
Zucchelli 1 32nd Annual AIAA/USU

 Conference on Small Satellites

SSC-18-PI-40

Automatic Scheduling for a Ground Segment as a Service Platform Dedicated to Small

Satellites

Enrico M. Zucchelli, Ruben Di Battista, Giovanni Pandolfi Bortoletto, Luca Rebellato

Leaf Space

Via Cavour 2, 22074, Lomazzo, Italy

giovanni.pandolfi@leaf.space

ABSTRACT

Together with the development of nano, micro, and small satellite missions and constellations, the necessity for

efficient and tailored ground segments is raising. The peculiarities of the market together with the technological

developments of the recent years have led to the idea of ground segment as a service. To meet these needs Leaf Space

introduced Leaf Line. An essential part of such service consists of scheduling contact windows over the worldwide-

deployed network of ground stations. This is an NP-hard problem, which is often solved with methods belonging to

the class of operational research. Generally, the orbits of small satellites are very low, characterized by short-timed

contact windows. This condition leads to needs way different from those associated to long-lived high-orbit satellites,

which most of the literature on scheduling algorithms for telecommunication systems is focused on. Furthermore, a

service dedicated to SMEs and NewSpace startups brings additional challenges linked to customer needs. These

peculiarities require the development of new, tailored, scheduling algorithms. In the proposed strategy it is assumed

to have no information about the state of the satellite (stored data and available energy), and that start and end of

contact windows are fixed. In this work, the scheduling is treated as a highly constrained combinatorial optimization

problem; various approaches are described and then compared. Such algorithms are iterative, and they all leverage the

structure of the problem; specifically, many efforts are made to appropriately reduce the search space. Although

optimality cannot be guaranteed, good solutions that are reasonably close to optimal can be obtained. It is found that

depending on the problem settings, different algorithms can stand out as the best ones. This paper presents the work

done on the scheduling library that is currently powering the Leaf Line network: this platform is offering an easy-to-

use, cloud-based and high-availability ground segment service for small satellites operators.

INTRODUCTION

Leaf Line is a ground segment as a service platform

dedicated to the monitoring and management of small

satellites. Leaf Space is planning to expand its network

of ground stations (GSs) considerably in the next few

months, in order to enhance the Leaf Line service. A

typical ground station is shown in Figure 1. A vital part

of the Leaf Line service is the automatic scheduler.

Given a list of passages 𝒑𝒂𝒗, the scheduler should

provide the optimal schedule 𝒔𝒐𝒑𝒕. Such problem is

called Satellite Range Scheduling Problem (SRSP), and

it can be treated in many different ways, mostly

depending on what its specific features are like. One way

consists of seeking the solution in the permutation space.

In particular this is possible with high altitude satellites,

which have long visibility windows, but need to

communicate for a duration that is much shorter. In this

case, many possibilities from literature arise, as this is a

variation of the problem of late jobs minimization. One

example of this is the Air Force Satellite Control

Network (AFSCN) scheduling [1]. SRSPs have often

been considered very similar to the problem of

scheduling satellite observations, which is well

described in [2], and approaches that are good for one of

the two problems have shown to be effective at solving

the other one too. Several methods have been used to

solve the SRSP: greedy algorithms [3], squeaky wheel

optimization [4], simulated annealing [5], evolutionary

algorithms (in particular, Genitor proved to be very

successful [6]), hill-climbing, and more. Greedy

algorithms [7,8] have been shown to be optimal when a

single ground station is available [9]. When multiple

ground stations (GSs) and multiple satellites are

considered, iterative approaches seem to be necessary.

An iterative approach is one in which, at each iteration,

one or more new schedules are generated from those

available from the previous iteration. An initial guess, or

a heuristic to provide one, is necessary. Among these,

squeaky wheel optimization was shown to be

particularly efficient, because it is capable of looking for

new solutions that are relatively far from the current one

[10]. In contrast, a hill-climbing method doing only one

change per iteration was seen to be not as performing.

Nonetheless, Barbulescu et al. [11] showed that the best

option for the AFSCN problem was using the Genitor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/220135785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Zucchelli 2 32nd Annual AIAA/USU

 Conference on Small Satellites

algorithm, as it seems to be able to exploit hidden

patterns in the data. Such result was further confirmed by

Barbulescu et al. in 2006 [1] showing that Genitor

performed best also for newer versions of the problem.

