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How uncertainty in the neutral wind limits
the accuracy of ionospheric modeling

and forecasting

Michael David', J. J. Sojka’, and R. W. Schunk®

'Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA

Abstract One of the most important input fields for an ionospheric model is the horizontal neutral wind.
The primary mechanism by which the neutral wind affects ionospheric densities is the inducement of an
upward or downward ion drift along the magnetic field lines; this affects the rate at which ions are lost
through recombination. The magnitude of this effect depends upon the dip angle of the magnetic field; for
this reason, the impact of the neutral wind is somewhat less in polar regions than at mid-latitudes. It is
unfortunate that observations of the neutral wind are relatively scarce, as compared for example with
observations of the Earth’s electric field or auroral precipitation, and that the existing climatological models of
the neutral wind are thus sharply limited in theirresolution. The observational data base of thermospheric
winds is not sufficient to adequately constrain a three-dimensional model across a variety of conditions
such as solar cycle, season, geomagnetic activity, and so on. Using the physics-based Time Dependent
lonospheric Model (TDIM) of Utah State University, we look for a quantitative answer to this question: How
severe is the limitation imposed on ionospheric models by an uncertain specification of the neutral wind?
We find that ionospheric modeling depends upon a detailed specification of the neutral wind to the extent
that, if a climatologically averaged wind model is being used as a driver, this will lead to unavoidable
uncertainties of 20-30% in the modeled F-region densities or Total Electron Content (TEC).

1. Introduction

An outstanding challenge in ionospheric modeling is the determination of a model's sensitivity to uncertainties
in its input parameters. In modeling the F region ionosphere, the neutral wind is one of the most important
inputs, especially at midlatitudes; unfortunately, there is a relative scarcity of observational data, and the neutral
wind is difficult to model on basic principles. In this study we ask this question: given that our knowledge of the
neutral wind is relatively poor, how severely does this limit the accuracy of our efforts at modeling or forecasting
the F region ionosphere?

There is a community-wide effort to improve the capability of physics-based ionospheric models. Uncertainty
in the ionosphere is the leading source of error that obstructs the capacity for precision in geolocation and
also has important ramifications for HF communication and over-the-horizon radar. In this study we show
where a large part of the error in ionospheric modeling comes from, namely, the neutral winds. Any effort
to improve ionospheric modeling will rely on a better knowledge of the neutral winds.

The most readily available neutral wind models are empirically based climatological models; over the past
40 years they have evolved by the inclusion of more observations [Murphy et al., 1976; Hedin et al., 1988;
Drob et al., 2008; Emmert et al., 2008; Drob et al., 2015]. Unfortunately, the base of observational data is
too sparse to adequately constrain a three-dimensional thermospheric wind model for different seasons,
solar cycles, and levels of geomagnetic activity. Observations of the neutral winds are hard to come by
for several reasons. Direct ground-based techniques rely on Fabry-Perot measurements of the Doppler
shifts of naturally occurring emissions from the thermosphere/ionosphere, but these can only be carried
out in clear-sky nighttime conditions. In situ measurements of the wind also involve FP measurements,
but these involve long line-of-sight integrations. Local measurement using accelerometers or wind instruments
is a technique still under development.

David et al.[2014] carried out a study in which four wind model variations were used when simulating the F
region ionosphere with the Utah State University Time Dependent lonospheric Model (TDIM); the results of
these simulations were compared with a ground-truth of ionosonde observations from five midlatitude
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stations distributed in longitude. No single model could be identified as the “best,” as certain models per-
formed better under certain conditions, and the outcome was seen to be dependent upon the particular
configuration of the ionospheric model in use at the time. The model that appeared to give the best overall
agreement was one that specified zero wind on the dayside, which, of course, is contrary to what is known
about the thermosphere.

In the present study an alternative approach is adopted, to see how an uncertainty in the neutral wind input
will propagate through an ionospheric model to result in an uncertainty in the ion density parameters
produced by the model. We have chosen to represent the F region output of the model with the parameter
TEC, that is, vertical total electron content, as this is perhaps the most useful and well-known ionospheric
parameter. The Horizontal Wind Model, originally developed by Hedin et al. [1988] and now updated by
Drob et al. [2015] and known by the name HWM?14, is used as a baseline wind distribution. The uncertainty
associated with the wind values in HWM14 is about + 37 m/s [Drob et al. [2015]]. This uncertainty may come
from at least three different sources: a relative scarcity of wind observations, error or uncertainty in those
observations which do exist, and day-to-day thermospheric weather (as opposed to climatology). All three
factors make a contribution to the total uncertainty in the wind model, with the day-to-day variability
contributing perhaps the largest share. In this study it is immaterial what is the source of the uncertainty;
we just want to find out how much error in a physics-based ionospheric model’s output may be attributed
to uncertainty in the neutral wind input model. We study three regions in the Northern Hemisphere sepa-
rately: the midlatitude dayside, the midlatitude nightside, and the polar region. (The TDIM is not suitable
for use in equatorial regions.)

