
SSC18-PI-25

Development and Testing of Fast and Portable

Data-Handling Models in a Synchronous Small

Satellite Simulator

Kai Leidig∗

University of Stuttgart Institute of Space Systems, 70569 Stuttgart, Germany

Leidig@IRS.Uni-Stuttgart.de

Bharadwaj Chintalapati† and Jens Eickhoff‡

Airbus Defense and Space GmbH, 88039 Friedrichshafen, Germany

Bharadwaj.Chintalapati@Airbus.com

On the basis of the small satellite Flying Laptop and its derived platform FLP2, this
paper introduces a generic methodology of simulating a satellite on-board computer within
an on-board data-handling network. The concept has been developed in order to take on
some of the challenges towards a reference testing facility for small satellites. Although
the development of a reference testing facility has been the initial motivation, this work
does not intend to provide a full concept of such an architecture in any kind, but detail
solutions to specific problems down that road.

The first challenge is to bind the controller-in-the-loop as close as possible to the satellite
system simulator without unnecessary interfaces in between. This means that an appropri-
ate simulator needs to provide all required interfaces, as it has to simulate all data-handling
devices that are connected to the on-board computer in some way. Unfortunately, the work-
ing principle of a state-of-the-art satellite system simulator would causes latencies that rule
out a proper simulation of an on-board data-handling, which is why a faster solution must
be found here.

The second challenge is the derivation of a generic modeling approach for data-handling
devices, which supports portability across different simulation projects. A solution here is
restricted though by the variety of hardware architectures and protocols especially on trans-
port and application layer, which is why this work sticks to the application of SpaceWire
and the Remote Memory Access Protocol.

Verification of developed models is the third and last challenge met in the scope of this
paper. Models of a satellite system simulator are implemented mostly in an object-oriented
fashion. Testing object-oriented software does not work straightforward as a matter of
principle. It is even more comprehensive, when the respective models are multi-threaded.
Therefore, a profound approach of testing these data-handling models must be introduced.

∗Research Assistant, Small Satellites Program, Simulation and Software Verification
†Satellite Systems Engineer
‡Honorary Professor of Satellite System Technology and Operations

1 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

NOMENCLATURE

CCSDS Consultative Committee for Space Data Systems
CDH command and data handling subsystem
CPU central processing unit
FLP Flying Laptop (Platform)
FLP2 Flexible LEO Platform
IF interface
IOB IO-board
IRS Institute of Space Systems
LEO low-earth orbit
OBC on-board computer
PCDU power control and distribution unit
PUS packet utilization standard
RMAP remote memory access protocol
SpW SpaceWire
STB system test bench
TC telecommand
TCP transmission control protocol
TM telemetry
TTC telemetry tracking and command subsystem
UDP user datagram protocol

I. INTRODUCTION

The work presented in this paper has been done in the scope of the development of Flexible LEO Platform
(FLP2 ) [1] by Airbus DS in Friedrichshafen, Germany. FLP2 has been derived from Flying Laptop [2]

the first satellite of University of Stuttgart Institute of Space Systems, which was launched on July 14th,
2017 from Baikonur, Kazakhstan.

A. Flying Laptop

Figure 1. Small Satellite Flying Laptop - c©IRS

Flying Laptop is the first satellite of the small satellite group of Institute of Space Systems. It is an
approximately 120 kg, three-axis stabilized satellite and the first application of the FLP small satellite
platform. Over the past years it has been developed, integrated and tested by PhD and undergraduate
students at the institute and was therefore research and training object on many occasions. With the
satellite being launched into a 600 km sun-synchronous orbit, the purpose of the mission is manifold. One

2 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

major task has been since the in-orbit verification of the developed bus components, most prominently the
command and data-handling subsystem (CDH) [3].

