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ABSTRACT 

A new Sun sensor measurement model is designed and implemented in the attitude estimation system of a simulated 

spacecraft in low-Earth orbit (LEO) subject to environmental disturbance torques. This new measurement model 

remains compatible with all previous iterations of coarse Sun sensor hardware, it is merely the data processing that is 

different. Two Unscented Kalman Filters (UKF) are run in parallel onboard the simulated satellite – one filter using a 

standard Sun sensor measurement model and the other using the new measurement model. All other details and inputs 

to the two filters are identical. The results of the two attitude filters are compared to evaluate the performance of the 

new measurement model and the source of improvement is discussed.  

INTRODUCTION 

Motivation 

Attitude determination and control (ADC) is a critical 

component of any spacecraft mission. As small satellite 

missions continue to grow in complexity, the 

requirements imposed on spacecraft subsystems grow 

more stringent as well. Unfortunately, budgets available 

to meet these more complex mission requirements are 

averse to such growth. This establishes the need for 

engineers of small spacecraft to be able to do less with 

more, particularly on subsystems such as ADC, where 

components can easily reach prices in the tens of 

thousands of dollars. 

Sun sensor systems are an example of one such 

component that can be extraordinarily expensive. 

However, while very expensive fine Sun sensor systems 

are available, coarse Sun sensor systems may be 

constructed from an array of simple photodiodes that can 

cost under one dollar each. This potential cost-saving is 

advantageous to organizations building small satellites, 

but systems based on coarse sun sensors experience 

reduced performance compared to the fine sun sensor 

systems. 

In order to meet the challenges imposed by ever-growing 

mission ambition, a new coarse Sun sensor measurement 

model is designed and implemented. The new proposed 

measurement model, hereafter referred to as the voltage 

measurement model (VMM), allows for more accurate 

and robust attitude estimation with simple and 

inexpensive hardware. 

This work first presents the standard model currently 

used for Sun sensor systems in attitude estimation, 

hereafter referred to as the Sun measurement model 

(SMM), and then introduces the VMM. The two models 

are directly compared using simulation, described in the 

next section. The rotational equations of motion are 

described, and then the modeling of external 

environmental disturbance torques is explained. The 

method by which sensor readings are simulated based on 

the true dynamic state is then presented. Finally, the 

simulation results are presented and discussed. The 

simulation is run with two Unscented Kalman filters 

(UKF) in parallel. The first filter utilizes the VMM, 

while the second uses the standard SMM. Since both 

filters are run in parallel, they are subject to identical 

external disturbances and an identical sensor array. Thus, 

difference in performance is due entirely to the proposed 

new measurement model. 

Sun Sensor Standard Measurement Model 

Coarse Sun sensors are typically composed of 

photodiodes, electrical components that have an output 

voltage proportional to incident light intensity. 

Photodiodes may also be considered to have electrical 

current as an output, as it is straightforward to convert 

between the two. The output voltage will be a fraction of 

the maximum calibrated output, as given by [1] 
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𝑉𝑗 = {
𝑉𝑚𝑎𝑥(𝒏𝒋 ∙ 𝒔)       for 𝒏𝒋 ∙ 𝒔 > 0 

0                           for 𝒏𝒋 ∙ 𝒔 ≤ 0
} ,                     (1) 

where Vj is the voltage across photodiode j, Vmax is the 

calibrated maximum voltage, nj is the outward normal of 

the photodiode, and s is the vector to the Sun. An 

algorithm to predict the vector to the Sun, spredict, from 

the date is provided as Algorithm 29 in Vallado [2].  

Details of photodiode calibration can be read about in 

Springmann [3]. The vector to the Sun and the outward 

normal of the photodiodes may be expressed in any 

reference frame, as long as they are both in the same 

reference frame. 

Markley and Crassidis [1] provide a method to directly 

calculate the Sun vector, s, when six photodiodes are 

used. However, to build redundancy into a design, it is 

often desirable to include more than six photodiodes. 

