333 

98%, and produced the highest TNR=99% and NVP=99.5%. The difference in metrics in Figure 8b is only 334 

2%-4% but note that these metrics are affected by the gigantic class imbalance between Cp and Up pixels 335 

(only 2% of the pixels were Cp). To see this difference better, percentage of reported FP pixels per sub-336 

image, noise ratio (NR), for each edge detector is shown in Figure 8c. To calculate the noise ratio, first the 337 

average FN for each method was calculated by dividing total number of FNs to the number of sub-images 338 

in each class, 319 in C class, and 3101 in U class. The NR is then calculated as the average FNs divided by 339 

total number of pixels in each sub-image, i.e. 256 × 256.  340 

As seen for sub-images in C class NR values, 2.4% on average, were almost half of the ones in the U class, 341 

5.3% on average. This is due to the fact that the proposed methodology for crack detection is based on the 342 

assumption that there is a crack in the investigated image and it is the largest connected component in the 343 

first level binary image. Therefore, noise and irrelevant objects are preserved in the final binary image in 344 

U class as FN. In addition, the LoG edge detector produced the lowest NR values, 1.1% in the C class and 345 

4.5% in the U class while Roberts and frequency domain detectors were the worst ones in both classes. 346 

Factoring Roberts, overall the spatial domain edge detectors produced better binary images for crack 347 

detection compared to frequency domain ones. The same trend can be seen for values of T in Table 3 and 348 
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Table 4 where the fastest method was LoG. Finally, LoG detected finer cracks than the rest of studied 349 

method with MCW of 0.1 mm. Figure 9 shows an example of crack detection using different edge detectors 350 

along with the original image and ground truth. LoG edge detector performed better than all the other 351 

studied detectors in all considered metrics.  352 

6.2. DCNN 353 

6.2.1. Training and Validation 354 

Figure 10 shows the achieved accuracy of the DCNN under fully trained and transfer learning during 355 

training and validation. In fully trained mode, the validation criterion was met after 14 epochs (17934 356 

iterations), which required 6,200 seconds processing time. The resulting validation accuracy was 97.50%. 357 

In transfer learning mode, the validation criteria were met after 7 epochs (8967 iterations), which required 358 

4,100 seconds processing time. In classifier mode, the classifier was constructed in 299 seconds and 359 

achieved 98.1% accuracy on the validation dataset. 360 

6.2.2. Testing 361 

Table 5 summarizes the performance of DCNN crack detection in the testing dataset. In general, the DCNN 362 

crack detection algorithms performed exceedingly well compared to the traditional detectors. In fully 363 

trained mode, the algorithm scored 212 TPs out of 319 cracked sub-images and 3099 TNs out of 3,101 364 

sound sub-images. In transfer learning mode, the algorithm scored more TPs but also scored more FPs. The 365 

network in the CL mode performance in terms of TP and TN were in the middle of the FT and TL modes 366 

(TP=267 and TF=52).  367 

In all three cases, the accuracy matched or exceeded 97%. However, the TL mode had NPV=99%, F1=89%, 368 

and ACC=98% which were the highest among the studied modes. The highest positive predictive value was 369 

in the FT mode (PPV=99%) while TL mode produced only PPV=92%. The CL mode produced the highest 370 

FPs which lead to the lowest NPV of 98% among the studied modes. The metrics are shown in Figure 11. 371 
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As seen the most tangible difference were observed in TPR, PPV, and F1 scores among different metrics 372 

since they are more affected by the TPs and C class had considerably less sub-images.   373 

The MCW for fully trained and classifier modes was 0.08 mm. In transfer learning mode, the missed crack 374 

width was 0.04 mm. Figure 13 shows fully trained, transfer learning, and classifier DCNN results for a sub-375 

image containing a 0.08 mm crack. As shown in the figure, the 0.08 mm crack was detected only in transfer 376 

learning mode, and went undetected in fully trained and classifier modes. The computational time was 377 

similar for all three DCNN modes were comparable (2.65-2.81 seconds per 180 sub-images). However, the 378 

network in the FT mode required more time for training due to more performed iterations compared to the 379 