Figure 1. A Leaf Space GS in Vimercate, Italy.

If satellites are in low Earth orbits (LEO), the availability

windows are shorter, and thus they are used in their

entirety. Searching a solution in the space of

permutations becomes inefficient: in this case a passage

can more simply either be scheduled, and thus labeled as

a “1”, or not scheduled, labeled as “0”. This already

reduces the search space 𝒮 of all schedules 𝑠 by much,

as |𝒮| = 2𝑛, where 𝑛 is the number of passage requests;

instead, for large 𝑛, the number of permutations is

approximated by √2𝜋𝑛 (
𝑛

𝑒
)

𝑛

 [12], which grows super-

exponentially, since there is the term 𝑛𝑛. The approach

of considering passages as either 1s or 0s will be used in

this work. An alternative would be that of using methods

such as mixed integer programming, or linear

programming, as in [13]. Such approach however cannot

be applied to the problem of this work as it requires good

knowledge of the state of the satellites, namely the

amount of data collected and their energy availability.

While the state of the satellite is certainly important, it is

unlikely that all satellite operators would be willing to

share those with their ground segment providers.

Moreover, enforcing constraints such as the requirement

that a satellite communicates with only one GS at a time,

and that a GS communicates with only one satellite,

makes most of the benefits of using a linear

programming approach fade away. Hence, this paper

shows how the SRSP can be treated as a constrained

combinatorial optimization problem, and how lack in

information of the state of the satellite implies additional

constraints. Different search spaces are considered, and

finally various optimization techniques are described

and compared.

PROBLEM DESCRIPTION

This problem can be treated as a constrained

combinatorial optimization problem. This is very

different from how similar problem have previously

been treated in literature. The main constraint is the No

Conflict (NC) constraint: it consists of the fact that a

ground station cannot communicate with more than one

satellite at a time, and a satellite cannot communicate

with more than one ground station. Additional

constraints are:

- Positioning Time (PT): the minimum time for a

GS to start communicating with a satellite after

having finished communications with another

one

- Min Orbits (𝑂𝑚𝑖𝑛): the minimum number of

revolutions after which a satellite can be

communicating with a GS again.

- Max Orbits (𝑂𝑚𝑎𝑥): the maximum number of

revolutions before which a satellite has to be

communicating with a GS again.

- Min Passages (𝑃𝑚𝑖𝑛): the minimum number of

passages a satellite has to have (per day).

- Max Passages (𝑃𝑚𝑎𝑥): the maximum number of

passages a satellite can have (per day).

The 𝑂𝑚𝑖𝑛 constraint is often caused by energy

requirements: a satellite cannot communicate too often,

as it would deplete its energy storage, and needs some

orbits to refill its batteries. The 𝑂𝑚𝑎𝑥 constraint is instead

usually driven by data requirements: a satellite is

expected to fill its data storage after a certain amount of

time. Alternatively, the cause could also be a

requirement for maximum latency allowed for the data

between its collection time and its communication to

Earth. Constraints on number of passages involve

instead contractual agreements between the GS provider

and the satellite operator, in order to have an indicative

range of passages required.

The constraints on positioning time and min orbits are

easy to handle: they can be seen as an extension of the

NC constraint. A GS that has a scheduled passage cannot

communicate with any other satellite for a period of time

of PT before the AOS of the given passage to PT after

LOS of such passage. Similarly, such satellite cannot

communicate with other GSs for a time that goes 𝑂𝑚𝑖𝑛

before AOS to 𝑂𝑚𝑖𝑛 after LOS. From this point

forwards, when referring to the NC constraint, it includes

both the 𝑂𝑚𝑖𝑛 and the PT constraints. Moreover, from

now on, the 𝑃𝑚𝑎𝑥 constraint is not considered, as it is

very easy to respect (a schedule that has more passages

Zucchelli 3 32nd Annual AIAA/USU

 Conference on Small Satellites

than 𝑃𝑚𝑎𝑥 can easily be “cut” at the end of the scheduling

process).

SEARCH SPACES

At this point, there are three different search spaces for a

scheduler to work in:

- All schedules ∀𝑠 ∈ 𝒮.

- All schedules respecting NC, ∀𝑠 ∈ 𝒩𝒞.