When this is done, the system becomes overdetermined 

and must be solved by the linear least squares problem 

𝒔 = (𝑁𝑇𝑁)−1𝑁𝑇 (
𝑉𝑗

𝑉𝑚𝑎𝑥
),                                             (2) 

where N is a matrix containing the transpose of the 

outward normal of each photodiode, nj
T. The computed 

Sun vector s is then compared to spredict inside the UKF 

in the attitude estimation process. This SMM 

formulation allows an arbitrary number of photodiodes 

to be used in the Sun sensor system, increasing both the 

accuracy and robustness of attitude estimation relative to 

restricting the number of photodiodes to six.. 

Matters are complicated, however, by the fact that 

photodiodes start to deviate from the behavior modeled 

by equation (1) when the angle of incidence becomes 

large, typically more than 60°. This is due to internal 

reflection within the photodiode imposing extra noise 

upon the reading, as well as the possibility of specular 

reflection off of other spacecraft surfaces. Rather than 

attempting to model these error sources that occur at 

large incidence angles, it is often preferred to simply 

throw out a voltage reading that is too low. This is 

because including an additional reading based on a faulty 

error model is unlikely to produce better performance 

than simply neglecting that same reading would. 

However, if too many readings are thrown out, then the 

overdetermined system can become underdetermined, 

making it impossible to compute a three-dimensional 

vector to the Sun. This is where the utility of the newly 

proposed voltage measurement model comes in. 

Voltage Measurement Model 

The basis of the newly designed VMM is to avoid the 

possibility of posing an underdetermined problem. 

Rather than the UKF comparing predictions and 

measurements of the Sun vector, predictions and 

measurements of the photodiode voltages are passed in 

directly. These voltage measurements take the place of 

vector measurements. There are two advantages to this 

approach. The first is that a vector no longer needs to be 

computed, so the possibility of an underdetermined 

system is eliminated. This means that even if only one or 

two photodiodes are producing valid readings, the sun 

sensor system may still contribute to attitude estimation 

instead of being left out entirely. The second is that with 

the SMM, regardless of how many photodiodes are used 

to compute the Sun vector, it still results in only a single 

vector measurement for the attitude filter to process. A 

Sun vector measurement computed from three 

photodiodes is given the same weight by the filter as a 

Sun vector measurement computed from 20 

photodiodes, despite the latter situation providing more 

information. 

The predicted voltages for the VMM can be calculated 

similarly to equation (1), except the predicted Sun vector 

[2] and the present attitude estimate are required. The 

predicted voltage across the jth photodiode is 

𝑉𝑗,𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = {
𝑉𝑚𝑎𝑥(𝒏𝑗 ∙ 𝒔𝑏𝑜𝑑𝑦) for 𝒏𝒋 ∙ 𝒔𝒃𝒐𝒅𝒚 > 0 

0                            for 𝒏𝒋 ∙ 𝒔𝒃𝒐𝒅𝒚 ≤ 0
}    (3) 

𝒔𝑏𝑜𝑑𝑦 = 𝐴𝑒𝑠𝑡𝒔𝑝𝑟𝑒𝑑𝑖𝑐𝑡                                                   (4) 

where sbody is the predicted Sun vector rotated into the 

spacecraft body reference frame by the attitude matrix 

Aest, and spredict is the predicted Sun vector expressed in 

Earth-Centered Inertial (ECI) coordinates. The attitude 

matrix that rotates vectors from the ECI frame to the 

spacecraft body frame can be computed by transforming 

the quaternion output from the UKF into a rotation 

matrix. Using the Shuster convention for quaternions, in 

which the first three components are a complex vector 

and the fourth component is a real scalar, this operation 

is given as [1] 

𝐴(𝒒) = (𝑞4
2 − ‖𝒒𝟏:𝟑‖2)𝐼3 −  2𝑞4[𝒒𝟏:𝟑 ×] +

                                                                         2𝒒𝟏:𝟑𝒒𝟏:𝟑
𝑇   (5) 

where A is the attitude matrix computed from quaternion 

q, I3 is a 3x3 identity matrix and [q1:3×] indicates the 

cross product matrix, given by 

[𝒒𝟏:𝟑 ×] =  [
0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
].                                 (6) 

With this new proposed voltage measurement model, the 

voltage Vj measured by photodiode j and the predicted 

voltage across that photodiode, Vj,predict, are passed into 

an attitude filter together with the standard deviation of 

electrical noise associated with the photodiode hardware, 

σss. This value may be obtained either from a hardware 
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datasheet or determined experimentally, and is used in 

weighting the filter measurement covariance, R. 