The result we obtain is the outcome of basic ionospheric physics: the relationship between the neutral
wind and the magnetic field results in the raising or lowering of the F layer and hence the increase or
decrease of the ion densities. While we employ here only one ionospheric model, the TDIM, we expect that
other physics-based ionospheric models would yield a very similar overall result. It is true that a model
using a detailed specification of the Earth’s magnetic field, such as IGRF, would very likely show some
difference in the response to the neutral wind at specific locations, but we believe the large-scale, overall
picture would be much the same as the one we have obtained with the TDIM. In other words, our imperfect
knowledge of the neutral wind imposes a fundamental limitation on ionospheric modeling, which cannot
be overcome by refining or polishing the ionospheric models themselves.

2. lonospheric Model

The Utah State University Time-Dependent lonospheric Model (TDIM) is a three-dimensional, high-resolution,
multi-ion model of the ionosphere in the altitude range from 90 to 800 km at midlatitude and high latitude
[Schunk, 1988; Sojka, 1989; Schunk et al., 1986]. It is a first-principles model with over three decades of research
development; Sojka et al. [2013] and references therein provide a detailed description of the model’s develop-
ment and usage. David et al. [2014] carried out a TDIM study contrasting four neutral wind models as drivers for
the ionospheric model; the interface between the TDIM and the climatological neutral wind models is described
in that article.

In addition to the thermospheric wind, which is the focus of this study, the TDIM requires several other global
inputs, including the neutral atmospheric densities and temperatures, the convection electric field, and the
particle precipitation pattern. All of these are sources of uncertainty in ionospheric modeling and may
be subjected to the same type of analysis in upcoming publications that we here devote to the neutral
winds. The topside downward electron flux is kept at its default value of zero. The “PRIMO” adjustments
[see Anderson et al., 1998], including the Burnside factor, are not incorporated. For the neutral atmosphere
densities and temperatures we have used NRLMSISE-00 [Picone et al., 2002]. The Hardy et al. [1987] model is
used to specify the auroral electron precipitation, and the Heppner and Maynard [1987] model is used to
describe plasma convection.

For a baseline specification of the neutral wind, as needed by the ionospheric model, we use the latest
version of the Horizontal Wind Model; see Drob et al. [2015]. The wind model is referred to as HWM14; it
provides a climatological representation of the Earth’s horizontal neutral wind as a function of geographic
location, local time, season, altitude, and geomagnetic activity level. It is based on satellite, rocket, and
ground-based wind measurements.
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Nightside Dayside 3. Neutral Wind and the
lonosphere

Through collisional interaction, the
horizontal momentum of neutral
particles may be transferred to ions.
Since the ions are constrained to
move along a magnetic field line
and cannot simply move horizon-
tally, there will be a resulting vertical

Sun =

Figure 1. A diagram showing the mechanism by which a horizontal neutral
wind may affect the ionosphere by either raising or lowering the F layer.

The larger arrows represent a horizontal wind, that is, parallel to the Earth'’s
surface, and the shorter arrows represent its component along the line of the ~ COMponent to the movement. The
magnetic field (labeled “B”). The wind shown is antisunward, that is, poleward  amount of vertical motion depends
on the dayside, driving charged particles downward to lower altitudes; and on the inclination angle of the

equatorward on the nightside, lifting the ions upward. magnetic field; see Schunk and

Nagy [2009].

Whether the induced vertical ion drift is upward or downward depends on the relativity of the angled field
line and the direction of the wind (see Figure 1). On the dayside, a wind blowing toward the pole, or
antisunward, will be the norm, except in cases of geomagnetic storm conditions. (A wind direction toward
the pole is labeled as positive by the HWM14 model, and we follow that convention.) When the horizontal
wind is broken down into meridional and zonal components, it is the meridional component that is most
geoeffective in this way; a zonally directed wind will have little effect in moving charged particles up or
down the magnetic field lines. (The TDIM uses a tilted dipole magnetic field, whose tilt is 11.4°, with the
longitude of the north magnetic pole being 71°W.)