TL mode, which was expected. In the authors experience, using an AlexNet-based network in TL mode can 380 

be up to 50% less time-consuming than the FT mode on concrete image dataset [37, 39]. On the other hand, 381 

the network on the CL mode has the advantage of not relying on the training and can be considered the 382 

fastest way of testing the network on new datasets. The absence of training in CL mode, however, adversely 383 

affected the TNR, ACC, and PPV of the network, which is also an expected outcome [37]. Transfer learning 384 

mode was the most accurate and detected the finest cracks, but also took the longest computational time.  385 

Figure 13a through c show representative results for DCNN in fully trained, transfer learning, and classifier 386 

modes, respectively. Since the objective is to find the cracks, sub-images in the U class are shaded and sub-387 

images in the C class are shown clearly. Incorrectly labeled sub-images (FN and FP) are identified using a 388 

box indicating such.  389 

6.3. Comparison 390 

As discussed before, the results presented in Table 3 and Table 4 for edge detectors and in Table 5 for 391 

DCNNs are not directly comparable because DCNN results consider sub-images while edge detection 392 

results were based on the pixels. However, comparison is possible since the same sub-images and metrics 393 

were used to evaluate both approaches. These results are given in Table 6.  394 
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All of the methods tested here performed better on sound sub-images than on cracked sub-images (i.e., TN 395 

> TF), and so the metric numbers skewed high. For example, only 32% of cracked pixels (Cp) were detected 396 

using the Gaussian edge detection scheme. Nevertheless, since more than 97% of sound pixels were 397 

correctly detected, the reported accuracy was ACC=95% which is misleading because the PPV for this edge 398 

detector was only 18%, which shows its inefficiency. Several noteworthy results become apparent. First, 399 

while the previous section claimed that there was no clear winner between DCNN in fully trained and 400 

transfer learning modes, the true positive rate for transfer learning was 20% higher than for fully trained. 401 

At the same time, the true negative rate for transfer learning was only one percent lower than for fully 402 

trained. This, combined with smaller missed crack width and similar computation time requirements, make 403 

transfer learning a clear winner among DCNN modes. F1 scores and PPV values were significantly for 404 

DCNN in all modes were significantly greater than the edge detector techniques. 405 

This analysis also shows that DCNN methods performed better at image based concrete crack detection 406 

than any of the edge detection methods (expect for FT mode). The LoG edge detector exhibited the highest 407 

true positive rate of all six edge detectors, accurately identifying nearly 79% of cracked pixels. LoG also 408 

detected the finest cracks of any edge detector, with MCW of 0.1 mm. The TPR among DCNN methods 409 

was about 86% and 84% in TL and CL modes, respectively, which was a significant improvement over 410 

LoG. In addition, the TFR for the DCNN approach had superiority over the edge detectors due to the high 411 

NR ratios (refer to Figure 8c). Furthermore, DCNN methods were able to detect finer cracks than edge 412 

detectors. In fully trained and classifier modes, the MCW was 0.08 mm, a marginal improvement over LoG. 413 

In transfer learning mode, the MCW was an impressive 0.04 mm. 414 

Computational times also show the superiority of DCNN over edge detectors; computational time was 415 

almost 50% less for the DCNNs over edge detectors. However, crack detection using DCNN requires time 416 

for training (in FT and TL modes) and classifier construction (in CL mode), which are not taken into account 417 

when reporting the computational time. The assumption is that, in the future, pre-trained DCNN will be 418 

available for this purpose, so it is not necessarily appropriate to include training time in this comparison. In 419 



19 

 

fact, DCNN can be trained using a very large dataset with images of varying quality (e.g., resolution, 420 

lighting condition, focus), making it more robust and applicable to most situations. Edge detectors are 421 

typically manually tuned to maximize performance for a particular dataset or subset, diminishing their 422 

robustness.  423 

These results highlight the significant promise of DCNN methods for image based crack detection in 424 

concrete. The evidence presented here shows that edge detection methods—which represent the current 425 

state of practice—perform reasonably well. DCNN methods provide autonomous crack detection and 426 

provide significant performance enhancements over edge detection schemes. The results presented here for 427 

DCNN are only a preliminary step in the development of DCNN methods for concrete crack detection. 428 