Next, the numerical methodology used in testing the new 

measurement model performance is explained.  

NUMERICAL METHODOLOGY 

Equations of Motion 

The equations of motion of a satellite may be broken into 

two independent components: translational and 

rotational. The translational motion is described by 

orbital mechanics, while the rotational motion is 

described by attitude dynamics. For the present work, the 

simple two-body problem as described by Vallado [2] 

and Bate, Mueller, and White [4] is an adequate 

representation of the orbital motion. 

The angular rate dynamics of a satellite in orbit are given 

by Euler’s rotational equations [5], 

𝐽𝝎̇ = − 𝝎 × 𝐽𝝎 − 𝝎 × 𝐽𝑤(𝝎 + 𝜴) − 𝐽𝜴̇ + 𝑳 ,          (7) 

where J is the moment of inertia of the satellite, ω is the 

angular velocity of the spacecraft, Jw is the moment of 

inertia of reaction wheels, Ω is the angular velocity of 

reaction wheels, and L is the external disturbance torque. 

None of the simulations in the present work include 

reaction wheels or control torques, so the previous 

equation reduces to 

 𝝎̇ = 𝐽−1(− 𝝎 × 𝐽𝝎 + 𝑳 ).                                         (8) 

After calculating the angular velocity of the spacecraft, 

the closed form quaternion update equation [1] is used to 

propagate the attitude quaternion, q, from the previous 

time step to the current one, 

𝒒𝑛𝑒𝑤 = (𝐼4 +
∆𝑡

2
[
−[𝝎 ×] 𝝎

−𝝎𝑇 0
]) 𝒒,                             (9) 

where qnew is the attitude quaternion at the current time 

step, I4 is a 4x4 identity matrix, Δt is the time step, and 

[ω×] indicates the cross product matrix, given by 

[𝝎 ×] =  [
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
].                               (10) 

The rigid body dynamics of equation (8) relates torques 

to the change in angular velocity, and the attitude 

kinematics of equation (9) relate the angular velocity to 

changes in attitude. Together, they fully specify the 

rotational orientation of a spacecraft in three dimensions. 

All that is needed is a method to compute the disturbance 

torques L within equation (8). 

Disturbance Torques 

Spacecraft in orbit around Earth are subject to 

disturbance torques from the environment. These 

disturbances include aerodynamic drag, the residual 

magnetic dipole, solar radiation pressure, and gravity 

gradient. These disturbances may not be predicted a 

priori due to their pseudo-random nature, but their 

approximate magnitude may be computed and their 

effect on the system modeled using a Gaussian 

distribution. 

The aerodynamic disturbance torque arises from the thin 

layer of the atmosphere still present in LEO imposing 

drag on the spacecraft. This torque, LAero, is calculated 

using the standard equation for drag and the vector 

between the center of aerodynamic pressure, rcp and the 

center of mass, rcm [6], as 

𝑳𝐴𝑒𝑟𝑜 =
1

2
𝜌𝐶𝑑𝐴𝑉2(𝒓𝒄𝒑 − 𝒓𝒄𝒎),                                (11) 

where ρ is the atmospheric density, Cd is the drag 

coefficient, A is the reference surface area, and V is the 

orbital velocity. The density is obtained from an 

atmospheric model [7], and the drag coefficient is 

conservatively assumed to be 2.5 [6]. The velocity comes 

from the orbit propagator in the simulation, and the area 

and vectors come from computer-aided design (CAD) 

analysis. For many spacecraft in LEO, this is the largest 

disturbance torque. 