- All schedules respecting 𝑃𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥, ∀𝑠 ∈
𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥.

Searching in any of these spaces has advantages and

disadvantages. Reducing 𝒮 to 𝒩𝒞 can be enforced by

allocating passages one at a time, and removing from the

available ones those conflicting with the already

allocated ones. Reducing 𝒮 to 𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥 can be

enforced by allocating all passages for a given satellite

at once: a random number of passages, between 𝑃𝑚𝑖𝑛 and

𝑃𝑚𝑎𝑥 , is chosen; if then, 𝑂𝑚𝑎𝑥 is not satisfied, one or

more passage is added. The approaches used for case 2)

and 3) may be merged, such that one could end up

searching in the space of all and only feasible schedules;

nonetheless, it is usually very likely that after scheduling

a few satellites, there would not be enough

nonconflicting passages to satisfy 𝑃𝑚𝑖𝑛 for the remaining

satellites. Hence, there is no way to deterministically

build a schedule that satisfies all constraints. This means

that enforcing all these constraints does not end up in an

effective reduction of the search space, as it might lead

to a still not satisfactory schedule. Nonetheless, an

approach similar to this has still been employed in this

work (see the Mar strategy in the next section).

To give a perspective of the search space size of each

approach, the test case that has been used in this work is

briefly described:

- Optimal schedule: 14,1 passages per satellite

(846 in total)

- Available passages per satellite (𝑁𝑝𝑎𝑠𝑠,𝑠𝑎𝑡: 42,7

(2562 in total)

- Number of satellites 𝑁𝑠𝑎𝑡: 60

Hence, |𝒮| = 22562 ≈ 10770 (each passage can either be

or not be in the schedule). For the cardinality of 𝒩𝒞,

some assumptions are required. Every time a passage is

allocated, the space of all passages that can be allocated

at the next step is reduced by a certain number, which is

the number of passages conflicting with the allocated

passage (including the passage itself). It is reasonable to

assume that such number decreases during the

scheduling: when the 440th passage is being allocated, it

is reasonable to assume that half of the passages

conflicting with it have already been removed. Hence,

the number of schedules possible with this approach can

be computed as follows:

|𝒩𝒞| = ∑
∏ |𝒑𝒂𝒗,𝒊|

𝑠
𝑖=1

|𝒔|!

|𝒔|𝒎𝒂𝒙

|𝒔|=|𝒔|𝒎𝒊𝒏

Where |𝒑𝒂𝒗,𝟎| is the number of initially available

passages, |𝒑𝒂𝒗,𝒊+𝟏| = |𝒑𝒂𝒗,𝒊| − Δ(i) is the number of

available passages at iteration 𝑖 + 1, and Δ(i) is the

number of passages conflicting with 𝑖th passage. |𝒔| is

the number of scheduled passages. |𝒔|𝒎𝒊𝒏 is the

minimum number of passages that can be scheduled

when all non-conflicting passages are allocated, where
|𝒔|𝒎𝒂𝒙 is the maximum. For simplicity, it is assumed that

Δ decreases linearly when 𝑖 increases (and goes to 0

when 𝑖 = |𝒔|). As a consequence, the function Δ(𝑖)

depends on |𝒔|. As an example, for a schedule with 716

scheduled passages, Δ𝑖 =
|𝒑𝒂𝒗,𝒊|

200
+ 1, whereas for a

schedule with 832 scheduled passages, Δ𝑖 =
|𝒑𝒂𝒗,𝒊|

300
+ 1.

For a single value of the final length of the schedule (as

long as it ranges between 500 and 900), one obtains

values of the set size always in the proximity of 10125.

Being conservative, one can state that the search space

has been reduced to close to 10135.

Concerning the last case, where ∀𝑠 ∈ 𝒫𝑚𝑖𝑛 ∩ 𝒪𝑚𝑎𝑥, the

search space size can be computed as follows (assuming,

for simplicity, that 𝑃𝑚𝑖𝑛 = 𝑃𝑚𝑎𝑥 = 14):

∏ (
𝑁𝑝𝑎𝑠𝑠,𝑠𝑎𝑡

𝑃𝑚𝑖𝑛,𝑠𝑎𝑡

)

𝑁𝑠𝑎𝑡

𝑠𝑎𝑡=1

The result is in the range of 10640: while still a huge

reduction if compared to the value of |𝒮|, the space is

still hundreds of orders of magnitude larger than what

can be achieved by enforcing case 2. In this work, it is

decided to search in |𝒩𝒞|, because of the very large

reduction in combinations that it offers. Obviously, such

reduction is problem-dependent; as an example, if, in the

previous example, the number of available passages per

satellite were equal to 𝑃𝑚𝑖𝑛 , then searching in 𝒫𝑚𝑖𝑛 ∩
𝒪𝑚𝑎𝑥 would have been the most efficient: if the solution

exists, it is the only one that is in that set.