The significance of the upward or downward motion of ions lies in the fact that loss of ions due to recombina-
tion into neutral species occurs most rapidly at the lower altitudes. Therefore, if the ions are lifted upward, this
will serve to inhibit loss of ions. If the ions are pushed downward, recombination will occur more rapidly and the
F region ion densities will be decreased. Thus, the typical effect of the neutral wind during quiet-to-moderate
geomagnetic conditions is that dayside ion densities will be reduced by the wind, while on the nightside,
the wind will tend to maintain the F

20 layer. The magnitude of the induced
vertical transport depends upon the
angle of inclination / through the
product sin(/)cos(/); therefore, we may
expect the neutral wind to have a
more direct effect on ion densities at
midlatitudes than in the polar regions.
(As stated previously, the TDIM is not

-
(3]
L

TEC (TECu)
>

5
suitable for use at low latitudes.)

= 0 R L i

g 150 4, Midlatitude Dayside

‘E 100 T

3 s0- At midlatitudes, under conditions of

é 0 low or moderate geomagnetic activ-

T 5 ity, we may reasonably assume that

[

) the ionosphere is corotating with

T -100 1 .. .

5 the earth; this introduces considerable

S -150 . .

10 12 14 16 18 20 22 00 02 04 06 08 10 12 14  simplicity into our method. We begin
Local Time (hr) by selecting a ground location; for
our first test case we shall use the loca-
Figure 2. Output of a midlatitude dayside TDIM model simulation. (top)  tion of Millstone Hill, Massachusetts,
Total Electron Content (TEC); (bottom) the meridional component of the
horizontal neutral wind as specified by the HWM14 model. During the last
3 h of the run, the wind has been set to a fixed value of 75 m/s (solid line),
thereby causing TEC to be reduced by about 30%. The dashed curve showsthe @ Mmagnetic latitude of 54°. For a
model run with the unchanged HWM14 wind input. given set of conditions, for example,

USA, situated at approximately 42°N
and 288°E geodetic coordinates, with
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TEC (TECu)
>

100 m/sec

8 9 10 1 12 13 14

Local Time (hr)
Figure 3. Output of TDIM model runs showing the TEC for one corotating
midlatitude dayside location with different wind scenarios, as described in
section 4. A fixed value of the meridional component of the horizontal neutral

wind is imposed for the last 3 h of each simulation; the values used are shown
at the right. The dotted curve is for the unaltered HWM14 wind model.

electron content (TEC) that result from these values of the wind. Our

Equinox, solar medium, and Kp=2,
the TDIM will follow the corotating
F region ionosphere above this loca-
tion for a 24h period, using the
HWM14 model as the driver for the
horizontal neutral wind. Then, for a
3 h period centered on local noon,
we continue following the corota-
ting ionosphere, but now we impose
a fixed value for the meridional com-
ponent of the neutral wind. In order
to determine the range of values
for the meridional wind that might
be reasonably used, we look to the
HWM14 model to see what range it
provides on the dayside at mid-
latitudes for quiet conditions, and
we find that to be roughly —50 to
+100m/s. We do TDIM runs with
wind values (for 3h) of —50, —25,
—10, 0, 425, +50, +75, and +100 m/s.
Then we compare the values of total
goal is to make a quantitative state-

ment that relates the uncertainty in the wind input to the resulting uncertainty in the ionospheric model
output. We will call these uncertainties AWind and ATEG; it will be seen later (Figures 5, 7, and 9) that there

is a linear relationship between them.

Figure 2 shows an example in which this method has been employed. We have started a TDIM simulation on
the dayside at 0830 h local time at the location of Millstone Hill and followed the corotating plasma through
the night until it comes round to 1030 h local time. (It is important that the TDIM follows a trajectory for about

24 h, in order to allow initial conditions to settle out.) At 1030 local ti

me, and for the 3 h following, we no

longer use the wind from the HWM14 model but, instead, fix the meridional component to a specified level,
in this case, +75 m/s. This step function in the wind can be seen in Figure 2 (bottom) (the dashed curve

14

137 12.5

12 1

ATEC =

11 1
-26 %

TEC (TECu)

9.9
10 1

60 1 50.0

40 1 AWind =
+38.4 m/sec

20 1 11.6

Meridional Wind (m/sec)

08 09 10 1 12 13 14
Local Time (hr)
Figure 4. ATDIM run is used as an example for illustrating the definition and

computation of the parameters we have named “AWind” and “ATEC,” as
explained in section 4.

there shows the HWM14 wind). The
positive sign indicates a direction
toward the pole; on the dayside this
means that a downward ion drift is
induced, resulting in a lowering of
ion densities and a corresponding
reduction in TEC. This downward drift
is the typical case on the dayside,
except in times of considerable geo-
magnetic disturbance. The dashed
curve in Figure 2 (top) shows the
TEC that results from the use of the
wind from the HWM14 model, while
the solid line shows that which
results from the imposed meridional
wind of +75 m/s; as soon as the F layer
is forced downward there is an
immediate drop in ion density.