Figure 2. Flying Laptop simplified harness scheme [3], c©IRS

Figure 2 depicts the simplified harness scheme of Flying Laptop. The entire bus is controlled by an
on-board computer (OBC) with two cold redundant single-core LEON processor boards. These processor
boards, two remote interface units called the IO-boards, and two CCSDS-boardsa for TM/TC communication
form the command and data-handling subsystem of Flying Laptop. Any logic device of the bus is connected
to that subsystem. The connection is realized by means of the IO-board providing several interfaces for each
specific device.

The energy household of FLP is managed by means of a dedicated logic device called the power control
and distribution unit (PCDU). This device controls the battery charging by the solar panels and provides
the power supply for all the electrical devices on board. Flying Laptop is powered by three battery strings
with a total maximum capacity of 35 Ah and three solar panels generating a bus voltage of approximately
25 V.

For payload operations Flying Laptop uses a second computer called the PLOC, which can be controlled
by the CDH via the IO-board. Basically, the PLOC is in charge of the entire payload subsystem, which
means that it provides access to the payload components and manages the down-link of payload data via a
dedicated down-link system called DDS.

B. The Flexible LEO Platform

Like Flying Laptop the new Flexible LEO Platform is fully three-axis stabilized. It is designed for a minimum
lifetime of five years in a 800 km low-earth orbit. The platform shall suit satellites with a mass range between
50 and 200 kg, featuring configurable design options such as cube, hut, multi-box, etc. In extension of the
FLP attitude control system, FLP2 provides a propulsion system that enables change of altitude as well as
station-keeping in scope of a constellation operation for instance. Considered are various propulsion concepts
like cold-gas, chemical or electric systems.

Compared to FLP the major advance of FLP2 is the command and data-handling subsystem. The
platform features a new radiation hard LEON3 dual-core processor-board which controls the platform sub-
systemsb on one core and performs the payload management on the second one. The payload management
core is therefore independent and can also be used to process the payload data if needed. This allows for
a reduction in the number of computing boards on the satellite and correspondingly reduces the number

aConsultative Committee for Space Data Systems - standard for satellite communication
battitude control, thermal control, etc.

3 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

of redundant boards necessary. As Flying Laptop, the platform is fully CCSDS/PUS [4] compliant, which
enables the spacecraft to communicate with the majority of commercial ground stations in the world.

FLP2 is based on a platform-wide SpaceWire [5] network, which complements the serial connectivity
provided by the IO-board already used within FLP. Furthermore the platform shall support Ethernet devices
by providing a respective SpaceWire-Ethernet bridge and a payload data downlink based on the DVB-R2/S2
protocol.

C. The FLP2 Test Bench

Figure 3. FLP2 system test bench

For FLP2, a test bench was built at Airbus in Friedrichshafen, Germany which has been derived from
the original FLP test bench located at Institute of Space Systems in Stuttgart, Germany. As FLP moved
to its second generation, the test bench at Airbus began to be expanded and differ more and more from the
original. A simple schematic of the FLP2 test bench is shown in figure 3. The FLP2 test bench is a hybrid
STB which to date incorporates the real OBC, the PCDU (not depicted), SpaceWire-routers, the satellite
simulator and the mission control software CCS5 c.

Normally, telecommands are encoded prior to the transmission to the satellite and decoded later by means
of the CCSDS-board. In this setup the CCSDS-boards are simulated as well as most of the remaining satellite
equipment. After TC reception, the simulated CCSDS-boards forward the commands to the CDH equipment
that is not simulated. The simulation is realized by means of an Airbus in-house tool called SimTG which is
also widely used in the production of several other satellite missions at the company. Section II will introduce
the simulation of the platform CDH in more detail.

The STB is used for controller-in-the-loop tests as well as, in a first extension stage, for hardware/software
compatibility tests. This means that in such a test setup, for the first time in the development process,
the on-board software is loaded onto the real OBC. Hence, elementary hardware functions like booting,
switching between redundant hardware instances, as well as TM/TC data-handling can be tested. This
STB shall benefit from the findings introduced in this paper, since the described approach is supposed to be
implemented within any data-handling model of the simulator depicted in figure 3.