Future work will demonstrate the use of more advanced DCNN for the same problem in the hopes that more 429 

advanced networks will provide even better crack detection performance.  430 

The reader should note that the results presented here are for high quality images taken in good lighting and 431 

free of vibration. The extension of these results to noncontact image-based inspection and damage detection 432 

will require application of the same methods to images with imperfections resulting from poor lighting, 433 

vibration, or other issues [43]. This work is ongoing, but the results presented here show promise for 434 

autonomous crack detection in concrete structures using noncontact image-based methods. 435 

Despite being recently introduced to structural health monitoring and inspection, DCNNs have improved 436 

the vision-based structural defect detection. This study shows the superiority of an AlexNet DCNN over 437 

traditional edge detectors for concrete crack detection. The performance of the network can be further 438 

enhanced if more powerful architectures such as GoogleNet or RestNet are implemented for crack 439 

detection. Unlike edge detectors, the DLCCNs can be used for any types of defect in structures, if enough 440 

annotated images are available for training. Formation an annotated image dataset for structural defects, 441 

such as ImageNet, is vital for further applications of DCNNs in structural engineering. With this dataset 442 

available, new architectures can be developed to focus on finding a handful of structural defects instead of 443 

1000 different objects, which will reduce the computational time associated with training process. In 444 
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addition, domain adaptation methods such as transfer learning, will be more effective if the network is 445 

previously trained on the structural defects dataset. Improving the performance of domain adaptation 446 

techniques makes real-time defect detection in robotic vision-based inspections feasible. In other words, a 447 

pre-trained DCNN on the structural defect dataset, can be directly used to accurately classify new images 448 

taken by an unmanned aerial system to different structural defects as the inspection is taking place.   449 

7. Hybrid Crack Detector 450 

Unless semantic networks are used for crack detection, edge detectors are still providing segmentation in 451 

the pixel level. This information puts the edge detector in favor of the DCNN for fine monitoring and 452 

measurements of cracks but creating the training dataset with classified pixels can be very time consuming 453 

and challenging. On the other hand, the sole use of edge detectors has the disadvantage of residual noise or 454 

non-crack objects misidentified as cracks. Even with the most effective edge detector, LoG, there was more 455 

than 4% of TN (combined of FNs of the images in both C class and U class) which is 9,457,066 sound 456 

pixels identified as cracks in the testing dataset. Figure 14 shows examples of TN (highlighted in red) in 457 

the three C class sub-images after the final binary image from the LoG edge detector was super-imposed 458 

on the original images.  459 

Since the DCNN in FT mode provided such accurate classification for the U class sub-images, only two 460 

cases of FP, the network was first used to label all the sub-images in U and C classes. No edge detector was 461 

applied on the sub-images identified as U class by the network. The LoG edge detector was applied on the 462 

rest of the images in the testing dataset. Combining the two approaches, number of FNs were reduced to 463 

70% of the ones reported only by the LoG edge detector. This leads to an average reduction of the NR 464 

values from 2.45% to 0.11%.  465 

Using this technique also improved the overall performance of the of the edge detectors. As mentioned 466 

before, the edge detectors performed better on the sub-images with cracks due the effect of second level 467 

threshold which was the reason to evaluate their performance on C class and U class sub-images separately 468 
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in Table 3 and Table 4. However, PPV and F1 score metrics would be considerably lower if the both classes 469 

were considered in calculating them. For the best edge detector, i.e. LoG, PPV=6% and F1=11% were 470 

achieved when both classes were used. However, using the hybrid technique resulted in the almost the same 471 

PPV and F1 score provided in Table 3 for the LoG since only C class images were analyzed (with exception 472 

of two sub-images in the U class).  473 

8. Conclusions 474 

This paper presents a comparison of edge detection and DCNN algorithms for image based concrete crack 475 

detection. The dataset consisted of 3420 sub-images of concrete cracks. Several common edge detection 476 

algorithms were employed in the spatial (Roberts, Prewitt, Sobel, and LoG) and frequency (Butterworth 477 

and Gaussian) domains. AlexNet DCNN architecture was employed in its fully trained, classifier, and fine-478 

tuned modes. Edge detection schemes performed reasonably well. The best method—LoG—accurately 479 

detected about 79% of cracked pixels and was useful in detecting cracks coarser than 0.1 mm. In 480 

comparison, the best DCNN method—the network in transfer learning mode—accurately detected 86% of 481 

cracked images and could detect cracks coarser than 0.04 mm. This represents a significant performance 482 

enhancement over edge detection schemes and shows promise for future applications of DCNN for image 483 

based crack detection in concrete. In addition, a methodology was proposed to reduce the FNs reports by 484 