We carry out the same procedure for
a set of wind values ranging from
—50to +100 m/s; in Figure 3 we show
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80% the last 5h of the TDIM trajectories
60% 1 with these imposed winds. The dashed
0% | ° curve is @ model run done with the
..... continuing use of HWM14. The TDIM
o 20% .. . values of TEC that result from these
E 0% - "'°~..°.. winds range from about 7 to 18 TECu:
5 ° "o a spread over a factor of 2%2.
S22 - Q, -
SN In order to make a quantitative state-
-40% 1 ° ment about the uncertainty in TEC
that results from a given uncertainty
-60% 1 R H H
in the input wind, we need to define
-80% " T T the two parameters that we call
-100 -50 0 50 100 AWind and ATEC (see the illustration

Delta Wind (m/sec) in Figure 4). When the corotating

Figure 5. Uncertainty in the simulated TEC values (ATEC) is plotted against the plasma reaches 1030 local time, the
uncertainty in the meridional component of the horizontal neutral wind value of the meridional component
(AWind). ATEC and AWind are defined in section 4 and illustrated in the previous  of the neutral wind from the HWM14
figure. The TDIM runs shown here were done for solar medium, low activity, model at that point is noted (11.6 m/s
equinox conditions, at the location of Millstone Hill near local Noon (1330 MLT). . . " .
in this example), and the “baseline

TDIM simulation (dashed curve) uses
that as a fixed value for the neutral wind during the following 3 h. AWind for any given TDIM run is then
defined as the difference between the imposed meridional wind value used for that run (+50 m/s in this
case) and the baseline value. Then ATEC is the difference between the computed TEC values for those
two runs expressed as a percentage, taken 3 h after the wind change began. We use these “delta” values
to represent the uncertainty in the input field for the neutral wind and the resulting uncertainty in the mod-
eled values of TEC.

In Figure 5, we plot all the AWind values with their corresponding ATEC values for the set of model runs that
were shown in Figure 3. A clear linear relationship exists between the uncertainty in the wind and the
resulting uncertainty in the modeled TEC. We may fit a straight line to the points in the middle of the graph,
where the AWind values are most reasonable and calculate the slope of the line which allows us to make
a quantitative statement of the kind alluded to above. In this case, the slope of the line is —0.59, and therefore,
ATEC=—0.59 * AWind.

Drob et al. [2015] state that the typical uncertainty in the HWM14 model is about + 37 m/s. With a preference for
round numbers, we will use 40 m/s to represent the level of uncertainty in the neutral wind. When —40 and +40
are used in the equation for the straight line, we get ATEC values of 25 and —23%. In other words, given our
present level of uncertainty in the neutral wind specification, whether due to imprecision in observations, scar-
city of observations, and/or day-to-day variability, we may say that ionospheric modeling efforts for TEC in the
midlatitude dayside region cannot be more accurate than to be within about + 25%, just due to uncertainties in
the neutral wind input. Of course, there are also other uncertain factors that will add to that figure.

To put this 25% uncertainty into context, we may consider the day-to-day variability of TEC in the dayside mid-
latitude region. Soicher and Gorman [1985] studied three different month-long periods, looking at TEC values
from Fort Monmouth, NJ, USA, throughout each day of 3 months. They expressed the day-to-day variability in
terms of the coefficient of variation, e.g., the standard deviation divided by the mean. Their findings, taken from
their Figure 3, were as follows: summer (August), 15-25%; winter (February), 15-25%; and spring (May), 35-45%.