The reduction in search space does not come without any

drawbacks. First, it causes an increase in computational

time for the generation of the schedule. Second, it makes

representation of the solution more complicated. If the

search occurs in 𝒮, every passage can be a 0 (not

scheduled) or 1 (scheduled); this makes the solution very

suitable for methods such as genetic algorithms.

Zucchelli 4 32nd Annual AIAA/USU

 Conference on Small Satellites

Searching for solutions in 𝒩𝒞 with an evolutionary

algorithm is instead less straight-forward.

SCHEDULING PROCEDURE

The scheduling procedure involves two phases. The first

is the construction of an initial schedule, or the initial

guess. The second consists of iteratively modifying said

schedule, using a specific operation and one of many

methods to decide whether to accept or not the

modification.

Initial Guess

The initial schedule is generated starting from the list of

all available passages, 𝒑𝒂𝒗. At iteration 𝑖, a passage 𝑝𝑖 is

picked from the list of the remaining available passages

𝒑𝒂𝒗,𝒊 and inserted into the intial schedule 𝒔𝟎,𝒊; at the same

time, all passages that are in conflict with 𝑝𝑖 are removed

from 𝒑𝒂𝒗,𝒊. This way, the generation of a schedule that is

in the space 𝒩𝒞 is guaranteed. In this work, the passage

𝑝𝑖 is chosen in one of two ways:

- Full Random (FullR): each passage has equal

probability of being chosen;

- Margin (Mar): priority is given to passages of

satellites that are farther from satisfying the

𝑃𝑚𝑖𝑛 constraint.

The latter is the solution mentioned in the previous

section, which attempts to look for a schedule 𝑠 ∈ 𝒩𝒞,

while trying first to satisfy 𝑃𝑚𝑖𝑛 for all satellites.

Independently of which of these two ways is chosen,

both procedures ensure that the initial schedule is such

that no passage that would cause a conflict can be added.

Elementary Operation: Passage substitution

Once the initial schedule is generated, the iterative

process begins. The elementary operation that is made

over the schedule is the substitution. A random passage,

that is not in the schedule, and hence is conflicting with

at least one of the scheduled passages, is added to the

schedule. The passages that are conflicting with it are

removed, and the passages in conflict with the removed

ones are considered. Among the last set of passages,

those that are not in conflict with any passage iof the

current schedule are iteratively added, in the same way

the initial guess is generated (hence, with one of the two

methods, either FullR or Mar). Also in this case, it is

guaranteed that the new schedule generated belongs to

𝒩𝒞.

Elementary Operations per Schedule Iteration

Even the number of operations done per iteration may

differ: according to Barbulescu et al. [10], it may be

beneficial to do more than one operation on the schedule

before evaluating again. Such number may be fixed,

random, a function of how many iterations have already

been carried out (and how many are left), or may depend

on how many satellites currently do not satisfy 𝑃𝑚𝑖𝑛 (and

by how much). A particular option is the “guided”

strategy, in which a passage is added, for each satellite

that currently does not satisfy 𝑃𝑚𝑖𝑛 . In this work, when

the “guided” strategy is used, the added passage is, 95%

of the times, not in conflict with the passages of the same

satellite (but of course will be in conflict with passages

of other satellites). It is decided to keep a 5% of cases in

which the passage may be in conflict with passages of

the same satellite: this is because there is a chance that

removing a passage from that satellite might free more

than one passage of the same satellite.

Figure 2. Flowchart of the re-planning decision

process.