D. Envisaged Application

Possible applications of FLP and FLP2 derivatives are manifold. One prominent application envisaged is
the usage of the platform(s) for constellation satellites. Focusing on that goal, Institute of Space Systems
is currently developing a test bench for constellation operation research. In such a test bench not just one,
but a number of satellites are simulated and commanded from a sophisticated mission control environment
using CCS5.

Simulating a larger number of satellites, instead of just one, demands for a capable data-handling sim-
ulation even more. This is because in such a setup all of the satellites are completely simulated, meaning

cCentral Checkout System

4 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

that all of the operated on-board computers have to be simulated too. A lack of a respective CDH modeling
approach would rule out the development of such a test bench for constellation operation.

II. GENERIC SIMULATION OF CDH MODELS

Over the past year the authors have evaluated several configurations for the simulation of the FLP
command and data-handling subsystem. One solution is depicted in figure 4.

Figure 4. Example solution for simulating an FLP-like CDH, c©IRS

Core of the CDH is the on-board computer (OBC). Depending on the setup of the test bench and the
application of the simulator the on-board computer is either simulated or the on-board software is hosted
on a real development board. In the depicted configuration the on-board computer is simulated by means
of a real-time hardware emulator. Wrapped around the emulation is the simulation model of the on-board
computer which also performs the time-synchronization between the simulator and the emulation. It further
provides means of accessing the emulation as well as forwarding the transmitted packets between the on-
board software and the connected models. The major focus of this paper lies on a detail description of the
internal data-handling by such or a similar model. It will be introduced in detail by the following subsections.

Attached to the on-board computer model on the one hand are the two CCSDS-boards, buffering and
converting TM/TC packets for ground communication. On-board computer model and CCSDS-board models
are linked by simulated SpaceWire lines, spanned between the respective interfaces of the CDH models. The

5 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

transferred SpaceWire packets are of the RMAP [6] standard. TM/TC packets composed and unpacked by
the CCSDS-board model are transferred via separate transmitter and receiver models. These models use
TCP sockets and an Ethernet connection for the communication with the mission control software.

The connection between the on-board computer model and the IO-board model on the other hand is
realized in the same manner. The IO-board is the remote interface unit of FLP and its derivatives. It
establishes the data connection to any logic device that does not speak SpaceWire. Since FLP2 intends to
promote SpaceWire for an extensive use within the entire bus, a router can be applied between the OBC
and the IO-board. This allows attachment of further SpaceWire devices such as respective payloads (not
depicted in figure 4).

As the OBC model, all the other CDH models (IO-board, CCSDS-board, router) apply the same method-
ology for internal data-handling. The models only vary in the way they process and buffer the data internally.
The specific data processing procedures are not discussed by this paper though. This section focuses instead
on the general description of the approach developed to simulate devices of a command and data-handling
subsystem. Because the main goal of this approach was the adaptability to a various set of CDH devices, it
is kept very simple and generic. Thus it does not matter whether the simulated device is some sort of CPU,
a router or an interface unit etc.

A. Continuous (Layered) Approach

Usually, satellite systems are modeled and simulated in a synchronous fashion. Each model of a synchronous
simulation has a step method that is called periodically after a discrete time step. This methodology is
beneficial in terms of numerical simulation or in order to implement the state machine of a certain device.

Figure 5. Timing issues due to a synchronous modeling approach

In order to model the internal data handling of a satellite, this approach is rather disadvantageous though.
This is due to the fact that synchronous modeling causes latencies in the data handling process that rule
out the full simulation of CDH devices. The example depicted by figure 5 shows the reason for such a delay
quite clearly. In that case a device generates TM and sends it to the CDH at a certain time T + 0.000 sec
for further processing by the on-board computer. Some sort of interface unit of the CDH needs to buffer
that data, which requires another time step dt until the device is able to handle the read command from the
on-board computer. The execution and the forwarding of the read reply then takes a further time step.