Table 1. The Geodetic Coordinates and Magnetic Latitudes of Four Midlatitude Locations

Geodetic Latitude Geodetic Longitude Magnetic Latitude Dip Angle (Dipole Field)
Boulder 40° 255° 49° 66°
Millstone Hill 43° 288° 54° 70°
Slough 51° 359° 54° 70°
Yakutsk 62° 130° 51° 68°
DAVID ET AL. IONOSPHERIC SENSITIVITY TO NEUTRAL WINDS 523
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Table 2. Uncertainties in Modeled Dayside Midlatitude TEC Values Does this uncertainty of 25% in the

Equinox Summer Winter midlatitude dayside ionosphere have
Solar Cycle a dependence on conditions such as
Min 30% 22% 31% Boulder solar activity level, geodetic longitude,
Med 34% 27% 35% or season? To address the question,
L 34% 28% 36% we carry out the same procedure
Min 21% 17% 2% Millstone Hill ¢ 5 variety of different conditions
Med 24% 20% 25% ) ; ty i '
Max 24% 22% 26% including solar maximum and solar
Min 22% 22% 24% Slough minimum; winter, summer, and
Med 26% 27% 28% equinox; and four different ground
R A5 2t 22 locations distributed longitudinally
Min 22% 17% 24% Yakutsk around the Northern Hemisphere
Med 26% 20% 27% ) riemisphere,
Max 26% 21% 28% all having a geomagnetic latitude of

about 50° (see Table 1). Results are
summarized in Table 2; the numbers
represent the model uncertainty expressed as a percentage (the “ATEC") for each set of conditions; each single
number is the average of the absolute values of the ATEC for the two AWind values of +40 and —40 m/s. It is
evident from the similarity of the numbers in the table that there is no strong dependence on the various
conditions or longitudes tested. (There is a systematic increase of about 4-5% in solar maximum, but this is
small compared with the 25% effect we are focusing on.) The overall average of the numbers in Table 2 is
25.6%. The meaning of this number is that our inability to specify the neutral wind with a higher degree of accu-
racy imposes an error bar of (at least) + 25% on our ionospheric modeling at midlatitudes. It does not mean that
25% of the ionospheric model's error is due to uncertainty in the neutral wind but that a £ 25% uncertainty in
the modeled TEC inevitably follows from the postulated +40 m/s uncertainty or variance in the neutral wind.

5. Nightside, Midlatitudes

As in the previous section, we limit our model simulations to conditions of low-to-moderate geomagnetic
activity, and we may therefore consider the ionosphere to be corotating. The procedure is identical with
that used on the dayside, with the exception that instead of the 3 h period of imposed wind being centered
on local noon, it will be centered on midnight; the imposed wind begins at a local time of 2230 and continues for
3 h. Again, we will use the location

8 of Millstone Hill as a test case.

To determine what range of wind
values to use, we sample the
HWM14 model on the nightside
at or near 50° magnetic latitude
throughout a variety of seasons
and universal times, and we find
that the numbers seen are roughly
in the range —200 to +50m/s.

-200 m/sec

-150 m/sec

TEC (TECu)
H

-100 m/sec

75 misec Figure 6 shows how the nightside
2 -50 misec TEC responds to a three-hour per-
s meee iod of imposed meridional wind
25 misec in this range. A positive value
50 m/sec . . .
means the wind is directed toward
020 21 22 23 24 25 26 the pole, therefore on the night-
MLT (hr) side, a positive meridional wind

will decrease the ion densities by
Figure 6. TDIM model runs on the nightside; similar to Figure 3, but centered on driving the plasma downward into
local midnight. The TEC for one nightside midlatitude corotating location is
plotted for different wind scenarios, as described in section 5. A fixed value of
the meridional component of the horizontal neutral wind is imposed for the last
3 h of each simulation; the values used are shown at the right. The dotted curve lift the F-layer and will serve to
is for the unaltered wind from the HWM14 model. maintain the nighttime densities.

the altitude region of faster recom-
bination, and a negative wind will
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80% o No amount of wind will cause the ion
60% 1 density to increase at night, as there
40% | o is virtually no source of production.
y (In times of strong geomagnetic
o 20% 1 "’a... activity this might not be true.) We
E 0% 1 see in Figure 6 that even a meridional
= 7 wind of —200 m/s, which induces an
2 20% . upward ion drift of about 60 m/s, is
‘e, not sufficient to fully maintain the

-40% o . . . .

nighttime ion densities.
60% 1 ° With AWind and ATEC as defined in
-80% r " r v v ° the previous section, in Figure 7 we
-150 -100 -50 0 50 100 150

Delta Wind (m/sec)

Figure 7. Uncertainty, as a percentage, in the simulated TEC values (ATEC)
is plotted against the uncertainty in the meridional component of the
horizontal neutral wind (AWind). ATEC and AWind are defined in section 4
and illustrated in Figure 4. The TDIM runs shown here were done for solar
medium, low activity, equinox conditions, at the location of Millstone Hill
near local Midnight (0130 MLT).

plot the uncertainty expressed as
a percentage in the modeled TEC
values vs the uncertainty in the
wind. As before, there is a clear linear
relationship. The slope of this line
allows us to state that for AWinds of
—40 and +40m/s, the ATEC is 27%
and —28% respectively; slightly higher
than was the case on the dayside.

