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ABSTRACT 

Together with the development of nano, micro, and small satellite missions and constellations, the necessity for 

efficient and tailored ground segments is raising. The peculiarities of the market together with the technological 

developments of the recent years have led to the idea of ground segment as a service. To meet these needs Leaf Space 

introduced Leaf Line. An essential part of such service consists of scheduling contact windows over the worldwide-

deployed network of ground stations. This is an NP-hard problem, which is often solved with methods belonging to 

the class of operational research. Generally, the orbits of small satellites are very low, characterized by short-timed 

contact windows. This condition leads to needs way different from those associated to long-lived high-orbit satellites, 

which most of the literature on scheduling algorithms for telecommunication systems is focused on. Furthermore, a 

service dedicated to SMEs and NewSpace startups brings additional challenges linked to customer needs. These 

peculiarities require the development of new, tailored, scheduling algorithms. In the proposed strategy it is assumed 

to have no information about the state of the satellite (stored data and available energy), and that start and end of 

contact windows are fixed. In this work, the scheduling is treated as a highly constrained combinatorial optimization 

problem; various approaches are described and then compared. Such algorithms are iterative, and they all leverage the 

structure of the problem; specifically, many efforts are made to appropriately reduce the search space. Although 

optimality cannot be guaranteed, good solutions that are reasonably close to optimal can be obtained. It is found that 

depending on the problem settings, different algorithms can stand out as the best ones. This paper presents the work 

done on the scheduling library that is currently powering the Leaf Line network: this platform is offering an easy-to-

use, cloud-based and high-availability ground segment service for small satellites operators. 

INTRODUCTION 

Leaf Line is a ground segment as a service platform 

dedicated to the monitoring and management of small 

satellites. Leaf Space is planning to expand its network 

of ground stations (GSs) considerably in the next few 

months, in order to enhance the Leaf Line service. A 

typical ground station is shown in Figure 1. A vital part 

of the Leaf Line service is the automatic scheduler. 

Given a list of passages 𝒑𝒂𝒗, the scheduler should 

provide the optimal schedule 𝒔𝒐𝒑𝒕. Such problem is 

called Satellite Range Scheduling Problem (SRSP), and 

it can be treated in many different ways, mostly 

depending on what its specific features are like. One way 

consists of seeking the solution in the permutation space. 

In particular this is possible with high altitude satellites, 

which have long visibility windows, but need to 

communicate for a duration that is much shorter. In this 

case, many possibilities from literature arise, as this is a 

variation of the problem of late jobs minimization. One 

example of this is the Air Force Satellite Control 

Network (AFSCN) scheduling [1]. SRSPs have often 

been considered very similar to the problem of 

scheduling satellite observations, which is well 

described in [2], and approaches that are good for one of 

the two problems have shown to be effective at solving 

the other one too. Several methods have been used to 

solve the SRSP: greedy algorithms [3],  squeaky wheel 

optimization [4], simulated annealing [5], evolutionary 

algorithms (in particular, Genitor proved to be very 

successful [6]), hill-climbing, and more. Greedy 

algorithms [7,8] have been shown to be optimal when a 

single ground station is available [9]. When multiple 

ground stations (GSs) and multiple satellites are 

considered, iterative approaches seem to be necessary. 

An iterative approach is one in which, at each iteration, 

one or more new schedules are generated from those 

available from the previous iteration. An initial guess, or 

a heuristic to provide one, is necessary. Among these, 

squeaky wheel optimization was shown to be 

particularly efficient, because it is capable of looking for 

new solutions that are relatively far from the current one 

[10]. In contrast, a hill-climbing method doing only one 

change per iteration was seen to be not as performing. 

Nonetheless, Barbulescu et al. [11] showed that the best 

option for the AFSCN problem was using the Genitor 
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algorithm, as it seems to be able to exploit hidden 

patterns in the data. Such result was further confirmed by 

Barbulescu et al. in 2006 [1] showing that Genitor 

performed best also for newer versions of the problem. 

 

Figure 1. A Leaf Space GS in Vimercate, Italy. 