The second disturbance torque is that of solar radiation 

pressure (SRP). This is due to absorption and reflection 

of photons from the Sun. Whether the sunlight is 

reflected or absorbed will vary with the reflectivity of the 

surface the light is impinging upon. The SRP will also 

vary with the attitude of the spacecraft relative to the 

Sun. This disturbance model, given by Larson [6], is 

𝑳𝑆𝑅𝑃 =
𝐹𝑠

𝑐
𝐴(1 + 𝑟)cos (𝜃)(𝒓𝒑𝒔 − 𝒓𝒄𝒎),                   (12) 

where Fs is the constant solar flux, 1367 W/m2, c is the 

speed of light, 3×108 m/s, A is a reference surface area, r 

is the reflectivity of the surface material, conservatively 

assumed to equal 1, θ is the angle of incidence of the 

sunlight, rps is the vector from the satellite origin to the 

center of solar pressure, and rcm is the vector from the 

satellite origin to the spacecraft center of mass. 

The next disturbance is due to the residual magnetic 

dipole of the electronics onboard interacting with the 

Earths magnetic field, and is given by [6] 

𝑳𝑀𝑎𝑔 = 𝝁 × 𝑩,                                                          (13) 

where μ is the magnetic dipole of the spacecraft and B is 

the Earth’s magnetic field vector. The magnetic dipole is 

prohibitively difficult to calculate due to the large 
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amount of circuitry and electronics onboard a satellite, 

so it is typically measured once a satellite has been fully 

integrated. For design and simulation purposes, 

however, it is usually sufficient to assume a value that 

has been measured by a spacecraft in a similar class. 

Published data on magnetic dipole measurements can be 

found in papers by Armstrong et al. [8], Springmann et 

al. [9], and Inamori et al. [10]. The simulations in the 

present work are for a cubesat, so the value measured by 

Armstrong et al., μ = 0.009 A-m2, is used. The Earth’s 

magnetic field vector is obtained from a lookup table 

called the International Geomagnetic Reference Field 

(IGRF) [11] to produce the true value of B.  

The final disturbance torque is due to the gravity 

gradient. This torque is given by [6] 

𝑳𝐺𝐺 =
3𝜇𝐸𝑎𝑟𝑡ℎ

2𝑅3 |𝐽𝑧 − 𝐽𝑦|sin (2𝜑),                               (14) 

where μEarth is the gravitational parameter of Earth, 

3.986×1014 m3/s2, R is the orbital radius, Jz and Jy are the 

moments of inertia, and φ is the angle between the z axis 

and the local horizontal. This disturbance is typically the 

smallest for cubesat-class missions. 

Once all four disturbance torques have been modeled 

using equations (11)- (14), they are combined for use in 

equation (8). 

𝑳 =  𝑳𝑨𝒆𝒓𝒐 + 𝑳𝑺𝑹𝑷 + 𝑳𝑴𝒂𝒈 + 𝑳𝑮𝑮                             (15) 

Using a conservative estimate of the maximum 

disturbance torque magnitude, a conservative estimate of 

angular acceleration due to disturbance torques can be 

computed using the spacecraft inertia. This is used in 

determining the process noise, Q, in the UKF. The details 

of attitude filter derivation are beyond the scope of this 

work, and can be found in thorough detail in sources [1], 

[12], [13], and [14]. 

With all of the spacecraft dynamics accounted for, sensor 

measurements are now generated based on the new state. 

Sensor Models 

Once the state of the satellite has been propagated, 

sensors are simulated by reading several values and then 

corrupting them by adding zero-mean Gaussian noise. 

The sensors used in the simulations consist of a 

magnetometer, rate gyro, and Sun sensors. Sun sensors 

have already been described, so modeling the remaining 

sensors will be described here. 

The first sensor, a magnetometer, reads the Earth’s 

magnetic field in the body frame of the satellite, B, from 

the IGRF model and then produces the measured value, 

Bmeas from 

𝑩𝒎𝒆𝒂𝒔 = 𝑩 + 𝒩(0, 𝜎2) ,                                          (16) 

where the notation 𝒩(𝜇, 𝜎2) corresponds to a Gaussian 

random variable with mean μ and standard deviation σ. 

The noise variance that can be expected from a 

magnetometer will be found on the hardware datasheet. 