We have carried out the same procedure for a variety of conditions, including solar medium, minimum, and
maximum; as well as equinox, winter, and summer conditions; for four different midlatitude locations repre-
senting a distribution of longitudes around the globe. Table 3 shows these ATEC values, expressed as a percen-
tage. As before, the single numbers represent the average of the absolute values of ATEC for the two AWind
values of +40 and —40 m/s. For the most part, we see that there is no significant dependence on the conditions
or longitudes tested here; however, at the location of Slough the ATEC percentages are higher, and at Yakutsk
during summer the values are lower. Theses anomalies are probably due to certain particularities in the baseline
wind model (HWM14), such that the winds at Slough tend to be only about half as strong as those at either
Millstone Hill or Boulder, and the wind in summer at Yakutsk is given as much higher than during equinox or
winter conditions. The overall average of the ATEC numbers for the midlatitude nightside cases is 29.3%; this
may be compared with the average of 25.6% for the dayside cases.

6. Polar Region

When studying the effect of the wind within the polar region, we do not have the luxury, as we did at
midlatitudes, of being able to assume that the ionosphere is corotating. Therefore, we cannot follow the
ionosphere above a ground location as we did before, but instead, we have to follow plasma trajectory

paths that are determined by the

Table 3. Uncertainties in Modeled Nightside Midlatitude TEC Values convection electric field. We follow

Equinox Summer Winter three such paths, which lead to loca-
tions chosen as follows: (a) a location

Solar Cycle - Lo
Min 27% 25% 18% Boulder within the tongue of ionization (when
Med 29% 25% 29% such a TOI exists, that is, a plume
Max 24% 20% 34% of high density dayside plasma con-
Min 28% 27% 24% Millstone Hill  vected antisunward through the cusp
izt 2l 205 R and across the dark polar cap); (b) a
Max 21% 22% 25% . .
Min 45% 47% 30% Slotah location beside the TOI; (c) an
Med 43% 44% 48% arbitrarily chosen location in the
Max 35% 36% 57% polar cap (Figure 8). (Note that the
Min 32% 16% 17% Yakutsk existence of a tongue of ionization
et . LE2 e depends on universal time and
Max 27% 11% 35%

season.) The dip angles for our three
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1200 MLT

polar cap test locations, with the
dipole magnetic field used in the
TDIM model, are, respectively, 88°,
86°, and 82°. Trajectory paths lead-
ing to these locations over a 24h
period are determined by the
Heppner and Maynard “A” convec-
tion pattern [Heppner and Maynard,
1987]; we run each trajectory two
separate times, such that the arrival
at the endpoint will occur at univer-
sal times of 0500 and 1700. As
before, for the last 3 h of the trajec-
tory we impose a fixed value for the
meridional component of the wind;
within the polar cap, the HWM14
model yields meridional wind com-

Figure 8. A dial plot in geomagnetic coordinates showing three TDIM ponents in the range of roughly
plasma trajectory paths in the Northern Hemisphere polar cap, as discussed 200 m/s. In addition, we carry out
in section 6: (a) within the tongue of ionization; (b) beside the tongue of runs for equinox, summer, and win-
ionization; and (c) an arbitrary point within the polar cap. The trajectories are o conditions, in order to test for a
timed so as to reach these three points at Universal Times of 0500 and 1700.

1800 0600

0000

seasonal dependence.

Because the mechanism by which the neutral wind affects the ionosphere depends on the angle of the mag-
netic field lines, it is to be expected that the effect of the neutral wind will be less significant in polar regions
than at midlatitudes, since the field lines are nearly vertical. This is well borne out by the model runs. An
example is shown in Figure 9, with AWind and ATEC as defined in section 4 and illustrated in Figure 4. This
is location “a,” for universal times of 0500 (circles) and 1700 (crosses). At 1700 UT this location lies within
the tongue of ionization, while at 0500 UT there is no TOI; this accounts for the considerable difference in
the slopes of the two lines. In either case, the ATEC that results from a given value of AWind is considerably
less than it was at midlatitudes on either the dayside or the nightside. If we again take +40 m/s as the uncer-
tainty in the neutral wind, we get ATEC values of 6% and 10% for 0500 UT and 1700 UT, respectively. Table 4
contains the full listing of ATEC values (in percent) for the AWind values of + 40. (As before, the single number
given in the table is the mean of the absolute values of the two numbers that correspond to AWinds of +40
and —40.) The overall average of the
numbers in the table is 8.7%.