Next Schedule Acceptance

Once the next schedule has been generated, it is first

necessary to evaluate it. Among many, the most

Zucchelli 5 32nd Annual AIAA/USU

 Conference on Small Satellites

important factors in the schedule evaluation consist of

whether the requirements are satisfied, how many

passages have been scheduled, what the average

elevation at time of closest approach (TCA) of the

passages is. After evaluation, it is important to define a

way to decide whether the new schedule should be kept

or not. Common ways are hill climbing (HC), random

walk (RW), or simulated annealing (SA). With HC, the

new schedule is kept only if it scores equal or better than

the previous one; conversely, in a random walk the

schedule is always kept (but the highest scoring schedule

is kept in memory); finally, with simulated annealing the

new schedule is kept with probability one if it scores

better than the previous one, and with probability less

than one is it does not. Probability also decreases when

the number of iterations increases. The best method to

use depends on the shape of the cost function. For

example, hill climbing works well when the cost

function has no local optima, but only a global one.

Simulated annealing is instead a good choice in case the

function is relatively smooth but has many local minima.

Parallelization

It should be noted that the building of new schedules may

in some cases also be parallelized. For example, a HC

procedure can be parallelized, especially in the advanced

phases of the search, when only one in hundreds or

thousands of modifications results in improvements of

the schedule. It is possible to do parallel modifications,

and thus generate several new schedules at the same

time, knowing that only a very small fraction, if any, of

those new schedules will lead to an improvement.

RE-PLANNING

It may happen that a disturbance occurs after the

schedule has been communicated to the customers. To

the best of the authors’ knowledge, the problem of re-

planning a satellite contact schedule has never been

treated in literature so far; nonetheless, in the more

general field of scheduling, some examples of re-

planning are available [14,15]. A disturbance may be an

urgent request of contact, or a temporary unavailability

of a GS. In such case, there are several priorities: 1) a

new schedule has to be generated in a very short time; 2)

as many requirements as possible have to be respected,

but, if necessary, constraints on 𝑃𝑚𝑖𝑛 and 𝑂𝑚𝑎𝑥 may be

relaxed; 3) the re-planner has to delete as few passages

as possible. This is a constrained combinatorial multi-

objective optimization problem, one of the objectives

being the maximization of the quality of the schedule,

and the other one being the minimization of the number

of passages that were in the original schedule and now

have been deleted. A “guided” RW approach is used: this

way, many schedules are explored, and the “guided”

strategy tends to bring improvements at each iteration. If

all constraints are satisfied, then RW is continued, with

a random number of changes per iteration (hence, the

process is not “guided” anymore). After a certain amount

of time has passed, the best schedule is chosen among

those that have been explored. Figure 2 illustrates this

process. At each iteration, it is decided whether the new

schedule is better than the currently best one; this is done

according to the following schema:

1. Does it satisfy more or less constraints than the

current best schedule? If less, it is is not the

best, if more, it is the best; if none of those, go

to case 2.

2. Does it have more or less passages deleted than

the current best schedule? If less, it is the best

schedule, if more, it is not; if none of those, go

to case 3.

3. Does it have more or less passages than the

current best schedule? If less, it is not the best,

if more (or equal), it is the best.

TEST CASE DESCRIPTION

The problem that will be used to test the various

algorithms consists of a constellation made of 60

satellites, spread equally over 6 planes. Said planes all

have an inclination of 30° and are equally distanced in

RAAN. The ground stations are 6, positioned along two

belts at 20.5° N and 20.5° S, and equally spaced in

longitude, as follows:

- GS 1: 20.5° N, 120° W

- GS 2: 20.5° S, 120° W

- GS 3: 20.5° N, 0° E

- GS 4: 20.5° S, 0° E

- GS 5: 20.5° N, 120° E

- GS 6: 20.5° S, 120° E

Passages whose elevation at TCA is less than 7.5° are not

considered. Each satellite has to satisfy 𝑂𝑚𝑖𝑛 = 0.8:

hence, only one passage per orbit is allowed. This

problem can easily be solved exploiting symmetries. It is

sufficient to split it into 3 different problems, each with

planes of satellites opposite to each other, and 2 GSs with

same longitude. Hence, the global optimum can be easily

found. The problem becomes extremely complex when

seen in its entirety, and thus this case is very suitable for

testing an algorithm, as it provides a difficult problem

whose global optimum is known. Summarizing, the test

case consists of 60 satellites having passages over 6

ground stations; the number of total passages is 2562,

and the optimal schedule consists of 846 passages. For

the time being, no constraints on max orbits are being

considered.

