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Leverage the inter-satellite connectivity potential 
of constellations for precise orbit determination

Motivation

Satellite Autonomous Navigation

Laser Communication Crosslinks

Approach
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Satellite autonomous navigation means performing orbit determination
on-board the spacecraft without external intervention, which would:

• Reduce reliance on Earth-based resources (ground sensors, beacons, 
GNSS) for precise orbit determination and dissemination1

• Enable on-board autonomy for location-based operations and data 
processing (i.e. reducing data volume to downlink)2

• Minimize operations cost and propellant utilization for satellite 
station-keeping and constellation maintenance3

On-board sensors used to 
estimate satellite position 
and velocity using time-
series measurements of 
relative range or bearing to 
known bodies/objects:

Sensor Measurement Reference

Rangefinder
(e.g. altimeter)

Range Objects
(e.g. Earth surface)

Visible/IR camera 
(e.g. star-tracker)

Range, Bearing Landmarks, Objects
(e.g. stars)

Magnetometer Range, Bearing Magnetic field

Beacon receiver 
(e.g. GNSS)

Range Beacon source
(e.g. GNSS satellite)

X-ray detector Range Pulsars

Notable Demonstration Missions Inter-satellite Measurements

Past: ESA’s ARTEMIS geosynch.
satellite demonstrated the first
one-way lasercom crosslink with
SPOT-4 in 2001 (left), and first
two-way link with OICETS in 2005
(right). Both SPOT-4 and OICETS
operated from low Earth orbits.9

Future: The MIT STAR Lab and
Univ. of Florida are co-developing
the Cubesat Laser Infrared
CrosslinK (CLICK) mission to
demonstrate full duplex lasercom
crosslinks between two identical
6U CubeSats with 2U transceivers.

• Utilizes inter-satellite measurements of the relative position vector (range 
and bearing) between two satellites4

• Simultaneously estimates the orbital states of both spacecraft to meter-
level accuracy given precise inter-satellite measurements5

• Full satellite states observable in most orbit cases using J2 Earth gravity 
model, except when satellites have equal a, e, θ at zero inclination5
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Laser communication (lasercom) systems offer improved energy efficiency, data rates, and security over traditional radio-frequency (RF) communications systems.6

Lasercom crosslinks reduce latency in data and command routing in distributed constellations,7 and can obtain inter-satellite measurements for autonomous navigation.8

• Orbit position error reduced by more than 
one order-of-magnitude (30-40x) using 
lasercom crosslink range and bearing 
measurements vs. RF range-only

• Faster orbit solutions obtained by more 
distributed constellations, due to greater 
number of crosslinks/measurements

• Shows potential to achieve meter-level 
position errors, consistent with GNSS 
single-frequency receiver performance

Measurements were modeled using the following uncertainties:

Crosslink Comms Measurement RMS Error Model

Radio-frequency (RF)
Range 3 m

Bearing N/A

Free-space optical 
(lasercom)

Range 10 cm

Bearing 2 arcsec

Range – derive from time-encoded signal transfers between satellites
• Optical frequency = greater bandwidth vs. RF systems
• Time transfers on the order of picoseconds10

 cm-level ranging
• Multiple transfer methods: one-way, dual one-way, or two-way

Bearing – derive from on-board star-tracker and pointing offsets
• Higher carrier frequency vs. RF systems = narrower beamwidth
• Leverage accurate body-pointing knowledge from star-tracker, along 

with known, fixed offsets between star-tracker and transceiver
• Assumes fine-pointing control is achieved, crosslink is established
• Improve with filters/estimators, feedback from fine-pointing system

Star-tracker body pointing

Angular 
offsets

θy

θz

Star
tracker

In this work, a Cramer-Rao Lower Bound (CRLB) analysis is performed to
compare the impact of using crosslink measurements from RF and lasercom
systems. CRLB provides the theoretical lower limit of an estimator mean-
square error primarily based on measurement uncertainty. The CRLB
equations for an Extended Kalman Filter (EKF) estimator are:

τ
tX1 tX2

tY1 tY2

tYX
tXY

SAT X

SAT Y

Asynchronous dual one-way transfer

Results

GEO-LEO (e.g. ARTEMIS-OICETS)
GEO: longitude = 10.0° W, i = 10.0°

LEO: a = 7007.14 km, e = 0.00, i = 97.9°

SAR-Lupe 5-sat Constellation
a = 6864.6 km, e = 0.03, i = 98.2°

GEO

LEO

GEO

LEOLasercom

RF range-only

9/3/2 Walker Constellation
a = 7378.14 km, e = 0.00, i = 57.1°

Lasercom

RF range-only

Lasercom

RF range-only

Inter-satellite Method
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The figure below illustrates the best orbit estimation error achieved using 
ground-based tracking and autonomous navigation techniques: 

Bearing not available
for RF systems without 

additional hardware
(e.g. camera, beacon).

Three scenarios representing different orbit configurations selected based on 
existing or proposed satellite mission architectures:

• 2-satellite case – GEO-LEO (existing, based on ARTEMIS-OICETS demo)

• Constellation cases – SAR-Lupe (existing), 9/3/2 Walker (proposed)
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Above image adapted from [11]

Equations adapted from [12]

• Incorporate additional input data for potential sub-meter positioning (e.g. GNSS 
receiver data, downlink measurements, ground updates, fine-pointing system feedback)

• Expand EKF algorithm to estimate satellite clock biases/offsets and spacecraft attitude

• Perform full EKF estimation using simulated measurements

mm m km

1-σ orbital error (orders of magnitude, not to scale)

NORAD (TLEs)

Tracking systems
(post-processed orbit solutions)

Navigation systems
(real-time orbit solutions)

DF-GNSS

SLR

DORIS/DIODE

VLBI

Landmark
s

UHF

SF-GNSS

Pulsars

Mag-SS

EHS-ST

SLR Satellite Laser Ranging
(Zhao, G., et al., 2013)

VLBI Very-Long Baseline Interferometry
(Ulvestad, J.S., 1992)

UHF Ultra-High Frequency ranging
(Foster, C., et al., 2015)

NORAD
(TLEs)

North American Aerospace Defense 
Command Two-line Element Sets
(Greene, M.R., et al., 2009)

DORIS Doppler Orbitography and 
Radiopositioning Integrated by Satellite
(Brunet, M., et al. 1995)

DORIS/
DIODE

DORIS on-board OD software
(Jayles, C., et al., 2015)

SF-GNSS Single-Frequency GNSS
(Sun, X., et al., 2017)

DF-GNSS Dual-Frequency GNSS
(Hauschild, A., et al., 2017)

Landmarks Earth Landmark Sensor
(Markley, F.L., 1984)

Pulsars X-Ray Pulsars
(Sheikh, S., et al., 2006)

Mag-SS Magnetometer & Sun-Sensors
(Psiaki, M., 1999)

EHS-ST Earth Horizon Sensors & Star-Trackers
(Hicks, K., Wiesel, W., 1992)

Accuracy