140% 1 X
120% 1 x 7. Discussion and Summary
100% 1 The neutral wind can be a major
80% o X driver of F region ionospheric densi-
Q 60% o X ties by redistributing plasma in alti-
E 40% ° o X tude, changing the rate at which ions
g 20% 1 ° °)-(;;':x are lost to recombination. We have
0% 1 ""”*.,::,, o addressed the question of how sensi-
-20% 1 "X o o tive the ionosphere is to this wind
-40% - X and, in particular, how sensitive an
-60% 1 X ionospheric model is to uncertainties
.80% : : : : : : : : : in its neutral wind input and how this
-300 -250 -200 -150 -100 -50 0 50 100 150 may limit our ability to model or

Figure 9. Uncertainty in modeled TEC versus uncertainty in the meridional

Delta Wind (m/sec)

wind, at the polar cap location a, for the 0500 UT case (circles), and the
1700 UT case (crosses). Equinox and solar medium conditions. ATEC and
AWind are defined in section 4 and illustrated in Figure 4.

forecast the ionosphere. The clima-
tological wind model used here is
the HWM14 [Drob et al., 2015], and
the ionospheric model is Utah State
University’'s TDIM.
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Table 4. Uncertainties in Modeled Polar Cap TEC Values The degree of uncertainty in the
Equinox Summer Winter HWM14 wind model has been taken
Universaliime to be 40 m/s, rounded up from the
0500 6% 5% 10% Location a + 37 m/s given by Drob et al. [2015].
1700 10% 9% 19% This uncertainty in the wind model
usito 5% 7% 8% Locationb  may pe attributed to three sources:
1700 12% 13% 12% scarcity of measurements, uncer-
0500 8% 8% 10% Location c arcity '
1700 5% 3% 7% tainty in measurements, and ther-

mospheric weather. If the latter is a
significant contributor, it raises the
question as to what time scales may be appropriate for neutral wind weather. We have assumed that it is
sensible to hold a wind to a fixed value for a 3 h period. We have looked at the ionospheric model’s sensitivity
to uncertainties in the wind in three distinct regions: the midlatitude dayside, the midlatitude nightside, and
the polar cap.

The most significant finding of the study is this: the degree of uncertainty that currently exists in climato-
logically averaged models of the neutral wind is responsible for limiting F region ionospheric modeling in
midlatitude regions to be no more accurate than within £20 to 30%. In modeling there are of course addi-
tional factors involved, each having their own uncertainties, which contribute to making the ionospheric
modeling even worse; but we find that the uncertainty in the wind alone is sufficient to account for a
20-30% uncertainty in the ionospheric model’s output.

In the polar regions, uncertainty in the neutral wind has a less severe effect; this is because the neutral wind is
less geoeffective at high latitudes, owing to the near-verticality of the magnetic field lines. We found that the
ionospheric model’s uncertainty due to the wind at high latitudes is about 5 to 10%.

We found a linear relationship between uncertainty in the neutral wind expressed in m/s and the resulting
uncertainty in modeled TEC values expressed as a percentage over the range of meridional wind uncertain-
ties relevant to this study. This means that improvements gained in the understanding of and measurement
of thermospheric winds will benefit ionospheric modeling or forecasting in a corresponding degree. Thus,
if the uncertainty in the wind’s specification were only +20 m/s, instead of 40 m/s, this would improve
ionospheric modeling to the degree that the uncertainty due to the wind would be just 10-15%.

This study has been carried out using a single ionospheric model (the TDIM), but we believe our conclusion
proceeds from basic ionospheric physics and does not depend upon particular features of this model and
should also be applicable in the case of other physics-based ionospheric models that rely on empirical neutral
wind models for their input. We are at present working with the TDIM model to discover its sensitivity to other
factors, including a high-resolution solar irradiance spectrum, topside fluxes of heat or particles, reaction rate
parameterization, and the density and composition of the neutral atmosphere.

References

Anderson, D. N., et al. (1998), Intercomparison of physical models and observations of the ionosphere, J. Geophys. Res., 103(A2), 2179-2192,
doi:10.1029/97JA02872.

David, M., J. J. Sojka, and R. W. Schunk (2014), Sources of uncertainty in ionospheric modeling: The neutral wind, J. Geophys. Res. Space
Physics, 119, 6792-6805, doi:10.1002/2014JA020117.

Drob, D. P., et al. (2008), An empirical model of the Earth’s horizontal wind fields: HWMO7, J. Geophys. Res., 113, A12304, doi:10.1029/
2008JA013668.