If satellites are in low Earth orbits (LEO), the availability 

windows are shorter, and thus they are used in their 

entirety. Searching a solution in the space of 

permutations becomes inefficient: in this case a passage 

can more simply either be scheduled, and thus labeled as 

a “1”, or not scheduled, labeled as “0”. This already 

reduces the search space 𝒮 of all schedules 𝑠 by much, 

as |𝒮| = 2𝑛, where 𝑛 is the number of passage requests; 

instead, for large 𝑛, the number of permutations is 

approximated by √2𝜋𝑛 (
𝑛

𝑒
)

𝑛

 [12], which grows super-

exponentially, since there is the term 𝑛𝑛. The approach 

of considering passages as either 1s or 0s will be used in 

this work. An alternative would be that of using methods 

such as mixed integer programming, or linear 

programming, as in [13]. Such approach however cannot 

be applied to the problem of this work as it requires good 

knowledge of the state of the satellites, namely the 

amount of data collected and their energy availability. 

While the state of the satellite is certainly important, it is 

unlikely that all satellite operators would be willing to 

share those with their ground segment providers. 

Moreover, enforcing constraints such as the requirement 

that a satellite communicates with only one GS at a time, 

and that a GS communicates with only one satellite, 

makes most of the benefits of using a linear 

programming approach fade away. Hence, this paper 

shows how the SRSP can be treated as a constrained 

combinatorial optimization problem, and how lack in 

information of the state of the satellite implies additional 

constraints. Different search spaces are considered, and 

finally various optimization techniques are described 

and compared. 

PROBLEM DESCRIPTION 

This problem can be treated as a constrained 

combinatorial optimization problem. This is very 

different from how similar problem have previously 

been treated in literature. The main constraint is the No 

Conflict (NC) constraint: it consists of the fact that a 

ground station cannot communicate with more than one 

satellite at a time, and a satellite cannot communicate 

with more than one ground station. Additional 

constraints are: 

- Positioning Time (PT): the minimum time for a 

GS to start communicating with a satellite after 

having finished communications with another 

one 

- Min Orbits (𝑂𝑚𝑖𝑛): the minimum number of 

revolutions after which a satellite can be 

communicating with a GS again. 

- Max Orbits (𝑂𝑚𝑎𝑥): the maximum number of 

revolutions before which a satellite has to be 

communicating with a GS again.  

- Min Passages (𝑃𝑚𝑖𝑛): the minimum number of 

passages a satellite has to have (per day). 

- Max Passages (𝑃𝑚𝑎𝑥): the maximum number of 

passages a satellite can have (per day). 

The 𝑂𝑚𝑖𝑛 constraint is often caused by energy 

requirements: a satellite cannot communicate too often, 

as it would deplete its energy storage, and needs some 

orbits to refill its batteries. The 𝑂𝑚𝑎𝑥 constraint is instead 

usually driven by data requirements: a satellite is 

expected to fill its data storage after a certain amount of 

time. Alternatively, the cause could also be a 

requirement for maximum latency allowed for the data 

between its collection time and its communication to 

Earth. Constraints on number of passages involve 

instead contractual agreements between the GS provider 

and the satellite operator, in order to have an indicative 

range of passages required. 

The constraints on positioning time and min orbits are 

easy to handle: they can be seen as an extension of the 

NC constraint. A GS that has a scheduled passage cannot 

communicate with any other satellite for a period of time 

of PT before the AOS of the given passage to PT after 

LOS of such passage. Similarly, such satellite cannot 

communicate with other GSs for a time that goes 𝑂𝑚𝑖𝑛  

before AOS to 𝑂𝑚𝑖𝑛 after LOS. From this point 

forwards, when referring to the NC constraint, it includes 

both the 𝑂𝑚𝑖𝑛  and the PT constraints. Moreover, from 

now on, the 𝑃𝑚𝑎𝑥  constraint is not considered, as it is 

very easy to respect (a schedule that has more passages 
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than 𝑃𝑚𝑎𝑥 can easily be “cut” at the end of the scheduling 

process).  

SEARCH SPACES 

At this point, there are three different search spaces for a 

scheduler to work in: 

- All schedules ∀𝑠 ∈ 𝒮. 

- All schedules respecting NC, ∀𝑠 ∈ 𝒩𝒞. 

- All schedules respecting 𝑃𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥, ∀𝑠 ∈
𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥. 