The next sensor, rate gyros, have substantially more 

complex models than magnetometers. This is due to the 

inherent tendency of gyros to drift over time, which must 

be accounted for in the model. Rate gyros produce a 

reading of the spacecraft angular velocity corrupted by 

both Gaussian noise and a bias error [1], β, with 

𝜷𝒌 = 𝜷𝒌−𝟏 + 𝜎𝑢∆𝑡
1

2⁄ 𝒩(0, 𝐼) ,                                (17) 

𝝎𝒎𝒆𝒂𝒔 = 𝝎 + 1

2
(𝜷𝒌 + 𝜷𝒌−𝟏) + 𝑐𝑔𝑦𝑟𝑜𝒩(0, 𝐼) ,         (18) 

𝑐𝑔𝑦𝑟𝑜 = (
𝜎𝑣

2

∆𝑡
+

1

12
𝜎𝑢

2∆𝑡)
1

2⁄

,                                    (19) 

where βk is the gyro bias at the current time step in the 

simulation, βk-1 is the gyro bias at the previous time step, 

σv is the gyro noise density, and σu is the gyro bias noise 

density. These two noise densities can be either found on 

hardware datasheets or determined experimentally. 

With all of the sensors described, the next subject within 

numerical methodology is the simulation initialization. 

Simulation Initialization 

The spacecraft is initialized to a random attitude with an 

angular velocity of [0.25, 2.0, 0.25]T deg/s, in sunlight. 

The attitude estimation system is initialized with the 

TRIAD algorithm [1] using a measured Sun vector and a 

magnetometer reading. Since no control torques are 

active on the system, the spacecraft is free to drift based 

upon its initial angular velocity and the disturbance 

torques that act on it. 

After the orbital mechanics and rotational dynamics have 

been propagated at each time step, the sensor readings 

are generated. Once sensor measurements are available 

for each sensor, they are passed into an Unscented 

Kalman Filter [12] [13] algorithm. This algorithm uses 

the sensor readings, the estimate of the disturbance 

torque maximum magnitude, and the state estimate at the 

previous time step to estimate a new dynamic state, 

consisting of attitude quaternion, angular velocity, and 

gyro bias. 

SIMULATION RESULTS AND DISCUSSION 

Error Metrics 

At the end of the simulation, the error quaternion is 

computed at each time step for the output from each of 

the two filters. This error quaternion is the rotation 

between the estimated state and the true state. The error 
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quaternion at each time step is converted to the Euler 

axis/angle attitude parameterization, not to be confused 

with Euler angles [15], for further analysis. This requires 

the use of the small angle approximation, so results with 

large angles should be carefully scrutinized. 

𝜗 = 2 𝑐𝑜𝑠−1(𝑞𝑒𝑟𝑟,4)                                                  (20) 

The reasoning for this is that although quaternions are 

highly convenient for computational purposes, it is 

difficult to interpret their meaning. The Euler axis/angle 

representation, however, allows an arbitrary rotation to 

be expressed as a single angle. The axis which this 

rotation is about will vary and is rarely physically 

intuitive. However, this is an acceptable tradeoff for the 

purpose of being able to describe rotational error using a 

single number. 

The errors in roll, ϕ, pitch, θ, and yaw, ψ, are computed 

from the first three components of the error quaternion 

[1], and their 3σ bounds are determined from the 

covariance matrix from the UKF. 

𝜙 = 2𝑞𝑒𝑟𝑟,1                                                                (21) 

𝜃 = 2𝑞𝑒𝑟𝑟,2                                                                (22) 

𝜓 = 2𝑞𝑒𝑟𝑟,3                                                                (23) 

The total error in rotational angle is a good first metric to 

examine when evaluating filter performance. After that, 

the roll, pitch, yaw, and their 3σ probability bounds 

provide more detail. 

Finally, the number of photodiodes at each time step that 

have sunlight impinging within their 60° field of view is 

analyzed as well, to assist with explaining the differences 

in filter performance. 