70% by applying the edge detectors only on sub-images not labeled as uncracked. In addition, a hybrid 485 

crack detector was introduced which combines the advantages of both approaches. In the hybrid detector, 486 

the sub-images were first labeled by the network in the fully trained mode. Since it produced the highest 487 

TNR, the edge detector is not applied on the sub-images labeled as U (uncracked) by the network. This 488 

technique reduced the noise ratio of the LoG edge detectors from 2.4% to 0.11% and has the similar effect 489 

on the other edge detectors as well.  490 

This study shows the superiority of an AlexNet DCNN over traditional edge detectors for concrete crack 491 

detection. This superiority can be further improved when architectures such as GoogleNet or RestNet are 492 

implemented for crack detection. DLCCNs are able to classify multiple defects if enough annotated images 493 
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are available for training. Formation an annotated image dataset for structural defects, such as ImageNet, 494 

is vital for further applications of DCNNs in structural engineering. With this dataset available, new 495 

architectures can be proposed to focus on finding structural defects instead of random objects, which will 496 

reduce the computational time associated with training process. In addition, domain adaptation methods 497 

such as transfer learning, will be more effective if the network is previously trained on the structural defects 498 

dataset. Improving the performance of domain adaptation techniques makes real-time defect detection in 499 

robotic vision-based inspections feasible. In other words, a pre-trained DCNN on the structural defect 500 

dataset, can be directly used to accurately classify new images taken by an unmanned aerial system to 501 

different structural defects as the inspection is taking place.   502 
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Figure 1 Illustration of the dataset 550 
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Figure 2 The effect of edge enhancement on the final image of the edge detectors, Sobel, (a) original 553 

image, (b) final binary image superimposed on the original image (b) without the edge enhancement, (c) 554 

with the edge enhancement 555 
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(a) (b) (c) 

Figure 3 Closing operation illustration (a) first level binary image, (b) dilation, and (c) erosion using a 557 

disk structuring element with diameter of 4 px. (LoG edge detector). 558 
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(a) (b) (c) 

Figure 4 Crack in the (a) ground truth, 1391 px, (b) without the closing operation 391 px correct 560 

detection (c) with closing operation 1215 px correct detection (LoG edge detector) 561 
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(a) (b) (c) 

Figure 5 Crack in the (a) ground truth, 2325 px, (b) without second level threshold operation 3672 pixels 563 

false detection (c) with second level threshold operation: 214 px false detection (Gaussian edge detector) 564 
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 566 

Figure 6. AlexNet DCNN architecture 567 
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(a)  (b)  (c) 

   

(d) (e)  (f)  

Figure 7. Examples of metric, (a) ground truth, Cp=1,582 px, Up=63,954 px, (b) final binary image using 572 

Roberts edge detector, Cp=2276 px, Up=63,260 px (c) TP=1367 px, (d) FN=215 px, (e) TN=63,045 px, 573 

(f) FP=909 px  (Robersts edge detector) 574 
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(a) (b) (c) 

Figure 8 Results of the studied edge detectors on the sub-images in the C class (a) TRP, PPV, and F1 (b) 576 

TNR, ACC, and NPV, (c) NR in C and U classes.  577 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9 An example of edge detector performance on a 0.02 mm crack (a) original image, (b) GT=1145 579 

px, (c) Roberts, TPR=39% (d) Prewitt, TPR=60%, (e) Sobel, TPR=55%, (f) LoG, TPR=71%, (g) 580 

Butterworth, TPR=38%, (h) Gaussian, TPR=17% 581 
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Figure 10. DCNN accuracy during training and validation 586 
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 588 

Figure 11 Metrics for the DCNN in FT, TL, and CL modes 589 
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(a) (b) (c) 

Figure 12. DCNN results for a crack of width 0.08 mm: (a) FT mode, (b) TL mode, and (c) CL mode 591 