Searching in any of these spaces has advantages and 

disadvantages. Reducing 𝒮 to 𝒩𝒞 can be enforced by 

allocating passages one at a time, and removing from the 

available ones those conflicting with the already 

allocated ones. Reducing 𝒮 to 𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥  can be 

enforced by allocating all passages for a given satellite 

at once: a random number of passages, between 𝑃𝑚𝑖𝑛 and 

𝑃𝑚𝑎𝑥 , is chosen; if then, 𝑂𝑚𝑎𝑥 is not satisfied, one or 

more passage is added. The approaches used for case 2) 

and 3) may be merged, such that one could end up 

searching in the space of all and only feasible schedules; 

nonetheless, it is usually very likely that after scheduling 

a few satellites, there would not be enough 

nonconflicting passages to satisfy 𝑃𝑚𝑖𝑛 for the remaining 

satellites. Hence, there is no way to deterministically 

build a schedule that satisfies all constraints. This means 

that enforcing all these constraints does not end up in an 

effective reduction of the search space, as it might lead 

to a still not satisfactory schedule. Nonetheless, an 

approach similar to this has still been employed in this 

work (see the Mar strategy in the next section). 

To give a perspective of the search space size of each 

approach, the test case that has been used in this work is 

briefly described: 

- Optimal schedule: 14,1 passages per satellite 

(846 in total) 

- Available passages per satellite (𝑁𝑝𝑎𝑠𝑠,𝑠𝑎𝑡: 42,7 

(2562 in total) 

- Number of satellites 𝑁𝑠𝑎𝑡: 60 

Hence, |𝒮| = 22562 ≈ 10770 (each passage can either be 

or not be in the schedule). For the cardinality of 𝒩𝒞, 

some assumptions are required. Every time a passage is 

allocated, the space of all passages that can be allocated 

at the next step is reduced by a certain number, which is 

the number of passages conflicting with the allocated 

passage (including the passage itself). It is reasonable to 

assume that such number decreases during the 

scheduling: when the 440th passage is being allocated, it 

is reasonable to assume that half of the passages 

conflicting with it have already been removed. Hence, 

the number of schedules possible with this approach can 

be computed as follows: 

|𝒩𝒞| = ∑
∏ |𝒑𝒂𝒗,𝒊|

𝑠
𝑖=1

|𝒔|!

|𝒔|𝒎𝒂𝒙

|𝒔|=|𝒔|𝒎𝒊𝒏

 

 

Where |𝒑𝒂𝒗,𝟎| is the number of initially available 

passages, |𝒑𝒂𝒗,𝒊+𝟏| = |𝒑𝒂𝒗,𝒊| − Δ(i) is the number of 

available passages at iteration 𝑖 + 1, and Δ(i) is the 

number of passages conflicting with 𝑖th  passage. |𝒔| is 

the number of scheduled passages. |𝒔|𝒎𝒊𝒏 is the 

minimum number of passages that can be scheduled 

when all non-conflicting passages are allocated, where 
|𝒔|𝒎𝒂𝒙 is the maximum. For simplicity, it is assumed that 

Δ decreases linearly when 𝑖 increases (and goes to 0 

when 𝑖 = |𝒔|). As a consequence, the function Δ(𝑖) 

depends on |𝒔|. As an example, for a schedule with 716 

scheduled passages, Δ𝑖 =
|𝒑𝒂𝒗,𝒊|

200
+ 1, whereas for a 

schedule with 832 scheduled passages, Δ𝑖 =
|𝒑𝒂𝒗,𝒊|

300
+ 1. 

For a single value of the final length of the schedule (as 

long as it ranges between 500 and 900), one obtains 

values of the set size always in the proximity of 10125. 

Being conservative, one can state that the search space 

has been reduced to close to 10135. 

Concerning the last case, where ∀𝑠 ∈ 𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥, the 

search space size can be computed as follows (assuming, 

for simplicity, that  𝑃𝑚𝑖𝑛 = 𝑃𝑚𝑎𝑥 = 14): 

∏ (
𝑁𝑝𝑎𝑠𝑠,𝑠𝑎𝑡

𝑃𝑚𝑖𝑛,𝑠𝑎𝑡

)

𝑁𝑠𝑎𝑡

𝑠𝑎𝑡=1

 

The result is in the range of 10640: while still a huge 

reduction if compared to the value of |𝒮|, the space is 

still hundreds of orders of magnitude larger than what 

can be achieved by enforcing case 2. In this work, it is 

decided to search in |𝒩𝒞|, because of the very large 

reduction in combinations that it offers. Obviously, such 

reduction is problem-dependent; as an example, if, in the 

previous example, the number of available passages per 

satellite were equal to 𝑃𝑚𝑖𝑛 , then searching in 𝒫𝑚𝑖𝑛 ∩
𝒪𝑚𝑎𝑥  would have been the most efficient: if the solution 

exists, it is the only one that is in that set.  