Results and Discussion 

The results of the total rotational angle error are shown 

in figure 1. Subject to the same initialization and 

disturbance environment, the filter using the VMM 

converges much more rapidly to the true attitude than the 

filter using the SMM does. At only 25 seconds into the 

simulation, the VMM filter has already converged to 

within 1° of the true attitude, while the SMM filter takes 

more than twice as long to get within 4°. The reason for 

this may be found in figure 2, which shows how many 

photodiodes are receiving sunlight within their valid 

field of view. For much of the first 50 seconds, the VMM 

filter is receiving four, five, or even six photodiode 

measurements. Meanwhile, the SMM filter is receiving 

only a single three-dimensional vector reading. Since the 

VMM filter is receiving more independent readings, it is 

no surprise that it converges more quickly. 

At around 80 seconds into the simulation, the SMM filter 

experiences a sudden but slight divergence. The attitude 

estimate jumps from 3° of error up to 6°. The VMM filter 

also undergoes a small jump in error, but of much 

smaller magnitude. Once again, the origin of this 

behavior can be found in figure 2. At this time, the 

number of valid photodiodes briefly dips down to 2. At 

this point, the SMM system becomes underdetermined, 

and cannot compute a vector to the Sun. Thus, the only 

sensors with any input to the filter are the magnetometer 

and rate gyro. For the filter running the VMM, however, 

two photodiode voltages are still able to be read and 

compared to predictions. While it is not as good as 

having five or six measurements as was the case earlier 

in the simulation, it is certainly an improvement over the 

Sun sensor system being incapable of contributing any 

information to the attitude estimation system. 

 

Figure 1: Comparison of estimation system error 

between the voltage measurement model and Sun 

measurement model 

 

Figure 2: The number of photodiodes at each time 

step that have light incident upon them at <60 

degrees 
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The errors in roll, pitch, and yaw, as well as the 3σ 

probability bounds for them, are shown in figure 3. 

These errors and bounds support what is shown in 

figures 1 and 2, that the presence of more sensor readings 

allows the filter with the VMM model to converge much 

more quickly. In the time period between 100 and 150 

seconds, the SMM filter is gradually converging towards 

the VMM filter performance which has largely leveled 

off. This leveling off is due to a combination of sensor 

noise and disturbance torques. This behavior can be seen 

in both figures 1 and 3. 

Shortly after 150 seconds, the number of available 

photodiodes once again goes below three, and briefly 

even reaches one. In this time period between 150 and 

200 seconds, the SMM filter can again be observed to 

suffer performance penalties due to the decreased 

number of sensor readings. The filter using VMM, 

however, appears to be more resistant since some 

photodiodes are still available. When the spacecraft 

attitude once again allows for enough photodiodes to be 

read to construct a Sun vector measurement, occurring at 

about 225 seconds, the SMM filter is able to recover. The 

two filters have comparable estimate errors for a brief 

moment at 235 seconds, but then the VMM filter is able 

to receive more sensor readings starting at 250 seconds. 

At that point, the VMM filter once again converges to 

the true state more quickly and the SMM filter is unable 

to match it again for the rest of the simulation. 

CONCLUSIONS 

As small satellite missions become more complex, the 

requirements placed on systems and subsystems grow in 

difficulty. The ever-expanding market for commercial-

off-the-shelf hardware and software is able to alleviate 

some of the burden that is placed on engineers of small 

spacecraft, but not all of it. In addition to improvements 

in hardware and more sophisticated software, algorithms 

and models must continue to improve as well. 

In this work, a new Sun sensor measurement model was 

proposed for use in attitude estimation systems. 

Compared to many other algorithms and models that 

Figure 3: The errors in roll, pitch, and yaw estimation. The 3σ bounds show the confidence of the filter 

running each measurement model.  
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exist in this field, the new model is not based on some 

esoteric mathematical derivation, nor on some new 

physical insight. It is a simple reformulation of the model 

that already exists, designed with the intent to wring 

every bit of efficiency possible out of an inexpensive 

piece of hardware to meet the goal of making cubesat-

class missions more capable. 

Through the use of high-fidelity simulation, it is shown 

that the proposed voltage measurement model is able to 

achieve greater performance than the standard Sun 

vector measurement model. This is done without any 

extra cost, computational or otherwise. This gives 

promise that it may be of value to many small satellite 

missions as the field continues to grow. 
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