Zucchelli 6 32nd Annual AIAA/USU

 Conference on Small Satellites

RESULTS

Simulated Annealing

Simulated annealing has been performing considerably

worse than expected. After letting the optimizer work for

many hours (all other cases shown here refer to

optimization durations of less than 15 minutes), the best

schedule found contained 818 passages. This is likely

because of a twofold reason: 1) the problem seems to be

very flat, and also shows very few local minima; 2) it is

difficult to appropriately tune the solver. Statement 1)

was proven when using an HC approach with only one

passage modification at each iteration: if the

modification did not decrease the number of passages,

the new schedule was kept. The algorithm managed

various times, and very slowly, to schedule as many as

843 passages, which is extremely close to the global

optimum. This showed that, if there are any local

minima, these are extremely close to optimality, hence

making the use of an algorithm such as SA not needed.

Moreover, flatness of the function was shown by the fact

that even at the end of the optimization, when the score

of the schedule was very high, plenty of modifications

were being accepted without causing any improvements.

This feature was also found by Barbulescu et al. [11].

Nevertheless, these considerations cannot be generalized

to other test cases, and may be a consequence of the

symmetries of the problem used here. Statement 2) may

be solved by using Adaptive Simulated Annealing

(ASA) [16], but this was not done for the moment. In

fact, it is still likely that even ASA may not perform well,

for the reasons related to stamen 2).

Hill Climbing

HC was then evaluated; three cases were considered: 1)

only one substitution per iteration; 2) a random amount

of substitutions per iteration, uniformly distributed

between 1 and 10; 3) the “guided” approach, setting

𝑃𝑚𝑖𝑛 =14 for all satellites. While the number of

iterations is very different for the different strategies, the

runtime is approximately kept the same for all cases

(around 15 minutes, without using parallelization). The

convergence rate for a single passage modification is

illustrated in Figure 3, whereas the one for 10 passage

modifications per iteration is illustrated in Figure 4. A

few things can be noticed. First, both methods have a

large range of logarithmic convergence. Ideally, one

would not want to continue the optimization for much

longer after this range is over. Unfortunaly, it is a bit hard

to estimate when this ends for the 10 substitutions

strategy. While the two lines seem to follow similar

paths, it is reminded that the two methods are stopped

after equal runtime. Hence, simply stated, the 10

substitutions strategy requires almost double the time per

itration. Second, the method with one passage

substitution performs much better than the one with 10.

In fact, not only it provides an average result of 831,

compared to 816 of the other strategy, but it scores better

even for same number of iterations: after 6000 iterations,

the single substitution strategy shows an average of 828

passages. The “guided” case is then considered. It is

stopped after 500 iterations (iterations are much more

intense computationally, as they require 60 substitutions

each, on average). Nonetheless, the guided method turns

out less performing, most likely because it does too many

changes all at once. A “guided” strategy with a single

substitution per iteration may be a valid improvement to

the scheduler.

Figure 3. Convergence rate (average and standard

deviation) for HC strategy, with one passage

substitution per iteration.

Figure 4. Convergence rate (average and standard

deviation) for HC strategy, with one passage

substitution per iteration.

Zucchelli 7 32nd Annual AIAA/USU

 Conference on Small Satellites

Random Walk

Finally, an RW strategy was tested. Nonetheless, it

performed poorly. After several hours of running, the

algorithm offered a solution which had less than 740

passages when only one passage was changed per

iteration, and less than 770 passages for the guided

strategy.

CONCLUSIONS

HC strategy is clearly the best performing algorithm in

this case. Unexpectedly though, it is found that the

strategy with only one change per iteration is better not

only than the strategy of having more, randomly picked,

modifications, but even than the “guided” approach.

Nonetheless, this might be caused by the fact the

“guided” approach makes many changes at the time. In

line with the fact that a single change at a time works

better than the strategy with many modifications per

iteration, it might be interesting to look at a “guided”

algorithm which only makes one modification per

iteration. Moreover, for the HC strategy to properly

work, it is important that schedules that score equally are

accepted, otherwise the algorithm would get stuck much

sooner.