The reduction in search space does not come without any 

drawbacks. First, it causes an increase in computational 

time for the generation of the schedule. Second, it makes 

representation of the solution more complicated. If the 

search occurs in 𝒮, every passage can be a 0 (not 

scheduled) or 1 (scheduled); this makes the solution very 

suitable for methods such as genetic algorithms. 
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Searching for solutions in 𝒩𝒞 with an evolutionary 

algorithm is instead less straight-forward. 

SCHEDULING PROCEDURE 

The scheduling procedure involves two phases. The first 

is the construction of an initial schedule, or the initial 

guess. The second consists of iteratively modifying said 

schedule, using a specific operation and one of many 

methods to decide whether to accept or not the 

modification. 

Initial Guess 

The initial schedule is generated starting from the list of 

all available passages, 𝒑𝒂𝒗. At iteration 𝑖, a passage 𝑝𝑖  is 

picked from the list of the remaining available passages 

𝒑𝒂𝒗,𝒊 and inserted into the intial schedule 𝒔𝟎,𝒊; at the same 

time, all passages that are in conflict with 𝑝𝑖  are removed 

from 𝒑𝒂𝒗,𝒊. This way, the generation of a schedule that is 

in the space 𝒩𝒞 is guaranteed. In this work, the passage 

𝑝𝑖  is chosen in one of two ways: 

- Full Random (FullR): each passage has equal 

probability of being chosen; 

- Margin (Mar): priority is given to passages of 

satellites that are farther from satisfying the 

𝑃𝑚𝑖𝑛 constraint. 

The latter is the solution mentioned in the previous 

section, which attempts to look for a schedule 𝑠 ∈ 𝒩𝒞, 

while trying first to satisfy 𝑃𝑚𝑖𝑛 for all satellites. 

Independently of which of these two ways is chosen, 

both procedures ensure that the initial schedule is such 

that no passage that would cause a conflict can be added. 

Elementary Operation: Passage substitution 

Once the initial schedule is generated, the iterative 

process begins. The elementary operation that is made 

over the schedule is the substitution. A random passage, 

that is not in the schedule, and hence is conflicting with 

at least one of the scheduled passages, is added to the 

schedule. The passages that are conflicting with it are 

removed, and the passages in conflict with the removed 

ones are considered. Among the last set of passages, 

those that are not in conflict with any passage iof the 

current schedule are iteratively added, in the same way 

the initial guess is generated (hence, with one of the two 

methods, either FullR or Mar). Also in this case, it is 

guaranteed that the new schedule generated belongs to 

𝒩𝒞.  

Elementary Operations per Schedule Iteration 

Even the number of operations done per iteration may 

differ: according to Barbulescu et al. [10], it may be 

beneficial to do more than one operation on the schedule 

before evaluating again. Such number may be fixed, 

random, a function of how many iterations have already 

been carried out (and how many are left), or may depend 

on how many satellites currently do not satisfy 𝑃𝑚𝑖𝑛 (and 

by how much). A particular option is the “guided” 

strategy, in which a passage is added, for each satellite 

that currently does not satisfy 𝑃𝑚𝑖𝑛 . In this work, when 

the “guided” strategy is used, the added passage is, 95% 

of the times, not in conflict with the passages of the same 

satellite (but of course will be in conflict with passages 

of other satellites). It is decided to keep a 5% of cases in 

which the passage may be in conflict with passages of 

the same satellite: this is because there is a chance that 

removing a passage from that satellite might free more 

than one passage of the same satellite. 

 

Figure 2. Flowchart of the re-planning decision 

process. 

Next Schedule Acceptance 

Once the next schedule has been generated, it is first 

necessary to evaluate it. Among many, the most 
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important factors in the schedule evaluation consist of 

whether the requirements are satisfied, how many 

passages have been scheduled, what the average 

elevation at time of closest approach (TCA) of the 

passages is. After evaluation, it is important to define a 

way to decide whether the new schedule should be kept 

or not. Common ways are hill climbing (HC), random 

walk (RW), or simulated annealing (SA). With HC, the 

new schedule is kept only if it scores equal or better than 

the previous one; conversely, in a random walk the 

schedule is always kept (but the highest scoring schedule 

is kept in memory); finally, with simulated annealing the 

new schedule is kept with probability one if it scores 

better than the previous one, and with probability less 

than one is it does not. Probability also decreases when 

the number of iterations increases. The best method to 

use depends on the shape of the cost function. For 

example, hill climbing works well when the cost 

function has no local optima, but only a global one. 

Simulated annealing is instead a good choice in case the 

function is relatively smooth but has many local minima. 