  592 



46 

 

 593 

 

(a) 

 

(b) 



47 

 

 

(c) 

Figure 13. Results of (a) fully trained DCNN crack detection, (b) transfer learning DCNN, and (c) 594 

classifier DCNN for crack detection on the original full scale images in the testing dataset 595 
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 597 

   
(a) (b) (c) 

Figure 14 Examples of FNs in the U class images (a) non-crack edge, (b) different surface finish, (c) 598 

noise due to the coarse concrete surface 599 
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(a) (b) 

  
(c) (d) 

Figure 15 Combination of DCNN and edge detectors (a) the superimposed image with crack using LoG 601 

on all sub-images, (b) the superimposed image with crack without using LoG on U class sub-images, (c) 602 

the superimposed image without crack using LoG on all sub-images, (d) the superimposed image without 603 

crack without using LoG on U class sub-images. 604 
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Table 1. Number of cracked and sound sub-images in training, validation, and testing datasets 606 

Dataset No of Original Images C U Total 

Training 
81 

1129 11680 12809 

Validation 125 1646 1771 

Testing 19 319 3101 3420 
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Table 2. Number of Cp and Up pixels in the testing dataset 608 

Dataset Cp Up Cp Ratio (%) 

im1 18835 11777645 0.16 

im2 13952 11782528 0.12 

im3 67548 11728932 0.57 

im4 13472 11783008 0.11 

im5 46192 11750288 0.39 

im6 46372 11750108 0.39 

im7 46658 11749822 0.40 

im8 37572 11758908 0.32 

im9 42675 11753805 0.36 

im10 88321 11708159 0.75 

im11 2693 11793787 0.02 

im12 1264 11795216 0.01 

im13 3336 11793144 0.03 

im14 0 11796480 0.00 

im15 5995 11790485 0.05 

im16 4203 11792277 0.04 

im17 0 11796480 0.00 

im18 4953 11791527 0.04 

im19 1304 11795176 0.01 
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 610 

 611 

Table 3. Summary of edge detector performance on sub-images in the C class 612 

Domain 
Edge 

Detector 
TPR TNR ACC PPV NPV F1 

MCW 

(mm) 
T (s) 

Spatial 

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.15 

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.13 

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.64 

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.79 

 

Frequency 

Butterworth 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.76 

Gaussian 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.70 

 613 
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Table 4 Summary of edge detector performance on sub-images in the U class 615 

Domain Edge Detector TNR T (s) 

Spatial 

Roberts 0.93 5.46 

Prewitt 0.95 4.71 

Sobel 0.95 4.83 

LoG 0.95 4.05 

Frequency 
Butterworth 0.95 5.98 

Gaussian 0.93 5.86 

 616 
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 618 

Table 5. Summary of DCNN results 619 

Mode TP FN TN FP TPR TNR ACC PPV NPV F1 
MCW 

(mm) 

Time 

(s) 

FT 212 107 3099 2 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65 

TL 275 44 3077 24 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81 

CL 267 52 3034 67 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75 

 620 
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Table 6. Comparison of DCNN and edge detection performance considering sub-images 622 

Method TPR TNR ACC PPV NPV F1 
MCW 

(mm) 

Time 

(s) 

D
C

N
N

 FT mode 0.66 1.00 0.97 0.99 0.97 0.80 0.08 2.65 

TL mode 0.86 0.99 0.98 0.92 0.99 0.89 0.04 2.81 

CL mode 0.84 0.98 0.97 0.80 0.98 0.82 0.08 2.75 

E
d

g
e 

D
et

ec
to

r 

Roberts 0.53 0.96 0.95 0.23 0.99 0.32 0.40 5.30 

Prewitt 0.69 0.98 0.97 0.42 0.99 0.52 0.20 4.42 

Sobel 0.76 0.98 0.97 0.44 0.99 0.56 0.20 4.74 

LoG 0.79 0.99 0.98 0.60 1.00 0.68 0.10 3.92 

Gaussian 0.41 0.97 0.96 0.25 0.99 0.31 0.20 5.87 

Butterworth 0.32 0.97 0.95 0.18 0.98 0.23 0.20 5.78 
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