Synchronous models are scheduled usually with a period in the order of milliseconds. Standards such as
SpaceWire however require responses within time spans that are about 10 to 100 times shorter [5]. Hence,
a synchronous approach is way to slow to match the expected response times, even for a simple setup as
depicted by figure 5. Response times can actually be much longer, if not a simple setup but a larger network
is simulated.

The most obvious approach to circumvent this issue could simply be the increase of the scheduling
frequency of the respective step methods in the CDH models. This however would be rather inefficient,
because most of the model functionality implemented in the step function doesn’t require execution at
high frequencies. High frequent step function calls also might be limited by the scheduling capabilities of

6 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

the respective simulation framework. Therefore a more efficient methodology must be found to match the
timing requirements.

Figure 6. Layers of the simulated CDH model, c©IRS

A more convenient approach that covers these timing issues is shown in figure 6. The figure depicts the
structure of a device model from a data handling point of view. At the top there is the state-of-the-art
synchronous model, implementing the physical behavior and the state machine of the device. Underneath
there is an intermediate layer of so called continuous handlers. These handlers are realized by means
of separate, independent threads. These threads are instantiated and controlled from the synchronous
simulation model that lies on top of them. Main tasks of the handlers are the continuous data reception
from a data source, the identification of the target interface or buffer, and the writing of data on that target.
Like there are handlers for data retrieval, there are also handlers for accessing the buffers and sending the
data to a target data sink.

Data sources and data sinks can be accessed upon command via configurable clients, which constitute
the bottom layer of this approach.

The separate layers are introduced in more detail by the following sections.

B. Synchronous Model - Top Level

On top of everything lies the actual model of the simulated device. Like all the other models it is called
periodically in the scope of a synchronous simulation. As a class it defines all the attributes of the simulated
device, which are ...

• physical parameters (nominal power consumption, operational temperature range, ...)

• model inputs/outputs (temperature, dissipated power, ...)

• model interfaces (data lines, power lines, ...)

• methods

• all parameters to configure the lower layers

In the scope of the initialization process that stands at the beginning of each simulation, the synchronous
model configures its continuous handlers. Because the clients are attributes of the handlers the model needs
to provide all configuration parameters for these clients too. The same applies to the configuration of the
buffers/interfaces which the handlers need to communicate with. Depending on the kind of the simulated
model the number of handlers, clients and internal interfaces can vary.

After the model initialization the major task of the synchronous model is to operate the handlers. For
that purpose a state machine needs to be implemented within the model that can start, pause, or stop the

7 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

Figure 7. Physical state machine of a CDH model, c©IRS

handler threads. An example state machine is depicted in figure 7. At the beginning the device is in the
OFF state, which means that the handler thread was created, but has been paused. If an initial temperature
check is successful and the supply voltage is within the operational range the device is switched ON and
the handler thread can be resumed. When no voltage is applied to the model power interface, the handler
remains paused and all data from the model data source is discarded. In case too much voltage is applied to
the model power interface or the temperature is out of limits, the device is considered DEAD. In that case
handlers are permanently stopped and data will always be discarded. As figure 7 shows, the model cannot
leave the DEAD state.

C. Continuous Handler - Intermediate Level

The working principle of the continuous handler is quite simple. Continuous handlers for a specific device
are derived from a generic C++ class that declares the virtual method handleData(). Handlers inherit-
ing from this generic class must define handleData() according to the device functionality. An example
implementation is depicted by figure 8. When the thread is running the method is called continuously.

At the beginning a packet is received. Depending on the direction of the data flow, the packet can either
originate from an external data source or an internal interface (see figure 6). If the packet comes from an
external data source, it is received by means of a client (subsection E). Otherwise the packet is received from
an interface which can be read out directly (subsection D).