Parallelization 

It should be noted that the building of new schedules may 

in some cases also be parallelized. For example, a HC 

procedure can be parallelized, especially in the advanced 

phases of the search, when only one in hundreds or 

thousands of modifications results in improvements of 

the schedule. It is possible to do parallel modifications, 

and thus generate several new schedules at the same 

time, knowing that only a very small fraction, if any, of 

those new schedules will lead to an improvement.  

RE-PLANNING 

It may happen that a disturbance occurs after the 

schedule has been communicated to the customers. To 

the best of the authors’ knowledge, the problem of re-

planning a satellite contact schedule has never been 

treated in literature so far; nonetheless, in the more 

general field of scheduling, some examples of re-

planning are available [14,15]. A disturbance may be an 

urgent request of contact, or a temporary unavailability 

of a GS. In such case, there are several priorities: 1) a 

new schedule has to be generated in a very short time; 2) 

as many requirements as possible have to be respected, 

but, if necessary, constraints on 𝑃𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥 may be 

relaxed; 3) the re-planner has to delete as few passages 

as possible. This is a constrained combinatorial multi-

objective optimization problem, one of the objectives 

being the maximization of the quality of the schedule, 

and the other one being the minimization of the number 

of passages that were in the original schedule and now 

have been deleted. A “guided” RW approach is used: this 

way, many schedules are explored, and the “guided” 

strategy tends to bring improvements at each iteration. If 

all constraints are satisfied, then RW is continued, with 

a random number of changes per iteration (hence, the 

process is not “guided” anymore). After a certain amount 

of time has passed, the best schedule is chosen among 

those that have been explored. Figure 2 illustrates this 

process. At each iteration, it is decided whether the new 

schedule is better than the currently best one; this is done 

according to the following schema: 

1. Does it satisfy more or less constraints than the 

current best schedule? If less, it is is not the 

best, if more, it is the best; if none of those, go 

to case 2. 

2. Does it have more or less passages deleted than 

the current best schedule? If less, it is the best 

schedule, if more, it is not; if none of those, go 

to case 3. 

3. Does it have more or less passages than the 

current best schedule? If less, it is not the best, 

if more (or equal), it is the best. 

 

TEST CASE DESCRIPTION 

The problem that will be used to test the various 

algorithms consists of a constellation made of 60 

satellites, spread equally over 6 planes. Said planes all 

have an inclination of 30° and are equally distanced in 

RAAN. The ground stations are 6, positioned along two 

belts at 20.5° N and 20.5° S, and equally spaced in 

longitude, as follows: 

- GS 1: 20.5° N, 120° W 

- GS 2: 20.5° S, 120° W 

- GS 3: 20.5° N, 0° E 

- GS 4: 20.5° S, 0° E 

- GS 5: 20.5° N, 120° E 

- GS 6: 20.5° S, 120° E 

Passages whose elevation at TCA is less than 7.5° are not 

considered. Each satellite has to satisfy 𝑂𝑚𝑖𝑛 = 0.8: 

hence, only one passage per orbit is allowed. This 

problem can easily be solved exploiting symmetries. It is 

sufficient to split it into 3 different problems, each with 

planes of satellites opposite to each other, and 2 GSs with 

same longitude. Hence, the global optimum can be easily 

found. The problem becomes extremely complex when 

seen in its entirety, and thus this case is very suitable for 

testing an algorithm, as it provides a difficult problem 

whose global optimum is known. Summarizing, the test 

case consists of 60 satellites having passages over 6 

ground stations; the number of total passages is 2562, 

and the optimal schedule consists of 846 passages. For 

the time being, no constraints on max orbits are being 

considered.  
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RESULTS  

Simulated Annealing 

Simulated annealing has been performing considerably 

worse than expected. After letting the optimizer work for 

many hours (all other cases shown here refer to 

optimization durations of less than 15 minutes), the best 

schedule found contained 818 passages. This is likely 

because of a twofold reason: 1) the problem seems to be 

very flat, and also shows very few local minima; 2) it is 

difficult to appropriately tune the solver. Statement 1) 

was proven when using an HC approach with only one 

passage modification at each iteration: if the 

modification did not decrease the number of passages, 

the new schedule was kept. The algorithm managed 

various times, and very slowly, to schedule as many as 

843 passages, which is extremely close to the global 

optimum. This showed that, if there are any local 

minima, these are extremely close to optimality, hence 

making the use of an algorithm such as SA not needed. 

Moreover, flatness of the function was shown by the fact 

that even at the end of the optimization, when the score 

of the schedule was very high, plenty of modifications 

were being accepted without causing any improvements. 