Drob, D. P, et al. (2015), An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth Space Sci., 2, 301-319,
doi:10.1002/2014EA000089.

Emmert, J. T, D. P. Drob, G. G. Shepherd, G. Hernandez, M. J. Jarvis, J. W. Meriwether, R. J. Niciejewski, D. P. Sipler, and C. A. Tepley (2008), DWMO07
global empirical model of upper thermospheric storm-induced disturbance winds, J. Geophys. Res., 113, A11319, doi:10.1029/2008JA013541.

Hardy, D. A, M. S. Gussenhoven, R. Raistrick, and W. J. McNeil (1987), Statistical and functional representations of the pattern of auroral
energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275-12,294, doi:10.1029/JA092iA11p12275.

Hedin, A. E., N. W. Spencer, and T. L. Killeen (1988), Empirical global model of upper thermosphere winds based on Atmosphere and
Dynamics Explorer satellite data, J. Geophys. Res., 93, 9959-9978, doi:10.1029/JA093iA09p09959.

Heppner, J. P, and N. C. Maynard (1987), Empirical high-latitude electric field models, J. Geophys. Res., 92, 4467-4489, doi:10.1029/
JA092iA05p04467.

Murphy, J. A, G. J. Bailey, and R. J. Moffett (1976), Calculated daily variations of O+ and H+ at mid latitudes—I. Protonospheric replenishment
and F-region behaviour at sunspot minimum, J. Atmos. Sol. Terr. Phys., 38, 351-364.

Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and
scientific issues, J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430.

DAVID ET AL.

IONOSPHERIC SENSITIVITY TO NEUTRAL WINDS 527


http://dx.doi.org/10.1029/97JA02872
http://dx.doi.org/10.1002/2014JA020117
http://dx.doi.org/10.1029/2008JA013668
http://dx.doi.org/10.1029/2008JA013668
http://dx.doi.org/10.1002/2014EA000089
http://dx.doi.org/10.1029/2008JA013541
http://dx.doi.org/10.1029/JA092iA11p12275
http://dx.doi.org/10.1029/JA093iA09p09959
http://dx.doi.org/10.1029/JA092iA05p04467
http://dx.doi.org/10.1029/JA092iA05p04467
http://dx.doi.org/10.1029/2002JA009430
http://digitalcommons.usu.edu/all_datasets/9/
http://digitalcommons.usu.edu/all_datasets/9/

@AG U Journal of Geophysical Research: Space Physics 10.1002/2015JA021544

Schunk, R. and A. Nagy (2009), lonospheres, 2nd ed., Cambridge Univ. Press, Cambridge, Cambridge Books Online. Web. 12 May 2015,
doi:10.1017/CBO9780511635342.

Schunk, R. W. (1988), A mathematical model of the middle and high-latitude ionosphere, Pure. Appl. Geophys., 127, 255-303.

Schunk, R. W., J. J. Sojka, and M. D. Bowline (1986), Theoretical study of the electron temperature in the high-latitude ionosphere for solar
maximum and winter conditions, J. Geophys. Res., 91, 12,041-12,054, doi:10.1029/JA091iA11p12041.

Soicher, H,, and F. J. Gorman (1985), Seasonal and day-to-day variability of total electron content at mid-latitudes near solar maximum,
Radio Sci., 20(3), 383-387, doi:10.1029/R5020i003p00383.

Sojka, J. J. (1989), Global scale, physical models of the F-region ionosphere, Rev. Geophys., 27, 371-403, doi:10.1029/RG027i003p00371.

Sojka, J. J,, J. Jensen, M. David, R. W. Schunk, T. Woods, and F. Eparvier (2013), Modeling the ionospheric E and F1 regions: Using SDO-EVE
observations as the solar irradiance driver, J. Geophys. Res. Space Physics, 118, 5379-5391, doi:10.1002/jgra.50480.

DAVID ET AL.

IONOSPHERIC SENSITIVITY TO NEUTRAL WINDS 528


http://dx.doi.org/10.1017/CBO9780511635342
http://dx.doi.org/10.1029/JA091iA11p12041
http://dx.doi.org/10.1029/RS020i003p00383
http://dx.doi.org/10.1029/RG027i003p00371
http://dx.doi.org/10.1002/jgra.50480

	How uncertainty in the neutral wind limits the accuracy of ionospheric modeling and forecasting
	Recommended Citation

	How uncertainty in the neutral wind limits the accuracy of ionospheric modeling and forecasting