Packets that originate from an external source need to be checked. Respective definitions of handleData()
implement a checking of the received packet, the checking is conducted by the client though. The client per-
forms the checking since it implements the used protocol anyway. FLP and its derivatives use the remote
memory access protocol (RMAP) [6] for internal CDH communication.

Successfully checked packets need to be written to the correct target. Again, targets can be an external
data sink or an internal interface or buffer. If more than one target is available, the correct one needs to
be identified by means of the information provided by the transferred packet. According to external data
sources, external data sinks can be accessed with a dedicated client. Internal interfaces can be written
directly.

8 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

Figure 8. Example implementation of handleData(), c©IRS

D. Interfaces

So called interfaces are a means of buffering or forwarding data by the continuous handlers. The term
might be a little misleading. It must not be confused with the model input/output interfaces. However, the
interfaces described here are quite generic and can be configured for various applications.

The generic Interface class is depicted in figure 9. Interfaces are supposed to save, buffer, or forward
information. Thus the base interface class provides a memory array, a size and a simulated address that
shall not be confused with the physical address of the Memory variable.

An interface or derivatives of that class shall only be accessed via three public methods:

• public int READ(uint, uchar*, uint, uint&)

• public int WRITE(uint, uchar*, uint)

• public void WriteMemory(uchar*, uint)

Because an interface object can be accessed by multiple instances at the same time, these methods first
check if the interface is not currently busy applying the modification by another object. If that is not the
case they block the interface by themselves and call one of the respective protected methods:

• protected int read(uint, uchar*, uint, uint&)

• protected int write(uint, uchar*, uint)

• protected void writeMemory(uchar*, uint)

These methods are fully virtual and must be implemented by the inheriting classes.
read(...) is called whenever data needs to be retrieved from the interface. Depending on whether the

derived interface is a Register, a Buffer or a RingBuffer read(...) manages the START and END markers
of the saved data as well as the fill state of the used memory.

write(...) is usually called whenever data that is received from an external data source needs to
be written to the interface. Depending on the used protocols and the device functionality, it performs all
required data conversions and calls writeMemory(...) eventually.

9 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

Figure 9. Generic Interface class and derivatives, c©IRS

writeMemory(...) is used to write an array of bytes to the memory of the interface. The method also
manages the START and END markers of the saved data as it updates the fill state whenever data is written
to the memory.

The derived classes Register, Buffer and RingBuffer already define all of these virtual methods, which
is why further derivatives are supposed to inherit from one of these three classes. Depending on the device
functionality and the application, derived classes can re-define these protected virtual methods. read(...)

and write(...) for instance could also be used to access external data sources/sinks directly, without the
need of a client. This is applicable e.g. when the external data source/sink is a specific input/output line of
the model.

E. Client - Bottom Level

As indicated earlier, the client is the object that actually gets data from external sources as well as it
transmits packets to the respective sinks. Depending on the test bench setup and the simulated model,
the client can be configured for several kinds of sources/sinks. An overview about the selectable channels
implemented in the RMAPd client used for FLP and FLP2 is given by figure 10.

First alternative is the communication via some generic TCP socket. This channel mostly suits on-board
computer models with the on-board software being hosted on a development board or a similar device which
provides TCP communication. In this case the client must bind to the socket opened by the on-board
software. Flying Laptop on-board software provides such functionality for developing and testing purposes
[7]. Besides TCP one can think about implementing other transport protocols such as UDP, for instance.
In this example one has to keep in mind that the accessed socket has to be considered as an external data
source, although the on-board software is a part of the simulated on-board computer model. Data that has
been received by the client in this example still needs to be processed by a continuous handler and forwarded
by another client (as shown by figure 6). Same applies to the communication vice versa.