This feature was also found by Barbulescu et al. [11]. 

Nevertheless, these considerations cannot be generalized 

to other test cases, and may be a consequence of the 

symmetries of the problem used here. Statement 2) may 

be solved by using Adaptive Simulated Annealing 

(ASA) [16], but this was not done for the moment. In 

fact, it is still likely that even ASA may not perform well, 

for the reasons related to stamen 2).  

Hill Climbing 

HC was then evaluated; three cases were considered: 1) 

only one substitution per iteration; 2) a random amount 

of substitutions per iteration, uniformly distributed 

between 1 and 10; 3) the “guided” approach, setting 

𝑃𝑚𝑖𝑛 =14 for all satellites. While the number of 

iterations is very different for the different strategies, the 

runtime is approximately kept the same for all cases 

(around 15 minutes, without using parallelization). The 

convergence rate for a single passage modification is 

illustrated in Figure 3, whereas the one for 10 passage 

modifications per iteration is illustrated in Figure 4. A 

few things can be noticed. First, both methods have a 

large range of logarithmic convergence. Ideally, one 

would not want to continue the optimization for much 

longer after this range is over. Unfortunaly, it is a bit hard 

to estimate when this ends for the 10 substitutions 

strategy. While the two lines seem to follow similar 

paths, it is reminded that the two methods are stopped 

after equal runtime. Hence, simply stated, the 10 

substitutions strategy requires almost double the time per 

itration. Second, the method with one passage 

substitution performs much better than the one with 10. 

In fact, not only it provides an average result of 831, 

compared to 816 of the other strategy, but it scores better 

even for same number of iterations: after 6000 iterations, 

the single substitution strategy shows an average of 828 

passages. The “guided” case is then considered. It is 

stopped after 500 iterations (iterations are much more 

intense computationally, as they require 60 substitutions 

each, on average). Nonetheless, the guided method turns 

out less performing, most likely because it does too many 

changes all at once. A “guided” strategy with a single 

substitution per iteration may be a valid improvement to 

the scheduler. 

 

Figure 3. Convergence rate (average and standard 

deviation) for HC strategy, with one passage 

substitution per iteration. 

 

Figure 4. Convergence rate (average and standard 

deviation) for HC strategy, with one passage 

substitution per iteration. 
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Random Walk 

Finally, an RW strategy was tested. Nonetheless, it 

performed poorly. After several hours of running, the 

algorithm offered a solution which had less than 740 

passages when only one passage was changed per 

iteration, and less than 770 passages for the guided 

strategy. 

CONCLUSIONS 

HC strategy is clearly the best performing algorithm in 

this case. Unexpectedly though, it is found that the 

strategy with only one change per iteration is better not 

only than the strategy of having more, randomly picked, 

modifications, but even than the “guided” approach. 

Nonetheless, this might be caused by the fact the 

“guided” approach makes many changes at the time. In 

line with the fact that a single change at a time works 

better than the strategy with many modifications per 

iteration, it might be interesting to look at a “guided” 

algorithm which only makes one modification per 

iteration. Moreover, for the HC strategy to properly 

work, it is important that schedules that score equally are 

accepted, otherwise the algorithm would get stuck much 

sooner. 

Recommendations 

Recommendations for future work are several. First, it 

would be necessary to test these scheduling techniques 

in less symmetrical situations, although this would imply 

not having knowledge of the global optimum. Additional 

improvements to the scheduler may be the 

implementation of Genitor, an evolutionary algorithm 

that seems to understand and exploit hidden patterns 

when solving the similar AFSCN problem [11]. Despite 

using a genetic algorithm would most likely require the 

method to search the solution in 𝒮 instead of in 𝒩𝒞, the 

use of Genitor may still turn out to be beneficial.  

A final recommendation concerns robustness. It might in 

fact be interesting to have a schedule that is not only 

optimal, but that can also be replanned on-the-fly and 

with minimum differences in case disturbances occur 

after the schedule has already been notified to the 

customers. Sources of disturbances may be temporary 

unavailability of a GS, or additional requests from a 

satellite. In such a case, it is important that the scheduler 

plans a minimum number of changes from the previous 

schedule, for the customers to have little inconvenience. 

While we have already developed a software that replans 

the schedule minimizing the number of changes, it would 

be interesting to evaluate how taking disturbances (and 

their probability to occur) into account during the 

scheduling process itself would affect the process and the 

overall performance of the system. 
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