Recommendations

Recommendations for future work are several. First, it

would be necessary to test these scheduling techniques

in less symmetrical situations, although this would imply

not having knowledge of the global optimum. Additional

improvements to the scheduler may be the

implementation of Genitor, an evolutionary algorithm

that seems to understand and exploit hidden patterns

when solving the similar AFSCN problem [11]. Despite

using a genetic algorithm would most likely require the

method to search the solution in 𝒮 instead of in 𝒩𝒞, the

use of Genitor may still turn out to be beneficial.

A final recommendation concerns robustness. It might in

fact be interesting to have a schedule that is not only

optimal, but that can also be replanned on-the-fly and

with minimum differences in case disturbances occur

after the schedule has already been notified to the

customers. Sources of disturbances may be temporary

unavailability of a GS, or additional requests from a

satellite. In such a case, it is important that the scheduler

plans a minimum number of changes from the previous

schedule, for the customers to have little inconvenience.

While we have already developed a software that replans

the schedule minimizing the number of changes, it would

be interesting to evaluate how taking disturbances (and

their probability to occur) into account during the

scheduling process itself would affect the process and the

overall performance of the system.

References

1. Barbulescu, L., Howe, A. and D. Whitley,

“AFSCN scheduling: How the problem and

solution have evolved,” Mathematical and

Computer Modelling, vol. 43, no. 9-10, 2006.

2. Frank, J., Jonsson, A., Morris, R. and D. Smith,

“Planning and scheduling for fleets of earth

observing satellites”, Proceedings of the 6th

International Symposium on Aritificial

Intelligence, Robotics, Automation and Space,

2001.

3. J.C. Pemberton, “Toward scheduling over-

constrained remote-sensing satellites,”

Proceedings of the 2nd NASA International

Workshop on Planning and Scheduling for Space,

San Francisco, CA, 2000.

4. Joslin, D.E. and D.P. Clements, “Squeaky wheel

optimization,” Journal of Artificial Intelligence

Research, vol. 10, 1999.

5. Kirkpatrick, J., Gelatt, C.D., Jr. and Vecchi,

“Optimization by Simulated Annealing,” Science,

vol. 220, 1983.

6. D. Whitley, “The GENITOR Algorithm and

Selection Pressure,” Proceedings of the 3rd

International Conference on Genetic Algorithms,

San Mateo, CA, 1989.

7. Cormen, T.H., Leiserson, C.E. Rivest, R.L. and C.

Stein, Introduction to Algorithms, Third Edition,

The MIT Press, Cambridge, MA, 2009.

8. S. Dauzère-Pérès, “Minimizing Late Jobs in the

General One Machine Scheduling Problem,”

European Journal of Operational Research, vol.

81, 1995.

9. S.E. Burrowbridge, “Optimal Allocation of

Satellite Network Resources”, MSc Thesis,

Virginia Polytechnic Institute and State

University, 1999.

10. Barbulescu, L., Whitley, D. and A.E. Howe, “Leap

Before you Look: An Effective Strategy in an

Oversubscribed Scheduling Problem,”

Proceedings of the 19th National Artificial

Intelligence Conference, San Jose, Ca, 2004.

11. Barbulescu, L., Howe, A.E., Whitley, L.D. and M.

Roberts, “Trading Places: How to Schedule More

in a Multi-Resource Oversubscribed Scheduling

Problem,”

12. D. Romik, “Stirling’s Approximation for 𝑛!: The

Ultimate Short Proof?,” The American

Zucchelli 8 32nd Annual AIAA/USU

 Conference on Small Satellites

Mathematical Monthly, vol. 107, no. 6, June-July,

2000.

13. J. Castaing, “Scheduling Downloads for Multi-

Satellite, Multi-Ground Station Missions,” 28th

Annual AIAA/USU Conference on Small

Satellites, Logan, UT, 2014.

14. Herroelen, W.S., de Reyck, B. and

Demeulemeester, E.L., “Project Scheduling under

Uncertainty: Survey and Research Potentials,”

European Journal of Operational Research, vol.

165, no.2, 2005.

15. Gombolay, M.C., Wilcox, R.J. and J.A. Shah,

“Fast Scheduling of Multi-Robot Teams with

Temporospatial Constraints,” Proceedings of

Robotics: Science and Systems (RSS), Berlin,

Germany, June, 2013.

16. L. Ingber, “Adaptive Simulated Annealing –

Lessons Learned,” Control and Cybernetics, vol.

25, no. 1, 1996.