In case an on-board software is not hosted by real hardware but runs on something like a virtual machine,
a different TCP communication channel can be selected. This is due to the fact that some commercial
hardware emulators, such as the used TSIM simulator [8] by Cobham Gaisler, encapsulate the transmitted
packages into their own protocol. Which is why the implemented client provides means of retrieving the

dFLP and its derivatives use SpaceWire and RMAP within their CDH. For convenience the following further explanations
stick to that example instead of going through a generic description.

10 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

Figure 10. Different data sources and data sinks of the RMAP client, c©IRS

RMAP packages from such a proprietary protocol.
A third alternative is the reception of RMAP packages from a simulated SpaceWire line of the device

model. This approach suits the simulation of almost any SpaceWire device assuming the model is connected
to another model via such a simulated line.

For the case that the model needs to communicate with a real SpaceWire network, a fourth communication
channel has been implemented. This applies to the case where the modeled device is one node in a SpaceWire
network, but parts of the network are not simulated, as for example in the hybrid FLP2 system test bench (see
figure 3). For such a purpose, the developed RMAP client provides functionality to establish a connection
to a SpaceWire network via a 4Links SpaceWire interface [9], connected to the simulation computer via
Ethernet.

An overview about the possible client configurations and the most suitable use cases is given by table 1.

Table 1. Overview of client source/sink configurations and applications

source/sink received protocol application

TCP socket RMAP connection to some sort of processor board

TCP socket RMAP (encapsulated) connection to emulated processor board

simulated SpW IF RMAP arbitrary SpW device model connected to other model

SpW network RMAP simulated SpW node in a real SpW network

Besides the pure routing functionality, the developed client provides an extensive implementation of the
RMAP standard [6]. Thus it is capable of checking the received data according to the standard packet
definitions. The client is furthermore simultaneously connected to a data source and a data sink. If the
packet turns out being invalid, an error reply can be composed and sent right away. Yet, the packet checking
as well as the sending of any kind of reply must be triggered by the continuous handler in charge of the
client.

III. TESTING OF CDH MODELS

Defining tests of object-oriented software is always a major issue [10]. This is due to its complexity and
the unpredictable states an object-oriented software might reach. The effort of qualifying an object-

oriented software becomes even worse when it is multi-threaded or part of an interactive network. All of this
applies to the described approach which extends the required effort to test these CDH models compared to
other models of the simulator.

11 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

Although models are tested quite extensively, a 100 % coverage of any model state cannot be guaranteed,
especially with limited personnel resources. Therefore tests have been developed that cover the most likely
use cases of the respective models. However, the approach benefits from the fact that a lot of generic classes
are re-used over a wide range of data-handling models. E.g. functionality of the RMAP client that has been
verified in the scope of one CDH model test, doesn’t have to be verified again for another model, because all
CDH models in this satellite framework use the same client. Same applies to the interface class (see figure 9)
and its derivatives, which are re-used as well. In this case only model specific derivatives have to be tested,
e.g. in case they re-define virtual attributes or provide additional functions.

Figure 11. Setup for CDH model tests, c©IRS

Figure 11 shows a general setup of a CDH model test. First, the model is attached to a simple power
supply model. This power supply provides the tested model with its nominal voltage in order to satisfy
the power demand of the device. Providing the CDH device model with the correct voltage enables the
continuous handlers (see figure 7) and thus the data processing by the model.

Then the model is fed with an input packet from a data source model. This data source model is a very
simple model providing the same data interface the tested CDH model uses. Most likely the data is injected
into a simulated SpaceWire line. The data source in this setup must not be confused with the data source the
client accesses to retrieve data. In this setup the data source according to figures 6 and 10 is the simulated
SpaceWire line. The model then must receive data from that line, process it and forward it as described in
section II. This means that the implemented client needs to retrieve the transmitted RMAP packages from
the SpaceWire line and the model handlers need to forward them. Afterwards the model responds upon
the injected packets with some form of data injection into an output line by the same or a different RMAP
client. Attached to the line where the device response is expected is a simple data sink model. The test is
successful, when the output packet, received by the sink, matches the expectations stated by the test control
sequence.

In order to fully qualify the client, a test like this must be repeated for all of the possible data source/sink
configurations as specified by table 1.

IV. CONCLUSION

Using the described layered approach supports the simulation of significantly larger data networks within
a synchronous satellite simulation than it used to be possible. This is because the introduced approach

allows the simulation of CDH components where formerly real hardware was required. E.g. one can think
about simulating routing devices instead of purchasing expensive hardware, if that suits to the purpose of
the respective test bench. As stated in the first place, this allows to bind an on-board computer closer to a
simulation and can therefore reduce the complexity of a hybrid STB.

Furthermore, the approach supports the simulation of an on-board computer itself. This is a quality that
can taken advantage of e.g. when an entire constellation of satellites is simulated, instead of just one single
satellite. Something like this is done when the focus of the STB lies not on the actual satellite system, but
on the testing of aspects of constellation operations, such as constellation management. Institute of Space
Systems is currently working on such a test bench dedicated to constellation operations research.

12 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

The concept is well supported by the implemented client, providing comprehensive connectivity to various
data sources. This suits the development of several STB extension stages, where different data-handling
components are either simulated or exist in form of real hardware. In such variable cases models can be
configured easily for a different data source without the need of any rework. The fact that the implemented
client only supports the remote memory access protocol[6] is yet a minor drawback.

First tests of CDH models implementing the described approach turned out quite promising. Hence,
the introduced simulation methodology shows great potential for an extensive use within FLP and FLP2
simulation projects as for future applications as well.

13 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites



SSC18-PI-25

REFERENCES

1 Manchaiah, D., Klink, A., Chintalapati, B., and Eickhoff, J., “A Dual-core LEON3 Computer Managing
Smallsat Platform and Payloads,” Tech. rep., Airbus DS GmbH, 88039 Friedrichshafen, Germany, 2018.

2 Eickhoff, J., The FLP Microsatellite Platform - Flight Operations Manual , No. 978-3-319-23503-5,
Springer-Verlag, Airbus DS GmbH, Friedrichshafen, Germany, 2016.

3 Leidig, K. and Eickhoff, J., “Microsatellite Simulation for Constellation Research,” SciTech, No. AIAA
2017-1553, University of Stuttgart Institute of Space Systems, Pfaffenwaldring 29, 70569 Stuttgart, Jan-
uary 2017.

4 “ECSS-E-70-41A - Ground systems and operations - Telemetry and telecommand packet utilization,” Jan
2003.

5 “ECSS-E-50-12A - SpaceWire - Links, nodes, routers and networks,” Jan 2003.

6 “ECSS-E-ST-50-52C - SpaceWire - Remote memory access protocol,” Feb 2010.

7 Bätz, B., Design and Implementation of a Spacecraft Flight Software Framework , Ph.D. thesis, Institute
of Space Systems University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, 2018.

8 Gaisler, TSIM2 Simulator User’s Manual , Kungsgatan 12, 411 19 Goeteborg, Sweden, June 2016.

9 4Links Limited, Suite EU2, Bletchley Park, Milton Keynes MK3 6EB, UK, Diagnostic SpaceWire Inter-
face.

10 Sneed, H. M. and Winter, M., Testen objektorientierter Software: das Praxishandbuch für den Test
objektorientierter Client-Server-Systeme, Hanser, München, 2002.

14 of 14

K. Leidig - 32nd Annual AIAA/USU Conference on Small Satellites


	Introduction
	Flying Laptop
	The Flexible LEO Platform
	The FLP2 Test Bench
	Envisaged Application

	Generic Simulation of CDH Models
	Continuous (Layered) Approach
	Synchronous Model - Top Level
	Continuous Handler - Intermediate Level
	Interfaces
	Client - Bottom Level

	Testing of CDH models
	Conclusion

